
Discrete & Computational Geometry (2023) 69:873–895
https://doi.org/10.1007/s00454-022-00455-z

Cusp Density and Commensurability of Non-arithmetic
Hyperbolic Coxeter Orbifolds

Edoardo Dotti1 · Simon T. Drewitz1 · Ruth Kellerhals1

Received: 13 February 2021 / Revised: 8 March 2022 / Accepted: 6 June 2022 /
Published online: 25 November 2022
© The Author(s) 2022

Abstract
For three distinct infinite families (Rm), (Sm), and (Tm) of non-arithmetic 1-cusped
hyperbolic Coxeter 3-orbifolds, we prove incommensurability for a pair of elements
Xk and Yl belonging to the same sequence and for most pairs belonging two different
ones. We investigate this problem first by means of the Vinberg space and the Vinberg
form, a quadratic space associated to each of the corresponding fundamental Coxeter
prism groups, which allows us to deduce some partial results. The complete proof is
based on the analytic behavior of another commensurability invariant. It is given by
the cusp density, and we prove and exploit its strict monotonicity.
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1 Introduction

Let Hn be the real hyperbolic space of dimension n ≥ 2 with its isometry group
IsomH

n . The quotient space On = H
n/� ofHn by a discrete subgroup � ⊂ IsomH

n

of finite covolume is a hyperbolic n-orbifold. By Selberg’s lemma, each orbifold is
finitely covered by a manifold.

In low dimensions, there are different ways to construct hyperbolic orbifolds and
manifolds. In this work, we consider only non-compact space forms of dimension
three. The arithmetic constructions in the orientable context are related to Bianchi
groups, that is, to Kleinian groups of the form PSL(2,Od) ⊂ PSL(2,C) where Od

is the ring of integers in the field Q(
√−d). A topological way is to look at knot and

link complements in S3 that carry a hyperbolic structure. For n = 3, we are interested
in cusped hyperbolic Coxeter n-orbifolds arising as quotients by hyperbolic Coxeter
groups, that is, by discrete groups generated by finitelymany reflections in hyperplanes
ofHn . A fundamental polyhedron for a hyperbolicCoxeter group is a so-calledCoxeter
polyhedron P given by a convex polyhedron all of whose dihedral angles are integral
submultiples of π . We assume that P as convex hull of finitely many ordinary or ideal
points has at least one vertex on the ideal boundary ∂Hn . These orbifolds form a very
natural and important family of cusped hyperbolic space forms that include orbifolds
of small volume in various dimensions up to n = 18 (see [12, 13]).

In contrast to higher dimensions, there are infinitely many distinct Coxeter 3-
orbifolds, and some of them are intimately related to Bianchi orbifolds or knot and
link complements as described above (see [1, Sect. 7], [16, Sect. 3], and Remark 4.3,
for example). In order to obtain a survey about the variety of cusped hyperbolic
orbifolds, we study them up to commensurability. Two hyperbolic n-orbifolds are
commensurable if they have a common finite-sheeted cover, which means that their
fundamental groups are commensurable (in the wide sense). Notice that properties
such as arithmeticity and cocompactness are stable with respect to commensurability.
As an example, the arithmetic 1-cuspedGiesekingmanifoldMG , arising by side identi-
fications of an ideal regular tetrahedron S∞

reg, has a double cover homeomeorphic to the
Figure Eight knot complement, and the fundamental group of MG is commensurable
to the Coxeter group associated to S∞

reg as well as to the Bianchi group PSL(2,O3).
In the case of arithmetic hyperbolic 3-orbifolds, there is a well developed and very
satisfactory theory about the commensurability of Kleinian groups (see [15, 18]). In
the case of non-arithmetic hyperbolic 3-manifolds, there is a general algorithm for
deciding about their commensurability in terms of horosphere packings and canonical
cell decompositions (see [6]).

In this work, we study commensurability of infinitely many distinct non-arithmetic
1-cusped hyperbolic Coxeter 3-orbifolds. More precisely, we consider three infinite
sequences (Rm), (Sm), and (Tm) describing simultaneously certain Coxeter prisms
(see Fig. 3), their reflection groups and the related Coxeter orbifolds, and defined via
their Coxeter graphs as below (for details, see Sect. 2.2). These Coxeter orbifolds are
1-cusped and, for m ≥ 7, non-arithmetic.

The aim of this work is to prove the following result.
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Σ(Rm) :

Σ(Sm) :

Σ(Tm) :

m 4 4

m 6

m 6

(m ≥ 7)

Fig. 1 The three sequences (Rm ), (Sm ), and (Tm ) of Coxeter prism groups

Theorem For an integer m ≥ 7, consider the three sequences of non-arithmetic 1-
cusped hyperbolic Coxeter 3-orbifolds induced by (Rm), (Sm), and (Tm) according to
Fig. 1. Then

(a) two distinct elements Xk and Xl belonging to the same sequence are incommen-
surable;

(b) each element Rk is incommensurable with any element Xl not belonging to the
sequence (Rm);

(c) the elements Sk and Tl are incommensurable for k ≥ l.

For the proof of our Theorem, we first exploit some new commensurability conditions
for pairs of hyperbolic Coxeter groups such as those given by Fig. 1. These necessary
conditions rely upon the Vinberg space and the Vinberg form related to an arbi-
trary hyperbolic Coxeter group, and they were recently established by the first author
[3, 4]. This investigation leads to first yet incomplete conclusions. A complete proof
of our Theorem is based on the study of the cusp density δ(Xm) of the orbifold Xm .
The quantity δ(Xm) is given by the ratio of the volume of the maximal (embedded)
cusp in Xm to the total volume of Xm and forms a commensurability invariant in the
context of non-arithmetic 1-cusped hyperbolic orbifolds (it is, however, not a complete
invariant; see [6, Sect. 1]). For each of the sequences (Rm), (Sm), and (Tm), we derive
explicit formulas for δ(Xm) and prove and exploit the strict monotonicity of their cusp
density as a function of m. These monotonicity properties are not of uniform nature
but help us in a crucial way to provide a coherent and complete proof of the above
theorem.

This work is structured as follows. In Sect. 2, we review the basic concepts of
hyperbolic Coxeter groups, Coxeter polyhedra and their graphs, and present Vinberg’s
arithmeticity criterion (see Sect. 2.2). For prisms in H

3 giving rise to the Coxeter
realisations (Rm), (Sm), and (Tm) and the related cusped orbifolds, we recapitulate a
volume formula in terms of the Lobachevsky function. In this way, the cusp density
as presented in Sect. 2.1 takes a more concrete analytic form. In Sect. 3, we introduce
the notion of Vinberg’s quadratic space and use it to formulate the commensurability
conditions for a pair of hyperbolic Coxeter groups in Theorem 3.1. Its impact for
subfamilies of groups belonging to the sequences (Rm), (Sm), and (Tm) form our first
conclusions presented at the end of the section. In Sect. 4, we treat the cusp density
δ(Xm) from a polyhedral point of view and look at the cusp density function for
the maximal cusp in a corresponding prism R′(α, β) ⊂ H

3 defined by two angular
parameters α, β with 0 < α + β < π/2 (see Fig. 3). A key technical result to
prove strict monotonicity of δ(Xm) is Proposition 4.2 that describes the cusp volume
in R′(α, β) in terms of the sign of cosα − √

2 sin β. In Remark 4.3, we consider
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the case cosα = √
2 sin β for α = π/m, m ∈ N≥3, and discuss briefly the close

connection of the prism R′(π/m, β)with Thurston’s polyhedral model for them-chain
link complement S3 \ Cm . Finally, and based on Schläfli’s differential expression for
hyperbolic volume, we are able to provide a complete and self-contained proof of our
theorem.

2 Commensurability of Hyperbolic Orbifolds

Let � < IsomH
n be a hyperbolic lattice, that is, � is a discrete group of isometries

acting on H
n with a fundamental polyhedron P ⊂ H

n of finite volume. The latter
property describes � as being cofinite. The quotient On = H

n/� is a hyperbolic n-
orbifold whose volume is given by the volume of P , also denoted by covoln(�). Two
such orbifolds On

1 and On
2 are commensurable if they have a common finite sheeted

cover. Equivalently, their fundamental groups �1, �2 ⊂ IsomH
n are commensurable

in the sense that there is an elementγ ∈ IsomH
n such that�1∩γ�2γ

−1 hasfinite index
in both �1 and γ�2γ

−1. The commensurability property for groups in IsomH
n yields

an equivalence relation preserving characteristics such as discreteness, cofiniteness
and arithmeticity. In this context, a fundamental result of Margulis (see [22, Chap. 6],
for example) states that a hyperbolic lattice � ⊂ IsomH

n , n ≥ 3, is non-arithmetic if
and only if its commensurator

Comm(�) = {γ ∈ IsomH
n | � and γ�γ −1 are commensurable} (2.1)

is a hyperbolic lattice, and containing � as a subgroup of finite index. In particu-
lar, Comm(�) is the (unique) maximal group commensurable with a non-arithmetic
hyperbolic lattice �.

2.1 Cusp Density of a Non-Compact Hyperbolic Orbifold

In the sequel, we study commensurability of different infinite families of cusped non-
arithmetic hyperbolic 3-orbifolds. A cusp C of an orbifold On = H

n/� is a connected
subset of On that lifts to a set of horoballs with disjoint interiors in H

n . The set C
gives rise to an ideal vertex q ∈ ∂Hn of a fundamental polyhedron for �, and C is
of the form Bq/�q where Bq ⊂ H

n is a horoball internally tangent to q and where
�q < � is the stabiliser of q. By Bieberbach’s theory, �q is a crystallographic group
acting discretely and cocompactly by Euclidean isometries on the horosphere ∂Bq

containing a translation lattice of rank 2.
Suppose that a hyperbolic orbifold On has precisely one cusp C , and that C is

maximal, that is, there is no cusp of On containing C . This means that C is tangent to
itself at one or more points. The ratio

δ(On) = δ(C) = voln(C)

voln(On)
(2.2)
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is called the cusp density of On (and given by C). The numerator voln(C) of δ(C)

can be computed in terms of the volume of a Euclidean fundamental polyhedron Pq
for the group �q as follows. Pass to the upper half space model for Hn in R

n+ where
infinitesimal arc length is given by ds = dx/xn . Suppose without loss of generality
that q = ∞ and that the bounding horosphere ∂B∞ is the hyperplane {xn = 1} at
distance 1 from the ground space Rn−1. Then, the volume of the cusp C is given by
(see also [11, Sect. 3])

voln(C) = voln−1(P∞)

∞∫

1

dxn
xnn

= voln−1(P∞)

n − 1
. (2.3)

The following result is an easy consequence of the above concepts and facts and will
play a crucial role (see [18, Prop. 1], [6, Sect. 2]).

Proposition 2.1 The cusp density is a commensurability invariant for non-arithmetic
1-cusped hyperbolic orbifolds.

2.2 Hyperbolic Coxeter Groups and Coxeter Orbifolds

Interpret hyperbolic space in the hyperboloid modelHn as a subset of Rn+1 equipped
with the Lorentzian form q(x) = −x20+x21+. . .+x2n as usual. The group of isometries
IsomH

n is given by the group O+(n, 1) of positive Lorentzian matrices.
For N ≥ n + 1, let � ⊂ IsomH

n be a hyperbolic lattice generated by finitely
many reflections si in hyperplanes Hi = e⊥

i , 1 ≤ i ≤ N , of Hn . As a consequence,
the vectors e1, . . . , eN contain a Lorentzian basis of Rn+1 which we suppose to be of
Lorentzian norm 1. Consider the convex polyhedron

P =
⋂

1≤i≤N

H−
i (2.4)

of closed half-spaces H−
i ⊂ Hn with outer normal vectors ei . The polyhedron P is a

Coxeter polyhedron, that is, all the dihedral angles of P are of the form π/m for an
integerm ≥ 2. In this way, the group � is a hyperbolic Coxeter group and a geometric
representation of an abstract Coxeter group in the group O+(n, 1). The associated
orbit space of � is called a hyperbolic Coxeter n-orbifold. The theory of hyperbolic
Coxeter groups and orbifolds has been developed essentially by Vinberg (see [5, 20,
21] for classification results and further references).

Associated to P and � is the Gram matrix G = G(P) of signature (n, 1) formed
by the Lorentzian products gik = 〈ei , ek〉n,1. The coefficients of G off the diagonal
have the following geometric meaning.

− 〈ei , ek〉n,1 =

⎧⎪⎪⎨
⎪⎪⎩

cos
π

mik
if �(Hi , Hk) = π

mik
;

1 if Hi , Hk are parallel;
cosh lik if dH(Hi , Hk) = lik > 0.

(2.5)
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(k, l ) = (3,4), (2,5), (3,5), (4,5)
k

l

∞ ∞

Fig. 2 The four non-arithmetic Coxeter pyramids with exactly one ideal vertex in H3

In [21, pp. 226–227], Vinberg describes an efficient arithmeticity criterion for a hyper-
bolic Coxeter group � which we only reproduce in the non-cocompact case. To this
end, consider 2G(P), and its cycles (of length l) of the form

2l gi1i2gi2i3 · . . . · gil−1il gil i1 , (2.6)

with distinct indices i j in 2G(P). Then, � is arithmetic with field of definition Q if
and only if all the cycles of 2G(P) are rational integers.

In this context, define the field K (�) := Q({gi1i2gi2i3 · . . . ·gil−1il gil i1}) of all cycles
of G(P) and call it the Vinberg field of �. For n ≥ 3, the field K (�) is the smallest
field of definition for �, and it is moreover an algebraic number field coinciding with
the adjoint trace field of �. As a consequence, the Vinberg field is a commensurability
invariant for � (see [4, Sect. 3]).

Often, we visualise a hyperbolic Coxeter group � (and its Coxeter polyhedron P)
in terms of itsCoxeter graph	(�). Each node i of	(�) corresponds to a generator si
(and therefore to the vector ei and the hyperplane Hi ). Two nodes i, k are not joined by
an edge if the corresponding hyperplanes Hi and Hk are perpendicular. They are joined
by a simple edge if the corresponding hyperplanes intersect under the angle π/3. The
edge carries the weight mik ≥ 4, ∞, or is replaced by a dotted edge (sometimes with
weight lik), if the hyperplanes Hi , Hk intersect under the angle π/mik , are parallel, or
at the positive hyperbolic distance lik , respectively.

Example 2.2 In [9, Thm. 3], all the (finitelymany) hyperbolic Coxeter simplices inHn ,
n ≥ 3, have been classified with respect to commensurability. The six non-arithmetic
Coxeter tetrahedra are pairwise incommensurable except for one pair of groups. This

pair consists of the 1-cusped Coxeter tetrahedral group •—5——–•–——•—6——–• giving rise to a
1-cusped subgroup of index 2.

Example 2.3 Among the 19 non-arithmetic Coxeter pyramids with quadrilateral basis
inH3, precisely four of them give rise to 1-cusped orbifolds. Their Coxeter graphs are
given by Fig. 2. Ignoring their cusp densities, it was shown in [7, Sect. 4.1], that these
four orbifolds are incommensurable.

In contrast to Examples 2.2 and 2.3, there are infinite sequences of Coxeter prisms
inH3 that give rise to non-arithmetic 1-cusped Coxeter orbifolds. They are at the heart
of this work and can be characterised as follows. From a combinatorial-metrical point
of view, they arise by polar truncation of an orthoscheme R(α, β) ⊂ H

3 with 0 <

α+β < π/2. The tetrahedron R(α, β) is an orthogonal tetrahedron of infinite volume
bounded by the hyperbolic planes H1, . . . , H4 opposite to the vertices p1, . . . , p4,
say. The planes form one ideal vertex q = p1 = H2 ∩ H3 ∩ H4 characterised by a
Euclidean triangle with angles π/2, β, and β ′ = π/2 − β, and one ultra-ideal vertex
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q= p1 p3

p2

p4

p1

p2

p3

l
1 2 3 4 4

· · · ·
β

β

β α βα
′

′

′

′

′
′

Fig. 3 The prism R′(α, β) ⊂ H
3 with 0 < α + β < π/2 and its Vinberg graph

p4 = H1 ∩ H2 ∩ H3 (represented by a vector v ∈ R
4+ with positive Lorentzian norm)

that we cut off by its polar hyperplane H ′
4 = {x ∈ H3 | 〈x, v〉3,1 = 0}. Associated to

p4 is the hyperbolic triangle R(α, β)∩H ′
4 with corresponding vertices p

′
1, p

′
2, and p′

3,
and with angles π/2, α, and β. This triangle is at distance l = dH(p2, p′

2) from the
opposite triangle in R(α, β). The truncation bymeans of the hyperbolic plane H ′

4 leads
to a (simplicial) prism R′(α, β) of finite volume that can be described by the Vinberg
graph according to Fig. 3.

Here, the nodes i and 4′ correspond to the planes Hi and H ′
4, and two nodes are not

joined if the associated planes are Lorentz-orthogonal. For the weight l = lαβ of the
dotted edge corresponding to the length of the common perpendicular of H4 and H ′

4,
an easy computation exploiting the vanishing of the determinant of the Gram matrix
of R′(α, β) yields the expression

tanh lαβ = tan α tan β. (2.7)

For the volume of R′(α, β) ⊂ H
3, there is a closed formula in terms of α, β, and the

Lobachevsky function JI(ω) = − ∫ ω

0 log |2 sin t | dt as follows (see [10]).

vol3(R
′(α, β)) = JI(β)

2
+ JI(α + β ′) − JI(α − β ′)

4
. (2.8)

Observe that the Lobachevsky function JI(ω) is odd, π -periodic and satisfies a certain
distribution relation. As an example,

JI(2ω)

2
= JI(ω) + JI

(
π

2
+ ω

)
, (2.9)

which allows one to deduce JI(π/6) = 3JI(π/3)/2 ≈ 0.50747 for its maximum value.
For computations, the series representation

JI(ω) = ω

(
1 − log|2ω| +

∑ Bn (2ω)2n

2n(2n + 1)!
)

, (2.10)
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Σ(Rm) :
m 4 4 m ≥ 5;

Σ(Sm) :
m 6 m ≥ 7;

Σ(Tm) :
m 6 m ≥ 4.

Fig. 4 The three sequences (Rm ), (Sm ), and (Tm ) of Coxeter prism groups in IsomH
3

with Bernoulli coefficients B1 = 1/6, B2 = 1/30, . . ., converges rapidly for small ω
(see [17, App.]).

The formula (2.8) can be derived by integrating Schläfli’s differential formulawhich
expresses the infinitesimal volume change of a non-Euclidean polyhedron in terms of
the variation of its dihedral angles (see [10], for example). In particular, when keeping
the angle parameter β = β0 constant, the volume differential of R′(α, β0) is given by

d vol3(R
′(α, β0)) = − lαβ0

2
dα, (2.11)

which leads to (2.8) by using vol3(R′(β ′
0, β0)) = 0 as integration constant. Among the

prisms R′(α, β) ⊂ H
3 with 0 < α + β < π/2, there are three distinguished infinite

families, indexed by an integer m, of Coxeter prisms Rm , Sm , and Tm with Coxeter
graphs given in Fig. 4 (see also Fig. 1 in the Introduction).

Bymeans of Vinberg’s arithmeticity criterion, the 1-cusped Coxeter orbifolds asso-
ciated to the Coxeter groups given by Rm , Sm , and Tm are non-arithmetic at least for
m ≥ 7. In the sequel and for convenience, we shall use the same symbol Xm for the
Coxeter prism as well as for the associated reflection group and its quotient space.

Our aim is to prove first that the members belonging to a fixed sequence, and
secondly, that most pairs from different sequences are incommensurable hyperbolic
Coxeter groups. To do this we follow two different paths. The first one is algebraic
and based on the study of Vinberg spaces and the relevant results of the first author
[3, 4]. We shall see that this approach has limitations. The second path is geometric
and based on certain analytic properties of the cusp density function such as strict
monotonicity. It leads to a coherent and complete proof of our theorem.

3 The Vinberg Space and Commensurability

Let m ≥ 7, and consider the three sequences (Xm) of non-arithmetic Coxeter prism
groups in IsomH3 depicted in Fig. 4. The subsequent machinery is due to Vinberg,
and the new results about commensurability based on it are due to the first author (see
[3, 4] and the references therein).

Associated to each group Xm of the sequence (Xm) is the Vinberg field K (Xm)

generated by all the cycles gi1i2...il of the GrammatrixG(Xm) = (gik) of the prism Xm

(see Sect. 2.2). Following the description as given in Fig. 3, denote by e1, . . . , e4 and
e5 the outer normal unit vectors in (R4, 〈 · , · 〉3,1) of the hyperplanes H1, . . . , H4 and
H ′
4 =: H5 bounding Xm .
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Next, for 1 ≤ i1, . . . , ik ≤ 5, define the vectors

v1 = e1 and vi1i2...ik = g1i1gi1i2 · · · gik−1ik eik . (3.1)

The K (Xm)-space V (Xm) spanned by the vectors {vi1i2...ik } according to (3.1) is of
dimension 4 and left invariant by the action of the group Xm . The restriction of the
Lorentzian product to V (Xm) yields a quadratic form q = q(V (Xm)) of signature
(3, 1). The form q and the quadratic space (V (Xm), q) are called the Vinberg form
and the Vinberg space of Xm , respectively. The Vinberg field and the Vinberg form
(with its discriminant) are closely related to the invariant trace field and the invariant
quaternion algebra of a Kleinian group � ⊂ PSL(2,C), here given by the rotation
subgroup of Xm [14, Thm. 3.1]. In the arithmetic case, these latter algebraic tools form
a complete system of commensurability invariants for �.

In the case of arbitrary (cofinite) hyperbolic Coxeter groups, there is the following
obstruction to commensurability as proven in [4, Thm.].

Theorem 3.1 Let �1 and �2 be two commensurable hyperbolic Coxeter groups acting
on H

n, n ≥ 2. Then, their Vinberg fields coincide and the two associated Vinberg
forms are similar over this field.

Recall that two quadratic forms q1 and q2, defined on vector spaces V1 and V2 of
dimension m over a field K , respectively, are similar if and only if there exists a
scalar λ ∈ K ∗ such that (V1, q1) and (V2, λq2) are isometric spaces. Representing
the quadratic forms q1, q2 by means of their bilinear forms with matrices Q1, Q2 ∈
Mat(m, K ), the isometry of (V1, q1) to (V2, λq2) then means that there is a matrix
S ∈ GL(m, K ) such that Q1 = St (λQ2)S.

In the case of odd dimensions n ≥ 3, the theorem above combinedwith theTheorem
of Hasse–Minkowski produces the following commensurabilitry condition (see [4,
Lem. 3.16]).

Proposition 3.2 (Ratio Test) For n ≥ 3 odd, let �1 and �2 be two commensurable
hyperbolic Coxeter groups acting on H

n with Vinberg field K and Vinberg forms q1
and q2, respectively. Then, det(q1) ≡ det(q2) mod (K ∗)2.

Let us illustrate the above theorem and examine as far as possible the
(in-)commensurability of the non-arithmetic groups Xm = Rm , Sm , and Tm form ≥ 7.
In order to establish their Gram matrices G(Xm) = (gik) and compute the Vinberg
fields, we determine the weights lmp = lπ/m,π/p, p = 3, 4, 6, according to (2.7) and
obtain the following results.

cosh lm4 = cos(π/m)√
cos(2π/m)

, cosh lm3 = cos(π/m)√
2 cos(2π/m) − 1

,

cosh lm6 =
√
3 cos(π/m)√

2 cos(2π/m) + 1
, (3.2)

K (Rm) = K (Sm) = K (Tm) = Q

(
cos

2π

m

)
= Q

(
cos2

π

m

)
=: Km . (3.3)
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The extension degree of Km equals [Km :Q] = ϕ(m)/2, where ϕ(k) denotes the
Euler totient function counting the positive integers smaller than or equal to k that are
relatively prime to k. Recall that ϕ(k) is not injective since, for example, ϕ(2k) = ϕ(k)
for odd k.

Next, we determine for each Xm the Vinberg form by followingVinberg’s construc-
tion. To this end, we construct the outer normal unit vectors e1, . . . , e5 and choose a
basis v1, . . . , v4 for the Vinberg space V (Xm) in the set of vectors defined by (3.1).
Their Grammatrix Q(Xm) := (〈vi , vk〉3,1)1≤i,k≤4 yields theVinberg form q(V (Xm)).
For comparison by means of the Ratio Test above, it suffices to compute the determi-
nant of Q(Xm) modulo K 2

m . We summarise the computations as follows.
Consider the Coxeter prism Rm as given by the Coxeter graph 	(Rm) depicted in

Fig. 4 and with weight lm4 according to (3.2). We put Rm inH3 in such a way that its
outer normal unit vectors are given by

e1 = (0, 1, 0, 0), e2 =
(
0,− cos

π

m
, sin

π

m
, 0

)
,

e3 =
(
0, 0,

−1√
1 − cos(2π/m)

,

√
cot2(π/m) − 1√

2

)
,

e4 =
( − cos(π/m)√

cos(2π/m)
, 0, 0,

sin(π/m)√
cos(2π/m)

)
, e5 = (1, 0, 0, 0).

(3.4)

The vectors

v1 := e1, v2 := g12e2, v3 := g12g23e3, v4 := g12g23g34e4 (3.5)

form a basis of V (Rm) over Km and yield the matrix

Q(Rm) =

⎛
⎜⎜⎝
1 c 0 0
c c c/2 0
0 c/2 c/2 c/4
0 0 c/4 c/4

⎞
⎟⎟⎠ ,

where

c = cm = cos2
π

m
. (3.6)

It is not difficult to compute and reduce the determinant of Q(Rm)modulo K 2
m accord-

ing to

det(Q(Rm)) = −c8m
16

≡ −1 mod K 2
m . (3.7)

Consider the Coxeter prism Sm as given by the Coxeter graph 	(Sm) in Fig. 4 and
with weight lm3 according to (3.2). The outer normal unit vectors of Sm can be chosen
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to be e1, e2, and e5 as in (3.4) while the remaining vectors e3 and e4 have to be equal
to

e3 =
(
0, 0,

−1

2 sin(π/m)
,

√
2 cos(2π/m) − 1

2 sin(π/m)

)
,

e4 =
( − cos(π/m)√

2 cos(2π/m) − 1
, 0, 0,

√
3 sin(π/m)√

cos(2π/m) − 1

)
.

(3.8)

It is clear that the vectors v1, . . . , v4 defined by (3.5) form a basis of the Vinberg space
V (Sm). For their Gram matrix Q(Sm), one obtains

Q(Sm) =

⎛
⎜⎜⎝
1 c 0 0
c c c/4 0
0 c/4 c/4 3c/16
0 0 3c/16 3c/16

⎞
⎟⎟⎠ ,

where c = cm is given by (3.6). As a consequence,

det(Q(Sm)) = − 3

256
c8m ≡ −3 mod K 2

m . (3.9)

Consider finally the Coxeter prism Tm as given by the Coxeter graph 	(Tm) in
Fig. 4 and with weight lm6 according to (3.2). The outer normal unit vectors of Tm can
be chosen to be e1, e2, and e5 as in (3.4) so that the remaining vectors e3 and e4 have
to be equal to

e3 =
(
0, 0,

−√
3

2 sin(π/m)
,

√
2 cos(2π/m) + 1

2 sin(π/m)

)
,

e4 =
( −√

3 cos(π/m)√
2 cos(2π/m) + 1

, 0, 0,
sin(π/m)√

cos(2π/m) + 1

)
.

(3.10)

It is obvious that the vectors v1, . . . , v4 defined by (3.5) form a basis of the Vinberg
space V (Sm). For their Gram matrix

Q(Tm) =

⎛
⎜⎜⎝
1 c 0 0
c c 3c/4 0
0 3c/4 3c/4 3c/16
0 0 3c/16 3c/16

⎞
⎟⎟⎠ ,

where c = cm is given by (3.6), one computes

det(Q(Tm)) = − 27

256
c8m ≡ −3 mod K 2

m . (3.11)

Put together, the calculations leading to (3.7), (3.9), and (3.11) allow us to deduce the
following intermediate results in view of Theorem 3.1 and the Ratio Test given by
Proposition 3.2.
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First Conclusions

(A) For a fixed sequence (Xm), m ≥ 7, of non-arithmetic Coxeter prism groups given
by one of the Coxeter graphs according to Fig. 4, two groups Xm and Xm′ with
ϕ(m) �= ϕ(m′) (and hence different Vinberg fields) are incommensurable. How-
ever, if K (Xm) = K (Xm′) =: K , the Ratio Test does not allow us to conclude
about their incommensurability since the determinants of theVinberg forms q(Xm)

and q(Xm′) are equal modulo K 2.
(B) Let k, l ≥ 7. For a group Rk and a group Xl not belonging to (Rm), the Ratio Test

proves their incommensurability.
(C) Let k, l ≥ 7. A group Sk and a group Tl are incommensurable if ϕ(k) �= ϕ(l).

In the case K (Sk) = K (Tl) =: K , the Ratio Test does not allow us to conclude
incommensurability since the determinants of the Vinberg forms q(Sk) and q(Tl)
are equal modulo K 2.

4 Cusp Density and Commensurability

In the sequel, we provide a complete proof, based on the cusp density invariant, of the
theorem as stated in the Introduction for the infinite sequences (Rm), (Sm), and (Tm)

given by Fig. 1. To this end, we generalise the context as follows.
Consider the two-parameter family R′(α, β) ⊂ H

3 with 0 < α+β < π/2 of prisms
inH3 as depicted in Fig. 3. Each prism results from polar truncation of an orthoscheme
R(α, β) = ⋂

1≤i≤4 H
−
i with ideal vertex q = p1 and ultra-ideal vertex p4. For i ≤ 3,

denote by p′
i the intersection of H

′
4 with the geodesic defined by the vertices pi and p4.

By construction, the vertices p′
1, p

′
2, and p′

3 describe the hyperbolic triangle [p′
1 p

′
2 p

′
3]

opposite to the triangular base [p1 p2 p3] of the prism R′(α, β), and it has angles π/2,
α, and β while being orthogonal to H1, H2, and H3.

The triangle [p′
1 p

′
2 p

′
3] ⊂ H ′

4 is at distance lαβ = dH(p3, p′
3) from [qp1 p2]. The

quantity lαβ is given by (2.7) and appears as coefficient in Schläfli’s differential accord-
ing to (2.11).

Our first aim is to derive a formula for the (polyhedral) cusp density

δ(α, β) := vol3(C(α, β))

vol3(R′(α, β))
= vol3(C(α, β))

JI(β)/2 + {JI(α + β ′) − JI(α − β ′)}/4 . (4.1)

Here, C(α, β) is the maximal cusp inside R′(α, β) and results from intersecting the
maximal horoball Bq associated to q with the prism R′(α, β). Notice that Bq is tangent
to the facet(s) closest to q but disjoint to the remaining one among all facets not
containing q in R′(α, β). More precisely, the orthogonality properties reigning in
R′(α, β) imply that the horosphere Sq = ∂Bq is either touching H1 at p2 as depicted
in Fig. 5, or H ′

4 at p
′
1 as depicted in Fig. 6.

Therefore, the size of C(α, β) depends on the geometric position of the planes
H1, . . . , H4 and H ′

4 which can be quantified in terms of the distance 
 = 
(α, β) of
Sq to H1 and to H ′

4, respectively.
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q= p1 p3

p2= s2

p4

p1

p2

p3

s3

s4

h4

h2

h3

s2

s3

s4

β

ββ α

′

′

′

′

Δ

Fig. 5 The prism R′(α, β) ⊂ H
3 with 0 < α + β < π/2 such that cosα ≤ √

2 sin β and its cusp triangle
[s2s3s4]

q= p1

p2

p3

s2

p4

p2

p3

s3

p1= s4

Δ

′

′
′

′ α

β

β

Fig. 6 The prism R′(α, β) ⊂ H
3 with 0 < α + β < π/2 such that cosα ≥ √

2 sin β

A1

A2

Q

h

ω

a

Fig. 7 A horocycle in the right-angled triangle T = [QA1A2] with ideal vertex Q

The following result about horocycle geometry will be useful (see [2, Sect. 4]).
Consider a hyperbolic triangle T with one ideal vertex Q, a right angle at the vertex
A1 and the angle ω at the vertex A2. Let a = dH(A1, A2), and consider the horocyclic
segment of Euclidean length h based at Q and passing through A1. The situation is
depicted in Fig. 7.
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Lemma 4.1 Denote by h the Euclidean length of the horocyclic segment in the right-
angled triangle T = [QA1A2] with ideal vertex Q. Let ω be the angle of T at A2 and
a = dH(A1, A2) according to Fig. 7. Then

h = cosω = tanh a.

Proposition 4.2 Let R′(α, β) ⊂ H
3 with 0 < α + β < π/2 be a hyperbolic prism

with one ideal vertex q. Then, the volume of the maximal cusp neighborhood C(α, β)

of q in R′(α, β) is given according to the following dichotomy.

(i) vol3(C(α, β)) = cos2α cot β

4
if cosα ≤ √

2 sin β;

(ii) vol3(C(α, β)) = sin(2β)

8
· cos2α

cos2α − sin2β
if cosα ≥ √

2 sin β.

Proof Start from the representation R′(α, β) = ⋂
1≤i≤5 H

−
i where the plane H5

equals the truncating polar plane H ′
4 associated to the ultra-ideal vertex p4 of the

underlying orthoscheme R(α, β). Since the maximal cusp C(α, β) is either tangent
to H1 at p2 or to H ′

4 at p
′
1, there are only two possible cases for the relative position

of C(α, β), and they are depicted in Figs. 5 and 6, respectively. In both cases, the
Euclidean area of the right-angled triangle [s2s3s4] forming the boundary of C(α, β)

is given by (h24/2) cot β where h4 denotes the Euclidean length of the segment [s2s3]
(see Fig. 5). By (2.3), the volume of C(α, β) equals (h24/4) cot β. Hence, it remains to
determine the quantity h4 in terms of α and β as asserted. Accordingly, we distinguish
two cases.

Case (i) Suppose that the horosphere Sq centred atq touches the plane H1 at p2.By the
orthogonality properties of R′(α, β), the dihedral angle α is equal to the angle at p3 in
the triangle [qp2 p3]. Hence, by Lemma 4.1, the Euclidean length h4 of the horocyclic
segment [s2s3] is equal to cosα implying that vol3(C(α, β)) = (1/4) cos2α cot β.

It remains to show that the above assumption holds if cosα ≤ √
2 sin β. Since the

angle at s4 in the Euclidean triangle [s2s3s4] is equal to β, the Euclidean length h3 of
its hypotenuse is given by

h := h3 = cosα

sin β
. (4.2)

Observe that h > 1 since α + β < π/2, and that furthermore h = cosh dH(p′
1, p

′
2)

by elementary trigonometry for [p′
1 p

′
2 p

′
3].

Next, we show that the horosphere Sq does not intersect the plane H ′
4 which, by the

orthogonality properties of R′(α, β), is equivalent to show that 
 = dH(p′
1, s4) ≥ 0.

For this, we put the Lambert quadrilateral [qp′
1 p2 p

′
2] in the upper half plane model for

H
2 as follows. Assume without loss of generality that its ideal vertex q is ∞, and that

the horocycle defined by the segment [s2s4] and of Euclidean length h is at height 1;
see Fig. 8. For the distance 
 = dH(p′

1, s4), we have


 = log
1

ρ
,
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p2 s4

p1p2

1

h

h

∞

ρ

′ ′

Fig. 8 The quadrilateral [qp′
1 p2 p

′
2] with ideal vertex q = ∞

where ρ denotes the radius of the geodesic semicircle carrying the edge [p′
1 p

′
2]. The

geodesic semicircle carrying the edge [p2 p′
2] is of radius 1 and orthogonal to the

former one. Furthermore, the centers of these semicircles are at (Euclidean) distance
h given in (4.2). Hence,

ρ2 + 1 = h2 = cos2α

sin2β
. (4.3)

As a consequence, 
 ≥ 0 if and only if ρ ≤ 1, which in turn is equivalent to

cosα

sin β
≤ √

2.

This finishes the proof of (i).

Case (ii) The proof is very similar to the one for (i). Suppose that the horosphere Sq
centred at q touches the plane H ′

4 at p′
1 according to Fig. 6. We determine first the

quantity h = h3 giving the Euclidean length of [s2s4] in terms of the hyperbolic length
of the edge [p2 p′

2] in the quadrilateral Q = [p2 p′
2 p3 p

′
3] opposite to q. The angle at

p2 in Q equals β ′ while the other angles of Q are right ones. Hence, Q is a Lambert
quadrilateral giving the identity

sin β = tanh dH(p2, p
′
2) · tanh dH(p2, p3).

For the length dH(p2, p3) of the edge [p2 p3] in the right-angled triangle [qp2 p3]with
ideal vertex q and angle α, we get tanh dH(p2, p3) = cosα. Putting all this together,
we deduce that

cosh dH(p2, p
′
2) = cosα√

cos2α − sin2β
. (4.4)

By comparing the situation with case (i) where h = h3 = cosh dH(p′
1, p

′
2), we deduce

for the Euclidean length h = h3 in case (ii), and by using (4.4), that

h = h3 = cosα√
cos2α − sin2β

. (4.5)
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Since h4 = h3 sin β with h3 given by (4.5), we conclude that

vol3(C(α, β)) = h24
4

cot β = sin(2β)

8
· cos2α

cos2α − sin2β
.

Finally, it remains to show that the horosphere Sq does not intersect the plane H1
which, by the orthogonality properties of R′(α, β), is equivalent to show that 
 =
dH(s2, p2) ≥ 0. Again, consider the quadrilateral [qp′

1 p2 p
′
2] in the upper half plane

model forH2 and assume that its ideal vertex q is∞, and that the horocycle defined by
the segment [s2s4] of Euclidean length h is at height 1. By performing the exchanges

p2 � p′
1, s2 � s4,

Figure 8 gets suitably adapted. As in (4.3), we deduce that

ρ2 + 1 = h2 = cos2α

cos2α − sin2β
,

with the consequence that 
 = log(1/ρ) ≥ 0 if and only if cosα ≥ √
2 sin β. ��

Remark 4.3 Consider the limiting case cosα = √
2 sin β in Proposition 4.2. The cusp

C(α, β) touches both, the plane H1 at p2 and H ′
4 at p

′
1 in the prism R′(α, β) (see Figs. 5

and 6). In the particular instance α = π/k with k ∈ N≥3, the prism Pk := R′(π/k, β)

appears as building block for each of the two isometric drums that glued together
represent a polyhedral model P of the (orientable) complement S3 \Ck of the sphere
S
3 by the k-link chainCk . This construction is due to and nicely illustrated by Thurston

[19, Exam. 6.8.1]. A closer look reveals that each drum can be decomposed into 4k
copies of Pk so that the polyhedron P associated to S3 \Ck is an ideal one consisting
of 8k prisms of type Pk . As a consequence, the volume of S3 \ Ck is given by

vol3(S
3 \ Ck) = 2k

{
JI

(
π

k
+ β ′

)
− JI

(
π

k
− β ′

)
+ 4JI(β)

}
,

where β ′ = π/2 − β by convention. For k = 3 and k = 4, the fundamental group
of S3 \ Ck is commensurable to PSL(2,O7) and PSL(2,O3), respectively (see [19,
Examples 6.8.2 and 6.8.3]). The quotient space of S3 \Ck by the rotational symmetry
group Zk of Ck is obtained by generalised Dehn surgery on the Whitehead link W , so
that

lim
k→∞

vol3(S3 \ Ck)

k
= vol3(S

3 \ W ) = 8JI

(
π

4

)
≈ 3.66386.

Finally, we remark that the manifold S
3 \ W is commensurable with the 2-cusped

Coxeter orbifold given by the Coxeter pyramid group with graph •—∞
——–•—4——–•—4——–•—∞

——–•.
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Our next aim is to analyse the cusp density δ(α, β0) for fixedβ0 with 0 < α+β0 < π/2
according to (4.1) and to prove strict monotonicity for the function

δ(α) = c(α)

v(α)
:= vol3(C(α, β0))

vol3(R′(α, β0))
= δ(α, β0) (4.6)

on a suitable interval [0, α0] with α0 ∈ (0, π/2). We treat the cases β0 = π/4,
β0 = π/3, and β0 = π/6 separately in view of the related sequences (Rm), (Sm),
and (Tm) given by Fig. 4. We start with the easiest case.

Lemma 4.4 The density function δ(α, π/6) is strictly increasing on the interval
[0, π/4].
Proof For β0 = π/6 and α ∈ [0, π/4], we have that cosα ≥ √

2 sin β0. Hence, by
(ii) of Proposition 4.2, the cusp volume of C(α, π/6) is given by

c(α) =
√
3

4
· cos2α

4 cos2α − 1
, (4.7)

which is a strictly increasing function on the interval [0, π/4]. For the volume v(α)

of R′(α, π/6) in the denominator of δ(α) = δ(α, π/6), we use Schläfli’s differen-
tial (2.11), that is,

dv(α) = − lα,π/6

2
dα

to deduce (the classical fact) that v(α) is a strictly decreasing function with respect to
α ∈ [0, π/4]. As a consequence, δ(α) is strictly increasing on [0, π/4] as claimed. ��
For the two remaining cases β0 = π/3 and β0 = π/4, the monotonicity behavior
differs but the proof will be uniform.

Lemma 4.5

(a) The density function δ(α, π/3) is strictly increasing on the interval [0, π/7].
(b) The density function δ(α, π/4) is strictly decreasing on the interval [0, π/5].
Proof First, observe that cosα ≤ √

2 sin β0 holds for all α in the case (a) with β0 =
π/3 as well as in the case (b) with β0 = π/4. Hence, by (i) of Proposition 4.2, the
cusp volume c(α) is given in both cases by

c(α) = cos2α cot β0

4
. (4.8)

In contrast to the function given by (4.7), the numerator c(α) of δ(α) given by (4.8)
is strictly decreasing so that we can not conclude as in the proof of Lemma 4.4. Here,
we proceed as follows. Let l(α) = lαβ0 be the length of the ridge of α which is related
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to v(α) according v′(α) = −l(α)/2. Again, v(α) is a strictly decreasing function.
By (2.7), l(α) satisfies the identity

l(α) = artanh (tan α tan β0). (4.9)

We study the sign of the derivative of δ(α) that can be expressed as

δ′(α) = 1

8
· sin(2α)

v2(α)

{
l(α) cot α

2
− 2v(α)

}
.

More precisely, we investigate whether the sign of the quantity


(α) := l(α) cot α

2
− 2v(α) (4.10)

behaves as claimed according to the cases (a) and (b).

(a) For β0 = π/3, we show that 
(α) > 0 on [0, π/7]. By (4.9) and using Taylor
expansion for artanh t for t := √

3 tan α, we deduce that

1√
3

· l(α)

tan α
= artanh t

t
= 1 + t2

3
+ t4

5
+ t6

7
+ · · · . (4.11)

Obviously, for t > 0, the function (4.11) is strictly increasing and satisfies

lim
α→0

1

2
· l(α)

tan α
=

√
3

2
≈ 0.86602.

Since −2v(α) is strictly increasing as well, and since, by (2.8),

2v(0) = 5

3
JI

(
π

6

)
≈ 0.84578,

we conclude that 
(0) > 0 and the positivity of 
(α). In particular, we get δ′(α) > 0
on [0, π/7].
(b) For β0 = π/4, we proceed in an analogous manner. For t := tan α, the function

l(α)

tan α
= artanh t

t
(4.12)

with the expansion as in (4.11) satisfies

lim
α→0

1

2
· l(α)

tan α
= 1

2
,

123



Discrete & Computational Geometry (2023) 69:873–895 891

while the value 2v(0) = 2JI(π/4) ≈ 0.91596 is equal to Catalan’s constant. Hence,

(0) ≈ −0.41596 < 0. Furthermore, we obtain the value




(
π

5

)
= 1

2
· l(π/5)

tan(π/5)
− 2v

(
π

5

)
≈ −0.04769 < 0

with PARI/GP1, for example, or by using series representations such as (2.10). As in
the case (a), one checks that 
(α) is strictly increasing so that both 
(α) < 0 and,
by (4.10), δ′(α) < 0 on [0, π/5]. ��
We are now ready to provide a uniform proof of the following result announced in the
Introduction. This proof is different by nature and allows us to complete the partial
conclusions (A) and (C) based on Vinberg’s form as stated at the end of Sect. 3.

Theorem For an integer m ≥ 7, consider the three sequences of non-arithmetic 1-
cusped hyperbolic Coxeter 3-orbifolds induced by (Rm), (Sm), and (Tm) according to
Fig. 1. Then:

(a) two distinct elements Xk and Xl belonging to the same sequence are incommen-
surable;

(b) each element Rk is incommensurable with any element Xl not belonging to the
sequence (Rm);

(c) the elements Sk and Tl are incommensurable for k ≥ l.

Proof It is an immediate consequence of Proposition 2.1, Lemmas 4.4 and 4.5 that
two groups Xk and Xl with k �= l belonging to a fixed sequence (Xm), m ≥ 7, of
non-arithmetic Coxeter prism groups as given by Fig. 1 are incommensurable. This
proves part (a) of the assertions.

As for part (b), we use the fact that the cusp density function δ(α, β0) of the
sequence (Rm) is in contrast to those of (Sm) and (Tm) strictly decreasing with respect
to α ∈ [0, π/7]. Since the limit values at α = π/7 of the corresponding cusp densities
as given by (4.1) and Proposition 4.2 satisfy

0.48007≈δ

(
π

7
,
π

4

)
>δ

(
π

7
,
π

6

)
≈0.39865, δ

(
π

7
,
π

4

)
> δ

(
π

7
,
π

3

)
≈0.36866,

we conclude that a group belonging to (Rm) is incommensurable with any group
belonging either to the sequence (Sm) or to the sequence (Tm). Another verification
of this statement has been provided and stated as conclusion (B) at the end of Sect. 3.

In order to prove part (c), it is sufficient in view of Lemma 4.4 to show that

δ

(
α,

π

6

)
> δ

(
α,

π

3

)
for all α ∈

(
0,

π

7

]
. (4.13)

By (4.1) and Proposition 4.2, the inequality (4.13) is equivalent to

V (α) := v3(α)

v6(α)
>

4 cos2α − 1

3
=: C(α) for all α ∈

(
0,

π

7

]
, (4.14)

1 The PARI Group, PARI/GP version 2.11.2, Univ. Bordeaux (2019). http://pari.math.u-bordeaux.fr.
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where vk(α) := vol3(R′(α, π/k)) for k = 3, 6. Notice that the functions V (α) and
C(α) appearing on the left and the right hand side of (4.14) are also defined for
α ∈ [0, π/6]. Furthermore, by (2.8) and the properties of the Lobachevsky function,
we have that

V (0) = C(0) = 1 and V

(
π

6

)
= C

(
π

6

)
= 2

3
.

Our strategy is to show that the functions V (α) and C(α) are strictly concave (down)
on (0, π/6). Obviously, C(α) is strictly concave (down). For the function V (α),
we compute the derivative by using Schläfli’s differential expression (2.11). Putting
lk(α) := lα,π/k(α), we obtain

2v26(α)V ′(α) = l6(α)v3(α) − l3(α)v6(α). (4.15)

By (2.7) we have

lk(α) = artanh

(
tan α tan

π

k

)
,

and therefore, l3(α) > l6(α) as well as l ′3(α) > l ′6(α) for α ∈ (0, π/6). These
properties imply that v6(α) > v3(α) by Schläfli’s differential expression, and that

d(α) := 2v26(α)V ′(α) < 0 for α ∈
(
0,

π

6

)
. (4.16)

In particular, V (α) is strictly decreasing on (0, π/6). By (4.15), and by using again
Schläfli’s differential, we obtain for its second derivative that

2V ′′(α) = d ′(α)

v26(α)
− 2d(α)v′

6(α)

v36
. (4.17)

Since the second term in the difference (4.17) is positive by (4.16), V (α)will be strictly
concave if d ′(α) < 0 on (0, π/6). Similarly to the computation leading to (4.15), and
by using the properties of lk(α) and vk(α), we obtain that

d ′(α) = l ′6(α)v3(α) − l6(α)l3(α)

2
− l ′3(α)v6(α) + l3(α)l6(α)

2

< l ′3(α)[v3(α) − v6(α)] < 0 for α ∈
(
0,

π

6

)
.

Hence, the function V (α) is strictly concave on (0, π/6).
Finally, consider the point α0 = π/12 ∈ (0, π/6). For the function C(α) defined

in (4.14), we obtain

C

(
π

12

)
= 1

3

(
2 cos

π

6
+ 1

)
=

√
3 + 1

3
≈ 0.91068,

123



Discrete & Computational Geometry (2023) 69:873–895 893

whereas the value V (π/12) can be computed and estimated by using the volume for-
mula (2.8) and the duplication property of the Lobachevsky function JI(ω) as follows.
We obtain

v3

(
π

12

)
= 1

4

{
2JI

(
π

3

)
+ JI

(
π

4

)
+ JI

(
π

12

)}
,

v6

(
π

12

)
= 1

4

{
3JI

(
π

3

)
+ JI

(
5π

12

)
+ JI

(
π

4

)}
.

Since JI(π/6)/2 = JI(π/12) − JI(5π/12), we deduce that

v6

(
π

12

)
− v3

(
π

12

)
= 1

16
JI

(
π

3

)
≈ 0.02114.

By using Catalan’s constant G = 2JI(π/4) ≈ 0.91596 and JI(π/6) = 3JI(π/3)/2 ≈
0.50747, it follows that

V

(
π

12

)
= v3(π/12)

v6(π/12)
= 1 − JI(π/3)

16v6(π/12)
> 1 − JI(π/3)

8JI(π/6) + 4JI(π/4)
> 0.94257.

Hence, V (π/12) > C(π/12). This property combined with the facts that V (α) and
C(α) are both strictly concave (down) on (0, π/6) with identical values at the extrem-
ities α = 0 and α = π/6 confirms the claims (4.14) and (4.13). ��
Remark 4.6 The proof of part (c) works under the restriction k ≥ l, only. Indeed,
the smooth density functions δ(α, π/6) and δ(α, π/3) are strictly increasing with
δ(α, π/6) > δ(α, π/3) on the interval (0, π/7]. For their values at α = 0, we use
the cusp density formula (4.1), the identity (2.9) yielding JI(π/6) = 3JI(π/3)/2 and
Proposition 4.2 in order to conclude that

δ

(
0,

π

6

)
= δ

(
0,

π

3

)
=

√
3

10JI(π/6)
≈ 0.34131.

As a consequence, for any α ∈ (0, π/7], there is a (unique) α∗ ∈ (0, π/7] with
α∗ < α such that δ(α∗, π/6) = δ(α, π/3). However, by restricting the real places
in (0, π/7] to integer submultiples of π , it might be that the elements Sk and Tl are
incommensurable for all integers k, l ≥ 7. Since there are no counter-examples known
to us, we conjecture that the result (c) above holds for all k, l ≥ 7. However, a proof
of this conjecture seems difficult in view of (4.1) and the modest knowledge about the
Lobachevsky function.

Remark 4.7 Similar investigations can be undertaken for other infinite families of non-
arithmetic 1-cusped hyperbolic Coxeter 3-orbifolds. For example, there are Coxeter
polyhedra P(m, n), and Q(m, n) in H

3, described first by Im Hof [8], depending
on two integer parameters m ≥ n ≥ 3 and defined by the Coxeter graphs depicted
in Fig. 9. For the polyhedron P(m, n), the parameters m and n have to satisfy the

123



894 Discrete & Computational Geometry (2023) 69:873–895

n

m

∞

∞
∞

m

∞

n

P (m,n) , 1 <m + 1
n

1
2 Q (m,n)

Fig. 9 The 1-cusped Coxeter 3-orbifolds associated to P(m, n) and Q(m, n) where m, n ∈ N≥3

hyperbolicity condition 1/m+1/n < 1/2. Each of the polyhedra has one ideal vertex
described by the (disconnected) Coxeter graph •—∞

——–• •—∞
——–• yielding a non-rigid cusp

in the associated Coxeter orbifold. The weights belonging to the different dotted edges
are easily computable (see [8, Prop. 1.6], for example), and explicit volume formulas
can be found in [10]. Finally, by Vinberg’s arithmeticity criterion, the Coxeter groups
related to P(m, n) and Q(m, n) are non-arithmetic at least for m ≥ 7 and n ≥ 3, and
their Vinberg fields coincide and are equal to

Km,n = Q

(
cos2

π

m
, cos2

π

n

)
.
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