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Abstract. Let M = H4/Γ denote a 4−dimensional oriented

hyperbolic manifold of finite volume. By identifying Iso+(H4)

with PSL(2,H) , we construct embedded tubular neighborhoods

around short simple closed geodesics in M whose collar width de-

pends on the length of g, only. We show that two non-intersecting

short geodesics have disjoint collars. Moreover, the constructed

collars do not intersect the canonical cusps associated to parabolic

elements in Γ . Finally, we discuss some applications and provide

bounds for the injectivity radius and the number of short simple

closed geodesics in M .

0. Introduction

Consider the group of orientation preserving Möbius transformations of Ê3 = E3 ∪ {∞}
which acts by direct isometries on hyperbolic space 4−space realized in the upper half

space model. As such, the group Iso+(H4) can be identified with the group PSL(2,H)

of Clifford matrices with quaternion coefficients (cf. §1). In this setting, we study the

geometry of discrete groups in Iso+(H4) and quotient manifolds of finite volume.

The main result of this paper is a collar theorem for hyperbolic 4−manifolds M providing

around each simple closed geodesic g in M of length l ≤ l0 =
√

3
4π

log2 2 ≃ 0.06622 an

embedded tubular neighborhood whose collar width depends on the length l of g, only

(cf. §2.1). One important tool in the proof (cf. §2.2) is the inequality for discrete non-

elementary two generator groups of Clifford matrices due to P. Waterman [Wat] which

generalizes the well-known trace inequality for PSL(2,C) . Moreover, we make use of

properties of the generalized cross ratio for an ordered quadruple of vectors in a Clifford

algebra as developed by C. Cao and P. Waterman [CW, §6].
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In the remaining part of §2, we prove some results about the size and the position of

the collars in the part of M . In §2.3, we show that distinct simple closed geodesics have

disjoint collars. In §2.4, we investigate parabolic group elements and cusps in a non-

compact manifold M of finite volume (cf. also [K2]). We show that the canonical cusps

and the collars do not intersect in M . Moreover, for a sequence of loxodromic elements

converging to a parabolic one, the collars tend to the canonical cusp. In this way, we

obtain a fairly good picture about the thin part of a hyperbolic 4−manifold M .

Finally, in §3, we discuss some applications concerning the geometry and topology of

hyperbolic 4−manifolds. For example, the injectivity radius i(M) of a compact hyperbolic

4−manifold M satisfies the inequality i(M) ≥ const · vol4(M)−2 which improves a result

of A. Reznikov [Re].

Our results extend the well-known collar theorems for Riemannian surfaces of genus > 1

and hyperbolic 3−manifolds (cf. [Bu, p. 94] for relevant references) to discrete subgroups of

Iso+(H4) and their quotient manifolds. In [CW, §9], Cao and Waterman derived a collar

theorem for hyperbolic manifolds of arbitrary dimensions n ≥ 2 . They approach isometries

of hyperbolic n−space by means of Clifford matrices as well and utilize similar inequalities

for discrete two generator groups as mentioned above. The methods differ where they make

use of certain extremal values associated to the rotational part of loxodromic elements.

Therefore, by specializing to the thin part of hyperbolic manifolds of dimension n = 4, it

is not a surprise that our results are stronger when compared to theirs.
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1. Hyperbolic isometries and Clifford matrices

1.1. Some hyperbolic geometry

Let Hn denote the hyperbolic n−space realized in the Poincaré conformal model of the

upper half space En+ = { x = (x1, . . . , xn) ∈ En | xn > 0 } equipped with the metric

cosh dist(x, y) = 1 +
| x− y |2
2xnyn

.

The compactification Hn = Hn ∪ ∂Hn consists of Hn together with the set ∂Hn =

Ên−1 := En−1 ∪ {∞} of its points at infinity.

The group I(Hn) of isometries of Hn is isomorphic to the subgroup M(En+) ⊂M(Ên) of

Möbius transformations of Ên that leave En+ invariant. By means of Poincaré extension,

there are the isomorphisms

I(Hn) ∼= M(En+) ∼= M(Ên−1) .

According to the fixed point behavior a Möbius transformation is either elliptic, parabolic,

or loxodromic. For example, if ϕ ∈ M(En+) has precisely one resp. two fixed points in

Ên−1 and none in En+ , then ϕ is parabolic resp. loxodromic.

Γ is elementary if Γ has a finite orbit Γp for some point p ∈ Hn . Moreover, Γ is said to

be of parabolic resp. hyperbolic type if Γ has one resp. two different fixed points in ∂Hn

and no further finite orbits in Hn . There are the following characterizations (cf. [Ra]).

Γ is discrete, elementary and of parabolic type if and only if Γ is conjugate to an infinite

discrete subgroup of the isometry group I(En−1) of En−1. Let S(En−1)∗ denote the

group of all Möbius transformations in M(En+) leaving invariant the set { 0,∞} . Then,

Γ is discrete, elementary and of hyperbolic type if and only if Γ is conjugate in M(En+)

to an infinite discrete subgroup of S(En−1)∗ .

Finally, if ϕ, ψ ∈ M(En+) are such that ψ is loxodromic with one fixed point in common

with ϕ, then the subgroup < ϕ, ψ > generated by ϕ, ψ is not discrete (cf. [Ra, Theorem

5.5.4]). Therefore, a discrete elementary group Γ containing a loxodromic (parabolic)

element, consists of loxodromic (parabolic) elements, only, and they all have the same

fixed points.

1.2. Discrete groups of Clifford matrices

Let Γ ⊂ I+(Hn) denote a discrete group of orientation preserving isometries of Hn. We

are interested in the geometrical behavior of Γ such as the uniform isolation of id in Γ. To

this end, following K. Th. Vahlen [V] and L. V. Ahlfors [A1, A2], we make use of the very
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elegant and important description of Möbius transformations as Clifford matrices. In the

following, we provide a summary about the Clifford calculus in n variables.

The Clifford algebra Cn is the associative algebra over R generated by n − 1 elements

i1, . . . , in−1 subject to the relations ikil = −ilik (k 6= l) and i2k = −1 . Each element

a ∈ Cn can be uniquely represented in the form

a =
∑

I

aI I , aI ∈ R ,

where I runs through all products ik1 · · · ikr
with 0 < k1 < · · · < kr < n . Here, the

empty product is included and identified with i0 = ik0 := 1 . The number r ≥ 0 is called

the degree of I.

Examples are C1 = R , C2 = C and C3 = H .

Cn is a real vector space of dimension 2n−1 which can be turned into a normed space by

imposing the Euclidean norm

| a |2 :=
∑

I

a2
I for a =

∑

I

aI I .

Moreover, Cn admits a direct sum decomposition

Cn =
n−1⊕

r=0

Cn(r) ,

where Cn(r) ⊂ Cn is spanned by the products I of degree r. Therefore, we can write

a = a(0) + a(1) + · · ·+ a(n− 1) with a(r) ∈ Cn(r) .

There are three involutions on Cn. The mapping a 7→ a∗ is defined by sending each

I = ik1 · · · ikr
to I∗ := ikr

· · · ik1 , while a 7→ a′ is given by replacing each factor ik by

−ik . The conjugation a 7→ a is the composition a := a′∗ . We obtain (cf. [Wad, p. 126])

a = a(0) − a(1) − a(2) + a(3) + · · ·+ (−1)(n−1)n/2a(n− 1) . (1.1)

Clifford numbers of the form x = x0 + x1i1 + · · · + xn−1in−1 are called vectors. They

satisfy x = x∗ . Vectors form an n−dimensional linear subspace of Cn which is usually

identified with En. Non-zero vectors are invertible with inverse

x−1 =
1

| x |2 ( x0 − x1i1 − · · · − xn−1in−1 ) .
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Hence, products of non-zero vectors are invertible and give rise to a multiplicative sub-

group, the Clifford group Gn. For a, b ∈ Gn , one has | ab | = | a | · | b | . Embedding

En ⊂ En+1 in the natural way, one obtains Gn < Gn+1 .

A Clifford matrix is an element of the set

SL(2, Cn) :=
{
T =

(
a b
c d

)
| a, b, c, d ∈ Gn∪{0} ; ab∗, cd∗, c∗a, d∗b ∈ En ; ad∗−bc∗ = 1

}
.

By a result of Vahlen and H. Maass (cf. [A2, p. 221]), SL(2, Cn) is a group under matrix

multiplication with

T−1 =

(
d∗ −b∗
−c∗ a∗

)
for T =

(
a b
c d

)
∈ SL(2, Cn) . (1.2)

There are different ways to introduce the notion of trace for a matrix

T =

(
a b
c d

)
∈ SL(2, Cn) .

The quantity tr(T ) = a + d∗ is often called the trace of T . One checks that the scalar

part of tr(T ) is a conjugacy invariant (cf. [Wat, p. 99]) which we denote by

Tr(T ) := tr(T )(0) = (a+ d∗)(0) . (1.3)

Consider the subgroup

PSL(2, Cn) := SL(2, Cn) / {λE |λ ∈ R − {0} } ,

which satisfies PSL(2, Cn) < PSL(2, Cn+1) . The group PSL(2, Cn) acts bijectively on

Ên by

T (x) = (ax+ b)(cx+ d)−1 , T (0) = bd−1 , T (∞) = ac−1 ,

and this action can be extended to Ên+1, which we denote by the same symbol. Further-

more, PSL(2, Cn) is isomorphic to the group M+(Ên) of orientation preserving Möbius

transformations of Ên where matrix multiplication corresponds to composition of map-

pings. Each T ∈ PSL(2, Cn) preserves the upper half space (cf. §1.1) since

[
T (x)

]
n+1

=
xn+1

| cx+ d |2 ;

|T ′(x) |[
T (x)

]
n+1

=
1

xn+1
.

(1.4)

Therefore, we have

I+(Hn+1) ∼= PSL(2, Cn) for n ≥ 1 . (1.5)
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Among the generators of PSL(2, Cn) one has the

dilation

(
ρ 0
0 1/ρ

)
, x 7→ ρ2 x , ρ 6= 0 ; (1.6)

direct orthogonal

(
a 0
0 a′

)
, x 7→ axa∗ , | a | = 1 ; (1.7)

inversion

(
0 1
−1 0

)
, x 7→ −x−1 ; (1.8)

translation

(
1 µ
0 1

)
, x 7→ x+ µ , µ ∈ En . (1.9)

By [CW, §6], a notion of generalized cross ratio for an ordered tuple {x1, x2, x3, x4} of

four points in En+1, no three of which coincide, is defined by

[x1, x2, x3, x4] := (x1 − x3)(x1 − x2)
−1(x2 − x4)(x3 − x4)

−1 (1.10)

and extended to allow x1, x2 or x4 to be infinite. This cross ratio satisfies several properties

such as
[x1, x2, x3, x4] = [x4, x2, x3, x1]

−1 ;

[∞, x, 0, y] = (y − x)y−1 .
(1.11)

Finally, for a Möbius transformation

T =

(
a b
c d

)
∈ PSL(2, Cn) ,

there is the following pseudo-invariance

[T (x1), T (x2), T (x3), T (x4)] = (cx3 + d)∗
−1

[x1, x2, x3, x4](cx3 + d)∗ . (1.12)

We are interested in the geometry of a finitely generated discrete group of Möbius trans-

formations, or more precisely, of its two generator subgroups. For PSL(2,C) , Jørgensen’s

trace inequality (cf. [J], [Be, §5.4]) provides a very satisfactory picture. Using similar

techniques, P. Waterman [Wat] generalized the result in various ways.

Theorem 1.1. [Wat, Theorem 9]

Let S =

(
a b
c d

)
and T =

(
λ 0
0 λ∗−1

)
generate a discrete and non-elementary subgroup

in PSL(2, Cn) . Let λ̃ = 2λ(0) − λ . Then,

| λ̃− λ−1|2 · (1 + | bc |) ≥ 1 if |λ | 6= 1 .
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Theorem 1.2. [Wat, Theorem 8]

Let S =

(
a b
c d

)
and T =

(
1 µ
0 1

)
, µ ∈ En , generate a discrete and non-elementary

subgroup in PSL(2, Cn) . Then,

| c | · |µ | ≥ 1 .

Proof : We present a proof different in parts from [Wat] by adapting ideas of [Sh, p. 42].

Define recursively the sequence

S0 =

(
a0 b0
c0 d0

)
:= S , Sn =

(
an bn
cn dn

)
:= Sn−1 T S

−1
n−1 for n ≥ 1 .

By (1.2), one computes

an = −an−1µc
∗
n−1 + an−1d

∗
n−1 − bn−1c

∗
n−1 ,

bn = an−1µa
∗
n−1 − an−1b

∗
n−1 + bn−1a

∗
n−1 ,

cn = −cn−1µc
∗
n−1 + cn−1d

∗
n−1 − dn−1c

∗
n−1 ,

dn = cn−1µa
∗
n−1 + ( an−1d

∗
n−1 − bn−1c

∗
n−1 )∗ .

(1.13)

Since akd
∗
k−bkc∗k = 1 , k ≥ 0 , and since x = x∗ for the vectors x = an−1b

∗
n−1 , cn−1d

∗
n−1 ,

we deduce
an = 1 − an−1µc

∗
n−1 ,

bn = an−1µa
∗
n−1 ,

cn = −cn−1µc
∗
n−1 ,

dn = 1 + cn−1µa
∗
n−1 .

By induction, one obtains

|cnµ| = |cµ|2n

,

and, by means of the triangle inequality,

|an − 1| = |dn − 1| ≤ |cµ|2n−1

∞∑

k=0

|cµ|k + |a0 − 1| · |cµ|2n−1+···+1 .

Suppose that |cµ| < 1 . Then,

|an − 1| = |dn − 1| ≤ |cµ|2n−1

1 − |cµ| + |a− 1| · |cµ|2n−1 .

Therefore, cn → 0 , an, dn → 1 and bn → µ , that is, the sequence Sn converges to T .

But < S, T > is discrete, so that Sn = T – and especially cn = 0 – for all n sufficiently

large. Hence, c = 0, and the group < S, T > is elementary of parabolic type which is a

contradiction to the assumption.

Q.E.D.
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1.3. Loxodromic elements in PSL(2,H)

Consider hyperbolic space H4 as subset of { x = x0 +x1i1 +x2i2 + yi3 ∈ C3 | y > 0 } . By

(1.5), we have I+(H4) ∼= PSL(2,H) . The coefficient algebra H of quaternions is a real

vector space with basis

1 , i := i1 , j := i2 , k := ij satisfying i2 = j2 = k2 = −1 .

Accordingly, each element a = a0 + a1i+ a2j + a3k ∈ H can be written as a = Sa+ V a

with scalar part Sa := a0 and, by abuse of language, vector part V a := a1i+ a2j + a3k .

Since
a =Sa− V a ,

| a | 2 = aa = (Sa)2 − (V a)2 ,

a unit quaternion a ∈ H , i.e., | a | 2 = a2
0 + (a2

1 + a2
2 + a2

3) = 1 , may be expressed as

a = cosα+ q sinα for some α ∈ [0, 2π) , (1.14)

where q is a pure unit quaternion, i.e., q satisfies Sq = 0 and therefore q = −q . Actually,

q = V a/|V a | . Since q2 = −1 , de Moivre’s Theorem yields (cf. [Co])

ar = cos rα+ q sin rα , ∀ r ∈ R . (1.15)

The above motivates the notation exp(qα) := cosα + q sinα . For fixed q , this function

satisfies all well-known properties such as

exp(qα) · exp(qβ) = exp(q(α+ β)) = exp(qβ) · exp(qα) .

Notice that by (1.1) this picture fails for Clifford numbers a ∈ Cn for n > 3 .

Now, consider a loxodromic element ϕ ∈ I+(H4) with fixed points u, v ∈ ∂H4 . The

geodesic joining u and v is the unique line left invariant by ϕ, the so-called axis aϕ of

ϕ, restricted to which ϕ acts as a translation with the translational length τ1 = 2 log ρ ,

say. Globally, ϕ acts as a dilation ϕ1 with multiplier eτ1 = ρ2 6= 1 followed by a special

orthogonal transformation ϕ2 , rotating in some 2−plane by an angle τ2 = 2ω, say, and

having one rotational axis (cf. (1.6), (1.7)).

In order to represent ϕ by a matrix in PSL(2,H) , we simplify first. Conjugate ϕ ∈
M+(Ê3) to obtain the Möbius transformation ψ̃(x) = ρ2Ax in M+(Ê3) rotating in the

plane spanned by 1, i with fixed j−axis, i.e.,

A =




cos 2ω − sin 2ω 0
sin 2ω cos 2ω 0

0 0 1


 ∈ SO(3) .
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Then, the loxodromic transformation ψ̃(x) = ρ2Ax can be represented by

T = Tψ̃ =

(
ρ exp(iω) 0

0 ρ−1 exp(−iω)

)
∈ PSL(2,H) . (1.16)

By (1.3), Tr(T ) = 2 cosh(τ1/2) · cos(τ2/2) . In analogy to the complex case (cf. [M, p.

1040]), we call the conjugacy invariant pair τ = (τ1, τ2) the (quaternionic) length vector

of the loxodromic transformation ϕ ∈ I+(H4) (and of T ∈ PSL(2,H) ).

Later, we shall need the following property of loxodromic elements (cf. Proposition 2.6).

Consider an arbitrary loxodromic element T ∈ PSL(2,H) with quaternionic length vector

τ = (τ1, τ2) .

Lemma 1.3.

Let T ∈ PSL(2,H) be a loxodromic element with axis aT and with quaternionic length

vector (τ1, τ2) . Let p ∈ H4 such that p /∈ aT and assume that the perpendicular from p

to aT meets aT at p̂. Denote by α = α(p) the angle at p̂ in the triangle (p, p̂, T2(p)) . Let

d = dist(p, T (p)) and δ = dist(p, aT ) . Then,

cosh d = cosh τ1 + sinh2 δ ·
(
cosh τ1 − cosα

)
. (1.17)

Proof : Assume without loss of generality that

T =

(
eτ1/2 exp(iτ2/2) 0

0 e−τ1/2 exp(−iτ2/2)

)
,

that is, aT equals the positive i3−axis, and T2 is a rotation in the (1, i)−plane of { x =

x0 + x1i+ x2j + yi3 ∈ C3 } .

Observe that δ = dist(p, p̂) = dist(|p| i3, p) = dist(|p| i3, T2(p)) satisfying cosh δ = | p |/p3 .

Now, project the hyperbolic triangle (p, |p| i3, T2(p)) orthogonally down to { y = 0 } ≃ E3

and use Euclidean trigonometry to verify that

cosα =
(p2

0 + p2
1) cos τ2 + p2

2

p2
0 + p2

1 + p2
2

≥ cos τ2 . (1.18)
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Write p = z + p2j + p3i3 for some z = r exp(iψ) with r2 = p2
0 + p2

1 . Then, we obtain

cosh d = 1 +
| p− T (p) |2

2p2
3e
τ1

= 1 +
| p− eτ1 exp(iτ2/2) p exp(iτ2/2) |2

2p2
3e
τ1

= 1 +
| (r exp(iψ), p2, p3) − eτ1 (r exp(i(ψ + τ2)), p2, p3) |2

2p2
3e
τ1

= 1 +
| r exp(iψ) − reτ1 exp(i(ψ + τ2) |2 + (p2

2 + p2
3) (eτ1 − 1)2

2p2
3e
τ1

= cosh τ1 + 2
p2
2

p2
3

sinh2(τ1/2) +
p2
0 + p2

1

p2
3

(
cosh τ1 − cos τ2

)

= cosh τ1 + 2 sinh2(τ1/2)
p2
0 + p2

1 + p2
2

p2
3

+
p2
0 + p2

1 − (p2
0 + p2

1) cos τ2
p2
3

= cosh τ1 + sinh2 δ ·
(
cosh τ1 − cosα

)
,

since sinh2 δ = (p2
0 + p2

1 + p2
2)/p

2
3 . This proves (1.17). Q.E.D.

2. The collar theorem

2.1. Statement of the result

Let M denote an oriented hyperbolic 4−manifold of finite volume. Then, M can be

written as a quotient H4/Γ by a discrete torsion-free subgroup Γ < PSL(2,H) which is

non-elementary.

Let g be a simple (i.e. with no self-intersection) closed geodesic in M of length l(g).

Consider a collar or tubular neighborhood

Tg(r) = { p ∈M | dist(p, g) < r }
around g embedded in M of collar width or radius r = r(g) ≥ 0 . We present a non-trivial

lower bound for r depending on l(g), only, which generalizes results of Brooks-Matelski

[BM] and Meyerhoff [M].

Theorem 2.1.

Let l0 =
√

3
4π log2 2 ≃ 0.06622 . Then, each simple closed geodesic g inM of length l(g) ≤ l0

has a collar of radius r satisfying

cosh(2r) =
1 − 3k

k
, where k = cosh

√
4π l(g)√

3
− 1 .
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2.2. The proof

Each lift g̃ of g in H4 is the axis of a loxodromic transformation in Γ given by some matrix

T ∈ PSL(2,H) having length vector τ = (τ1, τ2) . Here, τ1 = l(g) and τ2 encodes the

twisting of T . We call τ also the length vector of g.

Two different lifts g̃1 , g̃2 of g give rise to Γ−conjugate loxodromic elements T1, T2 with

disjoint axes aT1
, aT2

but equal length vector τ . Denote by p the common perpendicular

line of aT1
, aT2

. We have to estimate the length 2r of the segment of p between aT1
and

aT2
in terms of the translational length τ1. This will be done in two steps.

Since τ is a conjugacy invariant, we conjugate Γ such that we may assume that (cf. §1.3)

T1 =

(
eτ1/2 exp( jτ2/2) 0

0 e−τ1/2 exp(−jτ2/2)

)
,

T2 = UT1U
−1 with U =

(
a b
c d

)
.

Since < T1, T2 > is non-elementary, < T1, U > is non-elementary as well (cf. §1.1). Now,

Theorem 1.1 applied to < T1, U > yields

| eτ1/2 exp(jτ2/2) − e−τ1/2 exp(−jτ2/2) |2 ·
(
1 + | bc |

)
= 2k ·

(
1 + | bc |

)
≥ 1 , (2.1)

where k = cosh τ1 − cos τ2 .

Next, we have to relate | bc | to 2r (cf. [Be, p. 112] for the case of dimension 3). For this,

we take a Möbius transformation

V =

(
α β
γ δ

)
∈ PSL(2,H)

which maps 0,∞, U(0), U(∞) , the fixed points of T1, T2 , to −w,w,−1, 1 with |w| > 1 ,

say. Hence, the common perpendicular p is mapped to the positive i3−axis, and

2r = dist (aT1
, aT2

) = dist (aUT1
, aUT2

) = log |w| .

Furthermore, by §1.2 and (1.12), we have

[−1, 1,−w,w] = δ∗−1 [bd−1, ac−1, 0,∞] δ∗ .

A short computation, using ad∗ − bc∗ = 1 and (1.11), yields

1

4
(1 − w)2w−1 = δ∗−1 bc∗δ∗ . (2.2)

Now, write w = ρ exp(Iω) in E3 for some ω ∈ [0, 2π) and a unit pure element I ∈ H(1) .

Then,

2r = log ρ .
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Putting z := (2r + Iω)/2 , we obtain

w = e2r exp(Iω) =: exp(2r + Iω) = exp(2z) .

Next, define

sinh z :=
1

2
{ exp(z) − exp(−z) } .

Then, by (1.15),

sinh2 z =
1

4
{w + w−1 − 2 } =

1

4
(1 − w)2w−1 .

Moreover, one computes

| sinh z |2 =
1

2
( cosh(2r) − cosω ) ≤ 1

2
( cosh(2r) + 1 ) . (2.3)

Thus, (2.1) – (2.3) yield

1

2
( cosh(2r) + 1 ) ≥ | sinh z |2 = | δ∗−1 bc∗δ∗ | = | bc | ≥ 1

2k
− 1 .

Hence, we proved the following (cf. [BM, Theorem 1, p. 166] and [M, Theorem, p. 1042] in

the case of dimension 3 and [CW, Lemma 9.1, p. 133] in the case of arbitrary dimension).

Lemma 2.2.

Let g be a simple closed geodesic in M with quaternionic length vector τ such that k =

k(τ) = cosh τ1 − cos τ2 < 1/4 . Then, there is a collar Tg(r) around g in M of radius r

satisfying

cosh(2r) =
1 − 3k

k
.

The second step consists in estimating cosh(2r) in terms of l(g) = τ1 alone. This can be

achieved by following the lines of proof in [M, pp. 1044–1046]. That is, observe first that

Lemma 2.2 holds also for

k(Tn) = k(nτ) = cosh(nτ1) − cos(nτ2) <
1

4
, ∀n ∈ N .

Then, use the following lemma which is due to D. Zagier.

Lemma 2.3. [M, Lemma, p. 1045]

For 0 < τ1 < π
√

3 and τ2 ∈ [ 0, 2π) , there exists a number n ∈ N such that

cosh(nτ1) − cos(nτ2) ≤ cosh

√
4π τ1√

3
− 1 .
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By choosing τ1 =
√

3
4π log2 2 , Lemma 2.3 implies that

k(nτ) ≤ cosh(log 2) − 1 =
1

4
.

2.3. The relative size of a collar in M

In this paragraph we investigate some properties of the collars just constructed around

sufficiently short closed geodesics in M such as the growth behavior of a collar in terms of

the collar width and the mutual position of the collars around disjoint loops.

Let g be a simple closed geodesic in M of length l = l(g) . If l ≤ l0 =
√

3
4π log2 2 , then

Theorem 2.1 yields a collar Tg(r) around g of radius r given by

cosh(2r) =
1 − 3k

k
, where k = cosh

√
4π l√

3
− 1 .

Remark. It is easy to see that r = r(l) is strictly decreasing.

We show that the volume of Tg(r) as a function of l is strictly decreasing as well.

Lemma 2.4.

Let Cyl (r, l) ⊂ Hn denote a hyperbolic n−cylinder of radius r with axis of length l. Then,

the volume voln(Cyl (r, l)) of Cyl (l, r) is given by

voln(Cyl (r, l)) =
2π

n− 1
· l · sinhn−1 r .

Proof : Consider the line h ⊂ Hn determined by the axis of Cyl (l, r) , and let S be the

unit sphere in its orthogonal complement. A point x ∈ Hn can be represented in the

coordinates (t, y, s) where t = dist(x, h) , y is the projection from x to h, and s ∈ S is

the tangent vector of the segment yx at y. With respect to these spherical-equidistant (or

Fermi-) coordinates, the volume element of Hn turns into (cf. [G, (20), p. 91])

d voln = cosh t sinhn−2 t dt dy ds .
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Therefore, we can write

voln(Cyl (r, l)) =

∫ r

0

∫ l

0

∫ 2π

0

cosh t sinhn−2 t dt dy ds

=2π · l ·
∫ sinh r

0

un−2 du

=
2π

n− 1
· l · sinhn−1 r .

Q.E.D.

Proposition 2.5.

Let g denote a simple closed geodesic in M of length l ≤ l0 . Then, the volume vol4(Tg(r))

of the collar Tg(r) of radius r = r(l) is a strictly decreasing function of l.

Proof : We have to investigate the growth of vol4(Tg(r)) = vol4(Cyl (r, l)) . By Lemma

2.4, we can write

vol4(Cyl (r, l)) = 2π/3 · l · sinh3 r = 2/3 · sinh r · vol3(Cyl (r, l)) . (2.4)

Now, sinh r is strictly monotonely decreasing in terms of l by the above Remark. Moreover,

the same is true for vol3(Cyl (r, l)) = π · l · sinh2 r(l) . Namely, since l · k′(l) > k(l) by [M,

p. 1047], one sees that

d

dl

(
l · sinh2 r(l)

)
=

d

dl

(
l · 1 − 4k(l)

2k(l)

)
< 0 , where k(l) = cosh

√
4π l√

3
− 1 .

Hence, by (2.4), the assertion is proved.

Q.E.D.

Proposition 2.6.

Let g , g′ be two simple closed geodesics in M of lengths l, l′ ≤ l1 :=
√

3
4π log2 17

9 (< l0)

which do not intersect. Then, the collars Tg, Tg′ of radius r(l), r(l′) are disjoint.

Proof : Let g̃, g̃′ be lifts to H4 of g, g′ in M = H4/Γ , and denote by T, T ′ ∈ Γ

loxodromic elements with axes g̃ , g̃′ and quaternionic length vectors τ, τ ′ . Put δ =

dist (g̃, g̃′) . We have to show that δ ≥ r + r′ , where r = r(l), r′ = r(l′) .

For this, conjugate T, T ′ in PSL(2,H) in order to obtain the elements

X =

(
eτ1/2 exp(jτ2/2) 0

0 e−τ1/2 exp(−jτ2/2)

)
, Y =

(
a b
c d

)
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of quaternionic length vectors equal to τ, τ ′ . Consider the element Y XY −1 conjugate

to X whose axis aY XY −1 = Y (aX) is disjoint from aX and aY . Let p ∈ aX denote the

point such that δ = dist (aX , aY ) = dist (p, aY ) ; p is the foot point on aX of the common

perpendicular of aX , aY . By construction, d := dist (p, Y (p)) ≥ 2r . Now, using the

notation k′ := k(Y ) = cosh τ ′1 − cos τ ′2 , Lemma 1.3 and (1.18) imply that

cosh(2r) ≤ cosh d = cosh τ ′1 + sinh2 δ (cosh τ ′1 − cosα)

≤ k′ + 1 + sinh2 δ · k′ = cosh2 δ · k′ + 1 .

By Theorem 2.1, we deduce that

cosh(2δ) = 2 cosh2 δ − 1 ≥ 2 · cosh(2r) − 1

k′
− 1 = 2 · 1 − 4k

kk′
− 1

=
1 − 4k

kk′
+

1 − 4k − kk′

kk′
.

Suppose that k′ ≥ k (otherwise, exchange the role of X and Y ). Then, we obtain

cosh(2δ) ≥
√

1 − 4k

k
·
√

1 − 4k′

k′
+

1 − 4k − kk′

kk′
.

By assumption, l ≤ l1 =
√

3
4π log2 17/9 <

√
3

4π log2(11 +
√

40)/9 . Therefore, by Theorem

2.1,

k = cosh

√
4π l√

3
− 1 < 2/9 .

Hence,

cosh(2r) =
1 − 3k

k
<

√
1 − 4k

k
,

and similarly for cosh(2r′) . In order to conclude that cosh(2δ) ≥ cosh(2r + 2r′) =

cosh(2r) · cosh(2r′) + sinh(2r) · sinh(2r′) , we will show that

1 − 4k − kk′

kk′
≥

√
1 − 4k − k2

k
·
√

1 − 4k′ − k′2

k′
≥ sinh(2r) · sinh(2r′) .
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First, it is very easy to see that

(
1 − 4k − k2

)
·
(
1 − 4k′ − k′2

)
≤

(
1 − 4k − kk′

)
·
(
1 − 4k′ − kk′

)
.

Therefore,
1 − 4k − kk′

kk′
≥

√
1 − 4k − kk′

k
·
√

1 − 4k′ − kk′

k′

≥
√

1 − 4k − k2

k
·
√

1 − 4k′ − k′2

k′
.

Secondly, since k < 2/9 , it can be checked that

sinh(2r) =

√
1 − 6k + 8k2

k
<

√
1 − 4k − k2

k
,

and similarly for sinh(2r′) . This finishes the proof. Q.E.D.

2.4. Cusps and collars

In this paragraph, assume that M = H4/Γ is a non-compact oriented manifold of finite

volume. That is, Γ < PSL(2,H) is a discrete non-elementary group without torsion

containing parabolic elements which give rise to cusps in M .

In general, a cusp C ⊂ Hn/Γ can be written as C = Cq = Vq/Γq for some point q ∈ ∂Hn ,

where Γq < Γ is of parabolic type with fixed point q (cf. §1.1), and where Vq ⊂ Hn is

some precisely invariant horoball based at q. Actually, one can associate to Γq a particular

horoball Bq based at q such that Bq/Γq embeds in Hn/Γ . Assume for simplicity that

q = ∞ . By a theorem of Bieberbach, the subgroup Λ = Λ(∞) ⊂ Γ∞ consisting of all

translations (cf. (1.9)) is a lattice of finite index and rank n − 1. Let µ ∈ Λ ∼= En−1

denote a shortest nontrivial vector with associated translation tµ (cf. (1.9)). Then,

B(µ) = B∞(µ) = { x ∈ Hn | sinh
1

2
dist(x, tµ(x)) <

1

2
} = { x ∈ Hn | xn > |µ | }

is called the canonical horoball of Γ∞ . Generalizing [Be, Theorem 5.4.4]), S. Hersonsky

[H] showed that B∞(µ)/Γ∞ embeds in M and that the canonical horoballs associated to

inequivalent parabolic elements in Γ are disjoint. The following two lemmata provide a

different proof; this one is inspired by [Sh].
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Lemma 2.7.

Let Γ ⊂ PSL(2, Cn−1) be a discrete non-elementary subgroup containing the translation(
1 µ
0 1

)
. Define the horoball

B(µ) := { x ∈ Hn | xn > |µ | } .

Then, for all S ∈ Γ − Γ∞ ,

S(B(µ)) ∩B(µ) = ∅ .

Proof : Suppose that there is an S ∈ Γ − Γ∞ such that S(B(µ)) ∩ B(µ) 6= ∅ . Hence,

there are points x, y ∈ B(µ) such that S(x) = y . Write S =

(
a b
c d

)
. Since S /∈ Γ∞ ,

one has c 6= 0 and S−1(∞) = −c−1d ∈ En−1 with
[
c−1d

]
n

= 0 . By (1.4), we deduce

|µ | < yn =
[
S(x)

]
n

=
xn

| cx+ d |2 ≤ 1

|c|2 · xn
, (2.8)

since |cx+ d |2 = |c|2 · |x+ c−1d|2 ≥ |c|2 · x2
n . Therefore, |c|2 · |µ|2 < 1 , which contradicts

Theorem 1.2.

Q.E.D.

Lemma 2.8.

Let Γ ⊂ PSL(2, Cn−1) be a discrete non-elementary subgroup. For i = 1, 2 , let Ti ∈ Γ

be a parabolic element with fixed point qi such that S−1
i TiSi =

(
1 µi
0 1

)
for some

Si ∈ PSL(2, Cn−1) , and put Ki := Si(B(µi)) = {Si(x) | xn > |µi| } . Then,

U(K1) ∩K2 6= ∅ for some U ∈ Γ =⇒ U(q1) = q2 .

Proof: Consider the matrix V =

(
a b
c d

)
:= S−1

2 US1 ∈ PSL(2, Cn−1) . By assump-

tion, there are yi ∈ B(µi) , i = 1, 2 , such that V (y1) = y2 . Since Si(∞) = qi , i = 1, 2 ,

we have to show that V (∞) = ∞ , or equivalently, c = 0 .

Let W =

(
α β
γ δ

)
:= V S−1

1 T1S1V
−1 . Then, W = S−1

2 UT1U
−1S2 implying that W ∈

S−1
2 ΓS2 , and by (1.13),

γ = −cµ1c
∗ + cd∗ − dc∗ = −cµ1c

∗ .
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Since V (y1) = y2 , we obtain in analogy to (2.8) that |c|2|µ1µ2| < 1 , whence

|γ| · |µ2| = |c|2|µ1µ2| < 1 . (2.9)

Consider now the elements W =

(
α β
γ δ

)
, S−1

2 T2S2 =

(
1 µ2

0 1

)
in the discrete group

S−1
2 ΓS2 . They generate a discrete subgroup which, by (2.9) and Theorem 1.2, is elemen-

tary. This implies γ = c = 0 .

Q.E.D.

Consider an oriented hyperbolic 4−manifold M with cusps. We show now that the canon-

ical cusps, i.e. those covered by canonical horoballs, and the collars around short closed

geodesics, i.e. simple closed geodesics g of length l(g) ≤ l0 =
√

3
4π

log2 2 ≃ 0.06622 , are

disjoint.

Theorem 2.9.

Let M denote a non-compact oriented hyperbolic 4−manifold of finite volume. Then, the

canonical cusps and the collars around short closed geodesics in M do not intersect.

Proof : Let M = H4/Γ , and assume without loss of generality that Γ contains a parabolic

element fixing ∞. Denote by

X =

(
1 µ
0 1

)
∈ Γ∞

the translation by a vector µ 6= 0 of minimal length in Λ(Γ∞) . Hence, B(µ)/Γ∞ is a

cusp in M .

Let g be a short closed geodesic in M . Denote by Y ∈ Γ a loxodromic element with

quaternionic length vector τ = (τ1, τ2) (cf. §1.3) whose axis projects to g. Consider an

embedded collar Tg(r) around g of radius r satisfying (cf. Lemma 2.2)

cosh(2r) =
1 − 3k

k
, where k = cosh τ1 − cos τ2 <

1

4
.

We have to show that Tg(r) is disjoint from B(µ)/Γ∞ .

Since < X, Y >⊂ Γ is discrete, by §1.1, the fixed points of Y lie in { y = 0 } ≃ E3 .

Denote by z ∈ E3 the center of the circle which contains the axis of Y . Conjugate Γ

suitably by a translation which maps z to 0 and the fixed points of Y to ±ρ exp(Jω) .

Conjugating further by a suitable rotary dilation, we may assume that this new Y has

fixed points ±1 . That is, we may work with

X =

(
1 µ/ρ
0 1

)
, Y =

(
a b
b a

)
for some a, b ∈ H ,
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generating a discrete and non-elementary subgroup of Γ, and we have to show that

|µ |/ρ ≥ er .

By Theorem 1.2, we know that

|b| · |µ |/ρ ≥ 1 .

Therefore, it is enough to prove that

|b|2 · e2r ≤ 1 . (2.10)

First, observe that

e2r = cosh(2r) + sinh(2r) ≤ 2 cosh(2r) =
2

k
(1 − 3k) <

2

k
. (2.11)

Next, we estimate |b|2 proceeding as in the proof of Theorem 2.1. Let

V =

(
α β
γ δ

)
∈ PSL(2,H)

be a Möbius transformation mapping 0,∞, Y (0), Y (∞) to −w,w,−1, 1 (with w 6∈ R ).

By §1.2 and (1.12), we deduce that

[−1, 1,−w,w] = δ∗−1 [ba−1, ab−1, 0,∞] δ∗ ,

and therefore
1

4
(1 − w)2w−1 = δ∗−1 bb∗δ∗ .

We can write w = eτ1 exp(Iτ2) =: exp(τ1 + Iτ2) = exp(2z) for some unit pure element

I ∈ H(1) . Since sinh2 z = 1
4 (1 − w)2w−1 , we obtain

|b|2 = | sinh z |2 =
1

2
( cosh τ1 − cos τ2 ) =

k

2
. (2.12)

Now, (2.12) combined with (2.11) yields (2.10). Q.E.D.

Proposition 2.10.

Consider a sequence of discrete torsion-free groups Γn < PSL(2,H) containing loxodromic

elements Sn ∈ Γn with axes aSn
and length vectors τn . For τn → 0 , let Sn →(

1 µ
0 1

)
for some µ ∈ E3 − {0} . Then, the collars Tn around aSn

of radius r(τn) tend

to the horoball B(µ) = { x ∈ H4 | xn > |µ| } in H4 .
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Proof : We adopt ideas of [BM, pp. 167−168]. The translation

(
1 µ
0 1

)
has fixed point

∞. As usually, let µ = |µ| exp(Iω) . We may conjugate Γn by

U :=

(
0 |µ|1/2 exp(I ω2 )

|µ|−1/2 exp(−I ω2 ) 0

)
∈ PSL(2,H) ,

so that

U−1

(
1 µ
0 1

)
U =

(
1 0
1 1

)
=: P ,

which fixes 0, and assume that Sn ∈ Γn are loxodromic elements with limit P for τn → 0 .

That is, Sn(∞) 6= ∞ for n ≥ n0 , and the axis aSn
of Sn , n ≥ n0 , is a semicircle in E4

+

perpendicular to { y = 0 } . This semicircle can be shifted by a translation tµn
to a

semicircle centered at 0 and by a direct rotation with matrix An such that the fixed points

are ±ρ−1
n ∈ R . This, together with the fixed point condition, yields the representation

Sn =

(
1 −µn
0 1

)
A−1
n

(
an ρ−1

n bn
ρnbn an

)
An

(
1 µn
0 1

)
. (2.13)

The axis aSn
is at hyperbolic distance | log ρn | from the Euclidean hyperplane { y = 1 } .

For simplicity, assume that ρn > 1 .

Since Sn → P , the endpoints of an tend to 0 ∈ E4 , and we also have An tµn
→ E .

Moreover, by looking at the non-diagonal entries of Sn in (2.13), the same reasoning as in

the proof of Theorem 2.9 (cf. (2.12)) yields

| ρn bn | = ρn | sinh(τn/2) | → 1 ,

| ρ−1
n bn | = ρ−1

n | sinh(τn/2) | → 0 .

In the difference, this gives the asymptotic behavior

sinh(log ρn) ∼ 1

2 | sinh(τn/2) | for n ≥ n0 . (2.14)

Now, associate to each Sn , n ≥ n0 , its tubular neighborhood Tn of radius rn = r(τn)

given by (cf. Lemma 2.2)

sinh(rn) =

√
1 − 2k(τn)

2k(τn)
=

√
1

4| sinh(τn/2) |2 − 1 . (2.15)

The hyperbolic distance from the top of Tn to the Euclidean hyperplane { y = 1 } equals

log ρn − rn . Hence, the corresponding Euclidean distance behaves according to

exp(log ρn − rn) − 1 ∼ sinh(log ρn)

sinh rn
− 1 ,

and tends to 0 by (2.4), (2.15).

Q.E.D.
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3. Some applications

Let M be a compact oriented hyperbolic 4−manifold with Euler-characteristic χ(M) .

Closed geodesics in M come along with embedded tubular neighborhoods whose volumes

increase the shorter the geodesics are. This property allows to derive some global assertions

about the geometry and topology of M .

Consider the injectivity radius i(M) of M which is related to the length of a shortest (and

necessarily simple) closed geodesic g0 in M by i(M) = 1
2 l(g0) . Since M is 4−dimensional,

by [Re, Theorem], we have the inequality

i(M) ≥ const · vol4(M)−5 . (3.1)

The following result improves the exponent of vol4(M) in (3.1).

Proposition 3.1.

Let M denote a compact oriented hyperbolic 4−manifold. Then, the injectivity radius and

the volume of M are related by

i(M) ≥ const · vol4(M)−2 . (3.2)

Proof : Assume that there is a short simple closed geodesic g of length l in M . By

Theorem 2.1, there is a tubular neighborhood Tg(r) ⊂M around g of radius r satisfying

sinh2 r =
1

2k
− 2 , where k = cosh

√
4π l√

3
− 1 .

By Lemma 2.4, we get

vol4(M) ≥ vol4(Tg(r)) =
2π

3
· l · sinh3 r .

Since sinh3 r ∼ const · l−3/2 , for small l, we obtain

l ≥ const · vol4(M)−2

as desired.

Q.E.D.

Remark. By [S, Theorem], the first positive element λ1(M) in the discrete spectrum

associated to the eigenvalue problem △f + λf = 0 shows the same behavior (3.2) with
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respect to the volume vol4(M) like the injectivity radius i(M), namely, λ1(M) ≥ const ·
vol4(M)−2 . More generally, there is a close relationship between the length (or geometric)

spectrum and the eigenvalue spectrum of a compact hyperbolic n−manifold M (cf. [BB]

and [Ri]). Well understood are their asymptotic distributions. For example, if ΠM (t)

denotes the number of all free homotopy classes of length ≤ t on M , then ΠM (t) < ∞ ,

and

ΠM (t) ∼ e(n−1)t

(n− 1)t
for t → ∞ .

Moreover, two compact hyperbolic n−manifolds have the same eigenvalue spectrum if and

only if they have the same length spectrum.

Next, we present a bound for the number of different short closed geodesics in M . Two

closed geodesics g, g′ in M are called inequivalent if they do not belong to the same free

homotopy class of closed curves in M (cf. [Bu, §1.6]).

Proposition 3.2.

Let M denote a compact oriented hyperbolic 4−manifold with Euler-characteristic χ(M) .

Let g1, . . . , gm be pairwise disjoint inequivalent simple closed geodesics in M of length

< 0.04 . Then, m < 100χ(M) .

Proof : As above, each of the simple closed geodesics gi , i = 1, . . . , m , of length l(gi) <

l1 := 0.04 < l0 =
√

3
4π

log2 2 has a collar Ti = Ti(ri) embedded inM of radius ri = r(l(gi)) .

By Proposition 2.6, the collars T1, . . . , Tm are pairwise disjoint. Therefore, vol4(M) ≥∑m
i=1 vol4(Ti) . By Lemma 2.4 and by Proposition 2.5, we obtain

m∑

i=1

vol4(Ti) ≥ m · vol4(T (r(l1))) =
2π

3
·m · l1 · sinh3(r(l1)) .

On the other side, the Theorem of Gauss-Bonnet-Chern (cf. [Ch]) gives

vol4(M) =
4π2

3
χ(M) ,

which implies the bound m < 100χ(M) .

Q.E.D.

Remark. The proof shows that the data in the assertion of Proposition 3.2 can be varied.

In general, the number m of pairwise disjoint inequivalent simple closed geodesics in M

decreases the smaller the upper bound on their lengths is.
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Example. There is one explicit geometrical construction of a compact oriented hy-

perbolic 4−manifold M∗ which is due to M. Davis [D]. His construction is based on

identifying through transvections opposite dodecahedral facets in the regular polytope

P = {5, 3, 3} ⊂ H4, the so-called 120−cell, with dihedral angles equal to 2π
5 . The polytope

P can be decomposed into 14,400 congruent orthoschemes each of volume 13π2/5, 400 .

This implies that the manifoldM∗ has Euler-characteristic 26 (cf. [D] and also [K1, p. 92]).

The trigonometry of the dissecting orthoschemes can be well controlled. In particular, the

edge length L of P can be computed by

coshL =
3τ

2 − τ
, where τ = 2 cos

π

5
,

which yields L ≃ 3.23384 . Therefore, shortest closed geodesics in M∗ are of lengths

≤ 3.23384 . On the other side, proceeding as in the proof of Proposition 3.2, an arbitrary

compact oriented hyperbolic 4−manifold M with χ(M) = 26 has closed geodesics of

lengths > 9.82 · 10−8 .
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[BM] R. Brooks, J. Matelski, Collars in Kleinian groups, Duke Math. J. 49 (1982), 163−182.

[Bu] P. Buser, Geometry and spectra of compact Riemann surfaces, Birkhäuser, 1992.
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