A POLYHEDRAL APPROACH TO THE ARITHMETIC AND GEOMETRY OF HYPERBOLIC LINK COMPLEMENTS

RUTH KELLERHALS

Abstract

Motivated by the works of Meyer, Millichap and Trapp [18, Neumann and Reid [20, Section 5] as well as Thurston [23, Chapter 6], we provide an elementary polyhedral approach to study and deduce results about the arithmeticity and commensurability of an infinite family of hyperbolic link complements M_{n} for $n \geq 3$. The manifold M_{n} is the complement of \mathbb{S}^{3} by the ($2 n$)-link chain $\mathcal{D}_{2 n}$ and has $2 n$ cusps.

The hyperbolic structure of M_{n} stems from an ideal right-angled polyhedron that can be cut into four copies of an ideal right-angled n-gonal antiprism. Each of these polyhedra gives rise to a hyperbolic Coxeter orbifold that is commensurable to a hyperbolic orbifold with a single cusp. Vinberg's arithmeticity criterion and certain cusp density and volume computations allow us to reproduce some of the main results in [20] and [18] about M_{n} in a comparatively elementary and direct way. This approach works in several other cases of link complements as well.

As a by-product of this polyhedral viewpoint, we give a rigorous proof of Thurston's volume formula for M_{n} and deduce that, for $n \geq 6$, the volume of M_{n} is strictly bigger than the volume of the $(2 n-1)$-cyclic cover over one component of the Whitehead link. This property, without proof, was indicated to Agol by Ventzke and hinted more concretely by Masai; see 1, 13.

Keywords. Hyperbolic chain link complement, Coxeter orbifold, antiprism, non-arithmeticity, commensurability, cusp density, volume.

1. Introduction

For an integer $n \geq 3$, consider the manifold M_{n} given by the complement of \mathbb{S}^{3} by a ($2 n$)-link chain $\mathcal{D}_{2 n}$ exemplary illustrated in Figure 1 . The link complement M_{n} is a multiply cusped hyperbolic manifold which comes with a decomposition into four isometric copies of an ideal right-angled n-gonal antiprism A_{n} as described by Thurston [23, Section 6.8].

The manifold M_{n} is a minimally twisted ($2 n$)-chain link complement in the terminology of Agol [1] and M_{n} can also be interpreted as the complement of an untwisted fully augmented pretzel link \mathcal{P}_{n}, in short an untwisted pretzel FAL; see [18]. It is known that any hyperbolic link $L \subset \mathbb{S}^{3}$ can be obtained via Dehn surgery on a hyperbolic FAL, which explains the interest

Date: June 12, 2023.
2010 Mathematics Subject Classification. 57M25, 51M25, 51F15.
in the family of links $\mathcal{D}_{2 n}$ (see [9], and [18] for further references). Another important feature of the manifolds M_{n} is that they are virtually fibered with a fundamental group that is LERF. These results are due to Chesebro, DeBlois and Wilton [3, Corollary 1.2 and Corollary 1.4].

Regarding the volume of non-compact hyperbolic 3-manifolds, Agol 1] conjectures that for $3 \leq m \leq 10$, the minimally twisted m-chain link complement has smallest volume among all orientable hyperbolic manifolds with exactly m cusps. This conjecture was proven for $m=4$ by K. Yoshida [26].

A natural step in the study of this and other infinite families of hyperbolic manifolds is to regroup them according to arithmeticity and commensurability. For example, Chesebro and DeBlois [4] constructed a certain infinite family of hyperbolic link complements, and infinite subfamilies of them obtained by mutation. Their respective incommensurability is detected by the Bloch invariant and the cusp parameters as described in 4, and by the set of maximal disjoint horoballs associated to the cusps as completed by H . Yoshida [27].

In the recent work of Meyer, Millichap and Trapp [18], based in parts on the work of [21], a satisfactory answer to this circle of questions has been delivered for the manifolds M_{n} (and their half-twist partners) by using various methods involving the study of short geodesics and (hidden) symmetries of M_{n}.

In this work, we exploit the beautiful polyhedral structure as given by the n-gonal antiprism A_{n} and related Coxeter polyhedra underlying $M_{n}=$ $\mathbb{S}^{3} \backslash \mathcal{D}_{2 n}$. Indeed, each polyhedron A_{n} can be further dissected into isometric copies of another non-compact Coxeter polyhedron R_{n} whose Coxeter orbifold is commensurable to a 1-cusped hyperbolic orbifold in an obvious way. Based on this observation, we are able to provide an alternative and comparatively elementary approach to decide about the arithmeticity and commensurability of the manifolds M_{n} for all $n \geq 3$. As a by-product, we provide rigorous proofs for Thurston's volume formula for M_{n} and the fact that the volume of $M_{n}, n \geq 6$, is strictly bigger than the volume of the $(2 n-1)$-cyclic cover over one component of the Whitehead link. The latter fact has been stated without proof first by Ventzke and then by Masai in a more concrete way; see [1, 13].

In this context, recall that two hyperbolic orbifolds $O_{1}=\mathbb{H}^{3} / G_{1}$ and $O_{2}=\mathbb{H}^{3} / G_{2}$ are commensurable if they have a common finite sheeted cover. Equivalently, their fundamental groups, and hence, $G_{1}, G_{2} \subset$ Isom \mathbb{H}^{3} are commensurable in the wide sense, that is, there exists an element $\gamma \in \operatorname{Isom} \mathbb{H}^{3}$ such that $G_{1} \cap \gamma G_{2} \gamma^{-1}$ has finite index in both G_{1} and $\gamma G_{2} \gamma^{-1}$. The commensurability property for groups in Isom \mathbb{H}^{3} is an equivalence relation preserving characteristics such as discreteness, finite covolume and arithmeticity. As for the latter property, a fundamental result of Margulis (see [17, Theorem 10.3.5], for example) states that a hyperbolic lattice given by a discrete group $G \subset \operatorname{Isom} \mathbb{H}^{3}$ of finite covolume is non-arithmetic if and only
if its commensurator

$$
\begin{equation*}
\operatorname{Comm}(G)=\left\{\gamma \in \operatorname{Isom} \mathbb{H}^{n} \mid G \text { and } \gamma G \gamma^{-1} \text { are commensurable }\right\} \tag{1.1}
\end{equation*}
$$

is a hyperbolic lattice, and containing G as a subgroup of finite index.
For an algorithmic approach to find the commensurator of a cusped nonarithmetic hyperbolic manifold and to decide about the commensurability of cusped non-arithmetic manifolds, see [10].

Here, we provide new and simple proofs of the following main results in [18] and [20, Sections 5-8].
Theorem A. Let $n \geq 3$. The manifold $M_{n}=\mathbb{S}^{3} \backslash \mathcal{D}_{2 n}$ is arithmetic if and only if $n=3,4$.
Theorem B. For $m, n \geq 3$ with $m \neq n$, the manifold M_{n} is incommensurable to M_{m}.

Furthermore, we give a detailed proof of Thurston's volume formula for $\operatorname{vol}\left(M_{n}\right)$ as stated in [23, Example 6.8.7] and the complete reasoning in the spirit of Masai's remark [13, Remark 1.1]. More specifically, we will rigorously prove the following result.

Theorem C.

(1) For $n \geq 3$, the volume of the manifold M_{n} is given by

$$
\operatorname{vol}\left(M_{n}\right)=8 n\left\{\mathrm{~J}\left(\frac{\pi}{4}+\frac{\pi}{2 n}\right)+\mathrm{J}\left(\frac{\pi}{4}-\frac{\pi}{2 n}\right)\right\}
$$

where $\mathrm{J}(\omega)$ is the Lobachevsky function.
(2) Let \widehat{W}_{n} be the $(2 n-1)$-cyclic cover over one component of the Whitehead link of volume $\operatorname{vol}\left(\widehat{W}_{n}\right)=8(2 n-1) \mathrm{J}\left(\frac{\pi}{4}\right)$. Then, for $n \geq 6$, $\operatorname{vol}\left(M_{n}\right)>\operatorname{vol}\left(\widehat{W}_{n}\right)$.
For the proofs of Theorem A and Theorem B , we use the commensurability of the fundamental group $\pi_{1}\left(M_{n}\right)$ to the reflection group Γ_{n} associated to the antiprism A_{n} and to the reflection group Λ_{n} associated to the Coxeter polyhedron R_{n}. The polyhedron R_{n} is combinatorially a triangular prism with only two ideal vertices, and whose Coxeter graph is depicted in Figure 4. For the arithmeticity check, we use Vinberg's criterion in the non-compact case by looking at the cycles of twice the Gram matrix of R_{n}. The 6×6 Gram matrix of R_{n} is a symmetric matrix whose two non-zero coefficients above the diagonal are equal to $\cos \frac{\pi}{n}$ and its inverse. In this way, Theorem A is an immediate consequence of Vinberg's criterion; see Section 2.1.

The proof of Theorem B is more involved, and this part represents the main achievement of the paper. First, we observe that it is sufficient to consider the case $n \geq 5$ and non-arithmetic manifolds M_{n}, only. In fact, it is not difficult to see that Γ_{3} is commensurable to the Picard group PSL $(2, \mathbb{Z}[i])$ while the group Γ_{4} is commensurable to the Bianchi group $\operatorname{PSL}\left(2, \mathcal{O}_{2}\right)$ whose coefficients belong to the ring of integers \mathcal{O}_{2} of the number field $\mathbb{Q}(\sqrt{-2})$.

Hence, M_{3} and M_{4} are incommensurable to each other and to each M_{n} for $n \geq 5$.

In order to prove the claim of Theorem B for $n \geq 5$, we develop a new approach and study the (maximal) cusp density of a certain 1-cusped nonarithmetic hyperbolic 3-orbifold O_{n} commensurable to M_{n} and use the result [21, Proposition 1] that the cusp density of O_{n} is a commensurability invariant. The orbifold O_{n} arises as follows. The polyhedron R_{n} can be dissected by its obvious symmetry plane, also apparent in the Coxeter graph $\Sigma\left(R_{n}\right)$, into two copies of a (non-Coxeter) polyhedron $Q_{n}=Q\left(\frac{\pi}{n}\right)$ with a single ideal vertex. The polyhedron Q_{n} belongs to a 1-parameter family of polyhedra $Q(\alpha), \alpha \in\left(0, \frac{\pi}{2}\right)$, whose volumes can be determined, yielding also the volume of M_{n} with a (detailed) proof of Thurston's volume formula [23, Example 6.8.7]; see Section 3.1, Proposition 2 and the Corollary of Section 3.2. For the other ingredient of the cusp density of O_{n}, we determine the volume of the maximal polyhedral cusp $C(\alpha)$ embedded in $Q(\alpha)$ using basic hyperbolic trigonometry, only. In this way, we obtain a closed formula for the polyhedral cusp density $\delta(\alpha)=\operatorname{vol} C(\alpha) / \operatorname{vol} Q(\alpha)$ of $Q(\alpha)$ and hence for the cusp density of the orbifold O_{n}; see Theorem 2. In Section 3.3, we show by means of Schläfli's volume differential formula that the cusp density of O_{n} is strictly monotone with respect to n which finishes the proof of Theorem B. At the end, in Section 3.4, we again use Schläfli's differential formula for the 1-parameter family $R\left(\frac{\pi}{x}\right), x \in[6, \infty)$, in order to show that the function $h(x)=x \operatorname{vol}\left(R\left(\frac{\pi}{x}\right)\right)-(2 x-1) \mathrm{J}\left(\frac{\pi}{4}\right)$ is strictly monotonically increasing with $h(6)>0$. This result together with the Corollary finishes the proof of Theorem C.

Acknowledgements. The author would like to thank the referee for the comments. She is indebted to Hidetoshi Masai for helpful explanations in connection with Theorem C. She is grateful to William Schaller for the support with the drawings.

2. Polyhedral models for hyperbolic ($2 n$)-Chain link COMPLEMENTS

Let $n \geq 3$, and denote by $\mathcal{D}_{2 n}$ a (2n)-link chain as depicted in Figure 1
Following [23, Section 6.8] and [22], if each component of $\mathcal{D}_{2 n}$ is spanned by a disk in a natural way, the complement of the complex is an open solid torus. This torus with its cell decomposition yields the manifold $M_{n}=$ $\mathbb{S}^{3} \backslash \mathcal{D}_{2 n}$ by deleting its vertices and by identifying appropriately faces of the tiling of the torus boundary by rectangles.

The manifold M_{n} is homeomorphic to the complement $\mathbb{S}^{3} \backslash \mathcal{P}_{n}$ with respect to a pretzel FAL \mathcal{P}_{n} with n knot circles and n untwisted crossing circles. Indeed, the links $\mathcal{D}_{2 n}$ and \mathcal{P}_{n} have equivalent diagrams.

For a description of \mathcal{P}_{n} and its half-twist partners, see for instance [18] and Figures 1 and 11 therein.

Figure 1. The diagram of a 8 -link chain \mathcal{D}_{8}

The manifold M_{n} carries a hyperbolic structure induced by an ideal rightangled polyhedron $P=P_{n}$ that arises by suitably glueing four copies of an ideal right-angled n-gonal antiprism A_{n} (or drum in the terminology of Thurston [23, Section 6.8]). The polyhedron A_{n} has $2 n+2$ facets, $4 n$ edges and $2 n$ vertices on the ideal boundary $\partial \mathbb{H}^{3}$. More precisely, the antiprism A_{n} consists of two disjoint copies π and π^{\prime} of an ideal regular n-gon that are connected by an alternating band of $2 n$ triangles. In particular, the two polygons π, π^{\prime} are twisted by an angle of $\frac{\pi}{n}$, and their centres c, c^{\prime} are the endpoints of the common perpendicular of π and π^{\prime}.

In [18], the polyhedral decomposition of a pretzel FAL complement $\mathbb{S}^{3} \backslash \mathcal{P}_{n}$ into two isometric copies $P_{ \pm}$of the ideal right-angled polyhedron P is used to prove the above results, one of them arising by reflection of one antiprism A_{n} in the facet plane carrying π, say, and glueing both copies together. In fact, the resulting decomposition of the polyhedron P according to $P_{-} \cup P_{+}$ allows one to study a checkerboard coloring of the facets of each of the polyhedra $P_{ \pm}$having different implications for M_{n} (for further information, see [16, Appendix], [9] and [3]).

As a consequence, the volume M_{n} is given by $\operatorname{vol}\left(M_{n}\right)=4 \operatorname{vol}\left(A_{n}\right)=$ $2 \operatorname{vol}\left(P_{+}\right)$, and the (non-) arithmeticity of (the fundamental group of) M_{n} and $\mathbb{S}^{3} \backslash \mathcal{P}_{n}$ follows from the corresponding property of the groups generated by the reflections in the facet planes of A_{n} and in the facet planes of P_{+}, respectively.

In the sequel, we focus on the antiprism representation for M_{n} in order to decide about their arithmeticity and commensurability for all distinct $n \geq 3$.
2.1. The antiprism A_{n}, hyperbolic Coxeter groups and the arithmeticity of M_{n}. The antiprism A_{n} is an ideal right-angled polyhedron and hence a Coxeter polyhedron, that is, all of its dihedral angles are submultiples of π (see Figure 2 for $n=8$)

In this way, the reflections in the facet planes of A_{n} generate a discrete group $\Gamma_{n} \subset \operatorname{Isom} \mathbb{H}^{3}$ which is the hyperbolic realisation of a Coxeter group by Tits' representation. By construction, the fundamental group of M_{n} is a subgroup of index 4 in Γ_{n} so that the (non-)arithmeticity of $\pi_{1}\left(M_{n}\right)$ follows directly from the corresponding one of Γ_{n}.

Figure 2. The antiprism A_{8}

In view of the symmetry properties of A_{n}, we decompose the polyhedron A_{n} further into $2 n$ isometric pieces, each again a non-compact but nonideal Coxeter polyhedron of simple combinatorial type. The decomposition goes as follows. Pick the basis polygon π which is an ideal regular n-gon. Denote by c its centre and decompose π barycentrically into $2 n$ right-angled triangles, each with angle $\frac{\pi}{n}$ at c and one ideal vertex v. Denote by $\Delta=$ $[c, m, v]$ one of these triangles where m is the midpoint of an edge of π containing v. Perform the identical decomposition for the opposite polygon π^{\prime} of A_{n} and choose the triangle $\Delta^{\prime}=\left[c^{\prime}, m^{\prime}, v^{\prime}\right]$ such that v and v^{\prime} form an edge and so that m, v and v^{\prime} lie in the same triangle of A_{n}. The convex hull of the six vertices of Δ and Δ^{\prime} is a non-compact Coxeter polyhedron $R_{n}=R\left(\frac{\pi}{n}\right)$ all of whose dihedral angles are equal to $\frac{\pi}{2}$ apart form the angle $\frac{\pi}{n}$ at the ridge segment $\left[c, c^{\prime}\right]$. Only the vertices v and v^{\prime} of R_{n} are ideal (and non-simple). In the schematic picture as given in Figure 3, they are marked bold.

Figure 3. The Coxeter polyhedron $R_{n} \subset \mathbb{H}^{3}$

Our next aim is to treat the arithmeticity problem for M_{n} for $n \geq 3$. To this end, we study the Gram matrix of R_{n} in order to apply Vinberg's arithmeticity criterion stated below.

Consider an arbitrary (convex) polyhedron $P \subset \mathbb{H}^{3}$ with $k \geq 4$ bounding planes H_{1}, \ldots, H_{k}. The Gram matrix $G(P)=\left(g_{i j}\right)$ is a real symmetric $k \times k$ matrix of signature (3,1) with $g_{i i}=1$ whose coefficients $g_{i j}$ for $i \neq j$ encode the intersection behavior of the facets $H_{i} \cap P, 1 \leq i \leq k$, of P as follows.

$$
-g_{i j}= \begin{cases}\cos \alpha_{i j} & \text { if } \measuredangle\left(H_{i}, H_{j}\right)=\alpha_{i j}, \tag{2.1}\\ 1 & \text { if } H_{i}, H_{j} \text { are parallel, } \\ \cosh l_{i j} & \text { if } d_{H}\left(H_{i}, H_{j}\right)=l_{i j}>0\end{cases}
$$

Example 1. Consider the 1-parameter family $R(\alpha), \alpha \in\left[0, \frac{\pi}{2}\right)$, of polyhedra of the same combinatorial type as and comprising $R_{n}=R\left(\frac{\pi}{n}\right)$ for each $n \geq 3$. The Gram matrix of $R(\alpha)$ is given by

$$
G(R(\alpha))=\left(\begin{array}{ccrccr}
1 & -\cos \alpha & 0 & 0 & 0 & -1 \\
-\cos \alpha & 1 & -1 & 0 & 0 & 0 \\
0 & -1 & 1 & -1 & 0 & 0 \\
0 & 0 & -1 & 1 & -\cosh l_{\alpha} & 0 \\
0 & 0 & 0 & -\cosh l_{\alpha} & 1 & -1 \\
-1 & 0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

where the length l_{α} of the edge $\left[c, c^{\prime}\right]$ can be computed by exploiting the fact that $\operatorname{det}(G(R(\alpha)))=0$. It follows that

$$
\begin{equation*}
\cosh l_{\alpha}=\frac{1}{\cos \alpha} . \tag{2.2}
\end{equation*}
$$

A convenient and at times more efficient description of the polyhedron R_{n} is given by its Coxeter graph, or more generally, by the Vinberg graph when considering the comprehensive family $R(\alpha)$ as given in Example 1 .

For a Coxeter polyhedron $P \subset \mathbb{H}^{3}$ and its group $\Gamma \subset$ Isom \mathbb{H}^{3} generated by the reflections s_{1}, \ldots, s_{k} in the facet planes H_{1}, \ldots, H_{k} of P, the Coxeter graph $\Sigma(\Gamma)=\Sigma(P)$ of Γ (and of P) is constructed as follows. Each node i of $\Sigma(\Gamma)$ corresponds to a generator s_{i} (and to the plane H_{i}). Two nodes i, j are not joined by an edge if H_{i} and H_{j} are orthogonal. They are joined by a simple edge if the corresponding planes intersect under the angle $\frac{\pi}{3}$. The edge carries the weight $m_{i j} \geq 4, \infty$, or is replaced by a dotted edge (often with weight $l_{i j}$), if the hyperplanes H_{i}, H_{j} intersect under the angle $\frac{\pi}{m_{i j}}$, are parallel, or at the positive hyperbolic distance $l_{i j}$, respectively.

The Vinberg graph of an arbitrary polyhedron with dihedral angles $\alpha_{i j}$ between intersecting planes H_{i}, H_{j} is formed similarly to the case of the Coxeter graph, however, by replacing the edge weight $m_{i j}>3$ by the real value $\alpha_{i j}$.

Example 2. The Coxeter graph of $R_{n}, n \geq 3$, is given by Figure 4 .

$$
\text { where } \quad \cosh l_{n}=\frac{1}{\cos \frac{\pi}{n}} \text {. }
$$

Figure 4. The Coxeter graph of $R_{n} \subset \mathbb{H}^{3}$

For hyperbolic Coxeter groups of finite covolume, Vinberg [24, Theorem 2], [25, pp. 226-227], proved an efficient criterion for arithmeticity. In the case of a Coxeter group $\Gamma \subset$ Isom \mathbb{H}^{3} with a non-compact Coxeter polyhedron $P \subset \mathbb{H}^{3}$ of finite volume, Vinberg's criterion can be stated in terms of the Gram matrix $G(P)$ as follows. Consider twice the Gram matrix of P and write $2 G(P)=:\left(h_{i j}\right)$. Form the coefficient cycles (of length l) of the form

$$
\begin{equation*}
h_{i_{1} i_{2} \ldots i_{l}}:=h_{i_{1} i_{2}} h_{i_{2} i_{3}} \cdot \ldots \cdot h_{i_{l-1} i_{l}} h_{i_{l} i_{1}}, \tag{2.3}
\end{equation*}
$$

with distinct indices i_{j} in $2 G(P)$. The field $K(\Gamma):=\mathbb{Q}\left(\left\{h_{i_{1} i_{2} \ldots i_{l}}\right\}\right)$ generated by all cycles of $2 G(P)$ is called the Vinberg field of Γ. It is the smallest field of definition for Γ, and it is an algebraic number field coinciding with the adjoint trace field of Γ. As a consequence, the Vinberg field $K(\Gamma)$ is a commensurability invariant for Γ. For more details, see [7] Section 4] and [8, Section 3].
Vinberg's criterion. The Coxeter group $\Gamma \subset \operatorname{Isom} \mathbb{H}^{3}$ as given above (and its associated Coxeter orbifold $\left.\mathbb{H}^{3} / \Gamma\right)$ is arithmetic with field of definition \mathbb{Q} if and only if all the cycles of $2 G(P)$ are rational integers.

Example 3. The triangular antiprism A_{3} is an ideal regular octahedron with Schläfli symbol $\{3,4\}$. It can be barycentrically decomposed into 48 copies of a Coxeter tetrahedron with Coxeter graph $\bullet \bullet{ }^{4} \bullet{ }^{4}$ and Gram matrix

$$
\left(\begin{array}{rrrr}
1 & -\frac{1}{2} & 0 & 0 \\
-\frac{1}{2} & 1 & -\frac{1}{\sqrt{2}} & 0 \\
0 & -\frac{1}{\sqrt{2}} & 1 & -\frac{1}{\sqrt{2}} \\
0 & 0 & -\frac{1}{\sqrt{2}} & 1
\end{array}\right) .
$$

Vinberg's criterion implies the well known fact that the associated Coxeter group, denoted by $[3,4,4]$, is arithmetic (see [12], for example). Since the Coxeter group Γ_{3} related to A_{3} is of finite index in the group [3,4,4], Γ_{3} is arithmetic as well.

Example 4. The square antiprism A_{4} is an ideal right-angled polyhedron that is decomposable into 8 Coxeter polyhedra R_{4} with Coxeter graph given by Figure 4. Since $\cosh l_{4}=\sqrt{2}$ by (2.2), it is easy to see that all coefficient cycles of $2 G\left(R_{4}\right)$ are in \mathbb{Z}. By Vinberg's criterion, the Coxeter group generated by the reflections in the facets of R_{4} and the group Γ_{4} commensurable to it are arithmetic.

Remark 1. By Example 3 and Example 4 , the groups Γ_{3} and Γ_{4} are arithmetic groups. Since both groups are commensurable to non-cocompact arithmetic Kleinian groups (as discrete subgroups of $\operatorname{PSL}(2 ; \mathbb{C})$), they are commensurable to certain Bianchi groups by [17, Theorem 8.2.3]. Recall that a Bianchi group is of the from $\operatorname{PSL}\left(2 ; \mathcal{O}_{d}\right)$ where \mathcal{O}_{d} is the ring of integers of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$ for some positive square-free integer d.

More precisely, the group $[3,4,4]$ is commensurable to the Picard group $\operatorname{PSL}\left(2 ; \mathcal{O}_{1}\right)$, while the group Γ_{4} is commensurable to the group $\operatorname{PSL}\left(2 ; \mathcal{O}_{2}\right)$; see [23, Example 6.8.7] and [17, Section 9].

As a consequence, the groups Γ_{3} and Γ_{4} are incommensurable.
We are now able to provide a new proof about the arithmeticity of the manifolds $M_{n}, n \geq 3$, in a comparatively elementary way (see Theorem A in the Introduction). For another and more involved approach using short geodesics and invariant trace field calculations, see [18, Sections 3-5].
Theorem 1. The manifold $M_{n}=\mathbb{S}^{3} \backslash \mathcal{D}_{2 n}$ is arithmetic if and only if $n=$ 3,4.

Proof. In view of Example 3 and Example 4 we have to show that the manifold M_{n} is non-arithmetic for $n \geq 5$. Since arithmeticity is preserved with respect to commensurability, it suffices to prove non-arithmeticity for a group commensurable to $\pi_{1}\left(M_{n}\right)$, and we do so by considering the Coxeter group Γ_{n} associated to the right-angled antiprism A_{n}. Furthermore, Γ_{n} is a subgroup of index n in, and hence, commensurable to the Coxeter group Λ_{n} generated by the reflections in the facet planes of R_{n}. The Coxeter graph of $\Lambda_{n}\left(\right.$ and $\left.R_{n}\right)$ is given by Figure 4 , where

$$
4 \cosh ^{2} l_{n}=\frac{4}{\cos ^{2} \frac{\pi}{n}}
$$

according to 2.2 . We show that Λ_{n} is non-arithmetic for $n \geq 5$ by using Vinberg's criterion, that is, by showing that not all cycles of the matrix $2 G\left(R_{n}\right)$ are rational integers. It is easy to see that the non-trivial cycles in $2 G\left(R_{n}\right)$ are of the form $4,4 \cos ^{2} \frac{\pi}{n}$ and $4 \cosh ^{2} l_{n}$. Since $\cos ^{2} \frac{\pi}{n}$ is rational only for $n=1,2,3,4$ and 6 , with $4 \cos ^{2} \frac{\pi}{6}=3$, we deduce that for all $n \geq 5$, the cycle $4 \cosh ^{2} l_{n}$ as specified above is not in \mathbb{Z}.

Remark 2. The proof of Theorem 1 shows that the field of definition of the fundamental group of $M_{n}, n \geq 5$, is given by the Vinberg field $K\left(\Gamma_{n}\right)$ which is equal to

$$
\begin{equation*}
K\left(\pi_{1}\left(M_{n}\right)\right)=K\left(\Gamma_{n}\right)=\mathbb{Q}\left(\cos ^{2} \frac{\pi}{n}\right)=\mathbb{Q}\left(\cos \frac{2 \pi}{n}\right)=: K_{n} . \tag{2.4}
\end{equation*}
$$

The extension degree $\left[K_{n}: \mathbb{Q}\right]$ of K_{n} is given by $\varphi(n) / 2$ where $\varphi(n)$ denotes the Euler totient function which counts the positive integers smaller than or equal to n that are relatively prime to n. Since the function $\varphi(n)$ is not injective, we cannot deduce from (2.4) that the manifolds M_{m} and M_{n} are incommensurable for all distinct $m, n \geq 5$ since the Vinberg fields K_{m} and K_{n} (as commensurability invariants) may coincide. In Section 3, we shall prove that M_{m} and M_{n} are incommensurable for all distinct $m, n \geq 3$ by means of cusp density computations.

Remark 3. Consider the polyhedral description of the untwisted pretzel FAL complements $\mathbb{S}^{3} \backslash \mathcal{P}_{n}$ as described above. It follows from Theorem 1 together
with [18, Proposition 3.2] that $\mathbb{S}^{3} \backslash \mathcal{P}_{n}$ (and its half-twist partners) are nonarithmetic for $n \geq 5$.

3. Commensurability of the manifolds M_{n}

Our next goal is to decide about the commensurability of the manifolds $M_{n}, n \geq 3$. We can restrict the investigation to the case $n \geq 5$. In fact, the arithmetic fundamental groups of M_{3} and M_{4} are incommensurable, and by the non-arithmeticity of M_{n} for $n \geq 5$, it follows that M_{3} and M_{4} are incommensurable to M_{n} as well.

Let $n \geq 5$, and consider the hyperbolic Coxeter groups Γ_{n} and Λ_{n}, both commensurable to $\pi_{1}\left(M_{n}\right)$. The groups Γ_{n} and Λ_{n} are generated by the reflections in the facet planes of the ideal right-angled antiprism A_{n} and the non-compact polyhedron $R_{n}=R\left(\frac{\pi}{n}\right)$ with two ideal vertices, respectively.

The Coxeter graph $\Sigma\left(\Lambda_{n}\right)$ of the group Λ_{n} and its Coxeter polyhedron R_{n} are depicted in Figure 4 Obviously, the graph $\Sigma\left(\Lambda_{n}\right)$ has a vertical symmetry implying that the polyhedron R_{n} has a symmetry plane decomposing R_{n} into two isometric copies of a polyhedron $Q_{n}=Q\left(\frac{\pi}{n}\right)$, each having exactly one ideal vertex (for a general description, see Section 3.1). Denote by $\tau \in \operatorname{Isom} \mathbb{H}^{3}$ the half-turn which identifies the two copies of Q_{n}. Then, the group extension $\Lambda_{n}^{*}:=\Lambda_{n} \star\langle\tau\rangle$ is a discrete group, containing Λ_{n} with index two, and having Q_{n} as a fundamental polyhedron. Since Q_{n} has only one ideal vertex, the orbifold $\mathbb{H}^{3} / \Lambda_{n}^{*}$ is a 1 -cusped hyperbolic orbifold with a finite cover given by M_{n}.

In this context, consider an arbitrary non-compact orbifold $O=\mathbb{H}^{3} / \Gamma$ of finite volume where $\Gamma \subset \operatorname{Isom} \mathbb{H}^{3}$ is a discrete group with non-compact fundamental polyhedron $P \subset \mathbb{H}^{3}$, say. A cusp $C \subset O$ is a subset of O that lifts to a set of horoballs with disjoint interiors in \mathbb{H}^{3}. The cusp C corresponds to an ideal vertex $v \in P$ whose stabiliser $\Gamma_{v}<\Gamma$ is non-trivial. In this way, we can write $C=B_{v} / \Gamma_{v}$ where $B_{v} \subset \mathbb{H}^{3}$ is a precisely invariant horoball internally tangent to $\partial \mathbb{H}^{3}$ at v. The group Γ_{v} is a crystallographic group acting cocompactly by Euclidean isometries on the horosphere $H_{v}=\partial B_{v}$.

Assume that O is 1 -cusped, that is, O has precisely one cusp C, and that C is maximal in O, that is, C is tangent to itself at one or more points. The cusp density $\delta(O)=\delta(C)$ is defined by the volume quotient

$$
\begin{equation*}
\delta(O)=\delta(C)=\frac{\operatorname{vol}(C)}{\operatorname{vol}(O)} \tag{3.1}
\end{equation*}
$$

In the sequel, we usually work in the upper half space model

$$
\begin{equation*}
\mathcal{U}^{3}=\left(\mathbb{E}_{+}^{3}, d s^{2}=\frac{d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}}{x_{3}^{2}}\right) \tag{3.2}
\end{equation*}
$$

for \mathbb{H}^{3} and use the transitivity properties of the isometry group of \mathcal{U}^{3}. In particular, we can suppose that the (maximal, single) cusp C of O is of the form $C=B_{\infty} / \Gamma_{\infty}$ with boundary horosphere $H_{\infty}=\partial B_{\infty}$ at height $\rho>0$
from the ground space $\left\{x_{3}=0\right\}$. More specifically, for $\rho=1$, and by (3.2), the hyperbolic length of a horocyclic segment on H_{∞} coincides with the standard Euclidean length, and the induced area of a polygon on H_{∞} is given by its Euclidean area.

In general, the numerator $\operatorname{vol}(C)$ of (3.1) can be computed by means of the induced area of a fundamental polygon $P_{\infty} \subset H_{\infty}$ for the action of Γ_{∞} according to the classical formula

$$
\begin{equation*}
\operatorname{vol}(C)=\frac{\operatorname{vol}\left(P_{\infty}\right)}{2} \tag{3.3}
\end{equation*}
$$

Now, we can cite the following result in the context of commensurability of non-arithmetic hyperbolic orbifolds which will be of importance for what follows.

Proposition 1 ([21, Proposition 1], [10, Section 2]). The cusp density is a commensurability invariant for 1-cusped non-arithmetic hyperbolic orbifolds.

In the sequel, we shall study the cusp density of $\mathbb{H}^{3} / \Lambda_{n}^{*}$ from a polyhedral point of view. Our strategy is to determine the volume of the polyhedral half $Q(\alpha) \subset \mathbb{H}^{3}$ of $R(\alpha)$ and the volume of a maximal embedded polyhedral cusp neighborhood $C(\alpha)$ of the ideal vertex of $Q(\alpha)$ in terms of the angle parameter α; see Section 3.1 and Section 3.2. As a result, we shall get an explicit formula for the polyhedral cusp density of $Q\left(\frac{\pi}{n}\right)$ and for the cusp density of $\mathbb{H}^{3} / \Lambda_{n}^{*}$ (see Theorem 22. Then, we prove strict monotonicity of the density function for $Q(\alpha)$ which, by Proposition 11, implies that the manifolds M_{m} and M_{n} are pairwise incommensurable for distinct m, n.
3.1. The building block $Q(\alpha)$. Consider the polyhedron $R(\alpha) \subset \mathbb{H}^{3}$ whose Gram matrix is given in Example 1 and whose Vinberg graph arises from the Coxeter graph for R_{n} depicted in Figure 4. The polyhedron $R(\alpha)$ is related to an orthoscheme $\widehat{R}(\alpha)$ defined by the Vinberg graph $\bullet \infty \bullet \bullet \infty \bullet$ having two ultra-ideal vertices p_{0}, p_{3} (characterised by hyperbolic triangles with identical Vinberg graph $\bullet \bullet \bullet \bullet)$, both cut off by their corresponding polar planes H_{0}, H_{3}. In this way, $R(\alpha)$ is a doubly truncated orthoscheme. Furthermore, the truncating planes H_{0}, H_{3} have a common perpendicular of length l_{α} and touch the facets opposite to p_{0}, p_{3} at the ideal vertices $p_{1}:=v$ and $p_{2}:=v^{\prime}$ of $R(\alpha)$. Observe that the vertices p_{0}, \ldots, p_{3} form an orthogonal edge path in $\widehat{R}(\alpha)$. Denote by $F_{i}, 0 \leq i \leq 3$, the facets opposite to p_{i} in $\widehat{R}(\alpha)$. By means of the bisector H of H_{0}, H_{3} we divide $R(\alpha)$ into two copies of a new polyhedron with a single vertex, the building block $Q(\alpha)$. We consider $Q(\alpha)$ as being the part of $R(\alpha)$ with vertex p_{1}. The Vinberg graph of $Q(\alpha)$ is depicted in Figure 5. The plane H yields a face F of $Q(\alpha)$ that is at distance $\frac{l_{\alpha}}{2}$ from the plane H_{0}, and F intersects the face F_{3} at the dihedral angle β_{α}, the face F_{0} at the complement $\pi-\beta_{\alpha}$ and all other ones orthogonally.

Figure 5. The Vinberg graph of the building block $Q(\alpha) \subset \mathbb{H}^{3}$
Here, the angle β_{α} can easily be computed by using $(2.2$ as follows.

$$
\begin{equation*}
\cos \beta_{\alpha}=\frac{1}{\sqrt{2\left(1+\cosh l_{\alpha}\right)}}=\sqrt{\frac{\cos \alpha}{2(1+\cos \alpha)}} . \tag{3.4}
\end{equation*}
$$

Figure 6. Synthetic view of the building block $Q(\alpha) \subset \mathbb{H}^{3}$
3.2. The cusp density of $Q(\alpha)$. Our aim is to derive an explicit formula for the polyhedral cusp density of the building block $Q(\alpha) \subset \mathbb{H}^{3}, \alpha \in\left(0, \frac{\pi}{3}\right]$, defined by the volume quotient $\delta(\alpha)$ of a maximal embedded polyhedral cusp neighbood $C(\alpha)$ of the ideal vertex of $Q(\alpha)$ by the volume of $Q(\alpha)$. More precisely, the maximal embedded cusp neighborhood $C(\alpha)$ of the ideal vertex p_{1} of $Q(\alpha)$ is the horoball cone with apex p_{1} whose horospherical boundary is tangent to the closest of the two facets of $Q(\alpha)$ not incident to
p_{1}, see Figure 6. Again, we normalise the setting so that in the upper half space \mathcal{U}^{3}, the apex p_{1} is identified with ∞ and the horospherical boundary of $C(\alpha)$ is a horizontal plane at positive distance from $\left\{x_{3}=0\right\}$.
In the special case $\alpha=\frac{\pi}{n}$, the set $C\left(\frac{\pi}{n}\right)$ covers the maximal cusp in $\mathbb{H}^{3} / \Lambda_{n}^{*}$.
We start with the denominator $\operatorname{vol}(Q(\alpha))=\frac{1}{2} \operatorname{vol}(R(\alpha))$ of $\delta(\alpha)$. As mentioned in Section 3.1, $R(\alpha)$ is a doubly truncated orthoscheme whose truncating polar hyperplanes H_{0}, H_{3} associated to the vertices p_{0}, p_{3} are at distance l_{α} but touch their opposite facets F_{0}, F_{3} at the ideal vertices p_{1}, p_{2}, respectively. In particular, by [14, Theorem II], we dispose of an explicit volume formula in terms of the Lobachevsky function $\Pi(\omega)$ and the additional angle parameter $\theta=\theta(\alpha) \in\left[0, \frac{\pi}{2}\right)$ given by

$$
\begin{equation*}
\tan \theta=\cos \alpha \tag{3.5}
\end{equation*}
$$

as follows.

$$
\begin{equation*}
\operatorname{vol}(R(\alpha))=\frac{1}{4}\left\{\mathrm{~J}\left(\frac{\pi}{2}+\alpha-\theta\right)+\mathrm{J}\left(\frac{\pi}{2}-\alpha-\theta\right)+4 \mathrm{~J}(\theta)+2 \mathrm{~J}\left(\frac{\pi}{2}-\theta\right)\right\} . \tag{3.6}
\end{equation*}
$$

The Lobachevsky function is given by $\Pi(\omega)=-\int_{0}^{\omega} \log |2 \sin t| \mathrm{d} t$, and $\Pi(\omega)$ is odd, π-periodic and satisfies the distribution relation

$$
\begin{equation*}
\frac{1}{k} \mathrm{~J}(k x)=\sum_{r=0}^{k-1} \mathrm{~J}\left(x+\frac{r \pi}{k}\right), k \in \mathbb{N} . \tag{3.7}
\end{equation*}
$$

As an example, Catalan's constant $2 \mathrm{~J}\left(\frac{\pi}{4}\right) \approx 0.91596$ and the (maximum) value $\Pi\left(\frac{\pi}{6}\right)$ can be expressed according to

$$
\begin{equation*}
\frac{4}{3} \mathrm{~J}\left(\frac{\pi}{4}\right)=\mathrm{J}\left(\frac{\pi}{12}\right)+\mathrm{J}\left(\frac{5 \pi}{12}\right) \quad, \quad \mathrm{J}\left(\frac{\pi}{6}\right)=\frac{3}{2} \mathrm{~J}\left(\frac{\pi}{3}\right) \approx 0.50747 . \tag{3.8}
\end{equation*}
$$

For computations, the series representation

$$
\begin{equation*}
\mathrm{J}(\omega)=\omega\left(1-\log |2 \omega|+\sum \frac{B_{n}(2 \omega)^{2 n}}{2 n(2 n+1)!}\right) \tag{3.9}
\end{equation*}
$$

with Bernoulli coefficients $B_{1}=\frac{1}{6}, B_{2}=\frac{1}{30}, \ldots$ converges rapidly for $|\omega| \leq \pi$ (see [19, Appendix]).

The formula (3.6) is based on Schläfli's differential formula for the volume $v=v(\alpha):=\operatorname{vol}(\overline{R(\alpha)})$ in terms of the angle α, and the differential can be expressed according to

$$
\begin{equation*}
\frac{d}{d \alpha} v=-\frac{1}{2} l_{\alpha}=-\frac{1}{2} \operatorname{arcosh}\left(\frac{1}{\cos \alpha}\right) . \tag{3.10}
\end{equation*}
$$

As a consequence, the volume $v(\alpha)$ is a strictly decreasing function with respect to α.

The volume expression (3.6) for $R(\alpha)$ can be simplified without the use of the additional parameter θ as follows.

Proposition 2. For $\alpha \in\left[0, \frac{\pi}{2}\right)$,

$$
\begin{equation*}
\operatorname{vol}(R(\alpha))=\mathrm{J}\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)+\mathrm{J}\left(\frac{\pi}{4}-\frac{\alpha}{2}\right) . \tag{3.11}
\end{equation*}
$$

Proof. Associate to $R(\alpha)$ the polyhedral subset $\widehat{S}(\alpha)$ of the (infinite volume) orthoscheme $\widehat{R}(\alpha)$ with vertices p_{0}, \ldots, p_{3} by omitting the polar plane H_{3} associated to the ultra-ideal vertex p_{3}. In particular, by cutting $\widehat{S}(\alpha)$ by means of the plane H_{3}, we get back $R(\alpha)$. Let $r=\left[p_{0}, p_{2}\right] \cap H_{0}$ denote the vertex in the facet plane H_{0} on the geodesic defined by p_{0} and p_{2} in $\widehat{R}(\alpha)$. Then, the polyhedron $\widehat{S}(\alpha)$ can be cut into two (infinite volume) orthoschemes \widehat{R}_{1} and \widehat{R}_{2} by means of the plane defined by the vertices p_{1}, r, and p_{3} (see also [5, Theorem 2]).

Suppose for a moment that the vertices p_{2} and p_{3} of $\widehat{S}(\alpha)$ are ordinary points of \mathbb{H}^{3}. Then, $\widehat{S}(\alpha)$ is a finite volume pyramid with ideal apex p_{1} over a quadrilateral face, depending on further angular parameters. Now, for an arbitrary hyperbolic pyramid $P \subset \mathbb{H}^{3}$ with ideal apex q over an n-gon π with vertices a_{1}, \ldots, a_{n}, Vinberg [24, pp. 129-130] obtained a closed formula in terms of the dihedral angles (up to minor sign errors). In the particular case of a pyramid $P=P\left(\alpha_{1}, \ldots, \alpha_{4}\right)$ whose apex q at infinity is the intersection of 4 edges with right (interior) dihedral angles (an example is $\widehat{S}(\alpha)$), Vinberg's formula can be stated as follows in terms of the dihedral angles $\alpha_{1}, \ldots, \alpha_{4}$ at the edges of the quadrilateral π (circularly enumerated with indices modulo 4); see also [11, (2.12)].

$$
\begin{align*}
& 2 \operatorname{vol}(P)=\sum_{k=1}^{4}\left\{\mathrm{~J}\left(\left(\frac{\pi}{2}+\alpha_{k}+\alpha_{k+1}\right) / 2\right)+\mathrm{J}\left(\left(\frac{\pi}{2}+\alpha_{k}-\alpha_{k+1}\right) / 2\right)\right. \\
&\left.+\mathrm{J}\left(\left(\frac{\pi}{2}-\alpha_{k}+\alpha_{k+1}\right) / 2\right)+\mathrm{J}\left(\left(\frac{\pi}{2}-\alpha_{k}-\alpha_{k+1}\right) / 2\right)\right\} . \tag{3.12}
\end{align*}
$$

Furthermore, and in a similar way as above, $\widehat{S}(\alpha)$ is cut into the two ordinary (finite volume) orthoschemes \widehat{R}_{1} and \widehat{R}_{2} so that their volumes add up to the one of $\widehat{S}(\alpha)$.

Next, suppose that the vertex p_{3} of $\widehat{S}(\alpha)$ is ultraideal and cut off by its polar plane H_{3} so that $d_{\mathbb{H}}\left(H_{3}, F_{3}\right) \geq 0$. By [14, Theorem II], the analytical expressions of $\operatorname{vol}\left(\widehat{R}_{i}\right), i=1,2$, and hence of their $\operatorname{sum} \operatorname{vol}(\widehat{S}(\alpha))$ in terms of the dihedral angles and Lobachevsky's function remain unchanged under this truncation process. Moreover, in the limiting case $d_{\mathbb{H}}\left(H_{3}, F_{3}\right)=0$ where p_{2} becomes an ideal vertex of $\widehat{R}(\alpha)$, the polyhedra $\widehat{S}(\alpha)$ and $R(\alpha)$ coincide.

As a consequence, the volume of $R(\alpha)$ equals the volume of the polarly truncated square pyramid $\widehat{S}(\alpha)$ with angles $\alpha_{1}=\alpha, \alpha_{2}=0$ and $\alpha_{3}=\alpha_{4}=\frac{\pi}{2}$. By (3.12) and (3.7), it follows that

$$
\operatorname{vol}(R(\alpha))=\mathrm{J}\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)+\mathrm{J}\left(\frac{\pi}{4}-\frac{\alpha}{2}\right) .
$$

By Proposition 2, a formula for the volume of the ($2 n$)-link chain complement $\mathbb{S}^{3} \backslash \mathcal{D}_{2 n}$ can now be deduced, and it agrees with Thurston's formula

Figure 7. A horoarc in the right-angled triangle $T=$ [q, v_{1}, v_{2}] with ideal vertex q
presented without proof in [23, Example 6.8.7]. The following result corresponds to part (1) of Theorem C (the part (2) will be proved in Section 3.4).

Corollary. The volume of the ($2 n$)-link chain complement $\mathbb{S}^{3} \backslash \mathcal{D}_{2 n}$ equals
$\operatorname{vol}\left(M_{n}\right)=4 \operatorname{vol}\left(A_{n}\right)=8 n \operatorname{vol}\left(R\left(\frac{\pi}{n}\right)\right)=8 n\left\{\mathrm{~J}\left(\frac{\pi}{4}+\frac{\pi}{2 n}\right)+\mathrm{J}\left(\frac{\pi}{4}-\frac{\pi}{2 n}\right)\right\}, n \geq 3$.
Remark 4. The comparison of formula (3.6) with the one (3.11) of Proposition 2 yields a functional equation for the inscrutable Lobachevsky function $\mathrm{J}(\omega)$ in a geometric way. For $\alpha, \theta \in\left[0, \frac{\pi}{2}\right)$ connected by $\tan \theta=\cos \alpha$,

$$
\begin{aligned}
& 4\left\{\mathrm{~J}\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)+\mathrm{J}\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)\right\}= \\
& \quad \mathrm{J}\left(\frac{\pi}{2}+\alpha-\theta\right)+\mathrm{J}\left(\frac{\pi}{2}-\alpha-\theta\right)+4 \mathrm{~J}(\theta)+2 \mathrm{~J}\left(\frac{\pi}{2}-\theta\right) .
\end{aligned}
$$

Next, we determine the numerator of the cusp density function $\delta(\alpha)$. By viewing the maximal cusp $C(\alpha) \subset Q(\alpha)$ in \mathcal{U}^{3} and identifying its centre given by the 4 -valent ideal vertex p_{1} with $\infty, C(\alpha)$ is a cone over a right-angled quadrilateral with induced edge lengths, h, k, say, along the horocycles according to (3.2). For the volume, one has

$$
\begin{equation*}
\operatorname{vol}(C(\alpha))=\frac{h k}{2} . \tag{3.13}
\end{equation*}
$$

The following classical results about horocycle geometry will be useful in order to determine h, k and hence $\operatorname{vol}(C(\alpha))$. Consider first a hyperbolic triangle T with one ideal vertex q, a right angle at the vertex v_{1} and the angle ω at the vertex v_{2}. Let $d=d_{\mathbb{H}}\left(v_{1}, v_{2}\right)$, and consider the horoarc segment in T, based at q and touching v_{1}, of hyperbolic length h. The situation is depicted in Figure 7 in a synthetic way.

Lemma 1 ([6, Section 4]). Denote by h the hyperbolic length along the horoarc based at the ideal vertex q and touching the vertex v_{1} in the rightangled triangle $T=\left[q, v_{1}, v_{2}\right]$. Let ω be the angle of T at v_{2} and $d=d_{\mathbb{H}}\left(v_{1}, v_{2}\right)$ according to Figure 7. Then,

$$
h=\cos \omega=\tanh d .
$$

Figure 8. A horoarc in the right-angled triangle $T=$ $\left[\infty, v_{1}, v_{2}\right]$ with ideal vertex ∞

We provide a short proof Lemma 1.
Proof. Consider the triangle T in the upper half plane $\mathcal{U}^{2} \subset \mathbb{E}_{+}^{2}$ so that its ideal vertex q is identified with ∞ and the vertex $v_{1}=(0, \rho) \in \mathcal{U}^{2}$ lies at height $\rho>0$ on the geodesic line l_{1} passing through 0 and ∞. Then, the vertex v_{2} lies on the half-circle centred at 0 and of radius ρ, and its hyperbolic distance d to v_{1} is given by the formula (see [2, (7.20.3)])

$$
\begin{equation*}
\tanh d=\sin \theta \tag{3.14}
\end{equation*}
$$

where θ is the angle formed by the line l_{1} and the euclidean line l defined by the points 0 and v_{2}; see Figure 8. By construction, $\theta=\frac{\pi}{2}-\omega$. Let l_{2} be the vertical line through v_{2}. For the induced length h along the (red colored) horoarc on height ρ from $\left\{x_{2}=0\right\}$ delimited by l_{1} and $l_{2}, 3.2$ yields

$$
\begin{equation*}
h=\frac{h_{0}}{\rho} \tag{3.15}
\end{equation*}
$$

where h_{0} denotes the Euclidean distance between l_{1} and l_{2}. On the other hand side, $\cos \omega=\sin \theta=\frac{h_{0}}{\rho}$ which yields $h=\cos \omega=\tanh d$ as desired.

Next, consider a Lambert quadrilateral $L=L(a, b) \subset \mathbb{H}^{2}$ with one ideal vertex q and opposite edges of lengths a and b, respectively. Furthermore, L has three right angles at the ordinary vertices x, y and z, and the lengths a and b of the edges $[x, y]$ and $[y, z]$ are related by the well known formula $\sinh a \cdot \sinh b=1$. Put a horocycle σ based at q in such a way that it starts at the vertex z and has non-empty intersection with L. Denote by s the intersection point of σ with the geodesic defined by q and x. The point s can lie outside of L. Let h be the hyperbolic length of the horoarc $\sigma_{s} \subset \sigma$ delimited by s and z. The situation is depicted in Figure 9

Figure 9. The Lambert quadrilateral L and a horoarc σ_{s} of length h

Lemma 2. Let $a=d_{\mathbb{H}}(x, y)$ be the edge length of the Lambert quadrilateral $L=[q, x, y, z]$ with ideal vertex q according to Figure 9, Denote by h the hyperbolic length of the horoarc σ_{s} based at q and delimited by the points s and z related to L. Then,

$$
h=\cosh a .
$$

Furthermore, the intersection point s lies outside of the edge $[q, x]$ of L if and only if $h>\sqrt{2}$.
Remark 5. The condition $h>\sqrt{2}$ in Lemma 2 is equivalent to the property that $\sinh a>1$ and hence to $\sinh b<1$ for the edge length $b=d_{\mathbb{H}}(y, z)$ in L. As a consequence, the horoarc σ_{q}^{\prime} of hyperbolic length h^{\prime} based at q and starting at x towards L has its intersection point s^{\prime} on the edge $[q, z]$ of L and satisfies $h^{\prime}=\cosh b$.

Proof. We provide a proof which is very similar to the one of Lemma 1. View the Lambert quadrilateral L in the upper half plane \mathcal{U}^{2} in such a way that its ideal vertex q coincides with ∞ and that the vertex z is at height r from the boundary $\left\{x_{2}=0\right\}$; see Figure 10 .

Figure 10. The Lambert quadrilateral L in the upper half plane
The edges $[x, y]$ and $[y, z]$ lie on semicircles C_{x} and C_{z}, both perpendicular to the boundary $\left\{x_{2}=0\right\}$ and intersecting orthogonally each other at y.

Consider the semicircle C_{x} with its centre c_{x} at 0 and with radius ρ. Let θ be the angle between the radii $\left[c_{x}, x\right]$ and $\left[c_{x}, y\right]$. By the same correspondence as given by (3.14), we have here that

$$
\begin{equation*}
\tanh a=\sin \theta \quad(\text { and similarly, } \tanh b=\cos \theta) . \tag{3.16}
\end{equation*}
$$

The hyperbolic length h of the horoarc is given in terms of the Euclidean distance $h_{0}=d_{0}\left(c_{x}, c_{z}\right)$ and the radius r according to $h=\frac{h_{0}}{r}$. Furthermore, we easily see that

$$
\begin{align*}
h_{0}^{2} & =r^{2}+\rho^{2}, \tag{3.17}\\
\tan \theta & =\frac{\rho}{r} . \tag{3.18}
\end{align*}
$$

Putting (3.16)-(3.18) together, we obtain

$$
h^{2}=\frac{h_{0}^{2}}{r^{2}}=\frac{r^{2}\left(1+\tan ^{2} \theta\right)}{r^{2}}=\frac{1}{\cos ^{2} \theta}=\cosh ^{2} a
$$

as claimed.
In order to finish the proof, we need to show that the hyperbolic distance $d_{\mathbb{H}}(x, s)$ is positive if and only if $h>\sqrt{2}$. In terms of the Euclidean radii ρ of C_{x} and r of C_{z}, this condition is equivalent to the property $\log \frac{\rho}{r}>0$. By (3.18), $\rho>r$ holds if and only if $\theta>\frac{\pi}{4}$, that is, by (3.16), that $\tanh a>\frac{1}{\sqrt{2}}$. Since

$$
\frac{1}{\cosh ^{2} a}=1-\tanh ^{2} a,
$$

we deduce that $\cosh a=h>\sqrt{2}$.
Finally, consider a horocyclic sector bounded by a horoarc of length h based at the ideal point q and a concentric horoarc of length k with $0<k<h$ (lengths with respect to the induced metric) at hyperbolic distance d; see Figure 11. By means of (3.15) in the upper half plane setting, it is easy to

Figure 11. Two concentric horoarcs based at q and at hyperbolic distance d
derive the following result.
Lemma 3 ([6, Section 5], [23, Section 3.7]). Denote by d the hyperbolic distance of two concentric horoarcs based at the ideal point q and of induced
hyperbolic lengths h and k with $0<k<h$ along the respective horocycles according to Figure 11. Then,

$$
\frac{h}{k}=e^{d} .
$$

Now, we are in the position to prove the following result.
Proposition 3. For $\alpha \in\left(0, \frac{\pi}{3}\right]$, the cusp volume $\operatorname{vol}(C(\alpha))$ is given by

$$
\operatorname{vol}(C(\alpha))=\frac{1}{2(2+\cos \alpha)} .
$$

Proof. Consider the building block $Q(\alpha)$ as part of the doubly truncated orthoscheme $R(\alpha)$. By (3.13), we have to quantify the lengths h, k of the base quadrilateral on the horosphere boundary of the cone $C(\alpha)$ with apex p_{1}. Let us introduce some notations according to Figure 6. The triangle [p_{0}, p_{1}, p_{3}] gives rise to the Lambert quadrilateral $L=L(a, b)$ in $R(\alpha)$ with vertices p_{1}, x, y and z and edge lengths $d_{\mathbb{H}}(x, y)=l_{\alpha}=: a$ and $d_{\mathbb{H}}(y, z)=: b$.

The ordinary vertices $r=\left[p_{0}, p_{2}\right] \cap H_{0}$ and $s=\left[p_{1}, p_{3}\right] \cap H$ of $Q(\alpha)$ belong both to the right-angled triangular facets with ideal vertex p_{1} of $Q(\alpha)$. Let $m=\left[p_{0}, p_{3}\right] \cap H$ and $w=\left[p_{1}, p_{2}\right] \cap H$ be vertices of $Q(\alpha)$ defined by the facet plane H. By construction, the triangle $\left[p_{1}, r, x\right]$ has angle α at x giving rise to the horoarc based at p_{1}, starting at r and of length $h_{\alpha}=\cos \alpha$ according to Lemma 1. In a similar way, the triangle $\left[p_{1}, s, w\right]$ has angle ω at w and contains the horoarc h_{ω} based at p_{1}, starting at s and of length $h_{\omega}=\cos \omega$. The angle $\omega \in\left(0, \frac{\pi}{2}\right)$ depends on $\beta=\beta_{\alpha}$ and hence on α as follows. Consider the spherical vertex triangle associated to w which, by construction, is rightangled with angles β and $\pi-\beta$ and edge length ω opposite to its vertex with angle β. We easily deduce that

$$
\cos \omega=\cot \beta
$$

and hence, $h_{\omega}=: h_{\beta}=\cot \beta$.
We start by determining an edge length h of the horospherical quadrilateral bounding $C(\alpha)$. We claim that $h_{\alpha}>h_{\beta}$ for $\alpha \in\left(0, \frac{\pi}{3}\right]$ so that $h=h_{\beta}$. Implementing the expressions for h_{α} and h_{β}, and using the identity (3.4) between α and β, we see that $h_{\alpha}>h_{\beta}$ is equivalent to the following inequality.

$$
\cos ^{2} \alpha \tan ^{2} \beta=\cos ^{2} \alpha\left(1+\frac{2}{\cos \alpha}\right)>1 .
$$

Since $\alpha \in\left(0, \frac{\pi}{3}\right]$, the term above is indeed bigger than 1 .
Next, we determine the other edge length k of the base quadrilateral of $C(\alpha)$ which is the length of the horoarc κ based at p_{1} and starting at s towards the facet plane H_{0}. For this, consider the Lambert quadrilateral $L=$ $L(a, b)=\left[p_{1}, x, y, z\right] \subset R(\alpha)$. The edge length $a=l_{\alpha}$ is given by (2.2) while the length b of the edge $[y, z]$ can be deduced by hyperbolic trigonometry for the right-angled triangle $\left[y, z, p_{2}\right]$ according to

$$
\cosh b=\frac{1}{\sin \alpha} .
$$

Consider the horocycle σ based at p_{1} and starting at z towards the geodesic [$\left.p_{1}, x\right]$ in L. Denote by t the intersection point of σ with the geodesic defined by p_{1} and x. By Lemma 2 , the length K of the horoarc $\sigma_{t} \subset \sigma$ delimited by t and z is given by

$$
K=\cosh l_{\alpha}=\frac{1}{\cos \alpha}
$$

Observe that σ_{t} is concentric with κ, and the hyperbolic distance between σ_{t} and κ is given by $d=d_{\mathbb{H}}(s, z)$. The distance $d_{\mathbb{H}}(s, z)$ can easily be computed by looking at the (compact) Lambert quadrilateral $[s, m, y, z]$ with two neighboring edges of known lengths b and $\frac{l_{\alpha}}{2}$ (see [2, Theorem 7.17.1]). It follows that

$$
\tanh d=\cosh b \cdot \tanh \frac{l_{\alpha}}{2}=\frac{1}{\sin \alpha} \cdot \frac{\sin \alpha}{1+\cos \alpha}=\frac{1}{1+\cos \alpha} .
$$

By Lemma 3 and Euler's identity for e^{d}, we deduce that

$$
\begin{aligned}
\frac{K}{k}=e^{d} & =\cosh d+\sinh d=\cosh d(1+\tanh d) \\
& =\frac{1+\cos \alpha}{\sqrt{\cos \alpha(2+\cos \alpha)}}\left(1+\frac{1}{1+\cos \alpha}\right)=\frac{2+\cos \alpha}{\sqrt{\cos \alpha(2+\cos \alpha)}}
\end{aligned}
$$

As a consequence of the above identities, we get

$$
\begin{aligned}
\operatorname{vol}(C(\alpha)) & =\frac{h k}{2}=\frac{1}{2} h_{\beta} K e^{-d} \\
& =\frac{1}{2} \sqrt{\frac{\cos \alpha}{2+\cos \alpha}} \cdot \frac{1}{\cos \alpha} \cdot \frac{\sqrt{\cos \alpha(2+\cos \alpha)}}{2+\cos \alpha}=\frac{1}{2(2+\cos \alpha)}
\end{aligned}
$$

as claimed.
Putting the results of Proposition 2 and Proposition 3 together, we obtain the following explicit formula for the polyhedral cusp density of the building block $Q(\alpha)$.

Theorem 2. For $\alpha \in\left(0, \frac{\pi}{3}\right]$, the polyhedral cusp density $\delta(\alpha)$ of $Q(\alpha)$ is given by

$$
\delta(\alpha)=\frac{\operatorname{vol}(C(\alpha))}{\operatorname{vol}(Q(\alpha))}=\frac{1}{2(2+\cos \alpha)\left\{\mathrm{J}\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)+\mathrm{J}\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)\right\}} .
$$

By means of Theorem 2 and the explicit representation of the density function $\delta(\alpha)$, we can prove the following important property of $\delta(\alpha)$.

Theorem 3. For $\alpha \in\left(0, \frac{\pi}{3}\right]$, the polyhedral cusp density $\delta(\alpha)$ of $Q(\alpha)$ is a strictly increasing function.
Proof. By Theorem 2 and Proposition 3, the numerator $\operatorname{vol}(C(\alpha))$ of the quotient $\delta(\alpha)$ is given by

$$
\operatorname{vol}(C(\alpha))=\frac{1}{2(2+\cos \alpha)},
$$

which is a strictly increasing function with respect to α. For the denominator $\operatorname{vol}(Q(\alpha))$ of $\delta(\alpha)$, we conclude by means of Schläfli's differential formula

$$
\frac{d}{d \alpha} \operatorname{vol}(Q(\alpha))=-\frac{1}{4} l_{\alpha}=-\frac{1}{4} \operatorname{arcosh}\left(\frac{1}{\cos \alpha}\right)<0
$$

as given by 3.10 , that $\operatorname{vol}(Q(\alpha))$ is strictly decreasing. Hence, the function $\delta(\alpha)$ is strictly increasing.

In the next section, we use Theorem 3 to prove the incommensurability of the manifolds M_{n} given by the complements of \mathbb{S}^{3} by the $(2 n)$-link chains $\mathcal{D}_{2 n}$ by specialising to the case $\alpha=\frac{\pi}{n}$ and $Q_{n}=Q\left(\frac{\pi}{n}\right)$ for all $n \geq 3$.
3.3. Cusp density and commensurability of the manifolds M_{n}. In this section, we apply our previous results to give a new and more elementary combinatorial-geometric proof of the following result due to Meyer, Millichap and Trapp [18, Section 6] (see Theorem B in the Introduction).

Theorem 4. For $n \geq 3$, let $M_{n}=\mathbb{S}^{3} \backslash \mathcal{D}_{2 n}$ denote the complement of \mathbb{S}^{3} by the ($2 n$)-link chain $\mathcal{D}_{2 n}$. Then, M_{n} is incommensurable to M_{m} for all distinct $m, n \geq 3$.

Proof. As already pointed out at the beginning of Section 3 (see also Remark 11, it is sufficient to consider the non-arithmetic case, that is, to compare manifolds M_{n} and M_{m} up to commensurability for distinct $m, n \geq 5$.

Recall that the fundamental group $\pi_{1}\left(M_{n}\right)$ of M_{n} is commensurable to the group Λ_{n} generated by the reflections in the facet planes of the doubly truncated Coxeter orthoscheme $R_{n}=R\left(\frac{\pi}{n}\right)$ with two ideal vertices. The polyhedron R_{n} decomposes into two isometric copies of the building block $Q_{n}=Q\left(\frac{\pi}{n}\right)$ with one ideal vertex which are identified by the half-turn τ. In particular, $\pi_{1}\left(M_{n}\right)$ is commensurable to the group extension $\Lambda_{n}^{*}=\Lambda_{n} \star\langle\tau\rangle$ of Λ_{n}.

For $n \geq 5$, and alike $\pi_{1}\left(M_{n}\right)$, the group Λ_{n}^{*} is non-arithmetic by Theorem 1. Since the orbifold $\mathbb{H}^{3} / \Lambda_{n}^{*}$ is 1-cusped, its cusp density $\delta_{n}:=\delta\left(\mathbb{H}^{3} / \Lambda_{n}^{*}\right)$ is a commensurability invariant by Proposition 1.

Finally, the cusp density function δ_{n} is strictly monotone with respect to n by Theorem 3. Therefore, $\delta_{m} \neq \delta_{n}$ for distinct $m, n \geq 5$ implying that the manifolds M_{m} and M_{n} finitely covering the orbifolds $\mathbb{H}^{3} / \Lambda_{m}^{*}$ and $\mathbb{H}^{3} / \Lambda_{n}^{*}$ are incommensurable.

Remark 6. Our approach to prove arithmeticity and incommensurability of hyperbolic link complements by means of their polyhedral building blocks works also for other infinite families of manifolds. However, for a convenient arithmeticity check, it is useful to detect building blocks that are Coxeter polyhedra of simple combinatorial type. In the case of the link complements M_{n}, we have a choice of two types of Coxeter polyhedra, ideal right-angled
antiprisms with $2 n+2$ facets and - more conveniently - doubly truncated Coxeter orthoschemes with 6 facets. Their associated reflections groups give rise to Coxeter orbifolds or reflection orbifolds in the terminology of [18, Section 3] and [3, Section 7], for example. In this context, note that Chesebro, DeBlois and Wilton [3, Section 7.2] describe an infinite family of FAL manifolds that are not commensurable to any Coxeter orbifold.

Remark 7. As already mentioned, Meyer, Millichap and Trap [18, Section 6] provide a different proof of Theorem 4. In fact, they study the symmetry group of $M_{n}, n \geq 5$, which is isomorphic to the quotient group $N\left(\Pi_{n}\right) / \Pi_{n}$ of the normaliser $N\left(\Pi_{n}\right)$ of $\Pi_{n}:=\pi_{1}\left(M_{n}\right)$ in Isom \mathbb{H}^{3} by Π_{n}. Hidden symmetries of M_{n} correspond to non-trivial elements in $C\left(\Pi_{n}\right) / N\left(\Pi_{n}\right)$ where $C\left(\Pi_{n}\right)$ is the commensurator of the group Π_{n}. Then, the authors classify the symmetries and hidden symmetries of M_{n}. This study allows them to show that the manifolds $M_{n}, n \geq 5$, admit no hidden symmetry, and to deduce that the manifolds M_{m} and M_{n} are incommensurable for distinct m, n. See [18, Theorem 6.1, Corollary 6.3 and Corollary 6.4].
3.4. Comparing the volumes of M_{n} and \widehat{W}_{n}. In this paragraph, we complete the proof of Theorem C and verify its part (2) which states that for $n \geq 6$, the volume of M_{n} is strictly bigger than the volume of the $(2 n-1)$ cyclic cover over one component of the Whitehead link \widehat{W}_{n}. This property, without proof, was indicated to Agol by Ventzke and hinted more concretely by Masai; see [1, 13].

By the Corollary of Section 3.2 the volume of M_{n} is given by $8 n \operatorname{vol}\left(R\left(\frac{\pi}{n}\right)\right)$ and in terms of the Lobachevsky function. The volume of \widehat{W}_{n} equals ($2 n-$ 1) $\operatorname{vol}\left(O_{r e g}^{\infty}\right)$ where $O_{r e g}^{\infty}$ is an ideal regular octahedron of dihedral angle $\frac{\pi}{4}$ which can be dissected into 6 copies of the Coxeter polyhedron $R\left(\frac{\pi}{3}\right)$; see [15, Part (d), pp. 326-328]. Hence, by (3.8) and (3.11), the volume of the manifold \widehat{W}_{n} equals $6(2 n-1)\left\{\mathrm{J}\left(\frac{\pi}{12}\right)+\mathrm{J}\left(\frac{5 \pi}{12}\right)\right\}=8(2 n-1) \mathrm{J}\left(\frac{\pi}{4}\right)$.

For the real parameter $x \in[6, \infty)$, define the help function

$$
\begin{equation*}
h(x)=x \operatorname{vol}\left(R\left(\frac{\pi}{x}\right)\right)-(2 x-1) \mathrm{J}\left(\frac{\pi}{4}\right) . \tag{3.19}
\end{equation*}
$$

It follows that $8 h(n)=\operatorname{vol}\left(M_{n}\right)-\operatorname{vol}\left(\widehat{W}_{n}\right)$. Furthermore, one can show that $h(6)>0$. In fact, (3.8) and (3.11) give

$$
h(6)=6 \operatorname{vol}\left(R\left(\frac{\pi}{6}\right)\right)-11 \mathrm{~J}\left(\frac{\pi}{4}\right)=10 \mathrm{~J}\left(\frac{\pi}{6}\right)-11 \mathrm{~J}\left(\frac{\pi}{4}\right),
$$

and by means of the series representation (3.9) in the form

$$
J(\omega)=\omega\left(1-\log |2 \omega|+\frac{\omega^{2}}{18}+\frac{\omega^{4}}{900}+\ldots\right),
$$

one deduces that $h(6)=10 \mathrm{~J}\left(\frac{\pi}{6}\right)-11 \mathrm{~J}\left(\frac{\pi}{4}\right) \approx 0.036$.

Hence, in order to prove part (2) of Theorem C] it suffices to show that $h(x)$ is strictly monotonically increasing. To this end, we use Schläfli's differential formula presented in Section 3.2 and express the volume of $R\left(\frac{\pi}{x}\right)$ in integral form

$$
\operatorname{vol}\left(R\left(\frac{\pi}{x}\right)\right)=-\frac{1}{2} \int_{0}^{\frac{\pi}{x}} l_{\alpha} d \alpha+2 \mathrm{~J}\left(\frac{\pi}{4}\right),
$$

where the integrand l_{α} is the edge length associated to the dihedral angle α of the family $R(\alpha)$; see (3.10). As for the second term at the right hand side, we used (3.11) of Proposition 2 for the identification $\operatorname{vol}(R(0))=2 \mathrm{~J}\left(\frac{\pi}{4}\right)$.

By (3.19), it follows that

$$
h(x)=-\frac{x}{2} \int_{0}^{\frac{\pi}{x}} l_{\alpha} d \alpha+\mathrm{J}\left(\frac{\pi}{4}\right)
$$

and by taking derivatives,

$$
h^{\prime}(x)=-\frac{1}{2} \int_{0}^{\frac{\pi}{x}} l_{\alpha} d \alpha+\frac{\pi}{2 x} l_{\frac{\pi}{x}} .
$$

Consider the edge length l_{α} given by $\cosh l_{\alpha}=1 / \cos \alpha$ according to (2.2). Obviously, l_{α} is strictly monotonically increasing. This fact implies that $h^{\prime}(x)>0$. Hence, $h(x)$ is strictly monotonically increasing with $h(6)>0$, and this conclusion yields part (2) of Theorem C.

References

[1] I. Agol, The minimal volume orientable hyperbolic 2-cusped 3-manifolds, Proc. Amer. Math. Soc. 138 (2010), 3723-3732.
[2] A. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983.
[3] E. Chesebro, J. DeBlois, H. Wilton, Some virtually special hyperbolic 3-manifold groups, Comment. Math. Helv. 87 (2012), 727-787.
[4] E. Chesebro, J. DeBlois, Algebraic invariants, mutation, and commensurability of link complements, Pacific J. Math. 267 (2014), 341-398.
[5] H. Coxeter, Trisecting an orthoscheme, Comput. Math. Appl. 17 (1989), 59-71.
[6] H. Coxeter, Arrangements of equal spheres in non-Euclidean spaces, Acta Math. Acad. Sci. Hungar. 5 (1954), 263-274.
[7] E. Dotti, Groups of hyperbolic isometries and their commensurability, Ph.D. thesis no. 2213, University of Fribourg, 2020.
[8] E. Dotti, On the commensurability of hyperbolic Coxeter groups, arXiv:2101.10024v1, 25 January 2021.
[9] D. Futer, J. Purcell, Links with no exceptional surgeries, Comment. Math. Helv. 82 (2007), 629-664.
[10] O. Goodman, D. Heard, C. Hodgson, Commensurators of cusped hyperbolic manifolds, Experiment. Math. 17 (2008), 283-306.
[11] R. Guglielmetti, M. Jacquemet, R. Kellerhals, Commensurability of hyperbolic Coxeter groups: theory and computation, RIMS Kôkyûroku Bessatsu B66 (2017), 57-113.
[12] N. Johnson, R. Kellerhals, J. Ratcliffe, S. Tschantz, Commensurability classes of hyperbolic Coxeter groups, Linear Algebra Appl. 345 (2002), 119-147.
[13] J. Kaiser, J. Purcell, C. Rollins, Volumes of chain links, J. Knot Theory Ramifications 21 (2012), 1250115, 17pp.
[14] R. Kellerhals, On the volume of hyperbolic polyhedra, Math. Ann. 285 (1989), 541-569.
[15] R. Kellerhals, The dilogarithm and volumes of hyperbolic polytopes, Structural properties of polylogarithms, 301-336, Math. Surveys Monogr., 37, Amer. Math. Soc., Providence, RI, 1991.
[16] M. Lackenby, The volume of hyperbolic alternating link complements, Proc. London Math. Soc. 88 (2004), 204-224, With an appendix by Ian Agol and Dylan Thurston.
[17] C. Maclachlan, A. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol.219, Springer-Verlag, New York, 2003.
[18] J. Meyer, C. Millichap, R. Trapp, Arithmeticity and hidden symmetries of fully augmented pretzel link complements, New York J. Math. 26 (2020), 149-183.
[19] J. Milnor, Hyperbolic geometry: the first 150 years, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 9-24.
[20] W. Neumann, A. Reid, Arithmetic of hyperbolic manifolds, in: Topology '90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., vol. 1, 273-310, 1992.
[21] W. Neumann, A. Reid, Notes on Adams' small volume orbifolds, in: Topology '90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., vol. 1, 311-314, 1992.
[22] J. Purcell, An introduction to fully augmented links, Interactions between hyperbolic geometry, quantum topology and number theory, 205-220, Contemp. Math., 541, Amer. Math. Soc., Providence, RI, 2011.
[23] W. Thurston, The geometry and topology of three-manifolds, electronic version, 1.1 March 2002, http://www.msri.org/publications/books/gt3m/.
[24] È. Vinberg, Discrete groups generated by reflections in Lobačevskiŭ spaces, Mat. Sb . (N.S.) $\mathbf{7 2}$ (114) (1967), 471-488; correction, ibid. 73 (115) (1967), 303.
[25] È. Vinberg, O. Shvartsman, Discrete groups of motions of spaces of constant curvature, Geometry, II, Encyclopaedia Math. Sci., vol. 29, Springer, Berlin, 1993, pp. 139-248.
[26] K. Yoshida, The minimal volume orientable hyperbolic 3-manifold with 4 cusps, Pacific J. Math. 266 (2013), 457-476.
[27] H. Yoshida, Commensurability of link complements, Osaka J. Math. 54 (2017), 635645.

Department of Mathematics, University of Fribourg, CH-1700 Fribourg, Switzerland

Email address: ruth.kellerhals@unifr.ch

