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Abstract. Motivated by the works of Meyer, Millichap and Trapp [18],
Neumann and Reid [20, Section 5] as well as Thurston [23, Chapter 6], we
provide an elementary polyhedral approach to study and deduce results
about the arithmeticity and commensurability of an infinite family of
hyperbolic link complements Mn for n ≥ 3. The manifold Mn is the
complement of S3 by the (2n)-link chain D2n and has 2n cusps.

The hyperbolic structure of Mn stems from an ideal right-angled
polyhedron that can be cut into four copies of an ideal right-angled
n-gonal antiprism. Each of these polyhedra gives rise to a hyperbolic
Coxeter orbifold that is commensurable to a hyperbolic orbifold with a
single cusp. Vinberg’s arithmeticity criterion and certain cusp density
and volume computations allow us to reproduce some of the main results
in [20] and [18] about Mn in a comparatively elementary and direct way.
This approach works in several other cases of link complements as well.

As a by-product of this polyhedral viewpoint, we give a rigorous proof
of Thurston’s volume formula for Mn and deduce that, for n ≥ 6, the
volume of Mn is strictly bigger than the volume of the (2n− 1)-cyclic
cover over one component of the Whitehead link. This property, without
proof, was indicated to Agol by Ventzke and hinted more concretely by
Masai; see [1, 13].
Keywords. Hyperbolic chain link complement, Coxeter orbifold, an-
tiprism, non-arithmeticity, commensurability, cusp density, volume.

1. Introduction

For an integer n≥ 3, consider the manifold Mn given by the complement
of S3 by a (2n)-link chain D2n exemplary illustrated in Figure 1. The link
complementMn is a multiply cusped hyperbolic manifold which comes with
a decomposition into four isometric copies of an ideal right-angled n-gonal
antiprism An as described by Thurston [23, Section 6.8].

The manifold Mn is a minimally twisted (2n)-chain link complement in
the terminology of Agol [1], and Mn can also be interpreted as the comple-
ment of an untwisted fully augmented pretzel link Pn, in short an untwisted
pretzel FAL; see [18]. It is known that any hyperbolic link L ⊂ S3 can be
obtained via Dehn surgery on a hyperbolic FAL, which explains the interest
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in the family of links D2n (see [9], and [18] for further references). Another
important feature of the manifolds Mn is that they are virtually fibered
with a fundamental group that is LERF. These results are due to Chesebro,
DeBlois and Wilton [3, Corollary 1.2 and Corollary 1.4].

Regarding the volume of non-compact hyperbolic 3-manifolds, Agol [1]
conjectures that for 3≤m≤ 10, the minimally twisted m-chain link comple-
ment has smallest volume among all orientable hyperbolic manifolds with
exactly m cusps. This conjecture was proven for m= 4 by K. Yoshida [26].

A natural step in the study of this and other infinite families of hyperbolic
manifolds is to regroup them according to arithmeticity and commensura-
bility. For example, Chesebro and DeBlois [4] constructed a certain infinite
family of hyperbolic link complements, and infinite subfamilies of them ob-
tained by mutation. Their respective incommensurability is detected by the
Bloch invariant and the cusp parameters as described in [4], and by the set
of maximal disjoint horoballs associated to the cusps as completed by H.
Yoshida [27].

In the recent work of Meyer, Millichap and Trapp [18], based in parts on
the work of [21], a satisfactory answer to this circle of questions has been de-
livered for the manifoldsMn (and their half-twist partners) by using various
methods involving the study of short geodesics and (hidden) symmetries of
Mn.

In this work, we exploit the beautiful polyhedral structure as given by
the n-gonal antiprism An and related Coxeter polyhedra underlying Mn =
S3 \D2n. Indeed, each polyhedron An can be further dissected into isomet-
ric copies of another non-compact Coxeter polyhedron Rn whose Coxeter
orbifold is commensurable to a 1-cusped hyperbolic orbifold in an obvious
way. Based on this observation, we are able to provide an alternative and
comparatively elementary approach to decide about the arithmeticity and
commensurability of the manifolds Mn for all n ≥ 3. As a by-product, we
provide rigorous proofs for Thurston’s volume formula for Mn and the fact
that the volume of Mn , n ≥ 6 , is strictly bigger than the volume of the
(2n−1)-cyclic cover over one component of the Whitehead link. The latter
fact has been stated without proof first by Ventzke and then by Masai in a
more concrete way; see [1, 13].

In this context, recall that two hyperbolic orbifolds O1 = H3/G1 and
O2 = H3/G2 are commensurable if they have a common finite sheeted cover.
Equivalently, their fundamental groups, and hence, G1,G2 ⊂ IsomH3 are
commensurable in the wide sense, that is, there exists an element γ ∈ IsomH3

such that G1∩γG2γ
−1 has finite index in both G1 and γG2γ

−1. The com-
mensurability property for groups in IsomH3 is an equivalence relation pre-
serving characteristics such as discreteness, finite covolume and arithmetic-
ity. As for the latter property, a fundamental result of Margulis (see [17,
Theorem 10.3.5], for example) states that a hyperbolic lattice given by a
discrete group G⊂ IsomH3 of finite covolume is non-arithmetic if and only
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if its commensurator
(1.1) Comm(G) = {γ ∈ IsomHn | G and γGγ−1 are commensurable}
is a hyperbolic lattice, and containing G as a subgroup of finite index.

For an algorithmic approach to find the commensurator of a cusped non-
arithmetic hyperbolic manifold and to decide about the commensurability
of cusped non-arithmetic manifolds, see [10].

Here, we provide new and simple proofs of the following main results in
[18] and [20, Sections 5-8].

Theorem A. Let n ≥ 3. The manifold Mn = S3 \D2n is arithmetic if and
only if n= 3,4.

Theorem B. For m,n≥ 3 with m 6=n, the manifoldMn is incommensurable
to Mm.

Furthermore, we give a detailed proof of Thurston’s volume formula for
vol(Mn) as stated in [23, Example 6.8.7] and the complete reasoning in
the spirit of Masai’s remark [13, Remark 1.1]. More specifically, we will
rigorously prove the following result.

Theorem C.
(1) For n≥ 3, the volume of the manifold Mn is given by

vol(Mn) = 8n
{
JI(π4 + π

2n) +JI(π4 −
π

2n)
}
,

where JI(ω) is the Lobachevsky function.

(2) Let Ŵn be the (2n−1)-cyclic cover over one component of the White-
head link of volume vol(Ŵn) = 8(2n− 1)JI(π4 ). Then, for n ≥ 6,
vol(Mn)> vol(Ŵn) .

For the proofs of Theorem A and Theorem B, we use the commensurability
of the fundamental group π1(Mn) to the reflection group Γn associated to
the antiprism An and to the reflection group Λn associated to the Coxeter
polyhedron Rn. The polyhedron Rn is combinatorially a triangular prism
with only two ideal vertices, and whose Coxeter graph is depicted in Figure
4. For the arithmeticity check, we use Vinberg’s criterion in the non-compact
case by looking at the cycles of twice the Gram matrix of Rn. The 6× 6
Gram matrix of Rn is a symmetric matrix whose two non-zero coefficients
above the diagonal are equal to cos πn and its inverse. In this way, Theorem
A is an immediate consequence of Vinberg’s criterion; see Section 2.1.

The proof of Theorem B is more involved, and this part represents the
main achievement of the paper. First, we observe that it is sufficient to
consider the case n≥ 5 and non-arithmetic manifoldsMn, only. In fact, it is
not difficult to see that Γ3 is commensurable to the Picard group PSL(2,Z[i])
while the group Γ4 is commensurable to the Bianchi group PSL(2,O2) whose
coefficients belong to the ring of integers O2 of the number field Q(

√
−2).
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Hence, M3 and M4 are incommensurable to each other and to each Mn for
n≥ 5.

In order to prove the claim of Theorem B for n ≥ 5, we develop a new
approach and study the (maximal) cusp density of a certain 1-cusped non-
arithmetic hyperbolic 3-orbifold On commensurable toMn and use the result
[21, Proposition 1] that the cusp density of On is a commensurability invari-
ant. The orbifold On arises as follows. The polyhedron Rn can be dissected
by its obvious symmetry plane, also apparent in the Coxeter graph Σ(Rn),
into two copies of a (non-Coxeter) polyhedron Qn =Q(πn) with a single ideal
vertex. The polyhedron Qn belongs to a 1-parameter family of polyhedra
Q(α) , α∈ (0, π2 ) , whose volumes can be determined, yielding also the volume
of Mn with a (detailed) proof of Thurston’s volume formula [23, Example
6.8.7]; see Section 3.1, Proposition 2 and the Corollary of Section 3.2. For
the other ingredient of the cusp density of On, we determine the volume of
the maximal polyhedral cusp C(α) embedded in Q(α) using basic hyper-
bolic trigonometry, only. In this way, we obtain a closed formula for the
polyhedral cusp density δ(α) = volC(α)/volQ(α) of Q(α) and hence for the
cusp density of the orbifold On; see Theorem 2. In Section 3.3, we show by
means of Schläfli’s volume differential formula that the cusp density of On
is strictly monotone with respect to n which finishes the proof of Theorem
B. At the end, in Section 3.4, we again use Schläfli’s differential formula for
the 1-parameter family R(πx ) , x ∈ [6,∞) , in order to show that the func-
tion h(x) = xvol(R(πx ))− (2x−1)JI(π4 ) is strictly monotonically increasing
with h(6)> 0. This result together with the Corollary finishes the proof of
Theorem C.

Acknowledgements. The author would like to thank the referee for
the comments. She is indebted to Hidetoshi Masai for helpful explanations
in connection with Theorem C. She is grateful to William Schaller for the
support with the drawings.

2. Polyhedral models for hyperbolic (2n)-chain link
complements

Let n≥ 3, and denote by D2n a (2n)-link chain as depicted in Figure 1.
Following [23, Section 6.8] and [22], if each component of D2n is spanned

by a disk in a natural way, the complement of the complex is an open solid
torus. This torus with its cell decomposition yields the manifold Mn =
S3 \D2n by deleting its vertices and by identifying appropriately faces of the
tiling of the torus boundary by rectangles.

The manifoldMn is homeomorphic to the complement S3\Pn with respect
to a pretzel FAL Pn with n knot circles and n untwisted crossing circles.
Indeed, the links D2n and Pn have equivalent diagrams.

For a description of Pn and its half-twist partners, see for instance [18]
and Figures 1 and 11 therein.
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Figure 1. The diagram of a 8-link chain D8

The manifoldMn carries a hyperbolic structure induced by an ideal right-
angled polyhedron P = Pn that arises by suitably glueing four copies of
an ideal right-angled n-gonal antiprism An (or drum in the terminology of
Thurston [23, Section 6.8]). The polyhedron An has 2n+2 facets, 4n edges
and 2n vertices on the ideal boundary ∂H3. More precisely, the antiprism
An consists of two disjoint copies π and π′ of an ideal regular n-gon that
are connected by an alternating band of 2n triangles. In particular, the two
polygons π,π′ are twisted by an angle of π

n , and their centres c,c′ are the
endpoints of the common perpendicular of π and π′.

In [18], the polyhedral decomposition of a pretzel FAL complement S3\Pn
into two isometric copies P± of the ideal right-angled polyhedron P is used
to prove the above results, one of them arising by reflection of one antiprism
An in the facet plane carrying π, say, and glueing both copies together. In
fact, the resulting decomposition of the polyhedron P according to P−∪P+
allows one to study a checkerboard coloring of the facets of each of the
polyhedra P± having different implications for Mn (for further information,
see [16, Appendix], [9] and [3]).

As a consequence, the volume Mn is given by vol(Mn) = 4vol(An) =
2vol(P+), and the (non-)arithmeticity of (the fundamental group of) Mn

and S3 \Pn follows from the corresponding property of the groups generated
by the reflections in the facet planes of An and in the facet planes of P+,
respectively.

In the sequel, we focus on the antiprism representation forMn in order to
decide about their arithmeticity and commensurability for all distinct n≥ 3.

2.1. The antiprism An, hyperbolic Coxeter groups and the arith-
meticity of Mn. The antiprism An is an ideal right-angled polyhedron and
hence a Coxeter polyhedron, that is, all of its dihedral angles are submultiples
of π (see Figure 2 for n= 8)

In this way, the reflections in the facet planes of An generate a discrete
group Γn ⊂ IsomH3 which is the hyperbolic realisation of a Coxeter group
by Tits’ representation. By construction, the fundamental group of Mn is a
subgroup of index 4 in Γn so that the (non-)arithmeticity of π1(Mn) follows
directly from the corresponding one of Γn.
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Figure 2. The antiprism A8

In view of the symmetry properties of An, we decompose the polyhedron
An further into 2n isometric pieces, each again a non-compact but non-
ideal Coxeter polyhedron of simple combinatorial type. The decomposition
goes as follows. Pick the basis polygon π which is an ideal regular n-gon.
Denote by c its centre and decompose π barycentrically into 2n right-angled
triangles, each with angle π

n at c and one ideal vertex v. Denote by ∆ =
[c,m,v] one of these triangles where m is the midpoint of an edge of π
containing v. Perform the identical decomposition for the opposite polygon
π′ of An and choose the triangle ∆′ = [c′,m′,v′] such that v and v′ form an
edge and so that m,v and v′ lie in the same triangle of An. The convex
hull of the six vertices of ∆ and ∆′ is a non-compact Coxeter polyhedron
Rn =R(πn) all of whose dihedral angles are equal to π

2 apart form the angle
π
n at the ridge segment [c,c′]. Only the vertices v and v′ of Rn are ideal (and
non-simple). In the schematic picture as given in Figure 3, they are marked
bold.
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n

Figure 3. The Coxeter polyhedron Rn ⊂H3

Our next aim is to treat the arithmeticity problem for Mn for n ≥ 3.
To this end, we study the Gram matrix of Rn in order to apply Vinberg’s
arithmeticity criterion stated below.

Consider an arbitrary (convex) polyhedron P ⊂H3 with k ≥ 4 bounding
planes H1, . . . ,Hk. The Gram matrix G(P ) = (gij) is a real symmetric k×k
matrix of signature (3,1) with gii = 1 whose coefficients gij for i 6= j encode
the intersection behavior of the facets Hi∩P , 1≤ i≤ k , of P as follows.
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(2.1) −gij =


cosαij if ](Hi,Hj) = αij ,
1 if Hi,Hj are parallel ,
cosh lij if dH(Hi,Hj) = lij > 0 .

Example 1. Consider the 1-parameter family R(α) , α∈ [0, π2 ) , of polyhedra
of the same combinatorial type as and comprising Rn =R(πn) for each n≥ 3.
The Gram matrix of R(α) is given by

G(R(α)) =



1 −cosα 0 0 0 −1
−cosα 1 −1 0 0 0

0 −1 1 −1 0 0
0 0 −1 1 −cosh lα 0
0 0 0 −cosh lα 1 −1
−1 0 0 0 −1 1


,

where the length lα of the edge [c,c′] can be computed by exploiting the fact
that det(G(R(α))) = 0. It follows that

(2.2) cosh lα = 1
cosα .

A convenient and at times more efficient description of the polyhedron
Rn is given by its Coxeter graph, or more generally, by the Vinberg graph
when considering the comprehensive family R(α) as given in Example 1.

For a Coxeter polyhedron P ⊂ H3 and its group Γ ⊂ IsomH3 generated
by the reflections s1, . . . ,sk in the facet planes H1, . . . ,Hk of P , the Coxeter
graph Σ(Γ) = Σ(P ) of Γ (and of P ) is constructed as follows. Each node i
of Σ(Γ) corresponds to a generator si (and to the plane Hi). Two nodes i, j
are not joined by an edge if Hi and Hj are orthogonal. They are joined by
a simple edge if the corresponding planes intersect under the angle π

3 . The
edge carries the weight mij ≥ 4, ∞, or is replaced by a dotted edge (often
with weight lij), if the hyperplanes Hi,Hj intersect under the angle π

mij
, are

parallel, or at the positive hyperbolic distance lij , respectively.
The Vinberg graph of an arbitrary polyhedron with dihedral angles αij

between intersecting planes Hi,Hj is formed similarly to the case of the
Coxeter graph, however, by replacing the edge weight mij > 3 by the real
value αij .

Example 2. The Coxeter graph of Rn , n≥ 3 , is given by Figure 4.

s ss ss s
S
S �

�
�
�

S
S

· · · · ·

n

∞

∞

∞

∞

ln

where cosh ln = 1
cos π

n
.

Figure 4. The Coxeter graph of Rn ⊂H3
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For hyperbolic Coxeter groups of finite covolume, Vinberg [24, Theorem
2], [25, pp. 226-227], proved an efficient criterion for arithmeticity. In the
case of a Coxeter group Γ⊂ IsomH3 with a non-compact Coxeter polyhedron
P ⊂ H3 of finite volume, Vinberg’s criterion can be stated in terms of the
Gram matrix G(P ) as follows. Consider twice the Gram matrix of P and
write 2G(P ) =: (hij). Form the coefficient cycles (of length l) of the form

(2.3) hi1i2...il := hi1i2hi2i3 · . . . ·hil−1ilhili1 ,

with distinct indices ij in 2G(P ). The field K(Γ) := Q({hi1i2...il}) generated
by all cycles of 2G(P ) is called the Vinberg field of Γ. It is the smallest
field of definition for Γ, and it is an algebraic number field coinciding with
the adjoint trace field of Γ. As a consequence, the Vinberg field K(Γ) is a
commensurability invariant for Γ. For more details, see [7, Section 4] and
[8, Section 3].

Vinberg’s criterion. The Coxeter group Γ⊂ IsomH3 as given above (and
its associated Coxeter orbifold H3/Γ) is arithmetic with field of definition Q
if and only if all the cycles of 2G(P ) are rational integers.

Example 3. The triangular antiprism A3 is an ideal regular octahedron with
Schläfli symbol {3,4}. It can be barycentrically decomposed into 48 copies of
a Coxeter tetrahedron with Coxeter graph •–——•—4——–•—4——–• and Gram matrix

1 −1
2 0 0

−1
2 1 − 1√

2 0
0 − 1√

2 1 − 1√
2

0 0 − 1√
2 1

 .

Vinberg’s criterion implies the well known fact that the associated Coxeter
group, denoted by [3,4,4], is arithmetic (see [12], for example). Since the
Coxeter group Γ3 related to A3 is of finite index in the group [3,4,4], Γ3 is
arithmetic as well.

Example 4. The square antiprism A4 is an ideal right-angled polyhedron
that is decomposable into 8 Coxeter polyhedra R4 with Coxeter graph given
by Figure 4. Since cosh l4 =

√
2 by (2.2), it is easy to see that all coefficient

cycles of 2G(R4) are in Z. By Vinberg’s criterion, the Coxeter group gener-
ated by the reflections in the facets of R4 and the group Γ4 commensurable
to it are arithmetic.

Remark 1. By Example 3 and Example 4, the groups Γ3 and Γ4 are arith-
metic groups. Since both groups are commensurable to non-cocompact arith-
metic Kleinian groups (as discrete subgroups of PSL(2;C)), they are com-
mensurable to certain Bianchi groups by [17, Theorem 8.2.3]. Recall that a
Bianchi group is of the from PSL(2;Od) where Od is the ring of integers of
the imaginary quadratic field Q(

√
−d) for some positive square-free integer

d.
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More precisely, the group [3,4,4] is commensurable to the Picard group
PSL(2;O1), while the group Γ4 is commensurable to the group PSL(2;O2);
see [23, Example 6.8.7] and [17, Section 9].

As a consequence, the groups Γ3 and Γ4 are incommensurable.

We are now able to provide a new proof about the arithmeticity of the
manifolds Mn , n ≥ 3 , in a comparatively elementary way (see Theorem A
in the Introduction). For another and more involved approach using short
geodesics and invariant trace field calculations, see [18, Sections 3–5].

Theorem 1. The manifold Mn = S3 \D2n is arithmetic if and only if n =
3,4.

Proof. In view of Example 3 and Example 4, we have to show that the
manifold Mn is non-arithmetic for n ≥ 5. Since arithmeticity is preserved
with respect to commensurability, it suffices to prove non-arithmeticity for
a group commensurable to π1(Mn), and we do so by considering the Coxeter
group Γn associated to the right-angled antiprism An. Furthermore, Γn is a
subgroup of index n in, and hence, commensurable to the Coxeter group Λn
generated by the reflections in the facet planes of Rn. The Coxeter graph of
Λn (and Rn) is given by Figure 4, where

4 cosh2 ln = 4
cos2 π

n

according to (2.2). We show that Λn is non-arithmetic for n ≥ 5 by using
Vinberg’s criterion, that is, by showing that not all cycles of the matrix
2G(Rn) are rational integers. It is easy to see that the non-trivial cycles in
2G(Rn) are of the form 4,4 cos2 π

n and 4 cosh2 ln. Since cos2 π
n is rational

only for n= 1,2,3,4 and 6, with 4 cos2 π
6 = 3, we deduce that for all n≥ 5,

the cycle 4 cosh2 ln as specified above is not in Z. �

Remark 2. The proof of Theorem 1 shows that the field of definition of the
fundamental group of Mn , n≥ 5 , is given by the Vinberg field K(Γn) which
is equal to

(2.4) K(π1(Mn)) =K(Γn) = Q(cos2 π

n
) = Q(cos 2π

n
) =:Kn .

The extension degree [Kn : Q] of Kn is given by ϕ(n)/2 where ϕ(n) denotes
the Euler totient function which counts the positive integers smaller than
or equal to n that are relatively prime to n. Since the function ϕ(n) is not
injective, we cannot deduce from (2.4) that the manifolds Mm and Mn are
incommensurable for all distinct m,n ≥ 5 since the Vinberg fields Km and
Kn (as commensurability invariants) may coincide. In Section 3, we shall
prove that Mm and Mn are incommensurable for all distinct m,n ≥ 3 by
means of cusp density computations.

Remark 3. Consider the polyhedral description of the untwisted pretzel FAL
complements S3 \Pn as described above. It follows from Theorem 1 together
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with [18, Proposition 3.2] that S3 \Pn (and its half-twist partners) are non-
arithmetic for n≥ 5.

3. Commensurability of the manifolds Mn

Our next goal is to decide about the commensurability of the manifolds
Mn , n≥ 3. We can restrict the investigation to the case n≥ 5. In fact, the
arithmetic fundamental groups of M3 and M4 are incommensurable, and
by the non-arithmeticity of Mn for n ≥ 5, it follows that M3 and M4 are
incommensurable to Mn as well.

Let n ≥ 5, and consider the hyperbolic Coxeter groups Γn and Λn, both
commensurable to π1(Mn). The groups Γn and Λn are generated by the
reflections in the facet planes of the ideal right-angled antiprism An and the
non-compact polyhedron Rn =R(πn) with two ideal vertices, respectively.

The Coxeter graph Σ(Λn) of the group Λn and its Coxeter polyhedron
Rn are depicted in Figure 4. Obviously, the graph Σ(Λn) has a vertical
symmetry implying that the polyhedron Rn has a symmetry plane decom-
posing Rn into two isometric copies of a polyhedron Qn =Q(πn), each having
exactly one ideal vertex (for a general description, see Section 3.1). Denote
by τ ∈ IsomH3 the half-turn which identifies the two copies of Qn. Then,
the group extension Λ∗n := Λn ? 〈τ〉 is a discrete group, containing Λn with
index two, and having Qn as a fundamental polyhedron. Since Qn has only
one ideal vertex, the orbifold H3/Λ∗n is a 1-cusped hyperbolic orbifold with
a finite cover given by Mn.

In this context, consider an arbitrary non-compact orbifold O = H3/Γ
of finite volume where Γ ⊂ IsomH3 is a discrete group with non-compact
fundamental polyhedron P ⊂H3, say. A cusp C ⊂O is a subset ofO that lifts
to a set of horoballs with disjoint interiors in H3. The cusp C corresponds
to an ideal vertex v ∈ P whose stabiliser Γv < Γ is non-trivial. In this way,
we can write C = Bv/Γv where Bv ⊂ H3 is a precisely invariant horoball
internally tangent to ∂H3 at v. The group Γv is a crystallographic group
acting cocompactly by Euclidean isometries on the horosphere Hv = ∂Bv.

Assume that O is 1-cusped, that is, O has precisely one cusp C, and that
C is maximal in O, that is, C is tangent to itself at one or more points. The
cusp density δ(O) = δ(C) is defined by the volume quotient

(3.1) δ(O) = δ(C) = vol(C)
vol(O) .

In the sequel, we usually work in the upper half space model

(3.2) U3 =
(
E3

+ , ds
2 = dx2

1 +dx2
2 +dx2

3
x2

3

)
for H3 and use the transitivity properties of the isometry group of U3. In
particular, we can suppose that the (maximal, single) cusp C of O is of the
form C = B∞/Γ∞ with boundary horosphere H∞ = ∂B∞ at height ρ > 0
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from the ground space {x3 = 0}. More specifically, for ρ = 1, and by (3.2),
the hyperbolic length of a horocyclic segment on H∞ coincides with the
standard Euclidean length, and the induced area of a polygon on H∞ is
given by its Euclidean area.

In general, the numerator vol(C) of (3.1) can be computed by means of
the induced area of a fundamental polygon P∞ ⊂H∞ for the action of Γ∞
according to the classical formula

(3.3) vol(C) = vol(P∞)
2 .

Now, we can cite the following result in the context of commensurability
of non-arithmetic hyperbolic orbifolds which will be of importance for what
follows.

Proposition 1 ([21, Proposition 1], [10, Section 2]). The cusp density is a
commensurability invariant for 1-cusped non-arithmetic hyperbolic orbifolds.

In the sequel, we shall study the cusp density of H3/Λ∗n from a polyhedral
point of view. Our strategy is to determine the volume of the polyhedral
half Q(α) ⊂ H3 of R(α) and the volume of a maximal embedded polyhedral
cusp neighborhood C(α) of the ideal vertex of Q(α) in terms of the angle
parameter α; see Section 3.1 and Section 3.2. As a result, we shall get an
explicit formula for the polyhedral cusp density of Q(πn) and for the cusp
density of H3/Λ∗n (see Theorem 2). Then, we prove strict monotonicity
of the density function for Q(α) which, by Proposition 1, implies that the
manifolds Mm and Mn are pairwise incommensurable for distinct m,n.

3.1. The building block Q(α). Consider the polyhedron R(α)⊂H3 whose
Gram matrix is given in Example 1 and whose Vinberg graph arises from
the Coxeter graph for Rn depicted in Figure 4. The polyhedron R(α) is
related to an orthoscheme R̂(α) defined by the Vinberg graph •—∞–—•—α–—•—∞–—•
having two ultra-ideal vertices p0,p3 (characterised by hyperbolic triangles
with identical Vinberg graph •—α–—•—∞–—•), both cut off by their corresponding
polar planes H0,H3. In this way, R(α) is a doubly truncated orthoscheme.
Furthermore, the truncating planes H0,H3 have a common perpendicular of
length lα and touch the facets opposite to p0,p3 at the ideal vertices p1 := v
and p2 := v′ of R(α). Observe that the vertices p0, . . . ,p3 form an orthogonal
edge path in R̂(α). Denote by Fi , 0≤ i≤ 3 , the facets opposite to pi in R̂(α).
By means of the bisector H of H0, H3 we divide R(α) into two copies of a
new polyhedron with a single vertex, the building block Q(α). We consider
Q(α) as being the part of R(α) with vertex p1. The Vinberg graph of Q(α) is
depicted in Figure 5. The plane H yields a face F of Q(α) that is at distance
lα
2 from the plane H0, and F intersects the face F3 at the dihedral angle βα,
the face F0 at the complement π−βα and all other ones orthogonally.
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∞

∞
α

∞

βα

lα
2

•
H0

•F0

•
F1

•
F2

•
F

•F3
π−βα

Figure 5. The Vinberg graph of the building block Q(α)⊂H3

Here, the angle βα can easily be computed by using (2.2) as follows.

(3.4) cosβα = 1√
2(1 + cosh lα)

=
√

cosα
2(1 + cosα) .

p2

p3

p1

lα = a

p0

H

H3

H0

x

α

y

r

z

s

w
ω

bm

•

•

Figure 6. Synthetic view of the building block Q(α)⊂H3

3.2. The cusp density of Q(α). Our aim is to derive an explicit formula
for the polyhedral cusp density of the building block Q(α)⊂H3 , α ∈ (0, π3 ],
defined by the volume quotient δ(α) of a maximal embedded polyhedral
cusp neighbood C(α) of the ideal vertex of Q(α) by the volume of Q(α).
More precisely, the maximal embedded cusp neighborhood C(α) of the ideal
vertex p1 of Q(α) is the horoball cone with apex p1 whose horospherical
boundary is tangent to the closest of the two facets of Q(α) not incident to
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p1, see Figure 6. Again, we normalise the setting so that in the upper half
space U3, the apex p1 is identified with ∞ and the horospherical boundary
of C(α) is a horizontal plane at positive distance from {x3 = 0}.
In the special case α= π

n , the set C(πn) covers the maximal cusp in H3/Λ∗n.
We start with the denominator vol(Q(α)) = 1

2 vol(R(α)) of δ(α). As men-
tioned in Section 3.1, R(α) is a doubly truncated orthoscheme whose trun-
cating polar hyperplanes H0,H3 associated to the vertices p0,p3 are at dis-
tance lα but touch their opposite facets F0,F3 at the ideal vertices p1,p2,
respectively. In particular, by [14, Theorem II], we dispose of an explicit vol-
ume formula in terms of the Lobachevsky function JI(ω) and the additional
angle parameter θ = θ(α) ∈ [0, π2 ) given by
(3.5) tanθ = cosα
as follows.

(3.6) vol(R(α)) = 1
4

{
JI(π2 +α−θ) +JI(π2 −α−θ) + 4JI(θ) + 2JI(π2 −θ)

}
.

The Lobachevsky function is given by JI(ω) =−
∫ ω

0 log |2 sin t|dt, and JI(ω)
is odd, π-periodic and satisfies the distribution relation

(3.7) 1
k
JI(kx) =

k−1∑
r=0

JI
(
x+ rπ

k

)
, k ∈ N .

As an example, Catalan’s constant 2JI(π4 ) ≈ 0.91596 and the (maximum)
value JI(π6 ) can be expressed according to

(3.8) 4
3 JI(π4 ) = JI( π12) +JI(5π

12 ) , JI(π6 ) = 3
2JI(

π

3 )≈ 0.50747 .

For computations, the series representation

(3.9) JI(ω) = ω

(
1− log |2ω|+

∑ Bn (2ω)2n

2n(2n+ 1)!

)
with Bernoulli coefficients B1 = 1

6 , B2 = 1
30 , . . . converges rapidly for |ω| ≤ π

(see [19, Appendix]).
The formula (3.6) is based on Schläfli’s differential formula for the volume

v = v(α) := vol(R(α)) in terms of the angle α, and the differential can be
expressed according to

(3.10) d

dα
v =−1

2 lα =−1
2 arcosh

( 1
cosα

)
.

As a consequence, the volume v(α) is a strictly decreasing function with
respect to α.

The volume expression (3.6) for R(α) can be simplified without the use of
the additional parameter θ as follows.

Proposition 2. For α ∈ [0, π2 ),

(3.11) vol(R(α)) = JI(π4 + α

2 ) +JI(π4 −
α

2 ) .
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Proof. Associate to R(α) the polyhedral subset Ŝ(α) of the (infinite volume)
orthoscheme R̂(α) with vertices p0, . . . ,p3 by omitting the polar plane H3
associated to the ultra-ideal vertex p3. In particular, by cutting Ŝ(α) by
means of the plane H3, we get back R(α). Let r = [p0,p2]∩H0 denote
the vertex in the facet plane H0 on the geodesic defined by p0 and p2 in
R̂(α). Then, the polyhedron Ŝ(α) can be cut into two (infinite volume)
orthoschemes R̂1 and R̂2 by means of the plane defined by the vertices p1, r,
and p3 (see also [5, Theorem 2]).

Suppose for a moment that the vertices p2 and p3 of Ŝ(α) are ordinary
points of H3. Then, Ŝ(α) is a finite volume pyramid with ideal apex p1 over
a quadrilateral face, depending on further angular parameters. Now, for an
arbitrary hyperbolic pyramid P ⊂H3 with ideal apex q over an n-gon π with
vertices a1, . . . ,an, Vinberg [24, pp. 129–130] obtained a closed formula in
terms of the dihedral angles (up to minor sign errors). In the particular case
of a pyramid P = P (α1, . . . ,α4) whose apex q at infinity is the intersection of
4 edges with right (interior) dihedral angles (an example is Ŝ(α)), Vinberg’s
formula can be stated as follows in terms of the dihedral angles α1, . . . ,α4 at
the edges of the quadrilateral π (circularly enumerated with indices modulo
4); see also [11, (2.12)].

2vol(P ) =
4∑

k=1

{
JI
(
(π2 +αk +αk+1)/2

)
+JI

(
(π2 +αk−αk+1)/2

)
+JI

(
(π2 −αk +αk+1)/2

)
+JI

(
(π2 −αk−αk+1)/2

)}
.(3.12)

Furthermore, and in a similar way as above, Ŝ(α) is cut into the two
ordinary (finite volume) orthoschemes R̂1 and R̂2 so that their volumes add
up to the one of Ŝ(α).

Next, suppose that the vertex p3 of Ŝ(α) is ultraideal and cut off by its
polar plane H3 so that dH(H3,F3)≥ 0. By [14, Theorem II], the analytical
expressions of vol(R̂i) , i = 1,2 , and hence of their sum vol(Ŝ(α)) in terms
of the dihedral angles and Lobachevsky’s function remain unchanged under
this truncation process. Moreover, in the limiting case dH(H3,F3) = 0 where
p2 becomes an ideal vertex of R̂(α), the polyhedra Ŝ(α) and R(α) coincide.

As a consequence, the volume of R(α) equals the volume of the polarly
truncated square pyramid Ŝ(α) with angles α1 = α, α2 = 0 and α3 = α4 = π

2 .
By (3.12) and (3.7), it follows that

vol(R(α)) = JI(π4 + α

2 ) +JI(π4 −
α

2 ) .

�

By Proposition 2, a formula for the volume of the (2n)-link chain comple-
ment S3 \D2n can now be deduced, and it agrees with Thurston’s formula



A POLYHEDRAL APPROACH TO THE ARITHMETIC AND GEOMETRY OF HYPERBOLIC CHAIN LINK COMPLEMENTS 15

�
�
�
�
�
�
�
�
�
�

·•
v1

v2

q

d

ω

h

Figure 7. A horoarc in the right-angled triangle T =
[q,v1,v2] with ideal vertex q

presented without proof in [23, Example 6.8.7]. The following result cor-
responds to part (1) of Theorem C (the part (2) will be proved in Section
3.4).

Corollary. The volume of the (2n)-link chain complement S3 \D2n equals

vol(Mn) = 4vol(An) = 8nvol(R(π
n

)) = 8n
{
JI(π4 + π

2n)+JI(π4 −
π

2n)
}
, n≥ 3 .

Remark 4. The comparison of formula (3.6) with the one (3.11) of Propo-
sition 2 yields a functional equation for the inscrutable Lobachevsky function
JI(ω) in a geometric way. For α, θ ∈ [0, π2 ) connected by tanθ = cosα ,

4
{
JI(π4 +α

2 ) +JI(π4 −
α

2 )
}

=

JI(π2 +α−θ) +JI(π2 −α−θ) + 4JI(θ) + 2JI(π2 −θ) .

Next, we determine the numerator of the cusp density function δ(α). By
viewing the maximal cusp C(α)⊂Q(α) in U3 and identifying its centre given
by the 4-valent ideal vertex p1 with ∞, C(α) is a cone over a right-angled
quadrilateral with induced edge lengths, h,k, say, along the horocycles ac-
cording to (3.2). For the volume, one has

(3.13) vol(C(α)) = hk

2 .

The following classical results about horocycle geometry will be useful in
order to determine h,k and hence vol(C(α)). Consider first a hyperbolic
triangle T with one ideal vertex q, a right angle at the vertex v1 and the
angle ω at the vertex v2. Let d= dH(v1,v2), and consider the horoarc segment
in T , based at q and touching v1, of hyperbolic length h. The situation is
depicted in Figure 7 in a synthetic way.

Lemma 1 ([6, Section 4]). Denote by h the hyperbolic length along the
horoarc based at the ideal vertex q and touching the vertex v1 in the right-
angled triangle T = [q,v1,v2]. Let ω be the angle of T at v2 and d= dH(v1,v2)
according to Figure 7. Then,

h= cosω = tanhd .
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θ

v1

v2

ρ

h0

h

·

l1 l2

l
ω

d

0

Figure 8. A horoarc in the right-angled triangle T =
[∞,v1,v2] with ideal vertex ∞

We provide a short proof Lemma 1.

Proof. Consider the triangle T in the upper half plane U2 ⊂ E2
+ so that

its ideal vertex q is identified with ∞ and the vertex v1 = (0,ρ) ∈ U2 lies
at height ρ > 0 on the geodesic line l1 passing through 0 and ∞. Then,
the vertex v2 lies on the half-circle centred at 0 and of radius ρ, and its
hyperbolic distance d to v1 is given by the formula (see [2, (7.20.3)])

(3.14) tanhd= sinθ ,

where θ is the angle formed by the line l1 and the euclidean line l defined by
the points 0 and v2; see Figure 8. By construction, θ = π

2 −ω. Let l2 be the
vertical line through v2. For the induced length h along the (red colored)
horoarc on height ρ from {x2 = 0} delimited by l1 and l2, (3.2) yields

(3.15) h= h0
ρ
,

where h0 denotes the Euclidean distance between l1 and l2. On the other
hand side, cosω= sinθ= h0

ρ which yields h= cosω= tanhd as desired. �

Next, consider a Lambert quadrilateral L = L(a,b) ⊂ H2 with one ideal
vertex q and opposite edges of lengths a and b, respectively. Furthermore,
L has three right angles at the ordinary vertices x,y and z, and the lengths
a and b of the edges [x,y] and [y,z] are related by the well known formula
sinha · sinhb= 1. Put a horocycle σ based at q in such a way that it starts
at the vertex z and has non-empty intersection with L. Denote by s the
intersection point of σ with the geodesic defined by q and x. The point s
can lie outside of L. Let h be the hyperbolic length of the horoarc σs ⊂ σ
delimited by s and z. The situation is depicted in Figure 9.
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h
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a
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·

··

Figure 9. The Lambert quadrilateral L and a horoarc σs of
length h

Lemma 2. Let a= dH(x,y) be the edge length of the Lambert quadrilateral
L = [q,x,y,z] with ideal vertex q according to Figure 9. Denote by h the
hyperbolic length of the horoarc σs based at q and delimited by the points s
and z related to L. Then,

h= cosha .
Furthermore, the intersection point s lies outside of the edge [q,x] of L if
and only if h >

√
2.

Remark 5. The condition h>
√

2 in Lemma 2 is equivalent to the property
that sinha > 1 and hence to sinhb < 1 for the edge length b = dH(y,z) in
L. As a consequence, the horoarc σ′q of hyperbolic length h′ based at q and
starting at x towards L has its intersection point s′ on the edge [q,z] of L
and satisfies h′ = coshb.

Proof. We provide a proof which is very similar to the one of Lemma 1.
View the Lambert quadrilateral L in the upper half plane U2 in such a way
that its ideal vertex q coincides with ∞ and that the vertex z is at height r
from the boundary {x2 = 0}; see Figure 10.

z

∞

Cx

Cz

x

y
·

log ρ
r

s
h

h0

ρr
θ

θ

a

cx = 0cz

Figure 10. The Lambert quadrilateral L in the upper half plane

The edges [x,y] and [y,z] lie on semicircles Cx and Cz, both perpendicular
to the boundary {x2 = 0} and intersecting orthogonally each other at y.
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Consider the semicircle Cx with its centre cx at 0 and with radius ρ. Let θ
be the angle between the radii [cx,x] and [cx,y]. By the same correspondence
as given by (3.14), we have here that

(3.16) tanha= sinθ (and similarly, tanhb= cosθ ) .

The hyperbolic length h of the horoarc is given in terms of the Euclidean
distance h0 = d0(cx, cz) and the radius r according to h= h0

r . Furthermore,
we easily see that

h2
0 = r2 +ρ2 ,(3.17)

tanθ = ρ

r
.(3.18)

Putting (3.16)–(3.18) together, we obtain

h2 = h2
0
r2 = r2 (1 + tan2 θ)

r2 = 1
cos2 θ

= cosh2a

as claimed.
In order to finish the proof, we need to show that the hyperbolic distance

dH(x,s) is positive if and only if h >
√

2. In terms of the Euclidean radii ρ
of Cx and r of Cz, this condition is equivalent to the property log ρ

r > 0. By
(3.18), ρ > r holds if and only if θ > π

4 , that is, by (3.16), that tanha > 1√
2 .

Since
1

cosh2a
= 1− tanh2a ,

we deduce that cosha= h >
√

2. �

Finally, consider a horocyclic sector bounded by a horoarc of length h
based at the ideal point q and a concentric horoarc of length k with 0<k <h
(lengths with respect to the induced metric) at hyperbolic distance d; see
Figure 11. By means of (3.15) in the upper half plane setting, it is easy to

d

d

k h•q

Figure 11. Two concentric horoarcs based at q and at hy-
perbolic distance d

derive the following result.

Lemma 3 ([6, Section 5], [23, Section 3.7]). Denote by d the hyperbolic
distance of two concentric horoarcs based at the ideal point q and of induced
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hyperbolic lengths h and k with 0 < k < h along the respective horocycles
according to Figure 11. Then,

h

k
= ed .

Now, we are in the position to prove the following result.
Proposition 3. For α ∈ (0, π3 ], the cusp volume vol(C(α)) is given by

vol(C(α)) = 1
2(2 + cosα) .

Proof. Consider the building block Q(α) as part of the doubly truncated
orthoscheme R(α). By (3.13), we have to quantify the lengths h,k of the
base quadrilateral on the horosphere boundary of the cone C(α) with apex
p1. Let us introduce some notations according to Figure 6. The triangle
[p0,p1,p3] gives rise to the Lambert quadrilateral L = L(a,b) in R(α) with
vertices p1,x,y and z and edge lengths dH(x,y) = lα =: a and dH(y,z) =: b.

The ordinary vertices r = [p0,p2]∩H0 and s= [p1,p3]∩H of Q(α) belong
both to the right-angled triangular facets with ideal vertex p1 of Q(α). Let
m= [p0,p3]∩H and w = [p1,p2]∩H be vertices of Q(α) defined by the facet
plane H. By construction, the triangle [p1, r,x] has angle α at x giving rise
to the horoarc based at p1, starting at r and of length hα = cosα according
to Lemma 1. In a similar way, the triangle [p1,s,w] has angle ω at w and
contains the horoarc hω based at p1, starting at s and of length hω = cosω.
The angle ω ∈ (0, π2 ) depends on β = βα and hence on α as follows. Consider
the spherical vertex triangle associated to w which, by construction, is right-
angled with angles β and π−β and edge length ω opposite to its vertex with
angle β. We easily deduce that

cosω = cotβ ,
and hence, hω =: hβ = cotβ.

We start by determining an edge length h of the horospherical quadrilat-
eral bounding C(α). We claim that hα > hβ for α ∈ (0, π3 ] so that h = hβ.
Implementing the expressions for hα and hβ, and using the identity (3.4)
between α and β, we see that hα >hβ is equivalent to the following inequal-
ity.

cos2α tan2β = cos2α

(
1 + 2

cosα

)
> 1 .

Since α ∈ (0, π3 ] , the term above is indeed bigger than 1.
Next, we determine the other edge length k of the base quadrilateral

of C(α) which is the length of the horoarc κ based at p1 and starting at s
towards the facet planeH0. For this, consider the Lambert quadrilateral L=
L(a,b) = [p1,x,y,z] ⊂ R(α). The edge length a = lα is given by (2.2) while
the length b of the edge [y,z] can be deduced by hyperbolic trigonometry
for the right-angled triangle [y,z,p2] according to

coshb= 1
sinα .
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Consider the horocycle σ based at p1 and starting at z towards the geodesic
[p1,x] in L. Denote by t the intersection point of σ with the geodesic defined
by p1 and x. By Lemma 2, the length K of the horoarc σt ⊂ σ delimited by
t and z is given by

K = cosh lα = 1
cosα

Observe that σt is concentric with κ, and the hyperbolic distance between
σt and κ is given by d = dH(s,z). The distance dH(s,z) can easily be com-
puted by looking at the (compact) Lambert quadrilateral [s,m,y,z] with
two neighboring edges of known lengths b and lα

2 (see [2, Theorem 7.17.1]).
It follows that

tanhd= coshb · tanh lα2 = 1
sinα ·

sinα
1 + cosα = 1

1 + cosα .

By Lemma 3 and Euler’s identity for ed, we deduce that
K

k
= ed = coshd+ sinhd= coshd (1 + tanhd)

= 1 + cosα√
cosα(2 + cosα)

(
1 + 1

1 + cosα

)
= 2 + cosα√

cosα(2 + cosα)
.

As a consequence of the above identities, we get

vol(C(α)) =hk

2 = 1
2 hβKe−d

=1
2

√ cosα
2 + cosα ·

1
cosα ·

√
cosα(2 + cosα)

2 + cosα = 1
2 (2 + cosα)

as claimed. �

Putting the results of Proposition 2 and Proposition 3 together, we obtain
the following explicit formula for the polyhedral cusp density of the building
block Q(α).

Theorem 2. For α ∈ (0, π3 ], the polyhedral cusp density δ(α) of Q(α) is
given by

δ(α) = vol(C(α))
vol(Q(α)) = 1

2(2 + cosα)
{
JI(π4 + α

2 ) +JI(π4 −
α
2 )
} .

By means of Theorem 2 and the explicit representation of the density
function δ(α), we can prove the following important property of δ(α).

Theorem 3. For α ∈ (0, π3 ], the polyhedral cusp density δ(α) of Q(α) is a
strictly increasing function.

Proof. By Theorem 2 and Proposition 3, the numerator vol(C(α)) of the
quotient δ(α) is given by

vol(C(α)) = 1
2(2 + cosα) ,
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which is a strictly increasing function with respect to α. For the denominator
vol(Q(α)) of δ(α), we conclude by means of Schläfli’s differential formula

d

dα
vol(Q(α)) =−1

4 lα =−1
4 arcosh

( 1
cosα

)
< 0 ,

as given by (3.10), that vol(Q(α)) is strictly decreasing. Hence, the function
δ(α) is strictly increasing.

�

In the next section, we use Theorem 3 to prove the incommensurability
of the manifolds Mn given by the complements of S3 by the (2n)-link chains
D2n by specialising to the case α= π

n and Qn =Q(πn) for all n≥ 3.

3.3. Cusp density and commensurability of the manifolds Mn. In
this section, we apply our previous results to give a new and more elementary
combinatorial-geometric proof of the following result due to Meyer, Millichap
and Trapp [18, Section 6] (see Theorem B in the Introduction).

Theorem 4. For n ≥ 3, let Mn = S3 \D2n denote the complement of S3

by the (2n)-link chain D2n. Then, Mn is incommensurable to Mm for all
distinct m,n≥ 3.

Proof. As already pointed out at the beginning of Section 3 (see also
Remark 1), it is sufficient to consider the non-arithmetic case, that is, to
compare manifoldsMn andMm up to commensurability for distinctm,n≥ 5.

Recall that the fundamental group π1(Mn) of Mn is commensurable to
the group Λn generated by the reflections in the facet planes of the doubly
truncated Coxeter orthoscheme Rn = R(πn) with two ideal vertices. The
polyhedron Rn decomposes into two isometric copies of the building block
Qn =Q(πn) with one ideal vertex which are identified by the half-turn τ . In
particular, π1(Mn) is commensurable to the group extension Λ∗n = Λn ? 〈τ〉
of Λn.

For n≥ 5, and alike π1(Mn), the group Λ∗n is non-arithmetic by Theorem
1. Since the orbifold H3/Λ∗n is 1-cusped, its cusp density δn := δ(H3/Λ∗n) is
a commensurability invariant by Proposition 1.

Finally, the cusp density function δn is strictly monotone with respect to
n by Theorem 3. Therefore, δm 6= δn for distinct m,n≥ 5 implying that the
manifoldsMm andMn finitely covering the orbifolds H3/Λ∗m and H3/Λ∗n are
incommensurable.

�

Remark 6. Our approach to prove arithmeticity and incommensurability
of hyperbolic link complements by means of their polyhedral building blocks
works also for other infinite families of manifolds. However, for a convenient
arithmeticity check, it is useful to detect building blocks that are Coxeter
polyhedra of simple combinatorial type. In the case of the link complements
Mn, we have a choice of two types of Coxeter polyhedra, ideal right-angled
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antiprisms with 2n+ 2 facets and – more conveniently – doubly truncated
Coxeter orthoschemes with 6 facets. Their associated reflections groups give
rise to Coxeter orbifolds or reflection orbifolds in the terminology of [18,
Section 3] and [3, Section 7], for example. In this context, note that Chese-
bro, DeBlois and Wilton [3, Section 7.2] describe an infinite family of FAL
manifolds that are not commensurable to any Coxeter orbifold.

Remark 7. As already mentioned, Meyer, Millichap and Trap [18, Section
6] provide a different proof of Theorem 4. In fact, they study the symmetry
group of Mn , n ≥ 5 , which is isomorphic to the quotient group N(Πn)/Πn

of the normaliser N(Πn) of Πn := π1(Mn) in IsomH3 by Πn. Hidden sym-
metries of Mn correspond to non-trivial elements in C(Πn)/N(Πn) where
C(Πn) is the commensurator of the group Πn. Then, the authors classify
the symmetries and hidden symmetries of Mn. This study allows them to
show that the manifolds Mn , n≥ 5 , admit no hidden symmetry, and to de-
duce that the manifolds Mm and Mn are incommensurable for distinct m,n.
See [18, Theorem 6.1, Corollary 6.3 and Corollary 6.4].

3.4. Comparing the volumes of Mn and Ŵn. In this paragraph, we
complete the proof of Theorem C and verify its part (2) which states that
for n≥ 6, the volume ofMn is strictly bigger than the volume of the (2n−1)-
cyclic cover over one component of the Whitehead link Ŵn. This property,
without proof, was indicated to Agol by Ventzke and hinted more concretely
by Masai; see [1, 13].

By the Corollary of Section 3.2, the volume ofMn is given by 8nvol(R(πn))
and in terms of the Lobachevsky function. The volume of Ŵn equals (2n−
1)vol(O∞reg) where O∞reg is an ideal regular octahedron of dihedral angle π

4
which can be dissected into 6 copies of the Coxeter polyhedron R(π3 ); see
[15, Part (d), pp. 326-328]. Hence, by (3.8) and (3.11), the volume of the
manifold Ŵn equals 6(2n−1){JI( π12) +JI(5π

12 )}= 8(2n−1)JI(π4 ).
For the real parameter x ∈ [6,∞), define the help function

(3.19) h(x) = xvol(R(π
x

))− (2x−1)JI(π4 ) .

It follows that 8h(n) = vol(Mn)−vol(Ŵn). Furthermore, one can show that
h(6)> 0. In fact, (3.8) and (3.11) give

h(6) = 6vol(R(π6 ))−11JI(π4 ) = 10JI(π6 )−11JI(π4 ) ,

and by means of the series representation (3.9) in the form

JI(ω) = ω

(
1− log |2ω|+ ω2

18 + ω4

900 + . . .

)
,

one deduces that h(6) = 10JI(π6 )−11JI(π4 )≈ 0.036.
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Hence, in order to prove part (2) of Theorem C, it suffices to show that
h(x) is strictly monotonically increasing. To this end, we use Schläfli’s dif-
ferential formula presented in Section 3.2 and express the volume of R(πx )
in integral form

vol(R(π
x

)) =−1
2

π
x∫

0

lα dα+ 2JI(π4 ) ,

where the integrand lα is the edge length associated to the dihedral angle α
of the family R(α); see (3.10). As for the second term at the right hand side,
we used (3.11) of Proposition 2 for the identification vol(R(0)) = 2JI(π4 ).

By (3.19), it follows that

h(x) =−x2

π
x∫

0

lα dα+JI(π4 ) ,

and by taking derivatives,

h′(x) =−1
2

π
x∫

0

lα dα+ π

2x l
π
x
.

Consider the edge length lα given by cosh lα = 1/cosα according to (2.2).
Obviously, lα is strictly monotonically increasing. This fact implies that
h′(x) > 0. Hence, h(x) is strictly monotonically increasing with h(6) > 0,
and this conclusion yields part (2) of Theorem C.
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