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Abstract. In this paper we study the commensurability of hyperbolic Coxeter groups of
finite covolume, providing three necessary conditions for commensurability. Moreover we
provide two new sets of generators for the field of definition in case of quasi-arithmetic
hyperbolic Coxeter groups. This work is a concise version of chapters 4 and 5 of the author’s
Ph.D. thesis Dotti (Groups of hyperbolic isometries and their commensurability. PhD thesis,
Department of mathematics, University of Fribourg 2020).

1. Introduction

For n ≥ 2, let H
n be the real hyperbolic space of dimension n and denote by

Isom(Hn) its isometry group. Consider a space form H
n/�, where � is a discrete

subgroup of Isom(Hn). Two such space forms are commensurable if they admit a
common finite-sheeted cover. We are interested in distinguishing hyperbolic space
forms up to commensurability.

The situation is well understood in dimensions two and three. For n = 3 the
group Isom+(H3) of orientation preserving isometries can be identified with the
group PSL(2, C). Due to the work of Maclachlan and Reid [24] there are two pow-
erful commensurability invariants for Kleinian groups in PSL(2, C), the invariant
trace field and invariant quaternion algebra, which form a complete set of invari-
ants for arithmetic Kleinian groups.

In higher dimensions the situation needsmore investigation.When dealing with
arithmetic (of the simplest type) hyperbolic lattices, Gromov and Piatetski-Shapiro
[11] provide a complete commensurability criterion. Consider an arithmetic lattice
with its associated totally real field and quadratic form. Then, their commensura-
bility criterion states that two such lattices are commensurable if and only if the
two associated fields coincide and the two forms are similar over their field.

However, in the non-arithmetic context, no general commensurability criterion
is known up to date.

In this paper we study the problem of commensurability of hyperbolic Coxeter
groups of finite covolume. These are discrete subgroups of Isom(Hn) generated by
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finitely many reflections in the bounding hyperplanes of Coxeter polyhedra, which
are polyhedra whose angles are integral submultiples of π . We always suppose that
the volume of the Coxeter polyhedra is finite. Following the work of Vinberg in
[30], we shall associate a field of cycles and a quadratic form to every hyperbolic
Coxeter group: the Vinberg field and the Vinberg form. Inspired by the result of
Gromov and Piatetski-Shapiro, we provide the following necessary conditions for
commensurability: if�1 and�2 are two commensurable cofinite hyperbolicCoxeter
groups acting on H

n , then their Vinberg fields coincide and the two associated
Vinberg forms are similar over this field.

We are then able to refine the previous statement by associating to a Coxeter
group as above a ring, the Vinberg ring, and show that this ring is also a commen-
surability invariant.

The paper concludes with two new sets of generators for the Vinberg field of
a quasi-arithmetic Coxeter group. Specifically, we shall see that the Vinberg field
of such a Coxeter group is generated by the coefficients of the characteristic poly-
nomial of its Gram matrix on one side and by the coefficients of the characteristic
polynomial of any Coxeter transformation on the other side.

The paper is structured as follows. In Sect. 2 we present all the basic theory
needed for the rest of the paper such as hyperbolic Coxeter groups and commen-
surability. In Sect. 3 we present the theory on field of definition and we prove the
commensurability statement above, the commensurability property of the Vinberg
ring and we discuss the similarity classification of Vinberg forms. In the last section
we study the Vinberg field and provide new sets of generators as mentioned above.
This work is a concise version of chapters 4 and 5 of the author’s Ph.D. thesis [8],
and the proofs in this work are a direct adaptation from those in [8].

2. Preliminaries

2.1. Hyperbolic space, Coxeter polyhedra and Coxeter groups

Let n ≥ 2 and denote by H
n the real hyperbolic space of dimension n. We interpret

it with the hyperboloid model. Denote by R
n,1 the space R

n+1 equipped with the
Lorentzian product defined as

〈x, y〉 =
n∑

i=1

xi yi − xn+1yn+1.

The associated quadratic form, the Lorentzian form, will be denoted by q−1(x) :=
〈x, x〉. The hyperboloid model for H

n is then given by the set

Hn := {x ∈ R
n+1 | ||x ||2 = 〈x, x〉 = −1, xn+1 > 0}

with metric dHn (x, y) = arcosh(−〈x, y〉) for all x, y ∈ Hn .

The group of isometries Isom(Hn) is the Lie group of positive Lorentzian
matrices

O+(n, 1) =
{
A ∈ Mat(n + 1, R) | AT J A = J, [A]n+1,n+1 > 0

}
,
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where J = diag(1, . . . , 1,−1) is the diagonal matrix which represents the
Lorentzian form.

Remark 2.1. The group O+(n, 1) is not an algebraic group. However, one can
projectHn to the open unit ball and consider its projective modelKn . A very impor-
tant aspect ofKn is that its isometries forman algebraic group.Consider the group of
allmatriceswhichpreserve theLorentzian form

{
A ∈ Mat(n + 1, R) | AT J A = J

} =
O(n, 1). Then,

Isom(Kn) ∼= O(n, 1)/{±I } =: PO(n, 1). (1)

The fact that Isom(Kn) is an algebraic group will be exploited in Sect. 3.2 (see
Remark 3.4).

Let He = e⊥ be a hyperbolic hyperplane given as the orthogonal complement
of a vector e ∈ R

n+1 of Lorentzian norm 1 and consider the half-space H−
e = {x ∈

Hn | 〈x, e〉 ≤ 0}.
A (convex) polyhedron P ⊂ Hn is the intersection with non-empty interior of

finitely many half-spaces, that is,

P =
N⋂

i=1

H−
ei ,

N ≥ n + 1, where the unit vector ei normal to the hyperplane Hei is pointing
outwards of P . If N = n + 1, then P is called an n-simplex.

Particularly, a Coxeter polyhedron is a polyhedron all of whose angles between
its bounding hyperplanes are either zero or sub-multiples of π , hence of the form
π
k for k ∈ N, k ≥ 2.

Let � = 〈se1, . . . , seN 〉 < Isom(Hn) be the discrete group generated by the
reflections in the hyperplanes bounding a Coxeter polyhedron P . Then � is a
geometric representation of an abstract Coxeter group in O+(n, 1). The group � is
called a hyperbolic Coxeter group. The number of its generating reflections N is
called the rank of �.

In the sequel, hyperbolic Coxeter groups will always be assumed to be cofinite,
that is, the associatedCoxeter polyhedron P hasfinite volume.AhyperbolicCoxeter
group � is said to be cocompact if P is compact.

The Gram matrix associated to P and to � is the real symmetric matrix G :=
G(P) = G(�) = (gi j )1≤i, j≤N with coefficients gi j = 〈ei , e j 〉. The Gram matrix
G is unique up to enumeration of the hyperplanes and has signature (n, 1) (see [2,
Chapter 6]).

The Coxeter graph of � is the graph with N vertices for which the vertex i
corresponds to the hyperplane Hei . Between two vertices i and j we have:

(i) an edge if the angle between Hei and Hej is π/k, k ≥ 3. If k ≥ 4 then the edge
is labelled with k; if k = 3 the label is omitted;

(ii) an edge labelled with ∞ if Hei and Hej are parallel;
(iii) a dotted edge if Hei and Hej are ultraparallel. The dotted edge is labelled

with the hyperbolic cosine of the length l = dHn (Hei , Hej ) of their common
perpendicular.
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2.2. Commensurability and arithmeticity

Let H be a group. Two subgroups H1, H2 ⊂ H are commensurable (in the wide
sense) if and only if there exists an element h ∈ H such that H1 ∩ h−1H2h has
finite index in both H1 and h−1H2h.

This notion defines an equivalence relation. In our context, the group H will
be Isom(Hn). Stable under commensurability are some properties of subgroups
of Isom(Hn) such as discreteness, cofiniteness, cocompactness and arithmeticity.
This latter notion can be further refined by splitting Coxeter groups in Isom(Hn)

into four categories: arithmetic, quasi-arithmetic, properly quasi-arithmetic and
nq-arithmetic.

For this, the following criterion due to Vinberg turns out to be very practical
(see [30, Theorem 2]).

Theorem 2.2. (Vinberg’s arithmeticity criterion) Let � < Isom(Hn) be a Coxeter
group of rank N and denote by G = (gi j )1≤i, j≤N its Gram matrix. Let K̃ be the
field generated by the entries of G, and let K (�) be the field generated by all the
possible cycles of G1. Then � is quasi-arithmetic if and only if:

(i) K̃ is totally real;
(ii) for any embedding σ : K̃ ↪→ R which is not the identity on K (�), the matrix

Gσ , obtained by applying σ to all the coefficients of G, is positive semidefinite.
Moreover, a quasi-arithmetic group � is arithmetic if and only if

(iii) the cycles of 2G are algebraic integers in K (�).

Thus, if the Coxeter group � above satisfies conditions i), i i) and i i i), we call
� an arithmetic Coxeter group. Such a group has always finite covolume.

If � above satisfies conditions i) and i i), but not necessarily i i i), then we call
� a quasi-arithmetic Coxeter group. If only i) and i i) are satisfied while i i i) fails
then � is called a properly quasi-arithmetic Coxeter group.

Finally, � is called non-quasi-arithmetic, nq-arithmetic from now on, if it is
not quasi-arithmetic.

Remark 2.3. There is a more general type of arithmeticity for groups of hyperbolic
isometries (see [2,Chapter 6]).However, if a hyperbolicCoxeter group is arithmetic,
then it is of the simplest type [30, Lemma 7]. Since we will be working only with
hyperbolic Coxeter groups, wewill always refer to arithmetic groups of the simplest
type as just arithmetic groups.

3. Commensurability of hyperbolic Coxeter groups

In this section we prove the commensurability statements stated in the Introduction
and we show the commensurability property of the Vinberg ring. An important role
will be played by the theory of fields of definition, which will be recalled in this
section.

1 A cycle (or cyclic product) of G is defined as gi1i2gi2i3 . . . gil−1il gil i1 for any
{i1, i2, . . . , il } ⊂ {1, 2, . . . ,m}. A cycle is called simple if the indices i j in the cycle are all
distinct.
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3.1. The Vinberg construction

We now associate a quadratic space to a hyperbolic Coxeter group following a
construction due to Vinberg in [30].

Let � be a hyperbolic Coxeter group of rank N and let e1, . . . , eN ∈ R
n,1 be

the outer normal unit vectors of its Coxeter polyhedron. Let G = (gi j )1≤i, j≤N be
the Gram matrix of �. For any {i1, i2, . . . , il} ⊂ {1, 2, . . . , N } consider the cyclic
product of 2G

bi1i2...il := 2l gi1i2gi2i3 . . . gil−1il gil i1 . (2)

Define the field K (�) := Q({bi1i2...il }) of all cycles of 2G. It is obvious that K (�)

is generated by the simple cycles.
Next, for {i1, i2, . . . , ik} ⊂ {1, 2, . . . , N }, define the vectors

v1 := 2e1 and vi1i2...ik := 2kg1i1gi1i2 . . . gik−1ik eik , (3)

and consider the K (�)-vector space V spanned by the vectors {vi1i2...ik } according
to (3). By [9, Lemma 1], V is of dimension n + 1.

Moreover, as shown in [23] for example, V is left invariant by �. Indeed
se j (vi1i2...ik ) = vi1i2...ik − vi1i2...ik j , and 〈vi1i2...ik , v j1 j2... jl 〉 ∈ K (�). By combining
these equations, a quick computation shows that

〈se j (vi1i2...ik ), se j (v j1 j2... jl )〉 = 〈vi1i2...ik , v j1 j2... jl 〉.
Since 2G is of signature (n, 1), the restriction of the Lorentzian product on V

yields a quadratic form q = qV of signature (n, 1) on V . By the construction of
the K (�)-vector space V in terms of the vectors (3) and the form qV , we obtain a
natural embedding � ↪→ O(V, q).

Observe that this construction is independent of the arithmetic nature of �.
Therefore any hyperbolic Coxeter group has an associated field and quadratic form
which justifies the following definition.

Definition 3.1. Let � be a hyperbolic Coxeter group. Then

(i) the field K (�) = Q({bi1i2...il }) is called the Vinberg field of �;
(ii) the quadratic form q = qV is called the Vinberg form of �;
(iii) the quadratic space (V, q) is called the Vinberg space of �.

The next objective is to show that the Vinberg field and the similarity class of
the Vinberg form are two commensurability invariants. Before that, we need more
terminology.

Let (V1, q1), (V2, q2) be two quadratic spaces of dimension m ≥ 2 over a field
K . Then (V1, q1) and (V2, q2) are isometric (denoted by ∼=) if and only if there is
an isomorphism S : V1 → V2 such that q1(x) = q2(Sx) for all x ∈ V1. They are
similar (denoted by �) if there exist a λ ∈ K ∗ such that (V1, q1) and (V2, λq2) are
isometric. The scalar λ is called similarity factor.

Isometry and similarity induce equivalence relations. In the sequel, we often
abbreviate and speak about isometric (similar) quadratic forms instead of isometric
(similar) quadratic spaces. Furthermore, if one represents two quadratic forms by
two m × m matrices Q1 and Q2 over K , then being isometric means that there
exists an invertible matrix S ∈ GL(m, K ) such that Q1 = ST Q2S.
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3.2. Theory on fields of definition

We present here some aspects about fields of definition, which will play an essential
role for the upcoming proofs. All the theory presented here is taken from Vinberg’s
paper [31].

Let U be a finite dimensional vector space over a field F , and let R ⊂ F be an
integrally closed Noetherian ring. Denote by � a family of linear transformations
of U . The ring R is said to be a ring of definition for � if U contains an R-lattice
which is invariant under �. When R is a field we call R a field of definition.

If a principal ideal domain R is a ring of definition for �, then we can find a
basis of U such that every element of � can be written as a matrix having entries
in R.

Let us specialise the context and consider a Coxeter group � < Isom(Hn). As
we have seen in Sect. 3.1, the space R

n,1 contains the K (�)-module V which is
invariant under �. That is, the Vinberg field K (�) is a field of definition for �. The
next lemma implies that the Vinberg field K (�) is actually the smallest field of
definition associated to �.

Lemma 3.2. ([31], Lemma 11 and Lemma 12) Let� be a hyperbolic Coxeter group
with Gram matrix G and let F be a field of characteristic 0. An integrally closed
Noetherian ring R ⊂ F is a ring of definition for � if and only if R contains all the
simple cycles of 2G.

Lastly, for the following proofs we need the result [31, Theorem 5] of Vinberg.
We recapitulate here a more specific version suitable to our context.

Theorem 3.3. Let � be a cofinite hyperbolic Coxeter group with Vinberg space
(V, q) and Gram matrix G. Let R be an integrally closed Noetherian ring. Then
the following is equivalent:

(i) R is a ring of definition of �,
(ii) R is a ring of definition of Ad�,
(iii) R contains all the simple cyclic products of 2G.

Remark 3.4. It is important to notice that in [31] Vinberg considers Zariski dense
groups generated by reflections of a quadratic space defined over an algebraically
closed field. This hypothesis does not apply directly to our situation since the
isometry group PO(n, 1) of Klein’s projective model Kn is defined over the reals.

Our versionof the theoremcanbe retrieved from theoriginal one as follows. Pass
to the complexified space R

n+1 ⊗R C endowed with the standard (real) Lorentzian
form q−1. Let OC(n, 1) be the group of complex (n + 1) × (n + 1) matrices which
preserve q−1, and form the projective group POC(n, 1) = OC(n, 1)/{±I }.

Recall that a cofinite hyperbolic Coxeter group is Zariski dense (over R) in
PO(n, 1) (see [19, Chapter 4]). This property remains valid in the complexified
context of POC(n, 1) over C. We can now apply the original Theorem 5 of [31]
which implies Theorem 3.3.
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3.3. Commensurability conditions for hyperbolic Coxeter groups

We are now able to prove the commensurability statements stated in the Introduc-
tion.

Theorem 3.5. Let �1 and �2 be two commensurable cofinite hyperbolic Coxeter
groups acting on Hn, n ≥ 2. Then their Vinberg fields coincide and the two asso-
ciated Vinberg forms are similar over this field.

We start the proof by showing that two commensurable Coxeter groups have
the same Vinberg field. For this, denote by Q(Tr Ad�) = Q(Tr Ad(γ ) | γ ∈ �)

the adjoint trace field of �.

Proposition 3.6. Let � < Isom(Hn) be a cofinite Coxeter group, n ≥ 2. Then the
associated Vinberg field and the adjoint trace field coincide, that is

K (�) = Q(Tr Ad�). (4)

Proof. Lemma 3.2 implies that the Vinberg field K (�) is the smallest field of
definition of �. By point i) of Theorem 3.3, K (�) is a field of definition of Ad�

as well and by point i i i) K (�) is contained in every field of definition of Ad�.
By [31, Corollary of Theorem 1], Q(Tr Ad�) is the smallest field of definition of
Ad�. Hence, the equality (4) follows. ��
Corollary 3.7. Let �1, �2 < Isom(Hn) be two cofinite Coxeter groups, n ≥ 2. If
�1 and �2 are commensurable, then their associated Vinberg fields coincide, that
is,

K (�1) = K (�2).

Proof. By Proposition 3.6 we know that K (�1) = Q(Tr Ad�1) and K (�2) =
Q(Tr Ad�2). The adjoint trace field of a hyperbolic lattice is a commensurability
invariant (see [7, Proposition 12.2.1]). Therefore the claim follows. ��
Remark 3.8. By the Local Rigidity Theorem [28, Chapter 1], the adjoint trace field
Q(Tr Ad�) of a Coxeter group in Isom(Hn) is a number field for n ≥ 4. Therefore,
by Proposition 3.6, the Vinberg field K (�) is a number field. Moreover, K (�) is a
number field for n = 3 as well. This is a consequence of the connection between
K (�) and the invariant trace field K�(2) ([23, Theorem 3.1]) and the fact that K�(2)

is a number field ([24, Theorem 3.1.2]).

Example 3.9. Consider the two non-cocompact nq-arithmetic Coxeter pyramid
groups �1 and �2 acting on H4 as shown in Fig. 1.

For �1 we have the cycle −2
√
2 obtained by following the triangular tail path,

while all the other simple cycles lie in Q or Q

(√
2
)
. For �2, the triangular tail path

gives the cycle 1
2

(
3 + √

5
)
. All other simple cycles are either in Q or Q

(√
5
)
.

Therefore the Vinberg fields are K (�1) = Q

(√
2
)
and K (�2) = Q

(√
5
)
. Thus

�1 and �2 are incommensurable.
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6

4

∞

Γ1

6

5

∞

Γ2

Fig. 1. Two Coxeter pyramid groups �1 and �2 in Isom(H4)

Let us return to the proof of Theorem 3.5 and show that two commensurable
hyperbolic Coxeter groups have similar Vinberg forms. The proof will follow the
same strategy as indicated by Gromov and Piateski-Shapiro in Theorem 2.6 of
[11] for arithmetic groups, and which has been elaborated by Johnson, Kellerhals,
Ratcliffe and Tschantz in Theorem 1 of [18] for the special case of hyperbolic
Coxeter simplex groups. We will apply the same algebraic terminology as used in
[18].

Consider two commensurable hyperbolicCoxeter groups�1 and�2 represented
in O+(n, 1) and denote their Vinberg field by K . There is a matrix X ∈ O+(n, 1)
and there are two subgroups H1 < �1 and H2 < �2, each of finite index, such that
H1 = X−1H2X . One can assume that H1 and H2 are contained in SO+(n, 1), the
index two subgroup of O+(n, 1) of determinant one matrices. Let (V1, q1) be the
Vinberg space over K associated to �1 and equipped with the basis {v1, . . . , vn+1}
according to (3). With respect to this basis, all elements of �1 are matrices over
K , since K is a field of definition of �. Clearly the forms q1 and the Lorentzian
form q−1 are equivalent over R. The same reasoning applies to the Vinberg space
(V2, q2). Let Q1 and Q2 be the matrix representations of the Vinberg forms q1 and
q2 in the relative bases. Let the real matrices T1 and T2 be the representations of
the isometries between the Vinberg forms and the Lorentzian form q−1. Then the
matrix

S := T−1
2 XT1 (5)

represents an isometry between q1 and q2, since Q1 = ST Q2S. Moreover define
the two groups H ′

1 := T−1
1 H1T1 and H ′

2 := T−1
2 H2T2.

Consider the isomorphism between the orthogonal groups O(q1) and O(q2)
given by

φ : A → SAS−1. (6)

Lemma 3.10. The map φ restricts to a K -linear map on Mat(n + 1, K ).

Proof. Let i ∈ {1, 2}. Denote by O+(qi ) the group of qi -orthogonal maps which
leave each sheet of the hyperboloid Hn+1

i = {x ∈ R
n+1 | qi (x) = −1} invariant.

The isometry between qi and the Lorentzian form q−1 gives a group isomorphism
between O(qi ) and O(q−1). This isomorphism maps O+(qi ) onto O+(n, 1). Anal-
ogously, SO+(qi ) is mapped onto SO+(n, 1) and hence H ′

i ⊂ SO+(qi ). Now,
SO+(n, 1) is a non-compact connected simple Lie group and thus the same can
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be said for SO+(qi ). Since H ′
i has finite covolume, by the Borel density the-

orem [4] we get that SpanR(H ′
i ) = SpanR(SO+(qi )) in Mat(n + 1, R). Fur-

thermore, the action of SO+(n, 1) on C
n+1 is irreducible2, and hence that the

action of SO+(qi ) is irreducible as well. By Burnside’s theorem [5] (see also
[20]) we get the equality SpanR(SO+(qi )) = Mat(n + 1, R), which implies that
SpanR(H ′

i ) = Mat(n + 1, R).
Notice that for each α ∈ K and C ∈ Mat(n+ 1, K ) we have φ(αC) = αφ(C).

Recall that K is a field of definition for Hi , thus H ′
i ⊂ Mat(n+1, K ). By the same

arguments as before, we have that SpanK (H ′
i ) = Mat(n + 1, K ). Moreover, by

(5),

φ(H ′
1) = φ(T−1

1 H1T1) = T−1
2 XH1X

−1T2 = T−1
2 H2T2 = H ′

2.

We deduce that φ(SpanK (H ′
1)) = SpanK (H ′

2). Therefore φ restricts to a K -linear
map on Mat(n + 1, K ). ��

Based on Lemma 3.10 we are finally ready to prove the last step as given by
the following proposition. Its proof is a direct adaptation of the corresponding step
in the proof of [18, Theorem 1].

Proposition 3.11. Let �1, �2 be two commensurable Coxeter groups in Isom(Hn),
n ≥ 2, with Vinberg field K (�1) = K (�2) =: K. Then the two Vinberg forms q1
and q2 are similar over K . Moreover, the similarity factor is positive.

Proof. Let 1 ≤ i, j ≤ n+1. Define thematrix Ii j ∈ Mat(n+1, K )with coefficient
[I ]i j = 1 and all the other coefficients equal to zero. Consider the isomorphism
φ according to (6). Define Mi j := φ(Ii j ) = SIi j S−1, which is in Mat(n + 1, K )

by Lemma 3.10. The matrix SIi j =: Si j has the j-th column which is equal to
the i-th column of S and all the other coefficients are equal to zero. Observe that
[Mi j ]kl = [S]ki [S−1] jl for all k, l, i, j . The matrix S−1 is invertible, thus we
can always find a pair { j, l} such that [S−1] jl �= 0. Let λ denote the inverse of the
coefficient [S−1] jl . In doing so, every coefficient of S can be written as λmultiplied
with an entry of a matrix of the form Mi j ∈ Mat(n + 1, K ). Hence there exists a
matrix M ∈ Mat(n + 1, K ) such that S = λM . Recall that Q1 = ST Q2S holds,
therefore Q1 = λ2MT Q2M , with Q1, Q2 and M all in Mat(n + 1, K ). Finally λ2

is a positive element belonging to K so that q1 is isometric to λ2q2, and the claim
follows. ��

3.4. Similarity classification of the Vinberg forms

The study of similarity of quadratic forms heavily relies on isomorphisms of quater-
nion algebras and others elements of the Brauer group. For a more detailed expla-
nation on this topic we refer to [12]. Let K denotes a field of characteristic different
from 2, and let q be a quadratic form of dimension m over K , that is, q is defined
on a vector space of dimension m over K .

2 See the Erratum to the paper “Commensurability classes of hyperbolic Coxeter groups",
due to J. Ratcliffe and S. Tschantz, presented in [8, Appendix D].
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For two elements a, b ∈ K ∗, we denote by (a, b) the quaternion algebra over
K generated by the elements 1, i , j , i j with the relations i2 = a, j2 = b and
i j = − j i .

Two quaternion algebras are said to be equivalent if and only if they are isomor-
phic. Equivalence classes of quaternion algebras form a group, which is a subgroup
of the Brauer group Br(K ). For some computational rules about the multiplication
between quaternion algebras, we refer to [21, Proposition 3.20]. If the field K is
a number field, then two quaternion algebras over K are isomorphic if and only if
they have the same ramification set (see [22, Theorem 4.1]).

For the definition of a ramification set Ram(A) for a quaternion algebra A and
its theory we refer to [22]. In this paper, the computations of ramification sets are
done using the package RamifiedPlaces of Magma c©.

The similarity classification of quadratic forms relies on two elements of the
Brauer group, which are closely related to one another. The first one is the Hasse
invariant s(q) of a diagonal quadratic form q = 〈a1, . . . , am〉. This is the element
of the Brauer group Br(K ) represented by the quaternion algebra

s(q) =
⊗

i< j

(ai , a j )K .

The Hasse invariant s(q) is independent of the diagonalisation chosen. It is more-
over an isometry invariant (see [21, Proposition 3.18]). However it is not a similarity
invariant (see [26, Lemma 4.3]).

The second element of the Brauer groupwe are interested in is theWitt invariant
c(q) of a quadratic space (V, q) over K . It is obtained from the Hasse invariant
according to [21, Chapter V, Proposition 3].

Let � be a quasi-arithmetic Coxeter group with Vinberg field K acting onHn .
Let (V, q) be the Vinberg space of dimension n+1 over K associated to � and put

δ := (−1)
n(n+1)

2 det(q), the discriminant of q. Denote by B the quaternion algebra
representing the Witt invariant c(q). The similarity class of (V, q) depends on the
parity of n as follows.

Theorem 3.12. ([22], Theorem 7.2) When n is even, the similarity class of the
Vinberg space (V, q) of dimension n + 1 is in one-to-one correspondence with the
isomorphism class of the quaternion algebra B.

Theorem 3.13. ([22], Theorem 7.4)When n is odd, the similarity class of the Vin-
berg space (V, q) of dimension n + 1 is in one-to-one correspondence with the
isomorphism class of the quaternion algebra B ⊗K K (

√
δ) over K (

√
δ). More-

over, if δ is a square in K ∗, then the similarity class is in one-to-one correspondence
with the isomorphism class of B over Q.

Consider now a nq-arithmetic group � acting on Hn . For n even, a similarity
criterion can be stated. For n odd, we provide a necessary condition for similarity,
only. We start by recalling the Hasse-Minkowski Theorem in terms of the Hasse
invariant see ([3,21]).
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Table 1. Similarity criterion for Vinberg forms of hyperbolic Coxeter groups

n Similarity criterion

n ≡ 0 mod 4 s(q1) = s(q2)
sgn(σ (q1)) = sgn(σ (λq2))

n ≡ 2 mod 4 s(q1) = (λ,−1) · s(q2)
sgn(σ (q1)) = sgn(σ (λq2))

Theorem 3.14. Let K be a number field and let q1 and q2 be two quadratic forms
of dimension m over K . For a λ ∈ K ∗, q1 and λq2 are isometric if and only if the
following properties are satisfied:

(i) dim(q1) = dim(λq2),
(ii) det(q1) ≡ det(λq2) in K ∗ mod (K ∗)2,
(iii) s(q1) = s(λq2),
(iv) sgn(σ (q1)) = sgn(σ (λq2)) for all real embeddings σ : K ↪→ R.

For n even, let �1 and �2 be two hyperbolic Coxeter groups with the same
Vinberg field K , and denote by q1 and q2 the associated Vinberg forms over K .
Recall that dim(q1) = dim(q2) = n+ 1 =: m, i.e. the dimension of both quadratic
forms is odd. Then, condition i i) of the Hasse-Minkowski Theorem 3.14 implies
that �1 and �2 can be isometric only if det(q1) ≡ λ det(q2) in K ∗ mod (K ∗)2.
This means that λ can only be the value which balances the two determinants, that
is, λ = det(q1)

det(q2)
∈ K ∗/(K ∗)2 (see also the proof of [26, Proposition 5.4]). Using

[26, Lemma 4.3], we get s(λq2) = (λ,−1) · s(q2) for λ = det(q1)
det(q2)

∈ K ∗/(K ∗)2,
and we obtain the complete set of similarity invariants for Vinberg forms as shown
in Table 1.

Notice that, for quasi-arithmetic groups, this similarity classification is com-
patible with the one provided by Maclachlan in the even dimensional case. Indeed,
for these groups, as a consequence of property i i) of Theorem 2.2, the equal-
ity between signatures is always satisfied. Moreover, a computation on the Hasse
invariants leads to the equality between Witt invariants. Notice moreover that for
n = 2, one has first to make sure that the Vinberg field is a number field in order to
use the previous classification.

For n odd, let �1 and �2 be two hyperbolic Coxeter groups. If they are quasi-
arithmetic, we refer to the similarity classification provided by Maclachlan (see
Theorem 3.13). Otherwise, the similarity problem for their even-dimensional Vin-
berg forms q1 and q2 is more involved. We present here a partial result, only.

Applying condition i i) of the Hasse-Minkowski Theorem 3.14 we get that �1
and �2 can be isometric only if det(q1) ≡ det(λq2) in K ∗ mod (K ∗)2 which
reduces to det(q1) ≡ det(q2) mod (K ∗)2. In contrast to the previous case, we can
not extract any information about λ. This fact can be stated in the following lemma,
sometimes referred to as the ratio-test.

Lemma 3.15. Let �1, �2 < Isom(Hn), n odd, be two commensurable Coxeter
groups with Vinberg field K and Vinberg forms q1 and q2, respectively. Then,
det(q1) ≡ det(q2) ∈ K ∗ mod (K ∗)2.
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Example 3.16. As an incommensurability example using the Vinberg form, con-
sider the two cocompact Coxeter groups �1, �2 in Isom(H4) given in Fig. 2. The
groups �1 and �2 are so-called crystallographic Napier cycles (see [16]). Observe
that both groups are properly quasi-arithmetic.

The weights li and l ′i of the dotted edges in the Coxeter graphs can be computed
and are

l1 =
√

1

11

(
10 + 3

√
5
)
, l ′1 =

√
2

11

(
7 + √

5
)
,

l2 = 1

2

√(
5 + √

5
)
, l ′2 =

√
2

19

(
9 + √

5
)
,

l3 =
√

1

11

(
16 + 7

√
3
)
, l ′3 =

√
1

209

(
233 + 104

√
5
)
.

The groups �1 and �2 have both K = Q

(√
5
)
as their Vinberg field. The

diagonalised associated Vinberg forms over K are

q1 = diag
(
4, 4, 4,−2 − 2

√
5, 20 + 8

√
5
)

,

q2 = diag

(
4,

5

2
+ 1

2

√
5, 2 + 2

5

√
5,

−37

2
− 17

2

√
5,

312

19
+ 136

19

√
5

)
.

These forms have the following Hasse invariants:

c(�1) =
(
−2 − 2

√
5, 5 + 2

√
5
)

,

c(�2) =
(
10 + 2

√
5,−1

)
·
(
−74 − 34

√
5, 1482 + 646

√
5
)

.

The ramification set Ram(�1) contains two prime ideals, one generated by 2, and
the other generated by 5 and −1 + 2

√
5. The ramification set Ram(�2) is empty.

Since Ram(�1) �= Ram(�2), the two quaternion algebras representing c(�1) and
c(�2) are not isomorphic. Hence the Vinberg forms q1 and q2 are not similar, and
the groups �1 and �2 are incommensurable.

3.5. The Vinberg ring

In this section we are looking for additional commensurability invariants for an
arbitrary hyperbolic Coxeter group � < Isom(Hn). Let us assume until the end of
the chapter that the Vinberg field of � is a number field. For n ≥ 3 this is always
true (see Remark 3.8). Denote by O the ring of integers of the Vinberg field.

Definition 3.17. Let� < Isom(Hn), n ≥ 2, be a cofinite Coxeter group with Gram
matrix G. Consider all the cycles bi1i2...il = 2l gi1i2gi2i3 . . . gil−1il gil i1 of 2G. The
ring

R(�) := O({bi1i2...il })
is called the Vinberg ring of �.
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l2

l3l1

5

4

Γ1

l′2
l′3l′1

5

5

Γ2

Fig. 2. The Coxeter groups �1 and �2 in Isom(H4)

We show that theVinberg ring is a ring of definition for certain groups and hence
a commensurability invariant. Notice that the Vinberg ring as commensurability
invariant is superfluous when considering arithmetic groups.

Proposition 3.18. Let � < Isom(Hn), n ≥ 2, be a cofinite Coxeter group with
Grammatrix G. Assume that its Vinberg field K is a number field. Then the Vinberg
ring R(�) is a commensurability invariant.

Proof. For this proof we use some results of Davis about overrings3 ([6]) in the
same way as used by Mila in [27, Section 2.1]. Since by hypothesis the Vinberg
field K is a number field, there exists a minimal ring of definition R for � ([31,
Corollary to Theorem 1]) which equals the integral closure of Z[Tr Ad�] in K .
Clearly R is integrally closed and therefore contains the ring of integers O of K .
Thus R is the integral closure ofO[Tr Ad�] =: R′ in K . The ring R′ is an overring
of O. Since O is a Noetherian integral Dedekind domain, by [6, Theorem 1] its
overring R′ is integrally closed. This implies R = R′ which means thatO[Tr Ad�]
is the smallest ring of definition for �. Moreover, the Vinberg ring R(�) is also an
overring ofO in such a way that it is integrally closed as well, and it is furthermore
Noetherian since it is a subring of the number field K (see [10, Theorem]). Hence
R(�) is a ring of definition for �. By Theorem 3.3, R(�) ⊂ R′. Now, R′ is the
smallest ring of definition so that R(�) = O[Tr Ad�]. By Theorem 3 of [31], rings
of definition are commensurability invariants. Thus R(�) is a commensurability
invariant. ��

Example 3.19. As an example, consider the two non-cocompact properly quasi-
arithmetic Coxeter cube groups �1 and �2 in Isom(H3) defined in Fig. 3 (see

3 An overring of an integral domain is a subring of the quotient field containing that given
ring. In our case, the integral domain is the ring of integersO of the Vinberg field K , which
has the Vinberg field as its quotient field.
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Fig. 3. Two Coxeter cube groups �1 and �2 in Isom(H3)

[17]). They both have Q as Vinberg field and similar quadratic forms. Their Vin-
berg rings are given by R(�1) = Z[1/3] and R(�2) = Z[1/2], respectively. By
Proposition 3.18 the groups �1 and �2 are therefore incommensurable.

Caution 3.20. Two hyperbolic Coxeter groups having the same Vinberg field, the
sameVinberg ring and similar Vinberg forms do not have to be commensurable. For
example, consider the two non-cocompact properly quasi-arithmetic Coxeter cube
groups �2 as above and �3 in Isom(H3) defined by the graph in Fig. 4. Observe
that for both groups, the Vinberg field isQ and the Vinberg ring isZ[1/2]. Since �2
and �3 are quasi-arithmetic, we can applyMaclachlan’s criterion to decide whether
the Vinberg spaces (V2, q2) and (V3, q3) are similar (see Theorem 3.13).

With Vinberg’s construction, we can compute the matrices representing q1 and
q2 and diagonalise them over Q. We obtain

q2 = diag(4, 3, 15,−15) and q3 = diag

(
4, 3,

−225

4
,
225

4

)
.

Thequadratic formsq2 andq3 haveboth (−1, 3) asHasse invariant and therefore
they have identicalWitt invariant represented by the quaternion algebra B = (1, 1).
Hence, the ramification set of B ⊗Q Q(

√−1) over Q(
√−1) is identical for both

groups. This implies that the Vinberg spaces are similar. However, as shown in [33]
by means of a geometric argument, �2 and �3 are not commensurable.

4. New generators for the Vinberg field

In this last section we provide two new sets of generators for the Vinberg field of a
quasi-arithmetic hyperbolic Coxeter group. The first set is given by the coefficients
of the characteristic polynomial of the Gram matrix, while the second is given by
the coefficients of the characteristic polynomial of any Coxeter transformation of
the Coxeter group. These sets can make the computation of the Vinberg field much
more efficient in case of a group with a complicated Coxeter graph. Hopefully,
these results can be extended to nq-arithmetic groups as well.
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√
3
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7
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Γ3

Fig. 4. Quasi-arithmetic Coxeter cube group �3 acting on H3

4.1. The gram field of a hyperbolic Coxeter group

For n ≥ 2, consider a Coxeter group � in Isom(Hn) of rank N . Let G be its Gram
matrix of signature (n, 1) with characteristic polynomial χG(t) = a0 + a1t +
· · · + aN t N , aN = 1. The matrix G is uniquely defined by � up to simultaneous
permutation of its lines and columns which would yield a similar matrix G ′ with
identical characteristic polynomial.

Notice that aN−1 = (−1)N−1 Tr(G) = (−1)N−1N . Moreover, each coefficient
ar of χG , r < N , can be expressed as the sum of all the principal minors of size
N−r (see [13, p. 53], for example). In particular, ar vanishes for all r < N−(n+1).

Definition 4.1. Let � be a hyperbolic Coxeter group of rank N . Let G be its Gram
matrix with characteristic polynomial χG(t). The Gram field K (G) is the field
generated by the coefficients of χG(t) over Q, namely

K (G) = Q(a j | 0 ≤ j ≤ N ).

Proposition 4.2. Let � be a cofinite quasi-arithmetic hyperbolic Coxeter group
with Vinberg field K . Then

K = K (G).

Proof. We prove first the inclusion K ⊇ K (G). By [32, Proposition 11], the deter-
minant of the Gram matrix G is given by a sum of cyclic products. The same
result applies to every principal submatrix of G. Since the coefficients of χG can
be expressed as the sum of principal minors of G (see [13, p. 53], for example), we
get K ⊇ K (G).

Assume that K � K (G). Then there exists a non-trivial embeddingσ : K ↪→ R

which is the identity on K (G). Let Gσ be the matrix obtained by applying σ to
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every coefficient of G and let χG = ∑N
i=0 ai x

i be the characteristic polynomial of
G.

Since σ is a field homomorphism, then χGσ = ∑N
i=0 σ(ai )xi . The embedding

σ fixes the coefficients of χG , thus χG = χGσ . In particular,Gσ has signature (n, 1)
and is not positive semidefinite. This is a contradiction to part i i) of Theorem 2.2
and the claim follows. ��

4.2. The Coxeter field of a hyperbolic Coxeter group

Let� < Isom(Hn), n ≥ 2, be a cofiniteCoxeter groupwith natural set of generators
{s1, . . . , sN }. Consider a Coxeter transformation C = s1 · · · sN of � defined up to
the ordering of the factors.With the real coefficients of the characteristic polynomial
χC (t) we define a new field, the Coxeter field, and prove that it coincides with the
Vinberg field K (�) if � is quasi-arithmetic.

The proof is based on the work of Howlett [14] and the theory of M-matrices
which we are going to review briefly.

Let W = (W, S) be a Coxeter system with generating set S = {s1, . . . , sN }
satisfying the relations of a Coxeter group. By Tits’ theory, it is known that W can
be represented as a subgroup of GL(V ) for a real vector space V of dimension N
equipped with a suitable symmetric bilinear form B (see [15], for example). Denote
by rad(V ) = {v ∈ V | B(v, v′) = 0 ∀v′ ∈ V } the radical of B which will play
a role later on. A Coxeter element c ∈ W is the product of the N generators in
S arranged in any order. The representative CT ∈ GL(V ) of c is called a Coxeter
transformation of W .

For a Coxeter element c = s1 · · · sN , the matrix of CT with respect to a basis
{v1, . . . , vN } of V , denoted again by CT , can be written according to (see [14], for
example)

CT = −U−1UT , (7)

where U ∈ GL(N , R) is the upper triangular matrix given by [U ]st = 2B(vs, vt )

for t > s, [U ]st = 1 on the main diagonal and [U ]st = 0 for t < s. Notice that

U +UT = 2B. (8)

By means of the theory of M-matrices, Howlett ([14, Theorem 4.1], see also
[1]) characterised abstract Coxeter groups in terms of a Coxeter transformation CT

and its eigenvalues. More concretely, anM-matrix is a real matrix with non-positive
off-diagonal entries all of whose principal minors are positive. For example, the
matrix U described above is an M-matrix.

The proof of Howlett’s Theorem 4.1 in [14] is based on the following results.

Lemma 4.3. ([14], Lemma 3.1) Let U be a real matrix such that U+UT is positive
definite. Then U is invertible and −U−1UT is diagonalisable over C with all of its
eigenvalues having modulus one.
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Lemma 4.4. ([14], Lemma 3.2 and Corollary 3.3) Let U be an M-matrix such that
U + UT is not positive definite. Then −U−1UT has a real eigenvalue λ ≥ 1. If
U+UT is not positive semidefinite, thenλ > 1. IfU+UT is positive semidefinite, all
the eigenvalues of−U−1UT havemodulus one and−U−1UT is not diagonalisable.

Later we will also need the following lemma, which is stated in Howlett’s proof
of Lemma 4.4.

Lemma 4.5. Let U be an invertible real matrix such that U + UT is positive
semidefinite. Then the eigenvalues of −U−1UT have all modulus one.

Proof. For ε > 0 define the matrix U ε := U + ε I . Since U + UT is positive
semidefinite,U ε + (U ε)T is positive definite. By Lemma 4.3, all the eigenvalues of
−(U ε)−1(U ε)T have modulus one. The entries of U ε depend continuously on ε.
The same can be said for −(U ε)−1(U ε)T and the coefficients of its characteristic
polynomial. Hence the eigenvalues of −(U ε)−1(U ε)T and their modulus depend
continuously on ε, and the claim follows. ��

Let � < Isom(Hn) be a hyperbolic Coxeter group with generating reflections
s1, . . . , sN . In this way � represents a geometric realisation of an abstract Coxeter
group. Let P ∈ Hn be its Coxeter polyhedron with outer unit normal vectors
e1, . . . , eN and associated Gram matrix G ∈ Mat(N , R).

LetC ∈ � be a Coxeter transformation of�. Our goal is to construct a new field
K (C) associated toC which we can identify later with the Vinberg field K (�). Our
motivation comes from [29, Theorem 1.8, (iv)], due to Reiner, Ripoll and Stump,
relating Coxeter transformations of a finite complex reflection group to its field of
definition4 (see also Malle in [25, Section 7A]).

Inspired by this, we state the following definition.

Definition 4.6. Let � be a hyperbolic Coxeter group. Let C ∈ � be a Coxeter
transformation with characteristic polynomial χC (t) = a0 +a1t +· · ·+an+1tn+1,
an+1 = 1. The Coxeter field K (C) is the field generated by the coefficients of
χC (t) over Q, namely

K (C) = Q(a j | 0 ≤ j ≤ n + 1).

It is not difficult to see thatχC (t) is palindromic (a j = an+1− j ) if N = n+1+2k
and it is pseudo-palindromic (a j = −an+1− j ) if N = n + 1 + (2k + 1), for some
k ≥ 0.

Furthermore, N − (n + 1) is the dimension of the radical rad
(
R

N
)
for the Tits

representation space
(
R

N ,G
)
. Clearly, every element in � viewed in GL

(
R

N
)
acts

as the identity on rad
(
R

N
)
. Hence the same is true for every Coxeter transformation

CT ∈ GL
(
R

N
)
of �. Since dim

(
R

N/ rad
(
R

N
)) = n + 1, the characteristic

polynomials χC and χCT are related by

(t − 1)(N−(n+1))χC (t) = χCT (t). (9)

4 In [29], the field of definition of a Coxeter group W is the field generated by all the
traces of the matrices representing the elements of W .
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In particular the field generated by the coefficients of χC and the field generated
by the coefficients of χCT coincide. With this preparation we are ready to prove the
following result.

Proposition 4.7. Let � be a cofinite quasi-arithmetic hyperbolic Coxeter group
with Vinberg field K , and let C be any Coxeter transformation of �. Then

K = K (C).

Proof. We first show that K ⊇ K (C). The Vinberg field K is a field of definition
(see Sect. 3.1). Thus, bymeans of a suitable basis, the Coxeter transformationC can
be written as a matrix with coefficients in K . Since the characteristic polynomial
is invariant under a basis change, we have that K ⊇ K (C).

Assume that K � K (C). Then there exists a non-trivial embeddingσ : K ↪→ R

that is the identity on K (C). Consider the Coxeter transformation CT acting on(
R

N ,G
)
which corresponds to C in the sense of Tits. By (7), we can express

CT = −U−1UT where U is an M-matrix. As a consequence of Lemma 4.4, CT

has a real eigenvalue λ > 1.
Consider the matrices Gσ and Uσ , obtained by applying σ to the coefficients

of the Gram matrix G of � and U . The matrix Uσ is invertible but in general not
an M-matrix anymore since its off-diagonal entries may become positive. Define
Cσ := −(Uσ )−1(Uσ )T . By (8), we have the equation Uσ + (Uσ )T = 2Gσ .
By part i i) of Theorem 2.2, Uσ + (Uσ )T is therefore positive semidefinite. The
embedding σ is a field homomorphism, thus the characteristic polynomial of Cσ is
obtained by applying σ to the coefficients of the characteristic polynomial of CT .

Since σ is the identity on K (C), it leaves the characteristic polynomial χC

invariant. The identity (9) then yields χCT = χCσ . This is contradiction, since CT

has an eigenvalue λ > 1 and since, by Lemma 4.5, all the eigenvalues of Cσ have
modulus one. ��
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