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Abstract

A Coxeter polyhedron in Hn is a convex polyhedron of finite volume all of
whose dihedral angles are integral submultiples of π. The group generated
by the reflections in the facets of a hyperbolic Coxeter polyhedron is called
a hyperbolic Coxeter group. While hyperbolic Coxeter polyhedra exist only
for n ≤ 995, they are far from being classified for dimensions beyond 3.

In this thesis, we study hyperbolic Coxeter polyhedra and their reflection
groups from two different point of views.

In the first part of our work, we consider Coxeter polyhedra with mutually
intersecting facets all of whose dihedral angles are π

2
, π
3
and (at least one) π

6
.

Since their associated hyperbolic Coxeter groups satisfy a crystallographic
condition, we call them ADEG-polyhedra. Our first main result provides the
classification of all ADEG-polyhedra in Hn. We discover a new polyhedron
P⋆ in H9, and present various of its properties. Furthermore, for n ≥ 7, we
show that Coxeter polyhedra in Hn with mutually intersecting facets have
dihedral angles of the form π

m
with m ≤ 6, only.

In the second part of our work, we study growth minimality properties of
Coxeter groups acting on Hn for dimensions n ≥ 4. To this end, we es-
tablish a new method to identify the groups realizing smallest growth rate
and exploit it subsequently by distinguishing between the cocompact and the
non-cocompact cases. One of our results concerns the cocompact case and
dimensions n = 4 and 5 while the other result describes the non-cocompact
case and dimensions 4 ≤ n ≤ 9. In both settings, we are able to identify
the Coxeter groups of minimal growth rate. It turns out that they are all
intimately related to the fundamental groups of (compact arithmetic resp.
cusped) hyperbolic n-orbifolds of minimal volume.
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Résumé

Un polyèdre de Coxeter dans Hn est un polyèdre convexe de volume fini
dont tous les angles dièdres sont des sous-multiples entiers de π. Le groupe
engendré par les réflexions par rapport aux facettes d’un polyèdre de Coxeter
hyperbolique est appelé un groupe de Coxeter hyperbolique. Bien qu’il soit
établi que les polyèdres de Coxeter hyperboliques existent seulement pour
n ≤ 995, ils sont loin d’être classifiés au delà de la dimension 3.

Cette thèse porte sur l’étude des polyèdres de Coxeter hyperboliques et leurs
groupes de réflexions selon deux points de vue différents.

Dans la première partie de notre travail, nous considérons des polyèdres de
Coxeter hyperboliques dont toutes les facettes s’intersectent, et ce, en des
angles dièdres π

2
, π
3
et (au moins un) π

6
. Les groupes de Coxeter associés à de

tels polyèdres satisfont une condition crystallographique, et nous les bapti-
sons polyèdres ADEG. Notre premier résultat principal établit la classifica-
tion complète des polyèdres ADEG. Nous découvrons un nouveau polyèdre
P⋆ dans H9, et présentons plusieurs de ses propriétés. De plus, nous mon-
trons que, pour n ≥ 7, les polyèdres de Coxeter dont toutes les facettes
s’intersectent ont des angles dièdres de la forme π

m
pour m ≤ 6 seulement.

Dans la seconde partie de notre travail, nous étudions la propriété de crois-
sance minimale des groupes de Coxeter de covolume fini agissant sur Hn

pour n ≥ 4. Pour cela, nous établissons une nouvelle méthode pour identifier
les groupes dont le taux de croissance est minimal. Nous exploitons cette
méthode en distinguant les cas cocompact et non-cocompact.

Un de nos résultats concerne le cas cocompact en dimension n = 4 et 5, tandis
que notre autre résultat porte sur le cas non-cocompact pour 4 ≤ n ≤ 9.
Dans les deux cas, nous identifions les groupes de Coxeter de plus petit
taux de croissance. Ces derniers sont en fait étroitement liés aux groupes
fondamentaux des n-orbivariétés (compactes arithmétiques, respectivement
cuspidées) hyperboliques de volume minimal.
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Zusammenfassung

Ein Coxeter-Polyeder in Hn ist ein konvexes Polyeder von endlichem Vol-
umen, dessen Diederwinkel ganzzahlige Teiler von π sind. Die Gruppe,
die durch die Spiegelungen in den Facetten eines hyperbolischen Coxeter-
Polyeders erzeugt wird, heisst eine hyperbolische Coxeter-Gruppe. Während
hyperbolische Coxeter-Polyeder nur für n ≤ 995 existieren, ist man dennoch
weit entfernt von deren Klassifikation jenseits der Dimension drei.

In dieser Arbeit untersuchen wir hyperbolische Coxeter-Polyeder und deren
Spiegelungsgruppen aus zwei verschiedenen Blickwinkeln. Im ersten Teil un-
serer Arbeit betrachten wir Coxeter-Polyeder mit sich gegenseitig schneiden-
den Facetten, deren Diederwinkel alle gleich π

2
, π

3
und (mindestens einem)

π
6
sind. Da ihre zugehörigen hyperbolischen Coxeter-Gruppen eine kristallo-

graphische Bedingung erfüllen, nennen wir sie ADEG-Polyeder. Unser erstes
Hauptergebnis liefert die Klassifikation aller ADEG-Polyeder in Hn. Dabei
entdecken wir ein neues Polyeder P⋆ in H9 und präsentieren verschiedene
seiner Eigenschaften. Ausserdem zeigen wir für n ≥ 7, dass Coxeter-Polyeder
in Hn mit sich gegenseitig schneidenden Facetten nur Diederwinkel der Form
π
m

mit m ≤ 6 haben können.

Im zweiten Teil unserer Arbeit untersuchen wir die Eigenschaft des mini-
malem Wachstums für Coxeter-Gruppen, die auf Hn für Dimensionen n ≥ 4
operieren. Zu diesem Zweck etablieren wir eine neue Methode, um die Grup-
pen mit minimaler Wachstumsrate zu identifizieren, und wenden diese an-
schliessend an, indem wir zwischen dem kokompakten und dem nicht kokom-
pakten Fall unterscheiden.

Eines unserer beiden Ergebnisse betrifft den kokompakten Fall und die Di-
mensionen n = 4 und 5, während das andere Ergebnis den nicht-kokompakten
Fall und die Dimensionen 4 ≤ n ≤ 9 behandelt. In beiden Fällen sind wir
in der Lage, die Coxeter-Gruppen mit minimaler Wachstumsrate zu identi-
fizieren. Es stellt sich heraus, dass sie alle eng mit den Fundamentalgruppen
von (kompakten arithmetischen bzw. gespitzten) hyperbolischen n-Orbifolds
von minimalem Volumen verknüpft sind.
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Introduction

Let Hn be the hyperbolic space of dimension n ≥ 2. A Coxeter polyhedron
P ⊂ Hn is a convex polyhedron of finite volume all of whose dihedral angles
are integer submultiples of π. Associated with P is the discrete group Γ(P )
in IsomHn generated by the reflections in the facets of P . Such groups are
called hyperbolic Coxeter groups and form a natural but important family
of transformation groups arising in several different contexts, ranging from
algebra, geometry to topology. However, in contrast to the Euclidean and
the spherical cases, hyperbolic Coxeter polyhedra are far from being entirely
understood.

Our thesis is devoted to this theme and consists of three parts. While Part
I contains the preparatory material, our two key achievements are presented
in Part II and in Part III.

Firstly, we consider a class of Coxeter polyhedra in Hn with prescribed com-
binatorial and angular structure. In fact, instead of fixing the number of
their facets in terms of the dimension n, as happened often in works of other
authors, we suppose that the polyhedra have mutually intersecting facets
and dihedral angles given by π

2
, π
3
and (at least one) π

6
. Motivated by work of

Prokhorov, and in view of their relation to crystallographic Coxeter groups
of type A,D,E and G2, we call them ADEG-polyhedra. Our central result
can be stated as follows.

Theorem. Let P ⊂ Hn be an ADEG-polyhedron. Then, P is one of the 24
Coxeter polyhedra depicted in Table 4.0.1. In particular, P is non-compact
for n > 2, non-simple for n > 3, and P is of dimension n ≤ 11. Furthermore,
P is combinatorially equal to one of the following polyhedra.
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✧ P is a triangle.

✧ P is a tetrahedron.

✧ P is a doubly-truncated 5-simplex.

✧ P is a pyramid over a product of two or three simplices.

✧ P is the polyhedron P⋆ ⊂ H9 with 14 facets depicted as follows.

6

6

6

6

The polyhedron P⋆ ⊂ H9 is a new discovery, and it is given here by its Coxeter
diagram. Such a diagram can be read as follows. The nodes correspond to
facets, and they are joined by a simple edge or an edge with labelm ≥ 4 if the
facets are not orthogonal but intersect under the angle π

3
or π

m
, respectively.

The proof of the classification theorem above is in parts based on Prokhorov’s
work in the ADE-case and given in Chapter 4. Of fundamental importance to
us are the results of Felikson and Tumarkin characterizing the combinatorics
of Coxeter polyhedra with mutually intersecting facets, as well as Borcherds’
theorem helping us to identify faces of codimension two as Coxeter polyhedra.

At the end of Part II, we present a few properties of P⋆ and of its associated
Coxeter group Γ⋆ = Γ(P⋆). We show that its volume is a rational multiple q
of ζ(5)/22, 295, 347, 200 with q ∈ Q>1. Moreover, the group Γ⋆ is arithmetic
(over Q), and its commensurability class contains all Coxeter simplex groups
and all Coxeter pyramid groups as well as the group related to Prokhorov’s
ADE-polyhedron.

Let us add that our proof methods are general and can be applied to Coxeter
polyhedra with mutually intersecting facets and for any set of dihedral angles.
However, as we proved in Proposition 4.3.3, the dihedral angles of Coxeter
polyhedra with mutually intersecting facets of dimensions beyond 6 must
be of the form π

m
with m ≤ 6. Although a complete classification of these

polyhedra can therefore be realized in finite time and for all dimensions, we
did not pursue this direction of research.

Secondly, we present in Part III our results about hyperbolic Coxeter groups
of minimal growth rate in dimensions beyond three. Since these results have

2



already been published at an earlier stage of this thesis work, we are content
to summarize them in a condensed but nevertheless complete way. The first
result1 in this context is given by Theorem 6.2.1 and identifies the cocompact
hyperbolic Coxeter groups of minimal growth rate in dimensions n = 4 and 5.
More precisely, for dimension 4, it is the group Γc

4 associated with the compact
simplex with Coxeter symbol [5, 3, 3, 3] while for dimension 5, it is the group
Γc
5 associated with the compact prism with Coxeter symbol [5, 3, 3, 3, 3,∞].

The second result2, given by Theorem 6.2.2, identifies the non-cocompact
hyperbolic Coxeter groups of minimal growth rate in dimensions 4 ≤ n ≤ 9.
The minimizing groups Γn are depicted below.

Γ4
4 Γ5

4

Γ6
4 Γ7

Γ8 Γ9

In both cases, the minimizers are unique and closely related to the funda-
mental groups of compact arithmetic and cusped hyperbolic n-orbifolds of
minimal volume, respectively.

The work finishes with several appendices. Appendix A and Appendix B
display some material and lists in connection with the proof of the above
Theorem. Appendix C contains the technical details relevant for the proof
of Proposition 4.3.1 about the commensurability class of Γ⋆. Lastly, the
two articles mentioned about constitute Appendix D. Let us indicate that
we contributed significantly to the research in our joint work with Ruth
Kellerhals.

1N. Bredon, R. Kellerhals, Hyperbolic Coxeter groups and minimal growth rates in
dimensions four and five, Groups Geom. Dynamics 16 (2022), 725–741.

2N. Bredon, Hyperbolic Coxeter groups of minimal growth rates in higher dimensions,
Canad. Math. Bull. 66 (2023), 232–242.
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In our times, geometers are still exploring
those new Wonderlands, partly for the
sake of their applications to cosmology
and other branches of science, but much
more for the sheer joy of passing through
the looking glass into a land where
the familiar lines, planes, triangles,
circles and spheres are seen to behave
in strange but precisely determined ways.

H. S. M. Coxeter

Part I:

Preliminaries
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CHAPTER 1

Coxeter groups and Coxeter polyhedra

Let Xn be a geometric space of dimension n ≥ 2 and of constant sectional
curvature 0, 1 or −1. Let IsomXn be the isometry group of Xn. We are
interested in discrete groups in IsomHn generated by finitely many reflections
with respect to hyperplanes of Xn.

For their characterization, we first present vector models for the spaces Xn.
Our interest lies especially in the case Xn = Hn. After that, we describe
hyperplanes and polyhedra in Xn. Then, we introduce the important notion
of Coxeter groups. We first consider them as abstract objects, and then rep-
resent some of them as geometric Coxeter groups, that is, Coxeter groups
realized as discrete subgroups of IsomXn generated by reflections in hyper-
planes in Xn. We characterize geometric Coxeter groups in terms of their
Coxeter diagrams and by means of the Gram matrix of their fundamental
polyhedra.

As general references for this chapter, we quote [16, 37, 82, 83, 84].

1 Geometric spaces of constant curvature

Let n ≥ 2. The only simply connected complete Riemannian manifolds of
constant sectional curvature of dimension n are, up to isometry, the Euclidean
space En, the sphere Sn and the hyperbolic space Hn. In what follows, we
consider each of these spaces as a metric space.

Denote by K ∈ {0, 1,−1} the constant sectional curvature of the space Xn.

6



1. Geometric spaces of constant curvature

For x = (x1, x2, . . . , xn+1) and y = (y1, y2, . . . , yn+1) ∈ Rn+1, define the
bilinear form

⟨x, y⟩K :=
n∑

i=1

xiyi +Kxn+1yn+1 .

We denote by || · ||K the associated (pseudo-)norm. If the context is clear,
we simply write ⟨·, ·⟩ := ⟨·, ·⟩K and || · || := || · ||K .
The bilinear form ⟨., .⟩0 is positive semidefinite, and the bilinear form ⟨., .⟩1
is positive definite. The bilinear form ⟨., .⟩−1 is indefinite of signature (n, 1),
and it is called the Lorentzian form.

The spaces Xn admit the following linear models.

(i) We identify the space En with the hyperplane

En = {x ∈ Rn+1 | xn+1 = 0}

in Rn+1. It is naturally endowed with the metric dE(x, y) =
√

⟨x− y, x− y⟩0
for any x, y ∈ En.

(ii) The space Sn is given by

Sn = {x ∈ Rn+1 | ⟨x, x⟩1 = 1} ,

together with the usual angular metric dS(x, y) = arccos⟨x, y⟩1 for x, y ∈ Sn.

(iii) Denote by Rn,1 the Lorentz-Minkowski space, that is, the space Rn+1

endowed with the Lorentzian product ⟨·, ·⟩−1; see Figure 1.1.1.

v

t v∞

Future light-cone

Past light-cone

Figure 1.1.1: The Lorentz-Minkowski space Rn,1
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Chapter 1. Coxeter groups and Coxeter polyhedra

A vector v ∈ Rn,1 \ {0} is said to be

• spacelike if ⟨v, v⟩−1 > 0,

• timelike if ⟨v, v⟩−1 < 0,

• lightlike if ⟨v, v⟩−1 = 0.

In Figure 1.1.1, we depict a spacelike vector v, a timelike vector t, and a
lightlike vector v∞ in the Lorentz-Minkowski space Rn,1.

We usually identify the hyperbolic space Hn as the upper shell Hn of the
two-sheeted hyperboloid in Rn+1, that is,

Hn = {x ∈ Rn+1 | ⟨x, x⟩−1 = −1, xn+1 > 0} , (1.1)

with the metric d(x, y) = dH(x, y) = arccosh(−⟨x, y⟩−1) for any x, y ∈ Hn.

The boundary of Hn, denoted by ∂Hn, can then be identified with

∂Hn = {x ∈ Rn+1 | ⟨x, x⟩1 = 1, ⟨x, x⟩−1 = 0, xn+1 ≥ 0} . (1.2)

We denote the compactification of Hn by Hn = Hn ∪ ∂Hn.

Let us mention that in this linear model, the volume element of Hn is given
by

dvoln =
dx1 · · · dxn√

1 + x2
1 + . . .+ x2

n

.

A point p ∈ Hn is called an ordinary point, and a point q ∈ ∂Hn is called
an ideal point. A metric sphere centered at an ordinary point p carries a
spherical structure in a natural way. A metric sphere internally tangent
to an ideal point q carries a Euclidean structure and is called a horosphere
Sq centered at q. Horospheres as Euclidean spaces are best treated in the
upper half space model Un = {x ∈ Rn | xn = 0} endowed with the metric

ds2U =
dx2

1+...+dx2
n

x2
n

. Indeed, a horosphere centered at q = ∞ is a hyperplane

Ht = {xn = t}, t > 0, with induced metric ds2U |Ht =
1
t2
(dx2

1 + . . .+ dx2
n−1).

Let us emphasize that the group O(n, 1) of Lorentzian matrices acting by
isometries on Rn,1 admits four connected components. Among them, the sub-
group O+(n, 1) of positive Lorentz-matrices preserves each of the two sheets
of the hyperboloid. It can be verified that the group IsomHn is isomorphic
to O+(n, 1).

In order to complete the picture, let us mention the well-known projective
model that will also be useful to describe Hn. For

C := {x ∈ Rn+1 | ⟨x, x⟩−1 < 0, xn+1 > 0} , (1.3)

8



2. Hyperplanes, polyhedra and Gram matrix

we have the isometry
Hn ∼= C/R+ . (1.4)

In this way, we interpret Hn as space of classes represented by timelike rays
of the future light-cone C of Rn,1. Similarly, any point on the boundary ∂Hn

can identified with a lightlike ray belonging to ∂C.

2 Hyperplanes, polyhedra and Gram matrix

Assume that Xn = En,Sn or Hn. It is well known that any element of IsomXn

can be written as a finite product of hyperplane reflections. Any hyperplane
in Xn separates the space into two closed convex half-spaces, and there is a
reflection which fixes the hyperplane and exchanges the two half spaces. In
this section, we start with the description of hyperplanes in Xn, and then
characterize convex polyhedra in Xn.

In En, a hyperplane is an affine hyperplane given by a normal vector
v ∈ Sn−1 and a translational vector u ∈ En as follows.

Hu,v = {x ∈ En | ⟨x, v⟩1 = 0}+ u .

Observe that each Hu,v is isomorphic to Hv := H0,v.

For a hyperplane Hv in En, the reflection sv with respect to Hv is given by

sv(x) = x− 2
⟨v, x⟩
||v||2

v , x ∈ En . (1.5)

For any two unit vectors v1, v2 ∈ En, we say that the hyperplanes Hv1 and
Hv2 are parallel if and only if ⟨v1, v2⟩1 = −1. For Hv1 ∩Hv2 ̸= ∅, the dihedral
angle ∡(Hv1 , Hv2) is given by

cos∡(Hv1 , Hv2) = −⟨v1, v2⟩1 .

In the case of constant curvature K ̸= 0, given a vector v ∈ Rn+1 such
that ⟨v, v⟩K = 1, its orthogonal complement is given by

Xv = v⊥ := {x ∈ Rn+1 | ⟨x, v⟩K = 0} . (1.6)

The intersection Hv := Xv ∩Xn gives a hyperplane in Xn with normal vector
v. Any hyperplane of Xn is obtained in such a way. If not otherwise stated,
we always assume v to be a unit vector. For a hyperplane Hv in Xn, we can
associate the (oriented) closed half-space

H−
v := {x ∈ Xn | ⟨x, v⟩K ≤ 0} ,

9



Chapter 1. Coxeter groups and Coxeter polyhedra

bounded by Hv, and where v is pointing outwards.

The reflection sv with respect to Hv given by

sv(x) = x− 2⟨v, x⟩v , x ∈ Xn ,

is an isometry of Xn.

⋄ If Xn = Sn, any two spherical hyperplanes Hv1 , Hv2 intersect in Sn. Their
dihedral angle is given by

cos∡(Hv1 , Hv2) = −⟨v1, v2⟩1 .

⋄ If Xn = Hn, two hyperbolic hyperplanes Hv1 , Hv2 intersect inside Hn if
and only if

|⟨v1, v2⟩−1| < 1 .

Furthermore, their dihedral angle is given by

cos∡(Hv1 , Hv2) = −⟨v1, v2⟩−1 . (1.7)

Two hyperbolic hyperplanesHv1 , Hv2 intersect at a point on the boundary
∂Hn, and are called (hyperbolic-)parallel, if and only if |⟨v1, v2⟩−1| = 1. This
condition is equivalent to the fact that Hv1 and Hv2 intersect at a dihedral
angle 0.

Lastly, two hyperplanes Hv1 and Hv2 do not intersect in Hn = ∂Hn ∪ Hn if
and only if |⟨v1, v2⟩−1| > 1. In this case, they are called ultraparallel, and
they give rise to a unique hyperbolic line L orthogonal to both of them. The
distance between Hv1 and Hv2 is then given by

cosh d(Hv1 , Hv2) = |⟨v1, v2⟩−1| .

Observe that we have ⟨v1, v2⟩−1 < 0 if and only if v1 and v2 are of opposite
orientation.

Let k be a positive integer. For a k-dimensional vector subspace V ⊂ Rn,1, V
is called hyperbolic if it has nonempty intersection with Hn. More specifically,
the intersection V ∩ Hn is a hyperbolic (k − 1)-plane. In a similar way,
V ⊂ Rn,1 is elliptic if V ∩ Hn is empty, and it is parabolic in the remaining
case.

It is not difficult to see but important to note that the orthogonal complement
of V is elliptic if and only if V is hyperbolic. In particular, a hyperplane Hv

is hyperbolic if and only if the normal vector v is spacelike.

The following elementary lemma will be useful later on.
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2. Hyperplanes, polyhedra and Gram matrix

Lemma 1.2.1. Any two Lorentz-orthogonal lightlike vectors are collinear.

Proof. Assume that v, v′ ∈ Rn,1 are two Lorentz-orthogonal lightlike vectors.
Let w be a timelike vector of squared norm −1. Then, the Lorentz-Minkowski
space Rn,1 decomposes as Rw ⊕ w⊥. Hence, there exist λ, λ′ ∈ R \ {0} and
two spacelike vectors x, x′ ∈ Rn,1 such that v = λw + x and v′ = λ′w + x′.
Since ⟨v, w⟩ = λ⟨w,w⟩+ ⟨x,w⟩ = −λ, we derive that

⟨x, x⟩ = ⟨v − λw, v − λw⟩
= ⟨v, v⟩ − λ2⟨w,w⟩
= λ2

and, similarly, ⟨x′, x′⟩ = λ′2 and ⟨x, x′⟩ = λλ′. Now, one has

⟨λ′x− λx′, λ′x− λx′⟩ = λ′2⟨x, x⟩+ λ2⟨x′, x′⟩ − 2λλ′⟨x, x′⟩ = 0 .

It follows that λ′x − λx′ = 0, as λ′x − λx′ belongs to the elliptic subspace
w⊥. Therefore,

λ′v − λv′ = λx′ − λ′x = 0 .

Now, we introduce the important concept of (convex) polyhedra in Xn as
follows.

Definition 1.2.2. A polyhedron of dimension n or an n-polyhedron P ⊂ Xn

is the non-empty intersection of finitely many closed half spaces H−
vi

in Xn

bounded by N ≥ n+ 1 hyperplanes Hvi in Xn, that is,

P =
N⋂
i=1

H−
vi
. (1.8)

In the sequel, we often suppose P ⊂ Xn to be of dimension n. By con-
struction, P is convex and entirely determined by its normal vectors up to
isometry.

The dihedral angles of P are the angles associated with the normal vectors
of two intersecting hyperplanes in the boundary of P ; see (1.7).

Depending on whether Xn = En,Sn or Hn, a polyhedron P ⊂ Xn given
by (1.8) is said to be Euclidean, spherical, or hyperbolic. In what follows,
we assume polyhedra to have finite volume, except if mentioned otherwise.
Observe that a polyhedron P ⊂ Hn is of finite volume if and only if P is the
(hyperbolically) convex hull of finitely many points in Hn.

11



Chapter 1. Coxeter groups and Coxeter polyhedra

Definition 1.2.3. For 0 ≤ k ≤ n − 1, a k-face of P is the non-empty
intersection of n− k bounding hyperplanes of P with Hn. A facet of P is a
(n− 1)-face of P , an edge is a 1-face of P , and an ordinary vertex is a 0-face
of P .

Definition 1.2.4. An ideal point q ∈ ∂Hn is an ideal vertex of P ⊂ Hn if
q ∈ P and the intersection P ∩Sq of P with a sufficiently small horosphere Sq

centered at q is compact when considered as an (n−1)-dimensional Euclidean
polyhedron.

Remark 1.2.5. As a consequence of the famous volume differential for-
mula of Schläfli, the volume of a hyperbolic polyhedron P is a monotonously
decreasing function with respect to each dihedral angle of P ; see [47] for
example.

For completeness, let us introduce the f -vector of a polyhedron P ⊂ Xn.

Definition 1.2.6. Let P ⊂ Xn be a polyhedron, and let fk be the number
of k-faces of P . The f-vector of P is the vector given by

(f0, . . . , fn−1) .

By the celebrated formula of Euler-Schäfli, we have the following result.

Proposition 1.2.7. Let P ⊂ Xn be a polyhedron. Then,

n−1∑
k=0

(−1)kfk = 1− (−1)n .

Next, we introduce a very useful tool for the characterization of a polyhedron
in Xn, its Gram matrix.

Definition 1.2.8. Let P ⊂ Xn be a polyhedron as given by (1.8). The Gram
matrix Gr(P ) of P is the Gram matrix of the system of unit normal vectors
{v1, . . . , vN} given by

Gr(P ) = (gij)1≤i,j≤N where gij := ⟨vi, vj⟩K .

Remark 1.2.9. As defined above, Gr(P ) is a real symmetric matrix with
diagonal entries equal to 1. At times, we use a different normalization of the
vectors vi in order to get a matrix with integer coefficients.
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2. Hyperplanes, polyhedra and Gram matrix

A polyhedron P is said to be non-degenerate if its bounding hyperplanes do
not share a common point, and there is no hyperplane orthogonal to all of
them. A non-degenerate polyhedron is said to be indecomposable if and only
if its Gram matrix Gr(P ) is indecomposable in the classical sense. Observe
that any hyperbolic polyhedron of finite volume is indecomposable.

From now on we focus on acute-angled polyhedra, that is, polyhedra
whose bounding hyperplanes either intersect at a dihedral angle not exceeding
π
2
or are disjoint.

Assume that P ⊂ Xn is a non-degenerate indecomposable acute-angled poly-
hedron. Depending on Xn, we have the following characterization of the
Gram matrix Gr(P ).

• For Xn = En, Gr(P ) is positive semi-definite of rank n.

• For Xn = Sn, Gr(P ) is positive definite of rank n+ 1.

• For Xn = Hn, Gr(P ) is indefinite of signature (n, 1).

Observe that in the hyperbolic case, only, the matrix Gr(P ) of P ⊂ Hn can
be arbitrarily large in comparison with n.

Assume that P ⊂ Xn is decomposable. For Xn = En, Gr(P ) is made of
several block matrices, each one positive semi-definite of rank ki, say, but
such that

∑
i ki = n. For Xn = Sn, the Gram matrix Gr(P ) is made of

several positive definite block matrices of rank ki such that
∑

i ki = n+ 1.

If a polyhedron P ⊂ Xn is bounded by precisely N = n + 1 hyperplanes, P
is called a simplex.

As a consequence of the Perron-Frobenius theory, we have the following re-
sult.

Theorem 1.2.10. Let n be a positive integer. Let G = (gij)1≤i,j≤n+1 ∈
Mat(n + 1,R) be an indecomposable symmetric matrix such that gii = 1 for
i = 1, . . . , n + 1 and such that −1 ≤ gij ≤ 0 for 1 ≤ i ̸= j ≤ n + 1. Then,
one has the following properties.

• If G is positive semi-definite of rank n such that, for all 1 ≤ i, j ≤ n+1,
the (i, j)-th cofactor of G is positive, then G is the Gram matrix of a
Euclidean simplex in En which is unique up to isometry.

• If gij ̸= −1 for all 1 ≤ i, j ≤ n + 1, i ̸= j, and G is positive definite,
then G is the Gram matrix of a spherical simplex in Sn which is unique
up to isometry.

13



Chapter 1. Coxeter groups and Coxeter polyhedra

• If G has signature (n, 1) such that, for all 1 ≤ i, j ≤ n + 1, the (i, j)-
th cofactor of G is positive, then G is the Gram matrix of a compact
hyperbolic simplex in Hn which is unique up to isometry.

For the cases Xn = Sn and En, we cite the following additional results.

Theorem 1.2.11. Any acute-angled non-degenerate spherical (respectively,
Euclidean) polyhedron P is a simplex (respectively, a direct product of sim-
plices).

Let P ⊂ Hn be a polyhedron and k ≥ 1. Each k-face F of P gives rise to a
principal submatrix Gr(F ) of the matrix Gr(P ). Here, Gr(F ) is the matrix
formed by the columns and rows corresponding to the facets of P containing
F . As a consequence, there is a one-to-one correspondence between the set
of k-faces of P and the set of positive definite principal submatrices of Gr(P )
of rank k. A similar result holds for ordinary vertices as they correspond to
positive definite principal submatrices of rank n of Gr(P ).

Let P ⊂ Hn be acute-angled and of finite volume. An ideal vertex of P gives
rise to a neighbourhood in P that is a cone over a direct product of simplices.
As a consequence, there is a one-to-one correspondence between the set of
ideal vertices of P and the set of positive semi-definite principal submatrices
of rank n− 1 of Gr(P ).

Finally, a vertex of a polyhedron P ⊂ Xn is said to be simple if it is the
intersection of precisely n bounding hyperplanes of P . The polyhedron P is
called simple if all of its vertices are simple. It follows from the above that
any compact acute-angled hyperbolic polyhedron is simple.

3 Abstract and geometric Coxeter groups

Definition 1.3.1. An abstract Coxeter group Γ = (W,S) of rank N is a
finitely generated group W with generating set S of cardinality N and a
presentation according to

W = ⟨si ∈ S | s2i = 1, (sisj)
mij = 1⟩ , (1.9)

where mij = mji ∈ {2, 3, · · · ,∞} for all i ̸= j.

Observe that the set S of generators of a Coxeter group is symmetric, that
is, S = S−1.

14



3. Abstract and geometric Coxeter groups

Let Γ = (W,S) be an abstract Coxeter group. For any subset T ⊂ S, the
group WT generated by the elements of T is a subgroup of W , and WT is
itself a Coxeter group. We say that WT is a parabolic subgroup of W .

We are interested in Coxeter groups that admit a geometric representation
as discrete subgroups of IsomXn generated by hyperplane reflections.

A natural approach is to consider a polyhedral arrangement of hyperplanes
as follows.

Definition 1.3.2. A Coxeter polyhedron P =
⋂N

i=1 H
−
vi
⊂ Xn is a polyhedron

all of whose dihedral angles are zero or of the form π
k
for k ∈ Z≥2.

Given a Coxeter polyhedron P ⊂ Xn as in Definition 1.3.2, we denote
by s1, . . . , sN ∈ IsomXn the reflections with respect to the hyperplanes
Hv1 , . . . , HvN bounding P . Let Γ be the group generated by S = {s1, . . . , sN}.
If two hyperplanes Hvi , Hvj intersect at a dihedral angle

π
mij

, then the compo-

sition sisj is a rotation of angle 2π
mij

. Furthermore, if two hyperplanes do not

intersect in Hn (that is, they are parallel or ultraparallel), the composition
sisj has infinite order. In this way, we deduce that Γ admits a presentation
as a Coxeter group

Γ = ⟨s1, . . . , sN | s2i = 1, (sisj)
mij = 1⟩ . (1.10)

Definition 1.3.3. Let P ⊂ Xn be a Coxeter polyhedron. The Coxeter
group Γ ⊂ IsomHn generated by reflections with respect to the bounding
hyperplanes of P is called the geometric Coxeter group associated with P .
The Gram matrix Gr(Γ) of Γ is defined to be the Gram matrix Gr(P ) of P .

Depending on whether Xn = En,Sn or Hn, the geometric Coxeter group Γ
is said to be Euclidean, spherical, or hyperbolic. Observe that a spherical
Coxeter group is always finite.

The Coxeter group Γ ⊂ IsomXn is called cocompact if the associated Coxeter
polyhedron P ⊂ Xn is compact, and non-cocompact otherwise. In addition,
Γ is called cofinite if the associated Coxeter polyhedron P has finite volume.

In what follows, we assume hyperbolic Coxeter groups to be cofinite, except
if mentioned otherwise.
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Chapter 1. Coxeter groups and Coxeter polyhedra

3.1 The Coxeter diagram of a Coxeter group

Now, we introduce the notion of Coxeter diagram for an abstract Coxeter
group Γ = (W,S) of rank N presented by

W = ⟨si ∈ S | s2i = 1, (sisj)
mij = 1⟩ .

Definition 1.3.4. The Coxeter diagram Σ of Γ is the (non-oriented) graph
whose nodes correspond to the generators s1, . . . , sN of Γ. Any two nodes
νi and νj in the graph are connected by an edge labelled by mij when the
corresponding generators satisfy (sisj)

mij = 1 for mij ∈ {3, . . . ,∞}. In other
words, two nodes are not connected if the corresponding generators commute.
We omit the label when mij = 3 since it occurs frequently.

If a Coxeter diagram is a linear graph with consecutive edges labelled by
k1, . . . , kr, we describe the corresponding Coxeter group (or Coxeter polyhe-
dron) by its Coxeter symbol [k1, . . . , kr].

Each parabolic subgroup of (W,S) gives rise to a subdiagram σ of Σ. Note
that Coxeter diagrams and/or some of their subdiagrams need not to be
connected graphs. However, a Coxeter diagram Σ is connected if and only if
its Coxeter group (W,S) is irreducible.

In the case of a geometric Coxeter group Γ ⊂ IsomXn, its Coxeter diagram
Σ is called affine, spherical, or hyperbolic, depending on whether Xn = En, Sn

or Hn.

Furthermore, in this geometric context and by (1.8) and (1.9), the Coxeter
diagram Σ coincides with the graph whose nodes correspond to the bounding
hyperplanes of the associated Coxeter polyhedron P ⊂ Xn, where two nodes
are joined by an edge labelled by mij when the corresponding hyperplanes
share a dihedral angle π

mij
for mij ≥ 3. An edge is labelled by ∞ when the

corresponding hyperplanes are disjoint inside Xn for Xn ̸= Sn.

Example 1.3.5. A simple but prominent example is given by the Coxeter
group Γ with Coxeter symbol [7, 3] based on the hyperbolic Coxeter triangle
∆(π

2
, π
3
, π
7
). In fact, the group Γ is of minimal co-area among all discrete

groups in IsomH2, and has minimal growth rate given by Lehmer’s number;
see Chapters 3 and 5.

In the sequel, for a geometric Coxeter group Γ, we do not distinguish between
Γ, its Coxeter polyhedron P , the Coxeter diagram Σ, and the Gram matrix
Gr(Γ).
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3. Abstract and geometric Coxeter groups

The number N of nodes is called the order of the Coxeter diagram Σ, and it
coincides with the rank of Γ. The rank of the Gram matrix Gr(Γ) is called
the rank of Σ.

Note that if the polyhedron P is indecomposable, its Coxeter diagram Σ is
connected and the group Γ is irreducible, and vice versa.

3.2 Spherical and Euclidean Coxeter groups

In the fundamental work [16], H. S. M. Coxeter classified all spherical and
Euclidean Coxeter groups. In Tables 1.3.1 and 1.3.2, we give the list of all
irreducible spherical and Euclidean Coxeter groups in terms of their Coxeter
diagrams.

n ≥ 1 An n = 3 H3
5

n ≥ 2 Bn
4 n = 4 H4

5

n ≥ 3 Dn n = 6 E6

n = 2 G
(m)
2

m n = 7 E7

n = 4 F4
4 n = 8 E8

Table 1.3.1: The irreducible spherical Coxeter groups of rank n

The following theorems have been established by Coxeter [16]; see also the
work of Vinberg [84].

Theorem 1.3.6. Let P ⊂ Sn−1 be a spherical Coxeter polyhedron with asso-
ciated Coxeter group Γ. Then, P is a simplex, and its Coxeter diagram is a
disjoint union of Coxeter diagrams of irreducible spherical Coxeter groups of
rank ki such that

∑
ki = n.

In contrast to the spherical case, by Theorem 1.2.10, any connected affine
Coxeter diagram of rank n has order n+ 1.

Theorem 1.3.7. Let P ⊂ En be a Euclidean Coxeter polyhedron of finite
volume with associated Coxeter group Γ. Then, P is a product of simplices,
and its Coxeter diagram is a disjoint union of Coxeter diagrams of irreducible
affine Coxeter groups of rank ki such that

∑
ki = n.
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n = 1 Ã1
∞ n = 2 G̃2

6

n ≥ 2 Ãn n = 4 F̃4
4

n ≥ 3 B̃n

4

n = 6 Ẽ6

n ≥ 2 C̃n
4 4 n = 7 Ẽ7

n ≥ 4 D̃n n = 8 Ẽ8

Table 1.3.2: The irreducible affine Coxeter groups of rank n

3.3 Hyperbolic Coxeter groups

Let P =
⋂N

i=1 H
−
vi
be a Coxeter polyhedron inHn and Γ its associated Coxeter

group of rank N . Assume that all the vectors vi normal to the bounding
hyperplanes Hi = Hvi of P have Lorentzian norm 1.

The Gram matrix Gr(Γ) ∈ Mat(N,R) of Γ (and of the polyhedron P ) has
the following coefficients off the diagonal; see Section 2.

⟨vi, vj⟩−1 =


− cos π

mij
if ∡(Hi, Hj) =

π
mij

̸= 0

−1 if Hi, Hj are parallel
− cosh l if dH(Hi, Hj) = l > 0

(1.11)

Vertices and faces

In what follows we describe vertices and faces of a hyperbolic Coxeter polyhe-
dron and cite important correspondences at the level of its Coxeter diagram.

Theorem 1.3.8. Let P be a Coxeter polyhedron in Hn, and let Σ be its
Coxeter diagram. Then, for 1 ≤ k ≤ n, there is a one-to-one correspondence
between (n− k)-faces of P and spherical subdiagrams σ of Σ of rank k.
In particular, any ordinary vertex corresponds to a spherical subdiagram of
rank n. In addition, ideal vertices of P correspond to affine subdiagrams σ∞
of rank n− 1.

Let us add that an ideal vertex of a hyperbolic Coxeter polyhedron is non-
simple if and only if σ∞ is made of at least two affine components.
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By Theorem 1.3.8, a spherical subdiagram σ of rank k of Σ corresponds to
an (n − k)-face F = F (σ) of P ; see Table 1.3.1. The face F itself is an
acute-angled polyhedron of finite volume, but it is not necessarily a Coxeter
polyhedron in Hn−k.

The following important theorem provides a condition for the face F to
be a Coxeter polyhedron. It was first proven by Borcherds [5] in a more
general context, and has been reformulated by Allcock [1] as follows.

Theorem 1.3.9. Let P be a hyperbolic Coxeter polyhedron with Coxeter dia-
gram Σ. Let F = F (σ) be a face of P corresponding to a spherical subdiagram
σ of Σ. Assume that σ does not contain any component of type Al, for l ≥ 1,
or D5. Then, F is itself a Coxeter polyhedron.

The facets of F ⊂ P correspond to all those nodes of Σ that, together with
σ, form a spherical subdiagram of Σ. We say that a node ν ∈ Σ \ σ is a good
neighbour of σ if the subdiagram spanned by σ and ν is spherical. Otherwise,
ν is said to be a bad neighbour. As a consequence, the facets of F correspond
to the good neighbours of σ.

Let ν1, ν2 be two good neighbours of σ. Then, the nodes ν1, ν2 correspond
to facets f1 = F1 ∩ F, f2 = F2 ∩ F of F , where F1, F2 are facets of P . Their
dihedral angle ∡(f1, f2) is less than or equal to ∡(F1, F2).

More precisely, according to Allcock [1], the dihedral angles ∡(f1, f2) of the
facets f1, f2 of F are given as follows.

Theorem 1.3.10. Let P be a Coxeter polyhedron, and let F = F (σ) be
a face of P with facets f1, f2 as above. Assume that σ does not contain
any component of type Al, for l ≥ 1, or D5. Then, one has the following
characterization.

1. If neither ν1 nor ν2 attaches to σ, then ∡(f1, f2) = ∡(F1, F2).

2. Assume ν1, ν2 attach to different components of σ. If ∡(F1, F2) = π
2
,

then ∡(f1, f2) = π
2
. Otherwise, f1 and f2 are disjoint.

3. Assume ν1, ν2 attach to the same component σ0 of σ. If ν1 and ν2 are
not joined by an edge and {σ0, ν1, ν2} yields a diagram E6 (respectively,
E8 or F4), then ∡(f1, f2) = π

3
(respectively, π

4
). Otherwise, f1 and f2

are disjoint.

4. Assume ν1 attaches to a component σ0 of σ, and ν2 does not attach to
σ. If ∡(F1, F2) =

π
2
, then ∡(f1, f2) = π

2
. If ν1 and ν2 are joined by a

simple edge and {σ0, νi, νj} yields a diagram Bk (respectively, Dk, E8
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or H4), then ∡(f1, f2) = π
4
(respectively, π

4
, π

6
or π

10
). Otherwise, f1

and f2 are disjoint.

Remark 1.3.11. Let m ≥ 6 be an integer. Then, any node connected to
the subdiagram G

(m)
2 = [m] of Σ is a bad neighbour. As a result of Theorem

1.3.9, it is easy to identify each (n− 2)-face F (G
(m)
2 ) of a hyperbolic Coxeter

polyhedron P ⊂ Hn. Furthermore, by Theorem 1.3.10, its dihedral angles
are precisely given by the dihedral angles of P .

Example 1.3.12. Let P ⊂ H5 be the Coxeter pyramid depicted below.

6 6

By Theorem 1.3.9 and Remark 1.3.11, each 3-face of P corresponding to
one of the two subdiagrams G2 = G

(6)
2 = [6] is a Coxeter tetrahedron with

Coxeter symbol [6, 3, 3] (or [3, 3, 6]) .

Example 1.3.13. For the Coxeter 7-pyramid depicted below, the 5-face
F (G2) is a pyramid over a product of two simplices of type Ã2; see also
Table 3.2.2.

6

Criteria for compactness and finite volume

Recall that a hyperbolic Coxeter n-polyhedron P has finite volume if it is the
convex hull of a finite number of points in Hn. The polyhedron P is compact
if all of its vertices are ordinary points in Hn. Otherwise, P is non-compact
(but of finite volume) and has at least one ideal vertex; see Definition 1.2.4.

The following criteria were established by Vinberg [82].

Theorem 1.3.14 (Compactness criterion). A polyhedron P ⊂ Hn is compact
if and only if the following holds.

1. P has at least one ordinary vertex.

2. For every vertex v of P and every edge of P emanating from v, there
is precisely one other vertex of P on that edge.
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Theorem 1.3.15 (Finite-volume criterion). A polyhedron P ⊂ Hn has finite
volume if and only if the following holds.

1. P has at least one (ordinary or ideal) vertex.

2. For every (ordinary or ideal) vertex v of P and every edge of P ema-
nating from v, there is precisely one other (ordinary or ideal) vertex of
P on that edge.

For a Coxeter polyhedron P with Coxeter diagram Σ, Theorem 1.3.15 can
be reformulated as follows.

1. Σ contains at least one spherical subdiagram of rank n or one affine
subdiagram of rank n− 1.

2. Each spherical subdiagram of rank n−1 of Σ can be extended in exactly
two ways to a spherical subdiagram of rank n or to an affine subdiagram
of rank n− 1.

Remark 1.3.16. By exploiting Theorems 1.3.14 and 1.3.15, Guglielmetti
[30, 31] developed the software CoxIter, which, for a given hyperbolic Cox-
eter diagram Σ = Σ(P ), indicates whether the polyhedron P is compact or
of finite volume. The software CoxIter provides some more important infor-
mation. For example, the Euler characteristic of the group Γ(P ) is displayed,
which, in the even dimensional case, is well known to be proportional to the
volume of P .

Finally, let us add another non-trivial result, due to Felikson and Tu-
markin [25], which will be very useful for us in the sequel; see Chapter 4.

Proposition 1.3.17. Let P be a hyperbolic Coxeter n-polyhedron (of finite
volume), and let Σ be its Coxeter diagram. Then, no proper subdiagram of
Σ is the Coxeter diagram of a finite-volume Coxeter n-polyhedron.

Arithmeticity of hyperbolic Coxeter groups

The general theory of arithmetic groups is a broad field which we present
here only briefly and this in the restricted case of hyperbolic Coxeter groups.
We refer to [57, 58, 81], for example.

We begin by the following definition, comparing two discrete groups Γ1,Γ2

in IsomHn. The groups Γ1 and Γ2 are commensurable (in the wide sense) if
there is an element γ ∈ IsomHn such that Γ1∩γΓ2γ

−1 has finite index in both
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Chapter 1. Coxeter groups and Coxeter polyhedra

Γ1 and γΓ2γ
−1. Commensurability preserves properties such as discreteness

and finite covolume.

A fundamental theorem of Margulis states that a cofinite group Γ in IsomHn,
n ≥ 3 is non-arithmetic if and only if its commensurator

Comm(Γ) = { γ ∈ IsomHn | Γ and γΓγ−1 are commensurable }

is a discrete subgroup of finite covolume in IsomHn; see [87], for example.

Margulis’ result can be taken as a definition of a cofinite discrete group
Γ ⊂ IsomHn to be (non-)arithmetic.

There are several arithmeticity criteria and results. For instance, in dimen-
sion n = 2, Takeuchi [58, Appendix 13.3] classified all discrete triangle groups
up to arithmeticity.

Example 1.3.18. The four cocompact triangle groups (p, q, r) where p, q, r ∈
{2, 3, 6} and with at least one entry equal to 6, are all arithmetic.

Let Γ ⊂ IsomHn be a non-cocompact Coxeter group of finite covolume. In
this restricted context, the arithmeticity property can be characterized in an
easy way. For its formulation, we consider the Gram matrix Gr(Γ) of Γ and
its related cycles.

Definition 1.3.19. For an arbitrary matrix A = (aij)i,j∈{1,...,N}, a cycle in
A is an element of the form

ai1i2 · · · aik−1ikaiki1 for i1, . . . , ik ∈ {1, . . . , N} , k ≥ 2 .

A cycle in A is said to be irreducible if all i1, . . . , ik are distinct.

The following arithmeticity criterion is due to Vinberg [84].

Theorem 1.3.20 (Arithmeticity criterion). Let Γ ⊂ IsomHn be a non-
cocompact Coxeter group of finite covolume. Denote its Gram matrix by
G = Gr(Γ). Then, Γ is arithmetic (and defined over Q) if and only if all
cycles in 2G are rational integers.

In view of Chapter 4, we specialize the context even more, and consider hy-
perbolic Coxeter groups Γ as in (1.9) which satisfy the conditions of Theorem
1.3.20, and whose Coxeter polyhedra P ⊂ Hn have no pair of ultraparallel
facets. Then, Guglielmetti [32] added the following characterization.

Theorem 1.3.21. Let P ⊂ Hn be a non-compact Coxeter polyhedron with
no pair of ultraparallel facets. Then, its Coxeter group Γ is arithmetic if and
only if mij ∈ {2, 3, 4, 6,∞} for all distinct i, j, and any irreducible cycle in
2G of length at least 3 is an integer.
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3. Abstract and geometric Coxeter groups

The following example gives an illustration of Theorem 1.3.21.

Example 1.3.22. The Coxeter pyramid group [6, 3, 3, 3, 3, 6] in IsomH5 is
arithmetic. However, the Coxeter 5-simplex group depicted in Figure 1.3.22
is non-arithmetic.

4

Figure 1.3.2: The non-arithmetic Coxeter simplex group in IsomH5
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CHAPTER 2

Root systems and fundamental weights

In this chapter, we provide a brief survey of the classical theory of root
systems in Euclidean vector spaces. Their classification including details
about their simple root systems, highest root and fundamental weights will
play an important role in Chapter 4.

As references for this chapter, we quote [6, 37].

1 Root systems and Weyl groups

From now on, we denote by V a Euclidean vector space of finite dimension.

Definition 2.1.1. A root system R is a finite subset of V made of non-zero
vectors, called roots, such that the following conditions hold.

1. R generates V .

2. R ∩ Rα = {α,−α}.

3. For any root α ∈ R, the reflection sα along α ∈ R as given by (1.5)
permutes the elements of R, that is, sα(β) ∈ R for all β ∈ R.

The rank of the root system R is defined to be the dimension of V . The root
system R is reducible if there exist non-empty, disjoint root systems R1, R2

such that R = R1 ∪R2 and span(R) = span(R1)⊕ span(R2). Otherwise, the
root system R is said to be irreducible.
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1. Root systems and Weyl groups

We often impose the crystallographic condition for R, ensuring that the vector
sα(β) is obtained from β by adding an integral multiple of α.

Definition 2.1.2 (Crystallographic condition). A root system R is said to
be crystallographic if for any roots α, β ∈ R one has

kα,β := 2
⟨α, β⟩
⟨α, α⟩

∈ Z . (2.1)

In fact, it is sufficient to require the condition (2.1) for a set of simple roots
in R as follows. Let us first introduce the notion of positive roots.

Let R+ ⊂ R satisfy the following properties.

1. For each α ∈ R, exactly one of α and −α belongs to R+;

2. For any distinct α, β ∈ R+ such that α + β ∈ R, one has α + β ∈ R+.

The elements of R+ are called positive roots.

Definition 2.1.3. A simple root is a positive root that cannot be decom-
posed as the sum of two positive roots. We denote by B = B(R) the set of
simple roots.

Note that every system R+ of positive roots contains a unique set B of simple
roots. Furthermore, the set B of simple roots is a basis of V .

Definition 2.1.4. The group W = W (R) generated by the reflections sα
through the hyperplanes α⊥ associated with the roots α ∈ B is called the
Weyl group of R.

Proposition 2.1.5. The Weyl group W is finite.

For a fixed system B of simple roots in R, the Weyl group W satisfies the
relations

(sαsβ)
mα,β = 1 for α, β ∈ B, (2.2)

where mα,β is the order of the composition sαsβ in W . Hence, W can be
identified with a spherical Coxeter group; see Section 3.2 in Chapter 1.

Let us mention the following two well-known results.

Proposition 2.1.6. Any positive root β ∈ R+ can be written as a linear
combination of simple roots, that is,

β =
∑
α∈B

mαα , (2.3)

where each mα is a non-negative integer.
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Chapter 2. Root systems and fundamental weights

Proposition 2.1.7. For any two distinct simple roots α, β ∈ B, one has

⟨α, β⟩ ≤ 0 . (2.4)

We consider the following natural partial ordering on R with respect to R+.
For two roots α, β ∈ R, one says that α ≤ β if and only if β − α is a sum of
simple roots with non-negative coefficients; see Proposition 2.1.6.

If R is an irreducible root system, there exists a unique highest root with
respect to this ordering, and we will denote it by ᾱ. In view of Proposition
2.1.7, the highest root ᾱ forms a non-obtuse angle with every simple root
β ∈ B.

From now on, we consider a crystallographic root system R; see (4).

As ⟨α, β⟩ = ||α|| · ||β|| cos∡(α, β), it follows that

kα,βkβ,α = 4cos2∡(α, β) ∈ Z≥0 . (2.5)

Since kα,β and kβ,α are integers, one gets

kα,βkβ,α ∈ {0, 1, 2, 3, 4} . (2.6)

The crystallographic condition for R implies that its simple roots can be of
at most two different lengths, and they are called short and long roots. In
fact, the quotient of the squared lengths of two simple roots can be equal to
2 or 3, only.

Furthermore, the Weyl group W generated by sα, α ∈ B, is a finite reflection
group with mα,β ∈ {2, 3, 4, 6} for any two distinct simple roots α, β ∈ B;
see (2.2). The group W is said to be crystallographic, and W stabilizes the
Z-lattice spanned by B.

Definition 2.1.8. Let Λ be the set of vectors w ∈ V such that kw,α ∈ Z
for all α ∈ R. The elements of Λ are called weights, and a weight w ∈ Λ is
dominant if all the integers kw,α are nonnegative for all α ∈ R+.

Lastly, we define the notion of fundamental weights as follows. Let n be the
rank of R, and write B = {α1, . . . , αn}.

Definition 2.1.9. The fundamental weights w1, . . . , wn ∈ Λ are the domi-
nant weights defined by the condition kwi,αj

= δij for all 1 ≤ i, j ≤ n, where
δij is the Kronecker symbol.
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2. Dynkin diagrams and extended Dynkin diagrams

2 Dynkin diagrams and extended Dynkin diagrams

Let R be an irreducible crystallographic root system in V , and letW = W (R)
be its Weyl group.

The Dynkin diagram of such a root system encodes all the information about
the relative root lengths of simple roots of R and their angles. In the fol-
lowing, we restrict the context to the subfamily of Weyl groups used in this
work, that is, the Weyl groups of type A,D,E and G2.

In this context, the Dynkin diagram of R will coincide with the Coxeter
diagram of W except for the case G2.

Definition 2.2.1. The Dynkin diagram of R is the graph whose nodes corre-
spond to the simple roots of R, and where two nodes are joined as follows. If
the roots are orthogonal, there is no edge between the corresponding nodes.
If the angle between the two roots is 2π

3
, there is a simple edge between the

nodes. If the angle is 5π
6
, the two nodes are joined by a triple edge, and there

is an arrow on the edge pointing from the long root to the short root.

When all roots have the same length, the Dynkin diagram has simple edges
and is called simply laced. It corresponds to one of the Coxeter diagrams
occurring in Figure 1.3.1.

Note that a root system is irreducible if and only if its Dynkin diagram is
connected.

The extended Dynkin diagram of R contains additional information in view
of an extra root added to the set B of simple roots of R as follows.

Definition 2.2.2. The extended Dynkin diagram of R is the diagram ob-
tained by adding the node to the Dynkin diagram of R that corresponds to
the inverse −ᾱ of the highest root ᾱ.

Since ᾱ is a linear combination of the simple roots of R, the extended Dynkin
diagram is closely related to a connected affine Coxeter diagram; see Table
1.3.2.

3 Classification of root systems of type A, D, E and G2

In this section, we consider some particular irreducible crystallographic root
systems. We choose a natural system of simple roots, establish the highest
root and provide the fundamental weights. In addition, we depict the associ-
ated extended Dynkin diagram decorated by the corresponding root at each
node.
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Chapter 2. Root systems and fundamental weights

Let us first introduce the ADE-root systems. Their Dynkin diagrams are
simply laced.

Denote by ϵi the i-th vector of the standard basis of Rk.

Definition 2.3.1. Let V be the subspace of vectors in Rn+1 whose coordi-
nates sum up to 0. The An-root system An is the set of vectors in V of length√
2 with integer coordinates given by

An = {ϵi − ϵj | 1 ≤ i ̸= j ≤ n+ 1} .

The natural simple roots are α1 = ϵ1 − ϵ2, . . . , αn = ϵn − ϵn+1. Then, the
highest root is given by α = α1+ . . .+αn = ϵn+1−ϵ1 =: −αn+1. The notation
αn+1 = −ᾱ will also be used in the subsequent cases. The fundamental
weights of An can be expressed as

wi = ϵ1 + . . .+ ϵi −
i

n+ 1

n+1∑
j=1

ϵj for 1 ≤ i ≤ n .

The extended Dynkin diagram is given as follows, where each node is indexed
by the corresponding root.

αn+1

α1 α2 αn−1 αn

Definition 2.3.2. Let V = Rn. The Dn-root system Dn is the set of vectors
in V of length

√
2 with integer coordinates given by

Dn = {ϵi − ϵj | 1 ≤ i ̸= j ≤ n} ∪ {±(ϵi + ϵj) | 1 ≤ i < j ≤ n} ,

and the natural simple roots are α1 = ϵ1 − ϵ2, . . . , αn−1 = ϵn−1 − ϵn, αn =
ϵn−1 + ϵn. The highest root satisfies

α = α1 + 2α2 + . . .+ 2αn−2 + αn−1 + αn = ϵ1 + ϵ2 ,

and the fundamental weights are given by
wi = ϵ1 + . . .+ ϵi for i < n− 1
wn−1 = 1

2
(ϵ1 + . . .+ ϵn−1 − ϵn)

wn = 1
2
(ϵ1 + . . .+ ϵn−1 + ϵn)
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3. Classification of root systems of type A, D, E and G2

The extended Dynkin diagram is given as follows.

α1

αn+1
α2 αn−2

αn−1

αn

Definition 2.3.3. Let V = R8, and consider the lattice L = L0+Z(1
2

∑
1≤i≤8

ϵi)

where L0 consists of all vectors
∑

1≤i≤8

ciϵi with ci ∈ Z and
∑

1≤i≤8

ci even.

The E8-root system E8 is the set of vectors of length
√
2 in L. One has

E8 = {±ϵi ± ϵj | i < j} ∪ {1
2

8∑
i=1

(−1)ηiϵi |
8∑

i=1

ηi is even } ,

and the natural simple roots are given by
α1 = 1

2
(ϵ1 − ϵ2 − · · · − ϵ7 + ϵ8)

α2 = ϵ1 + ϵ2
αi = ϵi−1 − ϵi−2 for 3 ≤ i ≤ 8

The highest root can be expressed as

α = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8 = ϵ7 + ϵ8 ,

and the fundamental weights are

w1 = 2ϵ8
w2 =

1
2
(ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5 + ϵ6 + ϵ7 + 5ϵ8)

w3 =
1
2
(−ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5 + ϵ6 + ϵ7 + 7ϵ8)

w4 = ϵ3 + ϵ4 + ϵ5 + ϵ6 + ϵ7 + 5ϵ8
w5 = ϵ4 + ϵ5 + ϵ6 + ϵ7 + 4ϵ8
w6 = ϵ5 + ϵ6 + ϵ7 + 3ϵ8
w7 = ϵ6 + ϵ7 + 2ϵ8
w8 = ϵ7 + ϵ8

The extended Dynkin diagram is given as follows.

α3 α4 α5 α6 α7

α2

α8 α9α1
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Chapter 2. Root systems and fundamental weights

Definition 2.3.4. Let V be the hyperplane in R8 generated by the first seven
simple roots α1, . . . , α7 of E8; see Definition 2.3.3. Then, V is orthogonal to
w8. The E7-root system E7 is defined as E7 = E8 ∩ V . One has

E7 = {±ϵi±ϵj | 1≤i≤j≤6}∪{ ±(ϵ7−ϵ8) }∪{ 1
2

6∑
i=1

(−1)ηiϵi+ϵ7−ϵ8 |
6∑

i=1

ηi is odd},

and the natural simple roots are α1, . . . , α7. The highest root is given by

α = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 = ϵ8 − ϵ7 ,

and the fundamental weights are

w1 = −ϵ7 + ϵ8
w2 =

1
2
(ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5 + ϵ6 − 2ϵ7 + 2ϵ8)

w3 =
1
2
(−ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5 + ϵ6 − 3ϵ7 + 3ϵ8)

w4 = ϵ3 + ϵ4 + ϵ5 + ϵ6 − 2ϵ7 + 2ϵ8
w5 = ϵ4 + ϵ5 + ϵ6 − 3

2
ϵ7 +

3
2
ϵ8

w6 = ϵ5 + ϵ6 − ϵ7 + ϵ8
w7 = ϵ6 − 1

2
ϵ7 +

1
2
ϵ8

The extended Dynkin diagram is given as follows.

α1 α3 α4 α5 α6

α2

α7α8

Definition 2.3.5. Let V be the hyperplane generated by α1, . . . , α6 in R8.
Then, V is orthogonal to w7 and w8. The E6-root system E6 is defined as
E6 = E8 ∩ V and has the natural simple roots α1, . . . , α6.

The highest root is given by

α = α1 + 2α2 + 2α3 + 4α4 + 2α5 + α6 ,

and the fundamental weights are

w1 =
2
3
(−ϵ6 − ϵ7 + ϵ8)

w2 =
1
2
(ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5 − ϵ6 − ϵ7 + ϵ8)

w3 =
1
2
(−ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5) +

5
6
(−ϵ6 − ϵ7 + ϵ8)

w4 = ϵ3 + ϵ4 + ϵ5 − ϵ6 − ϵ7 + ϵ8
w5 = ϵ4 + ϵ5 +

2
3
(−ϵ6 − ϵ7 + ϵ8)

w6 = ϵ5 +
1
3
(−ϵ6 − ϵ7 + ϵ8)
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3. Classification of root systems of type A, D, E and G2

The extended Dynkin diagram is given as follows.

α1 α3 α4 α5 α6

α2

α7

Lastly, we introduce the G2-root system G2, whose natural simple roots will
have different lengths.

Definition 2.3.6. Let V be the hyperplane in R3 consisting of all vectors
whose coordinates add up to 0. The G2-root system G2 is the set of vectors
in V with integer coordinates and of length

√
2 or

√
6 given by

G2 = {±(ϵi − ϵj) | 1≤i<j≤3} ∪ {±(2ϵi − ϵj − ϵk) | 1≤i,j,k≤3} ,

and the natural simple roots are α1 = ϵ1− ϵ2, α2 = −2ϵ1+ ϵ2+ ϵ3. Then, the
highest root can be written according to

α = 3α1 + 2α2 = −ϵ1 − ϵ2 + 2ϵ3 ,

and the fundamental weights are given by w1 = 2α1+α2 and w2 = 3α1+2α2.

α3 α2 α1

We do not discuss the crystallographic root systems of type F4, Bn and Cn

as they will not be used in this work; for more details about them, see [37].
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We adore chaos because we love to
produce order.

M.C. Escher

Part II:

On the existence of
hyperbolic Coxeter groups
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CHAPTER 3

Some classification results

The classification of hyperbolic Coxeter polyhedra is far from being complete.
In fact, for dimensions beyond 3, only a comparatively small quantity of them
is known.

We begin this chapter by quoting some general non-existence results for hy-
perbolic Coxeter polyhedra of finite volume. Then, we present the most
important classification results for hyperbolic Coxeter polyhedra serving for
our purposes. The first section is a brief survey of some of the results in
dimensions 2 and 3. The second section is devoted to hyperbolic Coxeter
polyhedra in higher dimensions.

Main references for this chapter are [6, 15, 21, 24, 37, 70, 84]; see also the
webpage survey of Felikson [23].

The following non-existence results for hyperbolic Coxeter polyhedra have
been established by Khovanski [49] and Prokhorov [69] for the finite-volume
case, and by Vinberg [83] in the compact case.

Theorem 3.0.1. Hyperbolic Coxeter polyhedra of finite volume do not exist
in dimensions bigger than 995.

Theorem 3.0.2. Compact hyperbolic Coxeter polyhedra do not exist in di-
mensions bigger than 29.

However, in dimensions beyond 3, examples of hyperbolic Coxeter polyhedra
are known for dimensions ≤ 19 and in dimension 21 in the finite volume case,
and for dimensions ≤ 8 in the compact case, only.
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Chapter 3. Some classification results

Note that throughout this chapter, and as usually, Coxeter polyhedra are
considered to have finite volume.

1 In low dimensions

In dimensions 2 and 3, there exist infinitely many Coxeter polyhedra. There
are fundamental results, proven by Poincaré and Andreev, that characterize
their existence.

In dimension 2

Theorem 3.1.1 (Poincaré [68]). Let N ∈ Z≥3. A hyperbolic (convex) N-gon
P ⊂ H2 with angles αi exists if and only if∑

1≤i≤N

αi < π(N − 2).

From Theorem 3.1.1, we deduce the following for Coxeter polygons. For
N = 3, there exist infinitely many Coxeter triangles in H2, as there are
infinitely many integers m1,m2,m3 ≥ 2 such that

1

m1

+
1

m2

+
1

m3

< 1.

The Coxeter diagram of a compact Coxeter triangle is then given by

m3

m2m1

where
1

m1

+
1

m2

+
1

m3

< 1.

For a non-compact Coxeter triangle, the Coxeter diagram has the form

∞

m2m1

for (arbitrarily large) m1 ≥ 2 and m2 ≥ 3.

Example 3.1.2. As a consequence of Theorem 3.1.1, there exist no compact
hyperbolic squares, as the sum of the angles should not exceed 2π. However,
there exist right-angled N -gons in H2 for any N ≥ 5.
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1. In low dimensions

Remark 3.1.3. Observe that for N ≥ 4, a Coxeter N -gon admits at least
one pair of ultraparallel edges.

Let P be a hyperbolic triangle with angles α1, α2 and α3. Then, the
well-known defect formula for the area of P yields

area(P ) = π − (α1 + α2 + α3) .

Let us situate hyperbolic Coxeter triangles in the context of fundamental
polygons of discrete groups in IsomH2. It is a classical result due to C. L.
Siegel [73] that the smallest co-area of a discrete group in IsomH2 is achieved
by the Coxeter triangle group [7, 3]. Furthermore, one has

area([7, 3]) = π − (
π

2
+

π

3
+

π

7
) =

π

42
.

In the non-cocompact case, the smallest co-area is realised by the Coxeter
triangle group [∞, 3] closely related to the modular group SL2(Z). One has

area([∞, 3]) = π − (
π

2
+

π

3
) =

π

6
.

In dimension 3

By a fundamental result of Andreev [2], we dispose of a complete descrip-
tion of Coxeter polyhedra in H3. In fact, the existence of an acute-angled
polyhedron of finite volume in H3 can be deduced from the mutual inter-
section behaviour of its facets and the resulting angular inequalities. As a
consequence, any family of Coxeter polyhedra of fixed combinatorial type in
H3 can be listed in detail. In what follows, we give an overview of the most
important families of interest for our work.

All hyperbolic Coxeter tetrahedra have been classified. This result is mainly
due to Lannér [54] in the compact case, and to Chein [15] and Koszul [53] in
the non-compact case. They are listed in Figures 3.1.1 and 3.1.2.

In addition, all Coxeter 3-pyramids have been established by Tumarkin [78].
Their Coxeter diagrams are given in Figure 3.1.3. Note that all of them
admit a pair of disjoint facets.

Observe that for all Coxeter polyhedra mentioned above, their dihedral an-
gles are bigger than or equal to π

6
. This phenomenon holds for all Coxeter

polyhedra with at most 5 facets in H3; see [23].

35



Chapter 3. Some classification results

5 5 5 5 4 5

4

4

4 5

5

4

5

5

Figure 3.1.1: The compact Coxeter tetrahedra
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Figure 3.1.2: The non-compact Coxeter tetrahedra

m

n

∞∞
k

l

k = 2, 3, 4 ; m = 2, 3, 4;
l = 3, 4 ; n = 3, 4

m

∞∞
k

l

k = 5, 6 ; m = 2, 3;
l = 2, 3, 4, 5, 6

Figure 3.1.3: The Coxeter pyramids in H3
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2. In higher dimensions

2 In higher dimensions

In dimensions beyond 3, only a few essentially different examples are known.
In this section, we summarize the classification results of interest to us.

2.1 Coxeter polyhedra with a small number of facets

The compact Coxeter simplices were classified by Lannér, and they exist only
in dimensions n ≤ 4, while non-compact Coxeter simplices were classified by
Chein [15] and Koszul [53], and exist in dimensions n ≤ 9. The latter sim-
plices are sometimes called quasi-Lannér. Moreover, all Coxeter polyhedra
in Hn with precisely n + 2 facets (respectively, n + 3 facets in the compact
case) are known due to the works of Esselmann [20, 21], Kaplinskaya [42]
and Tumarkin [78, 79, 80].

This section contains the lists of all Coxeter polyhedra in Hn for n ≥ 4 with
facet number fn−1 = n + 1, together with classification results and sublists
relevant for this thesis when the facet number satisfies fn−1 ≥ n+ 2.

The case fn−1 = n+ 1

As mention above, compact Coxeter simplices exist for dimensions n ≤ 4
only; see Figure 3.2.4.

5 5 4 5 5

5
4

Figure 3.2.4: The compact Coxeter simplices in H4

In the non-compact case, we know that simplices exist up to dimension n = 9.
We give their Coxeter diagrams in Table 3.2.1. Observe that all of them have
dihedral angles π

2
, π
3
, π
4
or π

6
, only.

Let us add that the covolumes of all hyperbolic Coxeter simplex groups have
been determined by Johnson, Kellerhals, Ratcliffe and Tschantz [40].

The case fn−1 = n+ 2

Let now P be a Coxeter polyhedron in Hn with precisely n+2 facets. Then,
P is combinatorially a product of two simplices or a pyramid over a product
of two simplices.
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n

4 4 4
4

4

4
4

4

4

44

5

4

4

4

4

4
44

4 4
4

4 4

6

4

7

4

8

4

9

4

Table 3.2.1: The non-compact Coxeter simplices in Hn for n ≥ 4
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2. In higher dimensions

Let us first consider products of simplices. All simplicial prisms have been
classified by Kaplinskaya [42] and exist up to dimension n = 5. We emphazise
that all of them contain one pair of disjoint facets.

10
4

5 5

4

5

5

5

5 8 4
4

8 84
4

4
4

5

5
10

Figure 3.2.5: The Esselmann polyhedra

Assume that P is combinatorially a product of two simplices each of dimen-
sion greater than 1. If P is compact, then P is one of the polyhedra listed in
Figure 3.2.5. They were found by Esselmann [21] and are called Esselmann
polyhedra. There are exactly seven Esselmann polyhedra, and they are all of
dimension 4.

The unique non-compact Coxeter polyhedron being a product of two sim-
plices is the Coxeter polyhedron P0 ⊂ H4 found by Tumarkin [78] and de-
picted in Figure 3.2.6.

4

4

4

4

Figure 3.2.6: The Coxeter polyhedron P0 ⊂ H4

All Coxeter pyramids over a product of two simplices have been classified by
Tumarkin [78]. They are non-compact and exist in Hn for dimensions n ≤ 13
and n = 17. In dimension n = 4, all of them contain one pair of parallel
facets, and in particular, their Coxeter diagrams contain a subdiagram of
type Ã1 = [∞].

In dimension beyond 4, we emphasize that all of their dihedral angles are
equal to π

2
, π
3
, π
4
or π

6
only.

Table 3.2.2 contains all Coxeter pyramids over a product of simplices in Hn

having no pair of disjoint facets and no dihedral angle π
4
. These pyramids

exist only for 5 ≤ n ≤ 17. They will play a crucial role in Chapter 4.
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n

5
6 6 6

6
6

7

6 6

6 6

6

6 6

6

8

9

6

11

6

12

13

17

Table 3.2.2: The Coxeter pyramids with mutually intersecting facets
and having only dihedral angles of the form π

2
, π
3
or π

6
in Hn
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2. In higher dimensions

The case fn−1 = n+ 3

For a Coxeter polyhedron P ⊂ Hn with n + 3 facets, the classification is
complete in the compact case (see [21, 79]), but it is not complete in the
non-compact finite volume case. In fact, Coxeter polyhedra with n+3 facets
and non-simple vertices are not entirely known; see also [72].

In the compact case, Esselmann [20] showed that Coxeter n-polyhedra with
n+3 facets do not exist in dimensions n > 8, and Tumarkin [80] classified all
of them. The unique polyhedron in dimension n = 8 is the one found earlier
by Bugaenko [11].

In the non-compact case, Coxeter n-pyramids with n+3 facets are pyramids
over a product of three simplices and have been classified by Tumarkin [79]
as well. They exist for dimensions n ≤ 13. Table 3.2.2 contains the examples
of Coxeter pyramids with mutually intersecting facets and having dihedral
angles π

2
, π
3
or π

6
, only. Observe that they exist only for n = 7.

Another class of non-compact Coxeter polyhedra with n+3 facets of interest
to us are special Napier cycles found by Im Hof [38]. These are doubly-
truncated orthogonal simplices, all of whose dihedral angles are bigger than
or equal to π

6
.

Finally, Tumarkin [80] proved that Coxeter polyhedra with n+3 facets do not
exist in dimensions n ≥ 17, and that there exists a unique one in dimension
n = 16.

As for Coxeter polyhedra with at most n + 3 facets, there are the following
results.

All compact hyperbolic Coxeter polyhedra with at most n + 3 facets are
classified; see the above sections.

In [26], Felikson and Tumarkin consider compact Coxeter polyhedra with
ultraparallel facets and proved the following result.

Theorem 3.2.1. A compact Coxeter polyhedron in Hn with exactly one pair
of ultraparellel facets has at most n+ 3 facets.

As a consequence, all compact hyperbolic Coxeter polyhedra with a unique
pair of disjoint facets are known, and compact Coxeter polyhedra with more
than n+ 3 facets admit at least two pairs of non-intersecting facets.

About fn−1 ≥ n+ 4

Let us first mention that, in general, Coxeter n-polyhedra with at least n+4 ≥
8 facets and no further restrictions are not well understood.
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Chapter 3. Some classification results

One result which we would like to cite here is due to Jacquemet and Tschantz
[39]. They classified all the Coxeter hypercubes in Hn and showed that they
exist up to dimension n = 5.

A second and important observation concerns the result on pyramids of
Mcleod [61], who completed the classification as follows. A pyramid over
a product of more than three simplices is necessarily a pyramid over a prod-
uct of four simplices, and they exist only in dimension 5. Again, each of
them admits a pair of disjoint facets. This fact will be used later on.

For dimensions n = 4 and 5, Coxeter polyhedra with precisely n + 4 facets
are classified by works of Burcroff [12] and Ma-Zheng [55, 56]. For dimension
n = 7, there is a unique Coxeter polyhedron with n+4 facets, and there are
no such polyhedra for n ≥ 8, as proven by Felikson and Tumarkin in [27].

2.2 Coxeter polyhedra with mutually intersecting facets

In this section, we consider Coxeter polyhedra with mutually intersecting
facets, that is, admitting no pair of disjoint facets in Hn ∪ ∂Hn. In other
words, their Coxeter diagrams have only finite labels.

In the following, we provide some important results due to Felikson and Tu-
markin concerning the minimal number of pairs of non-intersecting facets
in the subclass of simple Coxeter polyhedra. Then, we discuss the classifi-
cation result due to Prokhorov [70] who considered Coxeter polyhedra with
mutually intersecting facets and dihedral angles π

2
and π

3
, only.

Some important results

Let P ⊂ Hn be a (finite-volume) Coxeter polyhedron all of whose facets are
mutually intersecting.

The following results due to Felikson and Tumarkin [24] are of fundamental
importance for this thesis.

Theorem 3.2.2. Let P ⊂ Hn be a compact Coxeter polyhedron. If all facets
of P are mutually intersecting, then P is either a simplex, or it is an Essel-
mann polyhedron.

In the non-compact case, a similar result holds for simple polyhedra; see [24].

Theorem 3.2.3. Let P ⊂ Hn be a non-compact simple Coxeter polyhedron.
Assume that all facets of P are mutually intersecting. Then, P is either
a simplex, or it is isometric to the polyhedron P0 whose Coxeter graph is
depicted in Figure 3.2.7.
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2. In higher dimensions

4

4

4

4

Figure 3.2.7: The Coxeter polyhedron P0 ⊂ H4

As a consequence of Theorem 3.2.2 and Theorem 3.2.3, we deduce the fol-
lowing by-product. In fact, for n ≤ 4, one can drop the simplicity condition
from the combinatorial structure of ideal vertices.

Corollary 3.2.4. Let n ≤ 4. If P ⊂ Hn is a finite-volume Coxeter polyhe-
dron with mutually intersecting facets, then P is a simplex, an Esselmann
polyhedron, or P is isometric to the polyhedron P0 depicted in Figure 3.2.7.

Proof. Let P ⊂ Hn be a Coxeter polyhedron with mutually intersecting
facets for 2 ≤ n ≤ 4. If P is simple, by Theorems 3.2.2 and 3.2.3, P is
either a simplex, an Esselmann polyhedron, or P0, and we are done. Suppose
therefore that P has a non-simple vertex v∞, that is, v∞ is the intersection
of at least n + 1 facets. As any Coxeter polygon is simple, we can assume
that n > 2.

In the Coxeter diagram Σ of P , the vertex v∞ corresponds to an affine Coxeter
subdiagram σ∞ of rank n− 1 satisfying

rank(σ∞) = order(σ∞)−m, (3.1)

where m is the number of connected affine components of σ∞; see Theorem
1.3.8. Since v∞ is non-simple, one has that order(σ∞) ≥ n + 1. By means
of (3.1), we deduce that the subdiagram σ∞ admits at least m ≥ 2 affine
components. Since n ≤ 4, it follows that σ∞ has at least one affine component
of rank 1. More precisely, for n = 3, σ∞ = Ã1 ∪ Ã1, and for n = 4, σ∞ is
either Ã1∪ Ã2, Ã1∪ G̃2, or Ã1∪ Ã1∪ Ã1. Therefore, we derive that P admits
at least one pair of parallel facets.

By Corollary 3.2.4, all Coxeter polyhedra in Hn with mutually intersecting
facets are known for n ≤ 4.

The classification of ADE-polyhedra

Among all Coxeter polyhedra with mutually intersecting facets, a specific
subfamily - very important for our research - has been classified by Prokhorov
in [70]. This family comprises the so-called ADE-polyhedra.

Definition 3.2.5. An ADE-polyhedron is a Coxeter polyhedron P ⊂ Hn of
finite volume satisfying the following properties.
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Chapter 3. Some classification results

1. All facets of P are mutually intersecting.

2. All dihedral angles of P are equal to π
2
or π

3
.

The terminology is inspired by the spherical and affine cases where Coxeter
polyhedra with mutually intersecting facets and with dihedral angles π

2
or π

3

are of type An, Dn or E6, E7, E8, as well as of type Ãn, for n > 1, D̃n, for
n ≥ 3, or Ẽ6, Ẽ7, Ẽ8; see Tables 1.3.1 and 1.3.2.

By use of the classification results for ADE-lattices due to Nikulin [64],
Prokhorov [70] derived that ADE-polyhedra do not exist in Hn for n > 17,
and he proved the following classification result.

Theorem 3.2.6 (Prokhorov [70]). Let P be an ADE-polyhedron. Then, P
is either a simplex, a pyramid, or one of the Coxeter polyhedra depicted in
Figure 3.2.8.

Figure 3.2.8: The ADE-polyhedra P1 ⊂ H8 and P2 ⊂ H9

In total, there are 34 hyperbolic ADE-polyhedra. The 32 ADE-simplices
and ADE-pyramids can be found in the previous sections; see Figure 3.1.2,
Table 3.2.1 and Table 3.2.2. The highest dimensional ADE-polyhedron is the
Coxeter pyramid in H17 depicted Table 3.2.2.

In the following chapter, we shall extend substantially Prokhorov’s algorithm
and develop further strategies in order to classify so-called ADEG-polyhedra.
These are Coxeter polyhedra with mutually intersecting facets all of whose
dihedral angles are π

2
, π

3
and (at least one) π

6
.
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CHAPTER 4

Coxeter polyhedra with mutually intersecting
facets and dihedral angles π

2 ,
π
3 and π

6

In this chapter, we provide the complete classification of the following family
of hyperbolic Coxeter polyhedra.

Definition 4.0.1. A polyhedron P ⊂ Hn is an ADEG-polyhedron if P is of
finite volume and satisfies the following properties.

1. All facets of P are mutually intersecting.

2. All dihedral angles of P are equal to π
2
, π
3
or π

6
.

3. P has at least one dihedral angle π
6
.

The terminology is inspired by Prokhorov’s work [70] on the classification of
ADE-polyhedra.

Let P ⊂ Hn be an ADEG-polyhedron and consider the Coxeter group Γ
associated with P with its natural presentation given by (1.9), that is,

⟨s1, . . . , sN | s2i = 1, (sisj)
mij = 1⟩ .

The ADEG-property of P implies that Γ satisfies the crystallographic con-
dition which says that mij ∈ {2, 3, 4, 6} for all i, j ∈ {1, . . . , N}; see Chapter
2. The irreducible spherical and affine subgroups of Γ and the related root
systems are hence well understood.
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6 6

66

6 6

6

6

Figure 4.0.1: Two Napier cycles in H5

In Chapter 3, we already mentioned some examples of ADEG-polyhedra.
For instance, the two special Napier cycles depicted in Figure 4.0.1 describe
ADEG-polyhedra in H5; see [38].

We state now our main result providing the complete classification of ADEG-
polyhedra; see [10].

Theorem 4.0.2. Let P ⊂ Hn be an ADEG-polyhedron. Then, P is one of the
24 Coxeter polyhedra depicted in Table 4.0.1. In particular, P is non-compact
for n > 2, non-simple for n > 3, and P is of dimension n ≤ 11. Furthermore,
P is combinatorially equivalent to one of the following polyhedra.

✧ P is a triangle.

✧ P is a tetrahedron.

✧ P is a doubly-truncated 5-simplex.

✧ P is a pyramid over a product of two or three simplices.

✧ P is the polyhedron P⋆ ⊂ H9 with 14 facets depicted in Figure 4.0.2.

6

6

6

6

Figure 4.0.2: The Coxeter polyhedron P⋆ ⊂ H9

Remark 4.0.3. Apart from the two-dimensional case and one tetrahedron,
all ADEG-polyhedra give rise to Coxeter groups which are arithmetic over
Q; see Chapter 1. The four compact ADEG-triangle groups are arithmetic
as well, but their field of definition is Q(

√
3); see Example 1.3.18.
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n

2

6 6

6 6

6

6

66

3 6 6 6 6

6 6
6

66

5
6 6 6

6 6

66

6 6

6

6

6
6

7

6 6

6 6

6

6 6

6

9

6

6

6

6

6

11

6

Table 4.0.1: The ADEG-polyhedra in Hn
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Remark 4.0.4. The Coxeter polyhedron P⋆ ⊂ H9 is a new discovery. It has
14 facets and 134 vertices with 6 of them being ideal. It will turn out that the
group Γ⋆ = Γ(P⋆) is commensurable to the group associated with the ADE-
polyhedron P2 found by Prokhorov, as well as to all Coxeter simplex groups
and all Coxeter pyramid groups in H9; see Figure 3.2.8 and Proposition 4.3.1.
In particular, we will see that the volumes of all these polyhedra are of the
form q · ζ(5)

22,295,347,200
with q ∈ Q≥1.

1 The general strategy

The proof of our main result as stated in Theorem 4.0.2 is very involved and
has several ingredients of structural and of quite technical nature. In this
section, we provide a rough overview and the different ideas which will show
up. Later on, we will give all details. Some auxiliary data are collected in
the two Appendices A and B.

Let P ⊂ Hn be a candidate for an ADEG-polyhedron, and let Σ be its
Coxeter diagram.

❏ As P must have mutually intersecting facets, we have full control if P
is simple or of dimension n ≤ 4, in view of the results of Felikson and
Tumarkin. Therefore, we will henceforth assume that P is a non-simple
(and hence non-compact) polyhedron of dimension n ≥ 5.

❏ As P must have at least one dihedral angle equal to π
6
, the diagram

Σ contains a subdiagram σ = [6] of type G2. This property has two
fundamental consequences.

❏ A first consequence is of combinatorial-metrical nature. By Borcherds’
theorem, σ corresponds to a face F (σ) of codimension 2 in P which is
itself an ADE- or an ADEG-polyhedron. We shall call F (σ) = F (G2)
a G2-face.

❏ The second consequence is of algebraic nature. We show that σ = [6]

gives rise to an affine subdiagram [6, 3] of type G̃2 in Σ.

❏ The subdiagram G̃2 can be completed to an affine subdiagram σ∞ of
rank n− 1 in Σ, and σ∞ describes a non-simple ideal vertex v∞ of P .

❏ The vertex v∞ appears as the apex of a polyhedral cone C∞ ⊂ Hn over
a product of several simplices, each of dimension ≥ 2.
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2. Proof of the main theorem

❏ The cone C∞ is of infinite volume and has to be truncated by additional
hyperplanes Hx, x ∈ Rn,1, not passing through v∞, in order to yield P .
For two such hyperplanes Hx, Hy, one has ∡(Hx, Hy) ∈ {π

2
, π
3
, π
6
}.

❏ The first hyperplanes Hx which we detect have to belong to the bound-
ary of the G2-face F (σ). This set is completed by hyperplanes Hy

subject to the imposed angular condition.

❏ The related Lorentzian product ⟨x, y⟩ is controlled by Prokhorov’s for-
mula in terms of the (reducible) root lattice corresponding to σ∞. In
this way, one finds several but finitely many so-called admissible pairs
of vectors {x, y}.

❏ By truncating the cone C∞ with all hyperplanes indexed by pairwise ad-
missible vectors, one obtains a polyhedral object P . Finally, it remains
to test if P is the realisation of a finite-volume hyperbolic n-polyhedron.

The above procedure is constructive relating P to its G2-faces, and it yields
all but finitely many polyhedral candidates in each dimension.

Obviously, by the non-existence result stated in Theorem 3.0.1, the algorithm
will not furnish ADEG-polyhedra of dimensions n ≥ 996. In fact, it stops
much earlier, namely for n = 20.

2 Proof of the main theorem

2.1 First steps

By the results of Felikson and Tumarkin, and by Corollary 3.2.4, all ADEG-
polyhedra in Hn are known for n ≤ 4, and they are all simple. In fact, all
simple ADEG-polyhedra are known in any dimension, and they are given by
certain Coxeter simplices. They exist up to dimension 3. More precisely, in
dimension 2, there are four compact triangles, and in dimension 3, there are
seven non-compact tetrahedra, all depicted in Table 3.2.1.

Moreover, all Coxeter pyramids are classified, and we can extract all ten
ADEG-pyramids from Table 3.2.2.

In the sequel we will consider ADEG-polyhedra of dimensions n ≥ 5, only.
They are non-simple, and we can suppose that they are different from (the
known) Coxeter pyramids. We point out that all of their G2-faces are non-
compact.
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2.2 Existence of a component G̃2

Let P be an ADEG-polyhedron in Hn for n ≥ 5. Let Σ be its Coxeter
diagram. By hypothesis, it contains a subdiagram σ = [6] of type G2 in Σ.

We show that Σ contains in fact a subdiagram [6, 3] of type G̃2. This result
will be essential.

Lemma 4.2.1. Let n ≥ 5, and let P ⊂ Hn be an ADEG-polyhedron. Then,
the Coxeter diagram of P contains at least one subdiagram of type G̃2.

Proof. Let n ≥ 5, and let P ⊂ Hn be an ADEG-polyhedron. Denote by Σ its
Coxeter diagram. Since P is an ADEG-polyhedron, Σ contains a subdiagram
σ = [6].

By Borcherds’ result stated in Theorem 1.3.9, σ yields a G2-face F = F (G2)
of dimension n−2 which is an ADE- or an ADEG-polyhedron. As n−2 ≥ 3,
F is non-compact. Denote by σF the Coxeter diagram of F , and notice that
σF is disjoint from σ.

Now, σF contains an affine subdiagram σ∞
F of rank n − 3 which appears as

a component in an affine diagram of rank n − 1 in Σ. As the complement
Σ\σF contains σ, the affine subdiagram of Σ\σ∞

F coincides with the diagram

[6, 3] of type G̃2.

2.3 From a G2-face to an admissible set of vectors

Let P ⊂ Hn be an ADEG-polyhedron for n ≥ 5, and let Σ be its Coxeter
diagram.

By Lemma 4.2.1, there is an affine subdiagram in Σ of the form

σ∞ = σ1 ∪ σ2 ∪ · · · ∪ σm = G̃2 ∪ σ2 ∪ · · · ∪ σm , m ≥ 2 .

As before, denote by ri the rank of σi so that
∑m

i=1 ri = n− 1.

In our setting, each affine component σi can be interpreted as the extended
Dynkin diagram of a root system Ri of type A,D,E or G2; see Chapter 2.

Denote by ei1, . . . , e
i
ri
the natural simple roots (with their prescribed lengths),

together with eiri+1 given by the opposite of the highest root of Ri.

The diagram σ∞ corresponds to a non-simple ideal vertex v∞ of the poly-
hedron P . The vectors eij associated with σi can be interpreted as spacelike
vectors normal to hyperplanes Heij

passing through v∞. Furthermore, we

treat v∞ as a lightlike vector in Rn,1. In particular, v∞ is Lorentz-orthogonal
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2. Proof of the main theorem

to all eij, and it can be expressed in terms of certain lightlike vectors vi∞
related to the affine components σi for i = 1, . . .m as follows.

Lemma 4.2.2. For each 1 ≤ i ≤ m, there exist positive integers ci1, . . . , c
i
ri+1

with ciri+1 = 1 such that the vector vi∞ := ci1e
i
1 + · · · + ciri+1e

i
ri+1 ∈ Rn,1 is

collinear with v∞.

Proof. Let ci1, . . . , c
i
ri
∈ Z be the integers such that

−eri+1 = ci1e
i
1 + . . .+ cirie

i
ri

∈ Rri ; (4.1)

see Chapter 2 for their explicit form. The vector vi∞ = ci1e
i
1+. . .+cirie

i
ri
+eiri+1

(suitably extended to a non-zero vector in Rn,1) satisfies ⟨vi∞, vi∞⟩ = 0 by
properties of the highest root. In addition, ⟨vi∞, v∞⟩ = 0 as ⟨eij, v∞⟩ = 0 for
all j = 1, . . . , ri + 1. Now, we conclude by means of Lemma 1.2.1.

As a consequence of Lemma 4.2.2, and for each i, the vectors v∞ and vi∞
are collinear and define the same lightlike ray, symbolized by v∞ ∼ vi∞. In

particular, for i = 1 and σ1 = G̃2, we derive that

v∞ ∼ v1∞ = 3e11 + 2e12 + e13 ; (4.2)

see Definition 2.3.6.

Let us come back to the set of hyperplanes Heij
with 1 ≤ j ≤ ri + 1 and

1 ≤ i ≤ m. The goal is to complete this set by at least two additional
hyperplanes Hx, Hy, where x, y ∈ Rn,1 are spacelike vectors, in order to form
the boundary of an ADEG-polyhedron.

In what follows, we will always consider x and y to have squared norm 2.

We characterize the vectors x, y ∈ Rn,1 in terms of their Lorentzian products
ki
j := ⟨x, eji ⟩ and lij := ⟨y, eji ⟩ with the vectors eij.

More precisely, we encode x and y by strings in the following way.

x ↔ (k1
1, k

1
2, k

1
3; k

2
1, . . . , k

2
r2+1; . . . ; k

m
1 , . . . , k

m
rm+1)

y ↔ (l11, l
1
2, l

1
3; l

2
1, . . . , l

2
r2+1; . . . ; l

m
1 , . . . , l

m
rm+1)

(4.3)

Since ∡(Hx, Heij
) and ∡(Hy, Heij

) vary within the set {π
2
, π
3
, π
6
}, one has

ki
j, l

i
j ∈ {0,−1,−

√
3,−3}. More specifically, the quantities ki

j = ⟨x, eij⟩ are
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as follows.

⟨x, eij⟩ =



0 if ∡(Hx, Heij
) = π

2

−1 if ∡(Hx, Heij
) = π

3
and ||eij||2 = 2

−
√
3 if ∡(Hx, Heij

) = π
6
and ||eij||2 = 2

−
√
3 if ∡(Hx, Heij

) = π
3
and ||eij||2 = 6

−3 if ∡(Hx, Heij
) = π

6
and ||eij||2 = 6

(4.4)

Similar expressions hold for lij = ⟨y, eij⟩.

In this setting, the Lorentzian product ⟨x, y⟩ can be expressed in terms of
the string coefficients of x and y given by (4.3). This point of view is taken
from work of Nikulin [65] and Prokhorov [70], and we provide the technical
details in what follows.

Fix two spacelike vectors x, y ∈ Rn,1 such that ⟨x, v∞⟩ ≠ 0 , ⟨y, v∞⟩ ≠ 0, that
is, the hyperplanes Hx and Hy do not pass through the vertex v∞.

Consider now the quantities Λ and Λi, 1 ≤ i ≤ m, defined as follows.

Λ = Λxy :=
⟨x, v∞⟩
⟨y, v∞⟩

and Λi :=
⟨x, vi∞⟩
⟨y, vi∞⟩

=
⟨x,

∑ri+1
k=1 cike

i
k⟩

⟨y,
∑ri+1

k=1 cike
i
k⟩

,

where the lightlike vectors vi∞ are defined in Lemma 4.2.2.

In particular, in our setting where σ1 = G̃2, one has

Λ1 =
3k1

1 + 2k1
2 + k1

3

3l11 + 2l12 + l13
. (4.5)

Since vi∞ ∼ v∞ by Lemma 4.2.2, one immediately deduces that

Λi = Λ for i = 1, . . . ,m . (4.6)

With these preparations, we are able to write down Prokhorov’s formula [70]
for the Lorentzian product ⟨x, y⟩.

Prokhorov’s formula.

⟨x, y⟩ = ⟨x, x⟩
2Λ

+
⟨y, y⟩
2

Λ− (∆1 + . . .+∆m) , (4.7)

with

∆p =
∑

1≤i<j≤rp+1

(kp
i l

p
j + kp

j l
p
i −

kp
i k

p
j

Λ
− lpi l

p
jΛ)s

p
ij . (4.8)
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2. Proof of the main theorem

The quantities spij in (4.8) depend on the fundamental weights of the root
system Rp as follows; see [70]. Let w1, . . . , wrp be the fundamental weights
of the root system Rp as described in Chapter 2, and let cpj be the integers
according to (4.1). Then,

spij = ⟨wi, wj⟩ −
⟨wi, wi⟩cpj

2cpi
− ⟨wj, wj⟩cpi

2cpj
for 1 ≤ i, j ≤ rp ,

spirp =
⟨wi, wi⟩
2cpi

for i = 1, . . . , rp ,

spii = 0 for i = 1, . . . , rp + 1 .

(4.9)

In the following example we give the explicit form of these quantities for a
component of type G̃2. For the affine components of type Ã, D̃ or Ẽ, we refer
to Appendix A.

Example 4.2.3. For the root system G2 underlying G̃2, the roots indexing
the nodes of the diagram G̃2, as depicted below, are such that ||e1||2 = 2,
and ||e2||2 = ||e3||2 = 6; see Definition 2.3.6. One has ⟨e1, e2⟩ = ⟨e2, e3⟩ = −3
and ⟨e1, e3⟩ = 0.

e1 e2 e3

6

Furthermore, c1 = 3, c2 = 2 and c3 = 1, and the fundamental weights for G2

are given by {
w1 = 2e1 + e2
w2 = 3e1 + 2e2.

Hence ⟨w1, w1⟩ = 2, ⟨w2, w2⟩ = 6, ⟨w1, w2⟩ = 3. From (4.9), it follows that

s12 =
13

6
, s23 =

1

3
and s13 =

3

2
.

Let us return to the non-simple ideal vertex v∞ of the ADEG-polyhedron
P ⊂ Hn and its associated affine diagram

σ∞ = G̃2 ∪ σ2 ∪ · · · ∪ σm , m ≥ 2 .

In this context, consider two spacelike vectors x, y of squared norm 2 such
that ⟨x, v∞⟩ ≠ 0 , ⟨y, v∞⟩ ≠ 0, together with their strings (4.3).
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Definition 4.2.4. The vectors x, y form an admissible pair, denoted by
{x, y}, if they fulfil the following conditions.

Λ1 =
3k1

1 + 2k1
2 + k1

3

3l11 + 2l12 + l13
=

∑
j c

2
jk

2
j∑

j c
2
j l

2
j

= · · · =
∑

j c
m
j k

m
j∑

j c
m
j l

m
j

= Λm = Λ , (4.10)

and

⟨x, y⟩ = Λ+
1

Λ
− (∆1 + . . .+∆m) ∈ {0,−1,−

√
3} , (4.11)

where ∆1, . . . ,∆m are given by (4.8).

A set of vectors {z1, . . . , zt} is said to be admissible if its elements are pairwise
admissible, that is, {zi, zj} is an admissible pair for all i, j ∈ {1, . . . , t}, i ̸= j.

Now, consider the subdiagram σ = [6] of the component G̃2 in σ∞, and let
F = F (σ) be the G2-face with Coxeter diagram σF . By Borcherds’ result,
σF contains the affine diagram σ2 ∪ · · · ∪ σm, and it is hyperbolic.

Denote by x1, . . . , xt all the nodes in σF \ (σ2 ∪ · · · ∪ σm). They represent
hyperplanes Hx1 , . . . , Hxt not containing v∞, and we take them of squared
norm 2. Furthermore, they are good neighbours of σ implying that

⟨xi, e
1
1⟩ = ⟨xi, e

1
2⟩ = 0 for i = 1, . . . , t .

To begin with, suppose that t = 1, and write x = x1. Since x is a good
neighbour of σ, its string can be written as

x ↔ (0, 0, a; k2
1, . . . k

2
r2+1; . . . ; k

m
1 , . . . , k

m
rm+1) , (4.12)

where we abbreviate a := k1
3 = ⟨x, e13⟩ ∈ {0,−

√
3,−3}; see (4.4). Observe

that a ̸= 0, since otherwise the complement of σF in Σ is not equal to σ.

By assumption, the ADEG-polyhedron P is not a pyramid; see Section 2.1.
Therefore, there is at least one additional hyperplane Hy that is not passing
through v∞. The corresponding node is a bad neighbour of σ, and obviously
outside of σF .

Suppose that y is of squared norm 2, and put

y ↔ (l11, l
1
2, l

1
3; l

2
1, . . . , l

2
r2+1; . . . ; l

m
1 , . . . , l

m
rm+1)

for its string. As y is a bad neighbour of σ, l11 and l12 are not simultaneously
zero.

Notation. In what follows, for simplicity, we replace ki
j by its opposite and

write ki
j = −⟨x, eij⟩ from now on. Similarly, we denote lij = −⟨y, eij⟩.
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Since P should be an ADEG-polyhedron, the vectors x and y form an admissi-
ble pair {x, y}. If the hyperplanes Hx and Hy combined with the hyperplanes
Heij

, 1 ≤ j ≤ ri + 1, 1 ≤ i ≤ m, bound a finite-volume polyhedron in Hn,

we realised an ADEG-polyhedron whose combinatorial-metrical structure is
explicit. Otherwise, for t = 1, we have to search for additional vectors yi
such that {x, yi} and {yi, yj}, i ̸= j, are admissible pairs.

Next, suppose that t ≥ 2. The vectors x1, . . . , xt are all encoded by strings
according to (4.12) where

ai := −⟨xi, e
1
3⟩ ∈ {

√
3, 3} . (4.13)

Since P is an ADEG-polyhedron, the set {x1, . . . , xt} is admissible. As above,
either the hyperplanes Hxi

, together with the hyperplanes Heij
, bound a

finite-volume polyhedron in Hn, or one has to add vectors yi to {x1, . . . , xt}
to produce an admissible set.

Remark 4.2.5. Each G2-face F ⊂ P is an ADE- or ADEG-polyhedron
of dimension n − 2 ≥ 3. By fixing one such polyhedron, we fix the string
coefficients of the corresponding vectors x1, . . . , xt up to the terms given by
(4.13). In this way, and by comparing with Prokhorov’s way, our classification
procedure in the ADEG-case is more efficient.

2.4 The classification of ADEG-polyhedra

Let n ≥ 5, and let P ⊂ Hn be an ADEG-polyhedron with Coxeter diagram
Σ. Assume that P is not a pyramid. As in the previous sections, denote by
v∞ a non-simple vertex of P whose associated subdiagram is of the form

σ∞ = G̃2 ∪ σ2 ∪ · · · ∪ σm , m ≥ 2 .

Recall that the G2-face F = F (σ) ⊂ Hn−2, where σ = [6] ⊂ G̃2, is a non-
compact ADE- or ADEG-polyhedron. Denote by σF its Coxeter diagram.

We work inductively on the dimension n ≥ 5 by taking into account the
knowledge of all ADE- and ADEG-polyhedra of dimensions 3 and 4.

This induction process finishes in dimension n if there exists neither an ADE-
polyhedron nor an ADEG-polyhedra in Hn−2 which could serve as a G2-face
of an ADEG-polyhedron in Hn. A priori, the procedure has to be performed
at least up to dimension n = 19, as there exists one ADE-pyramid in H17.

In practice, we fix a face G2-face F , and denote by x1, . . . , xt the nodes which,
together with σ2 ∪ · · · ∪ σm, constitute the diagram σF .
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Observe that in the case where F is a simplex or a pyramid, one necessarily
has t = 1, and one has t ≥ 2 otherwise.

By means of Prokhorov’s formula, and with the help of the software Mathe-
matica [85], we find all the vectors y which together with the vectors corre-
sponding to x1, . . . , xt form an admissible set; see Section 2.3.

Then, for each admissible set, we verify if the arrangement of the different hy-
perplanes of the form Heij

, Hx and Hy give rise to a finite-volume polyhedron

in Hn. To this end, we apply one of the following three criteria.

✧ The signature of the Gram matrix is (n, 1).

✧ Vinberg’s finite-volume criterion stated in Theorem 1.3.15.

✧ Each (n− 2)-face has to be of finite volume.

For example, spherical subdiagrams of rank > n cannot appear, and any
affine subdiagram is a component of an affine subdiagram of rank n− 1.

We are now ready to start the induction procedure.

Assume that n = 5

By Lemma 4.2.1, the affine diagram σ∞ = σ1 ∪σ2 of rank 4 is either G̃2 ∪ G̃2

or G̃2∪Ã2. In addition, we know that the 3-face F = F (G2) is a finite-volume
Coxeter polyhedron whose Coxeter diagram σF contains σ2. Therefore, F is
an ADE- or ADEG-tetrahedron, and there are ten possibilities for σF ; see
Figure 3.1.2.

Consider the vector x ∈ R5,1, ||x||2 = 2, that together with e21, e
2
2 and e23

forms σF . For the string of x, we have

x ↔ (0, 0, a; k2
1, k

2
2, k

2
3) (4.14)

where a = −⟨x, e13⟩ ∈ {
√
3, 3} and k2

j = −⟨x, e2i ⟩ ∈ {0, 1,
√
3, 3}.

Table 4.2.2 contains all relevant strings for x to be considered, written as
in (4.14). In fact, we omit the ones that lead to symmetric configurations.
Notice also that in some cases the coefficient a =

√
3 for x can be excluded.

The reason will become clear in part (i) below; see Remark 4.2.6.

⋄ Suppose that σ∞ = G̃2 ∪ G̃2. Then, F is one of the seven ADEG-
tetrahedra; see Figure 3.1.2. In what follows, we describe the two most
important cases, only. For all other cases, we give just a few details, but
display all the admissible pairs in Table 4.2.3.
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σ∞ String for x σ∞ String for x

G̃2 ∪ G̃2 (0, 0, 3; 0, 0,
√
3) G̃2 ∪ Ã2 (0, 0, 3; 1, 0, 0)

(0, 0, a; 1, 0, 0) (0, 0, a; 1, 0, 1)

(0, 0, 3; 0, 0, 3) (0, 0, a; 1, 1, 1)

(0, 0, a; 0,
√
3, 0) (0, 0, a;

√
3, 0, 0)

(0, 0, a; 1, 0,
√
3)

(0, 0, a; 1, 0, 3)

Table 4.2.2: Strings for dimension n = 5

(i) Assume that F is the Coxeter tetrahedron with Coxeter symbol [3, 3, 6].

The situation can be described with the following diagram.

e11 e12 e13 x e23 e22 e21

6 6

We get x ↔ (0, 0, a; 0, 0,
√
3) for a ∈ {

√
3, 3}.

A vector y ↔ (l11, l
1
2, l

1
3; l

2
1, l

2
1, l

2
3), ||y||2 = 2, forms an admissible pair with x if

Λ1 =
a

3l11 + 2l12 + l13
=

√
3

3l21 + 3l22 + l23
= Λ2 = Λ ,

and if ⟨x, y⟩ = Λ + 1
Λ
− (∆1 + ∆2) ∈ {0,−1,−

√
3} with ∆1 and ∆2 as in

(4.8).

Remark 4.2.6. For a =
√
3, the Coxeter diagram of a 5-pyramid of finite-

volume appears as a proper subdiagram of Σ which is impossible in view of
Proposition 1.3.17.

As a consequence of Remark 4.2.6, we can assume that a = 3. There is a
unique solution so that {x, y} is admissible, and it is given by

y ↔ (l11, l
1
2, l

1
3; l

2
1, l

2
2, l

2
3) = (

√
3, 0, 0; 1, 0, 0)

for which Λ = 1√
3
, ∆1 =

√
3 and ∆2 =

1√
3
, and one gets ⟨x, y⟩ = 0.

This configuration corresponds to the Napier cycle depicted below wherein
the red nodes correspond to the vectors x and y.
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6 6

6

6

(ii) Assume that F is the tetrahedron with Coxeter symbol [3, 6, 3]. The
situation can be described with the following diagram.

e11 e12 e13 e23 e22 e21 x

6 6

For x ↔ (0, 0,
√
3; 1, 0, 0), there is unique vector y such that the pair {x, y}

is admissible. It is given by y ↔ (0,
√
3,
√
3; 1, 0, 0) and yields ⟨x, y⟩ = 0.

This configuration, depicted below, does not correspond to a finite-volume
5-polyhedron.

6 6

In fact, this can be easily deduced from the Coxeter diagram as it contains
an affine subdiagram Ã2 which cannot be completed to yield an affine sub-
diagram of rank 4. This contradicts Theorem 1.3.15.

For x ↔ (0, 0, 3; 1, 0, 0), there is again a unique solution y ↔ (1, 0, 0; 0, 0, 3)
which satisfies ⟨x, y⟩ = 0. This gives rise to the Napier cycle depicted below.

6 6

66

For all of the remaining cases, the admissible pairs are listed in Table 4.2.3.
However, none of them gives rise to a 5-polyhedron of finite volume. Fur-
thermore, there exists no admissible set of cardinality > 2.

⋄ In the case where σ∞ = G̃2 ∪ Ã2, none of the admissible pairs yields a
finite-volume polyhedron. In addition, we find one admissible set formed by
three vectors. The set of their strings is as follows.

{(0, 0, 3; 1, 0, 0), (
√
3, 0, 0; 0, 0,

√
3), (0, 0, 3;

√
3, 0, 0)} .

However, also in this case, we do not obtain a finite-volume polyhedron.

This finishes the proof for n = 5.
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2. Proof of the main theorem

σ∞ x y ⟨x, y⟩

G̃2 ∪ G̃2 (0, 0, 3; 0, 0,
√
3) (

√
3, 0, 0; 1, 0, 0) 0

(0, 0,
√
3; 1, 0, 0) (1, 0, 0; 0,

√
3,
√
3) 0

(0, 0, 3; 1, 0, 0) (1, 0, 0; 0, 0, 3) 0

(0, 0, 3; 0, 0, 3) (1, 0, 0; 1, 0, 0) 0

(0, 0, 3; 0,
√
3,
√
3) (

√
3, 0, 0; 1, 3, 0) 0

G̃2 ∪ Ã2 (0, 0, 3; 1, 0, 0) (
√
3, 0, 0; 0, 0,

√
3) 0

(0, 0, 3;
√
3, 0, 0) (

√
3, 0, 0; 0, 0,

√
3) 0

(0, 0, 3;
√
3, 0, 0) (

√
3, 0, 0; 0,

√
3, 0) 0

Table 4.2.3: Admissible pairs {x, y} for n = 5
.

Assume that n = 6

By means of Lemma 4.2.1, there is a unique case to consider given by σ∞ =
G̃2 ∪ Ã3. Hence, there are two possibilities for F , since σF has to contain
to component Ã3. More precisely, σF is one of the two corresponding ADE-
simplices; see Table 3.2.1.

By Remark 4.2.6, we only have to consider the strings x ↔ (0, 0, 3; 1, 0, 0, 0)
and x ↔ (0, 0, a; 1, 0, 1, 0) for a ∈ {

√
3, 3}. In both cases, we find that there

is no admissible pair.

Hence, apart from a single pyramid, there are no further ADEG-polyhedra
in H6 .

Assume that n = 7

There are eight possibilities for the diagram σF . Namely, F is one of the
three ADE-simplices, the three ADEG-pyramids and the two Napier cycles
in H5 given in Figure 4.0.1.

If F is a simplex or a pyramid, there is only one vector x to be added to the
set {eij}i,j in order to form σF . If F is a Napier cycle, two vectors x1 and x2

are added to {eij}i,j to form σF . By taking into account Remark 4.2.6, we
list all corresponding strings in Table 4.2.4.

In what follows, we only give the details for the case where σ∞ = G̃2∪G̃2∪G̃2.
Hence, F is the pyramid with the Coxeter symbol [6, 3, 3, 3, 3, 6], or one of
the two Napier cycles.

For all the other cases, the admissible pairs are summarized in Table 4.2.5.
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σ∞ Strings for x

G̃2 ∪ Ã4 (0,0,3;1,0,0,0,0)

G̃2 ∪ D̃4 (0,0,3;1,0,0,0,0)

(0, 0, a; 0, 1, 0, 0, 0)

G̃2 ∪ Ã2 ∪ Ã2 (0,0,3;1,0,0;1,0,0)

G̃2 ∪ G̃2 ∪ Ã2 (0, 0, 3; 0, 0,
√
3; 1, 0, 0)

G̃2 ∪ G̃2 ∪ G̃2 (0, 0, 3; 0, 0,
√
3; 0, 0,

√
3)

{x1 ↔ (0, 0, a1; 0, 0, 3; 1, 0, 0),

x2 ↔ (0, 0, a2; 1, 0, 0;
√
3, 0, 0)}

{x1 ↔ (0, 0, a1; 0, 0,
√
3; 0, 0, 3),

x2 ↔ (0, 0, a2; 0, 0, 3; 1, 0, 0)}

Table 4.2.4: Strings for dimension n = 7

(i) Assume that σF = [6, 3, 3, 3, 3, 6]. By Remark 4.2.6, we consider the vector
x with the string

x ↔ (0, 0, 3; 0, 0,
√
3; 0, 0,

√
3) .

There are two vectors yi such that {x, yi} is an admissible pair, namely

y1 ↔ (
√
3, 0, 0; 0, 0, 3; 1, 0, 0) , y2 ↔ (

√
3, 0, 0; 1, 0, 0; 0, 0, 3),

and one has ⟨x, y1⟩ = ⟨x, y2⟩ = 0. Moreover, we verify that {y1, y2} is also an
admissible pair. However, there is no admissible set giving rise to a finite-
volume 7-polyhedron.

(ii) Assume that F is the Napier cycle depicted below.

6
6

6

6

In this case, we can choose

x1 ↔ (0, 0, a1; 0, 0,
√
3; 0, 0, 3) and x2 ↔ (0, 0, a2; 1, 0, 0;

√
3, 0, 0) .

Then, we determine the coefficients a1, a2 ∈ {
√
3, 3} so that {x1, x2} is an

admissible pair. As Λ1 = a1
a2

and Λ2 = Λ3 = 1√
3
, this yields a1 = a2√

3
, that

is, a1 =
√
3 and a2 = 3. It follows that ⟨x1, x2⟩ = 0. However, the resulting

polyhedron does not have finite volume.
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2. Proof of the main theorem

Next, we search for all vectors y such that {x1, x2, y} is an admissible set.

The only solution is given by y ↔ (1, 0, 0; 0, 0, 3;
√
3, 0, 0), and again, we do

not get a finite-volume polyhedron.

(iii) Assume that F is the Napier cycle given below.

6 6

6
6

We write x1 ↔ (0, 0, a1; 1, 0, 0; 0, 0, 3) and x2 ↔ (0, 0, a2; 0, 0, 3; 1, 0, 0).

As above, since Λ2 = Λ3 = 1, this amounts to a1 = a2 ∈ {
√
3, 3}. As

a consequence, ∆1 = 0, and for each a := a1 = a2 ∈ {
√
3, 3}, {x1, x2} is

admissible and such that ⟨x1, x2⟩ = 0. None of the resulting configurations
yields a finite-volume polyhedron.

For a =
√
3, we find one vector y ↔ (1, 0, 0;

√
3, 0, 0;

√
3, 0, 0) such that

{x1, x2, y} is admissible. Also, this configuration does not give rise to a
finite-volume polyhedron.

For a = 3, we find all the vectors zi such that {x1, x2, zi} is admissible. They
are given by

z1 ↔ (1, 0, 0; 0, 0, 3; 0, 0, 3) , z2 ↔ (1, 0, 0; 1, 0, 0; 1, 0, 0) ,

z3 ↔ (
√
3, 0,

√
3;
√
3, 0,

√
3;
√
3, 0,

√
3) .

In addition, {z1, z2} and {z1, z3} are admissible pairs. However, for each of
the different admissible sets, we do not obtain a finite-volume polyhedron.

σ∞ x y ⟨x, y⟩

G̃2 ∪ D̃4 (0, 0,
√
3; 0, 1, 0, 0, 0) (0,

√
3,
√
3; 1, 1, 1, 1, 1) 0

G̃2 ∪ Ã2 ∪ Ã2 (0,0,3;1,0,0;1,0,0) y1 ↔ (
√
3, 0, 0; 0, 0,

√
3;
√
3, 0, 0) 0

y2 ↔ (
√
3, 0, 0; 0,

√
3, 0;

√
3, 0, 0) 0

G̃2 ∪ G̃2 ∪ Ã2 (0, 0, 3; 0, 0,
√
3; 1, 0, 0) (

√
3, 0, 0; 1, 0, 0;

√
3, 0, 0) 0

Table 4.2.5: The remaining admissible pairs {x, y} for n = 7

For the remaining cases, we list all admissible pairs in Table 4.2.5. Notice
that there is no admissible pair for σ∞ = G̃2 ∪ Ã4.

The pair {y1, y2} as given in Table 4.2.5 for σ∞ = G̃2 ∪ Ã2 ∪ Ã2 is not admis-
sible. Again, none of the admissible pairs yields a finite-volume polyhedron
in H7.
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Assume that n = 8

By means of Lemma 4.2.1, σF is either one of the two ADE-simplices or one
of two ADEG-pyramids. The corresponding strings are listed in Table 4.2.6.

σ∞ String for x

G̃2 ∪ Ã5 (0, 0, a; 1, 0, 0, 0, 0, 0)

G̃2 ∪ D̃5 (0, 0, a; 1, 0, 0, 0, 0, 0)

G̃2 ∪ Ã2 ∪ Ã3 (0, 0, a; 1, 0, 0; 1; 0, 0, 0)

G̃2 ∪ G̃2 ∪ Ã3 (0, 0, a; 0, 0,
√
3; 1; 0, 0, 0)

Table 4.2.6: Strings for dimension n = 8

Let us give some details for the case where σ∞ = G̃2∪Ã5, only. By Table 4.2.7,
there are six admissible pairs of the form {x, yi}. We determine which of the
vectors y1, . . . , y6 form admissible pairs and give their Lorentzian products
⟨yi, yj⟩ in Table 4.2.8. Empty boxes correspond to inadmissible pairs.

σ∞ x y ⟨x, y⟩

G̃2 ∪ Ã5 (0, 0,
√
3; 1, 0, 0, 0, 0, 0) y1 ↔ (0,

√
3,
√
3; 0, 0, 0, 1, 1, 1) -1

y2 ↔ (0,
√
3,
√
3; 0, 1, 1, 1, 0, 0) 0

y3 ↔ (0,
√
3,
√
3; 1, 1, 0, 0, 0, 1) 0

y4 ↔ (1, 3, 3;
√
3, 0, 0,

√
3,
√
3,
√
3) 0

y5 ↔ (1, 3, 3;
√
3,
√
3,
√
3,
√
3, 0, 0) 0

y6 ↔ (
√
3,
√
3, 0; 1, 1, 1, 0, 0, 1) 0

G̃2 ∪ D̃5 (0, 0,
√
3; 1, 0, 0, 0, 0, 0) (0,

√
3,
√
3; 1, 1, 0, 0, 0, 0) 0

(
√
3,
√
3, 0; 1, 1, 0, 1, 1, 0) 0

G̃2 ∪ Ã2 ∪ Ã3 (0, 0, 3; 1, 0, 0; 1; 0, 0, 0) (
√
3, 0, 0; 0, 0,

√
3;
√
3, 0, 0, 0) 0

(
√
3, 0, 0; 0,

√
3, 0;

√
3, 0, 0, 0) 0

G̃2 ∪ G̃2 ∪ Ã3 (0, 0,
√
3; 0, 0,

√
3; 1; 0, 0, 0) (0,

√
3,
√
3;
√
3, 0, 0; 1, 1, 0, 1) -1

(
√
3, 0, 0; 0,

√
3,
√
3; 1, 1, 0, 1) -1

(0, 0, 3; 0, 0,
√
3; 1; 0, 0, 0) (

√
3, 0, 0; 1, 0, 0;

√
3, 0, 0, 0) 0

Table 4.2.7: Admissible pairs {x, y} for n = 8

By looking at each admissible set, we see that that none of them gives rise
to a finite-volume polyhedron in H8.
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y2 y3 y4 y5 y6
y1 0 0 −

√
3 0

y2 0 −
√
3 0

y3 0 0
y4 0
y5 0

Table 4.2.8: The Lorentzian products ⟨yi, yj⟩

We proceed similarly for the other diagrams σ∞, with the difference that, in
these cases, there are no admissible sets of cardinality > 2. The conclusion
remains the same, and the proof for n = 8 is finished.

Interlude. For n ≥ 9, the number of admissible pairs increases and ad-
missible sets of big cardinality show up. Despite the considerable amount of
cases to test, only a single one will finally provide a realisation of a hyperbolic
polyhedron of finite volume. As announced in Theorem 4.0.2, it will be the
polyhedron P⋆ ⊂ H9.

In view of all the lengthy work performed, we will just summarize our find-
ings, apart from a few cases, in Appendix B. The cases which we explain in
some more details are the ones where the G2-face F ⊂ Hn−2, for n ̸= 9, is
neither a simplex nor a pyramid, and where F ⊂ H7 is the pyramid with
apex v∞ of type G̃2 ∪ G̃2 ∪ G̃2.

In Appendix B, we list all admissible pairs {x, yi} for a given σ∞, together
with the Lorentzian products ⟨x, yj⟩, as well as the products ⟨yi, yj⟩ when
the pair {yi, yj} is admissible and of further relevance; see Table 4.2.8, for
example.

Assume that n = 9

By means of Lemma 4.2.1, there are twelve possibilities for F . Namely, there
are three simplices, five pyramids over a product of two simplices, and four
pyramids over a product of three simplices; see Tables 3.2.1 and 3.2.2. The
corresponding strings are listed in Table 4.2.9; see Remark 4.2.6.

Remarquable is the case where σ∞ = G̃2 ∪ G̃2 ∪ G̃2 ∪ G̃2, and where F is the
7-pyramid over a product of three simplices depicted below.

6 6

6
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σ∞ String for x

G̃2 ∪ Ã6 (0, 0,
√
3; 1, 0, 0, 0, 0, 0, 0)

G̃2 ∪ D̃6 (0, 0, a; 1, 0, 0, 0, 0, 0, 0)

G̃2 ∪ Ẽ6 (0, 0, a; 1, 0, 0, 0, 0, 0, 0)

G̃2 ∪ Ã3 ∪ Ã3 (0, 0, a; 1, 0, 0, 0; 1, 0, 0, 0)

G̃2 ∪ Ã2 ∪ Ã4 (0, 0, a; 1, 0, 0; 1, 0, 0, 0)

G̃2 ∪ G̃2 ∪ Ã4 (0, 0, a; 0, 0,
√
3; 1, 0, 0, 0, 0)

G̃2 ∪ Ã2 ∪ D̃4 (0, 0, a; 1, 0, 0; 1, 0, 0, 0)

G̃2 ∪ G̃2 ∪ D̃4 (0, 0, a; 0, 0,
√
3; 1, 0, 0, 0, 0)

G̃2 ∪ Ã2 ∪ Ã2 ∪ Ã2 (0, 0, a; 0, 0, 1; 0, 0, 1; 0, 0, 1)

G̃2 ∪ G̃2 ∪ Ã2 ∪ Ã2 (0, 0, a; 0, 0,
√
3; 0, 0, 1; 0, 0, 1)

G̃2 ∪ G̃2 ∪ G̃2 ∪ Ã2 (0, 0, a; 0, 0,
√
3; 0, 0,

√
3; 1, 0, 0)

G̃2 ∪ G̃2 ∪ G̃2 ∪ G̃2 (0, 0, a; 0, 0,
√
3; 0, 0,

√
3; 0, 0,

√
3)

Table 4.2.9: Strings for dimension n = 9

As before, we denote x ↔ (0, 0, a; 0, 0,
√
3; 0, 0,

√
3; 0, 0,

√
3) for a ∈ {

√
3, 3}.

By applying Borcherds’ theorem to one of the subdiagrams [6] in (the sym-
metric) diagram σF , one immediately deduces that a =

√
3.

We find that there is a unique and beautiful admissible pair {x, y} with y
given by

y ↔ (1, 0, 0; 1, 0, 0; 1, 0, 0; 1, 0, 0) ,

and we have ⟨x, y⟩ = 0. The corresponding diagram is depicted below.

6

6

6

6

By means of Theorem 1.3.15, we verify that this polyhedron is a Coxeter
polyhedron of finite volume in H9 ! We call it P⋆. For more details and
further results about P⋆, see Section 3.1.

For all other cases, see Tables 2.0.1, 2.0.2, 2.0.5, 2.0.6, 2.0.7, 2.0.3, 2.0.8,
2.0.9, 2.0.10, 2.0.11 and 2.0.12 in Appendix B.

Assume that n = 10

There are seven possibilities for F . Namely, there are three ADE-simplices,
three ADEG-pyramids and the ADE-polyhedron P1 of Prokhorov in H8.
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All corresponding strings are listed in Table 4.2.10.

σ∞ String for x

G̃2 ∪ Ã7 (0, 0, a; 1, 0, 0, 0, 0, 0, 0, 0)

{x1 ↔ (0, 0, a1; 1, 1, 0, 0, 0, 0, 0, 0),

x2 ↔ (0, 0, a2; 0, 0, 1, 1, 0, 0, 0, 0),

x3 ↔ (0, 0, a3; 0, 0, 0, 0, 1, 1, 0, 0),

x4 ↔ (0, 0, a4; 0, 0, 0, 0, 1, 1, 0, 0)}
G̃2 ∪ D̃7 (0, 0, a; 1, 0, 0, 0, 0, 0, 0, 0)

G̃2 ∪ Ẽ7 (0, 0, a; 1, 0, 0, 0, 0, 0, 0, 0)

G̃2 ∪ Ã3 ∪ D̃4 (0, 0, a; 1, 0, 0, 0; 1, 0, 0, 0, 0)

G̃2 ∪ Ã2 ∪ D̃5 (0, 0, a; 1, 0, 0; 1, 0, 0, 0, 0)

G̃2 ∪ G̃2 ∪ D̃5 (0, 0, a; 0, 0,
√
3; 1, 0, 0, 0, 0)

Table 4.2.10: Strings for dimension n = 10

Consider the case σ∞ = G̃2 ∪ Ã7. When the face F is an ADE-simplex, we
refer to Table 2.0.13 in Appendix B.

Of interest here is the case where the face F is given by Prokhorov’s polyhe-
dron P1 depicted below.

Let us denote

x1 ↔ (0, 0, a1; 1, 1, 0, 0, 0, 0, 0, 0) , x2 ↔ (0, 0, a2; 0, 0, 1, 1, 0, 0, 0, 0) ,

x3 ↔ (0, 0, a3; 0, 0, 0, 0, 1, 1, 0, 0) , x4 ↔ (0, 0, a4; 0, 0, 0, 0, 0, 0, 1, 1) ,

where ai ∈ {
√
3, 3} for i = 1, 2, 3, 4. It is easy to see that the set {x1, x2, x3, x4}

is admissible if and only if a1 = a2 = a3 = a4. Let a := ai, 1 ≤ i ≤ 4. In both
cases, for a =

√
3 and a = 3, the corresponding diagram does not encode a

finite-volume polyhedron. Furthermore, we do not find any additional vector
y such that the set {x1, x2, x3, x4, y} is admissible.

For all other cases, see Tables 2.0.14, 2.0.15, 2.0.16, 2.0.17 and 2.0.18 in
Appendix B.
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Assume that n = 11

There are eight possibilities for F . Namely, there are three ADE-simplices,
three ADEG-pyramids, the ADE-polyhedron P2 of Prokhorov and the ADEG-
polyhedron P⋆ in H9. The corresponding strings are listed in Table 4.2.11.

We provide details only for F = P2 and F = P⋆.

σ∞ String for x

G̃2 ∪ Ã8 (0, 0, a; 1, 0, 0, 0, 0, 0, 0, 0, 0)

{x1 ↔ (0, 0, a1; 1, 0, 1, 0, 0, 0, 0, 0, 0),

x2 ↔ (0, 0, a2; 0, 0, 0, 1, 0, 1, 0, 0, 0),

x3 ↔ (0, 0, a3; 0, 0, 0, 0, 0, 0, 1, 0, 1)},
G̃2 ∪ D̃8 (0, 0, a; 1, 0, 0, 0, 0, 0, 0, 0, 0)

G̃2 ∪ Ẽ8 (0, 0, a; 1, 0, 0, 0, 0, 0, 0, 0, 0)

G̃2 ∪ D̃4 ∪ D̃4 (0, 0, a; 1, 0, 0, 0, 0; 1, 0, 0, 0, 0)

G̃2 ∪ Ã2 ∪ Ẽ6 (0, 0, a; 1, 0, 0; 1, 0, 0, 0, 0, 0, 0)

G̃2 ∪ G̃2 ∪ Ẽ6 (0, 0, a; 0, 0,
√
3; 1, 0, 0, 0, 0, 0, 0).

G̃2 ∪ G̃2 ∪ G̃2 ∪ G̃2 ∪ G̃2 {x1 ↔ (0, 0, a1; 0, 0,
√
3; 0, 0,

√
3; 0, 0,

√
3; 0, 0,

√
3)

x2 ↔ (0, 0, a2; 1, 0, 0; 1, 0, 0; 1, 0, 0; 1, 0, 0)}

Table 4.2.11: Strings for dimension n = 11

(i) Assume that σ∞ = G̃2 ∪ Ã8 and that F = P2 is as depicted below.

For a1, a2, a3 ∈ {
√
3, 3}, write

x1 ↔ (0, 0, a1; 1, 0, 1, 0, 0, 0, 0, 0, 0),

x2 ↔ (0, 0, a2; 0, 0, 0, 1, 0, 1, 0, 0, 0),

x3 ↔ (0, 0, a3; 0, 0, 0, 0, 0, 0, 1, 0, 1).

As we require {x1, x2, x3} to be an admissible set, we derive that a := a1 =
a2 = a3. For both a =

√
3 and a = 3, it turns out that the resulting

polyhedron is not of finite volume.

Next, we search for vectors yi such that the set {x1, x2, x3, y} is admissible.
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For a =
√
3, we find eight vectors yi listed in Table 4.2.12. In addition, we

give the Lorentzian products ⟨yi, yj⟩ when {yi, yj} is an admissible pair in
the Table 4.2.13. However, we see that none of the admissible sets gives rise
to a finite-volume polyhedron.

Admissible vectors for a =
√
3 ⟨x1, yi⟩ ⟨x2, yi⟩ ⟨x2, yi⟩

y1 ↔ (1, 0, 0; 0, 0, 0, 0,
√
3, 0, 0,

√
3, 0) −

√
3 0 0

y2 ↔ (1, 0, 0; 0, 0, 0,
√
3, 0, 0, 0, 0,

√
3) 0 0 0

y3 ↔ (1, 0, 0; 0, 0,
√
3, 0, 0, 0,

√
3, 0, 0) 0 0 0

y4 ↔ (1, 0, 0; 0,
√
3, 0, 0, 0, 0, 0,

√
3, 0) 0 −

√
3 0

y5 ↔ (1, 0, 0; 0,
√
3, 0, 0,

√
3, 0, 0, 0, 0) 0 0 −

√
3

y6 ↔ (1, 0, 0;
√
3, 0, 0, 0, 0,

√
3, 0, 0, 0) 0 0 0

y7 ↔ (
√
3, 0, 0; 0, 1, 1, 0, 1, 1, 0, 1, 1) 0 0 0

y8 ↔ (
√
3, 0, 0; 1, 1, 0, 1, 1, 0, 1, 1, 0) 0 0 0

Admissible vectors for a = 3 ⟨x1, y⟩ ⟨x2, y⟩ ⟨x2, y⟩

(1, 0, 0; 0, 0, 0, 0, 1, 0, 0, 1, 0) -1 0 0

(1, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0, 1) 0 0 0

(1, 0, 0; 0, 0, 1, 0, 0, 0, 1, 0, 0) 0 0 0

(1, 0, 0; 0, 1, 0, 0, 0, 0, 0, 1, 0) 0 -1 0

(1, 0, 0; 0, 1, 0, 0, 1, 0, 0, 0, 0) 0 0 -1

(1, 0, 0; 1, 0, 0, 0, 0, 1, 0, 0, 0) 0 0 0

Table 4.2.12: Admissible sets {x1, x2, x3, yi} for σF = P2

y2 y3 y4 y5 y6 y7 y8
y1 - 1 -1 -1 -1 -1 0 0
y2 -1 -1 -1 -1 0 0
y3 -1 -1 -1 0 0
y4 - 1 -1 0 0
y5 -1 0 0
y6 0 0

Table 4.2.13: Lorentzian products ⟨yi, yj⟩

For a = 3, we find six vectors y listed in Table 4.2.12. Again, none of the
admissible sets {x1, x2, x3, y} leads to a polyhedron of finite volume.
Furthermore, there is no admissible set of cardinality > 4.

(ii) Assume that σ∞ = G̃2 ∪ G̃2 ∪ G̃2 ∪ G̃2 ∪ G̃2 and that F = P⋆.
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For a1, a2, a3 ∈ {
√
3, 3}, write

x1 ↔ (0, 0, a1; 0, 0,
√
3; 0, 0,

√
3; 0, 0,

√
3; 0, 0,

√
3) ,

x2 ↔ (0, 0, a2; 1, 0, 0; 1, 0, 0; 1, 0, 0; 1, 0, 0) .

As {x1, x2} should be an admissible pair, this forces a2 to be equal to
√
3a1,

that is, a1 =
√
3 and a2 = 3. We obtain ⟨x1, x2⟩ = 0. However, these data

do not yield a finite-volume polyhedron.

Next, we find the following vectors y1, . . . , y4 such that the pairs {x1, yi} and
{x2, yi} are admissible.

y1 ↔ (1, 0, 0; 0, 0, 3; 1, 0, 0; 1, 0, 0; 1, 0, 0),

y2 ↔ (1, 0, 0; 1, 0, 0; 0, 0, 3; 1, 0, 0; 1, 0, 0),

y3 ↔ (1, 0, 0; 1, 0, 0; 1, 0, 0; 0, 0, 3; 1, 0, 0),

y4 ↔ (1, 0, 0; 1, 0, 0; 1, 0, 0; 1, 0, 0; 0, 0, 3) .

They all are orthogonal to both x1 and x2, and they are pairwise admissible.
However, there is no admissible set giving rise to a finite-volume polyhedron.

Assume that 12 ≤ n ≤ 18

There is nothing to check in dimension n = 12 as there is neither an ADE-
polyhedron nor an ADEG-polyhedron in H10 serving as a G2-face F .

For dimension n = 13, there are two possibilities for the face F . Either F
is an ADE-pyramid or an ADEG-pyramid. The strings are listed in Table
4.2.14. If σ∞ = G̃2 ∪ Ã2 ∪ Ẽ8, we find no admissible pair, and in the case
σ∞ = G̃2 ∪ G̃2 ∪ Ẽ8, the admissible pairs are listed in Appendix B, Table
2.0.26. None of them yields a finite-volume polyhedron.

For dimension n = 14, F has to be the (unique) ADE-pyramid in H12. The
corresponding string is given in Table 4.2.14, and we find no admissible pairs.
Hence, there is no ADEG-polyhedron.

For dimension n = 15, F has to be the (unique) ADE-pyramid in H13. The
corresponding string is given in Table 4.2.14, and again, we find no admissible
pairs and therefore no ADEG-polyhedron.

For dimensions n = 16, 17 and 18, there is neither an ADE-polyhedron nor
an ADEG-polyhedron in Hn−2 serving as a G2-face F .

This finishes the proof for n ≤ 18.
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n σ∞ String for x

13 G̃2 ∪ Ã2 ∪ Ẽ8 (0, 0, a; 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1)

G̃2 ∪ G̃2 ∪ Ẽ8 (0, 0, a; 0, 0,
√
3; 0, 0, 0, 0, 0, 0, 0, 0, 1)

14 G̃2 ∪ Ã3 ∪ Ẽ8 (0, 0, a; 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1)

15 G̃2 ∪ D̃4 ∪ Ẽ8 (0, 0, a; 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1)

Table 4.2.14: Strings for dimensions 12 ≤ n ≤ 18

Assume that n ≥ 19

Let n = 19. The single possibility for the G2-face F ⊂ H17 is given by the
ADE-pyramid depicted below.

We have σ∞ = G̃2 ∪ Ẽ8 ∪ Ẽ8, and we write

x ↔ (0, 0, a; 0, 0, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 1) , a ∈ {
√
3, 3} .

For a = 3, there is a unique admissible pair which, however, does not yield a
finite-volume polyhedron; see Table 2.0.27 in Appendix B.

For a =
√
3, we find 26 vectors y such that {x, y} is an admissible pair. They

are all listed in Table 2.0.27. Apart from a few exceptions, each admissible
set gives rise to a spherical subdiagram of rank > 19. For the few exceptions
left, we do not find any finite-volume polyhedron.

Finally, when n = 20, the inductive procedure stops, since there are no
ADEG-polyhedron in dimensions 18 and 19.

This finishes the proof of Theorem 4.0.2.

3 Further results and comments

3.1 Properties of the polyhedron P⋆

The ADEG-polyhedron P⋆ ⊂ H9 depicted in Figure 4.0.2 and its associated
Coxeter group Γ⋆ = Γ(P⋆) have some interesting properties which we shall
develop in what follows.
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Let us start with a rough combinatorial information about P⋆ provided by
the software CoxIter [30, 31]. The f -vector of P⋆ is given by

f = (134, 671, 1480, 1909, 1606, 917, 356, 91, 14) ,

where among the 134 vertices of P⋆, six of them are ideal; see Figure 4.3.3.

Figure 4.3.3: CoxIter’s output for P⋆

As a supplementary information, the growth rate τ⋆ ≈ 3.029708 of Γ⋆ is a
Perron number whose minimal polynomial has degree 51 and integral coef-
ficients in the interval [−217, 283]. We will come back to growth rates and
Perron numbers in Part III.

As for the volume of P⋆, we can derive that

vol(P⋆) ∈ Q · ζ(5) , (4.15)

where ζ(5) denotes Riemann’s zeta function evaluated at 5. In fact, the non-
cocompact group Γ⋆ is arithmetic (over Q) by the criterion stated in Theorem
1.3.20, and Γ⋆ acts on hyperbolic space of odd dimension ≥ 5. The property
(4.15) is now an immediate consequence of Emery’s Proposition 2.1 [19], in
view of the quadractic form q⋆ associated to P⋆; see the proof of Proposition
4.3.1 below.

More precisely, we shall see that

vol(P⋆) = q · ζ(5)

22, 295, 347, 200
with q ∈ Q>1 . (4.16)

To this end, consider the Coxeter simplex ∆9 ⊂ H9 given by the Coxeter
diagram depicted in Figure 4.17.
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Figure 4.3.4: The Coxeter simplex ∆9 ⊂ H9

Alike Γ⋆, the Coxeter group Γ9 = Γ(∆9) is arithmetic (over Q), and it is dis-
tinguished by the property that among all cusped hyperbolic 9-orbifolds, the
space H9/Γ9 has minimal volume and is as such unique; see [35]. Moreover,
the volume of H9/Γ9 is given by the volume of ∆9 and has been computed
in [40] according to

vol(∆9) =
ζ(5)

22, 295, 347, 200
. (4.17)

As a consequence, the identity (4.16) is verified.

Recall from Chapter 1 the concept of (widely) commensurable groups of hy-
perbolic isometries. Moreover, commensurability is an equivalence relation
which preserves properties such as arithmeticity, cocompactness and cofinite-
ness.

Our aim is to show that Γ⋆ and Γ9 are commensurable. We will prove even
more by looking also at the group Γ(P2) associated with the ADE-polyhedron
P2 of Prokhorov in H9, depicted in Figure 3.2.8.

The group Γ(P2) is also arithmetic (over Q), and hence, we obtain

vol(P2) = q′ · vol(∆9) with
′ ∈ Q>1 . (4.18)

A natural question is whether all three groups Γ⋆, Γ(P2) and Γ9 are com-
mensurable. In fact, this question can be answered positively as follows.

Proposition 4.3.1. The Coxeter groups Γ⋆, Γ(P2) and Γ9 are pairwise com-
mensurable.

Proof. By Maclachlan’s work [57], there is a complete set of commensurability
invariants for arithmetic groups of hyperbolic isometries. His work has been
exploited by Guglielmetti, Jacquemet and Kellerhals [33] who established
these invariants in many cases and also for the group Γ9. Hence, it is sufficient
to show that the sets of invariants for Γ⋆ and Γ(P2) coincide with the one of
Γ9.

Since we are in dimension 9, which is odd, and since all three groups un-
der consideration are defined over Q, the set of commensurability invariants
according to Maclachlan can be described briefly as follows. First, one es-
tablishes the Gram matrix G and the different cycle coefficients for each
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Coxeter polyhedron in terms of its normal vectors and passes then to the
Vinberg form q associated to G; see Definition 1.3.19 and Appendix C.

Then, one computes the signed determinant δ = −det(q) of q in Q/Q2. The
next step is to determine the Hasse invariant s(q) and the Witt invariant c(q)
of q. More precisely, by expressing q =< a1, a2, . . . , a10 > in diagonal form,
one has

s(q) =
⊗

1≤i<j≤10

(ai, aj)

in terms of the different quaternion algebras (ai, aj). In our case, s(q) and
c(q) coincide. Choose a quaternion algebra B representing c(q), and finally
establish the ramification set Ramq(B) resp. Ramq(B ⊗Q Q(

√
δ)) according

to whether δ is a square in Q or not.

The complete set of commensurability invariants is then given by

{Q, δ,Ramq(B)} if δ is a square in Q ;

{Q, δ,Ramq(B ⊗Q Q(
√
δ))} if δ is not a square in Q .

⋄ For the group Γ9, the invariant set is known and equals to {Q, 1, ∅}.

⋄ For the group Γ⋆, the Vinberg form is given by

q⋆ = < 1, 1, 2, 3, 3, 6, 6, 10, 10,−2 > ;

see Appendix C for its computation. Therefore, the signed determinant of q⋆
equals 1 in Q/Q2.

By the properties of quaternion algebras, the Hasse invariant s(q⋆) given by
(2,−2) · (3, 3) · (6, 6) · (10, 10) can be identified with (5,−1).

We derive that the ramification set of (5,−1) is empty, and that the complete
set of invariants for Γ⋆ is given by {Q, 1, ∅}.

⋄ For the group Γ(P2) we proceed in a similar way. The Vinberg form,
established in Appendix C, is given by

q2 = < 1, 1, 3, 6, 7, 10, 10, 15, 21,−10 > ,

which yields 1 for the signed determinant of q2. Again, we obtain c(q2) =
(5,−1), whose ramification set is empty. Therefore, the set of invariants for
Γ(P2) is given by {Q, 1, ∅} as well.

We conclude that all three groups Γ9, Γ⋆ and ΓP2 are pairwise commensurable.
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Remark 4.3.2. By [33, 41] and Proposition 4.3.1, it follows that the com-
mensurability class of Γ⋆ = Γ(P⋆) contains all Coxeter simplex groups and
all Coxeter pyramid groups in IsomH9.

3.2 An angular obstruction

In this section, we present an angular obstruction to the existence of hyper-
bolic Coxeter polyhedra with mutually intersecting facets.

The following result provides a universal bound from below for dihedral an-
gles of Coxeter polyhedra with mutually intersecting facets in dimensions
beyond 6.

Proposition 4.3.3. Let n ≥ 7, and let P ⊂ Hn be a Coxeter polyhedron with
mutually intersecting facets. Then, any dihedral angle of P is of the form π

m

with m ≤ 6.

Proof. Let n ≥ 7, and assume that all facets of Coxeter polyhedron P ⊂ Hn

are mutually intersecting. Let Σ be the Coxeter diagram of P , and denote
by σm = [m] a subdiagram of type G

(m)
2 in Σ. Suppose that P has a dihedral

angle π
m

for m ≥ 7.

As in the proof of Lemma 4.2.1 and by means of Theorem 1.3.9, we deduce
that the G

(m)
2 -face F = F (σm) of P is an (n − 2)-Coxeter polyhedron with

mutually intersecting facets.

As n− 2 ≥ 5, the face F is a non-compact Coxeter polyhedron; see Theorem
3.2.2 and Theorem 3.2.3. Therefore, its Coxeter diagram σF contains an affine
subdiagram σ∞

F of rank n− 3, which is a component of an affine subdiagram
of rank n − 1 in Σ. As Σ \ σ∞

F contains σm, which cannot be extended to
yield an affine component, we get a contradiction.

Final comments. The method we developed in order to classify all ADEG-
polyhedra is general and can be applied to Coxeter polyhedra with mutually
intersecting facets whose dihedral angles are prescribed.

By Proposition 4.3.3, for dimensions ≥ 7, all dihedral angles of such poly-
hedra are uniformly bounded from below by π

6
. Therefore, it is realistic to

obtain a complete classification of all Coxeter polyhedra with mutually inter-
secting facets and for all dimensions in finite time. Observe, however, that
the presence of a dihedral angle π

4
makes the classification task much more

voluminous.
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My work is a game, a very serious game.

M.C. Escher

Part III:

On the growth rates of
hyperbolic Coxeter groups
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CHAPTER 5

The growth rates of Coxeter groups

In this chapter, we provide the necessary background for the study of growth
rates of Coxeter groups. We start with basic definitions about the growth
series and growth rates of Coxeter groups. Then we present the tools for
comparing growth rates of Coxeter groups that will be fundamental for the
next chapter about growth minimality. Main references for this chapter are
[17, 37, 60, 76].

1 Growth series and growth rates

Let Γ = (W,S) be an abstract Coxeter group of rank N generated by S,
presented as in (1.9).

Denote by lS the length function of Γ with respect to S, that is, for w ∈ W ,

lS(w) = min{k ∈ Z>0 | ∃s1, . . . , sk ∈ S , w = s1 · · · sk} , lS(1) = 0 . (5.1)

Define ak ∈ N to be the number of elements w ∈ W with S-length k, that is,

ak = {w ∈ W | lS(w) = k} ∈ Z[t] . (5.2)

Definition 5.1.1. The growth series fS(t) of Γ = (W,S) is the power series
defined by

fS(t) = 1 +
∑
k≥1

akt
k. (5.3)
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Notice that if Γ = (W,S) is finite, then fS(t) is a polynomial. More specifi-
cally, by a classical result of Solomon [74], the growth polynomial fS(t) can
be expressed by means of its exponents {m1,m2, . . . ,mn} according to the
formula

fS(t) =

p∏
i=1

[mi + 1] , (5.4)

where [m] = 1 + t + . . . + tm−1 and [m1, . . . ,mr] := [m1] · · · [mr] . The
exponents of all irreducible spherical Coxeter groups are listed in Table 5.1.1.

Group Exponents Group Exponents

An 1, 2, · · · , n E6 1, 4, 5, 7, 8, 11

Bn 1, 3, · · · , 2n− 1 E7 1, 5, 7, 9, 11, 13, 17

Dn 1, 3, · · · , 2n− 3, n− 1 E8 1, 7, 11, 13, 17, 19, 23, 29

H3 1, 5, 9 G
(m)
2 1, n− 1

H4 1, 11, 19, 29 F4 1, 5, 7, 11

Table 5.1.1: Exponents of the irreducible spherical Coxeter groups

The following well-known formula due to Steinberg [75] allows one to
express the growth series fS(t) of an arbitrary Coxeter group (W,S) in terms
of its finite parabolic subgroups.

Theorem 5.1.2 (Steinberg’s formula).

1

fS(t−1)
=

∑
WT<W

|WT |<∞

(−1)|T |

fT (t)
, (5.5)

where W∅ = {1}.

As a consequence, in its disk of convergence, the growth series fS(t) is a
rational function, which can be expressed as the quotient of two coprime
monic polynomials p(t), q(t) ∈ Z[t] of the same degree.

Definition 5.1.3. The growth rate τΓ = τW := τ(W,S) is defined as the inverse
of the radius of convergence of the growth series fS(t) of (W,S).
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By Hadamard’s formula, we have

τΓ = lim sup
k→∞

ak
1/k . (5.6)

Furthermore, the growth rate τΓ can be identified with the inverse of the
smallest positive real pole of fS(t). Hence, τΓ is an algebraic integer.

For a reducible group, the growth series fS(t) satisfies the following product
formula.

Proposition 5.1.4. The growth series of a reducible Coxeter group (W,S)
with factor groups (W1, S1), (W2, S2) such that S = (S1×{1W2})∪({1W1}×S2)
satisfies

fS(t) = fS1(t) · fS2(t) .

In particular, τW = max
i=1,2

τWi
.

Let Γ ⊂ IsomXn be a (cofinite) geometric Coxeter group, as usually with
its canonical system S of generating reflections; see (1.9). If Xn = Sn, then
τΓ = 0, while for Xn = En, τΓ = 1. In both cases, Γ is of polynomial growth.

For the case Xn = Hn, results of Milnor [63] and de la Harpe [17] imply that
Γ has exponential growth, that is, τΓ > 1. More precisely, it was proven by
Terragni [76, 77] that for any hyperbolic Coxeter group Γ,

τΓ ≥ τΓ9 ≈ 1.138078 , (5.7)

where Γ9 is the Coxeter 9-simplex group depicted in Figure 5.1.1; see also
Chapter 4.

Figure 5.1.1: The Coxeter simplex group Γ9 ⊂ IsomH9

Example 5.1.5. Let Γ = [7, 3] be the cocompact hyperbolic triangle group
with Coxeter diagram

7 .

Recall that the group Γ has smallest co-area among all discrete groups in
IsomH2; see Chapter 3.

As easily read from the Coxeter diagram above, Γ contains six finite parabolic
subgroups. Namely, it contains the three dihedral subgroups A1×A1, A2 and

77



Chapter 5. The growth rates of Coxeter groups

G
(7)
2 , each with multiplicity 1, and the subgroup A1 with multiplicity 3. By

means of Steinberg’s formula (5.5) and Table 5.1.1, we derive

1

fS(t−1)
= 1− 3

[2]
+

1

[2, 2]
+

1

[2, 3]
+

1

[2, 7]
.

It follows that

fS(t) =
C(t)

L(t)
=

C(t)

1 + t− t3 − t4 − t5 − t6 − t7 + t9 + t10
(5.8)

where C(t) is a certain product of cyclotomic polynomials, and where L(t)
is Lehmer’s polynomial. It is the minimal polynomial of the Lehmer number
αL ≈ 1.17628, which is the smallest known Salem number; see Section 2. As
a result of (5.8), we derive τ[7,3] = αL.

For dimensions n = 2 and 3, there are closed formulas for the growth series
of cofinite hyperbolic Coxeter groups as follows.

Let us first discuss the 2-dimensional cocompact case.

Theorem 5.1.6 (Floyd, Plotnick [28]). Let P ⊂ H2 be a compact Coxeter
N-gon with interior angles π

k1
, . . . , π

kN
. Let Γ be the planar hyperbolic Coxeter

group associated with P . Then, the growth series of Γ is given by

fS(t) =
[2, k1, . . . , kN ]

(t−N + 1)[k1, . . . , kN ] +
∑N

i=1[k1, . . . , ki−1][ki+1, . . . , kN ]
.

As for a formula in dimension 3, let us recall that compact Coxeter polyhedra
are simple. Therefore, given a compact Coxeter polyhedron P in H3, each
vertex v of P is the intersection of precisely three hyperplanes, giving rise
to the stabilizer Γv which is a spherical Coxeter subgroup of rank 3 in Γ.
Denote by m1 = 1,m2 and m3 the exponents of Γv according to Table 5.1.1.

Theorem 5.1.7 (Parry [67]). Let P ⊂ H3 be a compact Coxeter polyhe-
dron with associated Coxeter group Γ. Then, the growth series of Γ can be
expressed as

fS(t) =
t− 1

t+ 1
− 1

2
t(t− 1)

∑
v∈P

(tm1 − 1)(tm2 − 1)(tm3 − 1)

(tm1+1 − 1)(tm2+1 − 1)(tm3+1 − 1)
.
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In the non-cocompact cofinite case, similar results for dimensions n = 2 and
3 are available and due to Floyd [29] and Kellerhals [46].

For a non-compact polyhedron P ⊂ Hn, denote by f0 = f o
0 + f∞

0 the number
of vertices of P , where f o

0 is the number of ordinary vertices, and f∞
0 is the

number of ideal vertices of P . When n ≥ 3, ideal vertices may be non-simple.

Again, the stabilizer of an ordinary vertex v of P is a finite subgroup Γv of
Γ, generated by the reflections in the hyperplanes passing through v.

For the 2-dimensional case, there is the following result.

Theorem 5.1.8 (Floyd [29]). Let P ⊂ H2 be a non-compact Coxeter polygon
of finite volume with f0 = f o

0 + f∞
0 vertices. Let Γ be the hyperbolic Coxeter

group associated with P . Then, the growth series of Γ satisfies

1

fS(t)
= 1− t

[2]
(f∞

0 +
∑

v ordinary

[kv − 1]

[kv]
) ,

where 2kv is the order of the dihedral stabilizer group Γv of the ordinary vertex
v of P .

As for the 3-dimensional case, some preparation is necessary.

Let P ⊂ H3 be a non-compact Coxeter polyhedron with associated Coxeter
group Γ and Coxeter diagram Σ. If P has an ordinary vertex v, its stabilizer
Γv in Γ is a spherical Coxeter group with exponents m1 = 1,m2 and m3

as above. As for the ideal vertices of P , they can be either simple or non-
simple. Suppose that P has a non-simple vertex v∞. Then, its subdiagram
σ∞ in Σ is of type Ã1 × Ã1. Now, the polyhedron P can be obtained by a
deformation process from a sequence of Coxeter polyhedra Pk ⊂ H3 which
all have the same combinatorial structure as P , apart from a finite edge with
vertices both of type A1 × A1 × G

(k)
2 that collapses to yield the vertex v∞

when k → ∞. As for the corresponding growth functions f(t) of Γ and fk(t)
of Γ(Pk), a result of Kolpakov [50] shows that

1

f(t)
=

1

fk(t)
+

tk

tk − 1

(
t− 1

t+ 1

)2

for all k .

As a consequence, it is primarly of interest to have a closed formula for the
growth series of a non-compact hyperbolic Coxeter polyhedron with simple
vertices, only.

Theorem 5.1.9 (Kellerhals [46]). Let P ⊂ H3 be a non-compact simple
Coxeter polyhedron of finite volume with associated Coxeter group Γ. Then,
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the growth series of Γ satisfies

1

fS(t)
=

1− t

1 + t

{
1− t

2

( ∑
v ordinary

[m2,m3]

[m2 + 1,m3 + 1]
+

∑
w ideal

[nw − 1] + tnw−2

[nw]

)}

where

nw = max (nw
1 , n

w
2 , n

w
3 ) =


3 if Γw = Ã2

4 if Γw = B̃2

6 if Γw = G̃2

is defined in terms of the dihedral angles π/nw
i at the three edges giving rise

to the simple ideal vertex w, and where Γw is the stabilizer of w.

Let us point out that one does not dispose up to now of similar closed formulas
for growth series of Coxeter groups Γ ⊂ IsomHn for n ≥ 4, except for the case
related to right-angled compact Coxeter polyhedra; see the work of Kellerhals
and Perren [45].

2 About the arithmetic nature of growth rates

In this section we discuss the arithmetic nature of the growth rate of a (cofi-
nite) hyperbolic Coxeter group Γ = (W,S). Recall that the growth rate τΓ is
an algebraic integer which can be identified with the inverse of the smallest
positive real pole of the growth series fS(t).

Definition 5.2.1. The growth series fS(t) is said to be reciprocal if it satisfies
fS(t

−1) = fS(t). It is called anti-reciprocal if fS(t
−1) = −fS(t).

In the cocompact case, it is known by works of Charney and Davis [14] that
the growth series is reciprocal in even dimensions, and anti-reciprocal in odd
dimensions. However, this property does not hold in the non-cocompact case
anymore.

Let us now consider growth rates of hyperbolic Coxeter groups. In low
dimensions, they appear to be Salem numbers, Pisot numbers (or Pisot-
Vijayaraghavan numbers), or Perron numbers. These algebraic integers are
defined as follows.

Definition 5.2.2. An algebraic integer τ > 1 is a Salem number if it is
either a quadratic unit, or its inverse τ−1 is a Galois conjugate of τ and the
other Galois conjugates lie on the unit circle.
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2. About the arithmetic nature of growth rates

Definition 5.2.3. An algebraic integer τ > 1 is a Pisot number if τ is either
an integer, or if all of its other Galois conjugates are contained in the unit
open disk.

Definition 5.2.4. An algebraic integer τ > 1 is a Perron number if τ is
either an integer, or if all of its other Galois conjugates are strictly less than
τ in absolute value.

In particular, Salem numbers and Pisot numbers are Perron numbers.

Let us turn back to hyperbolic Coxeter groups.

In [67], Parry proved that the growth rate of any cocompact hyperbolic
Coxeter group in IsomHn is a Salem number when n = 2 or 3.

The smallest known Salem number is the Lehmer number αL which is also the
growth rate of the Coxeter triangle group [7, 3]; see Example 5.1.5. However,
by a result of Kellerhals and Liechti [44], not every Salem number appears
as the growth rate of a cocompact hyperbolic Coxeter group.

In the non-cocompact case, Floyd [29] proved that the growth rates of cofi-
nite hyperbolic Coxeter groups in IsomH2 are Pisot numbers. However, the
analogous result does not hold anymore in IsomH3; see [46] for instance.

Nevertheless, the growth rate of any cofinite hyperbolic Coxeter group in
IsomH3 is a Perron number. This result was proven in the special case of
ideal Coxeter polyhedra by Komori and Yukita [52], as well as by Nonaka
and Kellerhals [66]. Soon later, it was proven by Yukita [86] in full generality.

Remark 5.2.5. Related is our joint work with Yukita [9], wherein we ex-
tended the results of Parry [67] and Floyd [29] to abstract Coxeter groups
having 2-dimensional Davis complexes. Namely, we proved that if the Euler
characteristic χ of the nerve of a Coxeter group is zero, then its growth rate
is a Salem number. If χ is positive, then its growth rate is a Pisot num-
ber. For negative Euler characteristic, we provided infinitely many families
of Coxeter groups of index of inertia > 1 whose growth rates are Perron
numbers. These families contain so-called ∞-spanned Coxeter groups whose
growth rates have already been identified with Perron numbers by Kolpakov
and Talambutsa [51].

However, in higher dimensions, only some partial results are available but
several questions arise.

The growth rates of cocompact Coxeter groups in IsomH4 of rank at most 6
are Perron numbers, as shown by Kellerhals and Perren [45]. The following
problem extends their conjecture in the cocompact case to the cofinite setting
in a natural way.
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Chapter 5. The growth rates of Coxeter groups

Conjecture. Let Γ ⊂ IsomHn be a cofinite Coxeter group. Then the growth
rate τΓ with respect to the natural set of generating reflections of Γ is a
Perron number.

A proof of this Conjecture seems to be hard. One reason is the lack of explicit
formulas for the growth series for n > 3. Other reasons are the number-
theoretical difficulties concerning the irreducibility of integer polynomials.
Nevertheless, for any known Coxeter group Γ ⊂ IsomHn, the software Math-
ematica [85] or the program CoxIter of Guglielmetti [30, 31] allows one to
test whether the growth rate τΓ is a Perron number.

Example 5.2.6. Consider the Coxeter group Γ⋆ = Γ(P⋆) in IsomH9. By the
software CoxIter, the minimal polynomial of the growth rate τ⋆ ≈ 3.029708
of Γ⋆ has degree 51. The program shows that τ⋆ is neither a Salem number
nor a Pisot number, but it is a Perron number; see Figure 4.3.3.

3 Comparing growth rates

In this section, our goal is to compare growth series and growth rates of
abstract Coxeter groups. This will be essential when studying minimality
aspects of growth rates of cofinite hyperbolic Coxeter groups.

3.1 Partial order and growth monotonicity

In [60], McMullen introduced the following partial order on the set of Coxeter
groups.

Let (W,S) and (W ′, S ′) be two Coxeter groups. Define (W,S) ≤ (W ′, S ′) if
there exists an injective map ι : S → S ′ such that

mst ≤ m′
ι(s)ι(t) for all s, t ∈ S.

As mst ∈ {2, 3, . . . ,∞} for all distinct s, t ∈ S, this partial order satisfies the
descending chain condition. Therefore, any strictly decreasing sequence of
Coxeter groups is finite.

In addition, one defines (W,S) < (W ′, S ′) if (W,S) ≤ (W ′, S ′) and ι cannot
be extended to an isomorphism. In other words, one has (W,S) < (W ′, S ′)
if |S| < |S ′|, or if mst < m′

ι(s),ι(t) for some s, t ∈ S, s ̸= t.

The following result, established by Terragni [76, 77], is of major importance
for the subsequent study of minimal growth rates.
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Theorem 5.3.1. If (W,S) ≤ (W ′, S ′), then τ(W,S) ≤ τ(W ′,S′).

In particular, the growth rate of any parabolic subgroup (WT , T ) of (W,S)
satisfies τ(WT ,T ) ≤ τ(W,S).

Remark 5.3.2. Terragni’s growth monotonicity result stated in Theorem
5.3.1 is really convenient for the comparison of growth rates. However, this
monotonicity property is not proven in its strict sense. Indeed, Terragni’s
proof is based on Hadamard’s limit formula (5.6) for the coefficients in the
respective growth series which does not allow one to deduce the strict mono-
tone behaviour as we observed in practice. Motivated by this, we formulate
the following conjecture.

Conjecture. Let (W,S), (W ′, S ′) be two non-spherical, non-affine irreducible
Coxeter groups such that (W,S) < (W ′, S ′). Then,

τ(W,S) < τ(W ′,S′) . (5.9)

Remark 5.3.3. The conjectured strict monotonicity property (5.9) for the
growth rate of a Coxeter group Γ ⊂ IsomHn comes from the comparison with
the strict monotonicity of the volume, with respect to the dihedral angles, of
the Coxeter polyhedron associated with Γ; see Remark 1.2.5.

As a preparation for the subsequent investigations, let us introduce the notion
of extension of a Coxeter diagram.

Definition 5.3.4. Let Σ be a Coxeter diagram. An extension of Σ is a
Coxeter diagram Σ′ obtained by adding one node linked with a (labelled)
edge e to Σ. The extension Σ′ is said to be simple if the edge e has no label.

Let W be a Coxeter group with Coxeter diagram Σ. By definition, any
extension Σ′ of Σ encodes a Coxeter group W ′ such that W < W ′. Hence,
by Theorem 5.3.1, we get τW ≤ τW ′ .
Furthermore, if Σ′

0 is a simple extension of Σ by an edge e, the extension
Σ′ of Σ obtained by adding a label on the edge e of Σ′

0 yields the following
inequality.

τΣ ≤ τΣ′
0
≤ τΣ′ ,

where, by abuse of notation, the growth rate of Σ equals the growth rate of
its Coxeter group W .

Next, we reproduce the statements concerning the simple extensions of affine
Coxeter diagrams of small ranks stated in [8].
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Example 5.3.5. Consider a connected affine Coxeter diagram Σ of rank n;
see Table 1.3.2. Then, one verifies that any extension Σ′ of Σ corresponds to
a non-cocompact Coxeter simplex group in IsomHn+1. However, notice that
the resulting group might not be cofinite.

Nevertheless, we observe that for rank n ≤ 3, the resulting Coxeter simplex
groups in IsomHn+1 are always cofinite; see Theorem 3.1.1 and Table 3.2.1.

If Σ = [∞] is of rank 1, there is a unique simple extension, up to symmetry,
and it corresponds to the Coxeter triangle group [∞, 3]. For ranks 2 and 3,
all resulting simple extensions are depicted in Figure 5.3.2 and Figure 5.3.3.

4 4 4 4

6 6 6

Figure 5.3.2: The simple extensions of Ã2, C̃2 and G̃2

4 4

4

4 4 4 4

Figure 5.3.3: The simple extensions of Ã3, B̃3 and C̃3

In the case where Σ is affine of rank n ≥ 4, some simple extensions of Σ
yield hyperbolic groups of infinite covolume. Note that for ranks ≥ 9, any
extension gives rise to a group of infinite covolume.

4 4 4 4 4

Figure 5.3.4: The Coxeter groups ∆1, . . . ,∆4 of infinite covolume

For rank 4, there are fifteen simple extensions of connected affine Coxeter
diagrams. There are exactly eleven simple extensions each giving rise to a
cofinite Coxeter simplex group in IsomH5, and there are four more extensions
corresponding to simplex groups ∆i, 1 ≤ i ≤ 4, of infinite covolume depicted
in Figure 5.3.4.
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3.2 A useful lemma

Let Γ = (W,S) and Γ′ = (W ′, S ′) be two abstract Coxeter groups. By
means of Steinberg’s formula (5.5), one can express their growth series in an
effective way allowing one to derive the following lemma which provides a
tool to compare the growth rates of Γ and Γ′.

Lemma 5.3.6. Assume that for all t > 0, one has

1

fS(t−1)
− 1

fS′(t−1)
> 0 . (5.10)

Then, τΓ < τΓ′.

Proof. The inequality (5.10) implies that for all x = t−1 ∈ (0, 1), the smallest
zero of the function g(x) := 1

fS(t−1)
is strictly bigger than the smallest zero of

g′(x) := 1
fS′ (t−1)

. As these two zeros correspond to the radii of convergence of

the growth series fS(t) and fS′(t), when passing from x to t, we immediately
deduce that their growth rates satisfy τΓ < τΓ′ .

We now reproduce in Examples 5.3.7 and 5.3.8 two applications of Lemma
5.3.6 taken from the articles [7, 8].

Example 5.3.7. Consider the Coxeter groups (W1, S1), (W2, S2) and (W3, S3)
given by simple extensions of [∞, 3] as follows.

W1
∞ W2

∞ W3
∞

By Steinberg’s formula (5.5), we compute

1

fS1(t
−1)

= 1− 4

[2]
+

3

[2, 2]
+

2

[2, 3]
− 1

[2, 2, 3]
− 1

[2, 3, 4]
,

1

fS2(t
−1)

= 1− 4

[2]
+

3

[2, 2]
+

2

[2, 3]
− 2

[2, 2, 3]
,

1

fS3(t
−1)

= 1− 4

[2]
+

3

[2, 2]
+

2

[2, 3]
− 1

[2, 2, 2]
− 1

[2, 3, 4]
.

We get positive difference functions for all t > 0, according to

1

fS1(t
−1)

− 1

fS2(t
−1)

=
1

[2, 2, 3]
− 1

[2, 3, 4]
=

t2 + t3

[2, 2, 3, 4]
,
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1

fS1(t
−1)

− 1

fS3(t
−1)

=
1

[2, 2, 2]
− 1

[2, 2, 3]
=

t2

[2, 2, 2, 3]
.

By Lemma 5.3.6, we deduce that τW1 < τW2 and τW1 < τW3 .

Example 5.3.8. Consider the Coxeter groups (W1, S1), (W2, S2) and (W3, S3)
given by (∞-labelled) extensions of [∞, 3].

W1
∞ ∞ W2

∞ ∞ W3
∞ ∞

By means of Steinberg’s formula (5.5), we have

1

fS1(t
−1)

= 1− 4

[2]
+

3

[2, 2]
+

1

[2, 3]
,

1

fS2(t
−1)

=
1

fS1(t
−1)

− 1

[2, 2, 3]
,

1

fS3(t
−1)

=
1

fS1(t
−1)

− 1

[2, 2, 2]
.

As above, Lemma 5.3.6 implies that τW1 < τW2 and τW1 < τW3 .
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CHAPTER 6

Minimal growth rates for
hyperbolic Coxeter groups

Let Γ ⊂ IsomHn be a cofinite Coxeter group. Let τΓ be its growth rate with
respect to the canonical system S of generators for Γ; see (1.9) and Chapter
5. Then, τΓ is always bounded from below by the growth rate τΓ9 ≈ 1.138078
of the simplex group Γ9; see Figure 5.1.1 and (5.7).

In this chapter, we are interested in providing a sharp lower bound, for fixed
dimension n, for the growth rate of a hyperbolic Coxeter group in IsomHn.

First, we discuss the low dimensional cases where we dispose of results due to
Hironaka [36] and Kellerhals–Kolpakov [43] in the cocompact case, and due
to Floyd [29] and Kellerhals [46] in the non-cocompact case. An important
observation, motivating our work in higher dimensions, is the following one.
In all known cases, the group achieving minimal growth rate is a Coxeter
simplex group, and it is distinguished by the fact of being closely related
to the fundamental group of minimal covolume when considering (compact,
respectively cusped) hyperbolic orbifolds.

The next section is devoted to the study of minimal growth rates in higher
dimensions, where we reproduce our results in the joint work with Kellerhals
[7] in the cocompact case, and in our work [8] in the non-cocompact case.
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1 In low dimensions

It is well known by Siegel’s work [73] that the group of minimal co-area
among all discrete groups in IsomH2 is the planar Coxeter group Γc

2 = [7, 3].
In the non-cocompact case, the smallest co-area is achieved by the Coxeter
triangle group Γ2 = [∞, 3] intimately related to the modular group SL2(Z).
In dimension 3, it was proven by Martin and his collaborators that the Z2-
extension of the Coxeter group Γc

3 = [3, 5, 3] gives rise to the smallest volume
compact hyperbolic orbifold; see [59] for example. For cusped 3-orbifolds,
Meyerhoff [62] showed that the smallest volume is achieved by the orbifold
H3/Γ3, where Γ3 is the Coxeter group with Coxeter symbol [6, 3, 3].

These Coxeter simplex groups are also distinguished by the fact of having
minimal growth rates among all Coxeter groups acting on hyperbolic space.
In the cocompact case, this is due to Hironaka [36] for dimension 2, and to
Kellerhals and Kolpakov [43] for dimension 3. More precisely, their results
are as follows.

Theorem 6.1.1. Let n = 2 or 3. Among all cocompact Coxeter groups in
IsomHn, the Coxeter simplex group Γc

n depicted in Figure 6.1.1 has minimal
growth rate, and as such it is unique.

Γc
2

7 Γc
3

5

Figure 6.1.1: The cocompact Coxeter simplex groups Γc
2 and Γc

3

In the non-cocompact case, as similar result is due to Floyd [29] in dimension
2, and to Kellerhals [46] in dimension 3.

Theorem 6.1.2. Let n = 2 or 3. Among all non-cocompact cofinite Coxeter
groups in IsomHn, the Coxeter simplex group Γn depicted in Figure 6.1.2 has
minimal growth rate, and as such it is unique.

Γ2
∞ Γ3

6

Figure 6.1.2: The non-cocompact Coxeter simplex groups Γ2 and Γ3

The results stated in the previous theorems rely upon explicit formulas for
the growth series in dimension 2 and 3, as described in Theorems 5.1.6, 5.1.7,
5.1.8 and 5.1.9. Since in higher dimensions, no such formulas exist, up to
now, one needs to develop another, new, strategy to identify minimal growth
rate.
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2 In higher dimensions

Motivated by Theorems 6.1.1 and 6.1.2, and in view of Remarks 1.2.5 and
(5.9), it is guessed that small covolume and small growth rate are intimately
related.

In this context, let us mention that in general compact hyperbolic n-orbifolds
of minimal volume are not known for dimensions n ≥ 4. However, by restrict-
ing to arithmetically defined (orientable) hyperbolic n-orbifolds, minimizers
for the volume have been detected, for instance, for n = 4 and 5, by ex-
ploiting Prasad’s formula. These results are due to Belolipetsky [3, 4] and to
Emery and Kellerhals [18]; see also [47, 48].

More precisely, among all arithmetic compact hyperbolic 4-orbifolds, the
fundamental group of minimal covolume is given by the Coxeter simplex
group Γc

4 = [5, 3, 3, 3]. In dimension 5, the minimizing group is the Coxeter
prism group Γc

5 = [5, 3, 3, 3, 3,∞]. Here, the component ∞ in the Coxeter
symbol of Γc

5 symbolizes the presence of a pair of ultraparallel facets in the
underlying Coxeter prism.

In the non-compact case, cusped hyperbolic orbifolds of minimal volume are
known up to dimension 9. This result was established by Hild and Kellerhals
[34] in dimension 4, and by Hild [35] for dimensions up to 9. They showed
that the cusped n-orbifolds of minimal volume are related to the Coxeter
simplex groups Γn ⊂ IsomHn (up to a Z2-extension for n = 7) given in
Figure 6.2.3.

Γ4
4 Γ5

4

Γ6
4 Γ7

Γ8 Γ9

Figure 6.2.3: The non-cocompact Coxeter n-simplex groups Γn ⊂ IsomHn

Let us now announce our two main results, proved in [7, 8], concerning min-
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imal growth rate for cofinite Coxeter groups in IsomHn for n ≥ 4, which
complement the volume minimality results described above.

In a joint work with Kellerhals [7], we established the following result in the
cocompact case.

Theorem 6.2.1 (Bredon, Kellerhals [7]). Let n = 4 or 5. Among all cocom-
pact Coxeter groups in IsomHn, the Coxeter group Γc

n given in Figure 6.2.4
has minimal growth rate, and as such the group is unique.

Γc
4

5 Γc
5

5 ∞

Figure 6.2.4: The cocompact Coxeter groups Γc
4 and Γc

5

In the non-cocompact case, we were able to extend the tools developed for
the proof of Theorem 6.2.1 in a suitable way in order to derive the following
result.

Theorem 6.2.2 (Bredon [8]). Let 4 ≤ n ≤ 9. Among all non-cocompact
Coxeter groups of finite covolume in IsomHn, the Coxeter simplex group Γn

given in Figure 6.2.3 has minimal growth rate, and as such the group is
unique.

3 Proofs of the two main results

In this section, we describe the keys arguments for the proofs of Theorem
6.2.1 and Theorem 6.2.2. In Appendix D, the original articles [7] and [8] are
attached.

Let n ≥ 4, and let Γ ⊂ IsomHn be a cofinite hyperbolic Coxeter group.
Denote by P ⊂ Hn the associated Coxeter polyhedron and by Σ the Coxeter
diagram of Γ and P .

If P is simple, which is always the case when P is compact, we dispose of some
explicit results of Felikson and Tumarkin about the combinatorial structure
of P ; see Section 2.2 in Chapter 3. The presence of a pair of disjoint facets
yields a subdiagram [∞] in Σ whose simple extensions will play an important
role.
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3. Proofs of the two main results

If P is non-simple, then P has at least one non-simple ideal vertex which
comes with a disconnected affine subdiagram of Σ. In this case, we consider
simple extensions of its components of small rank.

In both situations, these extension diagrams with their growth rates, when
combined with Terragni’s monotonicity result, allow us to complete the proofs
of Theorem 6.2.1 and Theorem 6.2.2.

3.1 The cocompact case

By Theorem 3.2.2 of Felikson and Tumarkin, there are only finitely many
compact Coxeter polyhedra P ⊂ Hn, n ≥ 4, that do not contain any pair
of disjoint facets. In fact, they exist only for n = 4 and consist of the five
compact simplices and the seven Esselmann polyhedra; see Figure 3.2.4 and
Figure 3.2.5 for their diagrams.

It is known that the growth rate of Γc
4 is minimal among all Coxeter simplices;

see [45], for example.

For the Esselmann groups E1, . . . , E7, we observe that they all contain a
cocompact hyperbolic triangle subgroup with Coxeter symbol [8, 3], [10, 3],
[5, 4], [5, 5] or given by a cyclic Coxeter diagram of order 3 with label set
{4, 3, 3} or {5, 3, 3}, respectively. It is easy to verify that the group [8, 3] has
minimal growth rate among all of them, and that it satisfies

τΓc
4
< τ[8,3] . (6.1)

By Theorem 5.3.1 of Terragni, and by inequality (6.1), we derive that

τΓc
4
< τ[8,3] ≤ τEi

for all i = 1, . . . , 7.

Assume now that P ⊂ Hn has at least one pair of ultraparallel facets, and
suppose that its Coxeter group Γ is not equal to Γc

4. It follows that the
Coxeter diagram Σ of P necessarily contains a subdiagram σ of the form

∞

qp

where p > 2 and q ∈ {2, 3, . . . ,∞}. As [8, 3] ≤ [∞, 3] ≤ σ ≤ Γ by the partial
ordering of Coxeter groups, we derive by the same argument as above that

τΓc
4
< τ[3,8] ≤ τ[3,∞] ≤ τσ ≤ τΓ .

This proves the first part of Theorem 6.2.1 about the group Γc
4.

91



Chapter 6. Minimal growth rates for hyperbolic Coxeter groups

For the second part about n = 5, observe that P ⊂ H5 has at least 7 facets,
and P is either one of the two simplicial prisms K1, K2 found by Kaplinskaya,
or P has at least 8 facets; see Chapter 3. A direct computation shows that
τΓc

5
< τKi

for i = 1, 2.

In the case where P has at least 8 facets, Theorem 3.2.1 of Felikson and
Tumarkin implies that P has at least two pairs of disjoint facets.

Hence, we deduce that Σ necessarily contains a subdiagram σ of the form

∞

qp
r t

s

where p, q, r, s, t ∈ {2, 3, . . . ,∞}, and where at least one of them is greater
than 2 and at least one of them equals ∞.

For comparison, consider the diagram [∞, 3,∞], which satisfies the inequality
τΓc

5
< τ[∞,3,∞]. This can be seen by a direct computation.

By means of Theorem 5.3.1 and Example 5.3.8, we derive that

τΓc
5
< τ[∞,3,∞] ≤ τσ ≤ τΓ ,

and the proof of Theorem 6.2.1 is complete.

3.2 The non-cocompact case

In the non-compact case, if P ⊂ Hn is simple, Theorem 3.2.3 implies that
P is either a simplex, isometric to P0 ⊂ H4 depicted in Figure 3.2.6, or it
contains a pair of disjoint facets in Hn.

Let 4 ≤ n ≤ 9. By results of Terragni [77], we know that Γn has minimal
growth rate among all non-cocompact Coxeter n-simplex groups. Further-
more, we notice that the growth rates of the Coxeter groups Γn satisfy the
strictly decreasing sequence

τΓ9 < τΓ8 < · · · < τΓ5 < τΓ4 . (6.2)

Next, we compute the growth rate τ0 of the Coxeter group associated with
P0 ⊂ H4, and we see that τΓ4 < τ0.

Assume now that P is neither a simplex nor isometric to the polyhedron P0.
As already said, if P is simple, then we know that it admits at least one
pair of disjoint facets. In this case, we find that the Coxeter diagram Σ of P
contains a subdiagram of type Wi, 1 ≤ i ≤ 3, as depicted in Example 5.3.7.
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3. Proofs of the two main results

By use of Lemma 5.3.6, we verify that τΓ4 < τW1 . From Example 5.3.7, and
(6.2), we derive that

τΓn < τW1 ≤ τΓ .

Assume now that P is non-simple. If P contains a pair of disjoint facets in
Hn, we conclude as before. In particular, this finishes the proof for n = 4, as
we showed in the proof of Corollary 3.2.4 that non-simple Coxeter polyhedra
in H4 always admit a pair of parallel facets.

From now on, we assume that n ≥ 5 and that P does not contain any pair
of disjoint facets. Observe the following important inequality refining (6.2)

τΓ5 < τΓ3 < τΓ4 , (6.3)

where Γ3 = [6, 3, 3].

As P is non-simple, Σ contains an affine subdiagram of rank n−1 ≥ 4 which
is made of at least two affine components; see Theorem 1.3.8. By assumption,
each of these affine components differs from Ã1 = [∞]. By (3.1), one verifies
that Σ contains at least one connected affine subdiagram of rank 2, 3 or 4.
Therefore, as Σ is connected, it contains at least one (possibly non-simple)
extension σ of such a diagram.

In Example 5.3.5, we have seen that any simple extension of a connected
affine diagram of rank 2 or 3 encodes a cofinite Coxeter simplex group in
IsomH3 or IsomH4, whose growth rate is bounded from below by τΓ3 or τΓ4 .
Therefore, whenever Σ contains an affine diagram of rank r = 2 or 3, we
derive from (6.3) that

τΓn < τΓr+1 ≤ τσ ≤ τΓ .

Assume that the smallest rank for a connected affine diagram in Σ is 4. By
means of (3.1), it follows that n ≥ 7. Recall that any simple extension of
an affine Coxeter diagram of rank 4, up to the four exceptions ∆1, . . . ,∆4,
gives rise to cofinite Coxeter simplex group in IsomH5 whose growth rate is
bounded from below by τΓ5 ; see Example 5.3.5. A straightforward computa-
tion shows that τΓ5 < τ∆i

for i = 1, . . . , 4. Finally, by Terragni’s Theorem
5.3.1 and by (6.2), we deduce that

τΓn < τΓ5 ≤ τσ ≤ τΓ .

This finishes the proof of Theorem 6.2.2.
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Chapter 6. Minimal growth rates for hyperbolic Coxeter groups

Final comments. For the proof of Theorem 6.2.1 and Theorem 6.2.2, we
developed a new strategy to identify Coxeter groups of minimal growth rate
in IsomHn for 4 ≤ n ≤ 9. These methods differ completely from the ones
exploited for dimensions 2 and 3, and they are applicable to abstract Coxeter
groups of arbitrarily large rank as well.

However, in the hyperbolic case, as the potential candidates for minimal
growth rate in large dimensions are not simplex groups anymore and have
a comparatively big growth rate value, the finding of suitable comparison
diagrams causes high computational cost.

In the work of Hild [35], a similar phenomenon showed up in the context
of minimal volume cusped hyperbolic n-orbifolds. He developed a general
method to identify the minimizers, however, he exploited it for dimensions
n ≤ 9, only. The reason there was that the minimizer orbifolds turned out
to be quotients related to the Coxeter simplex groups Γn whose properties
are most beautiful in various ways.
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Only those who attempt the absurd...
will achieve the impossible.

M.C. Escher

Part IV:

Appendices
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APPENDIX A

Data for Prokhorov’s formula

In this appendix, we provide the quantities involved in Prokhorov’s formula
for affine components of type Ã, D̃ or Ẽ. For a component of type G̃2, they
are computed in Example 5.3.8.

In the sequel, we use the representation snij = sni s
n
j for a specific root system

Rn which is justified by the following fact. In (4.9), the scalars snij are ex-
pressed in terms of the fundamental weights wn

i , w
n
j and the coefficients cni , c

n
j

of Rn, however they were originally defined as products ⟨sni , snj ⟩ of specific
vectors sni , s

n
j displayed in explicit form in [70]. In order to simplify notations,

we write sij instead of snij for a fixed root system R = Rn.

⋄ For a component of type Ãn

sij = sisj =
(j − i)(n+ 1− (j − i))

2(n+ 1)
.

Note that for the proof of Theorem 4.0.2, we need these quantities for Ãn for
n ≤ 8, only.

⋄ For a component of type D̃n
sisj =

j−i
2

for 2≤i≤j≤n−2

sn+1sj = s1sj =
j
4

for j≤n−2

s1sn−1 = s1jsn = sn−1sn+1 = snsn+1 =
n
8

sn−1sn = s1sn+1 =
1
2
; sjsn−1 = sjsn = n−j

4
for j≤n−2
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Note that for the proof of Theorem 4.0.2, we need these quantities for D̃n for
n ≤ 6.

⋄ For a component of type Ẽ6, Ẽ7 or Ẽ8

The quantities (sisj)i,j for the components of type Ẽ6, Ẽ7 and Ẽ8 are given
in the following tables.

Ẽ6

s2 s3 s4 s5 s6 s7

s1 5/6 1/2 1 5/6 2/3 2/3

s2 2/3 1/2 2/3 5/6 1/2

s3 1/2 2/3 5/6 5/6

s4 1/2 1 1

s5 1/2 5/6

s6 1/3

Ẽ7

s2 s3 s4 s5 s6 s7 s8

s1 3/4 1/2 1 1 1 1 1/2

s2 5/8 1/2 5/8 3/4 7/8 7/8

s3 1/3 3/4 1 5/4 1

s4 1/2 1 3/2 3/2

s5 1/2 1 5/4

s6 1/2 1

s7 3/4

Ẽ8

s2 s3 s4 s5 s6 s7 s8 s9

s1 2/3 1/2 1 1 1 1 1 1

s2 7/12 1/2 2/3 5/6 1 7/6 4/3

s3 1/2 3/4 1 5/4 3/2 7/4

s4 1/2 1 3/2 2 5/2

s5 1/2 1 3/2 2

s6 1/2 1 3/2

s7 1/2 1

s8 1/2
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APPENDIX B

Admissible pairs

In this appendix, we provide all admissible pairs for the cases of the proof
of Theorem 4.0.2 that are not detailed in Chapter 4. Every table contains
admissible pairs of the form {x, yi} and indicates the value ⟨x, yi⟩. Further-
more, when relevant, we provide the Lorentzian products ⟨yi, yj⟩ if {yi, yj} is
an admissible pair.

x yi ⟨x, yi⟩

(0, 0,
√
3; 1, 0, 0, 0, 0, 0, 0) y1 ↔ (0,

√
3,
√
3; 1, 1, 0, 0, 0, 0, 1) 0

y2 ↔ (1, 3, 3;
√
3, 0, 0,

√
3, 0,

√
3,
√
3) 0

y3 ↔ (1, 3, 3;
√
3,
√
3,
√
3, 0,

√
3, 0, 0) 0

y4 ↔ (
√
3,
√
3, 0; 1, 1, 1, 0, 0, 1, 1) 0

y5 ↔ (0,
√
3,
√
3; 0, 0, 0, 1, 0, 1, 1) -1

y6 ↔ (0,
√
3,
√
3; 0, 1, 1, 0, 1, 0, 0) -1

The Lorentzian products ⟨yi, yj⟩

y2 y3 y4 y5 y6

y1 0 0 0 0

y2 0 −
√
3

y3 0 −
√
3

y4 0 0

y5 0

Table 2.0.1: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ Ã6
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x yi ⟨x, yi⟩

(0, 0,
√
3; 1, 0, 0, 0, 0, 0, 0) y1 ↔ (0,

√
3,
√
3; 1, 1, 0, 0, 0, 0, 0) 0

y2 ↔ (1, 3, 3;
√
3, 0, 0, 0,

√
3,
√
3,
√
3) 0

y3 ↔ (
√
3,
√
3,
√
3; 0, 0, 1, 1, 1, 1, 0) 0

y4 ↔ (0,
√
3,
√
3; 0, 0, 0, 0, 1, 1, 1) -1

The Lorentzian products ⟨yi, yj⟩

y2 y3 y4

y1 0 0

y2 −
√
3

y3 0

Table 2.0.2: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ D̃6

x yi ⟨x, yi⟩

(0, 0,
√
3; 1, 0, 0, 0, 0, 0, 0) y1 ↔ (0,

√
3,
√
3; 1, 0, 1, 0, 0, 0, 0) 0

y2 ↔ (1, 3, 3;
√
3, 0, 0, 0,

√
3,
√
3, 0) 0

y3 ↔ (1, 3, 3;
√
3,
√
3, 0, 0, 0, 0,

√
3) 0

y4 ↔ (0,
√
3,
√
3; 0, 0, 0, 0, 1, 1, 0) -1

y5 ↔ (0,
√
3,
√
3; 0, 1, 0, 0, 0, 0, 1) -1

The Lorentzian products ⟨yi, yj⟩

y2 y3 y4 y5

y1 0 0 0 0

Table 2.0.3: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ Ẽ6
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x yi ⟨x, yi⟩

(0, 0,
√
3; 0, 0,

√
3; 0, 0,

√
3; 0, 0,

√
3) (1, 0, 0; 1, 0, 0; 1, 0, 0; 1, 0, 0) 0

(0, 0, 3; 0, 0,
√
3; 0, 0,

√
3; 0, 0,

√
3) y1 ↔ (

√
3, 0, 0; 0, 0, 3; 0, 0, 3; 1, 0, 0) 0

y2 ↔ (
√
3, 0, 0; 0, 0, 3; 1, 0, 0; 0, 0, 3) 0

y3 ↔ (
√
3, 0, 0; 1, 0, 0; 0, 0, 3; 0, 0, 3) 0

The Lorentzian products ⟨yi, yj⟩

y2 y3

y1 0 0

y2 0

Table 2.0.4: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ G̃2 ∪ G̃2 ∪ G̃2

x yi ⟨x, yi⟩

(0, 0,
√
3; 0, 0,

√
3; 0, 0,

√
3; 1, 0, 0) (1, 0, 0; 1, 0, 0; 1, 0, 0; 0, 0,

√
3) 0

(1, 0, 0; 1, 0, 0; 1, 0, 0; 0,
√
3, 0) 0

(
√
3, 0, 0;

√
3, 0, 0;

√
3, 0, 0; 1, 1, 1) 0

(0, 0, 3; 0, 0,
√
3; 0, 0,

√
3; 1, 0, 0) y1 ↔ (

√
3, 0, 0; 0, 0, 3; 0, 0, 3; 0, 0,

√
3) 0

y2 ↔ (
√
3, 0, 0; 0, 0, 3; 0, 0, 3; 0,

√
3, 0) 0

y3 ↔ (
√
3, 0, 0; 0, 0, 3; 1, 0, 0;

√
3, 0, 0) 0

y4 ↔ (
√
3, 0, 0; 1, 0, 0; 0, 0, 3;

√
3, 0, 0) 0

The Lorentzian products ⟨yi, yj⟩

y3 y4

y1 0 0

y2 0 0

y3 0

Table 2.0.5: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ G̃2 ∪ G̃2 ∪ Ã2
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x yi ⟨x, yi⟩

(0, 0,
√
3; 0, 0,

√
3; 1, 0, 0; 1, 0, 0) y1 ↔ (1, 0, 0; 1, 0, 0; 0, 0,

√
3; 0, 0,

√
3) 0

y2 ↔ (1, 0, 0; 1, 0, 0; 0, 0,
√
3; 0,

√
3, 0) 0

y3 ↔ (1, 0, 0; 1, 0, 0; 0,
√
3, 0; 0, 0,

√
3) 0

y4 ↔ (1, 0, 0; 1, 0, 0; 0,
√
3, 0; 0,

√
3, 0) 0

x zi ⟨x, zi⟩

(0, 0, 3; 0, 0,
√
3; 1, 0, 0; 1, 0, 0) y1 ↔ (

√
3, 0, 0; 0, 0, 3; 0, 0,

√
3;
√
3, 0, 0) 0

y2 ↔ (
√
3, 0, 0; 0, 0, 3; 0,

√
3, 0;

√
3, 0, 0) 0

y3 ↔ (
√
3, 0, 0; 0, 0, 3;

√
3, 0, 0; 0, 0,

√
3) 0

y4 ↔ (
√
3, 0, 0; 0, 0, 3;

√
3, 0, 0; 0,

√
3, 0) 0

y5 ↔ (
√
3, 0, 0; 1, 0, 0;

√
3, 0, 0;

√
3, 0, 0) 0

The Lorentzian products ⟨yi, yj⟩ and ⟨zi, zj⟩

y3 y4

y1 0

y2 0

z3 z4 z5

z1 0 0 0

z2 0 0 0

z3 0

z4 0

Table 2.0.6: Admissible pairs for σ∞ = G̃2 ∪ G̃2 ∪ Ã2 ∪ Ã2
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x yi ⟨x, yi⟩

(0, 0,
√
3; 1, 0, 0; 1, 0, 0; 1, 0, 0) y1 ↔ (1, 0, 0; 0, 0,

√
3; 0, 0,

√
3; 0, 0,

√
3) 0

y2 = (1, 0, 0; 0, 0,
√
3; 0, 0,

√
3; 0,

√
3, 0) 0

y3 = (1, 0, 0; 0, 0,
√
3; 0,

√
3, 0; 0, 0,

√
3) 0

y4 ↔ (1, 0, 0; 0, 0,
√
3; 0,

√
3, 0; 0,

√
3, 0) 0

y5 ↔ (1, 0, 0; 0,
√
3, 0; 0, 0,

√
3; 0, 0,

√
3) 0

y6 ↔ (1, 0, 0; 0,
√
3, 0; 0, 0,

√
3; 0,

√
3, 0) 0

y7 ↔ (1, 0, 0; 0,
√
3, 0; 0,

√
3, 0; 0, 0,

√
3) 0

y8 ↔ (1, 0, 0; 0,
√
3, 0; 0,

√
3, 0; 0,

√
3, 0) 0

x zi ⟨x, zi⟩

(0, 0, 3, 1, 0, 0, 1, 0, 0, 1, 0, 0) z1 ↔ (1, 0, 0; 0, 0, 1; 0, 0, 1; 0, 0, 1) 0

z2 ↔ (1, 0, 0; 0, 0, 1; 0, 0, 1; 0, 1, 0) 0

z3 ↔ (1, 0, 0; 0, 0, 1; 0, 1, 0; 0, 0, 1) 0

z4 ↔ (1, 0, 0; 0, 0, 1; 0, 1, 0; 0, 1, 0) 0

z5 ↔ (1, 0, 0; 0, 1, 0; 0, 0, 1; 0, 0, 1) 0

z6 ↔ (1, 0, 0; 0, 1, 0; 0, 0, 1; 0, 1, 0) 0

z7 ↔ (1, 0, 0; 0, 1, 0; 0, 1, 0; 0, 0, 1), 0

z8 ↔ (1, 0, 0; 0, 1, 0; 0, 1, 0; 0, 1, 0) 0

z9 ↔ (
√
3, 0, 0; 0, 0,

√
3;
√
3, 0, 0;

√
3, 0, 0) 0

z10 ↔ (
√
3, 0, 0; 0,

√
3, 0;

√
3, 0, 0;

√
3, 0, 0) 0

z11 ↔ (
√
3, 0, 0;

√
3, 0, 0; 0, 0,

√
3;
√
3, 0, 0) 0

z12 ↔ (
√
3, 0, 0;

√
3, 0, 0; 0,

√
3, 0;

√
3, 0, 0) 0

z13 ↔ (
√
3, 0, 0;

√
3, 0, 0;

√
3, 0, 0; 0, 0,

√
3) 0

z14 ↔ (
√
3, 0, 0;

√
3, 0, 0;

√
3, 0, 0; 0,

√
3, 0) 0

The Lorentzian products ⟨yi, yj⟩ and ⟨zi, zj⟩

y2 y3 y4 y5 y6 y7 y8

y1 0 0 0 -1

y2 0 0 -1 0

y3 0 -1 0

y4 -1 0 0

y5 0

y6 0

z10 z11 z12 z13 z14

z9 0 0 0 0

z10 0 0 0 0

z11 0 0

z12 0 0

Table 2.0.7: Admissible pairs for σ∞ = G̃2 ∪ Ã2 ∪ Ã2 ∪ Ã2
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x y ⟨x, y⟩

(0, 0,
√
3; 0, 0,

√
3; 1, 0, 0, 0, 0), (0,

√
3,
√
3;
√
3, 0, 0; 1, 1, 0, 0, 1) -1

(
√
3, 0, 0; 0,

√
3,
√
3; 1, 1, 0, 0, 1) -1

(0, 0, 3; 0, 0,
√
3; 1, 0, 0, 0, 0) (

√
3, 0, 0; 1, 0, 0;

√
3, 0, 0, 0, 0) 0

Table 2.0.8: Admissible pairs {x, y} for σ∞ = G̃2 ∪ G̃2 ∪ Ã4

x y ⟨x, y⟩

(0, 0, 3; 1, 0, 0; 1, 0, 0, 0) (
√
3, 0, 0; 0, 0,

√
3;
√
3, 0, 0, 0, 0) 0

(
√
3, 0, 0; 0,

√
3, 0;

√
3, 0, 0, 0, 0) 0

Table 2.0.9: Admissible pairs {x, y} for σ∞ = G̃2 ∪ Ã2 ∪ Ã4

x y ⟨x, y⟩

(0, 0,
√
3; 1, 0, 0; 1, 0, 0, 0) y ↔ (0, 0,

√
3; 1, 1, 1; 0, 0, 1, 1, 1) 0

(0, 0, 3; 1, 0, 0; 1, 0, 0, 0) (
√
3, 0, 0, 0, 0,

√
3,
√
3, 0, 0, 0, 0) 0

(
√
3, 0, 0, 0,

√
3, 0,

√
3, 0, 0, 0, 0) 0

Table 2.0.10: Admissible pairs {x, y} for σ∞ = G̃2 ∪ Ã2 ∪ D̃4

x y ⟨x, y⟩

(0, 0,
√
3, 0, 0,

√
3, 1, 0, 0, 0, 0), (0,

√
3,
√
3,
√
3, 0, 0, 1, 1, 0, 0, 0) 0

(
√
3, 0, 0, 0,

√
3,
√
3, 1, 1, 0, 0, 0) 0

(0, 0, 3, 0, 0,
√
3, 1, 0, 0, 0, 0) (

√
3, 0, 0; 1, 0, 0;

√
3, 0, 0, 0, 0) 0

Table 2.0.11: Admissible pairs {x, y} for σ∞ = G̃2 ∪ G̃2 ∪ D̃4

x y ⟨x, y⟩

(0, 0,
√
3; 1, 0, 0, 0; 1, 0, 0, 0) (1, 0, 0; 0, 0,

√
3, 0; 0, 0,

√
3, 0) 0

(0, 0, 3; 1, 0, 0, 0; 1, 0, 0, 0) (1, 0, 0; 0, 0, 1, 0; 0, 0, 1, 0) 0

Table 2.0.12: Admissible pairs {x, y} for σ∞ = G̃2 ∪ Ã3 ∪ Ã3
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x yi ⟨x, yi⟩

(0, 0,
√
3; 1, 0, 0, 0, 0, 0, 0, 0) y1 ↔ (0,

√
3,
√
3, 1, 1, 0, 0, 0, 0, 0, 1) 0

y2 ↔ (1, 0, 0, 0, 0, 0, 0,
√
3, 0, 0, 0) 0

y3 ↔ (1, 3, 3,
√
3, 0, 0,

√
3, 0, 0,

√
3,
√
3) 0

y4 ↔ (1, 3, 3,
√
3, 0,

√
3,
√
3, 0, 0, 0,

√
3) 0

y5 ↔ (1, 3, 3,
√
3,
√
3, 0, 0, 0,

√
3,
√
3, 0) 0

y6 ↔ (1, 3, 3,
√
3,
√
3,
√
3, 0, 0,

√
3, 0, 0) 0

y7 ↔ (
√
3, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0) 0

y8 ↔ (
√
3,
√
3, 0, 1, 1, 1, 0, 0, 0, 1, 1) 0

y9 ↔ (0,
√
3,
√
3, 0, 0, 0, 1, 0, 0, 1, 1) -1

y10 ↔ (0,
√
3,
√
3, 0, 0, 1, 1, 0, 0, 0, 1) -1

y11 ↔ (0,
√
3,
√
3, 0, 1, 0, 0, 0, 1, 1, 0) -1

y12 ↔ (0,
√
3,
√
3, 0, 1, 1, 0, 0, 1, 0, 0) -1

y13 ↔ (1, 3, 3, 0, 0, 0,
√
3,
√
3, 0,

√
3,
√
3) −

√
3

y14 ↔ (1, 3, 3, 0, 0,
√
3,
√
3,
√
3, 0, 0,

√
3) −

√
3

y15 ↔ (1, 3, 3, 0,
√
3, 0, 0,

√
3,
√
3,
√
3, 0) −

√
3

y16 ↔ (1, 3, 3, 0,
√
3,
√
3, 0,

√
3,
√
3, 0, 0) −

√
3

(0, 0, 3; 1, 0, 0, 0, 0, 0, 0, 0) (1, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0) 0

The Lorentzian products ⟨yi, yj⟩

y3 y4 y5 y6 y8 y9 y10 y11 y12 y13 y14 y15 y16

y1 0 0 0 0 0 0 0 0

y2 −
√
3 −

√
3 −

√
3 −

√
3 -1 -1 -1 -1

y3 -1 -1 0 0 0 −
√
3 1

y4 -1 0 0 −
√
3 0 1

y5 -1 0 0 −
√
3 0 1

y6 0 −
√
3 0 0 1

y8 0 0 0 0

y9 0 0 0 −
√
3

y10 0 0 −
√
3 0

y11 0 −
√
3 0

y12 −
√
3 0 0

y13 -1 -1

y14 -1

y15 -1

Table 2.0.13: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ Ã7
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x yi ⟨x, yi⟩

(0, 0,
√
3; 1, 0, 0, 0, 0, 0, 0, 0) y1 ↔ (0,

√
3,
√
3; 1, 1, 0, 0, 0, 0, 0, 0) 0

y2 ↔ (1, 3, 3;
√
3, 0, 0, 0,

√
3, 0, 0,

√
3) 0

y3 ↔ (
√
3,
√
3,
√
3; 0, 0, 1, 1, 1, 0, 0, 0) 0

y4 ↔ (0,
√
3,
√
3; 0, 0, 0, 0, 1, 0, 0, 1) -1

y5 ↔ (
√
3,
√
3, 0; 0, 0, 1, 0, 0, 1, 1, 1) -1

The Lorentzian products ⟨yi, yj⟩

y2 y3 y4 y5

y1 -1

y2
√
3 0

y3 0 0

Table 2.0.14: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ D̃7

x yi ⟨x, yi⟩

(0, 0,
√
3; 0, 0, 0, 0, 0, 0, 0, 1) y1 ↔ (0,

√
3,
√
3; 1, 0, 0, 0, 0, 0, 0, 1) 0

y2 ↔ (1, 3, 3; 0,
√
3, 0, 0, 0, 0,

√
3,
√
3) 0

y3 ↔ (
√
3,
√
3, 0; 1, 0, 0, 0, 0, 1, 0, 1) 0

y4 ↔ (
√
3,
√
3,
√
3; 0, 0, 0, 0, 1, 1, 1, 0) 0

y5 ↔ (0,
√
3,
√
3; 0, 1, 0, 0, 0, 0, 1, 0) -1

y6 ↔ (
√
3,
√
3, 0; 0, 1, 0, 0, 1, 0, 0, 0) -1

The Lorentzian products ⟨yi, yj⟩

y2 y3 y4 y5 y6

y1 0 0 1

y2 0 −
√
3 0

y3 -1 0 0

y4 0 0

Table 2.0.15: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ Ẽ7
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Appendix B. Admissible pairs

x y ⟨x, y⟩

(0, 0,
√
3; 0, 0,

√
3; 1, 0, 0, 0, 0, 0) (0,

√
3,
√
3;
√
3, 0, 0; 1, 1, 0, 0, 0, 0) -1

(
√
3, 0, 0; 0,

√
3,
√
3; 1, 1, 0, 0, 0, 0) -1

(0, 0, 3; 0, 0,
√
3; 1, 0, 0, 0, 0, 0) (

√
3, 0, 0; 1, 0, 0;

√
3, 0, 0, 0, 0, 0) 0

Table 2.0.16: Admissible pairs {x, y} for σ∞ = G̃2 ∪ G̃2 ∪ D̃5

x y ⟨x, y⟩

(0, 0,
√
3; 1, 0, 0; 1, 0, 0, 0, 0, 0) (0,

√
3,
√
3; 1, 1, 1; 0, 0, 1, 0, 0, 1) -1

(0, 0, 3; 1, 0, 0; 1, 0, 0, 0, 0, 0) (
√
3, 0, 0; 0, 0,

√
3;
√
3, 0, 0, 0, 0, 0) 0

(
√
3, 0, 0; 0,

√
3, 0;

√
3, 0, 0, 0, 0, 0) 0

Table 2.0.17: Admissible pairs {x, y} for σ∞ = G̃2 ∪ Ã2 ∪ D̃5

x yi ⟨x, yi⟩

(0, 0,
√
3; 1, 0, 0, 0; 1, 0, 0, 0, 0) y1 ↔ (0,

√
3,
√
3; 0, 1, 1, 1; 1, 0, 0, 1, 1) -1

y2 ↔ (0,
√
3,
√
3; 0, 1, 1, 1; 1, 0, 1, 0, 1) -1

y3 ↔ (0,
√
3,
√
3; 0, 1, 1, 1; 1, 0, 1, 1, 0) -1

y4 ↔ (0,
√
3,
√
3; 1, 1, 0, 1; 0, 0, 1, 1, 1) -1

y5 ↔ (1, 0, 0; 0, 0,
√
3, 0; 0, 0, 0, 0,

√
3) 0

y6 ↔ (1, 0, 0; 0, 0,
√
3, 0; 0, 0, 0,

√
3, 0) 0

y7 ↔ (1, 0, 0; 0, 0,
√
3, 0; 0, 0,

√
3, 0, 0) 0

(0, 0, 3; 1, 0, 0, 0; 1, 0, 0, 0, 0) (1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 0, 1) 0

(1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1, 0) 0

(1, 0, 0; 0, 0, 1, 0; 0, 0, 1, 0, 0) 0

The Lorentzian products ⟨yi, yj⟩

y2 y3 y4 y5 y6 y7

y1 −
√
3

y2 −
√
3

y3 −
√
3

y4 −
√
3 −

√
3 −

√
3

Table 2.0.18: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ Ã3 ∪ D̃4
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x yi ⟨x, yi⟩

(0, 0
√
3; 1, 0, 0, 0, 0, 0, 0, 0, 0) y1 ↔ (0,

√
3,
√
3; 1, 1, 0, 0, 0, 0, 0, 0, 0) 0

y2 ↔ (1, 0, 0; 0, 0, 0, 0, 0, 0, 0,
√
3, 0) 0

y3 ↔ (1, 0, 0; 0, 0, 0, 0, 0, 0,
√
3, 0, 0) 0

y4 ↔ (1, 3, 3; 0, 0, 0, 0,
√
3, 0, 0,

√
3,
√
3) −

√
3

y5 ↔ (1, 3, 3; 0, 0, 0, 0,
√
3, 0,

√
3, 0,

√
3) −

√
3

y6 ↔ (1, 3, 3, ; 0, 0,
√
3, 0, 0, 0,

√
3,
√
3, 0) −

√
3

y7 ↔ (1, 3, 3;
√
3, 0, 0, 0,

√
3, 0, 0, 0,

√
3) 0

y8 ↔ (1, 3, 3;
√
3, 0,

√
3, 0, 0, 0, 0,

√
3, 0) 0

y9 ↔ (1, 3, 3;
√
3, 0,

√
3, 0, 0, 0,

√
3, 0, 0) 0

y10 ↔ (
√
3, 0, 0; 0, 0, 0, 0, 0, 1, 0, 1, 0) 0

y11 ↔ (
√
3, 0, 0; 0, 0, 0, 0, 0, 1, 1, 0, 0) 0

y12 ↔ (
√
3,
√
3, 0; 1, 1, 0, 0, 0, 0, 0, 1, 1) 0

y13 ↔ (
√
3,
√
3, 0; 1, 1, 0, 0, 0, 0, 1, 0, 1) 0

y14 ↔ (
√
3,
√
3, 0; 1, 1, 0, 1, 0, 0, 0, 0, 0) 0

y15 ↔ (
√
3,
√
3,
√
3; 0, 0, 1, 0, 0, 1, 0, 1, 1) 0

y16 ↔ (
√
3,
√
3,
√
3; 0, 0, 1, 0, 0, 1, 1, 0, 1) 0

y17 ↔ (
√
3,
√
3,
√
3; 0, 0, 1, 1, 1, 0, 0, 0, 0) 0

y18 ↔ (
√
3,
√
3,
√
3; 0, 1, 0, 0, 1, 0, 1, 1, 0) 0

(0, 0, 3; 1, 0, 0, 0, 0, 0, 0, 0, 0) (1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0) 0

(1, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0) 0

The Lorentzian products ⟨yi, yj⟩

y4 y5 y6 y7 y8 y9 y14 y15 y16 y17 y18

y1 0 0 0

y2 -1 -1 0 −
√
3 0

y3 -1 -1 0 −
√
3 0

y4 -1 -1 0 −
√
3 0

y5 -1 -1 0 −
√
3 0

y6 -1 -1 0 0 −
√
3 0

y7 -1 −
√
3 −

√
3

y9 −
√
3 −

√
3

y10 -1 -1

y11 -1 -1

y14 -1

y15 0

y16 0

y17 0

Table 2.0.19: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ D̃8
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Appendix B. Admissible pairs

x yi ⟨x, yi⟩

(0, 0
√
3; 0, 0, 0, 0, 0, 0, 0, 0, 1) y1 ↔ (0,

√
3,
√
3; 0, 0, 0, 0, 0, 0, 0, 1, 1), 0

y2 ↔ (0,
√
3,
√
3; 0, 1, 0, 0, 0, 0, 0, 0, 0), -1

y3 ↔ (1, 3, 3; 0,
√
3, 0, 0, 0, 0, 0, 0,

√
3), 0

y4 ↔ (
√
3,
√
3, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0) -1

y5 ↔ (
√
3,
√
3, 0; 1, 0, 0, 0, 0, 0, 0, 1, 1) 0

y6 ↔ (
√
3,
√
3,
√
3; 1, 0, 1, 0, 0, 0, 0, 0, 0) 0

The Lorentzian products ⟨yi, yj⟩

y2 y3 y4 y5 y6

y1 0 0 -1

y2 0 0

y3 0 0 −
√
3

y4 0 0

y5 -1

Table 2.0.20: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ Ẽ8

x y ⟨x, y⟩

(0, 0, 3; 1, 0, 0, 0, 0; 1, 0, 0, 0, 0) (1, 0, 0; 0, 0, 0, 0, 1; 0, 0, 0, 0, 1) 0

(1, 0, 0; 0, 0, 0, 0, 1; 0, 0, 0, 1, 0) 0

(1, 0, 0; 0, 0, 0, 0, 1; 0, 0, 1, 0, 0) 0

(1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1) 0

(1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 1, 0) 0

(1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 1, 0, 0) 0

(1, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 0, 1) 0

(1, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0) 0

(1, 0, 0; 0, 0, 1, 0, 0; 0, 0, 1, 0, 0) 0

Table 2.0.21: Admissible pairs {x, y} for σ∞ = G̃2 ∪ D̃4 ∪ D̃4

108



x y ⟨x, y⟩

(0, 0,
√
3; 1, 0, 0, 0, 0; 1, 0, 0, 0, 0) y1 ↔ (1, 0, 0; 0, 0, 0, 0,

√
3; 0, 0, 0, 0,

√
3) 0

y2 ↔ (1, 0, 0; 0, 0, 0, 0,
√
3; 0, 0, 0,

√
3, 0) 0

y3 ↔ (1, 0, 0; 0, 0, 0, 0,
√
3; 0, 0,

√
3, 0, 0) 0

y4 ↔ (1, 0, 0; 0, 0, 0,
√
3, 0; 0, 0, 0, 0,

√
3) 0

y5 ↔ (1, 0, 0; 0, 0, 0,
√
3, 0; 0, 0, 0,

√
3, 0) 0

y6 ↔ (1, 0, 0; 0, 0, 0,
√
3, 0; 0, 0,

√
3, 0, 0) 0

y7 ↔ (1, 0, 0; 0, 0,
√
3, 0, 0; 0, 0, 0, 0,

√
3) 0

y8 ↔ (1, 0, 0; 0, 0,
√
3, 0, 0; 0, 0, 0,

√
3, 0) 0

y9 ↔ (1, 0, 0; 0, 0,
√
3, 0, 0; 0, 0,

√
3, 0, 0) 0

y10 ↔ (0,
√
3,
√
3; 0, 0, 1, 1, 1; 1, 1, 0, 0, 0) -1

y11 ↔ (0,
√
3,
√
3; 0, 1, 0, 0, 1; 1, 0, 0, 1, 1) -1

y12 ↔ (0,
√
3,
√
3; 0, 1, 0, 0, 1; 1, 0, 1, 0, 1) -1

y13 ↔ (0,
√
3,
√
3; 0, 1, 0, 0, 1; 1, 0, 1, 1, 0) -1

y14 ↔ (0,
√
3,
√
3; 0, 1, 0, 1, 0; 1, 0, 0, 1, 1) -1

y15 ↔ (0,
√
3,
√
3; 0, 1, 0, 1, 0; 1, 0, 1, 0, 1) -1

y16 ↔ (0,
√
3,
√
3; 0, 1, 0, 1, 0; 1, 0, 1, 1, 0) -1

y17 ↔ (0,
√
3,
√
3; 0, 1, 1, 0, 0; 1, 0, 0, 1, 1) -1

y18 ↔ (0,
√
3,
√
3; 0, 1, 1, 0, 0; 1, 0, 1, 0, 1) -1

y19 ↔ (0,
√
3,
√
3; 0, 1, 1, 0, 0; 1, 0, 1, 1, 0) -1

y20 ↔ (0,
√
3,
√
3; 1, 0, 0, 1, 1; 0, 1, 0, 0, 1) -1

y21 ↔ (0,
√
3,
√
3; 1, 0, 0, 1, 1; 0, 1, 0, 1, 0) -1

y22 ↔ (0,
√
3,
√
3; 1, 0, 0, 1, 1; 0, 1, 1, 0, 0) -1

y23 ↔ (0,
√
3,
√
3; 1, 0, 1, 0, 1; 0, 1, 0, 0, 1) -1

y24 ↔ (0,
√
3,
√
3; 1, 0, 1, 0, 1; 0, 1, 0, 1, 0) -1

y25 ↔ (0,
√
3,
√
3; 1, 0, 1, 0, 1; 0, 1, 1, 0, 0) -1

y26 ↔ (0,
√
3,
√
3; 1, 0, 1, 1, 0; 0, 1, 0, 0, 1) -1

y27 ↔ (0,
√
3,
√
3; 1, 0, 1, 1, 0; 0, 1, 0, 1, 0) -1

y28 ↔ (0,
√
3,
√
3; 1, 0, 1, 1, 0; 0, 1, 1, 0, 0) -1

y29 ↔ (0,
√
3,
√
3; 1, 1, 0, 0, 0; 0, 0, 1, 1, 1) -1

Table 2.0.22: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ D̃4 ∪ D̃4 (continued)
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Appendix B. Admissible pairs

The Lorentzian products ⟨yi, yj⟩
y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17

y1 1 1 1 1 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3

y2 1 1 1 1 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3

y3 1 1 1 1 −
√
3 −

√
3 −

√
3 −

√
3

y4 1 1 −
√
3 −

√
3 −

√
3 −

√
3

y5 1 1 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3

y6 1 1 −
√
3 −

√
3 −

√
3 −

√
3

y7 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3

y8 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3

y9 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3

y18 y19 y20 y21 y22 y23 y24 y25 y26 y27 y28 y29
y1 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3

y2 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3

y3 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3

y4 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3

y5 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3

y6 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3

y7 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3

y8 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3

y9 −
√
3 −

√
3 −

√
3 −

√
3 −

√
3 −

√
3

y20 y21 y22 y23 y24 y25 y26 y27 y28 y29
y10 0
y11 0
y12 0
y13 0
y14 0
y15 0
y16 0
y17 0
y18 0
y19 0

Table 2.0.23: Lorentzian products ⟨yi, yj⟩ for σ∞ = G̃2 ∪ D̃4 ∪ D̃4
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x yi ⟨x, yi⟩

(0, 0
√
3; 1, 0, 0; 1, 0, 0, 0, 0, 0, 0) y1 ↔ (1, 0, 0; 0, 0,

√
3; 0, 0, 0, 0, 0, 0,

√
3)

y2 = (1, 0, 0; 0, 0,
√
3; 0, 0, 0, 0, 0,

√
3, 0)

y3 = (1, 0, 0; 0,
√
3, 0; 0, 0, 0, 0, 0, 0,

√
3)

y4 = (1, 0, 0; 0,
√
3, 0; 0, 0, 0, 0, 0,

√
3, 0)

y5 = (0,
√
3,
√
3; 1, 1, 1; 0, 0, 0, 1, 0, 0, 0)

y6 = (0, 3, 3;
√
3,
√
3,
√
3;
√
3, 0, 0, 0, 0,

√
3,
√
3)

(0, 0, 3; 1, 0, 0; 1, 0, 0, 0, 0, 0, 0) (1, 0, 0; 0, 0, 1; 0, 0, 0, 0, 0, 0, 1)

(1, 0, 0; 0, 0, 1; 0, 0, 0, 0, 0, 1, 0)

(1, 0, 0; 0, 1, 0; 0, 0, 0, 0, 0, 0, 1)

(1, 0, 0; 0, 1, 0; 0, 0, 0, 0, 0, 1, 0)

(
√
3, 0, 0; 0, 0,

√
3;
√
3, 0, 0, 0, 0, 0, 0)

(
√
3, 0, 0; 0,

√
3, 0;

√
3, 0, 0, 0, 0, 0, 0)

The Lorentzian products ⟨yi, yj⟩

y2 y3 y4 y5 y6

y1 0 −
√
3

y2 0 −
√
3

y3 −
√
3

y4 −
√
3

y5 0

Table 2.0.24: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ Ã2 ∪ Ẽ6
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Appendix B. Admissible pairs

x yi ⟨x, y⟩

(0, 0
√
3; 0, 0,

√
3; 1, 0, 0, 0, 0, 0, 0), y1 ↔ (1, 0, 0; 1, 0, 0; 0, 0, 0, 0, 0, 0,

√
3) 0

y2 ↔ (1, 0, 0; 1, 0, 0; 0, 0, 0, 0, 0,
√
3, 0) 0

y3 ↔ (
√
3, 0, 0;

√
3, 0, 0; 0, 0, 0, 0, 1, 1, 0) 0

y4 ↔ (
√
3, 0, 0;

√
3, 0, 0; 0, 1, 0, 0, 0, 0, 1) 0

y5 ↔ (0,
√
3,
√
3;
√
3, 0, 0; 1, 0, 1, 0, 0, 0, 0) -1

y6 ↔ (
√
3, 0, 0; 0,

√
3,
√
3; 1, 0, 1, 0, 0, 0, 0) -1

(0, 0, 3; 0, 0,
√
3; 1, 0, 0, 0, 0, 0, 0) (

√
3, 0, 0; 1, 0, 0;

√
3, 0, 0, 0, 0, 0, 0) 0

The Lorentzian products ⟨yi, yj⟩

y2 y3 y4 y5 y6

y1
√
3

√
3

y2
√
3

√
3

Table 2.0.25: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ G̃2 ∪ Ẽ6

x y ⟨x, y⟩
(0, 0,

√
3; 0, 0,

√
3; 0, 0, 0, 0, 0, 0, 0, 0, 1) (

√
3, 0, 0;

√
3, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0) 0

(0,
√
3,
√
3;
√
3, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 1) -1

(
√
3, 0, 0; 0,

√
3,
√
3; 0, 0, 0, 0, 0, 0, 0, 1, 1) -1

(0, 0, 3; 0, 0,
√
3; 0, 0, 0, 0, 0, 0, 0, 0, 1) (

√
3, 0, 0; 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0,

√
3) 0

Table 2.0.26: Admissible pairs {x, y} for σ∞ = G̃2 ∪ G̃2 ∪ Ẽ8
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x yi ⟨x, yi⟩

a =
√
3 y1 ↔ (1, 0, 3;

√
3, 0, 0, 0, 0, 0, 0, 0, 0;

√
3, 0, 0, 0, 0, 0, 0, 0, 0) 0

y2 ↔ (
√
3, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0) 0

y3 ↔ (
√
3, 0, 0; 0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0) 0

y4 ↔ (
√
3, 0,

√
3; 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0) 0

(
√
3,
√
3,
√
3; 0, 0, 0, 0, 0, 0, 1, 1, 1; 1, 0, 0, 0, 0, 0, 1, 0, 1) 0

(
√
3,
√
3,
√
3; 0, 1, 0, 0, 0, 0, 0, 1, 1; 0, 1, 0, 0, 0, 0, 0, 1, 1) 0

(
√
3,
√
3,
√
3; 1, 0, 0, 0, 0, 0, 1, 0, 1; 0, 0, 0, 0, 0, 0, 1, 1, 1) 0

(0,
√
3,
√
3; 0, 0, 0, 0, 0, 0, 0, 1, 1; 0, 0, 0, 0, 0, 0, 1, 0, 0) -1

(0,
√
3,
√
3; 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 1) -1

(0,
√
3,
√
3; 1, 0, 0, 0, 0, 0, 0, 0, 1; 1, 0, 0, 0, 0, 0, 0, 0, 1) -1

(
√
3,
√
3, 0; 1, 0, 0, 0, 0, 0, 0, 1, 1; 1, 0, 0, 0, 0, 0, 0, 1, 1) -1

(
√
3,
√
3,
√
3; 0, 0, 0, 0, 0, 0, 1, 1, 1; 0, 0, 0, 1, 0, 0, 0, 0, 0) -1

(
√
3,
√
3,
√
3; 0, 0, 0, 0, 0, 1, 0, 1, 0; 0, 0, 0, 0, 0, 1, 0, 1, 0) -1

(
√
3,
√
3,
√
3; 0, 0, 0, 0, 0, 1, 0, 1, 0; 1, 1, 0, 0, 0, 0, 0, 0, 1) -1

(
√
3,
√
3,
√
3; 0, 0, 0, 0, 1, 0, 0, 0, 1; 0, 0, 1, 0, 0, 0, 0, 1, 0) -1

(
√
3,
√
3,
√
3; 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 1, 1) -1

(
√
3,
√
3,
√
3; 0, 0, 1, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 1, 0, 0, 0, 1) -1

(
√
3,
√
3,
√
3; 0, 1, 0, 0, 0, 0, 0, 1, 1; 1, 0, 0, 0, 0, 1, 0, 0, 0) -1

(
√
3,
√
3,
√
3; 0, 1, 0, 0, 0, 0, 1, 0, 0; 1, 0, 0, 0, 0, 0, 1, 0, 1) -1

(
√
3,
√
3,
√
3; 1, 0, 0, 0, 0, 0, 1, 0, 1; 0, 1, 0, 0, 0, 0, 1, 0, 0) -1

(
√
3,
√
3,
√
3; 1, 0, 0, 0, 0, 1, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0, 1, 1) -1

(
√
3,
√
3,
√
3; 1, 1, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 1, 0, 1, 0) -1

(
√
3,
√
3,
√
3; 1, 1, 0, 0, 0, 0, 0, 0, 1; 1, 1, 0, 0, 0, 0, 0, 0, 1) -1

(1, 3, 3; 0, 0, 0, 0, 0, 0,
√
3, 0,

√
3;
√
3, 0, 0, 0, 0, 0, 0,

√
3, 0) −

√
3

(1, 3, 3; 0,
√
3, 0, 0, 0, 0, 0, 0,

√
3; 0,

√
3, 0, 0, 0, 0, 0, 0,

√
3) −

√
3

(1, 3, 3;
√
3, 0, 0, 0, 0, 0, 0,

√
3, 0; 0, 0, 0, 0, 0, 0,

√
3, 0,

√
3) −

√
3

a = 3 (1, 0, 3; 1, 0, 0, 0, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0, 0) 0

The Lorentzian products ⟨yi, yj⟩

y2 y3 y4

y1 −
√
3 −

√
3 0

y2 0 0

y3 0

Table 2.0.27: Admissible pairs {x, yi} for σ∞ = G̃2 ∪ Ẽ8 ∪ Ẽ8 and where
x ↔ (0, 0, a; 0, 0, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 1)
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APPENDIX C

Normal vectors and Vinberg form

In this appendix, we provide the normal vectors of the ADEG-polyhedron
P⋆ and the ADE-polyhedron P2 in H9. For the proof of Corollary 4.3.1, we
construct the Vinberg forms of their associated Coxeter groups. Very useful
in this context is the material with the worked examples as presented in
[32, 33]. We start by a short description of the procedure.

⋄ Establishing the Vinberg form

Let Γ(P ) be a hyperbolic Coxeter group of rank N .

Let e1, . . . , eN be the unit outer normal vectors of its Coxeter polyhedron
P ⊂ Hn. For G = (gij)i,j its Gram matrix, consider all cycles of 2G, that is,

ci1i2...ik = 2kgi1i2 · · · gik−1ikgiki1 for i1, . . . , ik ∈ {1, . . . , N} , k ≥ 2 ;

see Definition 1.3.19. The field of definition K of Γ is the field Q({ci1i2...ik})
of all cycles of 2G.

Define the vectors

v1 := 2e1 and vi1i2...ik := 2kgi1i2 · · · gik−1ikeik (C.1)

by multiplication of the vectors e1, . . . , eN with partial cycles. Then, the
K-vector space V spanned by the vectors vi1i2...ik has dimension n + 1, and
the restriction of the Lorentzian product on V yields a quadratic form q of
signature (n, 1), called the Vinberg form of Γ.

Next, we apply this procedure for the arithmetic groups Γ⋆ and Γ(P2), where
the field K = Q; see Theorem 1.3.20.
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⋄ For the Coxeter polyhedron P⋆

We give below the Coxeter diagram of P⋆ ⊂ H9 where the nodes are indexed
by its unit outer normal vectors.

e12 e1 e2

e13 e3 e4

e14 e5 e6

e10 e9 e8

e11 e7

6

6

6

6

The vectors e1, . . . , e14 ∈ R10 and their Gram matrix G⋆ are given as follows.

e1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

e2 = (− 1
2 ,

√
3
2 , 0, 0, 0, 0, 0, 0, 0, 0)

e3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

e4 = (0, 0,− 1
2 ,

√
3
2 , 0, 0, 0, 0, 0, 0)

e5 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

e6 = (0, 0, 0, 0,− 1
2 ,

√
3
2 , 0, 0, 0, 0)

e7 = (0,− 1√
3
, 0,− 1√

3
, 0,− 1√

3
, 0, 0,−1, 1)

e8 = (0, 0, 0, 0, 0, 0, 1
2 , 0, 1,−

1
2 )

e9 = (0, 0, 0, 0, 0, 0, 0,−1,−1, 1)

e10 = (0, 0, 0, 0, 0, 0,− 1
2 ,

√
3
2 , 1

2 ,−
1
2 )

e11 = (0, 0, 0, 0, 0, 0, 1, 0,−1, 1)

e12 = (−
√
3
2 ,− 1

2 , 0, 0, 0, 0,
−3+

√
3

6 ,− 1
2
√
3
, 3−2

√
3

6 , −1+
√
3

2 )

e13 = (0, 0,−
√
3
2 ,− 1

2 , 0, 0,
−3+

√
3

6 ,− 1
2
√
3
, 3−2

√
3

6 , −1+
√
3

2 )

e14 = (0, 0, 0, 0,−
√
3
2 ,− 1

2 ,
−3+

√
3

6 ,− 1
2
√
3
, 3−2

√
3

6 , −1+
√
3

2 )



1 −1/2 0 0 0 0 0 0 0 0 0 −
√
3/2 0 0

−1/2 1 0 0 0 0 −1/2 0 0 0 0 0 0 0
0 0 1 −1/2 0 0 0 0 0 0 0 0 −

√
3/2 0

0 0 −1/2 1 0 0 −1/2 0 0 0 0 0 0 0
0 0 0 0 1 −1/2 0 0 0 0 0 0 0 −

√
3/2

0 0 0 0 −1/2 1 −1/2 0 0 0 0 0 0 0
0 −1/2 0 −1/2 0 −1/2 1 −1/2 0 0 0 0 0 0
0 0 0 0 0 0 −1/2 1 −1/2 0 0 0 0 0
0 0 0 0 0 0 0 −1/2 1 −

√
3/2 0 0 0 0

0 0 0 0 0 0 0 0 −
√
3/2 1 −1/2 0 0 0

0 0 0 0 0 0 0 0 0 −1/2 1 −1/2 −1/2 −1/2
−
√
3/2 0 0 0 0 0 0 0 0 0 −1/2 1 0 0
0 0 −

√
3/2 0 0 0 0 0 0 0 −1/2 0 1 0

0 0 0 0 −
√
3/2 0 0 0 0 0 −1/2 0 0 1


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Appendix C. Normal vectors and Vinberg form

Let V (Γ⋆) be the Q-vector space of dimension 10 spanned by the vectors as
given by (C.1). The following vectors form a basis of V (Γ⋆).

v1 = 2 · e1 = (2, 0, 0, 0, 0, 0, 0, 0, 0, 0)

v2 = 22g11g12 · e2 = (1,−
√
3, 0, 0, 0, 0, 0, 0, 0, 0)

v3 = 23g11g12g27 · e7 = (0,− 2√
3
, 0,− 2√

3
, 0,− 2√

3
, 0, 0,−2, 2)

v4 = 24g11g12g27g74 · e4 = (0, 0, 1,−
√
3, 0, 0, 0, 0, 0, 0)

v5 = 26g11g12g27g74g43g3,13 · e13 = (0, 0, 3,
√
3, 0, 0, 3−

√
3√

3
, 1, −3+2

√
3√

3
,
√
3− 3)

v6 = 27g11g12g27g74g43g3,13g13,11 · e11 = (0, 0, 0, 0, 0, 0, 2
√
3, 0,−2

√
3, 2

√
3)

v7 = 28g11g12g27g74g43g3,13g13,11g11,12 · e12 = (0, 0, 0, 0, 0, 0,−1, 0,−2, 1)

v8 = 24g11g12g27g78 · e8 = (0, 0, 0, 0, 1,−
√
3, 0, 0, 0, 0)

v9 = 25g11g12g27g78g89 · e9 = (0, 0, 0, 0, 0, 0, 0,−2,−2, 2)

v10 = 24g11g12g27g76 · e6 = (3,
√
3, 0, 0, 0, 0, 3−

√
3√

3
, 1, 3−2

√
3√

3
,−3 +

√
3)

Therefore, the matrix representing the Vinberg form q⋆ of Γ⋆ is as follows.

(⟨vi, vj⟩)ij =



4 2 0 0 0 0 0 0 0 6
2 4 2 0 0 0 0 0 0 0
0 2 4 2 0 0 2 2 0 0
0 0 2 4 0 0 0 0 0 0
0 0 0 0 12 6 0 0 0 0
0 0 0 0 6 12 0 0 0 6
0 0 2 0 0 0 4 0 2 0
0 0 2 0 0 0 0 4 0 0
0 0 0 0 0 0 2 0 4 0
6 0 0 0 0 6 0 0 0 12



With the help of Mathematica [85], we derive that the diagonal form of q⋆ is
given by

< 1, 1, 2, 3, 3, 6, 6, 10, 10,−2 > .
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⋄ For the Coxeter polyhedron P2

We give below the Coxeter diagram of P2 ⊂ H9 where the nodes are indexed
by its outer normal vectors.

e10

e12

e11

e6

e7

e8

e9

e1

e2

e3

e4

e5

The vectors e1, . . . , e12 ∈ R10 and their Gram matrix are given as follows.

e1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

e2 = (− 1
2 ,

√
3
2 , 0, 0, 0, 0, 0, 0, 0, 0)

e3 = (0,− 1√
3
, 0, 0, 0, 0, 0, 0,−

√
2√
3
, 0)

e4 = (0, 0, 0, 0, 0, 0, 0,−
√
5

2
√
2
,

√
3

2
√
2
, 0)

e5 = (0, 0, 1, 0, 0, 0,−
√
3√
5
,
√
2√
5
, 0, 1)

e6 = (0, 0, 1, 0, 0,−
√
7

2
√
3
,

√
5

2
√
3
, 0, 0, 1)

e7 = (0, 0, 1, 0,− 2√
7
,
√
3√
7
, 0, 0, 0, 1)

e8 = (0, 0, 0,− 3
4 ,

√
7
4 , 0, 0, 0, 0, 0)

e9 = (− 1
2 ,−

1
2
√
3
, 0, 3

4 ,
1

4
√
7
, 1
2
√
21
, 1
2
√
15
, 1
2
√
10
, 1
2
√
6
, 0)

e10 = (− 1
2 ,−

1
2
√
3
, 16

6 ,− 2
3 ,−

2√
7
,− 5

3
√
21
, 1
3
√
15
,
√
2√
5
,
√
2√
3
, 5
2 )

e11 = (0, 0,− 5
6 ,−

1
6 ,−

1
2
√
7
, 4
3
√
21
, 1
3
√
15
,
√
2√
5
, 0,− 1

2 )

e12 = (0, 0, 1
6 ,−

5
12 ,−

5
4
√
7
,− 11

3
√
21
,−

√
5

3
√
3
, 0, 0, 1

2 )



1 −1/2 0 0 0 0 0 0 −1/2 −1/2 0 0
−1/2 1 −1/2 0 0 0 0 0 0 0 0 0
0 −1/2 1 −1/2 0 0 0 0 0 −1/2 0 0
0 0 −1/2 1 −1/2 0 0 0 0 0 −1/2 0
0 0 0 −1/2 1 −1/2 0 0 0 0 0 0
0 0 0 0 −1/2 1 −1/2 0 0 0 −1/2 0
0 0 0 0 0 −1/2 1 −1/2 0 0 0 −1/2
0 0 0 0 0 0 −1/2 1 −1/2 0 0 0

−1/2 0 0 0 0 0 0 −1/2 1 0 0 −1/2
−1/2 0 −1/2 0 0 0 0 0 0 1 0 0
0 0 0 −1/2 0 −1/2 0 0 0 0 1 0
0 0 0 0 0 0 −1/2 0 −1/2 0 0 1


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Appendix C. Normal vectors and Vinberg form

Let V (Γ(P2)) be the Q-vector space of dimension 10 spanned by the vectors
as given by (C.1). The following vectors form a basis of V (Γ(P2)).

v1 = (2, 0, 0, 0, 0, 0, 0, 0, 0, 0)

v2 = (1,−
√
3, 0, 0, 0, 0, 0, 0, 0, 0)

v3 = (0,− 2√
3
, 0, 0, 0, 0, 0, 0,−2

√
2√
3
, 0)

v4 = (0, 0, 0, 0, 0, 0, 0,
√
5√
2
,−

√
3√
2
, 0)

v5 = (0, 0, 2, 0, 0, 0,−2
√
3√
5
, 2

√
2√
5
, 0, 2)

v6 = (0, 0,−2, 0, 0,
√
7√
3
,−

√
5√
3
, 0, 0,−2)

v7 = (0, 0, 2, 0,− 4√
3
), 2

√
3√
7
, 0, 0, 0, 2)

v8 = (0, 0, 0, 3
2 ,−

7
2 , 0, 0, 0, 0, 0)

v9 = (1, 1√
3
,− 13

3 , 4
3 ,

4√
7
, 10
3
√
21
,− 2

3
√
15
,−2

√
2√
5
,−2

√
2√
3
,−5)

v10 = (−1,− 1√
3
, 0, 3

2 ,
1

2
√
7
, 1√

21
, 1√

15
, 1√

10
, 1√

6
, 0)

The matrix representing the Vinberg form q2 of Γ(P2) is given below.

(⟨vi, vj⟩)ij =



4 2 0 0 0 0 0 0 2 -2
2 4 2 0 0 0 0 0 0 0
0 2 4 2 0 0 0 0 2 0
0 0 2 4 2 0 0 0 0 0
0 0 0 2 4 2 0 0 0 0
0 0 0 0 2 4 2 0 0 0
0 0 0 0 0 2 4 2 0 0
0 0 0 0 0 0 2 4 0 2
2 0 2 0 0 0 0 0 4 0
-2 0 0 0 0 6 0 2 0 4



With the help of Mathematica [85], we derive that the diagonal form of q2 is
given by

< 1, 1, 3, 6, 7, 10, 10, 15, 21,−10 > .

118



APPENDIX D

The two reprints

This appendix consists of reprints of the following two articles.

• N. Bredon, R. Kellerhals, Hyperbolic Coxeter groups and minimal growth
rates in dimensions four and five, Groups Geom. Dyn. 16 (2022), 725–741.

• N. Bredon, Hyperbolic Coxeter groups of minimal growth rates in higher
dimensions, Canad. Math. Bull. 66 (2023), 232–242.
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Hyperbolic Coxeter groups and minimal growth rates
in dimensions four and five

Naomi Bredon and Ruth Kellerhals

Abstract. For small n, the known compact hyperbolic n-orbifolds of minimal volume are intim-
ately related to Coxeter groups of smallest rank. For nD 2 and 3, these Coxeter groups are given by
the triangle group Œ7; 3� and the tetrahedral group Œ3; 5; 3�, and they are also distinguished by the fact
that they have minimal growth rate among all cocompact hyperbolic Coxeter groups in Isom Hn,
respectively. In this work, we consider the cocompact Coxeter simplex groupG4 with Coxeter sym-
bol Œ5; 3; 3; 3� in Isom H4 and the cocompact Coxeter prism group G5 based on Œ5; 3; 3; 3; 3� in
Isom H5. Both groups are arithmetic and related to the fundamental group of the minimal volume
arithmetic compact hyperbolic n-orbifold for n D 4 and 5, respectively. Here, we prove that the
group Gn is distinguished by having smallest growth rate among all Coxeter groups acting cocom-
pactly on Hn for n D 4 and 5, respectively. The proof is based on combinatorial properties of
compact hyperbolic Coxeter polyhedra, some partial classification results and certain monotonicity
properties of growth rates of the associated Coxeter groups.

In memoriam Ernest B. Vinberg

1. Introduction

Let Hn denote the real hyperbolic n-space and Isom Hn its isometry group. A hyper-
bolic Coxeter group G � Isom Hn of rank N is a cofinite discrete group generated by N
reflections with respect to hyperplanes in Hn. Such a group corresponds to a finite volume
Coxeter polyhedron P � Hn with N facets, which in turn is a convex polyhedron all of
whose dihedral angles are of the form �

k
for an integer k � 2. Hyperbolic Coxeter groups

are geometric realisations of abstract Coxeter systems .W; S/ consisting of a group W
with a finite set S of generators satisfying the relations s2 D 1 and .ss0/mss0 D 1 where
mss0 D ms0s 2 ¹2; 3; : : : ;1º for s 6D s0. For small rank N , the group W is characterised
most conveniently by its Coxeter symbol or its Coxeter graph.

Hyperbolic Coxeter groups are not only characterised by a simple presentation but
they are also distinguished in other ways. For example, for small n, they appear as fun-
damental groups of smallest volume orbifolds On D Hn=� where � � Isom Hn is a
discrete subgroup; see, e.g., [1,2,7,15,20,27]. In particular, for n D 2 and 3, the compact

2020 Mathematics Subject Classification. Primary 20F55; Secondary 26A12, 22E40, 11R06.
Keywords. Coxeter group, hyperbolic polyhedron, disjoint facets, growth rate.
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hyperbolic n-orbifold of minimal volume is the quotient of Hn by a Coxeter group of
smallest rank and given by the triangle group Œ7; 3� and the Z2-extension of the tetrahedral
group Œ3; 5; 3�. For n D 4 and 5, and by restricting to the arithmetic context, the compact
hyperbolic n-orbifold of minimal volume is the quotient of Hn by the 4-simplex group
Œ5; 3; 3; 3� and by the Coxeter 5-prism group based on Œ5; 3; 3; 3; 3�, respectively.

In parallel to volume we are interested in the spectrum of small growth rates of hyper-
bolic Coxeter groupsG D .W;S/. In general, the growth series fS .t/ of a Coxeter system
.W; S/ is given by

fS .t/ D 1C
X
k�1

akt
k ;

where ak 2 Z is the number of elements w 2W with S -length k. The series fS .t/ can be
computed by Steinberg’s formula

1

fS .t�1/
D

X
WT<W
jWT j<1

.�1/jT j

fT .t/
;

whereWT , T � S , is a finite Coxeter subgroup ofW , and whereW¿ D ¹1º. In particular,
fS .t/ is a rational function that can be expressed as the quotient of coprime monic poly-
nomials p.t/; q.t/ 2 ZŒt � of equal degree. For cocompact hyperbolic Coxeter groups, the
series fS .t/ is infinite and has radius of convergence R < 1 which can be identified with
the real algebraic integer given by the smallest positive root of the denominator polyno-
mial q.t/. The growth rate �G D �.W;S/ is defined by

�G D lim sup
k!1

k
p
ak ;

and �G coincides with the inverse of the radius of convergence R of fS .t/. In contrast to
the finite and affine cases, hyperbolic Coxeter groups are of exponential growth.

In [16] and [21], it is shown that the triangle group Œ7; 3� and the tetrahedral group
Œ3; 5; 3� have minimal growth rate among all cocompact hyperbolic Coxeter groups in
IsomHn for nD 2 and 3, respectively. These results have an interesting number theoretical
component since the growth rate � of any Coxeter group acting cocompactly on Hn for
n D 2 and 3 is either a quadratic unit or a Salem number, that is, � is a real algebraic
integer ˛ > 1 whose inverse is a conjugate of ˛, and all other conjugates lie on the unit
circle. In particular, the growth rate �Œ7;3� equals the smallest known Salem number, and it
is given by Lehmer’s number ˛L � 1:17628 with minimal polynomial

L.t/ D t10 C t9 � t7 � t6 � t5 � t4 � t3 C t C 1:

The constant ˛L plays an important role in the strong version of Lehmer’s problem about
a universal lower bound for Mahler measures of non-zero non-cyclotomic irreducible
integer polynomials; see [32].
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The proof in [21] of the two results above is based on the fact that for n D 2 and 3 the
rational function fS .t/ comes with an explicit formula in terms of the exponents of the
Coxeter group G D .W; S/ � Isom Hn.

For dimensions n � 4, however, there are only a few structural results, and closed for-
mulas for growth functions do not exist in general. In this work, we establish the following
results for n D 4 and 5 by developing a new proof strategy.

Theorem A. Among all Coxeter groups acting cocompactly on H4, the Coxeter simplex
group Œ5; 3; 3; 3� has minimal growth rate, and as such it is unique.

The cocompact Coxeter prism group based on Œ5; 3; 3; 3; 3� in Isom H5 was first dis-
covered by Makarov [26] and arises as the discrete group generated by the reflections in
the compact straight Coxeter prismM with base Œ5; 3; 3; 3�. More concretely, the prismM

is the truncation of the (infinite volume) Coxeter 5-simplex Œ5; 3; 3; 3; 3� by means of the
polar hyperplane associated to its ultra-ideal vertex characterised by the vertex simplex
Œ5; 3; 3; 3�. Our second result can be stated as follows.

Theorem B. Among all Coxeter groups acting cocompactly on H5, the Coxeter prism
group based on Œ5; 3; 3; 3; 3� has minimal growth rate, and as such it is unique.

The work is organised as follows.
In Section 2.1, we provide the necessary background about hyperbolic Coxeter poly-

hedra, their reflection groups and the characterisation by means of the Vinberg graph and
the Gram matrix. We present the relevant classification results for families of Coxeter
polyhedra with few facets due to Esselmann, Kaplinskaja and Tumarkin. Of particular
importance is the structural result, presented in Theorem 1 and due to Felikson and Tumar-
kin, about the existence of non-intersecting facets of a compact Coxeter polyhedron.

In Section 2.2, we consider abstract Coxeter systems with their Coxeter graphs and
Coxeter symbols and introduce the notions of growth series and growth rates. Another
important ingredient is the growth monotonicity result of Terragni as given in Theorem 2.

The proofs of our results are presented in Section 3. The proof of Theorem A is based
on a simple growth rate comparison argument and serves as an inspiration how to attack
the proof of Theorem B. To this end, we establish Lemma 1 and Lemma 2 about the com-
parison of growth rates of certain Coxeter groups of rank 4. Then, we consider compact
Coxeter polyhedra in H5 in terms of the number N � 6 of their facets. Since compact
hyperbolic Coxeter n-simplices exist only for n � 4, we look at compact Coxeter poly-
hedra P � H5 with N D 7, N D 8 and N � 9 facets, respectively. Certain classification
results help us dealing with the casesN D 7 and 8 while forN � 9, we look for particular
subgraphs in the Coxeter graph of P and conclude by means of Lemma 1, Lemma 2 and
Theorem 2.
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2. Hyperbolic Coxeter polyhedra and growth rates

2.1. Hyperbolic Coxeter polyhedra and their reflection groups

Denote by Hn the standard hyperbolic n-space realised by the upper sheet of the hyper-
boloid in RnC1 according to

Hn
D

®
x 2 RnC1 j qn;1.x/ D x

2
1 C � � � C x

2
n � x

2
nC1 D �1; xnC1 > 0

¯
:

A hyperbolic hyperplane H is the intersection of a vector subspace of dimension n with
Hn and can be represented as the Lorentz-orthogonal complementH D eL by means of a
vector e of (normalised) Lorentzian norm qn;1.e/D 1. The isometry group IsomHn of Hn

is given by the group OC.n; 1/ of positive Lorentzian matrices leaving the bilinear form
hx;yin;1 associated to qn;1 and the upper sheet invariant. It is well known that OC.n; 1/ is
generated by linear reflections r D rH W x 7! x � 2 he; xin;1 e with respect to hyperplanes
H D eL; see [3, Section A.2].

A hyperbolic n-polyhedron P � Hn is the non-empty intersection of a finite number
N � n C 1 of half-spaces H�i bounded by hyperplanes Hi all of whose normal unit
vectors ei are directed outwards with respect to P , say. A facet of P is the intersection of
P with one of the hyperplanes Hi , 1 � i � N . A polyhedron is a Coxeter polyhedron if
all of its dihedral angles are of the form �

k
for an integer k � 2.

In this work, we suppose that P is a compact hyperbolic Coxeter polyhedron so that
P is the convex hull of finitely many points in Hn. In particular, P is simple since all
dihedral angles of P are less than or equal to �

2
. As a consequence, each vertex p of P is

the intersection of n hyperplanes boundingP and characterised by a vertex neighbourhood
which is a cone over a spherical Coxeter .n � 1/-simplex.

The following structural result of A. Felikson and P. Tumarkin [10, Theorem A] will
be of importance later in this work. For its statement, the compact Coxeter polyhedra in
H4 that are products of two simplices of dimensions greater than 1 will play a certain role.
There are seven such polyhedra which were discovered by F. Esselmann [8]; see also [9]
and Examples 2, 4 and 10 below.

Theorem 1. Let P � Hn be a compact Coxeter polyhedron. If n � 4 and all facets of
P are mutually intersecting, then P is either a simplex or one of the seven Esselmann
polyhedra. If n > 4, then P has a pair of non-intersecting facets.

Fix a compact Coxeter polyhedronP�Hn with its bounding hyperplanesH1; : : : ;HN
as above. Denote byG the group generated by the reflections ri D rHi , 1� i �N . Then,G
is a cocompact discrete subgroup of IsomHn with P equal to the closure of a fundamental
domain for G. The group G is called a (cocompact) hyperbolic Coxeter group. It follows
that G is finitely presented with natural generating set S D ¹r1; : : : ; rN º and relations

r2i D 1 and .rirj /
mij D 1; (1)

where mij D mj i 2 ¹2; 3; : : : ;1º for i 6D j . Here, mij D1 means that the product rirj
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is of infinite order which fits into the following geometric picture. Denote by Gr.P / D
.hei ; ej in;1/ 2 Mat.N IR/ the Gram matrix of P . Then, the coefficients of Gr.P / off its
diagonal can be interpreted as follows:

�hei ; ej in;1 D

´
cos �

mij
if ].Hi ;Hj / D �

mij
I

cosh lij if dH.Hi ;Hj / D lij > 0:

The matrix Gr.P / is of signature .n; 1/. Furthermore, it contains important information
about P . For example, each vertex of P is characterised by a positive definite n � n
principal submatrix of Gr.P /.

Beside the Gram matrix Gr.P /, the Vinberg graph †.P / is very useful to describe a
Coxeter polyhedron P (and its associated reflection groupG) if the numberN of its facets
is small in comparison with the dimension n. The Vinberg graph †.P / consists of nodes
vi , 1 � i � N; which correspond to the hyperplanes Hi or their unit normal vectors ei .
The number N of nodes is called the order of †.P /. If the hyperplanes Hi and Hj are
not orthogonal, the corresponding nodes vi and vj are connected by an edge with weight
mij � 3 if].Hi ;Hj /D �

mij
; they are connected by a dotted edge (sometimes with weight

lij ) if Hi and Hj are at distance lij > 0 in Hn. The weight mij D 3 is omitted since it
occurs very frequently.

Since P is compact (and hence of finite volume), the Vinberg graph †.P / is connec-
ted. Furthermore, by deleting a node together with the edges emanating from it so that
†.P / gives rise to two connected components †1 and †2, at most one of the two sub-
graphs †1; †2 can have a dotted edge (since otherwise, the signature condition of Gr.P /
is violated).

The subsequent examples summarise the classification results for compact Coxeter
n-polyhedra in terms of the number N D nC k, 1 � k � 3, of their facets.

Example 1. The compact hyperbolic Coxeter simplices were classified by Lannér [25]
and exist for n � 4, only. In the case n D 4, there are precisely five simplices Li whose
Vinberg graphs †i D †.Li /, 1 � i � 5, are given in Figure 1. The simplex L D L1
described by the top left Vinberg graph (or by its Coxeter symbol Œ5; 3; 3; 3�; see Sec-
tion 2.2 and [18]) will be of particular importance.

Example 2. The compact Coxeter polyhedra with nC 2 facets in Hn have been classified.
The list consists of the 7 examples of Esselmann and the (gluings of) straight Coxeter
prisms due to I. Kaplinskaja; see, e.g., [9, 31]. The examples of Esselmann are products
of two simplices of dimensions bigger than 1 and exist in H4, only. The prisms (and
their gluings) of Kaplinskaja exist for n � 5, and the list includes the Makarov prism M

based on Œ5; 3; 3; 3; 3�; see Theorem B. Observe that the Vinberg graphs of all Kaplinskaja
examples (including their gluings) contain one dotted edge.

Example 3. The compact hyperbolic Coxeter polyhedra P � Hn, n � 4, with n C 3
facets exist up to n D 8 and have been enumerated by Tumarkin [35]. For n D 5, his list
comprises 16 polyhedra, and they are characterised by Vinberg graphs with exactly three
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Figure 1. The compact Coxeter simplices in H4.
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Figure 2. The Vinberg graphs of an Esselmann polyhedron
E � H4 and of a Kaplinskaja prism K � H5.
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Figure 3. The Vinberg graph of
Tumarkin’s polyhedron T � H5

with one pair of disjoint facets.

(consecutive) dotted edges, up to the exceptional case T � H5. The polyhedron T has
exactly one pair of non-intersecting facets and is depicted in Figure 3.

Remark 1. By a result of Felikson and Tumarkin [11, Corollary], the Coxeter polyhedra
in Examples 1, 2 and 3 contain all compact Coxeter polyhedra with exactly one pair of
non-intersecting facets. In particular, each compact Coxeter polyhedron P � Hn with
N � nC 4 facets has a Vinberg graph with at least two dotted edges.

Every compact Coxeter polyhedron P � Hn gives rise to a hyperbolic Coxeter group
acting cocompactly on Hn, and each cocompact discrete groupG � IsomHn generated by
finitely many hyperplane reflections has a fundamental domain whose closure is a compact
Coxeter polyhedron in Hn. In the sequel, we often use identical notions and descriptions
for both, the polyhedron P and the reflection group G.

For further details and results about hyperbolic Coxeter polyhedra and Coxeter groups,
their geometric-combinatorial and arithmetical characterisation as well as general (non-)
existence results, we refer to the foundational work of E. Vinberg [36, 37]. An overview
about the diverse partial classification results can be found in [9].

2.2. Coxeter groups and growth rates

A hyperbolic Coxeter group G D .G; S/ with S D ¹r1; : : : ; rN º as above is the geomet-
ric realisation of an abstract Coxeter system .W; S/ of rank N consisting of a group W
generated by a subset S of elements s1; : : : ; sN satisfying the relations as given by (1).
In the fundamental work [6] of Coxeter, the irreducible finite (or spherical) and affine
Coxeter groups are classified. Abstract Coxeter groups are most conveniently described
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by their Coxeter graphs or by their Coxeter symbols. More precisely, the Coxeter graph
†D †.W / of a Coxeter system .W;S/ has nodes v1; : : : ; vN corresponding to the gener-
ators s1; : : : ; sN ofW , and two nodes vi and vj are joined by an edge with weightmij � 3.
In particular, there will be no edge if mij D 2 and there will be an edge decorated by1
if the product element sisj is of infinite order mij D1.

In this way, the Vinberg graph of a hyperbolic Coxeter group is a refined version
of its Coxeter graph. In this context, observe that the Coxeter graph �–1–—–� describes the
affine group zA1 and – simultaneously – is underlying the Vinberg graph � � � � � of a com-
pact hyperbolic Coxeter 1-simplex as given by any geodesic segment. Furthermore, the
reflection group in Isom H2 associated to the compact Lambert quadrilateral with Vinberg
graph � � � � �–––� � � � � is given by the Coxeter graph �–1–—–�–––�–1–—–� while the Vinberg graph �–1–—–�–––�
(coinciding with its Coxeter graph) describes a non-compact hyperbolic triangle of area �

6
.

In the case that the rank N of the Coxeter system .W; S/ is small, a description by the
Coxeter symbol is more convenient. For example, Œp1; : : : ; pk � with integer labels pi � 3
is associated to a linear Coxeter graph with kC 1 edges marked by the respective weights.
The Coxeter symbol Œ.p; q; r/� describes a cyclic Coxeter graph with 3 edges of weights
p, q and r . We assemble the different symbols into a single one in order to describe the
different nature of parts of the Coxeter graph in question; see, e.g., [18, Appendix].

Example 4. The Coxeter symbols of the seven Esselmann polyhedra in H4 are charac-
terised by the fact that they contain two disjoint Coxeter symbols associated to compact
hyperbolic triangles and called triangular components that are separated by at least one
edge of (finite) weightm� 3. Accordingly, the Esselmann polyhedronE �H4 as depicted
in Figure 2 is described by the Coxeter symbol Œ.3; 4; 3/; 4; .3; 4; 3/�. Notice that none of
the triangular components .p;q; r/, given by integers p;q; r � 2 such that 1

p
C

1
q
C

1
r
< 1,

of the Coxeter symbols appearing in Esselmann’s list is equal to .2; 3; 7/.

For a Coxeter system .W; S/ with generating set S D ¹s1; : : : ; sN º, the (spherical)
growth series fS .t/ is defined by

fS .t/ D 1C
X
k�1

akt
k ;

where ak 2 Z is the number of words w 2 W with S -length k. For references of the
subsequent basic properties of fS .t/, see for example [17,21,23]. The series fS .t/ can be
computed by Steinberg’s formula

1

fS .t�1/
D

X
WT<W
jWT j<1

.�1/jT j

fT .t/
; (2)

where WT , T � S , is a finite Coxeter subgroup of W , and where W¿ D ¹1º. By a result
of Solomon, the growth polynomials fT .t/ in (2) can be expressed by means of their
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Group Exponents Growth polynomial fS .x/

An 1; 2; : : : ; n � 1; n Œ2; 3; : : : ; n; nC 1�

Bn 1; 3; : : : ; 2n � 3; 2n � 1 Œ2; 4; : : : ; 2n � 2; 2n�

Dn 1; 3; : : : ; 2n � 5; 2n � 3; n � 1 Œ2; 4; : : : ; 2n � 2; n�

G
.m/
2 1;m � 1 Œ2;m�

F4 1; 5; 7; 11 Œ2; 6; 8; 12�

H3 1; 5; 9 Œ2; 6; 10�

H4 1; 11; 19; 29 Œ2; 12; 20; 30�

Table 1. Exponents and growth polynomials of irreducible finite Coxeter groups.

exponents m1 D 1;m2; : : : ; mp according to the formula

fT .t/ D

pY
iD1

Œmi C 1�:

Here we use the standard notation Œk� D 1 C t C � � � C tk�1 with Œk; l� D Œk� � Œl � and
so on. By replacing the variable t by t�1, the function Œk� satisfies the property Œk�.t/ D
tk�1Œk�.t�1/.

Table 1 lists all irreducible finite Coxeter groups together with their growth polyno-
mials up to the exceptional groups E6; E7 and E8 which are irrelevant for this work. Let
us add that the growth series of a reducible Coxeter system .W; S/ with factor groups
.W1; S1/ and .W2; S2/ such that S D .S1 � ¹1W2º/ [ .¹1W1º � S2/, satisfies the product
formula fS .t/ D fS1.t/ � fS2.t/.

By the above, in its disk of convergence, the growth series fS .t/ is a rational function
that can be expressed as the quotient of coprime monic polynomials p.t/; q.t/ 2 ZŒt � of
equal degree. The growth rate �W D �.W;S/ is defined by

�W D lim sup
k!1

k
p
ak ;

and it coincides with the inverse of the radius of convergenceR of fS .t/. Since �W equals
the biggest real root of the denominator polynomial q.t/, it is a real algebraic integer.

Consider a cocompact hyperbolic Coxeter group G D .G;S/. Then, the rational func-
tion fS .t/ is reciprocal (resp. anti-reciprocal) for n even (resp. n odd); see, e.g., [23]. In
particular, for n D 2 and 4, one has fS .t�1/ D fS .t/ for all t 6D 0. Furthermore, a result
of Milnor [29] implies that the growth rate �G is strictly bigger than 1 so that G is of
exponential growth. More specifically, for n D 2 and 3, �G is either a quadratic unit or a
Salem number, that is, �G is a real algebraic integer ˛ > 1 whose inverse is a conjugate
of ˛, and all other conjugates lie on the unit circle; see, e.g., [24]. However, by a result
of Cannon [4, 5] (see also [23, Theorem 4.1]), the growth rates of the five Lannér groups
acting on H4 and shown in Figure 1 are not Salem numbers anymore; they are so-called
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Perron numbers, that is, real algebraic integers > 1 all of whose other conjugates are of
strictly smaller absolute value.

Example 5. The smallest known Salem number ˛L� 1:176281with minimal polynomial
L.t/ D t10 C t9 � t7 � t6 � t5 � t4 � t3 C t C 1 equals the growth rate �Œ7;3� of the
cocompact Coxeter triangle group G D Œ7; 3� with Coxeter graph �–7–—–�–––� which in turn
is the smallest growth rate among all cocompact planar hyperbolic Coxeter groups; see
[16, 21].

The second smallest growth rate among them is realised by the Coxeter triangle group
Œ8; 3� with Coxeter graph �–8–—–�–––� and appears as the seventh smallest known Salem number
� 1:23039 given by the minimal polynomial t10 � t7 � t5 � t3 C 1; see [22].

As a consequence, the growth rate of the cocompact Lambert quadrilateral group
Q with Vinberg graph � � � � �–––� � � � � is strictly bigger than �Œ8;3�. More precisely, the
growth rate of Q is the Salem number �Q � 1:72208 with minimal polynomial t4 �
t3 � t2 � t � 1. Notice also that the Coxeter graph of Q equals �–1–—–�–––�–1–—–�; see the proof of
Theorem B in Section 3.

By applying similar techniques, it was shown in [19] (see also Floyd’s work [12]) that
the Coxeter triangle group with Vinberg graph �–1–—–�–––� has smallest growth rate among all
non-cocompact hyperbolic Coxeter groups of finite coarea in Isom H2, and as such it is
unique. The growth rate �Œ1;3� � 1:32471 has minimal polynomial t3 � t � 1 and equals
the smallest Pisot number ˛S as shown by C. Smyth; see, e.g., [32] and [19, Section 3.2].
Recall that a Pisot number is an algebraic integer ˛ > 1 all of whose other conjugates are
of absolute value less than 1.

For later purpose, let us emphasize the above comparison result as follows:

�Œ8;3� < �Œ1;3�: (3)

Example 6. Among the cocompact Coxeter tetrahedral groups, the smallest growth rate
is about 1:35098 with minimal polynomial t10 � t9 � t6 C t5 � t4 � t C 1; it is achieved
in a unique way by the group G D Œ3; 5; 3� with Coxeter graph �–––�–5–—–�–––�; see [21].

Example 7. Consider the (arithmetic) Lannér group L D Œ5; 3; 3; 3� with Coxeter graph
�–5–—–�–––�–––�–––�mentioned in Example 1. By means of Steinberg’s formula (2) and Table 1, the
growth function fL.t/ D fS .t/ can be expressed according to

1

fL.t�1/
D

1

fL.t/
D 1 �

5

Œ2�
C

6

Œ2; 2�
C

3

Œ2; 3�
C

1

Œ2; 5�

�

° 1

Œ2; 2; 2�
C

4

Œ2; 2; 3�
C

2

Œ2; 2; 5�
C

2

Œ2; 3; 4�
C

1

Œ2; 6; 10�

±
C

1

Œ2; 2; 3; 4�
C

1

Œ2; 2; 3; 5�
C

1

Œ2; 2; 6; 10�
C

1

Œ2; 3; 4; 5�
C

1

Œ2; 12; 20; 30�
:

It follows that

fL.t/ D
Œ2; 12; 20; 30�

q.t/
;
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where

q.t/ D 1 � t � t7 C t8 � t9 C t10 � t11 C t14 � t15 C t16 � 2t17 C 2t18 � t19

C t20 � t21 C t22 � t23 C 2t24 � 2t25 C 2t26 � 2t27 C 2t28 � t29 C t30

� t31 C 2t32 � 2t33 C 2t34 � 2t35 C 2t36 � t37 C t38 � t39 C t40 � t41

C 2t42 � 2t43 C t44 � t45 C t46 � t49 C t50 � t51 C t52 � t53 � t59 C t60:

The denominator polynomial q.t/ of fL.t/ is palindromic and of degree 60. By means
of the software PARI/GP [30], one checks that q.t/ is irreducible and has – beside non-real
roots some of them being of absolute value one – exactly two inversive pairs ˛˙1; ˇ˙1 of
real roots such that ˛ > ˇ > 1. Indeed, by the results in [4, 5], ˛ is not a Salem number
anymore. As a consequence, the growth rate �L D ˛ � 1:19988 of the Lannér group
L D Œ5; 3; 3; 3� is not a Salem number. However, �Œ5;3;3;3� is a Perron number. All these
properties can be checked by the software CoxIter developed by R. Guglielmetti [13, 14].

Example 8. The Coxeter prism M � H5 found by Makarov is given by the Vinberg
graph �–5–—–�–––�–––�–––�–––� � � � �l where the hyperbolic distance l between the (unique) pair of
non-intersecting facets of M satisfies

cosh l D
1

2

s
7C
p
5

2
� 1:07448:

In fact, the computation of l is easy since the determinant of the Gram matrix of M
vanishes. As in Example 7, one can exploit Steinberg’s formula (2) and Table 1 in order to
establish the growth function fM .t/. The denominator polynomial of fM .t/ splits into the
factor t � 1 and a certain irreducible palindromic polynomial q.t/. As above, the software
CoxIter allows us to identify the growth rate of the reflection group Œ5; 3; 3; 3; 3� associated
to M , as given by the largest zero of q.t/, with the Perron number �M � 1:64759. Notice
that the factor t � 1 is responsible for the vanishing of the Euler characteristic of M ; see,
e.g., [21, (2.7)].

Example 9. For the Kaplinskaja prism K � H5 depicted in Figure 2, the denominator
polynomial of the growth function fK.t/ splits into the factor t � 1 and an irreducible
palindromic polynomial q.t/ of degree 32. By means of CoxIter, one deduces that the
growth rate is a Perron number of value �K � 2:08379.

In a similar way, one computes the individual growth series and related invariants and
properties of any cocompact (or cofinite) hyperbolic Coxeter group with given Vinberg
graph.

Growth rates satisfy an important monotonicity property on the partially ordered set
of Coxeter systems as follows. For two Coxeter systems .W; S/ and .W 0; S 0/, one defines
.W; S/ � .W 0; S 0/ if there is an injective map � W S ! S 0 such that mst � m0�.s/�.t/ for all
s; t 2 S . If � extends to an isomorphism betweenW andW 0, one writes .W;S/' .W 0;S 0/,
and .W; S/ < .W 0; S 0/ otherwise. This partial order satisfies the descending chain condi-
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tion sincemst 2 ¹2; 3; : : : ;1º where s 6D t . In particular, any strictly decreasing sequence
of Coxeter systems is finite; see [28]. In this work, the following result of Terragni [34,
Section 3] will play an essential role.

Theorem 2. If .W; S/ � .W 0; S 0/, then �.W;S/ � �.W 0;S 0/.

Example 10. Consider the seven Esselmann groups Ei � Isom H4, 1 � i � 7, whose
Coxeter symbols consist of two triangular components separated by at least one edge of
weightm � 3; see Example 4. Each of their triangular components describes a cocompact
Coxeter group in Isom H2 of the type .2; 3; 8/, .2; 3; 10/, .2; 4; 5/, .2; 5; 5/, .3; 3; 4/ or
.3; 3; 5/. By means of Theorem 2, we conclude that

�Œ8;3� � �Ei ; 1 � i � 7: (4)

Notice. In the sequel, we will work with the Coxeter graph instead of the Vinberg graph
associated to a hyperbolic Coxeter group .W; S/. Hence, we replace each dotted edge
between two nodes �s and �s0 by an edge with weight1, just indicating that the product
element ss0 2 W is of infinite order.

3. Growth minimality in dimensions four and five

In this section, we prove the following two results as announced in Section 1.

Theorem A. Among all Coxeter groups acting cocompactly on H4, the Coxeter simplex
group Œ5; 3; 3; 3� has minimal growth rate, and as such it is unique.

Theorem B. Among all Coxeter groups acting cocompactly on H5, the Coxeter prism
group based on Œ5; 3; 3; 3; 3� has minimal growth rate, and as such it is unique.

Proof of Theorem A. Consider a groupG � Isom H4 generated by the set S of reflections
r1; : : : ; rN in the N facet hyperplanes bounding a compact Coxeter polyhedron P � H4.
The group G D .G; S/ is a cocompact hyperbolic Coxeter group of rank N � 5. Assume
that the group G is not isomorphic to the Coxeter simplex group L D Œ5; 3; 3; 3�. We have
to show that �G > �Œ5;3;3;3� � 1:19988.

In view of Theorem 1, we distinguish between the two cases whether all facets of P
are mutually intersecting or not. In the case that all facets of P are mutually intersecting,
P is either a Lannér simplex and G is of rank 5, or P is one of the seven Esselmann
polyhedra with related Coxeter groups Ei , 1 � i � 7, of rank 6.

(1a) The Coxeter graphs of the five Lannér simplices LD L1; : : : ;L5 in H4 are given
in Figure 1. The associated growth rates have been computed by means of Steinberg’s
formula and are well known; see also [4, 31, 33]. The software CoxIter yields the values

�Œ5;3;3;4� � 1:38868; �Œ5;3;3;5� � 1:51662;

�Œ5;3;31;1� � 1:44970; �Œ.34;4/� � 1:62282;

implying that the growth rate ofLD Œ5; 3; 3;3� is strictly smaller than those ofL2; : : : ;L5.
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(1b) Let us investigate the growth rates of the Esselmann groups E1; : : : ; E7. By
Example 10, (4), we have that

�Œ8;3� � �Ei ; 1 � i � 7:

It follows from Example 5 and Example 7 that

1:19988 � �Œ5;3;3;3� < 1:2 < �Œ8;3� � 1:23039;

which shows that the growth rate of L D Œ5; 3; 3; 3� is strictly smaller than those of the
Esselmann groups E1; : : : ; E7.

(2) Suppose that P has at least one pair of non-intersecting facets. Therefore, the
Coxeter graph † of P contains at least one edge with weight 1. Since P has at least
N � 6 facets, the graph † – being connected – contains a proper connected subgraph �
of order 3 with weights p; q 2 ¹2; 3; : : : ;1º of the form as depicted in Figure 4.

s s
s






J
JJ

1

p q

Figure 4. A subgraph � of †.

By construction, the subgraph � gives rise to a standard Coxeter subgroup .W; T /
of rank 3 of .G; S/ that satisfies .W; T / � .G; S/. By Theorem 2, Example 5, (3), and
Example 7, we deduce in a similar way as above that

�Œ5;3;3;3� < �Œ8;3� < �Œ1;3� � �� � �†;

which finishes the proof of Theorem A. �

Proof of Theorem B. Let G � Isom H5 be a discrete group generated by the set S of
reflections r1; : : : ; rN in the N facet hyperplanes of a compact Coxeter polyhedron P �
H5. The group G D .G; S/ is a cocompact hyperbolic Coxeter group of rank N � 6.
Assume that G is not isomorphic to Makarov’s rank 7 prism group based on Œ5; 3; 3; 3; 3�.
The associated Coxeter prismM is described and the growth rate �M is given in Example
8. We have to show that �G > �M � 1:64759.

Inspired by the proof of Theorem A, we look for appropriate Coxeter groups of smaller
rank such that their growth data can be exploited to derive suitable lower bounds in view
of Theorem 2. To this end, consider the following abstract Coxeter groups W1; W2 and
W3 with generating subsets S1; S2 and S3 of rank 4 as defined by the Coxeter graphs in
Figure 5.

The Coxeter systems .Wi ; Si / can be represented by hyperbolic Coxeter groups Gi
for each 1 � i � 3, and they will play an important role when comparing growth rates. In
fact, the Coxeter graph ofW1 coincides with the Coxeter graph of the cocompact Lambert
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s s s s s s s s s s ss
1 1 1 1 1 1

Figure 5. The three abstract Coxeter groups W1; W2 and W3.

quadrilateral group Q � Isom H2 with growth rate �Q � 1:72208; see Example 5. Since,
for the Makarov prism M , we have �M � 1:64759, we deduce the following important
fact:

�M < �Q D �G1 : (5)

Each of the remaining Coxeter groups W2 and W3 can be represented as a discrete sub-
group ofOC.3;1/ generated by reflections in the facets of a Coxeter tetrahedron of infinite
volume. Indeed, one easily checks that the associated Tits form is of signature .3; 1/ and
that some of the simplex vertices are not hyperbolic but ultra-ideal points (of positive
Lorentzian norm). More importantly, the following result holds.

Lemma 1. (1) �G1 < �G2 . (2) �G1 < �G3 .

Proof. By means of Steinberg’s formula (2), we identify for each Gi the finite Coxeter
subgroups with their growth polynomials according to Table 1 in order to deduce the
following expressions for their growth functions fi .t/, 1 � i � 3:

1

f1.t�1/
D h.t/; (a)

1

f2.t�1/
D h.t/ �

1

Œ2; 2; 3�
; (b)

1

f3.t�1/
D h.t/ �

1

Œ2; 2; 2�
: (c)

Here, the help function h.t/, t 6D 0, is given by

h.t/ D 1 �
4

Œ2�
C

3

Œ2; 2�
C

1

Œ2; 3�
: (6)

By taking the differences between (a) and (b), (c), respectively, one obtains, for all t > 0,

1

f1.t�1/
�

1

f2.t�1/
D

1

Œ2; 2; 3�
> 0;

1

f1.t�1/
�

1

f3.t�1/
D

1

Œ2; 2; 2�
> 0:

For x D t�1 2 .0; 1/, we deduce that the smallest zero of 1=f1.x/ as given by the radius
of convergence of the growth series f1.x/ of G1 is strictly bigger than the one of 1=f2.x/
and of 1=f3.x/. Hence, we get �G1 < �G2 and �G1 < �G3 . �

For later use, we also compare the growth rate ofW1 DQ with the one of the Coxeter
group W4 with generating subset S4 of rank 4 given by the Coxeter graph according to
Figure 6. Again, the group W4 can be interpreted as a discrete subgroup G4 � OC.3; 1/
generated by the reflections in the facets of a Coxeter tetrahedron of infinite volume.
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s s s s4 1 4

Figure 6. The abstract Coxeter group W4.

Lemma 2. �G1 < �G4 .

Proof. We proceed as in the proof of Lemma 1 and establish the growth function f4.t/ by
means of Steinberg’s formula. We obtain the following expression:

1

f4.t�1/
D 1 �

4

Œ2�
C

3

Œ2; 2�
C

2

Œ2; 4�
�

2

Œ2; 2; 4�
: (d)

By means of (a), (d) and (6), we obtain the difference function

1

f1.t�1/
�

1

f5.t�1/
D

1

Œ2; 3�
�

2

Œ2; 4�
C

2

Œ2; 2; 4�
D

t4 C 1

Œ2; 3� .t2 C 1/
> 0; 8t > 0;

and conclude as at the end of the previous proof. �

Let us return and consider a compact Coxeter polyhedron P � H5 with N facets and
associated hyperbolic Coxeter groupG. By Example 1, we know that there are no compact
Coxeter simplices anymore so that N � 7. Furthermore, by Theorem 1, P has at least one
pair of non-intersecting facets. In the sequel, we discuss the cases N D 7, N D 8 and
N � 9.

For N D 7, we are left with the three Kaplinskaja prisms (and their gluings) as given
by the Makarov prism M DWM3 based on Œ5; 3; 3; 3; 3�, its closely related Coxeter prism
M4 based on Œ5; 3; 3; 3; 4� as well as the Coxeter prism K with Vinberg graph depicted in
Figure 2 and treated in Example 9. By means of the software CoxIter (or some lengthy
computation), one obtains the growth rate inequalities

1:64759 � �M < �M4 < 1:84712 < �K � 2:08379;

which confirm the assertion of Theorem B in this case.
For N D 8, we dispose of Tumarkin’s classification list comprising all compact

Coxeter polyhedra with n C 3 facets. For n D 5, these polyhedra have Vinberg graphs
with exactly three (consecutive) dotted edges except for the polyhedron T �H5 depicted
in Figure 3.

The Coxeter graph associated to T contains the proper subgraph �–4–—–�–1–—–�–4–—–� which is
associated to the Coxeter group W4 studied above; see Figure 6. By means of Theorem 2,
Lemma 2 and (5), we deduce that

�M < �G4 � �T :

For the Coxeter graph of a polyhedron P with 8 facets in H5 that is not isometric to T , we
consider its proper order 4 subgraph �–1–—–�–1–—–�–1–—–�. In a similar way, by Theorem 2, Lemma 1
and (5), we obtain

�M < �Q � �P :
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LetN � 9. By Remark 1, the Vinberg graph of the polyhedron P �H5 withN facets
has at least two dotted edges. However, two dotted edges are separated by an edge in view
of the signature condition of the Gram matrix Gr.P /; see Section 2.1.

Consider the Coxeter graph † of order N of the hyperbolic Coxeter group G associ-
ated to P . By the above, there is a proper connected subgraph � of order 4 in †, depicted
in Figure 7, with weights p; q; r; s; t 2 ¹2; 3; : : : ;1º where at least one of them is equal
to1.

s s
s
s











�
�
�

Q
Q
Q

J
J
J
JJ

r s t

p q

1

Figure 7. The subgraph � D �.p; q; r; s; t/.

In view of Figure 5, describing the three Coxeter groupsG1;G2 andG3, and by means
of Theorem 2, the growth rate of†, and hence of P , can be estimated from below accord-
ing to

�Gi � �� � �† for at least one i 2 ¹1; 2; 3º:

By Lemma 1 and (5), we finally obtain that

�M < �G1 � �P ;

as desired. This finishes the proof of Theorem B. �
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Hyperbolic Coxeter groups of minimal
growth rates in higher dimensions

Naomi Bredon

Abstract. The cusped hyperbolic n-orbifolds of minimal volume are well known for n ≤ 9. Their
fundamental groups are related to the Coxeter n-simplex groups �n . In this work, we prove that �n
has minimal growth rate among all non-cocompact Coxeter groups of finite covolume in IsomHn . In
this way, we extend previous results of Floyd for n = 2 and of Kellerhals for n = 3, respectively. Our
proof is a generalization of the methods developed together with Kellerhals for the cocompact case.

1 Introduction

Let Hn denote the real hyperbolic n-space with its isometry group IsomHn .
A hyperbolic Coxeter polyhedron P ⊂ Hn is a convex polyhedron of finite volume

all of whose dihedral angles are integral submultiples of π. Associated to P is the
hyperbolic Coxeter group � ⊂ IsomHn generated by the reflections in the bounding
hyperplanes of P. By construction, � is a discrete group with associated orbifold
On = Hn/� of finite volume.

We focus on non-compact hyperbolic Coxeter polyhedra, having at least one ideal
vertex v∞ ∈ ∂Hn . Notice that the stabilizer of the vertex v∞ is isomorphic to an affine
Coxeter group. The group � is called non-cocompact, and its quotient space On has at
least one cusp.

The hyperbolic Coxeter group � is the geometric realization of an abstract Coxeter
system (W , S) consisting of a group W with a finite generating set S together with the
relations s2 = 1 and (ss′)mss′ = 1, where mss′ = ms′s ∈ {2, 3, . . . ,∞} for all s, s′ ∈ S with
s /= s′. The growth series fS(t) of W = (W , S) is given by

fS(t) = 1 +∑
k≥1

ak tk ,

where ak ∈ Z is the number of elements in W with S-length k. The growth rate τW of
W = (W , S) is defined as the inverse of the radius of convergence of fS(t).

We are interested in small growth rates of non-cocompact hyperbolic Coxeter
groups in IsomHn for n ≥ 2. For n = 2, Floyd [6] showed that the Coxeter group
�2 = [3,∞] generated by the reflections in the triangle with angles π/2, π/3, and 0
is the (unique) group of minimal growth rate. For n = 3, Kellerhals [13] proved that

Received by the editors November 17, 2021; revised March 25, 2022; accepted March 25, 2022.
Published online on Cambridge Core April 6, 2022.
AMS subject classification: 20F55, 26A12, 22E40, 11R06.
Keywords: Coxeter group, growth rate, hyperbolic Coxeter polyhedron, affine vertex stabilizer.
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Table 1: The hyperbolic Coxeter n-simplex group �n .

�2
∞

�3
6

�4
4

�5
4

�6
4

�7

�8 �9

the tetrahedral group �3 generated by the reflections in the Coxeter tetrahedron with
symbol [6, 3, 3] realizes minimal growth rate in a unique way.

Consider the hyperbolic Coxeter n-simplices and their reflection groups �n ⊂
IsomHn depicted in Table 1. For their volumes, we refer to [12]. Observe that �n is of
minimal covolume among all non-cocompact hyperbolic Coxeter n-simplex groups.

The aim of this work is to prove the following result in the context of growth rates.

Theorem Let 2 ≤ n ≤ 9. Among all non-cocompact hyperbolic Coxeter groups of finite
covolume in Isom Hn , the group �n given in Table 1 has minimal growth rate, and as
such the group is unique.

Our Theorem should be compared with the volume minimality results for cusped
hyperbolic n-orbifolds On for 2 ≤ n ≤ 9. These results are due to Siegel [16] for n = 2,
Meyerhoff [15] for n = 3, Hild and Kellerhals [10] for n = 4, and Hild [9] for n ≤ 9.
Indeed, the fundamental group of On is related to �n in all these cases.

The work is organized as follows. In Section 2.1, we set the background about
hyperbolic Coxeter polyhedra and their associated reflection groups. Furthermore,
we present a result of Felikson and Tumarkin about their combinatorics as given by
[5, Theorem B], which will play a crucial role in our proof. In fact, we will exploit the
(non-)simplicity of the Coxeter polyhedra in a most useful way. In Section 2.2, we
discuss growth series and growth rates of Coxeter groups and introduce the notion
of extension of a Coxeter graph. We also provide some illustrating examples. The
monotonicity result of Terragni [18] for growth rates, presented in Theorem 2.2, will
be another major ingredient in our proof. Finally, Section 3 is devoted to the proof
of our result. We perform it in two steps by assuming that the Coxeter graph under
consideration has an affine component of type Ã1 or not.

2 Hyperbolic Coxeter groups and growth rates

2.1 Coxeter polyhedra and their reflection groups

Let Xn denote one of the geometric n-spaces of constant curvature, the unit n-sphere
Sn , the Euclidean n-space En , or the real hyperbolic n-space Hn . As usual, we embed
Xn in a suitable quadratic space Yn+1. In the Euclidean case, we take the affine model
and write En = {x ∈ En+1 ∣ xn+1 = 0}. In the hyperbolic case, we interpret Hn as the
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upper sheet of the hyperboloid in Rn+1, that is,

Hn = {x ∈ Rn+1 ∣ ⟨x , x⟩n ,1 = −1 , xn+1 > 0},
where ⟨x , x⟩n ,1 = x2

1 +⋯+ x2
n − x2

n+1 is the standard Lorentzian form. Its boundary
∂Hn can be identified with the set

∂Hn = {x ∈ Rn+1 ∣ ⟨x , x⟩n ,1 = 0 ,
n+1∑
k=1

x2
k = 1 , xn+1 > 0}.

In this picture, the isometry group of Hn is isomorphic to the group O+(n, 1) of
positive Lorentzian matrices leaving the bilinear form ⟨ , ⟩n ,1 and the upper sheet
invariant.

It is well known that each isometry of Xn is a finite composition of reflections
in hyperplanes, where a hyperplane H = Hv in Xn is characterized by a normal unit
vector v ∈ Yn+1. Associated to Hv are two closed half-spaces. We denote by H−v the
half-space in Xn with outer normal vector v.

A (convex) n-polyhedron P = ∩i∈I H−i ⊂ Xn is the non-empty intersection of a finite
number of half-spaces H−i bounded by the hyperplanes H i = Hv i for i ∈ I. A facet of P
is of the form Fi = P ∩H i for some i ∈ I. In the sequel, for Xn ≠ Sn , we always assume
that P is of finite volume. In the Euclidean case, this implies that P is compact, and in
the hyperbolic case, P is the convex hull of finitely many points v1 , . . . , vk ∈ Hn ∪ ∂Hn .
If v i ∈ Hn , then v i is an ordinary vertex, and if v i ∈ ∂Hn , then v i is an ideal vertex of
P, respectively.

If all dihedral angles α i j = ∡(H i , H j) formed by intersecting hyperplanes H i , H j
in the boundary of P are either zero or of the form π

m i j
for an integer m i j ≥ 2,

then P is called a Coxeter polyhedron in Xn . Observe that the Gram matrix Gr(P) =(⟨v i , v j⟩Yn+1)i , j∈I is a real symmetric matrix with 1’s on the diagonal and non-positive
coefficients off the diagonal. In this way, the theory of Perron–Frobenius applies. For
further details and references about Coxeter polyhedra in Xn , we refer to [4, 19, 20].

Let P = ∩N
i=1H−i ⊂ Xn be a Coxeter n-polyhedron. Denote by r i = rH i the reflection

in the bounding hyperplane H i of P, and let G = GP be the group generated by
r1 , . . . , rN . It follows that G is a discrete subgroup of finite covolume in IsomXn , called
a geometric Coxeter group.

A geometric Coxeter group G ⊂ IsomXn with generating system S = {r1 , . . . , rN} is
the geometric realization of an abstract Coxeter system (W , S). In fact, we have r2

i = 1
and (r i r j)m i j = 1 with m i j = m ji ∈ {2, 3, . . . ,∞} as above. Here, m i j = ∞ indicates
that r i r j is of infinite order.

For Xn = Sn , G is a spherical Coxeter group and as such finite. For Xn = En , G is a
Euclidean or affine Coxeter group and of infinite order. By a result of Coxeter [3], the
irreducible spherical and Euclidean Coxeter groups are entirely classified. In contrast
to this fact, hyperbolic Coxeter groups are far from being classified. For a survey about
partial classification results, we refer to [4].

For the description of abstract and geometric Coxeter groups, one commonly uses
the language of weighted graphs and Coxeter symbols. Let (W , S) be an abstract
Coxeter system with generating system S = {s1 , . . . , sN} and relations of the form
s2

i = 1 and s i s
m i j
j = 1 with m i j = m ji ∈ {2, 3, . . . ,∞}. The Coxeter graph of the Coxeter
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Table 2: Connected affine Coxeter graphs of order
n + 1.

Ãn Ã1
∞

B̃n

4

G̃2
6

C̃n
4 4 F̃4

4

D̃n

system (W , S) is the non-oriented graph Σ whose nodes correspond to the generators
s1 , . . . , sN . If s i and s j do not commute, their nodes n i , n j are connected by an edge
with weight m i j ≥ 3. We omit the weight m i j = 3 since it occurs frequently. The
number N of nodes is the order of Σ. A subgraph σ ⊂ Σ corresponds to a special
subgroup of (W , S), that is, a subgroup of the form (WT , T) for a subset T ⊂ S.
Observe that the Coxeter graph Σ is connected if (W , S) is irreducible.

In the case of a geometric Coxeter group G = (W , S) ⊂ IsomXn , we call its
Coxeter graph Σ spherical, affine, or hyperbolic, if Xn = Sn , En , or Hn , respectively.
In Table 2, we reproduce all the connected affine Coxeter graphs, using the classical
notation, with the exception of the three groups Ẽ6 , Ẽ7 , Ẽ8 (they will not appear in
the following).

An abstract Coxeter group with a simple presentation can conveniently be
described by its Coxeter symbol. For example, the linear Coxeter graph with edges of
successive weights k1 , . . . , kN ≥ 3 is abbreviated by the Coxeter symbol [k1 , . . . , kN].
The Y-shaped graph made of one edge with weight p and of two strings of k and l
edges emanating from a central vertex of valency 3 is denoted by [p, 3k , l ] (see [12]).

Let us specify the context and consider a Coxeter polyhedron P = ∩N
i=1H−i ⊂ Hn .

Denote by � = GP ⊂ IsomHn its associated Coxeter group and by Σ its Coxeter graph.
Since P is of finite volume, the graph Σ is connected. Furthermore, if P is not compact,
then P has at least one ideal vertex.

Let v ∈ Hn be an ordinary vertex of P. Then, its link Lv is the intersection of P with
a small sphere of center v that does not intersect any facet of P not incident to v. It
corresponds to a spherical Coxeter polyhedron of Sn−1 and therefore to a spherical
Coxeter subgraph σ of order n in Σ.

Let v∞ ∈ ∂Hn be an ideal vertex of P. Then, its link, denoted by L∞, is given by
the intersection of P with a sufficiently small horosphere centered at v∞ as above. The
link L∞ corresponds to a Euclidean Coxeter polyhedron in En−1 and is related to an
affine Coxeter subgraph σ∞ of order ≥ n in Σ.

More precisely, if v∞ is a simple ideal vertex, that is, v∞ is the intersection of exactly
n among the N bounding hyperplanes of P, the Coxeter graph σ∞ is connected and of
order n. Otherwise, σ∞ has nc(σ∞) ≥ 2 affine components, and we have the following
formula:

n − 1 = order(σ∞) − nc(σ∞).(1)

Recall that a polyhedron is simple if all of its vertices are simple.
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4

4

4

4

Figure 1: The Coxeter polyhedron P0 ⊂ H4 .

As in the spherical and Euclidean cases, hyperbolic Coxeter simplices in Hn are
all known, and they exist for n ≤ 9 (see [1] or [20]). A list of their Coxeter graphs,
Coxeter symbols, and volumes can be found in [12]. Among the related Coxeter n-
simplex groups, the group �n , as given in Table 1, is of minimal covolume.

The following structural result for simple hyperbolic Coxeter polyhedra due to
Felikson and Tumarkin [5, Theorem B] will be a corner stone for the proof of our
Theorem.

Theorem 2.1 Let n ≤ 9, and let P ⊂ Hn be a non-compact simple Coxeter polyhedron.
If all facets of P are mutually intersecting, then P is either a simplex or isometric to the
polyhedron P0 whose Coxeter graph is depicted in Figure 1.

2.2 Growth rates and their monotonicity

Let (W , S) be a Coxeter system and denote by ak ∈ Z the number of elements w ∈W
with S-length k. The growth series fS(t) of (W , S) is defined by

fS(t) = 1 +∑
k≥1

ak tk .

In the following, we list some properties of fS(t). For references, we refer to [11].
There is a formula due to Steinberg expressing the growth series fS(t) of a Coxeter

system (W , S) in terms of its finite special subgroups WT for T ⊆ S ,

1
fS(t−1) = ∑WT<W∣WT ∣<∞

(−1)∣T ∣
fT(t) ,(2)

where W∅ = {1}. By a result of Solomon, the growth polynomial of each term fT(t)
in (2) can be expressed by means of its exponents {m1 , m2 , . . . , mp} according to the
formula

fT(t) = p∏
i=1
[m i + 1],(3)

where [k] = 1 + t +⋯+ tk−1 and, more generally, [k1 , . . . , kr] ∶= [k1]⋯[kr] . A com-
plete list of the irreducible spherical Coxeter groups together with their exponents can
be found in [14]. For example, the exponents of the Coxeter group An with Coxeter
graph ��������������������������������������������������������������������������

n

are {1, 2, . . . , n} so that

fAn(t) = [2, . . . , n + 1].(4)
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Furthermore, the growth series of a reducible Coxeter system (W , S) with factor
groups (W1 , S1) and (W2 , S2) such that S = (S1 × {1W2}) ∪ ({1W1} × S2) satisfies the
product formula

fS(t) = fS1(t) ⋅ fS1(t).
In its disk of convergence, the growth series fS(t) is a rational function, which can

be expressed as the quotient of coprime monic polynomials p(t), q(t) ∈ Z[t] of the
same degree. The growth rate τW = τ(W ,S) is defined by the inverse of the radius of
convergence of fS(t) and can be expressed by

τW = lim sup
k→∞ ak

1/k .

It is the inverse of the smallest positive real pole of fS(t) and hence an algebraic
integer.

Important for the proof of our Theorem is the following result of Terragni [17]
about the growth monotonicity.

Theorem 2.2 Let (W , S) and (W ′ , S′) be two Coxeter systems such that there is an
injective map ι ∶ S → S′ with mst ≤ m′ι(s)ι(t) for all s, t ∈ S. Then, τ(W ,S) ≤ τ(W′ ,S′) .

For n ≥ 2, consider a Coxeter group � ⊂ IsomHn of finite covolume. By results of
Milnor and de la Harpe, we know that τ� > 1. More precisely, and as shown by Terragni
[17], τ� ≥ τ�9 ≈ 1.1380, where �9 is the Coxeter simplex group given in Table 1.

Next, we introduce another tool in the proof of our result, the (simple) extension
of a Coxeter graph.

Definition 2.1 Let Σ be an abstract Coxeter graph. A (simple) extension of Σ is a
Coxeter graph Σ′ obtained by adding one node linked with a (simple) edge to the
Coxeter graph Σ.

As a direct consequence of Theorem 2.2, if W is a Coxeter group with Coxeter
graph Σ, any extension Σ′ of Σ encodes a Coxeter group W ′ such that τW ≤ τW′ .

Example 2.3 Consider an irreducible affine Coxeter graph of order 3 as given in
Table 2. Up to symmetry, the graph Ã2 has a unique extension given by the Coxeter
graph at the top left in Figure 2. This graph describes the Coxeter tetrahedron [3, 3[3]]
of finite volume. The Coxeter graphs C̃2 and G̃2 give rise to the remaining five
extensions depicted in Figure 2. By a result of Kellerhals [13], these six Coxeter graphs
describe Coxeter tetrahedral groups Λ of finite covolume in IsomH3 whose growth
rates satisfy τΛ ≥ τ�3 .

Example 2.4 In a similar way, any extension of an irreducible affine Coxeter graph
of order 4 yields a Coxeter simplex group of finite covolume in IsomH4. They are
given in Figure 3. Notice that �4 = [4, 32,1] is part of them.

Remark 2.5 When considering irreducible affine Coxeter graphs of order greater
than or equal to 5, the resulting extensions do not always relate to hyperbolic Coxeter
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4 4 4 4

6 6 6

Figure 2: Extensions of Ã2 , C̃2 , and G̃2 .

4 4

4
4 4 4 4

Figure 3: Extensions of Ã3 , B̃3 , and C̃3 .

4

Figure 4: An infinite volume 5-simplex.

n-simplex groups of finite covolume. For example, among the extensions of F̃4, the
graph depicted in Figure 4 describes an infinite volume simplex in H5.

3 Proof of the Theorem

Let 2 ≤ n ≤ 9, and consider the Coxeter simplex group �n ⊂ IsomHn whose Coxeter
graph is depicted in Table 1. In this section, we provide the proof of our main result
stated as follows.

Theorem For any 2 ≤ n ≤ 9, the group �n has minimal growth rate among all non-
cocompact hyperbolic Coxeter groups of finite covolume in IsomHn , and as such the
group is unique.

For n = 2 and for n = 3, the result has been established by Floyd [6] and Kellerhals
[13]. Therefore, it suffices to prove the Theorem for 4 ≤ n ≤ 9.

Observe that the growth rates of all Coxeter simplex groups in IsomHn are
known. Their list can be found in [17]. In particular, one deduces the following strict
inequalities:

τ�9 ≈ 1.1380 < ⋯ < τ�5 ≈ 1.2481 < τ�4 ≈ 1.3717,(5)

τ�5 < τ�3 ≈ 1.2964.(6)

For a fixed dimension n, one also checks that �n has minimal growth rate among
(all the finitely many) non-cocompact Coxeter simplex groups Λ ⊂ IsomHn .

As a consequence, we focus on hyperbolic Coxeter groups � ⊂ IsomHn generated
by at least N ≥ n + 2 reflections in the facets of a non-compact finite volume Coxeter
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∞

Figure 5: The Coxeter group W0 = [∞, 3, 3].
∞ ∞

Figure 6: The Coxeter groups W1 = [3,∞, 3] and W2 = [∞, 31,1].
polyhedron P ⊂ Hn . We have to show that τ�n < τ�, which yields unicity of the group
�n with this property.

Suppose that the Coxeter polyhedron P is simple. By Theorem 2.1, P is either
isometric to the polyhedron P0 ⊂ IsomH4 depicted in Figure 1, or P has a pair of
disjoint facets. For the growth rate τ of the Coxeter group associated to P0, one easily
checks with help of the software CoxIter [7, 8] that τ�4 < τ ≈ 2.8383. Hence, we can
assume that P is not isometric to P0. If P has a pair of disjoint facets, then the Coxeter
graph Σ of P and its associated group � contains a subgraph ∞ .

The property that the Coxeter graph Σ contains such a subgraph of type Ã1 = [∞]
allows us to conclude the proof, whether the polyhedron P is simple or not. In the
following, we first look at this property and analyze it more closely.

3.1 In the presence of Ã1

We start by considering particular Coxeter graphs of order 4 containing Ã1. Their
related growth rates will be useful when comparing with the one of �. This approach
is similar to the one developed in [2].

Let W0 = [∞, 3, 3] be the abstract Coxeter group depicted in Figure 5. By means
of the software CoxIter, one checks that

τ�4 < τW0 ≈ 1.4655.(7)

Furthermore, consider the two abstract Coxeter groups W1 = [3,∞, 3] and W2 =[∞, 31,1] given in Figure 6.
For their growth rates, we prove the following auxiliary result.

Lemma 3.1 τW0 < τW1 and τW0 < τW2 .

Proof For 0 ≤ i ≤ 2, denote by f i ∶= fWi the growth series of Wi and by R i its radius
of convergence. Recall that R i is the smallest positive pole of f i , and that τWi = 1

R i
.

We establish the growth functions f i according to Steinberg’s formula (2). They are
given as follows:

1
f0(t−1) = 1 − 4[2] + 3[2,2] + 2[2,3] − 1[2,2,3] − 1[2,3,4] ,

1
f1(t−1) = 1 − 4[2] + 3[2,2] + 2[2,3] − 2[2,2,3] ,

1
f2(t−1) = 1 − 4[2] + 3[2,2] + 2[2,3] − 1[2,2,2] − 1[2,3,4] .
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Hence, for any t > 0, one has the positive difference functions given by

1
f0(t−1) − 1

f1(t−1) = 1[2,2,3] − 1[2,3,4] = t2+t3

[2,2,3,4] > 0,

1
f0(t−1) − 1

f2(t−1) = 1[2,2,2] − 1[2,2,3] = t2

[2,2,2,3] > 0.

Therefore, for i = 1, 2, and for u = t−1 ∈ (0, 1), the smallest positive root R0 of 1
f0(u)

is strictly bigger than the one of 1
f i(u) . This finishes the proof.

As a first consequence, combining (5), (7), and Lemma 3.1, one obtains that

τ�n < τWi ,(8)

for all 4 ≤ n ≤ 9 and 0 ≤ i ≤ 2.
Next, suppose that the Coxeter graph Σ of � contains a subgraph Ã1. Since Σ

is connected of order N ≥ n + 2 ≥ 6, the subgraph Ã1 is contained in a connected
subgraph σ of order 4 in Σ, which is related to a special subgroup W of �. By Theorem
2.2, one has that τWi ≤ τW for some 0 ≤ i ≤ 2. By combining (8) with these findings,
and by Theorem 2.2 and Lemma 3.1, one deduces that

τ�n < τW0 ≤ τW ≤ τ� .(9)

This finishes the proof of the Theorem in the presence of a subgraph Ã1 in Σ.

3.2 In the absence of Ã1

Suppose that the Coxeter graph Σ with N ≥ n + 2 nodes does not contain a subgraph
of type Ã1. In particular, by Theorem 2.1, the corresponding Coxeter polyhedron P ⊂
IsomHn is not simple, and it follows that 5 ≤ n ≤ 9.

Consider a non-simple ideal vertex v∞ ∈ P. Its link L∞ ⊂ En−1 is described by
a reducible affine subgraph σ∞ with nc = nc(∞) ≥ 2 components which satisfies
n − 1 = order(σ∞) − nc by (1). In Table 3, we list all possible realizations for σ∞ by
using the following notations.

Let σ̃k be a connected affine Coxeter graph of order k ≥ 3 as listed in Table 2, and
denote by ⊔

k
σ̃k the Coxeter graph consisting of the components of type σ̃k .

Observe that for any graph⊔
k

σ̃k in Table 3, one has 3 ≤min
k

k ≤ 5, and that the case

min
k

k = 5 appears only when n = 9.
Among the different components of σ∞, we consider the ones of smallest order ≥ 3

together with their extensions.● Assume that the graph σ∞ of the vertex link L∞ contains an affine component
σ̃ of order 3. By Example 2.3, we know that any extension of σ̃ encodes a Coxeter
tetrahedral group Λ ⊂ IsomH3 of finite covolume. The graph Σ itself contains a
subgraph σ of order 4 which in turn comprises σ̃ . The Coxeter graph σ corresponds
to a special subgroup W of �, and by Theorem 2.2, we deduce that τΛ ≤ τW .
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Table 3: Reducible affine Coxeter graphs σ∞ with nc ≥ 2 components σ̃k
of order k ≥ 3 such that n = order(σ∞) − nc + 1.

n 5 6 7 8 9

σ̃3 ⊔ σ̃3 σ̃3 ⊔ σ̃4 σ̃3 ⊔ σ̃5 σ̃3 ⊔ σ̃6 σ̃3 ⊔ σ̃7
σ̃4 ⊔ σ̃4 σ̃4 ⊔ σ̃5 σ̃4 ⊔ σ̃6

σ̃3 ⊔ σ̃3 ⊔ σ̃3 σ̃3 ⊔ σ̃3 ⊔ σ̃4 σ̃5 ⊔ σ̃5
σ̃3 ⊔ σ̃4 ⊔ σ̃4

σ̃3 ⊔ σ̃3 ⊔ σ̃3 ⊔ σ̃3

4 4 4 4 4

τΔ1 ≈ 1.678 τΔ2 ≈ 1.599 τΔ3 ≈ 1.668 τΔ4 ≈ 1.702

Figure 7: The Coxeter groups Δ i , i = 1, . . . , 4.

Since τ�3 ≤ τΛ , and in view of (5) and (6), Theorem 2.2 yields the desired inequality

τ�n < τ�3 ≤ τΛ ≤ τW ≤ τ� ,(10)

which finishes the proof in this case, and for n = 5 and n = 6; see Table 3.● Assume that the graph σ∞ contains an affine component σ̃ of order 4. We
apply the same reasoning as above. By Example 2.4, any extension of σ̃ corresponds
to a Coxeter 4-simplex group Λ of finite covolume, and τ�4 ≤ τΛ . Again, Σ contains
a subgraph σ comprising σ̃ . Hence, there exists a special subgroup W of � described
by σ so that

τ�n < τ�4 ≤ τΛ ≤ τW ≤ τ� .(11)

By (10) and (11), the proof is finished in this case, and for n = 7 and n = 8; see
Table 3.● Assume that σ∞ contains an affine component σ̃ of order 5. By Table 3, one
has 7 ≤ n ≤ 9. It is not difficult to list all possible extensions of σ̃ . There are exactly
15 such extensions. It turns out that there are 11 extensions that encode Coxeter
5-simplex groups of finite covolume, whereas the remaining 4 extensions describe
5-simplex groups Δ i , i = 1, . . . , 4, of infinite covolume. These last four simplices arise
by extending B̃4, C̃4, and F̃4. They are given in Figure 7, together with their associated
growth rates computed with CoxIter.

In view of (5), it turns out that

τ�5 < τΔ i , for i = 1, . . . , 4.(12)

As above, the component σ̃ lies in a subgraph σ of order 6 in Σ, and the latter
corresponds to a special subgroup W of � so that

either τΛ ≤ τW or τΔ i ≤ τW , 1 ≤ i ≤ 4
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where Λ is a Coxeter 5-simplex group of finite covolume. Since τ�5 ≤ τΛ , and by (5)
and (12), one deduces that

τ�n < τ�5 ≤ τW ≤ τ� .(13)

This finishes the proof of this case.
Finally, all the above considerations allow us to conclude the proof of the Theorem.
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d’ordre ≤ 10, Modélisation Mathématique et Analyse Numérique, Vol.
3 (1969), 3–16.

[16] H. S. M. Coxeter, Discrete groups generated by reflections, Ann. Math.
35 (1934), 588–621.

[17] P. de la Harpe, Topics in geometric group theory, Chicago Lect. in Math.,
The University of Chicago Press, Chicago, London, 2000.

[18] V. Emery, R. Kellerhals, The three smallest compact arithmetic hyper-
bolic 5-orbifolds, Algebr. Geom. Topol. 13 (2013), 817–829.

[19] V. Emery, On volumes of quasi-arithmetic hyperbolic lattices, Selecta
Math. 23 (2017), 2849–2862.
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