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‘You can’t mess with geometry, friend. Pyramids?
Dangerous things. Asking for trouble.’

Pthagonal
— Terry Pratchett, Pyramids
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Abstract

This thesis contains several new results on hyperbolic geometry.
The main outcome is the identification of the smallest non-arithmetic cusped hyperbolic 3-

orbifold as the quotient of hyperbolic 3-space by the Coxeter group [5,3,6] using geometric and
combinatorial considerations on horoball packings (joint with Ruth Kellerhals).

The same tools are used to establish that the Coxeter group [5,∞] yields the smallest non-
arithmetic cusped hyperbolic 2-orbifold. This gives a Siegel type result by providing a list of all
cusped hyperbolic 2-orbifolds with area less than π

2 .
Another perspective concerns compact hyperbolic 2-orbifolds realising minimal area hyperbolic

n-gons as a fundamental polygon for n > 6. We consider stabiliser subgroups of the Coxeter
groups [n,3] acting on appropriately chosen graphs. Where possible, we describe 2-manifolds by
means of torsion-free subgroups thereof. In this way we complete previous work of Matthieu
Jacquemet.

These methods are also used to demonstrate that smallest non-arithmetic cusped hyperbolic
3-manifolds covering a Coxeter orbifold cannot be based on [5,3,6]. In fact, the Coxeter group
[(33,6)] yields a smaller manifold cover.

In higher dimensional hyperbolic space we construct right-angled p-gons by utilising the upper
half space model based on Clifford vectors (joint with Edoardo Dotti). The main idea of analysing
orthogonal geodesics using cross ratios is helpful through most parts of this thesis.
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Zusammenfassung

Diese Doktorarbeit behandelt verschiedene neue Resultate der hyperbolischen Geometrie.
Das Haupttheorem identifiziert den Quotienten des hyperbolischen 3-Raumes nach der Co-

xetergruppe [5,3,6] als die kleinste gespitzte nicht-arithmetische hyperbolische 3-Orbifaltigkeit.
Diese gemeinsame Arbeit mit Ruth Kellerhals basiert auf geometrischen und kombinatorischen
Überlegungen.

Mit Hilfe derselben Methoden beweisen wir, dass die Coxetergruppe [5,∞] zur kleinsten
gespitzten nicht-arithmetischen hyperbolischen 2-Orbifaltigkeit führt. Daraus folgt ein Resultat
im Stile Siegels mit einer Liste aller hyperbolischen 2-Orbifaltigkeiten mit Spitze und Fläche
kleiner als π

2 .
Des Weiteren betrachten wir kompakte hyperbolische 2-Orbifaltigkeiten, deren Fundamental-

polygone minimale pflasternde n-Ecke sind, dies für n > 6. Solche werden von Stabilisator-
untergruppen der Coxetergruppen [n,3] realisiert, für die wir Gruppenwirkungen auf geeigneten
Graphen konstruieren. Wenn möglich, beschreiben wir zugehörige 2-Mannigfaltigkeiten anhand
torsionsfreier Untergruppen. Dadurch vervollständigen wir eine frühere Arbeit von Matthieu
Jacquemet.

Mit dieser Technik wird auch bewiesen, dass kleinste nicht-arithmetische hyperbolische 3-
Mannigfaltigkeiten, die eine Coxeterorbifaltigkeit überlagern, nicht auf der Gruppe [5,3,6]
basieren können. Wir zeigen, dass es für die Coxetergruppe [(33,6)] eine kleinere überlagernde
Mannigfaltigkeit gibt.

Im höherdimensionalen hyperbolischen Raum konstruieren wir rechtwinklige p-Ecke, indem
wir das obere Halbraummodell auf Cliffordvektoren aufbauen. Dies ist eine gemeinsame Arbeit
mit Edoardo Dotti. Die wesentliche Idee, mit Doppelverhältnissen orthogonale Geodäten zu
analysieren, ist für die meisten Teile dieser Dissertation hilfreich.
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Résumé

Cette thèse contient de nouveaux résultats en géométrie hyperbolique.
Le résultat principal est l’identification du plus petit 3-orbifold hyperbolique non-compact non-

arithmétique avec le quotient de l’espace hyperbolique par le groupe de Coxeter [5,3,6]. Ce travail
est en collaboration avec Ruth Kellerhals où des considérations géométriques et combinatoires
sur les empilements d’horoboules sont nos outils principaux.

Les mêmes outils sont utilisés pour établir que le groupe de Coxeter [5,∞] est le groupe
fondamental du plus petit 2-orbifold hyperbolique non-compact non-arithmétique. Le résultat
obtenu s’apparente à celui de Siegel donnant lieu à une liste de tous les 2-orbifolds hyperboliques
non-compacts d’aire plus petite que π

2 .
Un autre aspect concerne les 2-orbifolds hyperboliques compacts admettant pour polygone

fondamental des n-gons hyperboliques d’aire minimale, où n > 6. En choisissant de manière
stratégique des graphes sur lesquels les groupes de Coxeter [n,3] agissent, nous considérons les
sous-groupes stabilisateurs de ceux-ci. Lorsque cela est possible, nous décrivons des 2-variétés
au moyen de leurs sous-groupes sans torsion. Tout ceci vient compléter des travaux antérieurs de
Matthieu Jacquemet.

Ces méthodes sont également utilisées pour démontrer que des variétés hyperboliques non-
compactes non-arithmétiques de volume minimal revêtant un orbifold de Coxeter ne peuvent
pas être basées sur [5,3,6]. En effet, le groupe de Coxeter [(33,6)] mène à un revêtement par une
variété de plus petit volume.

Pour les dimensions supérieures, nous construisons des p-gons à angles droits réalisés dans
le modèle du demi-espace supérieur basé sur des vecteurs de Clifford (en collaboration avec
Edoardo Dotti). L’analyse des géodésiques orthogonales à l’aide de birapports est utile dans la
plupart des parties de cette thèse.
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I. Introduction

This cumulative thesis treats several different new aspects of hyperbolic geometry. Each chapter
contains its own elaborate introduction, bibliography and also some references to other chapters.

The new results mainly concern the hyperbolic plane H2 and hyperbolic 3-space H3, but
chapter II starts with higher dimensional hyperbolic spaces Hn+2. The model of choice will be
the upper half space Hn, n ≥ 2, where geodesics are vertical lines or semicircles orthogonal to
the boundary. The volume element is given by dvol = 1

xn
n
dx1 · · ·dxn. All results except for the first

chapter concern questions about small volume.
In chapter II, we use generalised cross ratios to construct and analyse the existence of right-

angled hyperbolic polygons in higher dimensional hyperbolic space Hn+2. This is joint work with
Edoardo Dotti [DD19] motivated by the hexagonal case considered by Delgove and Retailleau
[DR14]. The Clifford calculus provides a powerful tool to work with right-angled geodesics and
introduce a multiplication on the boundary ∂Hn+2 of hyperbolic space. Then, cross ratios of
geodesics encode angles of geodesics and their relative position in upper half space. This enables
us to encode a right-angled p-gon as a set of Clifford vector parameters q1, . . . ,qp−3 and is also
useful in later chapters of this thesis. The contributions of both authors to the paper [DD19] are
comparable, where my input mostly concerns the construction of the right-angled polygons and
counter examples to attempts of a proper parameterisation.

Chapter III is the core of this thesis. We find the smallest non-arithmetic cusped hyperbolic
3-orbifold by utilising horoball geometry. This is joint work with Ruth Kellerhals [DK21]. I
contributed a significant share of the research in this paper. By combinatorial considerations we
list cusped hyperbolic 3-orbifolds with small volume to be able to argue that the Coxeter group

with Coxeter graph
5 6

yields the smallest volume non-arithmetic cusped hyperbolic
3-orbifold. As such, it is unique. The basics of the horoball geometry are due to Adams but we
had to extend his arguments from [Ada92] in a considerable way.

This small orbifold obtained from
5 6

does not lead to the smallest non-arithmetic
cusped hyperbolic 3-manifold covering a Coxeter orbifold. We prove this in chapter IV by finding
a small index torsion-free subgroup G of the Coxeter group

Γ :

6

,

such that the quotient H3/G has smaller volume than any manifold cover of H3/
5 6

.
In the last two chapters, we revisit a famous theorem of Carl Siegel [Sie45] in the hyperbolic

plane. In chapter V, we prove a non-compact version by using the techniques of chapter III. This

1



I. Introduction

not only gives the smallest cusped hyperbolic orbifold but also a list of all cusped hyperbolic 2-

orbifolds with area smaller than π

2 . In particular, we can prove that the Coxeter group
5 ∞

yields the non-arithmetic cusped hyperbolic 2-orbifold with minimal area.
Chapter VI is a completion of Matthieu Jacquemet’s work and concerns compact hyperbolic

n-gons tessellating the hyperbolic plane. In his thesis [Jac15], he described the smallest such
polygons with n ≤ 6. Here, we find groups realising the smallest n-gons as fundamental polygons
for n > 6. This is done using similar methods to those used in chapter IV. Where possible, we
also determine smooth hyperbolic surfaces that realise minimal fundamental n-gons.

References
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(Columbus, OH, 1990). Vol. 1. Ohio State Univ. Math. Res. Inst. Publ. de Gruyter,
Berlin, 1992, pp. 1–15.
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0357-y.
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(2014), pp. 1049–1061. DOI: 10.5802/afst.1435.

[Jac15] M. Jacquemet. ‘New contributions to hyperbolic polyhedra, reflection groups, and
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II. On Right-Angled Polygons in Hyperbolic
Space

1. Introduction
The first part of this thesis is joint work with Edoardo Dotti [DD19]. We generalised work
of Delgove and Retailleau [DR14]. They described a classification of right-angled hyperbolic
hexagons in H5. We extended this result to right-angled p-gons in higher dimensional hyperbolic
space Hn. In this context, a right-angled p-gon is a finite sequence of p geodesics S0,S1, . . . ,Sp−1
in hyperbolic space such that consecutive geodesics are orthogonal and Sp−1 ⊥ S0.

The model of choice is the upper half-space model of hyperbolic space Hn+2 where the
boundary ∂Hn+2 is composed of Clifford vectors Vn+1 ∪{∞} = ∂Hn+2. The use of Clifford
vectors as end points of geodesics admits a new notion of a cross ratio of two or three geodesics.
This cross ratio encodes information about the respective orientation of the geodesics to each
other. This also proved useful for the remaining chapters of this thesis. For example, in chapter
IV, we can use these cross ratio relations to double check other computations.

The cross ratio of the four ideal endpoints of two hyperbolic geodesics encodes their angle if
they intersect (see Proposition 4). If three geodesics S1,S2, and S3 form a so-called double bridge
(i.e. S1 ⊥ S2 ⊥ S3), then the cross ratio gives the distance d(S1,S3) and additional information on
their relative position. Since Cn is not commutative for n > 1, the cross ratio itself is not invariant
under hyperbolic isometries in general, but only its norm and real part. In general, the cross ratio
can take values in the Clifford group Γn generated by the non-zero Clifford vectors. For two
given perpendicular geodesics S1 and S2, a third geodesic S3 cannot make the cross ratio take any
arbitrary value in Γn but only a subset which depends on the position of the first two geodesics.
This can be remedied by considering double bridges of a certain standard configuration, where
the cross ratio can take values in Vn+1 \{0,±1}.

This is the central idea of the algorithm. One starts with two geodesics

S0 = (−1,1), S1 = (0,∞) (1.1)

in the standard configuration and takes a set of parameters q1, . . . ,qp−3 ∈Vn+1. The third geodesic
S2 is given by the parameter q1 directly by assuming that S0,S1, and S2 form a double bridge
with cross ratio equal to q1. For the geodesic S3, one finds a geodesic S′3 = (−q2,q2) which is the
third geodesic in a standard configuration with cross ratio q2. The geodesic S3 is then obtained as
the image of S′3 under an isometry mapping

(−1,1) 7→ S2, (0,∞) 7→ S3. (1.2)

This condition does not uniquely define the isometry but one can define the isometry in a
consistent manner. One can continue in this way to obtain the further geodesics up to Sp−2 which

3



II. On Right-Angled Polygons in Hyperbolic Space

is given by qp−3. If Sp−2 and S0 do not intersect, the common perpendicular yields Sp−1 and the
construction finishes. If they do intersect, then the set of parameters we started with is not valid.

This chapter provides a summary of the paper [DD19] which is attached in Appendix A.
Detailed definitions, results, and citations can be found there.

2. Preliminaries

2.1. Clifford Algebra and Clifford Vectors

The crucial step is to use the Clifford algebra Cn as a generalisation of the real and complex
numbers and the quaternions H. This allows us to multiply and divide points on the boundary of
hyperbolic space Hn+2. Let Cn be the nth Clifford algebra, that is the (anti-)commutative unitary
real algebra in n generators i1, . . . , in:

Cn :=
〈
i1, . . . , in | ∀l 6= k : i2l = 1 and il ik =−ik il

〉
,n ≥ 1.

As a real vector space, Cn is 2n-dimensional with basis

{ik1 · · · ikm | 1 ≤ k1 ≤ ·· · ≤ km ≤ n,0 ≤ m ≤ n} .

The coefficient of the empty product I0 = 1 =: i0 in a Clifford number x is called the real part
and denoted by ℜ(x). We set C0 := R i0. The elements of the vector subspace spanned by 1 and
the generators i1, . . . , in are called the Clifford vectors. The set is denoted by

Vn+1 := 〈1, i1, . . . , in〉 ⊂ Cn.

The real numbers are obtained as C0 = R, the complex numbers as C1 = C and Hamilton’s
quaternions as C2 =H. There are three standard involutions in the Clifford algebra Cn, one of
them being the reversion, which acts on an element x ∈ Cn by reversing the order of the products
in the basis elements: (ik1 · · · ikm)

∗ = ikm · · · ik1 . For n ≥ 3, Cn contains zero divisors – consider
(1+ i1i2i3)(1− i1i2i3). However, the non-zero Clifford vectors generate a multiplicative group
called the Clifford group Γn ⊂ Cn.

It is possible to extend the definition of a square root to Clifford vectors that are not both real
and negative. By abuse of notation we use the usual symbol for the square root of a real number.

Definition 1. For a Clifford vector q ∈ Vn+1 \R<0 we define

√
q :=

|q|+q√
2(ℜ(q)+ |q|)

∈ Vn+1.

It satisfies the usual properties of a square root, that is ±√
q are the only two Clifford vectors

whose square is q.

4



2. Preliminaries

2.2. Cross Ratio and Properties

In the non-commutative Clifford algebra Cn, it is necessary to define the exact notion of cross
ratio one is using.

Definition 2. For pairwise different Clifford vectors x,y,z,w ∈ Vn+1 define the cross ratio as

[x,y,z,w] := (x− z)(x−w)−1(y−w)(y− z)−1 ∈ Γn.

It is possible to extend the definition for one of the variables to be ∞. The cross ratio has the
transformation property

[T (x),T (y),T (z),T (w)] = (cz+d)∗−1[x,y,z,w](cz+d)∗, (2.1)

for any T =

(
a b
c d

)
∈ SL(2,Cn). Here,

SL(2,Cn) =

{
A =

(
a b
c d

)
∈ GL(2,Cn) | ad∗−bc∗ = 1

}
denotes the group of Clifford matrices with Ahlfors determinant 1 and the Clifford matrices(

a b
c d

)
∈ GL(2,Cn) are the matrices satisfying

a,b,c,d ∈ Γn ∪{0},ab∗,cd∗,c∗a,d∗b ∈ Vn+1,ad∗−bc∗ ∈ R\{0}.

The most important upshot here is the invariance of norm and real part of the cross ratio.
It is useful to calculate details about the relative position of two geodesics s = (s−,s+) and

t = (t−, t+) with endpoints in the boundary ∂Hn+2 = Vn+1 ∪{∞} of hyperbolic space Hn+2.

Definition 3. We define the cross ratio ∆(s, t) of two geodesics s and t as

∆(s, t) :=
[
s−,s+, t−, t+

]
. (2.2)

Proposition 4. The cross ratio ∆(s, t) of two geodesics in Hn+2 is a negative real number if and
only if they intersect. Additionally, ∆(s, t) =−1 if and only if they are orthogonal.

The construction of right-angled polygons will depend on objects Retailleau and Delgove
called double bridges. They consist of three geodesics r, s, and t in Hn+2 such that r ⊥ s ⊥ t.
Also here, the cross ratio encodes valuable information.

Definition 5. For the double bridge (r,s, t), we call

∆(r,s, t) :=
[
s+,s−,r+, t+

]
the double bridge cross ratio.
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II. On Right-Angled Polygons in Hyperbolic Space

Do note, that if the orientation of s is reversed, the double bridge cross ratio becomes the
multiplicative inverse. This is one reason why different sets of parameters can lead to the same
polygons. One can show that the distance of r and t is given by |log(|∆(r,s, t)|)|. The direction
∆(r,s, t)|∆(r,s, t)|−1 encodes their relative position in Hn+2.

Remember that the cross ratio is not invariant under isometries. In order to have a sensible
representation of the relative position by the cross ratio, we consider a standard configuration
double bridge (r,s, t) where

r = (−1,1), s = (0,∞), and t = (−q,q). (2.3)

In this standard configuration, the cross ratio easily computes as ∆(r,s, t) = q, where q ∈ ∂ Hn+2 \
{±1,0,∞}=Vn+1 \{±1,0}. This is the set of allowed parameters. By restricting the orientation,
it is adequate to only consider parameters in the set

{
q ∈ Vn+1 | |q|> 1

}
.

We will always start in this standard configuration and then apply an appropriate isometry as
desired.

Definition 6. The set of Clifford vectors {q1, . . . ,qp−3} ⊂ Vp−2 \{0} gives rise to isometries φ1,
. . . , φp−3 as the following Möbius transformations:

φi : x 7→
√
−2qi

−1
(x+qi)(x−qi)

−1√−2qi, 1 ≤ i ≤ p−3. (2.4)

For a negative number qi < 0, choose
√
−2qi :=

√
2qi i1.

We define the concatenation Φi := φi ◦φi−1 ◦ · · · ◦φ1.

The isometry φ
−1
i maps the geodesic (−1,1) to (0,∞) and (0,∞) to (−qi,qi).

3. The Algorithm
The aim is to construct a right-angled p-gon in Hn+2, p ≥ 5, n ≥ 2, from a set of given parameters
q1, . . . ,qp−3 ∈ Vn+1 \{±1,0,∞}. We cite the definition of right-angled polygons from [DD19].

Definition 7. An oriented right-angled polygon with p sides in Hn+2 (or p-gon for short), n ≥ 0,
is a p-tuple of oriented geodesics (S0,S1, . . . ,Sp−1) with Si−1 6= Si+1 for i (mod p) and such that
Si is orthogonal to Si+1 for 0 ≤ i ≤ p−2 and Sp−1 is orthogonal to S0.

We usually denote it by Πp.
We call such a p-gon Πp non-degenerate if consecutive intersections do not coincide (that

is Si−1 ∩ Si 6= Si ∩ Si+1 for i (mod p)) and the double bridges (Si−1,Si,Si+1), i (mod p), are
properly oriented.

3.1. The Start

As mentioned before, we begin with the two geodesics

S0 = (−1,1), and

S1 = (0,∞).

6



4. Discussion and Remarks

There is a unique geodesic

S2 = (−q1,q1)

such that the double bridge cross ratio is given by the first parameter q1 = ∆(S0,S1,S2).

3.2. The Next Geodesics

Assume we have computed the geodesics S0,S1, . . . ,Sk from the parameters q1, . . . ,qk−1. The
parameter qk would give a geodesic

S′k+1 = (−qk,qk)

in the standard configuration. By applying the isometry Φ
−1
k−1 to S′k+1, we obtain the new geodesic

Sk+1 = Φ
−1
k−1

(
S′k+1

)
=
(
Φ

−1
k−1(−qk),Φ

−1
k−1(qk)

)
.

3.3. The Last Geodesic

The preceding procedure yields geodesics

S0,S1, . . . ,Sp−2.

Assuming these geodesics are part of a right-angled p-gon, then the missing geodesic Sp−1 has
to be orthogonal to S0 and Sp−2. The endpoints of Sp−1 can be calculated by solving the two
equations

∆(S0,Sp+2) =−1, and ∆(Sp+1,Sp+2) =−1. (3.1)

In view of the non-commutative nature of the Clifford algebra, a carefully chosen transformation
simplifies this calculation. By using an isometry to map S0 to (0,∞) and S1 to (1,c) for some
c ∈ Vn+1, the Clifford vectors in the subspace generated by the endpoints do commute. In this
configuration, the missing geodesic can be easily calculated as (−

√
c,
√

c).

4. Discussion and Remarks

4.1. Existence and Isometries

There are two major questions which are still unanswered:

• Which parameters q1, . . . ,qp−3 yield a non-degenerate p-gon?

• What are possible relations between parameters q1, . . . ,qp−3 and q′1, . . . ,q
′
p−3 yielding

isometric polygons?
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II. On Right-Angled Polygons in Hyperbolic Space

The difficulty of calculating Sp−1 makes those questions hard to answer. Assuming that the
parameters q1, . . . , qp−3 yield geodesics S0, . . . ,Sp−2, such that the only non-empty intersections
are of type Si ∩Si+1 (0 ≤ i ≤ p−2), it is still challenging to calculate the position of Sp−1 and
its intersections with S0 and Sp−2. For example, the parameters q1 = 2i,q2 = 2j ∈H might be a
good first guess for a non-degenerate pentagon in H4. The first geodesics can be calculated from
these parameters as

S0 = (−1,1),

S1 = (0,∞),

S2 = (−2i,2i), and

S3 = (φ1(−2j),φ1(2j)) =
(

1
5
(6i−8j),

1
5
(6i+8j)

)
.

It can easily be seen without any calculation that the common perpendicular of S0 and S3 has to
completely lie in the hyperbolic plane defined by its projection {xi | x ∈ R} in the boundary of
hyperbolic space. This implies that the intersections of S0 ∩S1 and S4 ∩S0 coincide and that the
pentagon is degenerate.

By calculating examples, we noticed that orthogonal parameters usually lead to degenerate
polygons. It lead us to the conjecture that non-degenerate right-angled pentagons might be
constructed by the parameters

{(q1,q2) | ∀i = 1,2, |qi|> 1,ℜ(q1) 6= 0,q1 6⊥ q2} .

This set does not ensure that the pentagons are properly oriented or non-isometric but it might
assert that they are non-degenerate.

An implementation of our algorithm can be obtained at https://github.com/drewitz/
PiGeonS.

4.2. Two Applications

We showed in the paper [DD19] that a necessary condition for the intersections of the geodesics
in a p-gon Πp to form a convex (p−1)-simplex is that the parameters q1, . . . ,qp−3 together with
1 span the Clifford vector space Vp−2. The idea behind the proof is that each parameter has to
introduce another dimension. Above, we have already seen an example that this condition cannot
be a sufficient condition.

Furthermore, we considered hyperbolic 4-simplices with a totally orthogonal edge cycle.
By using results of Dekster and Wilker [DW91], we were able to show that if there is a 4-
simplex containing a totally orthogonal edge cycle where all edge lengths are equal to a, then
cosh(a)< 1+

√
5

2 .
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III. The non-arithmetic cusped hyperbolic
3-orbifold of minimal volume

This chapter is the reproduction of the paper [DK21] which is joint work with Ruth Kellerhals. I
contributed a substantial part of the research to this paper. The notions and results mentioned
here will also be used later in this thesis.

Abstract We show that the 1-cusped quotient of the hyperbolic space H3 by the tetrahedral
Coxeter group Γ∗ = [5,3,6] has minimal volume among all non-arithmetic cusped hyperbolic 3-
orbifolds, and as such it is uniquely determined. Furthermore, the lattice Γ∗ is incommensurable
to any Gromov-Piatetski-Shapiro type lattice. Our methods have their origin in the work of
C. Adams [Ada92a; Ada91]. We extend considerably this approach via the geometry of the
underlying horoball configuration induced by a cusp.

1. Introduction
Let H3 be the hyperbolic 3-space viewed in the upper half space U3 of Poincaré, and let IsomH3

be its isometry group. A cusped hyperbolic 3-orbifold V is the quotient of H3 by a non-cocompact
lattice Γ ⊂ IsomH3, that is, by a discrete group of hyperbolic isometries with a non-compact
fundamental polyhedron of finite volume. In particular, Γ contains a non-trivial parabolic
subgroup whose elements fix a point q on the boundary ∂H3. Without loss of generality, assume
that q = ∞ with stabiliser Γ∞ < Γ. The group Γ∞ gives rise to precisely invariant subsets which
are horoballs centred at ∞. They can be arranged in such a way that there is a maximal horoball
B∞ touching some of its Γ-images, called full-sized horoballs, and which project to a maximal
cusp C ⊂V of finite volume in V . Hence, the number of non-conjugate parabolic subgroups of Γ

equals the number of maximal cusps in V . The orthogonal projection of the full-sized horoballs to
the horosphere ∂B∞ = H∞ yields a horoball-packing with a characteristic horoball diagram on H∞.
In this way, a combination of results from crystallography and a density result of K. Böröczky
[Bör78, Theorem 4] allows one to deduce lower volume bounds.

Using this picture, R. Meyerhoff [Mey85] identified the 1-cusped quotient space H3/[3,3,6]
as the minimal volume cusped hyperbolic 3-orbifold. The Coxeter group with symbol [3,3,6]
generates the group of symmetries of an ideal regular tetrahedron S∞

reg of dihedral angle π

3 . Fur-
thermore, it is an arithmetic group commensurable to the Eisenstein modular group PSL(2,Z[ω])
where ω = (−1+

√
−3)/2 is a primitive cubic root of unity. The orbifold H3/[3,3,6] is covered

by the well-known (non-orientable) 1-cusped Gieseking manifold G which, by a result of Adams
[Ada87], is of minimal volume among all cusped hyperbolic 3-manifolds.

The result of Meyerhoff was considerably extended by Adams [Ada92a, Theorem 6.1, Corollary
6.2] who identified the six cusped (orientable and non-orientable) hyperbolic 3-orbifolds of
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III. The minimal cusped non-arithmetic 3-orbifold

smallest volume. Crucial in Adams’ proof was the assumption of the strict upper volume bound
of 1

4 vol(S∞
reg) in the case of orientable orbifolds, implying that such an orbifold has only one cusp

and a single orbit of full-sized horoballs modulo the action of the corresponding stabiliser. In
[NR92], W. Neumann and A. Reid characterised Adams’ spaces and showed that they are all
arithmetically defined.

In this work, we consider non-arithmetic cusped hyperbolic 3-orbifolds and prove the following
result.

Theorem. Among all non-arithmetic cusped hyperbolic 3-orbifolds, the 1-cusped quotient space
V∗ of H3 by the tetrahedral Coxeter group [5,3,6] has minimal volume. As such the orbifold V∗ is
unique, and its volume v∗ is given explicitly by (2.7).

The Coxeter group [5,3,6] gives rise to the group of symmetries of an ideal regular dodecahed-
ron D∞

reg ⊂ H3 of dihedral angle π

3 . By applying different face identifications to D∞
reg, the orbifold

V∗ admits several non-isometric non-arithmetic cover manifolds; see [Eve04].
Notice that the non-arithmetic orbifold V∗ = H3/[5,3,6] does not relate to a Gromov–Piatetski-

Shapiro construction. In fact, the Coxeter tetrahedron associated to [5,3,6] is not splittable in the
sense of [Fis+18, Section 6.2, Example 6.10]. Therefore, by [Fis+18, Lemma 6.9], the group Γ∗
is incommensurable to any Gromov–Piatetski-Shapiro type lattice.

Consider the smooth case of non-arithmetic cusped hyperbolic 3-manifolds. There are many
such manifolds. For a list containing small volume examples, we refer to [GMM09] and [MR03,
Section 13.6]. Here, we focus on Coxeter manifolds, that is, manifolds whose fundamental
groups are commensurable with hyperbolic Coxeter groups. Their existence is guaranteed by
Selberg’s Lemma. The above theorem allows us to deduce the following result in terms of the
non-arithmetic tetrahedral Coxeter group [(33,6)].

Proposition. The fundamental group of a non-arithmetic cusped hyperbolic Coxeter 3-manifold
M∗ of minimal volume is incommensurable to the Coxeter group [5,3,6]; the volume of M∗ is
smaller than or equal to 24 · covol([(33,6)])≈ 8.738570.

Furthermore and as a by-product of the geometric methods used to prove the Theorem, we
obtain the following two-dimensional analogue which has possibly been overlooked so far.

Proposition. Among all non-arithmetic cusped hyperbolic 2-orbifolds, the 1-cusped quotient
space V∗ of H2 by the triangle Coxeter group [5,∞] has minimal area. As such the orbifold V∗ is
unique, and its area is given by 3π

10 .

For fixed dimension n with 2 ≤ n ≤ 9, the cusped hyperbolic n-orbifold of minimal volume is
known and intimately related to an arithmetic Coxeter simplex group (see [HK07] and [Hil07b;
Hil07a]). In comparison to this, it is much more difficult to identify the non-arithmetic cusped
hyperbolic n-orbifolds of minimal volume for n ≥ 4 by providing a presentation of their funda-
mental groups. In view of the Gromov–Piatetski-Shapiro construction, observe that non-arithmetic
non-cocompact hyperbolic Coxeter simplex groups do not exist anymore for n ≥ 4.

This work is structured as follows. In Section 2 we present the necessary background about
cusped hyperbolic orbifolds, their (non-)arithmeticity and the realisation as quotients by hyper-
bolic Coxeter groups. We provide a short overview about volume computations for hyperbolic

12



2. Non-arithmetic cusped hyperbolic 3-orbifolds

(truncated) tetrahedra and finish by presenting the necessary information about horoball packings
and cusp densities. Section 3 contains the proof of our Theorem which consists of several steps.
We first show that a non-arithmetic cusped hyperbolic 3-orbifold H3/Γ of minimal volume has
exactly one cusp C, and then, that C is a rigid cusp of type {2,3,6} or {2,4,4}. We study
these two cases separately and have also to distinguish – in contrast to Adams’ work [Ada92a]
– whether there is one or more equivalence classes of a full-sized horoball B covering C with
respect to Γ∞. An essential aspect is the view of the Γ∞-periodic horoball packing induced by B
by means of its horoball diagram. The possible configurations of full-sized horoballs and their
hierarchy allow us to estimate minimal distances of their centres and to derive lower volume
bounds. In all cases, we are able to identify fundamental polyhedra for Γ or to exclude groups
when they are arithmetic or of a too big covolume. In Section 4, we discuss briefly the related
results given by the two propositions above, both due to the first author [Dre21]. In the parts III.A
and III.B of the Appendix, we describe certain small volume orientable orbifolds with precisely
one cusp of type {2,3,6} and {2,4,4}, respectively, whose associated parabolic groups give
rise to only one equivalence class of full-sized horoballs. In the case of {2,3,6}, we correct the
corresponding construction and result of Adams [Ada92a, p. 10].
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2. Non-arithmetic cusped hyperbolic 3-orbifolds

2.1. Cusps of hyperbolic orbifolds

Consider the hyperbolic space H3 in the upper half space U3 = {(x,y, t) ∈ R3 | t > 0} equipped
with the metric ds2 = dx2+dy2+dt2

t2 . Points on the boundary ∂U3 = {(x,y,0) = (u,0) ∈ R3}∪
{∞}= R2 ∪{∞} are called ideal points, and points in R3 with t < 0 are called ultraideal.

Let Γ ⊂ IsomH3 be a non-cocompact lattice, that is, Γ is a discrete group with a non-compact
fundamental polyhedron P ⊂ H3 of finite volume. Then, the quotient space V = H3/Γ is a cusped
hyperbolic 3-orbifold of finite volume which is a smooth manifold if the group Γ has no torsion
elements. By Selberg’s lemma (see [Rat94, Theorem 7.5.7], for example), Γ always has a finite
index subgroup Λ which is torsion-free. In particular, Γ and Λ are commensurable groups in
IsomH3, that is, the intersection of Γ with some conjugate of Λ in IsomH3 is of finite index in
both groups. Recall that commensurability is an equivalence relation preserving properties such
as cocompactness, finite covolume and arithmeticity.

Each cusp C of V is of the form Bq/Γq where Bq ⊂ H3 is a horoball based at an ideal point
q ∈ ∂H3 where Γq ⊂ Γ is the (non-trivial) stabiliser of q in Γ. Enlarge C so that it touches either
itself or another cusp of V . Such a cusp is called a maximal cusp of V . Without loss of generality,
we will assume that a maximal cusp of V is covered by the horoball B∞ = {(x,y, t) ∈ R3 | t > 1}
based at ∞, with distance 1 from the ground space {t = 0}, and bounded by the horosphere
H∞ = {(x,y, t) ∈ R3 | t = 1}. Recall that the induced metric ds2 |t=1 on H∞ coincides with the
Euclidean metric with distance function denoted by d0. Since the cusp C is maximal, there are
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III. The minimal cusped non-arithmetic 3-orbifold

horoball images γ(B∞) with γ ∈ Γ not fixing ∞ whose closures touch B∞. These images are
called full-sized horoballs. By looking at their orthogonal projections onto the horosphere H∞,
we get horodisks whose centres coincide with the touching points of the corresponding full-sized
horoballs. It will be convenient to identify full-sized horoballs and their base points with their
horodisks and centres and vice versa. We always suppose, without loss of generality, that one
full-sized horoball is based at the origin 0 of {t = 0}.

The group Γ∞ is a crystallographic group acting cocompactly by Euclidean isometries on
{t = 0} (and on H∞). As such it contains a translation lattice L ⊂ Γ∞ of rank two, with minimal
translation length τ ≥ 1, and a finite subgroup φ ⊂ O(2), called the point group, which is
a subgroup of the automorphism group Aut(L). The latter group consists of all Euclidean
isometries fixing the origin and mapping L onto itself.

The orthogonal projection of the full-sized horoballs onto the horosphere H∞ provides a sphere
packing by balls of diameter 1 of the Euclidean plane {t = 1}. Recall that the densest packing of
the Euclidean plane is achieved by the hexagonal lattice packing where each ball is surrounded
by six balls. In the sequel, planar Euclidean and spatial horoball packings of large local densities
will play an important role.

The ideal fixed point ∞ can be seen as an ideal vertex of a fundamental polyhedron P of Γ

whose vertex link P∩H∞ is related either to a triangle ∆ = {p,q,r} with angles π

p ,
π

q ,
π

r satisfying
(p,q,r) = (2,3,6) , (2,4,4) or (3,3,3) or to a parallelogram (see [Ada92a, Section 2]).

In this context, a cusp in V is called rigid if Dehn filling cannot be performed, and otherwise it
is called non-rigid. In [Ada91], Adams showed that a cusp is rigid if and only if there are singular
curves of order different from 2 going directly out of the cusp.

The type of a rigid cusp is denoted by {p,q,r} according to the orders p,q and r of its singular
axes and the triangular description mentioned above. Assuming that there is at least one non-rigid
cusp, Adams found the three (uniquely determined) orientable orbifolds of smallest, second
smallest and third smallest (limit) volumes; they all have arithmetic fundamental groups (see
[Ada91, Chapter 4, Chapter 7] and the proof of Proposition 6 below).

The (non-)arithmeticity of a discrete group Γ⊂ IsomH3 of finite covolume can be characterised
by the following fundamental property due to Margulis (see [MR03, Theorem 10.3.5], for
example). Consider the commensurator

Comm(Γ) = {γ ∈ IsomH3 | Γ and γΓγ
−1 are commensurable}

of Γ in IsomH3. Then, the group Comm(Γ) is a discrete subgroup in IsomH3 containing Γ

with finite index if and only if Γ is non-arithmetic. In particular, for Γ non-arithmetic, the
commensurator Comm(Γ) is the maximal element in the commensurability class of Γ so that all
non-arithmetic hyperbolic orbifolds and manifolds with fundamental groups commensurable to Γ

cover a smallest common quotient.

2.2. Hyperbolic Coxeter orbifolds

Arithmeticity can be described in a nice way for the class of hyperbolic Coxeter groups and
the associated quotients called Coxeter orbifolds. Consider first a Coxeter polyhedron in H3

which is a convex polyhedron PC ⊂H3 of finite volume all of whose dihedral angles are integral
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submultiples of π . A hyperbolic Coxeter group ΓC ⊂ IsomH3 (with fundamental polyhedron PC)
is the discrete group generated by the (finitely many) reflections in the facets of PC. Since the
dihedral angles of PC are non-obtuse, Andreev’s theorem (see [And70a], [And70b], [RHD07])
provides necessary and sufficient conditions for its existence. In particular, there are infinitely
many non-isometric Coxeter polyhedra in H3 but only finitely many Coxeter tetrahedra. In
fact, there are precisely 9 compact Coxeter tetrahedra and 23 non-compact ones (for a list with
their volumes, see [Joh+99, pp. 347-348]). By Vinberg’s seminal work [Vin85], [VS93] about
hyperbolic Coxeter polyhedra in any dimension, many of their properties can be read off from their
Coxeter graphs and Gram matrices. Let PC ⊂H3 be a hyperbolic Coxeter polyhedron bounded
by N ≥ 4 geodesic planes H1, . . . ,HN . Consider the N ×N Gram matrix G = G(PC) = (gi j) of PC

which is a real symmetric matrix with gii = 1 and, for i 6= j,

−gi j =


cos π

mi j
if Hi,H j intersect at the angle π

mi j
in H3,

1 if Hi,H j meet at ∂H3,
cosh li j if Hi,H j are at distance li j in H3.

(2.1)

In case of many orthogonal bounding planes and small N it is convenient to represent PC

by means of its Coxeter graph which is a (weighted) graph Σ = Σ(PC) of order N defined as
follows. To each bounding plane H of PC we associate a node ν in Σ. Two different nodes νi,ν j

are connected by an edge with a weight if the planes Hi,H j are not orthogonal. The weight
equals mi j if gi j =−cos π

mi j
. In the special (and frequent) case mi j = 3, however, the edge carries

no label. An edge will be decorated by the symbol ∞ if gi j = −1. Edges related to disjoint
planes with gi j <−1 are replaced by dotted edges, and the weights are usually omitted. In order
to describe a Coxeter graph in an abbreviated way, we use the Coxeter symbol. In particular,
[p,q,r] with integral components is associated to a linear Coxeter graph describing a hyperbolic
Coxeter orthoscheme with dihedral angles π

p ,
π

q ,
π

r , and the Coxeter symbol [(pr,qs)] describes
a polyhedron with cyclic Coxeter graph having r ≥ 1 consecutive weights p followed by s
consecutive weights q (see [Joh+99, Appendix], for example). In the sequel, we often represent a
Coxeter group by quoting the Coxeter symbol of its Coxeter polyhedron.

For the arithmeticity of hyperbolic Coxeter groups, there is a very efficient criterion due
to Vinberg (see [VS93, pp. 226-227]). We quote it in the special case of a non-compact
Coxeter polyhedron PC ⊂H3 with Gram matrix G = (gi j) and with associated reflection group
ΓC ⊂ IsomH3. Write 2G =: (hi j) and form cycles (of length k) of the form

hi1i2hi2i3 · . . . ·hik−1ik hiki1 , (2.2)

with distinct indices i j in 2G. Then, ΓC is arithmetic with field of definition Q if and only if all
the cycles of 2G are rational integers. Furthermore, if the Coxeter graph Σ(PC) contains no dotted
edges, then, by a result of Guglielmetti [Gug15, Proposition 1.13], ΓC is arithmetic if and only if
all weights of Σ(PC) lie in {∞,2,3,4,6}, and each cycle of length at least 3 in 2G lies in Z.

Examples.
1. Among all non-compact Coxeter orthoschemes [p,q,r] in H3, only [5,3,6] defines a non-
arithmetic reflection group, which we denote by Γ∗. The associated Coxeter orbifold V∗ has one
cusp.
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III. The minimal cusped non-arithmetic 3-orbifold

2. The Coxeter tetrahedron P◦ with the cyclic graph [(33,6)] yields a non-arithmetic reflection
group, denoted Γ◦. The associated Coxeter orbifold V◦ has 2 cusps.

Remark 1. By [Joh+02, Theorem 3], the groups [5,3,6] and [(33,6)] are not commensurable;
in particular, their invariant trace fields are different (see [MR03, Section 13.2]). Due to the
graph symmetry [(33,6)], the Coxeter tetrahedron P◦ has a symmetry plane Hr along which it can
be dissected into 2 isometric tetrahedra (of non-Coxeter type), each with one cusp. The group
extension Γr

◦ := [(33,6)] ∗Cr by the cyclic group Cr generated by the half-turn r with respect
to Hr is a non-arithmetic discrete group containing [(33,6)] with index 2 and giving rise to the
1-cusped quotient space V r

◦ .

2.3. Volumes of non-compact hyperbolic tetrahedra

Consider a finite volume orthoscheme R = R(α,β )⊂H3 with one ideal vertex q and dihedral
angles α,β ,β ′ = π

2 −β such that β ′ ≤α < π

2 (see Figure III.1). More precisely, R is a tetrahedron
bounded by geodesic planes H1, . . . ,H4 with opposite vertices p1 = q, p2, p3, p4 such that the
Gram matrix G(R) = (gi j) is given by

G(R) =


1 −cosα 0 0

−cosα 1 −cosβ 0
0 −cosβ 1 −cosβ ′

0 0 −cosβ ′ 1

 .

The matrix G(R) is of signature (3,1) and has – beside positive definite principal submatrices –
exactly one positive semi-definite principal submatrix of rank 2 (at the lower right) characterising
the ideal vertex q of R.

α

α

β

β ′

q

p2

p3

p4

Figure III.1.: An orthoscheme R(α,β ) with ideal vertex q

It is well-known that the scissors congruence group P(H3) is generated by the classes of or-
thoschemes R(α,β ) (see [Kel12, Chapter 3], for example). Hence, the volume of any polyhedron
P ⊂ H3 is a linear combination of volumes of orthoschemes of type R(α,β ).
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2. Non-arithmetic cusped hyperbolic 3-orbifolds

The volume of R(α,β ) is given by the expression (see [Kel89], for example)

vol(R(α,β )) =
1
4

{
JI(

π

2
+α −β )− JI(

π

2
+α +β )+2JI(β )

}
, (2.3)

where JI(x) = 1
2

∞

∑
r=1

sin(2rx)
r2 =−

x∫
0

log |2 sin t|dt , x ∈R, is Lobachevsky’s function. The function

JI(x) is odd, π-periodic and satisfies the distribution formula (see [Joh+99, Appendix], for
example)

1
k

JI(kx) =
k−1

∑
r=0

JI
(

x+
rπ

k

)
, k ∈ N .

As a consequence, for the volume of an ideal tetrahedron T (α,β ,γ) with dihedral angles α,β ,γ
along edges emanating from an ideal vertex such that α +β + γ = π , one deduces that

vol(T (α,β ,γ)) = JI(α)+ JI(β )+ JI(γ) . (2.4)

As a special case, an ideal regular tetrahedron S∞
reg (of dihedral angle π

3 ) is of volume µ3 =
vol(S∞

reg) = 24vol(R(π

3 ,
π

3 )). An ideal regular octahedron O∞
reg (of dihedral angle π

2 ) can be dissec-
ted into 48 orthoschemes R(π

3 ,
π

4 ) so that the volume ω3 of O∞
reg is given by ω3 = 48vol(R(π

3 ,
π

4 )).

Examples.
The volume of the (arithmetic) Coxeter orthoscheme R(π

3 ,
π

3 ) = [3,3,6] equals

1
8

JI(
π

3
)≈ 0.042289 . (2.5)

In particular, we deduce that µ3 = vol(S∞
reg) = 3JI(π

3 )≈ 1.014942.
The volume of the (arithmetic) Coxeter orthoscheme R(π

3 ,
π

4 ) = [3,4,4] equals

1
6

JI(
π

4
)≈ 0.076330 . (2.6)

As a consequence, we have that ω3 = vol(O∞
reg) = 8JI(π

4 )≈ 3.663862.
The volume of the (non-arithmetic) Coxeter orthoscheme R(π

5 ,
π

3 ) = [5,3,6] equals

1
2

JI(
π

3
)+

1
4

{
JI(

π

6
+

π

5
)+ JI(

π

6
− π

5
)
}
≈ 0.171502 . (2.7)

By dissection, the volume of the four Coxeter tetrahedra with cyclic Coxeter symbol [(3,6,3,m)],
3 ≤ m ≤ 6, can be determined quite easily. In particular, the volume of the non-arithmetic Coxeter
tetrahedron [(33,6)] equals

5
8

JI(
π

3
)+

1
3

JI(
π

4
)≈ 0.364107 , (2.8)

which is the smallest one among the four.
For the volumes of all hyperbolic Coxeter tetrahedra, we refer to [Joh+99, Appendix].

A generalisation of the volume formula (2.3) for orthoschemes R(α,β ) with one ideal vertex
can be obtained by allowing that α +β < π

2 . This condition is equivalent to the assumption
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III. The minimal cusped non-arithmetic 3-orbifold

that the vertex p4 as depicted in Figure III.1 is ultraideal, that is, the face planes Hq,H2 and H3
opposite to q, p2 and p3 intersect (in p4) outside of H3 ∪ ∂H3. In this situation, R(α,β ) is of
infinite volume. However, there is a unique hyperbolic plane H intersecting orthogonally Hq,H2
and H3. In fact, in the projective model of H3, the plane H is the polar plane associated to p4.
By truncating R(α,β ) by means of H, we obtain a simply truncated orthoscheme denoted by
Rt(α,β ). By [Kel89, (34)], the volume of Rt(α,β ) is given analytically by the same formula
(2.3), however under the constraint α + β < π

2 . This fact combined with suitable dissection
procedures can be applied to determine the volumes of various families of truncated polyhedra in
H3.

Example.
For k, l ∈ N with 1

k +
1
l <

1
2 , consider a simply truncated Coxeter orthoscheme Rt(

π

k ,
π

l ) with one
ideal vertex q. Its Coxeter graph is given by

•—k——–•—l——–•—
2l

l−2——–• · · · · • .

In particular, the volume of the simply truncated Coxeter orthoscheme Rt(
π

k ,
π

3 ) , k ≥ 7 , is given
by

1
2

JI(
π

3
)+

1
4

{
JI(

π

6
+

π

k
)+ JI(

π

6
− π

k
)
}
, (2.9)

while the volumes of the Coxeter family Rt(
π

k ,
π

6 ) , k ≥ 4 , are equal to

1
2

JI(
π

6
)+

1
4

{
JI(

π

3
+

π

k
)+ JI(

π

3
− π

k
)
}
. (2.10)

In both cases, for k → ∞, the limiting Coxeter polyhedron is a pyramid with two ideal vertices
and Coxeter symbol [∞,3,6,∞] and has volume 5

4 JI(π

3 )≈ 0.42289.

Remark 2. Notice that for the infinite families of polyhedra R(α,β ) and Rt(α,β ) with fixed
angle β , the volume is strictly increasing when the dihedral angle α decreases. This is a direct
consequence of Schläfli’s formula for the volume differential; see [Kel89, Section 2].

2.4. Some horoball geometry

Let V = H3/Γ be a finite volume hyperbolic 3-orbifold with a set C = {C1, . . . ,Cm}, m ≥ 1, of
disjoint cusps. Let C ∈ C be a maximal cusp such that C = B∞/Γ∞. Consider the image horoballs
γ(B∞) with γ 6∈ Γ∞ and project them orthogonally to the horosphere H∞ = {t = 1}. The full-sized
horoballs project onto Euclidean balls of diameter 1 and yield a periodic packing of the Euclidean
plane by equal balls. Any minimal configuration of them providing the entire information (about
translational and finite order symmetries) of the crystallographic group Γ∞ yields a horoball
diagram or cusp diagram D ⊂ H∞ (see [Ada92a, Figure 1 or Figure 6], for example, and Section
3.3).

Denote by F ⊂ R2 a fundamental polygon for the action of Γ∞ on the horosphere H∞, and let
vol0(F) be its Euclidean area. Then, the volume of C can be expressed by (see [Cox54, Section
5])

vol(C) =
1
2

vol0(F) . (2.11)
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2. Non-arithmetic cusped hyperbolic 3-orbifolds

Notice that if Γ∞ is a reflection group, its index two subgroup Γ+
∞ of orientation preserving

rotations yields twice the volume of (2.11).
The concept of local density of a horoball B covering C with respect to its Dirichlet-Voronoı̌

cell D(B) leads to the following lower volume bound for V in comparison with the total cusp
volume vol(C ) = ∑

m
r=1 vol(Cr) (see [Mey86] and [Kel98, Lemma 3.2]).

vol(V )≥ vol(C )

d3(∞)
, (2.12)

where d3(∞) =
√

3
2 µ3

≈ 0.853276 is the simplicial horoball density related to an ideal regular
tetrahedron S∞

reg of volume 3JI(π

3 ).
Observe that the bound (2.12) is sharp if the lift of each element of C to H3 induces a regular
horoball packing (see [Kel98, Section 2]).

In the case of a 1-cusped orbifold with maximal cusp C, the cusp density δ (C) = vol(C)

vol(V )
< 1 is

bounded from above by (see (2.12))

δ (C)≤ d3(∞) . (2.13)

The following facts will be useful when studying horoball diagrams.

Lemma 1. [Ada91, Lemma 4.4] The centres of two tangent horoballs of radii r1 and r2 are at
Euclidean distance 2

√
r1r2.

Lemma 2. [Ada91, Lemma 4.3], [HK07, Lemma 1] Consider the horoball B∞ and a full-sized
horoball Bu based at u ∈ R2. Denote by l a geodesic with endpoints u and v ∈ R2 \{u}, and let
δ0 = d0(u,v) be the Euclidean distance from u to v. Put a = (u,1), and let p be the intersection
point of l with Hu = ∂Bu. Then, the induced distance d(a, p) from a to p on Hu is given by
d(a, p) = 1

δ0
.

Corollary 3. [HK07, Lemma 2] Consider a horoball Bu(h) of diameter h in H3. Then, the
interior of its upper hemisphere is an open disk of radius 1 with respect to the induced metric on
the boundary Hu(h).

Corollary 4. [Hil07a, Corollary 7] Let Bu(h) and Bv(k) be two horoballs with common touching
point p and of Euclidean diameter h and k, respectively. Denote by δ0 the Euclidean distance
d0(u,v) and by δ = δ0/h the induced distance d((u,h),(v,h)) on the horosphere based at ∞ and
at Euclidean height h. Then, the following identity holds.

√
h√
k
=

δ0

k
=

h
δ0

=
hδ

k
=

1
δ
.

Corollary 5. Consider a full-sized horoball Bu and a horoball Bv(k) of diameter k based at
v ∈ R2 which touches Bu. Denote by δ0 the Euclidean distance d0(u,v). Then, the diameter k of
Bv equals δ 2

0 .
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III. The minimal cusped non-arithmetic 3-orbifold

Lemma 3. [Ada91, Lemma 4.6], [Ada92a, Lemma 1.2] Consider two horoballs Bu(h) and Bv(k)
based at u,v ∈ R2 of diameter h and k, respectively, which cover the cusp C of V . Suppose that
Bu(h) and Bv(k) are not tangent, and denote by d0(u,v) =: r the Euclidean distance between
their base points u and v. Then, there exists a horoball of diameter hk

r2 covering C.

Consider the action of the crystallographic subgroup Γ∞ ⊂ Γ on the set of all full-sized
horoballs. The following facts are fairly obvious (see [Ada92a, Lemma 3.1 and Lemma 2.1]).

Lemma 4. Suppose that Γ∞ identifies all full-sized horoballs. If the shortest translation length
satisfies τ > 1, then there cannot be a set of three full-sized horoballs which are pairwise tangent.

Lemma 5. Suppose that Γ∞ identifies all full-sized horoballs. Then, every point of tangency
between two Γ-equivalent horoballs lies on the axis of an order two elliptic isometry in Γ such
that its axis is tangent to both horoballs.

3. Proof of the Theorem

In this section, we provide a proof in several steps of our main result stated as follows.

Theorem. Among all non-arithmetic cusped hyperbolic 3-orbifolds, the 1-cusped quotient space
V∗ of H3 by the tetrahedral Coxeter group [5,3,6] has minimal volume. As such the orbifold V∗ is
unique, and its volume v∗ is given explicitly by (2.7).

For the proof, we adapt and generalise the strategies and results of Adams as developed in
[Ada92a], [Ada91] and [Ada92b].

3.1. The non-rigid and multiply cusped cases

Let µ3 = vol(S∞
reg)= 3JI(π

3 )≈ 1.014942 and ω3 = vol(O∞
reg)= 8JI(π

4 )≈ 3.663862 be the volumes
of an ideal regular tetrahedron and of an ideal regular octahedron, respectively (see (2.5) and
(2.6)).

Denote by V = H3/Γ a non-arithmetic cusped orbifold of minimal volume. By a result of
Meyerhoff [Mey85], the smallest volume of any cusped hyperbolic 3-orbifold equals µ3

24 and is
realised in a unique way by the volume of the quotient of H3 by the arithmetic tetrahedral Coxeter
group [3,3,6]. Therefore, the volume of V has to satisfy the inequalities

0.042289 ≈ µ3

24
< vol(V )≤ vol(V∗) = v∗ ≈ 0.171502 . (3.1)

Proposition 6. A non-arithmetic cusped hyperbolic 3-orbifold V of minimal volume has precisely
one cusp, and this cusp is a rigid one.

Proof. In [Ada92b], Adams considered the small volume spectrum of hyperbolic 3-orbifolds
with m ≥ 2 cusps. He proved that the four smallest (non-orientable) orbifolds of this sort have
volumes equal to

µ3

6
,

5 µ3

24
,

ω3

16
and

µ3

4
(3.2)
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3. Proof of the Theorem

(see [Ada92b, Corollary 2.6]). Comparing the four values in (3.2) with the volume bound in (3.1)
shows that all values except the first one given by µ3

6 are strictly bigger than vol(V∗). Furthermore,
in [Ada92b, Lemma 2.2], Adams identified the individual multiply-cusped orbifolds with small
volumes and proved their uniqueness. According to his proof [Ada92b, pp. 155-156], one easily
deduces that the value µ3

6 is the volume of the quotient space of H3 by the arithmetic tetrahedral
Coxeter group [3,6,3]. Therefore, V can have only one cusp.

Suppose that a hyperbolic 3-orbifold V has a single cusp C, and that C is non-rigid. By
the results of Adams [Ada91, Corollary 4.2 and Section 7] about limit volumes of orientable
hyperbolic 3-orbifolds, the three smallest volumes are ω3

12 ≈ 0.305322, 0.444457 and 0.457983.
These values are realised in a unique way by orientable orbifolds which are explicitly described
in the proof of [Ada91, Lemma 7.1]. In fact, their fundamental groups are all arithmetic and
related to Bianchi groups PSL(2,Od) where Od is the ring of integers of the imaginary quadratic
number field Q(

√
−d). In particular, the fundamental group of the orbifold with volume ω3

12 is
the Bianchi group PSL(2,O1) which is commensurable to the tetrahedral Coxeter group [3,4,4]
and to the fundamental group of the Borromean Rings complement (see also [MR03, Section
9.2]). As a consequence, a non-orientable hyperbolic 3-orbifold with a single, non-rigid cusp of
volume smaller than or equal to vol(V∗) is arithmetic.

3.2. The cusp type {3,3,3}

By Proposition 6, a non-arithmetic non-compact orbifold V = H3/Γ of minimal volume has only
one cusp, and the cusp is a rigid one of type {2,3,6} , {2,4,4} or {3,3,3}. The next result allows
us to exclude the type {3,3,3} from further consideration.

Proposition 7. A non-arithmetic cusped hyperbolic 3-orbifold V of minimal volume cannot have
a cusp of type {3,3,3}.

Proof. In [Ada92a, Theorem 4.2], Adams proved that an orientable hyperbolic 3-orbifold with
a cusp of type {3,3,3} has volume either µ3

6 , µ3
3 , 5 µ3

12 or at least µ3
2 . Furthermore, he showed

that there are unique orbifolds whose volumes equal these first three values, and that they are
the double covers of certain unique orientable orbifolds with one cusp of type {2,3,6} of small
volume. He provides an explicit description of the latter orbifolds as follows (see [Ada92a, p.
10]).

The unique orientable orbifold with one cusp of type {2,3,6} and of volume µ3
12 is the orientable

double cover of the arithmetic orbifold H3/[3,3,6] implying that the orbifold with cusp of type
{3,3,3} and of volume µ3

6 is the quotient of H3 by the rotation subgroup of the arithmetic
tetrahedral Coxeter group with symbol [3,3[3]].

The unique orientable orbifold with one cusp of type {2,3,6} and of volume µ3
6 is the orientable

double cover of the quotient space of H3 by the Z2-extension of the arithmetic Coxeter group
[3,6,3]. Let us add that this orbifold as well as its double cover with one cusp of type {3,3,3}
are not Coxeter orbifolds anymore.

Finally, observe that the third smallest value 5 µ3
12 ≈ 0.422892 in the above sequence is strictly

bigger than the covolume 2vol(V∗) of the rotation subgroup of [5,3,6]. As a consequence, a
non-arithmetic cusped orbifold V of minimal volume cannot have a cusp of type {3,3,3}.
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∆a6

a3

a2

a2a2

a6

a6

∆

a4

a2

a4

a4a4

a4

a2

a2

a2

Figure III.2.: Tiling of D into copies of its characteristic triangle ∆

3.3. Some notations

Before we continue with the proof, let us fix some notations. Consider a non-compact orbifold
V = H3/Γ with precisely one (maximal) cusp, denoted by C, such that C is a rigid one. We
assume that the cusp point (or parabolic fixed point) associated to C is based at ∞ and that
C = B∞/Γ∞ with B∞ the horoball at height 1 from the ground plane {t = 0}. Denote by τ ≥ 1 the
minimal translation length induced by the translation lattice L ⊂ Γ∞.

Suppose that C is of type {p,q,r} with (p,q,r) = (2,3,6) or (2,4,4) (see Section 2.1). In
particular, C contains 3 singular (rotation) axes of orders 2,q,r, respectively. By Proposition 7,
these assumptions do hold if V is non-arithmetic of minimal volume.

Consider a cusp diagram D ⊂ H∞ of Γ∞. If C is of type {2,3,6}, then D is a Euclidean regular
triangle of edge length τ , and if C is of type {2,4,4}, then D is given by a Euclidean square of
edge length τ . In particular, the singular axes of C give rise to singular points a2,aq and ar in
D in the following way. The midpoint of each edge of D is a singular point a2 of order 2, the
centre of D is a singular point aq of order q, and each vertex of D is a singular point ar of order
r. Since the horoballs covering C do not intersect in their interiors, the vertical axis ls in the
upper half space U3 passing through a singular point as , s ∈ {2,q,r} , can lie in the interior of a
full-sized horoball Bu only if the horoball Bu is centred at the intersection u of ls with {t = 0},
that is, if as = (u,1). We say that Bu is centred at as and write B omitting the index u, for short.
By barycentric decomposition, D is tiled into copies of its characteristic triangle ∆ with vertices
as , s ∈ {2,q,r} , and which is either a right-angled triangle [3,6] or a right-angled triangle [4,4];
see Figure III.2. The aim is to determine or estimate in terms of τ or – more easily – by means
of the smallest distance d of full-sized horoballs the cathetus length d0(a2,ap) or d0(a2,aq) of
∆. The position of the full-sized horoballs, projecting to full-sized horodisks (of radius 1

2 ) in
H∞, will play a crucial role. These investigations will allow us to bound the volume of V by the
expression (see (2.11) and (2.12))

vol(V )≥ vol(C)

d3(∞)
=

µ3√
3
·vol0(∆) . (3.3)
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3. Proof of the Theorem

Figure III.3.: Full-sized horoballs not centred at singular points

3.4. One equivalence class of full-sized horoballs

Assume that the crystallographic group Γ∞ gives rise to only one equivalence class of full-sized
horoballs. If there is a full-sized horoball which is not centred at any of the singular points
as , s ∈ {2,q,r} , in the cusp diagram D, then the least cusp volume vol(C) is given by (see also
[Ada92a, Figure 1(a), p. 4, and Figure 6(a), p. 12] and Figure III.3)

vol(C) =

{√
3

12

(
1+

√
3

2

)
≈ 0.269338 if C is of type {2,3,6} ,

1
4 if C is of type {2,4,4} .

(3.4)

As a consequence, the volume of V is strictly bigger than v∗ = vol(H3/[5,3,6]) (compare with
(3.1)).

From now on, we assume that there is a full-sized horoball centred at one of the singular
points as , s ∈ {2,q,r}, in the cusp diagram D. We treat the cases s ∈ {2,3,6} and s ∈ {2,4,4}
separately.

The case {2,3,6}

(i) First we assume that there are at least two full-sized horoballs which touch one another, that
is, the minimal distance d of the centres of full-sized horoballs equals 1. In particular, in the cusp
diagram D, there will be at least two full-sized disks, centred at equivalent singular points, which
touch one another; see Figure III.4.

Order 6. If there is a full-sized horoball (of radius 1
2 ) centred at the singular point a6 in ∆, then

d0(a2,a6) =
1
2 , and the cusp volume vol(C) equals

√
3

48 . Since there are exactly three full-sized
horoballs touching one another and the horoball B∞, it is easy to see that the (up to isometry)
unique orbifold V0 corresponding to this configuration is given by the quotient of H3 modulo the
arithmetic Coxeter group [3,3,6] (see [Mey86], [Mey85]). The orbifold is covered by Gieseking’s
manifold and is known to be the cusped hyperbolic 3-orbifold of minimal volume (which equals
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III. The minimal cusped non-arithmetic 3-orbifold

Figure III.4.: A {2,3,6}-cusp with full-sized horoballs centred at equivalent singular points
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3. Proof of the Theorem

µ3
24 = 1

8 JI(π

3 )≈ 0.042289). In particular, the cusp density δ (C) satisfies vol(C)/vol(V0) = d3(∞)
(see also (2.13)).

Order 3. Suppose that there is a full-sized horoball centred at the singular point a3 in ∆. Then,
d0(a2,a3) =

1
2 and d0(a2,a6) =

√
3

2 so that the cusp volume equals
√

3
16 [Ada92a, Figure 1(c), p.

4]. By Lemma 5, it is not difficult to see that there is a unique orbifold which corresponds to
this configuration. Its fundamental group is given by the Z2-extension of the arithmetic Coxeter
group [3,6,3] (and has covolume 1

4 JI(π

3 )≈ 0.084579).
Order 2. Suppose that there is a full-sized horoball centred at the vertex a2 ∈ ∆. Then,

d0(a2,a3)=
1√
3

and d0(a2,a6)= 1, and the cusp volume is given by
√

3
12 ≈ 0.144338 (see [Ada92a,

Figure 1(b), p. 4]). Note that this volume is also the smallest cusp volume for the case that we
have full-sized horoballs at both the singular points a2 and a6. There is a unique orbifold which
corresponds to this configuration, and it is given by the arithmetic Coxeter simplex with symbol
[31,1,6] and 2 cusps. By cutting along the symmetry plane of [31,1,6], we get an orbifold whose
fundamental group is commensurable to [31,1,6] and isomorphic to the arithmetic Coxeter group
[4,3,6] of covolume 5

16 JI(π

3 )≈ 0.105723 (see [Joh+99, p. 347], for example).

(ii) Suppose now that the full-sized horoballs do not touch another. Then, the minimal
distance d of their centres satisfies d > 1. Assume that one full-sized horoball is centred at the
singular point as, s ∈ {2,3,6}, in ∆. Since Γ∞ identifies all full-sized horoballs, Lemma 5 yields
an order two elliptic element γs ∈ Γ with axis perpendicular at as =: (us,1) to the order s axis ls.
The element γs sends the horoball B∞ to the full-sized horoball Bus and vice versa. Furthermore, γs

sends the s neighboring full-sized horoballs – each at distance d from us – to s smaller horoballs.
By the proof of Lemma 3, these smaller horoballs are of Euclidean diameter 1

d2 , and by Corollary
4, their base points are at a distance 1

d from us. Following the terminology of Adams [Ada92a, p.
5], call each of these balls a ( 1

d )-ball. By construction, the ( 1
d )-balls are the biggest horoballs of

diameter less than 1 that are tangent to full-sized horoballs.
Let B(h) be a horoball of diameter h such that 1

d2 ≤ h < 1 covering C which is not tangent to
any larger horoball covering C. Then, in the interior of its upper hemisphere, there are no points
of tangency with horoballs covering C. By Corollary 3, this upper hemisphere is an open disk of
radius 1 with respect to the induced metric on its boundary. By mapping B(h) to B∞ by means
of an element in Γ, we obtain a disk of radius 1 on the horosphere H∞ which contains no point
of tangency with full-sized horoballs. Such a disk is called a disk of no tangency. Notice that
the existence of a disk of no tangency in the cusp diagram on H∞ for C has the same effect as an
extra full-sized horoball touching the centre of the disk would have.

Furthermore, by Corollary 4, one can deduce the following fact for a cusp of any type (for a
proof, see [Ada92a, pp. 5–6]).

Lemma 6. Let B be a full-sized horoball covering the cusp C, and let B 1
d

be a ( 1
d )-ball touching

B. If the base point x of B 1
d

has Euclidean distance d0(x,y)< 1 from the base point y of another

full-sized horoball B′ or if d0(x,z)< 1
d with z a base point of another ( 1

d )-ball B′
1
d
, without B 1

d

touching B′ or B′
1
d
, then there is a disk of no tangency in the cusp diagram of C.

With these preliminary remarks, we investigate in detail each of the cases s ∈ {2,3,6}.
Order 6. Suppose that a full-sized disk B = B1 is centred at the singular point b1 = a6 in D,

25



III. The minimal cusped non-arithmetic 3-orbifold

v

w

u
x1

B1 B2

B3

b1 b2

b3

Figure III.5.:
( 1

d

)
-balls in the {2,3,6}-cusp triangle D

and that B2,B3 are full-sized disks centred at the vertices b2,b3 at distance d from B1 in the cusp
triangle D. For 1 ≤ i ≤ 3, let xi denote the center (at height 1) of the ( 1

d )-ball touching Bi in D.
Following Adams [Ada92a, Figure 2], we define the Euclidean distances u = d0(xi,x j) , v and w
as in Figure III.5.

Consider the triangle ∆(b1,x1,b2) with edge lengths d0(b1,x1) =
1
d , d0(x1,b2) = w as well as

d0(b1,b2) = d, and denote by θ = ](x1,b2) the angle at b = b1. By symmetry of D, we may
suppose that 0 ≤ θ ≤ π

6 . The elementary law of cosines allows one to deduce the following
identities (see [Ada92a, (1)–(3)])

u2 = d2 +
3
d2 −

√
3 sinθ −3cosθ = d2 +

3
d2 −2

√
3 cos(

π

6
−θ) (3.5)

v2 = d2 +
4
d2 −4 cosθ (3.6)

w2 = d2 +
1
d2 −2 cosθ . (3.7)

The strategy as developed in detail by Adams [Ada92a, pp. 6–10] consists now in analysing the
different tangency possibilities of the ( 1

d )-balls with respect to one or several full-sized horoballs
and among themselves.

A crucial point will be the dichotomy of Γ∞ preserving orientation, or not. If Γ∞ contains
a reflection, then we say that the horoball configuration in the cusp diagram D has a mirror
symmetry.
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3. Proof of the Theorem

Altogether, we will be able to determine or estimate explicitly the lengths d and τ , the associated
cusp volume vol(C) =

√
3d2

48 (in case of no mirror symmetry) and to describe the corresponding
orbifold V under the volume constraint vol(V ) ≤ vol(V∗) = v∗ (see (3.1)). Furthermore, one
has to check whether the resulting orbifold V is arithmetic or not. This is not difficult if its
fundamental group is given by a hyperbolic Coxeter group (see Section 2.2) or by an explicit
presentation in PSL2(C) (see [MR03, Section 8]).

Remark 8. Assuming the rough volume estimate (see (2.7), (2.12))

vol(V )≥ vol(C)

d3(∞)
=

√
3d2

48d3(∞)
> vol(V∗) = v∗ ≈ 0.171502 ,

where d3(∞)≈ 0.853276, we obtain d > 2.013813. Hence, we only have to consider values for
d > 1 with d ≤ 2.013813 or – in the case that Γ∞ is orientation-preserving – values for d with
d ≤ 1.423982.

We start with the easy case of ( 1
d )-balls touching at least two full-sized horoballs. This case has

a complete answer showing that the resulting orbifold is arithmetic (see [Ada92a, p. 3 and p. 10]
and [NR92]). We provide one illustrating example and suppose that a single ( 1

d )-ball touches
three full-sized horoballs giving a cusp diagram as depicted in [Ada92a, Figure 3(b)]. It easily
follows that d =

4√3 yielding a cusp volume of 1
16 . Associated to this configuration is a unique

orbifold with fundamental group that is commensurable to the arithmetic Coxeter group [3,6,3]
(see [Ada92a, p. 10] in the corresponding oriented case).

The delicate case is when each ( 1
d )-ball touches a unique full-sized horoball. Let us consider

the mutual position of the ( 1
d )-balls. By Lemma 4, we can exclude the case that three ( 1

d )-balls
touch each other.

Next, observe that we can assume that the distance w as depicted in Figure III.5 satisfies

w ≥ 1 implying that d ≥ 1
2
(

σ +
√

σ2 −4
)
≈ 1.515464 for σ =

√
3+

√
3 . (3.8)

In fact, if there is no disk of no tangency, this is a direct consequence of Lemma 6. If there is
a disk of no tangency in D, then d ≥

√
3. Since 0 ≤ θ ≤ π

6 , equation (3.7) for w implies that
w ≥ 2√

3
> 1 and the asserted estimate for d.

Consequence. If Γ∞ is orientation-preserving, the bound d ≥ 1.515464 from (3.8) yields a too
big cusp estimate vol(C)

d3(∞) in comparison with v∗. In particular, we do not have to analyse in depth
cusp diagrams D with no mirror symmetry.

Now, if two ( 1
d )-balls touch one another but no further ( 1

d )-ball touches this pair, then the point
of tangency created by this pair must coincide with a 2-fold singular point a2 in D. Since the
tangency point is the midpoint of an edge e of D, one has v = 1

d2 with v given by equation (3.6).
Implementing this identity into the equation (3.7) for w, the property w ≥ 1 yields the inequality

d6 −2d4 −2d2 +1 ≥ 0 , (3.9)

and hence d ≥ 2cos π

5 > 1.6. One can conclude the case by different considerations (for Adams’
conclusion, see [Ada92a, pp. 7-8]). First, assume that the centres of the two ( 1

d )-balls are not
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III. The minimal cusped non-arithmetic 3-orbifold

aligned with b1 and b2 on the edge e of D. Then, the group Γ∞ consists of rotations, only, and we
are done.
Next, assume that the centres of the two ( 1

d )-balls lie on the edge e. Then,

d =
2
d
+

1
d2 ,

and hence, d = 2cos π

5 . There is a unique orbifold associated to this situation, which is based on
an orthoscheme R(π

5 ,
π

3 ) and its reflection group (see Section 2.3). Indeed, the orbifold equals V∗
with non-arithmetic fundamental group [5,3,6] (see [Ada92a, pp. 6-8]).

Assume now that the ( 1
d )-balls do not touch each other. Following [Ada92a, p. 8], and by

Lemma 5, there is an order 2 elliptic element exchanging the horoball B∞ and a full-sized horoball
B j while sending a neighbouring full-sized horoball Bk to a ( 1

d )-ball Bx, say (compare Figure
III.6). Then, the ( 1

d )-ball By (at distance w from B j) touching Bk gets sent to a ball Bs (at distance
1
w from B j) touching Bx. Like in [Ada92a] we call this ball a ( 1

w)-ball. Its diameter equals 1
w2d2

by Lemma 3. We study now the positions of the ( 1
w)-balls and distinguish several cases.

• Suppose that the ( 1
w)-balls of the three ( 1

d )-balls in D coincide. This implies that the

( 1
w)-ball is centred in the 3-fold singular point p = a3 in D yielding w =

√
3

d . Knowing all the
side lengths of the triangle ∆( j,k,x) one can calculate the angle θ with the law of cosines as
cosθ = 5

2
√

7
which yields d =

4√7 > 1.6 by means of (3.7). Furthermore, one can derive that the
points j,x and y are aligned. The situation is sketched in Figure III.6.

As a consequence, the horoball configuration in the cusp diagram D has no mirror symmetry.
Hence, the cusp volume equals

vol(C) =

√
21

24
> 0.19 > v∗ ,

and we can exclude this case from our considerations.

Remark 9. Adams considered the case above for an oriented orbifold O =H3/Γ and calculated
the corresponding cusp volume correctly as

√
21

24 . However, in [Ada92a, p. 10], he gives a wrong
fundamental polyhedron for Γ and a volume which is too big. In the Appendix III.A, we correct
Adams’ analysis, compute the volume and prove the arithmeticity of the orbifold O.

• Suppose that two ( 1
w)-balls of two ( 1

d )-balls coincide, having center x, say, and that no
further ( 1

w)-ball touches them. If D has no mirror symmetry, then by means of the estimate
d ≥ 1.515464 given by (3.8), we obtain

vol(C)

d3(∞)
=

√
3d2

24d3(∞)
> 0.19 > v∗ .

Hence, we may assume that the center x coincides with an edge center a2 of D. It follows that
d = 2

w which, by means of (3.7) and with θ = 0, yields d4 −2d2 −3 = 0 with solution d =
√

3.
There is a unique orbifold realising this configuration. It is arithmetic and of volume 3

8 JI(π

3 ),
being commensurable to the 2-cusped quotient space by the Coxeter group [6,3,6].
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θj k

l

x

yp

y′
s

z

Figure III.6.: A single ( 1
w)-ball in a {2,3,6}-cusp triangle D
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III. The minimal cusped non-arithmetic 3-orbifold

• Suppose that the ( 1
w)-balls are distinct and that D has a mirror symmetry. In general, the

( 1
w)-balls cannot touch full-sized balls since then two ( 1

d )-balls touch another, in contrast to our
assumption above. Furthermore, three ( 1

w)-balls cannot touch one another pairwise by Lemma 4.
Since D has a mirror symmetry, the group Γ∞ is a reflection group. As a consequence, the

centres of the ( 1
d )-balls lie either on the edges or on the angle bisectors of D.

Assume first that the centres of the ( 1
d )-balls lie on the edges of D. The situation is depicted in

Figure III.7. Consider the horoballs smaller than the full-sized horoballs in a hierarchical way as

j k

l

y

x

Figure III.7.: ( 1
d )-balls aligned along the edges of D

follows. For the ( 1
d )-balls, we have the following three possibilities

(i) Each ( 1
d )-ball touches two full-sized balls.

(ii) Each ( 1
d )-ball touches one full-sized ball and one other ( 1

d )-ball.

(iii) Each ( 1
d )-ball touches one full-sized ball and no other ( 1

d )-ball.

In the third case, there are ( 1
w)-balls which are smaller images of the ( 1

d )-balls under an order
2 elliptic element r which maps B∞ to a full-sized horoball according to Lemma 5. For those
( 1

w)-balls, there are the analogous three cases as above, and so on. This defines a sequence of
horoball diagrams whose first elements are depicted in Figure III.8. Note that Adams [Ada92a]
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3. Proof of the Theorem

discussed the depicted horoball diagrams in detail (see above). In particular, the third horoball
diagram corresponds to the group [5,3,6] while the fourth and the two first ones correspond to
arithmetic groups.

For a given horoball diagram of this type, define a sequence

d1 := d , d2 := w = d − 1
d1

, . . .

in the sense that in the third case where the ( 1
dk
)-balls do not touch, there are ( 1

dk+1
)-balls which

are the smaller images of the ( 1
dk
)-balls under the isometry r. This implies the recursion

dk+1 = d − 1
dk

, k ≥ 1 . (3.10)

Figure III.8.: The beginning of the sequence of horoball diagrams with aligned ( 1
d )-balls.

Let kmax := max
{

k | the horoball diagram D contains a 1
dk

-ball
}

. There are two cases.

If one ( 1
dkmax

)-ball touches two ( 1
dkmax−1

)-balls, the centre of the ( 1
dkmax

)-ball lies in the midpoint
a2 between two neighbouring full-sized balls, leading to the equation

1
dkmax

=
d
2
. (3.11)

If there is a pair of touching ( 1
dkmax

)-balls, it implies that one of those ( 1
dkmax

)-balls is fixed by r

because otherwise r sends ( 1
dk
)-balls to ( 1

dk−1
)-balls or to ( 1

dk+1
)-balls but there is no ( 1

dkmax+1
)-ball.

This yields the equation

1 = d − 1
dkmax

. (3.12)

The recursion (3.10) together with the end conditions (3.11) or (3.12) prove that d has to be
the root of a polynomial related to the Chebyshev polynomials of the first kind or of the second
kind, respectively. In case (3.11), this implies

d = 2 cos
(

π

2kmax +2

)
, (3.13)

and in case (3.12), it implies

d = 2 cos
(

π

2kmax +3

)
. (3.14)

Details can be found in [Dre21]. This recursion allows us to investigate the horoball diagrams
and to characterise the group Γ assuming that Γ∞ is a reflection group.
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III. The minimal cusped non-arithmetic 3-orbifold

Proposition 10. In the case of the {2,3,6}-cusp where Γ∞ is a reflection group and the full-sized
horoballs are centred in the singular points a6, the group Γ having a horoball diagram according
to Figure III.7 contains the Coxeter group

•—6——–•–——•—αk——–•

where d =: 2 cosαk is given according to (3.13) and (3.14), respectively.

Proof. Since the Coxeter group Γ∞ = •—6——–•–——• is contained in Γ, it only remains to prove the
existence of the last generator in Γ. Consider an elliptic isometry r of order 2 mapping B∞ to a
full-sized horoball and vice versa.

If r is a reflection, we can see that it is the desired one: Its reflection plane R is a hemisphere
orthogonal to the two reflection planes of Γ∞ passing through a6. The hemisphere has radius
1, and its centre has distance d

2 to the last reflection plane of Γ∞ implying that the angle of
intersection α satisfies cosα = d

2 , that is, α = αk.
In the case where r is a rotation of order 2, we can choose it such that the full-sized ball Bk is

mapped to the ( 1
d )-ball Bx, and Bl is mapped to By; see Figure III.7. Then, r is the rotation in the

edge ab of the orthoscheme defined by the planes mentioned above; see Figure III.9. If s ∈ Γ∞ is
the reflection in the face (a,b,∞), then rs = sr is the reflection in the hemisphere R as above and
belongs to Γ.

∞ = q

a

b

π

3

π

6
αk

Figure III.9.: Fundamental orthoscheme

As a consequence of Proposition 10, the groups Γ with distances
√

2 ≤ d ≤
√

3 between
full-sized horoballs are of smallest covolume if Γ coincides with (a finite index subgroup of)
the arithmetic Coxeter group [l,3,6] for l = 3,4 or 6, or with the non-arithmetic Coxeter group
[5,3,6].

If the distance d between full-sized horoballs satisfies d >
√

3, then the hyperbolic Coxeter
group •—6——–•–——•—αk——–• with 2cosαk = d of Proposition 10 has infinite covolume since the or-
thoscheme R(αk,

π

3 ) has an ultraideal vertex given by the graph •–——•—αk——–• (see Section 2.3). In
order to construct an orbifold with finite volume from it, its fundamental group Γ has to contain
additional isometries.

Proposition 11. In the case of Proposition 10 with
√

3 < d ≤ 2, the minimal possible orbifold
volume is obtained from the truncated Coxeter orthoscheme Rt(αk,

π

3 ) with Coxeter graph

•—6——–•–——•—αk——–• · · · · • where d = 2 cosαk .

32



3. Proof of the Theorem

Proof. If the horoball diagram appears as in Figure III.7 with d >
√

3, then the orthoscheme
•—6——–•–——•—αk——–• has an ultraideal vertex v0. Hence, there has to be an additional horoball B+ close
to the centre of D in order to obtain finite volume. In view of the realisations of the horoball
B+, Proposition 10 guarantees the existence of reflections mapping B∞ to the full-sized balls B j,
Bk, and Bl . Denote the associated reflection planes by Pj, Pk, and Pl , respectively. The horoball
B+ cannot intersect any of those planes because otherwise it would intersect its image under
the corresponding reflection. The biggest possible horoball B+ (yielding the minimal volume
orbifold) hence touches all three planes Pj, Pk, and Pl . Those three planes are orthogonal to the
polar plane P0 of v0. Therefore, Pj, Pk, and Pl are left invariant under the reflection r0 in the plane
P0. The horoballs B∞ and B+ are the only ones touching all three planes at once, implying that
one is the image of the other under r0. Thus, the polar plane P0 is the bisector of B∞ and B+.

In our constructions, a fundamental polyhedron of Γ can be found by considering the Dirichlet-
Voronoı̆ cell of B∞ modulo Γ∞. The previous arguments show that a fundamental polyhedron of
Γ has to include at least the truncated orthoscheme Rt(αk,

π

3 ) as asserted.

Figure III.10.: ( 1
d )-balls in line

By Proposition 11, the minimal possible orbifold volume in the case
√

3 < d = 2cosαk ≤ 2 is
given by the volume of the truncated Coxeter orthoscheme Rt(αk,

π

3 ). In Section 2.3, an explicit
formula for vol(Rt(αk,

π

3 )) is given by (2.9). Furthermore, by Remark 2, vol(Rt(αk,
π

3 )) is strictly
increasing when αk decreases, that is, when d increases. In particular, for

√
3 < d ≤ 2, we get
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III. The minimal cusped non-arithmetic 3-orbifold

the lower volume bound

vol(Rt(αk,
π

3
))≥ vol(Rt(

π

7
,
π

3
))> 0.317811 > v∗ .

In view of Proposition 11, it remains to identify groups Γ with full-sized horoballs satisfying
2 < d ≤ 2.013813 (see Remark 8). It turns out that Γ has the same basic structure as before,
and truncation of its fundamental orthoscheme with the polar plane P0 gives a polyhedron Rt of
smallest volume because of the following proposition.

Proposition 12. For any horoball on an angle bisector as depicted in Figure III.12, its bisector
with B∞ intersects the polar plane P0 exactly below the boundary of the triangle D at height 1 in
the upper half space U3. Any other cutting plane leads to a bigger volume than the volume of Rt .

Proof. The proof is basic trigonometry. If the centre of a horoball B on an angle bisector of D has
distance a from the boundary of D and touches the bisector of the two closest full-sized horoballs,
then its radius r satisfies

(1+ r)2 = l2 + r2 =
d2

4
+a2 + r2 , (3.15)

where l is the distance between the centres of B and of the next full-sized horoball. Figure III.11
depicts a vertical cut in U3 through the centres of the two horoballs. The identity (3.15) implies

2r =
d2

4
+a2 −1.

Using that the radius of the bisector is
√

2r, the height h of the bisector is then independent of the
distance a :

h2 =
(√

2r
)2

−a2 =
d2

4
−1.

1
r

r

l =
√

d2

4 +a2
√

2r

Figure III.11.: Vertical cut along l through the centres of the two horoballs in U3

By means of Proposition 12 and as a final step in the analysis of horoball diagrams D with
( 1

dk
)-balls aligned on the edges of D according to Figure III.7, we can state the following result.
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3. Proof of the Theorem

Proposition 13. Under the assumptions of Proposition 10 with d > 2, the minimal possible
volume is obtained by an orbifold related to a truncated orthoscheme Rt(β ,

π

6 ) with Vinberg
graph

•—β——–•—6——–•–——• · · · · • where 0 < β <
π

15
.

Proof. We have to verify the bound β < π

15 , only. In fact, we are assuming the upper bound
d ≤ 2.013813 according to Remark 8. By a similar trigonometrical computation in the upper half
space U3 as in the proof of Proposition 12 above, one can relate β and d according to

cosβ =
d

2
√

d2 −3
.

In this way, we get the estimate β < π

15 .

By Proposition 13, the minimal possible orbifold volume in the case d > 2 is given by the
volume of the truncated Coxeter orthoscheme Rt(β ,

π

6 ). By (2.10) of Section 2.3, we have an
explicit formula for vol(Rt(β ,

π

6 )) which, by its strict monotonicity behavior with respect to
β < π

15 , yields the lower volume bound

vol(Rt(β ,
π

6
))≥ vol(Rt(

π

15
,
π

6
))> 0.416491 > v∗ .

These investigations complete the analysis of the case that the centres of the ( 1
d )-balls lie on

the edges of D.

l a

x

Figure III.12.: ( 1
d )-balls on the edges of D with d > 2
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j k

l

x
y

z
p

q

t

Figure III.13.: Horoball diagram D with d =
√

1+
√

3

In order to finish the part of full-sized horoballs centred at singular points of order 6 and of
distance d > 1, we need to study the case when the centres of the ( 1

d )-balls lie on the angle
bisectors of D. We are still assuming that Γ∞ is a reflection group.

The ( 1
d )-balls cannot touch each other because then three balls would touch pairwise which

is impossible because the full-sized balls do not touch. This implies the existence of ( 1
w)-balls.

For a fixed distance d, the position of the ( 1
w)-balls is given by the similarity of the two triangles

( j,z, l) and ( j,x, p). See Figure III.13 for the labels. This similarity and the reflection symmetry
of the horoball diagram D also prove that the centre of the full-sized horoball B j is on a common
line with those of the ( 1

d )-ball Bz and the ( 1
w)-ball Bp.

Note that Figure III.13 depicts the case where the ( 1
w)-balls touch two ( 1

d )-balls but the above
statement about the alignment of their centres stays true if the ( 1

w)-balls do not touch two ( 1
d )-balls.

This in turn means that each ( 1
d )-ball touches two ( 1

w)-balls because of the present symmetries.
Hence, there are twelve ( 1

w)-balls around a full-sized horoball.
Knowing that the centres j, p, and z are on the same line, we can calculate d by using

w =
1
w
+

1
wd2

and the identity w2 = d2 + 1
d2 −2cos π

6 according to (3.7). This implies d2 = 1+
√

3.
The following considerations allow us to describe the orbifold associated to this horoball

diagram. They are also valid if d is bigger, that is, if each of the ( 1
w)-balls touches only one

( 1
d )-ball. Since we assume that Γ∞ is a reflection group, there is a reflection s ∈ Γ∞ which

exchanges B j and Bk. By Lemma 5, there is an order 2 elliptic element r in Γ which swaps

B j ↔ B∞ , Bk ↔ Bx .
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3. Proof of the Theorem

Hence, rsr is the reflection in the bisector of B∞ and Bx and an element of the group Γ. This
proves the following result.

Proposition 14. In the case of a {2,3,6}-cusp where Γ∞ is a reflection group and where the
( 1

d )-balls are centred on the angle bisectors of the horoball diagram D, there are reflections in Γ

mapping B∞ to any ( 1
d )-ball.

In the situation of Figure III.13, the distance u between two neighbouring ( 1
d )-balls can be

calculated as 1
d . Using this information, one can consider the polyhedron created from the

triangular cone with apex ∞ and angles π

2 ,
π

3 ,
π

6 by cutting with the bisector/reflection plane of rsr.
The bisector is orthogonal to one side of the cone and has angle π

3 with the other two because
its centre has (Euclidean) distance 1

2d from the hyperplanes and the radius of the bisector is 1
d .

Thus, it can be seen that this polyhedron is the fundamental polyhedron of the (non-arithmetic)
reflection group [(33,6)] with Coxeter graph

6

.

One can see that r induces the internal symmetry of that polyhedron (and its graph). Hence,
Γ is equal to the group extension Γr

◦ = [(33,6)] ∗Cr of [(33,6)] by means of the cyclic group
generated by r; see Remark 1. The volume of the tetrahedron [(33,6)] as given by (2.8) is bigger
than 0.36 so that vol(H3/Γr

◦)> v∗.
If we do not assume that the ( 1

w)-balls touch two ( 1
d )-balls, we have basically the same case

distinction as when the ( 1
dk
)-balls are centred on the edges D.

(i) There is a single ( 1
dkmax

)-ball, or

(ii) there are two touching ( 1
dkmax

)-balls,

where kmax := max
{

k | the horoball diagram D contains a ( 1
dk
)-ball

}
. See Figure III.14 for a

sketch of the first couple of horoball diagrams in that sequence.
In the part above, we discussed the first case with kmax = 2, d2 = w and a horoball diagram D

depicted in Figure III.13. There, the isometry r maps the full-sized horoball Bk to the ( 1
d1
)-ball

Bx and the ( 1
d1
)-ball By to the ( 1

d2
)-ball Bq.

In general, there is a similar pattern as follows. A ( 1
dk
)-ball close to the full-sized ball Bk gets

mapped to a ( 1
dk+1

)-ball closer to the full-sized ball B j.
(a) If there is a unique ( 1

dkmax
)-ball in the corresponding part of the horoball diagram D, then

a ( 1
dkmax−1

)-ball on the right gets mapped to this ( 1
dkmax

)-ball.

(b) If there are two ( 1
dkmax

)-ball in this part of the D, then a ( 1
dkmax−1

)-ball on the right gets

mapped to the left ( 1
dkmax

)-ball. This implies that in the second case the right-hand ( 1
dkmax

)-ball is
fixed.

In both cases, the reflection rsr then maps a ( 1
dk
)-ball on the right to a ( 1

dk+2
)-ball on the left

as long is k ≤ kmax −2. In the case (a), a ( 1
dkmax−1

)-ball on the right is fixed by rsr because it is
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Figure III.14.: Horoball diagrams with angle θ = π

6

Figure III.15.: Action of rsr on some horoballs according to the cases (a) and (b)

the only ball left. In the case (b), the ( 1
dkmax−1

)-ball on the right has to be mapped to the right

( 1
dkmax

)-ball. Refer to Figure III.15 for a sketch of illustrative examples for the cases (a) and (b).
Each pair of horoballs with matching colour and pattern is exchanged by rsr. Those horoballs
with a solid fill are fixed.

Lemma 7. The case (b) is impossible.

Proof. The previously discussed fact that rsr maps ( 1
dk
)-balls to ( 1

dk+2
)-balls proves that the

( 1
d2k+1

)-balls are on one line with the ( 1
d1
)-balls. We already showed that a neighboring pair of a

( 1
d1
)-ball and a ( 1

d2
)-ball are on a line with a full-sized horoball. This implies that the ( 1

d2k
)-balls

are not on the same line as the ( 1
d2k+1

)-balls. However, this means that the right-hand ( 1
dkmax

)-ball

is not on the same line as the right-hand ( 1
dkmax−1

)-ball. Thus it cannot be true that they get mapped
to one another by rsr, proving the statement.
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3. Proof of the Theorem

Hence, it remains to discuss the general case (a) with a single ( 1
dkmax

)-ball. It turns out to be
helpful to consider the subgroup Γ′ of Γ generated by Γ∞ and rsr. In fact, this move allows us
to drop the rotation r and to purge the full-sized horoballs as well as the ( 1

d2k
)-balls from the

horoball diagram D. Then, the ( 1
d2k+1

)-balls can be increased to yield a cusp which is a maximal
cusp again. More precisely, the ( 1

d )-balls become full-sized horoballs (of diameter 1
d ), and then,

the horoball diagram D is renormalised in order to have the horosphere H∞ = ∂B∞ at distance 1
from ∂U3. Figure III.16 depicts the cases with small kmax.

Figure III.16.: Horoball diagrams of the reflection subgroups generated by Γ∞ and rsr

As a consequence, the group Γ′ is a hyperbolic Coxeter group, and by the same methods
as above, one can identify Γ′ by means of the Coxeter graph describing a Coxeter polyhedron
P = P(π

k ), with an order 2 internal symmetry plane, according to

6

k

where k is an integer with k ≥ 3. For 3 ≤ k ≤ 6, the volume of P(π

k ) satisfies vol(P(π

k )) ≥
vol([33,6])> 2v∗ by (2.8).

In the case k = 6, the fundamental polyhedron P of Γ′ has four cusps, and for k > 7, there are
two ultraideal vertices. We do not have to consider those cases because we can easily estimate the
orbifold volume using the cusp volume. If k = 6, the distance between two full-sized horoballs is
d =

√
3 as calculated above in Equation (3.13). For this case and for d ≥

√
3, the side length of

D is e = d +
√

3 ≥ 2
√

3 (compare Figure III.17). The cusp volume can then be bounded by

vol(C) =
e2
√

3
48

≥
√

3
4

> 0.43 > 2v∗. (3.16)

Order 3. Suppose that a full-sized disk B = B1 is centred at the singular point b = a3 in
the barycenter of the triangle D. Consider a full-sized horoball B2 whose center is at distance d
from b. It follows that the inradius of the cusp triangle D equals d

2 and that the edge length of
D equals

√
3d. In particular, the cusp volume vol(C) is given by

√
3d2

16 . In the case that Γ∞ is
orientation-preserving, the assumption d > 1 yields the cusp volume estimate

√
3d2

8
> 0.21 > v∗ .
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e

d
√

3
2

√
3

2

Figure III.17.: Horoball diagram of the reflection subgroup Γ′ with k = 6
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a3

B

D

a2
a6

B2

Figure III.18.: A {2,3,6}-cusp triangle D with a full-sized horoball B centred in a3

Hence, we assume that the cusp triangle D has a mirror symmetry. Since d > 1, there are three
( 1

d )-balls, each of diameter 1
d2 , touching B in D in a symmetrically arranged way. Denote by x the

centre of one of these ( 1
d )-balls. The distance d0(b,x) equals 1

d .
• If x lies on the edge e23 defined by b = a3 and the midpoint a2 of an edge of D, then the

bound
d
2
= d0(b,a2)≥ d0(b,x) =

1
d

yields d ≥
√

2 and, hence, vol(C) ≥
√

3
8 ' 0.216506, which is too big in comparison with

v∗ = vol(H3/[5,3,6])≈ 0.171502 (see (3.1)).
• If x /∈ e23, then x lies on the edge segment e36 of ∆ defined by b = a3 and a vertex a6 of D.

Since d > 1, the center x is different from a6. Furthermore, it is easy to see that d and hence
vol(C) take minimal values if the ( 1

d )-ball Bx is internally tangent to the border of D (see Figure
III.18). In this situation, and since the radius of Bx equals 1

2d2 , we deduce the inequality

d ≥ 1
d2 +

1
d
,

whose solution d ≥ 1.324718 yields the cusp volume bound

vol(C)≥ 0.189971 > v∗ .
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Order 2. Suppose that a full-sized horoball B = B1 is centred at the singular point b1 = a2 in
D, and let B2,B3 be full-sized horoballs centred at b2,b3 in D, both at distance d from b1. Then,
the edge length of the cusp triangle D equals 2d while the distance from b1 to the centre of D
is given by r = d√

3
(representing the inradius of D). In particular, we have vol(C) =

√
3d2

12 , and
there are disks of no tangency centred at the vertices of D. Hence, we cannot assume that w ≥ 1.

However, the case that Γ∞ is orientation-preserving can be excluded since the corresponding
cusp volume for d > 1 immediately yields the estimate

vol(C) =

√
3d2

6
>

√
3

6
> v∗ .

Assume that D has a mirror symmetry. We analyse the different tangency possibilities of the
( 1

d )-balls with respect to one or several full-sized horoballs and among themselves. To this end,
the following fact is very useful.

Fact. The centres of the four ( 1
d )-balls touching one full-sized horoball form a rectangle whose

diagonals intersect at the angle π

3 .
• If a single ( 1

d )-ball touches three full-sized horoballs in D, then it is centred at a3. It follows
that r = 1

d , and hence, d =
4√3 so that vol(C) = 1

4 > v∗.
• If a single ( 1

d )-ball touches a pair of neighboring full-sized horoballs but does not touch a
third full-sized one, then the smallest cusp volume arises if the centres of the ( 1

d )-ball and of the
full-sized horoballs which it touches are aligned. This follows easily from the above fact. We
deduce that d =

√
2 and that vol(C) =

√
3

6 > v∗.
• Suppose that each ( 1

d )-ball touches a unique full-sized horoball. As in the case when a
full-sized horoball B is centred at a singular point a6 of order 6 in D with distance w from a6 to
the centre x of a ( 1

d )-ball not touching it (see Figure III.5), we obtain the identical equation (3.7)
for w when the full-sized horoball B is centered at a singular point a2 in D with the condition
0 ≤ θ ≤ π

3 (see Figure III.19).
There are again several cases to consider. The case that three ( 1

d )-balls are mutually tangent
in D can be excluded by Lemma 4. If two ( 1

d )-balls are tangent and do not touch the third one
in D, then the smallest volume arises if their centres and the centres of the associated full-sized
horoballs form an isosceles trapezoid; see Figure III.19. In this case, by Ptolemy’s theorem, the
square of the diagonal of the trapezoid equals

w2 =
1
d
+

1
d2 .

By means of equation (3.7) with 0 ≤ θ ≤ π

3 , we deduce that d3 − d − 1 ≥ 0 and d ≥ 1.32471.
Hence, vol(C)> 1

4 > v∗.
Suppose that the ( 1

d )-balls do not touch each other. In particular, the minimum distance µ

of their centres is bigger than 1
d2 . Since D has mirror symmetry, we get a (possibly degenerate)

isosceles trapezoid formed by the centres of two closest ( 1
d )-balls in D and the centres of the two

full-sized horoballs which they touch. By Ptolemy’s theorem, we deduce that

w2 = µ d +
1
d2 >

1
d
+

1
d2 , (3.17)
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b1

b2

Figure III.19.: Full-sized horoballs centred at singular points of order 2

and hence vol(C)> 1
4 > v∗ in a similar way as above.

As a summary of all the investigations in Section 3.4, we obtain the following result.

Proposition 15. Let V be a non-arithmetic hyperbolic 3-orbifold with a single cusp C = B∞/Γ∞

which is rigid of type {2,3,6}. Suppose that Γ∞ gives rise to only one equivalence class of
full-sized horoballs. Then,

vol(V )≥ vol(V∗) ,

and equality holds if and only if the orbifold V is isometric to V∗ = H3/[5,3,6].

The case {2,4,4}

(i) As in Section 3.4, (i), we start by assuming that there are at least two full-sized horoballs,
which are centred at equivalent singular points and which touch one another in the (square) cusp
diagram D. That is, the minimal distance d of the centres of full-sized horoballs equals 1 (see
also [Ada92a, Section 5, p. 11]).

Order 4. Suppose that there is a full-sized horoball centred at one of the two singular points a4
of order 4 in ∆. Then, d0(a2,a4) =

1
2 , and the associated cusp volume vol(C) equals 1

16 . Similarly
to the case of Section 3.4, one can check that there is a unique orbifold V related to this cusp
configuration. In fact, it is the quotient of H3 by the arithmetic Coxeter group [3,4,4] (see also
[Ada92a, p. 13]). The quotient space V =H3/[3,4,4] has volume ω3

48 = 1
6 JI(π

4 )≈ 0.0763304 (see
Section 2.3). By [Ada92a, Theorem 5.2 and Theorem 6.1], we know that the space H3/[3,4,4]
has minimal volume among all hyperbolic 3-orbifolds with at least one cusp of type {2,4,4}.
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a2a4

Figure III.20.: A full-sized horoball centred at a2

Order 2. If there is a full-sized horoball centred at a2 ∈ ∆, then we get d0(a2,a4) =
1√
2
, and

the cusp volume equals 1
8 (see [Ada92a, Figure 6(b), p. 12] and Figure III.20). Again, there

is a unique orbifold corresponding to this configuration. Its fundamental group is given by the
Coxeter group [41,1,3] and therefore commensurable to the arithmetic Coxeter group [3,4,4] (see
[Joh+02, p. 130]).

(ii) Suppose now that the full-sized horoballs do not touch one another implying that the
minimal distance d between the centres as (for s = 2 or s = 4) of full-sized horoballs satisfies
d > 1.

Notice that if the stabiliser Γ∞ is orientation-preserving, then the cusp volume equals

vol(C) =
d2

2s
>

1
2s

. (3.18)

In particular, for s = 2, we deduce that the cusp volume yields vol(C)> 1
4 > v∗. Moreover, the

case s = 4 can also be excluded as follows. If there is a disk of no tangency, then d ≥
√

2 and
vol(C) > v∗. If there is no disk of no tangency, then by Lemma 6 we have that the distance w
of the centre of a ( 1

d )-ball touching B to the centre of a neighboring full-sized horoball satisfies
w ≥ 1. The equation (3.7) for w remains valid under the adapted constraint 0 ≤ θ ≤ π

4 in the
square diagram D. The inequality w ≥ 1 now implies that

d4 − (1+
√

2)d2 +1 ≥ 0 ,

and hence vol(C) = d2

8 > 1.88
8 > 0.2 > v∗.

Consequence. We can assume that the cusp diagram D has a mirror symmetry.
As in the case 3.4, (ii), we study the ( 1

d )-balls and their tangency behavior with respect to the
full-sized horoballs centred at a singular point as. Observe that for each full-sized horoball B,
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1
d

d

d

1
d

Figure III.21.: ( 1
d )-balls touching four full-sized balls

there are four ( 1
d )-balls touching B. The angles formed by their centres measured from the center

B is a multiple of π

4 . This leads to the following first cases; see Figure III.21.
(a) Suppose that one ( 1

d )-ball Bx is touching four full-sized horoballs so that the center x
coincides with a singular point of order s = 4. By symmetry, we can suppose that x is the center
of the cusp diagram D.
• Assume first that the centres of the full-sized horoballs lie at the singular points of order 2

in D, that is, D has circumradius d. Since the distance between the center x and the centre of each
of the full-sized horoballs equals 1

d , we deduce that d =
4√2. Hence, for the cusp volume, we get

vol(C) = d2

8 =
√

2
8 ≈ 0.176777 and therefore vol(C)> v∗ (see (3.18)).

• Assume next that the centres of the full-sized horoballs lie at the vertices (of order 4) of D.
Hence, D has circumradius 1

d . We deduce that d =
4√2 as well. However, for the cusp volume, we

obtain vol(C) =
√

2
16 . As shown by [Ada92a, p. 13] in the oriented case, there is a unique orbifold

corresponding to this configuration. It is the arithmetic quotient of an ideal Coxeter tetrahedron
with dihedral angles π

4 , π

4 and π

2 by its orientation-preserving symmetry group. Hence, in the
non-oriented case, a hyperbolic orbifold with cusp volume

√
2

16 would have a fundamental group
commensurable to the arithmetic Coxeter group [4[4]] and therefore can be excluded from our
consideration.

(b) Suppose that one ( 1
d )-ball Bx is touching exactly two full-sized horoballs.

• If these full-sized ones are centred at singular points of order 2 in D, then the circumradius
of D equals d. Since the center x is aligned with the centres of the full-sized horoballs which Bx

touches, we deduce that d =
√

2 and vol(C) = d2

8 = 1
4 > v∗.

• If the two full-sized horoballs are centred at vertices (of order 4) of D, then again d =
√

2.
It follows that vol(C) = 1

8 . Observe that there is a disk of no tangency based at the centre of
D and touching the full-sized horoballs. Given this, the only possible such configuration, and
which leads to a singly cusped orbifold, arises by halving the Coxeter orthoscheme [4,4,4] with
vertices q, p1, p2, p3 by means of the plane P passing through the edge p2 p3 and orthogonal to
the (doubly infinite) edge qp4 (see Figure III.1). However, a simple computation shows that the
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III. The minimal cusped non-arithmetic 3-orbifold

horoball sector B∞ ∩ [4,4,4] associated to q, has non-empty intersection with P in contradiction
to the maximality of the cusp. Hence, this configuration can not be realised.

(c) Suppose that a ( 1
d )-ball is touching only one full-sized horoball B.

Observe that, and similarly to the distance w, the distance v of the centre of B to the centre of
its neighboring ( 1

d )-balls as given by (3.6) remains valid under the constraint 0 ≤ θ ≤ π

4 (the
distance u between the centres of two ( 1

d )-balls needs a slight modification, though).
• Assume that B is centred at a singular point of order 2 in D. As in the case of the

cusp of type {2,3,6}, and by symmetry, we get a (possibly degenerate) isosceles trapezoid
formed by the centres of two neighboring ( 1

d )-balls at distance µ ≥ 1
d2 and by the centres of the

full-sized horoballs which they touch. We obtain the identity (3.17) which, combined with the
equation (3.7) for w2 and the condition 0 ≤ θ ≤ π

4 , yields d3 −
√

2d − 1 ≥ 0 and the estimate
d ≥ 1.450405 >

√
2. As a consequence, the volume of the cusp C satisfies vol(C) = d2

8 > 1
4 > v∗.

• More delicate is the case when B is centred at a singular point of order 4. By symmetry,
we can suppose that the centre of B coincides with a vertex of D. For the cusp volume, we obtain
vol(C) = d2

16 .
As in [Ada92b, Section 5], we consider the mutual positions of the ( 1

d )-balls associated to the
full-sized horoballs. The case that four ( 1

d )-balls are closest to one another, that is, each one is
tangent to two other ones and they all are symmetrically arranged around the centre of D, can be
excluded by applying verbatim Adams’ corresponding argument.

Suppose next that two ( 1
d )-balls are tangent, and no other ( 1

d )-ball is tangent to them. Since D
has a mirror symmetry, this can only happen if they are tangent at a singular point a2 of order 2
with centres being aligned with the centres of the corresponding full-sized horoballs. We deduce
that d = 2

d +
1
d2 and hence d = 2cos π

5 . It follows that

vol(C)

d3(∞)
> 0.19 > v∗ .

It remains to investigate the case when the ( 1
d )-balls do not touch. As in the analogous case of

a cusp of type {2,3,6}, we consider the ( 1
w)-balls with their position relative to the ( 1

d )-balls.
Assume first that four ( 1

w)-balls coincide and, hence, have center equal to the centre of the square

D. Then, the circumradius of D equals 1
w so that w =

√
2

d . By means of (3.7), one can compute that
d =

4√5 and cosθ = 2√
5
; see Figure III.31. Hence, the cusp diagram D has no mirror symmetry,

and the corresponding cusp volume yields vol(C) =
√

5
8 > 1

4 > v∗. By performing analogous
computations as in the case of a type {2,3,6}-cusp, we can show furthermore that there is a
unique corresponding oriented orbifold that is arithmetic. For more details, see Appendix III.B.

The case that two of the ( 1
w)-balls coincide in the interior of D can be excluded by symmetry.

Hence, it remains to investigate the situation when all ( 1
w)-balls are distinct. In order to finish

this case, it is sufficient to check the following two extremal possibilities for a ( 1
w)-ball touching

two ( 1
d )-balls associated to two different full-sized balls.

• Suppose first that a ( 1
w)-ball touches two ( 1

d )-balls in such a way that their centres
are aligned on an edge of D. Then, 1

w = d
2 which by means of (3.8) and θ = 0 implies that

d4 −2d2 −3 = 0 with solution d =
√

3. Hence, vol(C) = 3
16 > v∗.

• Suppose next that a ( 1
w)-ball touches two ( 1

d )-balls whose centres lie on the diagonals of
D. Notice that there are eight ( 1

w)-balls around each full-sized horoball. Then, one can show
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in a similar way as in the case of a cusp of type {2,3,6} that d =
√

1+
√

2. It follows that
vol(C)
d3(∞) = 1+

√
2

16d3(∞) > 0.176 > v∗.
Furthermore, we can describe the associated 1-cusped orbifold in an analogous way as in

the case of a cusp of type {2,3,6} and the explanations referring to Figure III.13. The orbifold
has a non-arithmetic fundamental group and is built upon a polyhedron arising from halving
the Coxeter tetrahedron with cyclic Coxeter symbol [(43,3)] and Coxeter graph with internal
symmetry as given by

4

4 4 .

As a result, and by [Joh+99, p. 348], the volume of the orbifold is about 0.27814 and hence too
large.

Summarising the investigations in Section 3.4, we can state the following result.

Proposition 16. Let V be a non-arithmetic hyperbolic 3-orbifold with a single cusp C = B∞/Γ∞

which is rigid of type {2,4,4}. Suppose that Γ∞ gives rise to only one equivalence class of
full-sized horoballs. Then,

vol(V )> vol(V∗) .

3.5. More than one equivalence class of full-sized horoballs

Assume that the crystallographic group Γ∞ gives rise to more than one equivalence class of
full-sized horoballs. We show that the corresponding orbifold has volume strictly bigger than
v∗ = vol(H3/[5,3,6]) (if it exists) by treating the cases of a cusp C of type {2,3,6} or of type
{2,4,4} separately. For simplicity, we assume that the group Γ is orientation-preserving by
passing to its orientation-preserving subgroup of index 2 if necessary.

The case {2,3,6}

As in the case of one equivalence class, inequivalent horoballs have to be centred in the singular
points as , s ∈ {2,3,6} of the cusp diagram D because otherwise already the cusp volume becomes
too big (see Section 3.4 and (3.4)).

Suppose first that there are three equivalence classes of full-sized horoballs with respect to the
action of Γ∞. The smallest volume then arises if d0(a2,a3) = 1. It follows that the (oriented) cusp
volume satisfies vol(C) =

√
3

2 > 2v∗, and that the orbifold volume is too big.
Consider the case of exactly two equivalence classes of full-sized horoballs. Continue to denote

by τ the shortest translation length in Γ∞ and by d the shortest distance between two equivalent
full-sized horoballs. In the case where the full-sized horoballs are centred in singular points of
order 2 and 3, we get τ ≥ 2 which leads to a cusp volume of at least vol(C)≥

√
3

2 > 2v∗.
Using the fact that the full-sized horoballs are centred in singular points as, we can deduce the

following slightly generalised version of Adams’ Lemma 5 in the case of a (oriented) cusp C of
type {2,3,6}.
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Lemma 8. Suppose that the full-sized horoballs of a {2,3,6}-cusp are centred in singular points
as in the cusp diagram D. Then, there is a rotation of order 2 in Γ whose axis is tangent to a
full-sized horoball and the horoball B∞.

Proof. Take a full-sized horoball centred at a singular point as = (u,1) where u ∈ R2 belongs to
the boundary ∂U3. Since the group Γ acts transitively on the set of horoballs covering C, there
is an isometry γ ∈ Γ mapping u to ∞. Since the axis ls formed by u and ∞ is the rotational axis
of an isometry in Γ∞, the image geodesic γ(ls) is also the axis of a rotation of the same order.
Thus, by composing γ with a suitable isometry in Γ∞, we can assume that γ maps ∞ back to u.
It follows that the element γ has to be a rotation of order 2 in Γ whose axis is tangent to the
full-sized horoball and B∞.

There are two cases to consider for a possible placement of the centres of the full-sized
horoballs.

Centres at a6 and a3. Assume that the full-sized horoballs are centred in singular points
as of order 6 and 3, respectively. Denote by e = τ√

3
the distance between a6 and a3 in the cusp

diagram D.
In the minimal case, e = 1; see Figure III.22. By Lemma 8, we have the existence of rotations

e

τa6

a3

Figure III.22.: Inequivalent full-sized horoballs touch one another

of order 2 which exchange the full-sized horoballs centred at a6 = (u6,1) and at a3 = (u3,1)
with the horoball B∞. It is not difficult to see that the rotation which sends ∞ to u3 and fixes u6,
together with the rotations in the singular axes of order 2, give a face identification of the ideal
regular tetrahedron S∞

reg with ideal vertices defined by the 3 vertices of the regular triangle D
and ∞. One can also see that the above rotations are generated by reflections in the sides of the
characteristic orthoscheme [3,3,6] associated to S∞

reg. That implies that these rotations generate
an arithmetic subgroup of finite index in Γ so that Γ itself is arithmetic. The rotations around the
singular axis of order 3 and the rotation of order 2 mapping u6 to ∞ generate 6 isometries of S∞

reg.
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As a by-product, we can calculate the volume by means of (2.5) and obtain

vol
(
H3/Γ

)
=

1
6

vol
(
S∞

reg
)
=

1
2

JI(
π

3
).

In the case e > 1, there is a similar notion to a ( 1
d )-ball in the case of one equivalence class.

More precisely, the rotations of Lemma 8 map full-sized horoballs at distance e from a full-sized
horoball to horoballs of diameter 1

e2 at distance 1
e from the full-sized image of B∞. Accordingly,

we call these balls (1
e )-balls. The general situation is depicted in Figure III.23.

α

e

1
e

Figure III.23.: Inequivalent full-sized horoballs at distance e > 1

The minimal distance e is obtained by decreasing e to the point where the (1
e )-balls touch

simultaneously both inequivalent full-sized horoballs; see Figure III.24. For a given angle
α ∈ [0, π

6 ] as defined in Figure III.23, one can calculate the minimal possible e by using the
isosceles triangle with base e, opposite angle α and sides 1

e . This implies that cosα = e2

2 and that

e =
√

2cosα ≥
√

2cos
π

6
=

4
√

3. (3.19)

The lower bound on e yields a lower bound for the (oriented) cusp volume. It follows that

vol(C) =
τe
8

=

√
3e2

8
≥ 3

8
> 2v∗ ,

which is enough to exclude this case this from our considerations.
Centres at a6 and a2. Assume that the full-sized horoballs are centred in singular points a6

and a2, of order 6 and 2, respectively. Denote by e ≥ 1 the shortest distance between a6 and a2 in
the diagram D. The next result shows that e > 1.

Proposition 17. Suppose that a 1-cusped oriented hyperbolic 3-orbifold has a cusp of type
{2,3,6} with precisely two equivalence classes of full-sized horoballs centred in the singular
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α

e

1
e

Figure III.24.: A (1
e )-ball touching two inequivalent full-sized horoballs

points a6 and a2 of the horoball diagram D. Then, d0(a6,a2)> 1, and the full-sized horoballs
cannot touch each other.

Proof. On the contrary, assume there is such an orbifold with touching full-sized horoballs giving
rise to a horoball configuration as in Figure III.25. By Lemma 8, there is a rotation of order 2
exchanging the horoball B1 centred in the singular point b1 = (u1,1) of order 6 and the horoball
B∞ at infinity. This rotation sends the touching full-sized horoballs around B1 onto each other.
After possibly using a rotation around the axis l1 = (u1,∞), we can assume that there is such a
rotation r exchanging B1 and B∞ while fixing B2 and B′

2 centred in b2 = (u2,1) and b′2 = (u′2,1),
respectively. This implies that the image geodesic (u1,u2) of the order 2 axis l2 = (u2,∞) is also
a rotation axis of order 2.

Using Lemma 8 again, there has to be a rotation r′ around a common tangent of B2 and B∞.
Denote by s the rotation of order 2 around the axis l2. Then sr′ is also a rotation through a
common tangent of B2 and B∞. The axis of sr′ is perpendicular to the rotation axis of r′. Both
rotations r′ and sr′ have to map full-sized horoballs touching B2 to full-sized horoballs touching
B2. Hence one of these rotations has to fix two of the touching full-sized horoballs. (If r′ does
not fix two full-sized horoballs touching B2, then it has to map two neighbouring full-sized
horoballs touching B2 onto each other. The rotational axis of r′ then has to pass between those
horoballs. Since the rotational axis of sr′ is orthogonal, it has to pass through the centres of two
full-sized horoballs touching B2.) Due to symmetry it is enough to consider the cases where B1
or B3 is fixed. Assuming that r′ fixes B1, then the axis (u1,u2) has to have order 6 because of its
image (u1,∞). However, we already noted that it has order 2. Assuming that r′ fixes B3 centred
at b3 = (u3,1), then the axis (u2,u3) has to have order 2 – the same as its image (u3,∞). The
geodesic (u2,u4) related to b2 and b4 = (u4,1), has to have order 6 as its image (u1,∞). However,
they have to have the same order as they get mapped to each other by rotations around the singular
point a3 representing the centre of the cusp diagram D.
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b1 b2b′2

b3 b4

Figure III.25.: Two equivalence classes of full-sized horoballs centred in a6 and a2

Proposition 17 implies that the distance between two inequivalent full-sized horoballs satisfies
e > 1. Again, consider the associated (1

e )-balls. The minimal distance e is achieved if a (1
e )-ball

lies on the angle bisector in D and touches three full-sized horoballs as in Figure III.26. This
gives the lower bound e ≥ 4

√
3. As a consequence, the (oriented) cusp volume yields the estimate

vol(C) =
e2

2
√

3
≥ 1

2
> 2v∗ ,

so that the corresponding orbifold volume becomes too big.

The case {2,4,4}

Assume that there is a {2,4,4}-cusp with at least two equivalence classes of full-sized horoballs.
As in Section 3.5, we can exclude the case of three equivalence classes, since the smallest volume
would arise if all the full-sized horoballs were centred in the singular points yielding a (oriented)
cusp volume vol(C) = 1

2 > 2v∗.
Furthermore, given two equivalence classes of full-sized horoballs, these horoballs have to

be centred in the singular points because otherwise the cusp volume would be too big. If there
are full-sized horoballs in 4- and 2-fold singular points, the shortest translation length satisfies
τ ≥ 2 which gives a cusp volume vol(C) = τ2

8 ≥ 1
2 > 2v∗. Thus we only have to consider the

case where the full-sized horoballs are centred in the 4-fold singularities.
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III. The minimal cusped non-arithmetic 3-orbifold

Figure III.26.: A (1
e )-ball centred on the angle bisector in D

However, for a cusp of type {2,4,4}, there is no equivalent of Lemma 8 since there are
non-conjugate rotations of the same order in Γ∞. This is the reason why there are two cases to
distinguish if one assumes that the full-sized horoballs, representing different equivalence classes,
touch each other. We analyse this situation first.

• Suppose that e = 1. There is an (orientation preserving) isometry r ∈ Γ mapping the
full-sized horoball B1 centred at b1 = (u1,1) to B∞. After possibly using an isometry in Γ∞, we
can assume that r maps B∞ to B1 or to B2 where B2 is an inequivalent full-sized horoball centred
in b2 = (u2,1) in D, respectively; see Figure III.27.

Case 1. If r sends ∞ to u1, then r is a rotation of order 2 and has to map the 4 touching
full-sized horoballs onto each other. There are 4 such rotations, and any one of them helps us. In
fact, the order 2 rotations around the midpoints a2 of the sides of the square diagram D with side
lengths τ and their conjugates by r give a side pairing of the ideal regular octahedron O∞

reg formed
by the ideal points defined by the 4 vertices and the in-centre of the square diagram D and ∞.
Since this side pairing generates a finite index subgroup of Γ as well as a finite index subgroup
of the arithmetic reflection group [4,4,4], they are all commensurable. In particular, Γ has to be
arithmetic.

Case 2. If r sends ∞ to u2, we can assume that r(u2) = u1. That implies that r is a rotation
of order 3, which permutes ∞, u1 and u2. It also permutes the centres b′1, b′2 of neighbouring
full-sized horoballs and a (1

e )-ball touching all of them as depicted in Figure III.27. Denote by s
the rotation of order 2 around the vertical axis defined by the centre of this (1

e )-ball in H3. Then,
rsr−1 is a rotation of order 2 exchanging B∞ and the (1

e )-ball. It follows that the two rotations of
order 4 around the axes associated to b1 and b′1, together with their conjugates by rsr−1, give a
side-pairing of the ideal regular octahedron O∞

reg. With the same reasoning as above, Γ turns out
to be arithmetic.

• Suppose that e > 1. We can use the ideas from the proofs of Lemma 8 and Adams’ Lemma
5 as follows. A full-sized horoball Bu centred at u ∈ ∂H3 \{∞} can be mapped to B∞, and B∞
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τ

e

b2

b1

b′2

b′1

Figure III.27.: Two equivalence classes of full-sized horoballs in the diagram of a cusp of type
{2,4,4}

gets mapped to a horoball Bv centred at v. By hypothesis, there is a full-sized horoball at distance
e from Bu which gets mapped to a horoball touching Bv and of diameter 1

e2 . This is the equivalent
of the (1

e )-ball as above.
The minimal possible distance e is obtained if the (1

e )-ball touches inequivalent full-sized
horoballs as illustrated in Figure III.28. We can perform the same calculation which led to
equation (3.19) by using the isosceles triangle with angle α satisfying α ∈ [0, π

4 ]. We obtain the
lower bound according to

e =
√

2cosα ≥
√

2cos
π

4
=

4
√

2 .

Hence, the (oriented) cusp volume yields the estimate

vol(C) =
e2

4
≥

√
2

4
> 0.35 > 2v∗.

As a summary of the investigations in Sections 3.5 and 3.5, we can formulate the following
result.

Proposition 18. A non-arithmetic cusped hyperbolic 3-orbifold H3/Γ of minimal volume with
cusp of the form C = B∞/Γ∞ has the property that Γ∞ permutes all full-sized horoballs.
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α

τ

1
e

e

Figure III.28.: Two inequivalent full-sized horoballs at distance e with (1
e )-ball in the diagram of

a cusp of type {2,4,4}

In combination with Proposition 6, Proposition 7, Proposition 15 and Proposition 16, Pro-
position 18 is the final step in the proof of the Theorem as stated in Section 1 and in Section
3.

4. Final remarks

The theory and investigations exploited in this work are valid for cusped hyperbolic n-orbifolds
of dimensions n ≥ 2. While for n ≥ 4 the adaption becomes very cumbersome, one can derive in
a fairly easy way the following corresponding result for n = 2 mentioned in Section 1 (for details,
see [Dre21]).

Proposition 19. Among all non-arithmetic cusped hyperbolic 2-orbifolds, the 1-cusped quotient
space of H2 by the triangle Coxeter group [5,∞] has minimal area. As such the orbifold is unique,
and its area is given by 3π

10 .

By Selberg’s Lemma, any hyperbolic orbifold has a finite sheeted (smooth) cover manifold.
In the following, we are interested in cusped hyperbolic 3-manifolds of small volume. These
manifolds form a large family of spaces. For a list of smallest ones, see [GMM09] and [MR03,
Section 13.6]. Here, we focus on the subclass of non-arithmetic Coxeter manifolds, that is,
manifolds whose fundamental groups are commensurable with non-arithmetic hyperbolic Coxeter
groups. Consider the 1-cusped orbifold V∗ = H3/[5,3,6] of smallest volume among all non-
arithmetic cusped hyperbolic 3-orbifolds. The minimal index of a torsion-free subgroup of [5,3,6]
is given by the l.c.m. of the orders of finite subgroups of [5,3,6] and equals 120. In [Eve04],
it is shown that there are 10 such subgroups which are non-conjugate in [5,3,6], yielding non-
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III.A. The case {2,3,6}

isometric non-arithmetic hyperbolic Coxeter 3-manifolds, all orientable with one or two cusps,
covering the orbifold V∗. Each of these manifolds is of volume 120 ·vol([5,3,6])≈ 20.580199.

Compare V∗ with the non-arithmetic 2-cusped orbifold V◦ of volume

5
8

JI(
π

3
)+

1
3

JI(
π

4
)≈ 0.364107

whose fundamental group is given by the tetrahedral Coxeter group [(33,6)] (see Example 2.2
and (2.8)). There is a torsion-free subgroup Λ of [(33,6)] of minimal possible index equal to
24 so that the resulting Coxeter manifold M = H3/Λ is of volume ≈ 8.738570. Moreover, the
manifold M is non-orientable and multiply-cusped. Since the groups [5,3,6] and [(33,6)] are
incommensurable (see Remark 1), the manifold M does not have a common covering manifold
with V∗. As a consequence, one gets the following result stated in Section 1.

Proposition 20. The fundamental group of a non-arithmetic cusped hyperbolic Coxeter 3-
manifold M∗ of minimal volume is incommensurable to the Coxeter group [5,3,6]; the volume of
M∗ is smaller than or equal to 24 · vol([(33,6)])≈ 8.738570.

Let us add that there are precisely four conjugacy classes of torsion-free subgroups of index 24
in [(33,6)]. The related quotient manifolds are non-orientable and have 2, 2, 3 and 4 cusps. It is
an open question whether these spaces are the smallest ones among all non-arithmetic cusped
hyperbolic Coxeter 3-manifolds. For more details and the proof of Proposition 20, we refer to
[Dre21, Chapter IV].

Appendix III.A The case {2,3,6}

Consider a discrete group Γ ⊂ Isom+H3 of orientation preserving isometries whose quotient
space O has exactly one cusp of the form C = B∞/Γ∞ giving rise to full-sized horoballs of
diameter 1 in the upper half space U3.

Suppose that C is of type {2,3,6} and that the group Γ∞ induces only one equivalence class of
full-sized horoballs, all centred at singular points of order 6 in the cusp diagram D.

In the sequel, we consider the special case when the full-sized horoballs are at distance d > 1
from one another and when the associated ( 1

d )-balls do not touch one another. In particular, these
( 1

d )-balls give rise to ( 1
w)-balls. Suppose that the ( 1

w)-balls of the three ( 1
d )-balls in D coincide

with center at the singular point p = a3 of order 3 in D; see Figure III.29. As explained in Section
3.4, one obtains w =

√
3

d , cosθ = 5
2
√

7
and d =

4√7. In particular, vol(C) =
√

21
24 .

In the following, we correct Adams’ determination of a fundamental polyhedron for Γ and
the volume computation for O as given in [Ada92a, p. 10]. Furthermore, we show that O is
arithmetic (see Remark 9 in Section 3.4).

Consider the full-sized horoballs B j, Bk and Bl , as well as the ( 1
d )-balls centred at x, y and z as

depicted in Figure III.29. Identify all horoball centres at height t = 1 in D with the corresponding
points in the plane { t = 0}. Recall that the centres j, x, and y are located on one line. Denote by
r the order 2 rotation which interchanges the horoballs B∞ and B j as well as Bk and Bx.

The ( 1
w)-ball Bs is actually the image of By under this rotation r and centred in a2. It is fixed

by a rotation s ∈ Γ∞ of order 2 around a singular point a2.
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θj k

l

x

yp

y′
s

z

Figure III.29.: A single ( 1
w)-ball in a {2,3,6}-cusp triangle D
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2π

3

π

6

2π

3
π

6

π

6

π

6

∞

j

kp

Figure III.30.: Side pairings of P for a subgroup of Γ

The image of the axis connecting B∞ and Bp under the rotation r is the geodesic connecting B j

and By. Hence the conjugate rotation s′ := rsr swaps Bx and B∞ while fixing B j and By.
It is easy enough to find a fundamental polyhedron for a subgroup of Γ described by the

cusp diagram. Consider the ideal tetrahedron with vertices ∞, j, k, and p. Each of its ideal
vertex triangles has angles π

6 , π

6 and 2π

3 . Denote by ρ the clockwise rotation of order 3 around
the singular axis connecting the centres of B∞ and Bp. The symmetries s, s′, and ρ give face
identifications which are visualised in Figure III.30. The faces A and B are identified with
themselves by the appropriate rotation around the given axes. The face C gets mapped to D by
ρ . This gives a subproper side pairing according to [Rat94, Section 13.4] implying that P is a
fundamental polyhedron for a subgroup of finite index in Γ. Denote this subgroup by Θ.

From this we can deduce the arithmeticity of Γ as follows. A representation of Θ in PSL2(C)
is given by

s 7→
(

i −i
0 −i

)
, ρ 7→

(
−ω ω2

0 ω2

)
, s′ 7→

(
i 0

id2 e−iβ −i

)
=

(
i 0

−
√

3
2 + i 5

2 −i

)
,

where ω = 1
2 + i

√
3

2 is a primitive sixth root of unity. The trace field is kΓ =Q(ω). This can be
seen by utilising [MR03, Theorem 3.5.9] and by taking ρ−1, ρ−1s, and srsr as generators for the
subgroup Θ. By means of [MR03, Theorem 8.3.2], it follows that Γ is arithmetic, and the result
[MR03, Theorem 8.4.1] in conjunction with [MR03, Theorem 3.3.8] allows us to deduce that Γ

is even commensurable to the [3,3,6].
In order to obtain Γ, one needs to add r as a generator to Θ. Replacing the generator ρ by

sρ (a rotation around the axis connecting ∞ and j) makes it easy to show that Γ = Θo 〈r〉 is a
semidirect product. The subgroup Θ has index 2 in Γ, so half of P is a fundamental polyhedron
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III. The minimal cusped non-arithmetic 3-orbifold

for Γ. This allows us to calculate the volume of the fundamental polyhedron P and of the orbifold
O as follows (see Section 2.3).

vol(O) = vol(P) =
1
2

{
JI
(

2π

3

)
+2JI

(
π

6

)}
= JI

(
π

3

)
≈ 0.338314 .

Remark 21. Based on Adams’ original explanation [Ada92a, p. 10], there is a dissection of
the polyhedron P and its image under rsr into three ideal tetrahedra T (∞, j,k,x), T (∞, j, p,x),
and T (∞,k, p,x). They are represented by the coloured triangles in Figure III.29. The blue and
green tetrahedra have angles θ , π

6 −θ and 5π

6 , where cosθ = 5
2
√

7
as above. The red tetrahedron

has angles θ , π

3 −θ , and 2π

3 . This is useful in order to obtain the following new identity1 for the
Lobachevsky function evaluated at π

3 .

JI
(

π

3

)
=

1
4

(
2
(

JI(θ)+ JI
(

π

6
−θ

)
+ JI

(
5π

6

))
+ JI(θ)+ JI

(
2π

3
−θ

)
+ JI

(
π

6

))
=

3
4

JI(θ)+
1
2

JI
(

π

6
−θ

)
+

1
4

JI
(

2π

3
−θ

)
− 1

4
JI
(

π

6

)
with cosθ =

5
2
√

7
.

Appendix III.B The case {2,4,4}

As in Appendix III.A, consider a discrete group Γ⊂ Isom+H3 of orientation preserving isometries
whose quotient space O has exactly one cusp of the form C = B∞/Γ∞ giving rise to full-sized
horoballs of diameter 1 in the upper half space U3.

Suppose that C is of type {2,4,4} and that the group Γ∞ has only one equivalence class of
full-sized horoballs, all centred at singular points of order 4 in the cusp diagram D, and at distance
d > 1 from one another. Assume that the associated ( 1

d )-balls do not touch one another so that
each ( 1

d )-ball yields ( 1
w)-balls.

Suppose that the four ( 1
w)-balls associated to the four ( 1

d )-balls in D coincide and, hence, have
centre equal to the centre of the square D. Furthermore, the circumradius of D coincides with 1

w

so that w =
√

2
d .

In a completely analogous manner as in Appendix III.A, and by means of (3.7), one can show
that d =

4√5 and cosθ = 2√
5
. Since the cusp diagram D has no mirror symmetry, the cusp volume

yields the large value vol(C) =
√

5
8 > v∗; see Figure III.31.

Furthermore, by performing similar computations as in Appendix III.A, one can deduce that
this configuration gives rise to a unique oriented orbifold O =H3/Γ that is arithmetic and in fact
commensurable to the Coxeter group [3,4,4].

Remark 22. By a suitable decomposition of a fundamental polyhedron for Γ as above, a similar
identity for the value JI

(
π

4

)
of the Lobachevsky function in terms of the angle 0< θ < π

4 satisfying

1To the best of the authors knowledge, this identity is new.
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j k

x

yp

y′

q

l

θ

Figure III.31.: The cusp diagram D for the cusp of type {2,4,4} with a single ( 1
w)-ball at its

centre
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cosθ = 2√
5

is obtained. This value also gives the volume of the orbifold O as follows.

JI
(

π

4

)
=

1
4

{
2
(

JI(θ)+ JI
(

π

4
−θ

)
+ JI

(
3π

4

))
+ JI(θ)+ JI

(
π

2
−θ

)
+ JI

(
π

2

)}
=

3
4

JI(θ)+
1
2

JI
(

π

4
−θ

)
+

1
4

JI
(

π

2
−θ

)
− 1

4
JI
(

π

4

)
≈ 0.45983 with cosθ =

2√
5
.
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IV. A Small Non-Arithmetic Hyperbolic
3-Manifold Covering a Coxeter Orbifold

1. Introduction

In chapter III we identified the smallest non-compact non-arithmetic hyperbolic 3-orbifold. One
natural question which arises is the one asking for the smallest non-compact non-arithmetic
hyperbolic 3-manifolds. A first candidate might be a manifold covering the smallest orbifold.

As such we would have to find a torsion-free subgroup of the Coxeter group
5 6

.

However, this contains the finite subgroup I3 :
5

of order 120. As covol
5 6 ≈

0.1715 . . . (see section 2.3 of chapter III), the volume of a manifold covering H3/
5 6

has to be at least

120covol
(

5 6
)
≈ 20.58.

The aim of this section is to describe a torsion-free subgroup of

Γ :

6a

b c

d

having minimal possible index 24 in Γ. The covolume of Γ is bigger than the covolume of
5 6

:

covolΓ ≈ 0.364 . . . > covol
5 6

.

Despite the bigger covolume of Γ, the volume of the smallest covering manifolds is 24covol(Γ)≈

8.74 and thus smaller than any covering manifold of H3/
5 6

.
Several people have considered small hyperbolic 3-manifolds. For example, Cao and Meyerhoff

proved in [CM01] that the figure-eight knot complement is one of the two smallest orientable
cusped hyperbolic 3-manifolds with volume ≈ 2.03. Gabai, Meyerhoff, and Milley described
in [GMM09] how the ten smallest orientable 1-cusped hyperbolic 3-manifolds can be obtained
from Dehn filling on one of 21 cusped manifolds. Agol constructed in [Ago10] the smallest
orientable 2-cusped hyperbolic 3-manifolds of volume ≈ 3.66 using topological arguments. Our
approach of finding a covering manifold of a non-arithmetic Coxeter orbifold yields the only
non-arithmetic example in this category known to the author.
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2. Preliminaries
In order to describe a torsion-free subgroup of index 24 in Γ, we first explain a correspondence of
(conjugacy classes of) subgroups of Coxeter groups and graphs with labelled edges. We learned
the general principle of this chapter as a kind of ‘folklore’ from Brent Everitt.

2.1. Group Actions

Let Γ be a group. Our aim is to construct a transitive action of Γ on a suitable (finite) set V . Let
us recall some facts. They can be found for example in Bosch [Bos09] or Smith [Smi16].

For a group Γ and a set V a group action of Γ on V is a group homomorphism

ρ : Γ →{ f : V →V bijection}=: Sym(V )

into the symmetric group of V . We will usually write it as

Γ×V →V,

(γ,v) 7→ γ.v := ρ(γ)(v),

and it satisfies the following properties:

(i) The neutral element e ∈ Γ induces the trivial map: e.v = v for every v ∈V .

(ii) An associativity property holds: (γδ ).v = γ.(δ .v) for every v ∈V and γ,δ ∈ Γ.

A group action gives rise to subgroups of Γ and subsets of V . The stabiliser of an element
v ∈V under the group action of Γ is the subgroup

Γv := {γ ∈V | γ.v = v}

of elements in Γ fixing v. The orbit of a point v ∈V is the set of images under the group action

Γ.v := {γ.v | γ ∈ Γ}.

Orbits of different elements v,w ∈V are either the same or disjoint because a common element
γ.v = δ .w implies that w = δ−1γ.v is in the orbit of v and vice versa. For a given orbit Γ.v there
is a natural bijection between the elements of the orbit and the left cosets Γ/Γv. This map

Γ/Γv → Γ.v

γ Γv 7→ γ.v

is well-defined and bijective. This proves a central theorem when studying group actions:

Theorem 1 (Orbit Stabiliser Theorem). Let Γ a group acting on a set V . Then the cardinality of
the orbit of an element v ∈V is the index of its stabiliser in the group Γ:

|Γ.v|= [Γ : Γv] .
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The following consequence of the orbit stabiliser theorem will be helpful for finding a lower
bound of the index for a torsion-free subgroup of Γ.

Lemma 2. Let Γ be a group acting transitively on a finite set V . If G < Γ is a finite subgroup
such that no element of G fixes any element in V , then the order of G has to divide the cardinality
of V .

Proof. Restrict the group action of Γ to a group action of G < Γ on V . Following the orbit
stabiliser theorem, the orbit G.v of any point v ∈V has to have cardinality |G| since the stabilisers
are trivial:

|G.v|= [G : Gv] = [G : {e}] = |G|.

Since the orbits partition V and have all the same size, |G| has to divide |V |.

If there is only a single orbit for a group action, the action of Γ is called transitive. Equivalently,
for any two v,w ∈V there is a γ ∈ Γ with γ.v = w. This will be of most interest for us later. In
this case all stabilisers Γv with v ∈V are conjugate subgroups with index [Γ : Γv] = |V |.

2.2. Torsion Elements in (Transitive) Group Actions of Coxeter Groups

In order to find a torsion-free subgroup in a given group Γ, we need to discern torsion elements.
For this we assume Γ to be a Coxeter group generated by a finite set of generators S. An especially
interesting kind of subgroup G < Γ is a visual (sometimes called parabolic or special) subgroup
generated by a subset S′ ⊂ S of the generators. The visual subgroup G is itself a Coxeter group.
The visual subgroups help giving all torsion elements in Γ.

Theorem 3. Let Γ be a hyperbolic Coxeter group and w ∈ Γ an element of finite order. Then
there is a finite visual subgroup of Γ which contains a conjugate of w.

Proof. In the case of a hyperbolic Coxeter group we can consider the action of Γ on Hn. The
generators S of Γ correspond to the reflections in a fundamental polyhedron P. An element w ∈ Γ

with finite order is an elliptic element having at least one fixed point p ∈ Hn. There is a group
element γ ∈ Γ such that γ.p is in P and γwγ−1 fixes the point γ.p in P. Since there cannot be
a fixed point in the interior of P, γ.p has to be a point on the boundary of P. Hence γwγ−1 is
contained in the subgroup which is generated by all reflections in the hyperplanes containing γ.p.
Since all elements in this subgroup fix γ.p, it is finite. This proves the theorem for the hyperbolic
case.

Theorem 3 is also true in the case of abstract Coxeter groups. It is exercise 2) in §4 of chapter
V in [Bou02]. There is a proof following roughly the ideas of the exercise in [BH93, Proposition
1.3], and a geometric proof in [Eve04, Theorem 4].

By giving all the maximal finite visual subgroups one can find all conjugates of elements of
finite order. It is sufficient to consider elements of prime order. If an element of non-prime
order fixes a point in H3, then its powers of prime order do the same. Everitt [Eve04] gave a
well-arranged recapitulation of a result of Carter [Car72] listing representatives of all conjugacy
classes of elements of prime order in finite Coxeter groups. We will later list the representatives
we need for our example in Table IV.1.
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IV. A Small Non-Arithmetic Hyperbolic 3-Manifold

Together with Lemma 2 one can see that the orders of all finite visual subgroups of Γ have to
divide the cardinality of a suitable finite set V on which Γ acts. A lower bound for the index of a
torsion-free subgroup is given by the lowest common multiple of the orders of the maximal finite
visual subgroups.

The following lemma will enable the reader to check that the subgroups described below are
indeed torsion-free.

Lemma 4. Let Γ be a Coxeter group acting transitively on a finite set V such that for each
conjugacy class of torsion elements there is a representative which does not fix any element of V .
Then the stabilisers of the elements in V are torsion-free.

The following helps if one tries to find a group action by hand.

Proposition 5. Let Γ be a group acting transitively on a finite set V with Γv0 torsion-free for
some v0 ∈V . Then for any two distinct γ1,γ2 ∈ Γ generating a finite subgroup of Γ, their action
differs on every element in V .

Proof. Assume that there was a v ∈V such that γ1.v = γ2.v. Then γ
−1
1 γ2 is an element of finite

order fixing v. It cannot be the identity since we assumed γ1 and γ2 to be distinct. So Γv0 cannot
be torsion-free.

2.3. Group Actions Given by Graphs

Let (Γ,S) be a Coxeter group. We will describe an action of Γ on the (finite) set V of vertices
of a graph (V,E) with edges E. Each edge is labelled with a generator s ∈ S (or appropriately
marked). Two edges with the same label cannot have a common vertex. An edge (v,w) with the
label s signifies that under the action of Γ the generator s swaps the two vertices v and w. This
implies that for any generator s, s2 acts as the identity. This is necessary because the generators
of a Coxeter group are inversions. For this graph (V,E) to describe an action of Γ on V , we lastly
need that all the relations (si s j)

mi j act as the identity on (V,E).

Example 6. One class of examples is the group action of a Coxeter group (Γ,S) on the Cayley
graph of a visual subgroup G < Γ. The Cayley graph of a finite Coxeter group (G,S′) is a graph
with vertices V = G, the elements of the group G. There is an edge (g,h) with label s ∈ S′ between
two elements g,h ∈ G if and only if sg = h. This immediately gives an action of G on the Cayley
graph of G: The relations of G are automatically fulfilled because for si,s j ∈ S′, (si s j)

mi j = e in
G and it is easy to show that (si s j)

mi j acts trivially on any vertex v ∈V = G. If all weights mi j

for si ∈ S\S′ and s j ∈ S′ are even or ∞, then the Cayley graph (V,E) of G < Γ also describes an
action of Γ on (V,E) (by assuming that any s ∈ S\S′ acts trivially). If there are odd weights mi j

for si ∈ S\S′ and s j ∈ S′, one can often add appropriate edges to make it an action of Γ. However,
this does not always work. For example, in the situation of Γ = A3 and G = 〈a,c〉, where the
generators are named as below in (2.1), it is not possible to create an action of Γ on the Cayley
graph of G by just adding edges.

If the graph is connected, the action is transitive and the graph itself defines a conjugacy class
of subgroups Γv of Γ with index [Γ : Γv] = |V |. A choice of a vertex v0 ∈ V is a choice of a
representative of this conjugacy class.
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3. A Small Non-Arithmetic Hyperbolic 3-Manifold

If and only if an element γ ∈ Γ does not fix any vertex of the graph, then neither γ nor any of
its conjugates are in the stabiliser subgroup of any vertex. In general this implies that the Cayley
graphs of the finite subgroups are included in the graph of the group action.

Some examples for group actions described by graphs are given in Figure IV.1. They are
actions for the groups:

A2 :
a b

, A3 :
a b c

, G2 :
a

6
d
. (2.1)

The action of a is given by simple edges, the action of b by double edges, the action of c by dotted
edges and the action of d by dashed/dotted edges. The first and last action are represented by the
Cayley graphs of A2 and G2, respectively.

Remark 7. Let Γ be a Coxeter group with a transitive action given by a finite graph (V,E), and
let G < Γ be a finite visual subgroup. If the subgraph of (V,E) obtained by dropping all edges not
labelled by generators of G is the Cayley graph of G (or a union thereof), then no element of G is
contained in a stabiliser Γv of a vertex v in Γ. This is an alternative to look for the representatives
of conjugacy classes of elements of prime order.

action of A2:

action of A3:

action of G2:

Figure IV.1.: Examples for Group Actions Given by Graphs

3. A Small Non-Arithmetic Hyperbolic 3-Manifold

3.1. The Base Orbifold

Consider the orbifold given by the quotient of H3 by the Coxeter group

Γ :

6a

b c

d

.
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IV. A Small Non-Arithmetic Hyperbolic 3-Manifold

maximal finite subgroup prime order representatives of conjugacy classes

a b c

2 a ∼ b ∼ c
ac

3 ab ∼ bc

b c d

2 b ∼ c ∼ d
bd

3 bc ∼ cd

a
6

d

2 a, d
(ad)3

3 (ad)2

Table IV.1.: Conjugacy Representatives of Torsion Elements in Γ

Its fundamental polyhedron is a tetrahedron SΓ with two ideal vertices. It has two cusps of

type 6 , and the maximal finite subgroups are of type with 4! = 24

elements (〈a,b,c〉 and 〈b,c,d〉) or 6 with 2 ·6 = 12 elements (〈a,d〉). Thus a torsion-free
subgroup of Γ has at least index 24.

By [EH09] we can find representatives of all conjugacy classes of prime order elements (see
IV.1).

Using Magma [BCP97] one detects four conjugacy classes of torsion-free subgroups with
minimal index 24:

(i) Γ1 := 〈abd,bacdca〉

(ii) Γ2 := 〈bdca,cbadab,cdacda,abacdbc〉= 〈bdca,abacdbc,abdabcb〉

(iii) Γ3 := 〈acd,abadc,cbadcb〉

(iv) Γ4 := 〈abd,bacdc,cbadcb〉= 〈bacdc,cbadcb,dcbdad〉

The Magma code is in Appendix B. The corresponding manifolds H3/Γi have two, two, three,
and four cusps, respectively, and they are all non-orientable. The detailed computations are
described for Γ1 below. For Γi (i > 1) the computations are similar.

3.2. The Manifold H3/Γ1

Let us describe the first group Γ1 in more detail. As the fundamental polyhedron of Γ is a
simplex, we can also use the names of the generators for the reflecting hyperplanes and the
vertices opposite those hyperplanes.

The subgroup Γ1 can be described by the graph in Figure IV.2 as follows. The simple edges
represent transpositions by the generator a, double edges stand for the generator b, dashed edges
correspond to c and bold dotted/dashed edges represent d. Notice that the graph is based on the
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3. A Small Non-Arithmetic Hyperbolic 3-Manifold

Figure IV.2.: Graph for Γ1

Cayley graph of A3 in the generators a, b, and c, which is a maximal finite subgroup of largest
order of Γ. The subgroup Γ1 < Γ is the stabiliser of the grey vertex in Figure IV.2. Another
subgroup of Γ is conjugate to Γ1 if and only if it is the stabiliser of a vertex in the graph.

A fundamental polyhedron for Γ1 can be found by gluing 24 copies of the simplex SΓ around
the vertex corresponding to generator d (being stabilised by a, b and c). Those copies are obtained
by taking the images of the simplex SΓ under the subgroup generated by a, b, and c.

Recall the geometry of the simplex SΓ (see Figure IV.3). There are two edges with angle π

3 and
π

2 adjacent to vertex d. The hyperplane d opposite this vertex has one right angle, one angle π

3
and one angle π

6 . Doubling the simplex along hyperplane b doubles side d due to the right angle.
Those two copies of the simplex give a pyramid with quadrilateral base (see Figure IV.4). The
two pairs of opposite side ridges have angles 2π

3 and π

2 . The two pairs of adjacent base ridges
have angles π

3 and π

6 .
When twelve of these pyramids are glued together around vertex d, we get a fundamental

polyhedron for Γ1 that has three kinds of vertices which are images of the vertices a, b, and c of
the original simplex: ideal vertices with three adjacent faces (images of c), ideal vertices with
four adjacent faces (images of b) and finite vertices with three adjacent faces (images of a). In
its structure it looks like an ideal tetrahedron with subdivisions (see Figure IV.5). Each edge
of the tetrahedron has an additional ideal vertex and each face has a finite vertex in its centre.
Choosing one copy of the fundamental simplex SΓ of Γ inside the fundamental domain gives
side identifications by considering how the elements of the group Γ1 act on it. In Figure IV.5 the
simplex SΓ is signified by its vertices a,b, and c. The necessary elements of Γ1 can be found by
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π

3
π

3

π

2

π

6
π

3

π

2

d

c

b

a

Figure IV.3.: Simplex Fundamental Region of Γ

2π

3
2π

3

π

2

π

6
π

3

π

2

π

6

π

3

d

c

b

a

b′

Figure IV.4.: Pyramid Obtained by Doubling the Simplex
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3. A Small Non-Arithmetic Hyperbolic 3-Manifold

side identification element in Γ1 orientation preserving

A abd no
B bacdca yes
C abadbcb no
D cdabcb yes
E abcdabc no
F abacdabcaba no

Table IV.2.: Side Identifications for Γ1

looking for loops in the graph in Figure IV.2 containing exactly one edge with label d starting at
the grey vertex. The side identifications can be seen in Figure IV.5. Their corresponding elements
in Γ1 are described in Table IV.2. The faces B and D are identified by orientation preserving
isometries while all other side identifications are induced by orientation reversing isometries.
With the side identifications one can check that there are two equivalence classes of ideal vertices
modulo Γ1. The six images of the ideal vertex b form one class and the four images of the vertex
c form the other. Hence, the manifold H3/Γ1 has two cusps.

a

b

c

A

B

C

D

E
F

A

B
DC

E

F

Figure IV.5.: Side Identifications for a Fundamental Domain of Γ1

The other three manifolds H3/Γi, 2 ≤ i ≤ 4, are given by the group actions depicted in Figure
IV.6. By determining the side identifications in the same manner as before for Γ1, one can see that
Γ2 yields a manifold with two cusps, Γ3 yields one with three cusps, and Γ4 yields a manifold
with four cusps.

To the best of the author’s knowledge, the four isometry classes of non-compact, non-arithmetic
3-manifolds described above are the smallest known in H3 arising as cover manifolds of Coxeter
orbifolds. It remains to find a proof that they are indeed the smallest of their kind or to find a
smaller one.
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IV. A Small Non-Arithmetic Hyperbolic 3-Manifold

Figure IV.6.: Graphs for Γ2, Γ3, and Γ4
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V. The Non-Compact Non-Arithmetic
Hyperbolic 2-Orbifold of Minimal Area

1. Introduction

In the article [DK21], which is included as chapter III of this thesis, we proved that the hyperbolic
3-orbifold with fundamental group

5 6

yields the minimal volume orbifold among all non-compact non-arithmetic hyperbolic 3-orbifolds.
In this chapter, we prove the analogue in H2. A hyperbolic 2-orbifold is the quotient of H2 by a
discrete subgroup Γ < IsomH2. By listing small cusped hyperbolic 2-orbifolds, we can reason
that the smallest non-arithmetic cusped hyperbolic 2-orbifold has the fundamental group

5 ∞ .

We use the results and notions as introduced in chapter III, but otherwise this chapter could be
seen as a stepping stone for the result in three dimensions, because it helped us to finalise the
arguments of chapter III.

The results about cross ratios and orthogonality of geodesics in chapter II were helpful for
some calculations in this chapter. Specifically, they allow us to find orthogonal geodesics and to
verify the orthogonality of geodesics which appear to be orthogonal in the horoball diagram.

We consider the two-dimensional analogue of what we proved in three dimensions. Siegel
[Sie45] found the smallest compact orbifold as the quotient of H2 by the Coxeter triangle group

7
. Beardon [Bea95, §10.4.] used the signature of a Fuchsian group to prove that the

smallest possible area of a hyperbolic polygon is π

42 . It is straight-forward to use those results to
prove that the minimal area π

6 of a non-compact hyperbolic 2-orbifold is related to the Coxeter

group ∞ .
The following theorem provides not only an alternative proof of this fact, but it furthermore

lists all possibilities for a small orbifold in H2 using elementary horoball geometry. This results in

a detailed demonstration that
5 ∞ is the smallest non-arithmetic non-compact hyperbolic

2-orbifold. In this context, small means an area less than π

2 . The methodology used in the proof
improves the understanding of similar methods used in chapter III. Another possibility would be
to use the signature of Fuchsian groups (compare [Bea95, §10.4.]).

Theorem 1. Let H2/Γ be a non-compact hyperbolic 2-orbifold with area
(
H2/Γ

)
< π

2 . Then Γ is
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V. The Minimal Cusped Non-Arithmetic 2-Orbifold

(i) the reflection group of a right-angled triangle
n ∞

with n≥ 3 and area(
n ∞

)=
π

2 −
π

n ,

(ii) a subgroup of index 2 of
∞

with area(H2/Γ) = π

3 , or

(iii) one of
∞

4
, or

∞

5
with areas 5π

12 , or 7π

15 , respectively.

The orientable double cover of H2/
∞

is the only orientable orbifold with area less than
π

2 .

Note that the area of the triangles
n ∞ is ascending in n. This allows us to list small

orbifolds in ascending order and to determine the smallest non-arithmetic 2-orbifold using

Vinberg’s criterion [VS93]. Any non-compact right-angled Coxeter triangle
n ∞ with a

weight n 6= 2, 3, 4, or 6 turns out to be non-arithmetic as well as the two Coxeter groups with
triangular graphs in case (iii).

Corollary 2. The smallest two-dimensional non-compact non-arithmetic hyperbolic orbifold is

the quotient of H2 by the Coxeter group
5 ∞

. It has area
(

H2/
5 ∞

)
= 3π

10 .

The idea of the proof is based on horoball packings and their density. A cusp in an orbifold
corresponds to a horoball packing in H2 by the action of its fundamental group on a horoball
covering the cusp. Different horoball packings lead to different cusp sizes which allow us to
estimate the area of the orbifold by virtue of the proposition below. The proof then consists of a
case distinction on the number of cusps and on the number of equivalence classes of full-sized
horoballs modulo the stabiliser subgroup associated to a cusp. Remember that in the upper half
plane H2 the area of the cusp is equal to its euclidean width.

Proposition 3 ([Kel98, Lemma 3.2]). If an orientable orbifold H2/Γ has n disjoint cusps C1, . . . ,
Cn, with boundary widths d1, . . . , dn, then its area can be bounded from below by the quotient

area
(
H2/Γ

)
≥

n
∑

i=1
area(Ci)

d2(∞)
=

∑i di

d2(∞)
=

π

3 ∑
i

di,

where d2(∞) = 3
π

denotes the simplicial horoball density.

2. One cusp
For the proof of Theorem 1 let Γ be a discrete subgroup of IsomH2 whose quotient has at least
one cusp. We can assume that one cusp is at ∞, meaning Γ∞ 6= {1}. To simplify the proof, we
will mostly assume Γ to be orientation preserving. Then Γ∞ has to be a group of translations

isomorphic to Z. Otherwise, Γ∞ could also be a reflection group isomorphic to ∞ . Every
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2. One cusp

orientable orbifold we construct will be the double cover of a non-orientable one. Mostly, it is
easier to only consider orientation preserving isometries, but once the cusp area is close to 3,
there are benefits to considering reflections.

We have to find the orientable orbifolds up to area π . Then we construct the non-orientable
orbifolds which they are the double cover of. To sustain the horoball diagram, take a (small)
horoball centred in ∞, denoted by H∞, and its images under Γ. In this context a small horosphere
at ∞ is a Euclidean line on a height h � 1 over the boundary R. Increase the size of the horoball
(i. e. decrease h) until it touches at least one of its images. In the usual situation, it then touches
infinitely many of its images. If there are multiple cusps, repeat the process for the other cusps
one at a time until each horoball touches itself or one of the previous cusps. In our situation, one
can normalise such that H∞ is at height 1. We call a sketch of the relative position of horoballs a
horoball diagram. Since it is impractical to draw all infinitely many horoballs, we usually draw
just as many as necessary to sufficiently understand the geometry. By construction, there are
horoballs of diameter 1 which touch the horoball H∞. Call these horoballs full-sized horoballs.
This implies that the shortest possible translation length d (and hence the smallest possible cusp
area in the oriented case) is ≥ 1.

For the beginning we will assume that there is only one cusp. The case of two or more cusps
can be easily excluded, but we will do this at the end of this chapter because a basic understanding
of horoball geometry is helpful.

The smallest cusp area arises when there is one class of full-sized horoballs modulo Γ∞ (see
section 2.2). If neighbouring full-sized horoballs touch each other, we get the situation of Figure
V.1. The Ford domain gives the triangular fundamental domain of the modular group PSL2(Z)
which is an index 2 subgroup of ∞ . In order to properly interpret this horoball diagram,
we need [Ada92, Lemma 2.1]:

Lemma 4. If all full-sized horoballs in the horoball diagram of an orientable cusped 2-orbifold
are equivalent modulo Γ∞, then for any full-sized horoball Hp there is an order 2 rotation around
the touching point of Hp and the horoball H∞ at ∞.

d = 1

Figure V.1.: Touching Full-Sized Horoballs in Upper Half Plane

With Lemma 4, we can now analyse Figure V.1. The translation t with length 1 and a
rotation r from this lemma are the well-known generators of the modular group PSL2(Z). The
classical fundamental domain is sketched on the right-hand side of the figure. If we allow for
non-orientable orbifolds, the modular space H2/PSL2(Z) is the orientable double cover of the

quotient H2/
∞ .
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V. The Minimal Cusped Non-Arithmetic 2-Orbifold

There is also another (ultimately equivalent) way to interpret the diagram. The concatenation
of the rotation r and the translation t is a rotation of order 3 as hinted at on the left-hand side
of Figure V.1. Thus we can interpret PSL2(Z) as the semi-direct product of a group yielding a
tessellation of H2 with ideal triangles and the symmetry group of the ideal triangle. This helps in
the more general case below. Recall the classification of hyperbolic isometries as it can be found
in [Bea95] or [Rat06]. A hyperbolic isometry ρ is

• elliptic, if ρ has a fixed point in H2,

• parabolic, if ρ is not elliptic and has a unique fixed point in ∂H2, and

• loxodromic, if ρ is not elliptic and has two fixed points in ∂H2.

Lemma 5. Under the same conditions as in Lemma 4 there is an isometry ρ whose nature
depends on the shortest translation length d in Γ∞.

• For 1 ≤ d < 2, ρ is an elliptic element ,

• for d = 2, ρ is parabolic, and

• for d > 2, ρ is loxodromic.

Proof. Consider the horoball diagram where there are two full-sized horoballs at distance d
centred at ±d

2 as in Figure V.2. The representations of r and t in PSL2(R) can be calculated as

r =

(
−d

2 −
(

1+ d2

4

)
1 d

2

)
, t =

(
1 d
0 1

)
.

Then we define ρ as the concatenation

ρ := t ◦ r =

(
d
2

d2

4 −1
1 d

2

)
.

t
r

−d
2

d
20

ρ

Figure V.2.: Basic Isometries in the Horoball Diagram

The nature of the isometry ρ can be read from the trace of the matrix (see for example [Bea95,

Theorem 4.3.4]). For 1 ≤ d < 2 the fixed point in H2 ⊂C+ of the elliptic isometry ρ is i
√

1− d2

4 .
The parabolic isometry ρ with d = 2 has ideal fixed point 0, and the loxodromic isometry ρ with

d > 2 has the fixed points ±
√

d2

4 −1.
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2. One cusp

2.1. One Equivalence Class of Full-Sized Horoballs

If the full-sized horoballs do not touch each other, there is another class of smaller horoballs.
Denote the shortest distance between two full-sized horoballs (in this case also the shortest
translation length in Γ∞) by d. We will determine all possible values for d with d < 2 which is
essentially a different proof for [Bea75, Theorem 3]. Take a full-sized horoball Hp and the order
2 rotation r around the touching point between Hp and H∞ according to Lemma 4. Then r maps a
neighbouring full-sized horoball Hq with distance d to Hp to a horoball touching Hp = r(H∞).
The new horoball has distance 1

d from Hp and diameter 1
d2 . In the same manner as in chapter III

and [Ada92], we consider 1
d -balls. Compare Figure V.3. There are three cases about the relative

t

d1
d

r

p qr(q)

Hp Hq

Figure V.3.: 1
d -Balls Touching Full-Sized Horoballs

position of the 1
d -balls:

(i) Each 1
d -ball touches two full-sized horoball,

(ii) each 1
d -ball touches one full-sized horoball and one 1

d -ball,

(iii) each 1
d -ball touches one full-sized horoball and no 1

d -ball.

The first case implies d
2 = 1

d or d =
√

2.

ρ

d1
d

Figure V.4.: One 1
d -Ball Touches Two Full-Sized Balls

For the second case, where two 1
d -balls touch each other, it is convenient to first consider the

action of r on each horoball. The horoball Hp gets exchanged with H∞, and its neighbouring
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full-sized balls Hq and Hs are mapped onto 1
d -balls touching Hp. The two 1

d -balls Hx and Hy

in-between, which touch Hs and Hq respectively, have to be sent to each other by r. Compare
Figure V.5. Due to the symmetry of the situation this implies that the distance between Hp and Hy

has to be 1. Hence d has to obey d = 1+ 1
d which implies that d = 1

2 +
1
2

√
5 is the golden ratio.

ρ

s p qr(q) r(s)x y

Figure V.5.: Two 1
d -Balls Touching Each Other

In the third case, the 1
d -ball touching Hq is mapped to a horoball touching the other 1

d -ball (see
Figure V.6). With the same argument as before, this new 1

w -ball has to be in distance 1
w of Hp

where w = d − 1
d is the distance from Hp to the next 1

d -ball not touching Hp. This 1
d -ball is the

(pre-) image of the 1
w -ball under the map r. (The notation is again following [Ada92].)

ρ

s p qr(q) r(s)x y

Figure V.6.: One 1
d -Ball Touching Neither Full-Sized nor Another 1

d -Ball

With this 1
w -ball, there are again the three cases from above, where 1

d -balls are exchanged with
1
w -balls and full-sized balls are exchanged with 1

d -balls. This argument is then repeated. Denote
d1 := d, d2 := d − 1

d1
and replace 1

d -balls with 1
d1

-balls and 1
w -balls with 1

d2
-balls. Then

dk := d − 1
dk−1

(2.1)

leads to the general case distinction:

(i) The 1
dk

-balls touch two 1
dk−1

-balls,

(ii) the 1
dk

-balls touch one 1
dk−1

-balls, and one other 1
dk

-ball,

(iii) the 1
dk

-balls touch one 1
dk−1

-ball and no 1
dk

-ball.

80



2. One cusp

The same arguments as above lead to the equalities

d
2
=

1
dk

in the first case, and (2.2)

d = 1+
1
dk

in the second case. (2.3)

The equation (2.1) leads to the representation

dk =
pk(d)

pk−1(d)
, (2.4)

where the polynomials pk are given by

p0(d) = 1, p1(d) = d, pk+1(d) = d pk(d)− pk−1(d). (2.5)

The following explicit calculation of pk can be proven by induction:

pk(d) =
k

∑
i=0

(−1)i
(

k− i
i

)
dk−2i.

Note that the recursion (2.5) looks very similar to the Chebyshev polynomials. The Chebyshev
polynomials of the first kind are given by

T0(x) = 1, T1(x) = x, Tk+1(x) = 2xTk(x)−Tk−1(x).

The set of zeros of the k-th Chebyshev polynomial Tk is
{

cos
(
(2i−1)π

2k

)
| i = 1, . . . ,k

}
. The

Chebyshev polynomials of the second kind are given by

U0(x) = 1, U1(x) = 2x, Uk+1(x) = 2xTk(x)−Tk−1(x).

The set of zeros of the k-th Chebyshev polynomial Uk is
{

cos
( iπ

k+1

)
| i = 1, . . . ,k

}
.

In the first case, where two 1
dk

-balls coincide or one 1
dk

-ball touches two 1
dk−1

-balls, the equations
(2.2) and (2.4) yield

0 = d pk(d)−2 pk−1(d) = pk+1(d)− pk−1(d).

One can see that pk+1(d)− pk−1(d) = 2Tk+1
(d

2

)
, where Tk+1 is the Chebyshev polynomial of

degree 2k+1. Using the facts that d > 1 and dk+1 > dk this implies that

dk = 2 cos
(

π

2k+2

)
. (2.6)

In the second case, where two 1
dk

-balls touch, the equations (2.3) and 2.4 yield

0 = d pk(d)− pk(d)− pk−1(d) = pk+1(d)− pk(d).

In order to analyse the zeros of qk := pk+1 − pk, it is not difficult to prove the following by a
simultaneous induction:
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Proposition 6.

qk(x) ·qk(−x) = (−1)k+1U2k+2

( x
2

)
(2.7)

qk(x) ·qk−1(−x)−qk(−x) ·qk−1(x) = (−1)k2U2k+1

( x
2

)
(2.8)

The zeros of qk(x) ·qk(−x) are hence 2 cos
( iπ

2k+3

)
with i = 1, . . . ,2k+2. By noting that

−cos
(
(2i+3)π

2k+3

)
= cos

(
π − (2i+3)π

2k+3

)
= cos

(
2(k− i)π

2k+3

)
,

one can see that the k zeros of qk are 2 cos( iπ
2k+3) with 1 ≤ i ≤ 2k+2 either even or odd. Again

we can argue using dk+1 > dk. This implies that

dk = 2 cos
(

π

2k+3

)
. (2.9)

Either way, the group Γ pertaining to the horoball diagram is a semi-direct product of a
group yielding a tessellation of the hyperbolic plane by regular ideal n-gons with the orientable
symmetry group of such an ideal n-gon where n = 2k+2 or n = 2k+3 depending on the case.
Essential to this point of view are the translation t and the rotation ρ from Lemma 5. The
generators of the tessellation group can (for example) be chosen as the rotations in each side of
the n-gon: {

ρ
−(l+1)tρ l | l = 0, . . . ,n−1

}
.

The symmetries of the n-gon are the rotations generated by ρ . Compare the sketches in Figure
V.7 and the previous ones. The orbifolds can be interpreted as the orientable double covers of the

quotients of H2 by
n ∞ with area (n−2)π

n .

Figure V.7.: Ideal n-gon in the Horoball Diagram (here n = 6)

In the case where n tends to ∞ or equivalently d converges to 2, there emerges a second cusp.
See Figure V.8 for a sketch. The resulting orbifold is based on an ideal triangle where two sides
are identified by the translation t and the third side gets identified with itself by the rotation r by

Lemma 4. It is the orientable double cover of H2/
∞ ∞ . The Coxeter triangle ∞ ∞

has area π

2 and yields as such the smallest possible 2-dimensional hyperbolic orbifold with more
than one cusp (confer Lemma 9 further down).
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2. One cusp

Figure V.8.: Second Cusp for d = 2

Distance d > 2 and d ≤ 2
√

2

Usually we considered the Ford-Dirichlet cell bounded by the bisectors of the horoballs in the
diagram as a fundamental polygon for Γ. If the distance d between two neighbouring full-sized
horoballs is bigger than 2, then this polygon will not have finite area.

The isometry ρ of Lemma 5 is loxodromic with fixed points ±
√

d2

4 −1. By using the ortho-
gonality results of [DD19], it can be immediately seen that the axis of ρ is orthogonal to the
bisecting geodesics of two neighbouring full-sized horoballs. See Figure V.9 where the small red
horosphere signifies the image of H∞ under the reflection in the invariant axis of ρ (also marked
in red). Please do note that this horoball does not necessarily appear in the horoball diagram, but
we can prove that this would lead to the minimal possible area.

Figure V.9.: d > 2

Apply an isometry to the objects in Figure V.9 that sends −
√

d2

4 −1 to 0 and
√

d2

4 −1 to ∞.
The result is illustrated in Figure V.10, where the horoballs on the left are the horoballs whose
existence we previously established in Figure V.9. The red line is the loxodromic axis of ρ and
on the right the dotted balls are potential horoballs below the loxodromic axis of ρ in Figure V.9.
As said before, they could be different to what you see in the figure but the balls could not be
bigger. In fact, the loxodromic isometry ρ acts as a multiplication which sends each ball on the
left to its neighbour. By construction, the stretching factor equals

d2

2
−1+d

√
d2

4
−1.

If the balls on the right of Figure V.10 were bigger than drawn, then their images would not
line up with the balls themselves. They could potentially be smaller. Then on the right the
isometry would not send the horoballs to their direct neighbours but to horoballs further away.
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V. The Minimal Cusped Non-Arithmetic 2-Orbifold

This implies that the loxodromic axis of ρ is included in the polygon (if not on the inside then on
the boundary).

Figure V.10.: Horoballs along the Loxodromic Axis

Having established that the addition of the common perpendicular of two neighbouring bisect-
ors yields the minimal possible area, we see that for d > 2 the minimal area is achieved by a
pentagon P with one ideal vertex and four right angles. This has

area(P) = 3π −4
π

2
= π.

The addition of the loxodromic axis works as long as the radius of the semicircle is less than
one: √

d2

4
−1 ≤ 1 ⇒ d ≤ 2

√
2.

If the radius was bigger than 1, it would intersect with the horosphere H∞.

Distance d > 2
√

2

With the density argument of Proposition 3, we need to consider only distances d ≤ 3, so it is
necessary to treat the possibility 2

√
2 < d ≤ 3. The same idea we used in chapter III for large

cusp volumes of a {2,3,6}-cusp does help here. Assume that Γ is a group such that Γ∞ had
translation distance d > 2

√
2 between full-sized horoballs. If Γ∞ is a translation group, then

area
(
H2/Γ

)
≥ d

d2(∞)
= d

π

3
≥ 2

√
2

3
π >

π

2

independently of Γ being orientation preserving or not. Since we are only interested in orbifolds
with area < π

2 after all, we can directly assume that Γ∞ contains reflections, and then prove
that the coarea of Γ is bigger than π

2 . This is easier than considering orientable orbifolds and
then prove that their area is bigger than π because reflection axes can only intersect horoballs
orthogonally or not at all.

If Γ∞ contains reflections, they have to be across vertical lines cutting the full-sized horoballs
in half and across vertical lines in the middle between two neighbouring full-sized horoballs. See
Figure V.11. With the same argument as in Lemma 4 there has to be a rotation or a reflection
r that maps a full-sized horoball Hp to H∞ and vice versa. If r was a rotation, then we could
concatenate it with a reflection in Γ∞ through the geodesic (p,∞) and hence assume that r is a
reflection in the bisector of Hp and H∞.

Assume there is a horoball based in q ∈ ∂H2, where q is the midpoint between the centres of
Hp and a neighbouring full-sized horoball. The full-sized horoball Hq can at most have diameter
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2. One cusp

1. Then it is a representative of a second equivalence class of full-sized horoballs, which will be
treated later in section 2.2. The angle α of the bisectors with H∞ belonging to the horoballs Hp

and Hq is in this case π

2 yielding a subgroup of

∞

4 4
,

with coarea π

2 . If the diameter of Hq shrinks or the distance d increases, the angle α decreases
and the area gets bigger. Hence, with d ≥ 2

√
2 and horoballs in the centres between the full-sized

horoballs, the minimal possible area is π

2 .

p q

Figure V.11.: d > 2
√

2 with Horoball on Midpoint

If there is no horoball centred in the midpoint of two neighbouring full-sized horoballs, the
biggest possible horoballs touch the vertical reflection geodesic and the reflecting bisector of
H∞ with a full-sized horoball (see Figure V.12). The bisectors of Hp with H∞ and Hq with H∞

intersect perpendicularly. The intersection of the bisector of Hq and H∞ with the vertical reflection
geodesic is an acute angle. So in this case, the coarea of Γ can be bounded by

area
(
H2/Γ

)
> 2π −3

π

2
=

π

2

and it is too big for our interest.

p q

Figure V.12.: d > 2
√

2 with Horoball not on Midpoint

2.2. Two Equivalence Classes of Full-Sized Horoballs

From now on we will go back to regarding orientation preserving isometries, and we assume
that there are two equivalence classes of full-sized horoballs with regard to the action of Γ∞.
In Lemma 4 a central hypothesis was that there is only a single equivalence class of full-sized
horoballs. We start by analysing the situation if representatives of the two equivalence classes of
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V. The Minimal Cusped Non-Arithmetic 2-Orbifold

Figure V.13.: Two Equivalence Classes of Full-Sized Horoballs with d1 = d2 = 1

full-sized horoballs touch, as depicted in Figure V.13. Similarly to Lemma 4 there could be a
rotation r of order 2 in Γ which swaps a full-sized horoball with H∞. If there is such a rotation
for every full-sized horoball, then Γ identifies sides of the red quadrilateral in Figure V.13 by
identifying the left vertical side with the right vertical side and each of the other two sides with
itself. As such, we find the fundamental quadrilateral with

area
(
H2/Γ

)
= 2π −4

π

3
=

2π

3
,

and Γ has to be a subgroup of index 4 in ∞ . This yields case (ii) of Theorem 1.
In the case where we do not have the rotations of order 2 as in Lemma 4, we will conclude that

there must be a rotation of three pairwise touching horoballs instead. Call the equivalence classes
A and B. There is an isometry sending a horoball of class A to H∞. This isometry cannot send H∞

to a ball of class A because we assumed that there is no such symmetry (compare the proof of
Lemma 4). So it has to map H∞ to a horoball of class B. After applying an appropriate translation
in Γ∞ we can assume that those three horoballs touch pairwise. The horoball of class B has to
get mapped to the horoball of class A, because of the pairwise touching points. By assuming
orientability, this isometry is a rotation of order three. Considering the finite index subgroup
of Γ generated by this rotation and a translation of length 3, we see again that the group Γ is a

subgroup of ∞ yielding the same case (ii) of Theorem 1.
Now to the case where the full-sized horoballs do not all touch. If horoballs of the two

equivalence classes touch on one side of a full-sized ball and not on the other, the situation
represents itself as in Figures V.14 and V.15. We define distances d1 and d2 as in Figure V.14. In
this case d1 = 1 and d2 > 1. As long as d2 < 2, there cannot be a rotation as in Lemma 4 because
of the asymmetry of the situation. It would mean that the images of the full-sized horoballs
overlap. For d2 ≥ 2 the cusp area is d1 +d2 ≥ 3 meaning the orbifold has area ≥ π .

A B A B

d1 d2

Figure V.14.: Two Equivalence Classes of Full-Sized Horoballs with d1 = 1,d2 =
√

2
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2. One cusp

d1 d2

Figure V.15.: Two Equivalence Classes of Full-Sized Horoballs with d1 = 1,d2 =
1
2(1+

√
5)

Due to the asymmetry of the diagram, there cannot be a rotation around a point of tangency
between two horoballs as in Lemma 4 because otherwise the image of the 1

d -ball would intersect
with a full-sized horoball. There will be a rotation ρ similar to Lemma 5 involving two full-sized
horoballs, H∞, and potentially some 1

d -balls.

Lemma 7. If there are two equivalence classes of full-sized horoballs in the translation group
Γ∞ with asymmetric distances d1 6= d2, then there are rotations ρ1, and ρ2 ∈ Γ such that

di = 2 cos
(

π

ordρi

)
, i = 1,2.

Proof. The basic ideas of Lemma 4 can be adapted for this asymmetric situation. Since we
assume that the orbifold is orientable, Γ∞ is a translation group. Consider the full-sized horoballs
Hp and Hq with distance d1 as in Figure V.16. There is a symmetry ρ which send Hp to H∞. This
symmetry ρ has to map H∞ to a full-sized horoball which is equivalent to Hq modulo Γ∞ because
otherwise there would be an order 2 rotation swapping H∞ and Hp. We excluded the latter due to
the asymmetry of the diagram. Assume that ρ maps H∞ to Hq (this we can do without loss of
generality after applying a translation in Γ∞). This means that Hq gets mapped to a horoball of
diameter 1

d2
1

to the right of Hq. If the isometry ρ has finite order, the same considerations as in
Section 2.1 apply and Hp, and Hq have to be part of a regular ideal polygon with ordρ vertices.

The distance d1 has to satisfy d1 = 2 cos
(

π

ordρ1

)
because in the diagram the sizes of the horoballs

are given by equations (2.6), (2.9) from Section 2.1. With the same considerations, d1 ≥ 2 if ρ

has infinite order.
The analogue argument proves the existence of a rotation where d1 and d2 are exchanged.

q p

d1 d2

Figure V.16.: Rotation between full-sized horoball and H∞ in asymmetric diagram
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If we now are in the situation with two equivalence classes of full-sized horoballs, then in the
asymmetric case Lemma 7 applies, and in the symmetric case one of the Lemmas 7 or 4 applies.
In either case we can deduce that the group Γ is a subgroup of order 2 of

∞

k l
,

with k, l ≥ 3 (possibly = ∞). It is easy to see that these have coarea smaller than π

2 if and only
if k = 3 and l ∈ {3,4,5} (or vice versa). As long as d1,d2 ≤ 2, the horoball diagram leads to an
index 2 subgroup of such a triangular reflection group. If d1 > 2 or d2 > 2, then d = d1 +d2 > 3
and with Proposition 3, the area of H2/Γ gets bigger than π .

2.3. At Least Three Equivalence Classes of Full-Sized Horoballs

≥ 3

Figure V.17.: Minimal Area with Three Equivalence Classes of Full-Sized Horoballs

If there are at least 3 equivalence classes of full-sized horoballs, then the minimal translation
length d ≥ 3 and also the minimal cusp area is at least 3. With Proposition 3 we can find a lower
bound for the orbifold area as:

area
(
H2/Γ

)
≥ d

d2(∞)
= d

π

3
≥ π.

Hence, this case is not of concern for us.

3. Two or More Cusps
In order to eliminate the case where the orbifold H2/Γ has two or more cusps when considering
small area, recall the concept of a disc of no tangency as discussed by Adams in [Ada88] and
already used in chapter III.

Definition 8. A disc of no tangency in a horoball diagram is

• a disc with radius 1 on the horosphere at ∞ where no equivalent full-sized horoballs touch
H∞, or equivalently,

• the upper hemisphere of a non-full-sized horoball ( 6= H∞) which does not touch any bigger
equivalent horoball.

Here, the equivalence is meant modulo Γ. We only consider horoballs of a single cusp. If the
orbifold H2/Γ contains more cusps than one, horoballs of other cusps are ignored.

88



3. Two or More Cusps

The first interpretation is helpful to get a lower bound on the cusp area after one has argued
about the existence of a disc of no tangency in the horoball diagram using the second definition.
The equivalence can be seen in Figure V.18. If there is a non-full-sized horoball Hp which does
not touch any bigger horoball, one can consider the reflection in a geodesic which swaps Hp and
the horosphere H∞ on height 1. Then the disc of no tangency on Hp is mapped to a disc of radius
1 on H∞. Adams uses this concept in several papers like [Ada92; Ada88].

Figure V.18.: Disc of no Tangency

We prove an analogue statement to [Ada88, Lemma 4.1] which then shows that the area of an
orbifold with two (or more) cusps is at least π

2 (in the non-orientable case).

Lemma 9. For an (orientable) orbifold with at least 2 cusps, the first cusp has area ≥ 1 (or ≥ 2
in the orientable case).

Proof. Assume an orbifold has two cusps C1 and C2. When drawing the horoball diagram by
maximising the cusp C1 and afterwards C2, the maximal horoballs in the cusp C1 have to touch
each other, and the maximal horoballs of C2 touch the maximal horoballs of C1 or C2 (or both).

If we consider the horoball diagram where a horoball covering the cusp C2 is based at ∞,
then the horoballs of C1 have a maximal diameter of 1. This implies that there is a horoball H
covering cusp C1 which does not touch any bigger equivalent horoball, meaning H has a disc of
no tangency. Note that the same argument does not have to hold for C2, because the assumption
that the maximal cusp C1 touches itself is essential. In Figure V.19 one can see an example that
the cusp area of C2 can actually be as small as 1 (in the oriented case).

Having a disc of no tangency (of radius 1) in cusp C1 means that the area of this cusp is at least
2 if the orbifold is orientable and at least 1 otherwise.

C1 C1 C1 C1

C2

C2 C1 C2 C1

C2

Figure V.19.: Discs of no Tangency in C2

This Lemma implies that the cusp area in an orientable orbifold with two cusps is at least
2+1 = 3. Using the density argument of Proposition 3, the minimal area of an orbifold with
two cusps is area

(
H2/Γ

)
≥ 3 π

3 = π which is in fact obtained by the orientable double cover of

H2/
∞ ∞ . This concludes the proof of Theorem 1. �
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VI. Minimal Fundamental Polygons

1. Introduction
As an application of the methods from chapter IV, we consider and complete the work of
Matthieu Jacquemet [Jac15, chapter 4.3.2] about extremal fundamental polygons. He uses
Poincaré’s polyhedron theorem to provide an alternative proof of Siegel’s theorem which he cites
as:

Theorem 1 (Siegel [Sie45]). Let H ⊂ Isom(H2) be a discrete group, and let
7

be the
Coxeter group generated by the reflections in the sides of the triangle with angles π

2 , π

3 , and π

7 .

Then, covol(H)≥ covol
(

7
)

with equality if and only if H is conjugate to
7

in Isom
(
H2
)
.

By considering all possible side identifications, he finds the smallest polygons PN with
3 ≤ N ≤ 6 edges which are the fundamental polygons of the fundamental groups of hyperbolic
2-orbifolds. For N > 6 he just gave a lower bound for the area:

area(PN)≥
π

3
(N −6). (1.1)

The orbifolds in the cases N ≤ 6 are unique up to isometry. The group realising the minimal
quadrilateral actually also realises the minimal pentagon and is in fact an index 2 subgroup of the

Coxeter group
7

with coarea π

42 .
We will show that the bound (1.1) is sharp for N > 6 by giving examples for orbifolds having

N-gons PN with area(PN) =
π

3 (N −6) as fundamental polygons. In contrast to the polygons
with up to 6 edges, for N > 6 the orbifolds will not be unique up to isometry since there will be
orientable and non-orientable examples. In fact, two closed surfaces of equal Euler characteristic
cannot be homeomorphic if one is orientable but the other is not (see [Rat06, Theorem 9.1.2]).

After having discussed mainly cusped orbifolds throughout this thesis, we now discuss the
compact case. In chapter V we saw that small cusped polygons are indeed bigger than the small
compact polygons that Matthieu Jacquemet found.

2. Minimal Hyperbolic N-gon for N > 6

Notice that the area of a hyperbolic N-gon with angles αi,1 ≤ i ≤ N, is given by

area(P(α1, . . . ,αN)) = π (N −2)−
N

∑
1

αi. (2.1)
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VI. Minimal Fundamental Polygons

The regular N-gon PN := P
(2π

3 , . . . , 2π

3

)
with angles 2π

3 is a realiser of the minimal area:

area(PN) = π (N −2)−N
2π

3
=

π

3
(N −6). (2.2)

It can be obtained by gluing together 2N copies of a right angled triangle TN with angles π

3 and
π

N around the vertex with the smallest angle. The associated Coxeter group

ΓN :
c b

N
a

(2.3)

with relations (ab)N ,(bc)3,(ac)2 has the triangle TN as fundamental polygon and the generating
reflections yield a tessellation of H2 by triangles isometric to TN . The copies of TN around vertex

c (with angle π

N ) are generated by the dihedral subgroup D2N = 〈a,b〉 :
N

in ΓN . Compare
Figure VI.1. One can identify the copies of TN around vertex c with the elements of D2N < ΓN ,
that is, with the nodes of the Cayley graph of D2N .

TNa.TN

b.TN

ba.TN

ab.TN

N

abc

Figure VI.1.: Polygon PN and Triangle TN

If a subgroup G of ΓN has index 2N and does not contain any element of D2N , then PN is a
fundamental polygon for G because the elements of D2N are a system of representatives for the
cosets of G in ΓN .

Proposition 2. For every N > 6, there is a group GN < Isom(H2) that has the regular polygon
PN as a fundamental polygon and hence realising the minimal area N-gon as a fundamental
polygon.
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2. Minimal Hyperbolic N-gon for N > 6

Proof. The proof is based on Figures VI.2, VI.3, and VI.4. For N = 7,8, and 9, the graphs
(V,E), with |V |= 2N, in Figure VI.2 are directly giving an action of ΓN as described below. For
N = 7+3k,8+3k, and 9+3k, the respective graph has to be taken and k copies of Figure VI.3
have to be added in the position indicated by a dotted line. Confer to Section 2.3 of Chapter IV
for the correspondence between graph and group action. The labels are colour coded, that is blue
edges encode the action of generator a, green edges are labelled b, and red edges describe c. The
names of the generators are as in (2.3).

7 8 9

Figure VI.2.: 7-, 8-, and 9-gon

N

Figure VI.3.: Additional Piece for N > 9

The graphs contain the Cayley graphs of D2N (by dropping the red edges corresponding to c),
so the elements of the dihedral group have no fixed points. The fundamental polyhedron of the
stabiliser subgroup GN of a vertex can be obtained by gluing together 2N copies of TN around
vertex c. Those copies are the images of TN under the dihedral group D2N . Since the stabiliser
subgroups of different vertices are conjugate, it does not matter which vertex is chosen.

It remains to check that the relations (ab)N , (bc)3, and (ac)2 of the Coxeter group ΓN are met.
This then proves that the graphs are actually giving group actions. All the generators act correctly
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VI. Minimal Fundamental Polygons

as involutions since the edges of the graphs are not directed and any vertex has at most one edge
of a given colour. The word (ab)N acts as the identity on any vertex since it is the complete
rotation of the graph (V,E). The relation (ac)2 is respected because any connected subgraph
spanned by the edges with labels a and c is a square or two vertices connected by a double edge
with both labels. The element (bc)3 gives the identity since any connected subgraph spanned by
the edges with labels b and c is either a hexagon giving the Cayley graph of or a double
edge with both labels.

Remark 3. The elements of the stabiliser subgroups GN < ΓN correspond to loops in the graphs.
All the graphs so far only have loops of even length. This implies that the resulting subgroups GN

are orientation preserving. By replacing the top section as hinted in Figure VI.4, we can pass
on to a subgroup G′

N < ΓN with the same fundamental polygon as GN . The new graph contains
loops of length 3 creating orientation reversing elements in G′

N . Due to [Rat06, Theorem 9.1.2],
the two orbifolds H2/GN and H2/G′

N are not homeomorphic. Hence, they cannot be isometric.

N

Figure VI.4.: Graph Replacements to Obtain Non-Conjugate Subgroups

3. Surfaces Realising Minimal Polygons

We can use the methods from chapter IV to find minimal area (smooth) hyperbolic surfaces based
on certain polygons. Such a surface corresponds to a torsion-free subgroup of the Coxeter group
ΓN . If we find a torsion-free subgroup of index 2N of the same type as in the previous section,
it results in a regular polygon PN with N vertices which yields a manifold. That is, we are
looking for an alternative for the subgroup GN < ΓN , that is torsion-free and also of index 2N. A
necessary condition for a torsion-free subgroup is that its index is divisible by all orders of finite

subgroups in ΓN . There are the three maximal finite subgroups , , and
N

with
orders 4,6, and 2N, respectively. In order to be able to obtain a torsion-free subgroup of index
2N, the lowest common multiple must be 2N. This gives the necessary condition 2|N and 3|N.

Proposition 4. There is a hyperbolic surface ΣN having the regular N-gon PN with angles 2π

3
as a fundamental polygon if and only if N > 6 is a multiple of 6.

Proof. The necessity of N being a multiple of 6 was discussed above. For N = 6k the graph in
Figure VI.5 gives an action of ΓN . The middle section has to be repeated (k−1) times. By the
same argument as in Lemma 2, the graph yields a group action.
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For each maximal finite subgroup, the subgraph consisting of all edges corresponding to the
respective generators is a (disjoint) union of the Cayley graphs. This implies that the action of
any finite order element is non-trivial and the stabiliser subgroup of any vertex is torsion-free.
Compare Remark 7 in chapter IV.

k−1 times

6k

Figure VI.5.: Group Action in Order to Obtain a Surface ΣN
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A. On Right-Angled Polygons in Hyperbolic
Space

This appendix is a reprint of the joint paper [DD19] with Edoardo Dotti, where we generalise
results of Delgove and Retailleau [DR14]. My contribution is the algorithm along with its
realisability and counterexamples to the Theorem in [DR14].

Abstract We study oriented right-angled polygons in hyperbolic spaces of arbitrary dimensions,
that is, finite sequences (S0,S1, . . . ,Sp−1) of oriented geodesics in the hyperbolic space Hn+2 such
that consecutive sides are orthogonal.

It was previously shown by Delgove and Retailleau [DR14] that three quaternionic parameters
define a right-angled hexagon in the 5-dimensional hyperbolic space. We generalise this method
to right-angled polygons with an arbitrary number of sides p ≥ 5 in a hyperbolic space of arbitrary
dimension.

Introduction

For n ≥ 0, let Hn+2 denote the real hyperbolic (n+2)-space. The boundary of this space can be
described with Clifford vectors. These are special elements of the Clifford algebra Cn, which
is the unitary associative algebra generated by n elements i1, · · · , in such that i j il =−il i j, i2l =
−1 for l 6= j. The group of orientation preserving isometries Isom+(Hn+2) of the hyperbolic
space Hn+2 can be expressed with Clifford matrices. These are 2×2 matrices with coefficients in
the multiplicative group generated by Clifford vectors and with Ahlfors determinant 1.

In this context, we describe hyperbolic right-angled polygons for which we mean right-angled
closed edge paths in n+ 2 dimensions. We show how to construct a hyperbolic right-angled
polygon Πp of p sides, p > 4, by prescribing a parameter set consisting of p−3 Clifford vectors
in ∂Hn+2. Such a construction is achieved in an arbitrary dimension. No connection between the
dimension of the space and the number of sides of the polygon is required.

Similar objects have already been studied in dimension 2 and 3 by Thurston [FLP79] and
by Fenchel [Fen89], who studied right-angled hexagons. Costa and Martínez [CM95] studied
right-angled polygons with an arbitrary number of sides in the hyperbolic plane. More recently
Delgove and Retailleau [DR14] classified right-angled hexagons in H5. In their work, 2× 2
quaternionic matrices having Dieudonné determinant 1 are used in order to describe the direct
isometries of H5. While this approach based on quaternions is very convenient, it can not be
extended to arbitrary dimensions. By using Clifford matrices instead, we are able to generalise
the construction to any dimension. Particularly, 2×2 quaternionic Clifford matrices are used to
describe direct isometries of H4.
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A. On Right-Angled Polygons in Hyperbolic Space

In the first section we develop more precisely the connection between hyperbolic space and
the Clifford algebra. Then we discuss the role of the cross ratio for Clifford vectors and its
geometrical interpretation. Our main result, the algorithmic construction of Πp, is presented in
the second section. In the last part we treat the case when the convex hull of the p vertices of the
polygon Πp give rise to a hyperbolic (p−1)-simplex. A necessary condition for its realisation is
stated. As a conclusion we discuss in more details a special case in 4 dimensions, supposing that
all the edges of the edge path have equal length. By exploiting the work of Dekster and Wilker
[DW91] we explicitly state a necessary and sufficient condition for realisability depending on
such a side length. Surprisingly, it turns out that the side length must be related to the golden
ratio γ = 1+

√
5

2 .

1. The real Clifford Algebra and Hyperbolic Space

In this section we present the notion of Clifford algebra and its relation to isometries of hyperbolic
space. For a more complete description we refer to the works of Ahlfors [Ahl85], [Ahl86], Vahlen
[Vah02] and Waterman [Wat93] (see also [Par07, §7]).

1.1. The Real Clifford Algebra Cn

Consider the real Clifford algebra Cn generated by i1, . . . , in, that is

Cn =
〈
i1, . . . , in | i j il =−il i j, i2l =−1 for l 6= j

〉
,

which is a unitary associative real algebra. Every element x of the algebra Cn can be uniquely
written as x = ∑xII, where xI ∈ R and the sum is taken over all the products I = ik1 · · · ikm , with
1 ≤ k1 < · · ·< km ≤ n and 1 ≤ m ≤ n. Here the empty product I0 is included and identified with
i0 := 1. Hence Cn is a 2n-dimensional real vector space. In particular we can identify C0 with R,
C1 with C and C2 with H, the Hamiltonian quaternions. To each element x = ∑xII we associate
a norm as given by |x|2 = ∑x2

I , inducing a Euclidean structure on Cn. Denote with ℜ(x) the
coefficient x0, called the real part of x, while ℑ(x) = x−ℜ(x) is called the non-real part of x. If
ℜ(x) = 0 we will refer to x as a pure element of Cn.

On Cn there are three well-known involutions. Let x ∈ Cn, x = ∑xII. Then:

(i) x∗ = ∑xII∗, where I∗ is obtained from I = ik1 · · · ikm by reversing the order of the factors,
that is I∗ = ikm · · · ik1 ;

(ii) x′ = ∑xII′, where I′ is obtained from I = ik1 · · · ikm by replacing each factor ik with −ik, that
is I′ = (−ik1) · · ·(−ikm) = (−1)mI;

(iii) x = (x∗)′ = (x′)∗.

The involutions i) and iii) are anti-automorphisms, while the involution ii) is an automorphism.
Of particular interest are Clifford elements of the form x = x0+x1i1+ · · ·+xnin, called Clifford

vectors. The set
Vn+1 = {x0 + x1i1 + · · ·+ xnin | x0, . . . ,xn ∈ R}
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1. The real Clifford Algebra and Hyperbolic Space

of all Clifford vectors is an (n+1)-dimensional real vector space, naturally isomorphic to the
Euclidean space Rn+1. Notice that for an element x ∈ Vn+1 we have x∗ = x and hence x = x′ as
well as x+ x = 2ℜ(x) and xx = xx = |x|2. Moreover every non-zero vector x has an inverse given
by x−1 = x

|x|2 . Hence finite products of non-zero vectors are invertible and they form the so-called
Clifford group Γn. Observe that we have Γn = Cn \{0} only for n ∈ {0,1,2}.

1.2. Square Root of a Clifford Vector

Next we introduce the notion of the square root of a Clifford vector. It will be a generalisation of
the square root of quaternions (see [Par06] for example) in the following way:

Proposition 1. Let y ∈ Vn+1 \{0} be a Clifford vector. If y /∈ R<0, then there exist exactly two
elements x1,x2 ∈ Vn+1 such that x2

1 = x2
2 = y; x1 and x2 are both called a square root of y. If

y ∈ R<0, we have the three following situations depending on n:

• If n = 0, then there is no element x ∈ V1 such that x2 = y,

• If n = 1, then there are exactly two elements x1,x2 ∈ V2 such that x2
1 = x2

2 = y,

• If n ≥ 2, then there are uncountably many square roots of y.

Proof. Suppose that x2 = y, with x,y ∈ Vn+1 \ {0}. Then x2 = y and |x|2 = |y|. We have the
following two equations:

x(x+ x) = xx+ x2 = |y|+ y, (1.1)

(x+ x)2 = x2 +2xx+ x2 = y+2|y|+ y = 2(ℜ(y)+ |y|). (1.2)

Observe that the term 2(ℜ(y)+ |y|)≥ 0.
Now let y /∈ R<0, then we have ℜ(y)+ |y|> 0, and the element

x :=
|y|+ y√

2(ℜ(y)+ |y|)
∈ Vn+1 (1.3)

satisfies x2 = y. Indeed,

x2 =
|y|2 +2|y|y+ y2

2ℜ(y)+2|y|
=

(y+2|y|+ y)y
2ℜ(y)+2|y|

= y.

Notice that in the special case if y ∈ R>0, the identity (1.3) yields x = ±√
y as desired. For

y 6∈ R the square roots of y have to lie in the plane spanned by 1 and y which is isomorphic to C,
ensuring the non-existence of more than two roots. By abuse of notation the square root x of y is
denoted by

√
y := x.

Let y ∈ R<0. For n = 1 or 2 the assertion is trivial. Let n ≥ 2. We can write y =−z2 for some
z ∈ R>0. In this case consider x := z ·u where u is a pure Clifford vector with norm 1. In general
for any pure Clifford vector we have

0 = (u+u)u = uu+u2 = |u|2 +u2,

which implies u2 =−|u|2. Hence x2 = z2u2 =−z2|u|2 =−z2.
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A. On Right-Angled Polygons in Hyperbolic Space

Remark 2. Notice that Proposition 1 remains true for y ∈ Γ2 = H \ {0} since y+ y = 2ℜ(y)
still holds. However, it does not hold for a general element of Cn or even Γn, n ≥ 3. Indeed,
for an arbitrary y ∈ Γn one has y+ y 6= 2ℜ(y). For example let y = i1i2i3 ∈ Γn,n ≥ 3. Then
y+ y = 2i1i2i3. Hence equation (1.2) does not hold.

Remark 3. For the square root
√

y of a Clifford vector y ∈ Vn+1 \R≤0 we have:

• For all positive µ ∈ R>0,
√

µy =
√

µ
√

y,

• For the inverse
√

y−1 =
√

y−1 = 1
|y|
√

y.

• The square root of −y can be found by a rotation of 90◦:
√
−y = i

√
y for some pure

Clifford vector i with i2 =−1. This also holds for negative y ∈ R<0.

1.3. Clifford Matrices and Hyperbolic Isometries

We now take a look at matrices having entries in the extended Clifford group Γn ∪{0}. These
matrices will be used to explicitly represent direct isometries of the hyperbolic space Hn+2 (see
for example [Wat93] and [Par07, §7]).

A Clifford matrix is a 2×2 matrix A =

(
a b
c d

)
with

a,b,c,d ∈ Γn ∪{0},ab∗,cd∗,c∗a,d∗b ∈ Vn+1,ad∗−bc∗ ∈ R\{0},

where ad∗−bc∗ is the Ahlfors determinant of A. Denote the set of such matrices by GL(2,Cn).
By a result of Vahlen and Maass [Ahl86, p. 221] the set

SL(2,Cn) =

{
A =

(
a b
c d

)
∈ GL(2,Cn) | ad∗−bc∗ = 1

}
(1.4)

of Clifford matrices with Ahlfors determinant 1 is a multiplicative group.

Each element T =

(
a b
c d

)
∈ SL(2,Cn) has the inverse matrix T−1 =

(
d∗ −b∗

−c∗ a∗

)
.

Furthermore SL(2,Cn) is generated by the matrices(
1 t
0 1

)
,

(
0 −1
1 0

)
,

(
a 0
0 a∗−1

)
,

where t ∈ Vn+1 and a ∈ Γn (see for example [Par07, §7]).

The group SL(2,Cn) plays an important role in our investigation since it is closely related to
the group of orientation preserving isometries of the hyperbolic (n+ 2)-space realised in the
upper half-space according to

Hn+2 = {x = (x0,x1, . . . ,xn+1) ∈ Rn+2 | xn+1 > 0}
∼= Vn+1 ×R>0.
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1. The real Clifford Algebra and Hyperbolic Space

The compactification Hn+2 is given by the union of Hn+2 with the boundary set ∂Hn+2 =
Vn+1 ∪{∞} of points at infinity of Hn+2.

Consider the projective group

PSL(2,Cn) = SL(2,Cn)/{±I}.

It is known that this group acts bijectively on Vn+1 ∪{∞} by

T (x) = (ax+b)(cx+d)−1 (1.5)

with T (−c−1d) = ∞, T (∞) = ac−1 if c 6= 0, and T (∞) = ∞ otherwise. By Poincaré extension,
the action (1.5) can be extended to the upper half-space Hn+2. In this way we obtain an iso-
morphism between PSL(2,Cn) and the group Möb+(n+ 1) of orientation preserving Möbius
transformations of Vn+1 ∪{∞} (see [Wat93], [CW98]). Since the group Isom+

(
Hn+2

)
of ori-

entation preserving isometries of Hn+2 is isomorphic to Möb+(n+ 1), we get the following
identification:

Isom+
(
Hn+2)∼= Möb+ (n+1)∼= PSL(2,Cn). (1.6)

Therefore any direct isometry of Hn+2 can be represented by a Clifford matrix in PSL(2,Cn).
Finally, we remark that Möbius transformations act triply transitively on Vn+1 ∪{∞} (see

[Wil81, §6], for example). That is, given two triplets {x1,x2,x3} and {x′1,x
′
2,x

′
3} of distinct

points in the boundary x1,x2,x3 and x′1,x
′
2,x

′
3 respectively, there always exists a transformation

T ∈ Möb(n+1) with T (xi) = x′i. For n = 0 this map is unique and for n = 1 it is unique if one
demands that it preserves the orientation. In higher dimensions this map is not unique anymore.

1.4. The Cross Ratio

As in the classical case, we shall use the cross ratio to study configurations of points in Vn+1∪{∞}.

Definition 4. Let x,y,z,w be four pairwise different Clifford vectors in Vn+1. Then

[x,y,z,w] := (x− z)(x−w)−1(y−w)(y− z)−1 ∈ Γn \{0} (1.7)

is called the cross ratio of x,y,z and w.

We extend the definition (1.7) by continuity to Vn+1 ∪{∞}, allowing x, y or w to be ∞, by

[∞,y,z,w] = (y−w)(y− z)−1 for x = ∞, (1.8)

and similarly for y = ∞ and w = ∞. Moreover in an analogous way we put

[x,y,∞,w] = (x−w)−1(y−w).

The cross ratio satisfies the following transformation behaviour (see [CW98] [Lemma 6.2]):

[T (x),T (y),T (z),T (w)] = (cz+d)∗−1[x,y,z,w](cz+d)∗, (1.9)

∀ T =

(
a b
c d

)
∈ SL(2,Cn).
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A. On Right-Angled Polygons in Hyperbolic Space

Hence, the real part and the norm of the cross ratio [x,y,z,w] of four vectors are invariant under
the action of T . However, the cross ratio itself is not an invariant.

We specialise the cross ratio in the following way: Consider two oriented geodesics s, t in
Hn+2 whose endpoints s−,s+ and t−, t+ are four distinct points in Vn+1 ∪{∞}.

Definition 5. The cross ratio ∆(s, t) of s and t is defined by

∆(s, t) :=
[
s−,s+, t−, t+

]
. (1.10)

Lemma 6. Let s and t be two geodesics as above. If s and t intersect then ∆(s, t) = ∆(t,s). If s
and t are disjoint, then ∆(s, t) = ∆(t,s) if one of the endpoints is ∞ or if the cross ratios are real,
otherwise the two cross ratios are conjugate.

Proof. Assuming one of the endpoints to be infinity, let s = (x,∞) with x ∈ Vn+1. We can apply

a translation
(

1 −x
0 1

)
such that s is mapped to (0,∞). By (1.9), any translation leaves the cross

ratio unchanged. Using (1.8) it is easy to see that ∆(s, t) = ∆(t,s).

Let now s and t be two arbitrary geodesics with no endpoint at infinity. We know that we

can always find an isometry T =

(
a b
c d

)
∈ SL(2,Cn) mapping the two endpoints of one of the

geodesics to 0 and ∞. Using (1.9) and what we have just discussed above we get

(ct−+d)∗−1[s−,s+, t−, t+](ct−+d)∗ =
[
T (s−),T (s+),T (t−),T (t+)

]
=
[
T (t−),T (t+),T (s−),T (s+)

]
= (cs−+d)∗−1[t−, t+,s−,s+](cs−+d)∗.

Hence the two cross ratios ∆(s, t) and ∆(t,s) are conjugate. This implies that if the cross ratios
are real, then the equality ∆(s, t) = ∆(t,s) holds. In particular, if two geodesics intersect, then
∆(s, t) = ∆(t,s) by Proposition 9 below.

Now consider three geodesics r,s and t in Hn+2 with pairwise different endpoints r−,r+,s−,s+

and t−, t+ in Vn−1 ∪{∞}.

Definition 7. The quantity

∆(r,s, t) :=
[
s+,s−,r+, t+

]
(1.11)

is called the double bridge cross ratio of (r,s, t).

Definition 8. The ordered triple (r,s, t) is called a double bridge if s is orthogonal to r and t such
that r 6= t. If |∆(r,s, t)|> 1, then the intersections r∩ s and s∩ t do not coincide and we call the
double bridge properly oriented.
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∞

0

s

r−

r

r+

t−

t

t+

Figure A.1.: Double Bridge

Consider a properly oriented double bridge (r,s, t). The norm of ∆(r,s, t) encodes the hyperbolic
length of the geodesic segment [r, t] on s between r and t. Indeed, assume w.l.o.g. that the
endpoints of s in the double bridge (r,s, t) are s− = 0 and s+ = ∞ (see Figure A.1). The
hyperbolic distance δ of two points p,q ∈ s in Hn+2 with pn+2 > qn+2 is equal to (see [Bea12, p.
131])

δ = log
(

pn+2

qn+2

)
.

On the other hand, by (1.7) we get

|∆(r,s, t)|=
∣∣[∞,0,r+, t+]

∣∣= |t+|
|r+|

.

If we take p = s∩ t and q = r∩ s, we conclude that δ = log(|∆(r,s, t)|).
The following results will be of importance:

Proposition 9. Two hyperbolic geodesics s and t intersect if and only if their cross ratio ∆(s, t) ∈
R<0. Furthermore s and t are perpendicular if and only if ∆(s, t) =−1.

Proof. Since hyperbolic isometries act triply transitively, there is an isometry represented by
A ∈ SL(2,Cn) mapping s and t into (0,∞) and (1,x), x ∈ Vn+1. Then, by (1.7) and (1.8), the
cross ratio of A(s) and A(t) equals ∆(A(s),A(t)) = [0,∞,1,x] = x−1, and the assertions follow for
A(s) and A(t). Moreover, by (1.9), a real cross ratio stays invariant under isometry.

Proposition 10. Let s = (0,∞) and t = (1,y) with y 6= 0,∞ be two disjoint geodesics in Hn+2.
Then the common perpendicular l is (−√

y,
√

y). This perpendicular is unique up to orientation.

Proof. Let l = (z,w) denote the common perpendicular between s and t. By Proposition 9 and
by (1.8), we get

∆(s, l) = [0,∞,z,w] =−1. (1.12)
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and
∆(t, l) = [1,y,z,w] =−1. (1.13)

Equation (1.12) yields z =−w. The equation (1.13) states that

(1− z)(1+ z)−1 =−(y− z)(y+ z)−1. (1.14)

It is easy to see that (1− z)(1+ z)−1 = (1+ z)−1(1− z), so that

(1− z)(y+ z) =−(1+ z)(y− z).

By expanding the above equation we obtain y = z2. Notice that by construction, since s and
t are disjoint, we have y /∈ R<0. Hence, by applying Proposition 1, the result follows for
l = (±√

y,∓√
y).

2. The Main Theorem

2.1. Preliminaries

Our aim is to construct oriented right-angled polygons in hyperbolic space from a minimal
number of prescribed parameters.

Definition 11. An oriented right-angled polygon with p sides in Hn+2 (or p-gon for short), n ≥ 0,
is a p-tuple of oriented geodesics (S0,S1, . . . ,Sp−1) with Si−1 6= Si+1 for i (mod p) and such that
Si is orthogonal to Si+1 for 0 ≤ i ≤ p−2 and Sp−1 is orthogonal to S0.

We usually denote it by Πp.
We call such a p-gon Πp non-degenerate if consecutive intersections do not coincide (that

is Si−1 ∩ Si 6= Si ∩ Si+1 for i (mod p)) and the double bridges (Si−1,Si,Si+1), i (mod p), are
properly oriented.

We can take p ≥ 5 since the simplest case of a right-angled polygon is the pentagon. There
cannot be a hyperbolic rectangle since the common perpendicular of two geodesics S0 and S2 is
unique. Hence if there was a hyperbolic rectangle (S0,S1,S2,S3), two geodesics would have to be
identical.

Note that it is no restriction to only consider p-gons in Hp−1 since the convex hull of p
geodesics can at most have dimension p−1. Hence, we will always refer to this case.

Recall that the one-point compactified vector space Vp−2 ∪{∞} forms the boundary of hyper-
bolic (p−1)-space

Hp−1 = {(x,y) ∈ Vp−2 ×R>0}.

Consider the standard configuration double bridge (r,s, t) similar to Section 1.4 with r =
(−1,1), s = (0,∞) and t = (−x,x) for x ∈ Vp−2 \{−1,0,1} (see Figure A.2).

A small computation shows that the double bridge cross ratio is given by

∆((−1,1),(0,∞),(−x,x)) = [∞,0,1,x] = x. (2.1)

If conversely the first two geodesics of this double bridge and a desired double bridge cross ratio
q are given, one can construct the third geodesic as (−q,q). In the general case this is not easy
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∞

0

s

−1

r

1

−x

t

x

Figure A.2.: Standard Configuration Double Bridge

since the Clifford vectors do not commute. In view of (2.1) we shall start with the configuration
given by the geodesics (−1,1), (0,∞) and (−x,x). If the double bridges are supposed to be
properly oriented, this poses the immediate restriction |x|> 1.

To construct more geodesics we will have to apply certain isometries to achieve this configura-
tion from a general double bridge. These isometries depend on the double bridge cross ratios in
the right-angled polygon Πp they are part of.

Definition 12. For a set of given Clifford vectors {q1, . . . ,qp−3} ⊂ Vp−2 \{0} define the isomet-
ries φi of upper half-space by the following Möbius transformations:

φi : x 7→
√
−2qi

−1
(x+qi)(x−qi)

−1√−2qi, 1 ≤ i ≤ p−3. (2.2)

If qi ∈ R>0, choose
√
−2qi :=

√
2qi i1.

Let Φi be the concatenation Φi := φi ◦φi−1 ◦ · · · ◦φ1.

Note that the isometries φi carry the two geodesics (0,∞) and (−qi,qi) into the geodesics
(−1,1) and (0,∞) of a double bridge in the aforementioned setting. However, these isometries
are not uniquely defined by this property. We will always apply these φi if we need an isometry
which maps given geodesics to specific other geodesics in a polygon Πp.

The Clifford matrix corresponding to φi is(√
−2qi

−1 qi
√
−2qi

−1

√
−2qi

−1 −qi
√
−2qi

−1

)
. (2.3)

The inverse φ
−1
i (x) =

√
−qi (1+ x)(1− x)−1√−qi is represented by the matrix(

qi
√
−2qi

−1 qi
√
−2qi

−1

√
−2qi

−1 −
√
−2qi

−1

)
. (2.4)
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∞

0 1−1

∆̃k = qk

−qk

Φk−1

Sk
Sk+1

Sk−1

Figure A.3.: Gauging by an Isometry

Repeatedly applying these isometries to geodesics in a Πp enables us to standardise the cross
ratio of a double bridge in a p-gon and eliminate the problem of the cross ratio not being invariant
under isometries.

2.2. The Theorem

Definition 13. Let (S0, . . . ,Sp−1) be a right-angled p-gon. Define the gauged double bridge cross
ratios ∆̃i for i = 1, . . ., p−3 by the following recursive definition:

∆̃1 := ∆(S0,S1,S2) , (2.5)

∆̃i+1 := ∆(Φi (Si) ,Φi (Si+1) ,Φi (Si+2)) . (2.6)

The Clifford vectors qi which are needed to define the maps Φi are calculated along the way as

qi = ∆̃i. (2.7)

These gauged double bridge cross ratios will be the parameters describing the non-degenerate
right-angled p-gons in Hp−1 in the Theorem 14 below. Hence consider the set

Pp :=
{
(q1, . . . ,qp−3) | qi ∈ Vp−2, |qi|> 1,1 ≤ i ≤ p−3

}
(2.8)

of (p−3)-tuples of non-zero Clifford vectors. Denote by

RAPp :=
{
(S0, . . . ,Sp−1)non-degenerate right-angled polygon in Hp−1

with S0 = (−1,1) ,S1 = (0,∞)
}

(2.9)

the set of non-degenerate right-angled polygons with p sides. The calculation of the gauged
double bridge cross ratios gives a map ∆̃ : RAPp → Pp. Denote the image of this map by
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P∗
p := ∆̃(RAPp)⊂ Pp. This is the set of parameters which will yield a non-degenerate Πp in

the construction below.

Theorem 14. The map ∆̃ : RAPp → P∗
p is a bijection. The inverse map can be given as an

explicit construction of a right-angled p-gon Πp from a tuple of p−3 parameters in P∗
p.

2.3. Proof of Theorem 14

Bijectivity It is sufficient to prove the injectivity of ∆̃ since it is surjective by definition.
Note that in the standard configuration double bridge of Figure A.2, there is a one-to-one
correspondence of Clifford vectors x and geodesics t = (−x,x) as given by equation (2.1).
Now assume there are two p-gons Πp = (S0, . . . ,Sp−1), Π′

p = (S′0, . . . ,S
′
p−1) ∈ RAPp such that

∆̃(Πp) = ∆̃
(
Π′

p
)
= (q1, . . . ,qp−3). By definition S0 = S′0 and S1 = S′1. By the above correspond-

ence we also have S2 = S′2. Furthermore the maps φ1, . . . ,φp−3 are the same for both Πp and
Π′

p since these maps are defined by q1, . . . ,qp−3 as given in equation (2.2). Therefore the map
Φi yields the same one-to-one correspondence between geodesics and Clifford vectors in both
p-gons.

Construction of the Polygon Πp The inverse map ∆̃−1 is given by the construction of a Πp

from p−3 parameters q1, . . . ,qp−3 ∈ Vp−2.
Assume we are given p−3 parameters (q1, . . . , qp−3) ∈ P∗

p.

Start The first two geodesics are fixed as S0 = (−1,1) and S1 = (0,∞). Since this is the
standard configuration double bridge considered above, we find S2 = (−q1,q1) if we demand
∆(S0,S1,S2) = q1.

The Geodesic S3 To find the endpoints of S3, we benefit from the isometry φ
−1
1 above

which maps (−1,1) to (0,∞) and (0,∞) to S2. If q2 was the cross ratio of a double bridge
involving (−1,1) and (0,∞), the third geodesic would be (−q2,q2). Since S3 is part of the
double bridge starting with (0,∞) and S2, S3 can be found by applying φ

−1
1 to (−q2,q2), that is

S3 = (φ−1
1 (−q2),φ

−1
1 (q2)).

The Next Geodesic in the General Case The further procedure expands the previous
idea. First we note that the next geodesic is given by the parameter q3. The geodesic S4 would
then be the image of (−q3,q3) under the isometry Φ

−1
2 mapping (−1,1) and (0,∞) to S2 and S3,

respectively.
In general, assuming we have calculated the geodesics S0, . . . ,Sk for some k with 2 ≤ k ≤ p−3,

we can use Φ
−1
k−1 in order to obtain Sk+1 =

(
Φ

−1
k−1(−qk),Φ

−1
k−1(qk)

)
.

Existence of the Last Geodesic After using all the parameters q1, . . . ,qp−3, we have determ-
ined the geodesics S0, . . . ,Sp−2. As a consequence of Proposition 9 the last common perpendicular
between S0 and Sp−2 exists and is unique as long as

∆(S0,Sp−2) /∈ R−. (2.10)
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This is ensured by the set P∗ ⊂ P .

Remark 15. Since the Clifford vectors do not commute, one cannot directly compute the common
perpendicular Sp−1 using the equations

∆(Sp−1,S0) =−1, ∆(Sp−1,Sp−2) =−1. (2.11)

However, one can use an isometry to obtain a nice configuration where the terms in the
equations above commute. Writing Sp−2 = (a,b), consider the isometry

ψ : x 7→α
−1 (1+ x)(1− x)−1

α
−1 (2.12)

where α :=
√

−(1+a)(1−a)−1. This isometry maps S0 to (0,∞) and Sp−2 to (1,c) where
c := α−1 (1+b)(1−b)−1 α−1.

Hence, by Proposition 10

Sp−1 =
(
ψ

−1 (−√
c
)
,ψ−1 (√c

))
(2.13)

modulo orientation where ψ−1 is given by

ψ
−1(x) = (α xα −1)(α xα +1)−1 . (2.14)

Remark 16. A major drawback is that we cannot explicitly describe P∗
p. One can take a set of

parameters (q1, . . . ,qp−3) ∈ Pp, apply the above construction and afterwards check whether the
created object actually is a non-degenerate right-angled p-gon.

If all the parameters qi have norm |qi|> 1 the proper orientation of the geodesics S1, . . . ,Sp−3
is automatically guaranteed. So one needs to check the orientation of S0, Sp−2 and Sp−1. This can
be done by calculating the norm of the double bridge cross ratios with the respective geodesic as
the central one. Since the norm of the cross ratio is invariant under isometry we do not have to
use the gauged double bridge cross ratios at this point. If the orientation of Sp−1 is wrong, one
can just invert it. If the orientation of Sp−2 is wrong, one needs to replace the parameter qp−3 by
−qp−3 and the construction yields the same Πp just with the inverted orientation of Sp−2. If the
orientation of S0 is wrong, one can replace the parameter q1 by −q1. This introduces a factor i to
the left and to the right of the map φ

−1
1 , where i is a root of −1 in the plane spanned by 1 and q1;

respectively i = i1 if q1 is real. Such a map is a rotation of 180◦ in the plane spanned by 1 and i.
After some exemplary calculations, we conjecture that for p = 5 the set

{(q1,q2) ∈ P5 | ℜ(q1) 6= 0,q1 6⊥ q2} (2.15)

yields non-degenerate right-angled 5-gons up to orientation.

3. Right-Angled Polygons with Full Span
One natural question which arises when studying right-angled polygons is the question of the
dimension of the resulting object. In this section we consider right-angled p-gons which have
the highest possible dimension. This is the case if the p intersection points are the vertices of a
(p−1)-simplex. Thus the parameters will be taken from a (p−2)-dimensional Clifford vector
space Vp−2 ⊂ Cp−3.
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3.1. A Necessary Condition for the Realisation of (p−1)-Simplices

If we want some set of parameters to yield a simplex, we need to pass to a new dimension with
every new geodesic in the construction. This basic idea results in the following theorem:

Theorem 17. If the parameters q1, . . . ,qp−3 ∈Cp−3 give rise to a right-angled polygon Πp whose
intersection points are the vertices of a simplex, then the parameters together with 1 have to form
a basis of the Clifford vectors according to 〈1,q1, . . . ,qp−3〉= Vp−2.

This theorem is a consequence of the following lemma:

Lemma 18. Let (S0,S1, . . . ,Sk), k ≥ 2 be a finite sequence of geodesics in upper-half space
Hp−1 such that S0 = (−1,1), S1 = (0,∞) and Si−1 ⊥ Si for i = 1, . . . ,k. Furthermore denote by
qi := ∆̃(Si−1,Si,Si+1) the gauged double bridge cross ratios of the respective double bridges for
i = 1, . . . ,k−1 and write Si = (S−i ,S

+
i ) for all geodesics.

Then the linear subspace of Vp−2 spanned by the endpoints of the geodesics is the same as the
subspace spanned by {1,q0,q1, . . . ,qk−1}. In symbols this means〈

S±0 ,S
±
2 ,S

±
3 , . . . ,S

±
k

〉
= 〈1,q1,q2, . . . ,qk−1〉 . (3.1)

The geodesic S1 is left out since ∞ /∈ Vp−2.

Proof. We prove this by induction over k. For k = 2 the lemma is plain, since S2 = (−q1,q1).
Hence, we have to prove

〈
1,q1,q2, . . . ,qk−1,S±k+1

〉
= 〈1,q1,q2, . . . ,qk〉. We know that Sk+1 is

given as the image of (−qk,qk) under the isometry Φ
−1
k−1. This isometry is given as a concatenation

of the maps φ
−1
i : x 7→

√
−qi (1+ x)(1− x)−1√−qi, 1 ≤ i ≤ k−1. If qi /∈ R, φ

−1
i restricts to an

isometry on H3 where the boundary is given as ∂H3 = 〈1,qi〉∪{∞}. Likewise, φi restricts to an
isometry on H4 where the boundary is given as ∂ H4 = 〈1,qi,qk〉∪{∞}. The case qi ∈ R follows
in the same manner, by yielding isometries leaving corresponding subspaces H2 and H3 invariant.
Thus follows the statement.

Notice that the theorem above does not give a sufficient condition. If the parameters qi are
pairwise orthogonal to each other and pure Clifford vectors then the geodesics S0 and Sp−2 will
contribute sides of length 0.

3.2. Hyperbolic 4-Simplices with an Orthogonal Cyclic Edge Path

In the end, it would be nice to have an a priori condition on the parameters of at least some
family of pentagons. Dekster and Wilker [DW91] proved a criterion for the existence of n-
simplices with vertices p1, . . . , pn+1 with given side and diagonal lengths li j = d(pi, p j), 1 ≤ i <
j ≤ n+1 in a Euclidean, spherical or hyperbolic space X ∈ {En,Sn,Hn}. They call a symmetric
(n+1)× (n+1)-matrix L = (li j) allowable if lii = 0 and li j > 0 for i 6= j. The matrix L is called
realisable in the space X if there are n+ 1 points p1, . . . , pn+1 in X with the given distances
d(pi, p j) = li j. They gave a criterion for realisability in each of the three above cases. We are
especially interested in the hyperbolic case.
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Theorem 19 ([DW91, Theorem 1 (hyperbolic case)]). Let L = (li j) be an allowable (n+1)×
(n+1)-matrix and let its entries be used to form the (n×n)-matrix S = (si j) where

si j = cosh li,n+1 cosh l j,n+1 − cosh li j.

Then L is realisable if and only if the eigenvalues of S are non-negative. If L is realisable then the
dimension of each realisation is equal to the rank of S.

Now we can easily treat the case of a hyperbolic pentagon having a cyclic edge path along
which all sides have the same length. With [DW91] we can get a criterion on the side lengths and
due to symmetry it might be possible to find the corresponding orientations of the sides.

bb

b

b

b

a

a

a

a a

Figure A.4.: Hyperbolic Pentagon with Right-Angled Cyclic Edge Path

Lemma 20. A right-angled hyperbolic pentagon Π5 = (S0, . . . ,S4) with all side lengths equal to
a > 0 is realisable as a 4-simplex if and only if cosh(a)< γ , where γ = 1+

√
5

2 denotes the golden
ratio.

Proof. By using hyperbolic trigonometry (see for example [Rat06, §3.5]) we obtain the relation
cosh(b) = cosh2(a). We can now construct the two matrices L and S as in [DW91, Theorem 1].

We get

L =


0 a b b a
a 0 a b b
b a 0 a b
b b a 0 a
a b b a 0

 .

Let us define x := cosh(a). We then have

S =


x2 −1 x3 − x x3 − x2 0
x3 − x x4 −1 x4 − x x3 − x2

x3 − x2 x4 − x x4 −1 x3 − x
0 x3 − x2 x3 − x x2 −1

 .

112



References

By Dekster’s and Wilker’s Theorem, the matrix L is realisable as a 4-simplex if and only if all
the eigenvalues of S are positive. This is true if and only if S is positive definite. By Sylvester’s
criterion, it is enough to check that all the top left minors of S have positive determinant:

det1 = x2 −1,

det2 = x4 −2x2 +1 = (x2 −1)2 = (x+1)2(x−1)2,

det3 =−x8 +2x7 + x6 −2x5 −2x4 +3x2 −1,

det4 = det(S) = 2x10 −10x9 +15x8 −15x6 +2x5 +10x4 −5x2 +1.

Notice that x > 1 since a must be greater than 0. Hence det1 and det2 are always greater than 0.
Furthermore, det3 is positive whenever −1 < x < 1−

√
5

2 or 1 < x < 1+
√

5
2 , hence only the latter has

to be considered. The determinant of S is positive everywhere except in 1−
√

5
2 ,1, 1+

√
5

2 , where it
vanishes. Combining everything we obtain that S is positive definite whenever 1 < x < γ , giving
us the desired result.
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B. Magma Code

G<a , b , c , d> := Group < a , b , c , d | \
a ^2 , b ^2 , c ^2 , d ^2 , ( a *b ) ^ 3 , ( b* c ) ^ 3 , ( c *d ) ^ 3 , ( a *d ) ^ 6 , ( a * c ) ^ 2 , ( b*d )^2 > ;

t o r s i o n := [ a , a *b , a *c , ( a *d ) ^ 2 , ( a *d ) ^ 3 , b*c , b*d , c *d ] ;

c a n d i d a t e s := LowIndexSubgroups (G, 2 4 ) ;

t o r s i o n f r e e := [ ] ;

k := 0 ;

f o r g i n c a n d i d a t e s do
f o u n d t o r s i o n := f a l s e ;
i n d := Index (G, g ) ;
r e p r := C o s e t A c t i o n (G, g ) ;
f o r t i n t o r s i o n do

f o r x i n [ 1 . . i n d ] do
i f x eq x^ r e p r ( t ) t h e n

f o u n d t o r s i o n := t r u e ;
b r e a k ;

end i f ;
end f o r ;
i f f o u n d t o r s i o n t h e n

b r e a k ;
end i f ;

end f o r ;
i f n o t f o u n d t o r s i o n t h e n

t o r s i o n f r e e := Append ( t o r s i o n f r e e , g ) ;
k := k +1;
p r i n t " Gruppe " , k , " : \ n " ;
p r i n t g ;
R e w r i t e (G, g ) ;
p r i n t " \ n " ;

end i f ;
end f o r ;
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