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Hyperbolic Coxeter groups and minimal growth rates
in dimensions four and five

Naomi Bredon and Ruth Kellerhals

Abstract. For small n, the known compact hyperbolic n-orbifolds of minimal volume are intim-
ately related to Coxeter groups of smallest rank. For nD 2 and 3, these Coxeter groups are given by
the triangle group Œ7; 3� and the tetrahedral group Œ3; 5; 3�, and they are also distinguished by the fact
that they have minimal growth rate among all cocompact hyperbolic Coxeter groups in Isom Hn,
respectively. In this work, we consider the cocompact Coxeter simplex groupG4 with Coxeter sym-
bol Œ5; 3; 3; 3� in Isom H4 and the cocompact Coxeter prism group G5 based on Œ5; 3; 3; 3; 3� in
Isom H5. Both groups are arithmetic and related to the fundamental group of the minimal volume
arithmetic compact hyperbolic n-orbifold for n D 4 and 5, respectively. Here, we prove that the
group Gn is distinguished by having smallest growth rate among all Coxeter groups acting cocom-
pactly on Hn for n D 4 and 5, respectively. The proof is based on combinatorial properties of
compact hyperbolic Coxeter polyhedra, some partial classification results and certain monotonicity
properties of growth rates of the associated Coxeter groups.

In memoriam Ernest B. Vinberg

1. Introduction

Let Hn denote the real hyperbolic n-space and Isom Hn its isometry group. A hyper-
bolic Coxeter group G � Isom Hn of rank N is a cofinite discrete group generated by N
reflections with respect to hyperplanes in Hn. Such a group corresponds to a finite volume
Coxeter polyhedron P � Hn with N facets, which in turn is a convex polyhedron all of
whose dihedral angles are of the form �

k
for an integer k � 2. Hyperbolic Coxeter groups

are geometric realisations of abstract Coxeter systems .W; S/ consisting of a group W
with a finite set S of generators satisfying the relations s2 D 1 and .ss0/mss0 D 1 where
mss0 D ms0s 2 ¹2; 3; : : : ;1º for s 6D s0. For small rank N , the group W is characterised
most conveniently by its Coxeter symbol or its Coxeter graph.

Hyperbolic Coxeter groups are not only characterised by a simple presentation but
they are also distinguished in other ways. For example, for small n, they appear as fun-
damental groups of smallest volume orbifolds On D Hn=� where � � Isom Hn is a
discrete subgroup; see, e.g., [1,2,7,15,20,27]. In particular, for n D 2 and 3, the compact
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hyperbolic n-orbifold of minimal volume is the quotient of Hn by a Coxeter group of
smallest rank and given by the triangle group Œ7; 3� and the Z2-extension of the tetrahedral
group Œ3; 5; 3�. For n D 4 and 5, and by restricting to the arithmetic context, the compact
hyperbolic n-orbifold of minimal volume is the quotient of Hn by the 4-simplex group
Œ5; 3; 3; 3� and by the Coxeter 5-prism group based on Œ5; 3; 3; 3; 3�, respectively.

In parallel to volume we are interested in the spectrum of small growth rates of hyper-
bolic Coxeter groupsG D .W;S/. In general, the growth series fS .t/ of a Coxeter system
.W; S/ is given by

fS .t/ D 1C
X
k�1

akt
k ;

where ak 2 Z is the number of elements w 2W with S -length k. The series fS .t/ can be
computed by Steinberg’s formula

1

fS .t�1/
D

X
WT<W
jWT j<1

.�1/jT j

fT .t/
;

whereWT , T � S , is a finite Coxeter subgroup ofW , and whereW¿ D ¹1º. In particular,
fS .t/ is a rational function that can be expressed as the quotient of coprime monic poly-
nomials p.t/; q.t/ 2 ZŒt � of equal degree. For cocompact hyperbolic Coxeter groups, the
series fS .t/ is infinite and has radius of convergence R < 1 which can be identified with
the real algebraic integer given by the smallest positive root of the denominator polyno-
mial q.t/. The growth rate �G D �.W;S/ is defined by

�G D lim sup
k!1

k
p
ak ;

and �G coincides with the inverse of the radius of convergence R of fS .t/. In contrast to
the finite and affine cases, hyperbolic Coxeter groups are of exponential growth.

In [16] and [21], it is shown that the triangle group Œ7; 3� and the tetrahedral group
Œ3; 5; 3� have minimal growth rate among all cocompact hyperbolic Coxeter groups in
IsomHn for nD 2 and 3, respectively. These results have an interesting number theoretical
component since the growth rate � of any Coxeter group acting cocompactly on Hn for
n D 2 and 3 is either a quadratic unit or a Salem number, that is, � is a real algebraic
integer ˛ > 1 whose inverse is a conjugate of ˛, and all other conjugates lie on the unit
circle. In particular, the growth rate �Œ7;3� equals the smallest known Salem number, and it
is given by Lehmer’s number ˛L � 1:17628 with minimal polynomial

L.t/ D t10 C t9 � t7 � t6 � t5 � t4 � t3 C t C 1:

The constant ˛L plays an important role in the strong version of Lehmer’s problem about
a universal lower bound for Mahler measures of non-zero non-cyclotomic irreducible
integer polynomials; see [32].
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The proof in [21] of the two results above is based on the fact that for n D 2 and 3 the
rational function fS .t/ comes with an explicit formula in terms of the exponents of the
Coxeter group G D .W; S/ � Isom Hn.

For dimensions n � 4, however, there are only a few structural results, and closed for-
mulas for growth functions do not exist in general. In this work, we establish the following
results for n D 4 and 5 by developing a new proof strategy.

Theorem A. Among all Coxeter groups acting cocompactly on H4, the Coxeter simplex
group Œ5; 3; 3; 3� has minimal growth rate, and as such it is unique.

The cocompact Coxeter prism group based on Œ5; 3; 3; 3; 3� in Isom H5 was first dis-
covered by Makarov [26] and arises as the discrete group generated by the reflections in
the compact straight Coxeter prismM with base Œ5; 3; 3; 3�. More concretely, the prismM

is the truncation of the (infinite volume) Coxeter 5-simplex Œ5; 3; 3; 3; 3� by means of the
polar hyperplane associated to its ultra-ideal vertex characterised by the vertex simplex
Œ5; 3; 3; 3�. Our second result can be stated as follows.

Theorem B. Among all Coxeter groups acting cocompactly on H5, the Coxeter prism
group based on Œ5; 3; 3; 3; 3� has minimal growth rate, and as such it is unique.

The work is organised as follows.
In Section 2.1, we provide the necessary background about hyperbolic Coxeter poly-

hedra, their reflection groups and the characterisation by means of the Vinberg graph and
the Gram matrix. We present the relevant classification results for families of Coxeter
polyhedra with few facets due to Esselmann, Kaplinskaja and Tumarkin. Of particular
importance is the structural result, presented in Theorem 1 and due to Felikson and Tumar-
kin, about the existence of non-intersecting facets of a compact Coxeter polyhedron.

In Section 2.2, we consider abstract Coxeter systems with their Coxeter graphs and
Coxeter symbols and introduce the notions of growth series and growth rates. Another
important ingredient is the growth monotonicity result of Terragni as given in Theorem 2.

The proofs of our results are presented in Section 3. The proof of Theorem A is based
on a simple growth rate comparison argument and serves as an inspiration how to attack
the proof of Theorem B. To this end, we establish Lemma 1 and Lemma 2 about the com-
parison of growth rates of certain Coxeter groups of rank 4. Then, we consider compact
Coxeter polyhedra in H5 in terms of the number N � 6 of their facets. Since compact
hyperbolic Coxeter n-simplices exist only for n � 4, we look at compact Coxeter poly-
hedra P � H5 with N D 7, N D 8 and N � 9 facets, respectively. Certain classification
results help us dealing with the casesN D 7 and 8 while forN � 9, we look for particular
subgraphs in the Coxeter graph of P and conclude by means of Lemma 1, Lemma 2 and
Theorem 2.
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2. Hyperbolic Coxeter polyhedra and growth rates

2.1. Hyperbolic Coxeter polyhedra and their reflection groups

Denote by Hn the standard hyperbolic n-space realised by the upper sheet of the hyper-
boloid in RnC1 according to

Hn
D

®
x 2 RnC1 j qn;1.x/ D x

2
1 C � � � C x

2
n � x

2
nC1 D �1; xnC1 > 0

¯
:

A hyperbolic hyperplane H is the intersection of a vector subspace of dimension n with
Hn and can be represented as the Lorentz-orthogonal complementH D eL by means of a
vector e of (normalised) Lorentzian norm qn;1.e/D 1. The isometry group IsomHn of Hn

is given by the group OC.n; 1/ of positive Lorentzian matrices leaving the bilinear form
hx;yin;1 associated to qn;1 and the upper sheet invariant. It is well known that OC.n; 1/ is
generated by linear reflections r D rH W x 7! x � 2 he; xin;1 e with respect to hyperplanes
H D eL; see [3, Section A.2].

A hyperbolic n-polyhedron P � Hn is the non-empty intersection of a finite number
N � n C 1 of half-spaces H�i bounded by hyperplanes Hi all of whose normal unit
vectors ei are directed outwards with respect to P , say. A facet of P is the intersection of
P with one of the hyperplanes Hi , 1 � i � N . A polyhedron is a Coxeter polyhedron if
all of its dihedral angles are of the form �

k
for an integer k � 2.

In this work, we suppose that P is a compact hyperbolic Coxeter polyhedron so that
P is the convex hull of finitely many points in Hn. In particular, P is simple since all
dihedral angles of P are less than or equal to �

2
. As a consequence, each vertex p of P is

the intersection of n hyperplanes boundingP and characterised by a vertex neighbourhood
which is a cone over a spherical Coxeter .n � 1/-simplex.

The following structural result of A. Felikson and P. Tumarkin [10, Theorem A] will
be of importance later in this work. For its statement, the compact Coxeter polyhedra in
H4 that are products of two simplices of dimensions greater than 1 will play a certain role.
There are seven such polyhedra which were discovered by F. Esselmann [8]; see also [9]
and Examples 2, 4 and 10 below.

Theorem 1. Let P � Hn be a compact Coxeter polyhedron. If n � 4 and all facets of
P are mutually intersecting, then P is either a simplex or one of the seven Esselmann
polyhedra. If n > 4, then P has a pair of non-intersecting facets.

Fix a compact Coxeter polyhedronP�Hn with its bounding hyperplanesH1; : : : ;HN
as above. Denote byG the group generated by the reflections ri D rHi , 1� i �N . Then,G
is a cocompact discrete subgroup of IsomHn with P equal to the closure of a fundamental
domain for G. The group G is called a (cocompact) hyperbolic Coxeter group. It follows
that G is finitely presented with natural generating set S D ¹r1; : : : ; rN º and relations

r2i D 1 and .rirj /
mij D 1; (1)

where mij D mj i 2 ¹2; 3; : : : ;1º for i 6D j . Here, mij D1 means that the product rirj
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is of infinite order which fits into the following geometric picture. Denote by Gr.P / D
.hei ; ej in;1/ 2 Mat.N IR/ the Gram matrix of P . Then, the coefficients of Gr.P / off its
diagonal can be interpreted as follows:

�hei ; ej in;1 D

´
cos �

mij
if ].Hi ;Hj / D �

mij
I

cosh lij if dH.Hi ;Hj / D lij > 0:

The matrix Gr.P / is of signature .n; 1/. Furthermore, it contains important information
about P . For example, each vertex of P is characterised by a positive definite n � n
principal submatrix of Gr.P /.

Beside the Gram matrix Gr.P /, the Vinberg graph †.P / is very useful to describe a
Coxeter polyhedron P (and its associated reflection groupG) if the numberN of its facets
is small in comparison with the dimension n. The Vinberg graph †.P / consists of nodes
vi , 1 � i � N; which correspond to the hyperplanes Hi or their unit normal vectors ei .
The number N of nodes is called the order of †.P /. If the hyperplanes Hi and Hj are
not orthogonal, the corresponding nodes vi and vj are connected by an edge with weight
mij � 3 if].Hi ;Hj /D �

mij
; they are connected by a dotted edge (sometimes with weight

lij ) if Hi and Hj are at distance lij > 0 in Hn. The weight mij D 3 is omitted since it
occurs very frequently.

Since P is compact (and hence of finite volume), the Vinberg graph †.P / is connec-
ted. Furthermore, by deleting a node together with the edges emanating from it so that
†.P / gives rise to two connected components †1 and †2, at most one of the two sub-
graphs †1; †2 can have a dotted edge (since otherwise, the signature condition of Gr.P /
is violated).

The subsequent examples summarise the classification results for compact Coxeter
n-polyhedra in terms of the number N D nC k, 1 � k � 3, of their facets.

Example 1. The compact hyperbolic Coxeter simplices were classified by Lannér [25]
and exist for n � 4, only. In the case n D 4, there are precisely five simplices Li whose
Vinberg graphs †i D †.Li /, 1 � i � 5, are given in Figure 1. The simplex L D L1
described by the top left Vinberg graph (or by its Coxeter symbol Œ5; 3; 3; 3�; see Sec-
tion 2.2 and [18]) will be of particular importance.

Example 2. The compact Coxeter polyhedra with nC 2 facets in Hn have been classified.
The list consists of the 7 examples of Esselmann and the (gluings of) straight Coxeter
prisms due to I. Kaplinskaja; see, e.g., [9, 31]. The examples of Esselmann are products
of two simplices of dimensions bigger than 1 and exist in H4, only. The prisms (and
their gluings) of Kaplinskaja exist for n � 5, and the list includes the Makarov prism M

based on Œ5; 3; 3; 3; 3�; see Theorem B. Observe that the Vinberg graphs of all Kaplinskaja
examples (including their gluings) contain one dotted edge.

Example 3. The compact hyperbolic Coxeter polyhedra P � Hn, n � 4, with n C 3
facets exist up to n D 8 and have been enumerated by Tumarkin [35]. For n D 5, his list
comprises 16 polyhedra, and they are characterised by Vinberg graphs with exactly three
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Figure 1. The compact Coxeter simplices in H4.
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Figure 2. The Vinberg graphs of an Esselmann polyhedron
E � H4 and of a Kaplinskaja prism K � H5.
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Figure 3. The Vinberg graph of
Tumarkin’s polyhedron T � H5

with one pair of disjoint facets.

(consecutive) dotted edges, up to the exceptional case T � H5. The polyhedron T has
exactly one pair of non-intersecting facets and is depicted in Figure 3.

Remark 1. By a result of Felikson and Tumarkin [11, Corollary], the Coxeter polyhedra
in Examples 1, 2 and 3 contain all compact Coxeter polyhedra with exactly one pair of
non-intersecting facets. In particular, each compact Coxeter polyhedron P � Hn with
N � nC 4 facets has a Vinberg graph with at least two dotted edges.

Every compact Coxeter polyhedron P � Hn gives rise to a hyperbolic Coxeter group
acting cocompactly on Hn, and each cocompact discrete groupG � IsomHn generated by
finitely many hyperplane reflections has a fundamental domain whose closure is a compact
Coxeter polyhedron in Hn. In the sequel, we often use identical notions and descriptions
for both, the polyhedron P and the reflection group G.

For further details and results about hyperbolic Coxeter polyhedra and Coxeter groups,
their geometric-combinatorial and arithmetical characterisation as well as general (non-)
existence results, we refer to the foundational work of E. Vinberg [36, 37]. An overview
about the diverse partial classification results can be found in [9].

2.2. Coxeter groups and growth rates

A hyperbolic Coxeter group G D .G; S/ with S D ¹r1; : : : ; rN º as above is the geomet-
ric realisation of an abstract Coxeter system .W; S/ of rank N consisting of a group W
generated by a subset S of elements s1; : : : ; sN satisfying the relations as given by (1).
In the fundamental work [6] of Coxeter, the irreducible finite (or spherical) and affine
Coxeter groups are classified. Abstract Coxeter groups are most conveniently described



Hyperbolic Coxeter groups and minimal growth rates in dimensions 4 and 5 731

by their Coxeter graphs or by their Coxeter symbols. More precisely, the Coxeter graph
†D †.W / of a Coxeter system .W;S/ has nodes v1; : : : ; vN corresponding to the gener-
ators s1; : : : ; sN ofW , and two nodes vi and vj are joined by an edge with weightmij � 3.
In particular, there will be no edge if mij D 2 and there will be an edge decorated by1
if the product element sisj is of infinite order mij D1.

In this way, the Vinberg graph of a hyperbolic Coxeter group is a refined version
of its Coxeter graph. In this context, observe that the Coxeter graph �–1–—–� describes the
affine group zA1 and – simultaneously – is underlying the Vinberg graph � � � � � of a com-
pact hyperbolic Coxeter 1-simplex as given by any geodesic segment. Furthermore, the
reflection group in Isom H2 associated to the compact Lambert quadrilateral with Vinberg
graph � � � � �–––� � � � � is given by the Coxeter graph �–1–—–�–––�–1–—–� while the Vinberg graph �–1–—–�–––�
(coinciding with its Coxeter graph) describes a non-compact hyperbolic triangle of area �

6
.

In the case that the rank N of the Coxeter system .W; S/ is small, a description by the
Coxeter symbol is more convenient. For example, Œp1; : : : ; pk � with integer labels pi � 3
is associated to a linear Coxeter graph with kC 1 edges marked by the respective weights.
The Coxeter symbol Œ.p; q; r/� describes a cyclic Coxeter graph with 3 edges of weights
p, q and r . We assemble the different symbols into a single one in order to describe the
different nature of parts of the Coxeter graph in question; see, e.g., [18, Appendix].

Example 4. The Coxeter symbols of the seven Esselmann polyhedra in H4 are charac-
terised by the fact that they contain two disjoint Coxeter symbols associated to compact
hyperbolic triangles and called triangular components that are separated by at least one
edge of (finite) weightm� 3. Accordingly, the Esselmann polyhedronE �H4 as depicted
in Figure 2 is described by the Coxeter symbol Œ.3; 4; 3/; 4; .3; 4; 3/�. Notice that none of
the triangular components .p;q; r/, given by integers p;q; r � 2 such that 1

p
C

1
q
C

1
r
< 1,

of the Coxeter symbols appearing in Esselmann’s list is equal to .2; 3; 7/.

For a Coxeter system .W; S/ with generating set S D ¹s1; : : : ; sN º, the (spherical)
growth series fS .t/ is defined by

fS .t/ D 1C
X
k�1

akt
k ;

where ak 2 Z is the number of words w 2 W with S -length k. For references of the
subsequent basic properties of fS .t/, see for example [17,21,23]. The series fS .t/ can be
computed by Steinberg’s formula

1

fS .t�1/
D

X
WT<W
jWT j<1

.�1/jT j

fT .t/
; (2)

where WT , T � S , is a finite Coxeter subgroup of W , and where W¿ D ¹1º. By a result
of Solomon, the growth polynomials fT .t/ in (2) can be expressed by means of their
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Group Exponents Growth polynomial fS .x/

An 1; 2; : : : ; n � 1; n Œ2; 3; : : : ; n; nC 1�

Bn 1; 3; : : : ; 2n � 3; 2n � 1 Œ2; 4; : : : ; 2n � 2; 2n�

Dn 1; 3; : : : ; 2n � 5; 2n � 3; n � 1 Œ2; 4; : : : ; 2n � 2; n�

G
.m/
2 1;m � 1 Œ2;m�

F4 1; 5; 7; 11 Œ2; 6; 8; 12�

H3 1; 5; 9 Œ2; 6; 10�

H4 1; 11; 19; 29 Œ2; 12; 20; 30�

Table 1. Exponents and growth polynomials of irreducible finite Coxeter groups.

exponents m1 D 1;m2; : : : ; mp according to the formula

fT .t/ D

pY
iD1

Œmi C 1�:

Here we use the standard notation Œk� D 1 C t C � � � C tk�1 with Œk; l� D Œk� � Œl � and
so on. By replacing the variable t by t�1, the function Œk� satisfies the property Œk�.t/ D
tk�1Œk�.t�1/.

Table 1 lists all irreducible finite Coxeter groups together with their growth polyno-
mials up to the exceptional groups E6; E7 and E8 which are irrelevant for this work. Let
us add that the growth series of a reducible Coxeter system .W; S/ with factor groups
.W1; S1/ and .W2; S2/ such that S D .S1 � ¹1W2º/ [ .¹1W1º � S2/, satisfies the product
formula fS .t/ D fS1.t/ � fS2.t/.

By the above, in its disk of convergence, the growth series fS .t/ is a rational function
that can be expressed as the quotient of coprime monic polynomials p.t/; q.t/ 2 ZŒt � of
equal degree. The growth rate �W D �.W;S/ is defined by

�W D lim sup
k!1

k
p
ak ;

and it coincides with the inverse of the radius of convergenceR of fS .t/. Since �W equals
the biggest real root of the denominator polynomial q.t/, it is a real algebraic integer.

Consider a cocompact hyperbolic Coxeter group G D .G;S/. Then, the rational func-
tion fS .t/ is reciprocal (resp. anti-reciprocal) for n even (resp. n odd); see, e.g., [23]. In
particular, for n D 2 and 4, one has fS .t�1/ D fS .t/ for all t 6D 0. Furthermore, a result
of Milnor [29] implies that the growth rate �G is strictly bigger than 1 so that G is of
exponential growth. More specifically, for n D 2 and 3, �G is either a quadratic unit or a
Salem number, that is, �G is a real algebraic integer ˛ > 1 whose inverse is a conjugate
of ˛, and all other conjugates lie on the unit circle; see, e.g., [24]. However, by a result
of Cannon [4, 5] (see also [23, Theorem 4.1]), the growth rates of the five Lannér groups
acting on H4 and shown in Figure 1 are not Salem numbers anymore; they are so-called
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Perron numbers, that is, real algebraic integers > 1 all of whose other conjugates are of
strictly smaller absolute value.

Example 5. The smallest known Salem number ˛L� 1:176281with minimal polynomial
L.t/ D t10 C t9 � t7 � t6 � t5 � t4 � t3 C t C 1 equals the growth rate �Œ7;3� of the
cocompact Coxeter triangle group G D Œ7; 3� with Coxeter graph �–7–—–�–––� which in turn
is the smallest growth rate among all cocompact planar hyperbolic Coxeter groups; see
[16, 21].

The second smallest growth rate among them is realised by the Coxeter triangle group
Œ8; 3� with Coxeter graph �–8–—–�–––� and appears as the seventh smallest known Salem number
� 1:23039 given by the minimal polynomial t10 � t7 � t5 � t3 C 1; see [22].

As a consequence, the growth rate of the cocompact Lambert quadrilateral group
Q with Vinberg graph � � � � �–––� � � � � is strictly bigger than �Œ8;3�. More precisely, the
growth rate of Q is the Salem number �Q � 1:72208 with minimal polynomial t4 �
t3 � t2 � t � 1. Notice also that the Coxeter graph of Q equals �–1–—–�–––�–1–—–�; see the proof of
Theorem B in Section 3.

By applying similar techniques, it was shown in [19] (see also Floyd’s work [12]) that
the Coxeter triangle group with Vinberg graph �–1–—–�–––� has smallest growth rate among all
non-cocompact hyperbolic Coxeter groups of finite coarea in Isom H2, and as such it is
unique. The growth rate �Œ1;3� � 1:32471 has minimal polynomial t3 � t � 1 and equals
the smallest Pisot number ˛S as shown by C. Smyth; see, e.g., [32] and [19, Section 3.2].
Recall that a Pisot number is an algebraic integer ˛ > 1 all of whose other conjugates are
of absolute value less than 1.

For later purpose, let us emphasize the above comparison result as follows:

�Œ8;3� < �Œ1;3�: (3)

Example 6. Among the cocompact Coxeter tetrahedral groups, the smallest growth rate
is about 1:35098 with minimal polynomial t10 � t9 � t6 C t5 � t4 � t C 1; it is achieved
in a unique way by the group G D Œ3; 5; 3� with Coxeter graph �–––�–5–—–�–––�; see [21].

Example 7. Consider the (arithmetic) Lannér group L D Œ5; 3; 3; 3� with Coxeter graph
�–5–—–�–––�–––�–––�mentioned in Example 1. By means of Steinberg’s formula (2) and Table 1, the
growth function fL.t/ D fS .t/ can be expressed according to

1

fL.t�1/
D

1

fL.t/
D 1 �

5

Œ2�
C

6

Œ2; 2�
C

3

Œ2; 3�
C

1

Œ2; 5�

�

° 1

Œ2; 2; 2�
C

4

Œ2; 2; 3�
C

2

Œ2; 2; 5�
C

2

Œ2; 3; 4�
C

1

Œ2; 6; 10�

±
C

1

Œ2; 2; 3; 4�
C

1

Œ2; 2; 3; 5�
C

1

Œ2; 2; 6; 10�
C

1

Œ2; 3; 4; 5�
C

1

Œ2; 12; 20; 30�
:

It follows that

fL.t/ D
Œ2; 12; 20; 30�

q.t/
;
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where

q.t/ D 1 � t � t7 C t8 � t9 C t10 � t11 C t14 � t15 C t16 � 2t17 C 2t18 � t19

C t20 � t21 C t22 � t23 C 2t24 � 2t25 C 2t26 � 2t27 C 2t28 � t29 C t30

� t31 C 2t32 � 2t33 C 2t34 � 2t35 C 2t36 � t37 C t38 � t39 C t40 � t41

C 2t42 � 2t43 C t44 � t45 C t46 � t49 C t50 � t51 C t52 � t53 � t59 C t60:

The denominator polynomial q.t/ of fL.t/ is palindromic and of degree 60. By means
of the software PARI/GP [30], one checks that q.t/ is irreducible and has – beside non-real
roots some of them being of absolute value one – exactly two inversive pairs ˛˙1; ˇ˙1 of
real roots such that ˛ > ˇ > 1. Indeed, by the results in [4, 5], ˛ is not a Salem number
anymore. As a consequence, the growth rate �L D ˛ � 1:19988 of the Lannér group
L D Œ5; 3; 3; 3� is not a Salem number. However, �Œ5;3;3;3� is a Perron number. All these
properties can be checked by the software CoxIter developed by R. Guglielmetti [13, 14].

Example 8. The Coxeter prism M � H5 found by Makarov is given by the Vinberg
graph �–5–—–�–––�–––�–––�–––� � � � �l where the hyperbolic distance l between the (unique) pair of
non-intersecting facets of M satisfies

cosh l D
1

2

s
7C
p
5

2
� 1:07448:

In fact, the computation of l is easy since the determinant of the Gram matrix of M
vanishes. As in Example 7, one can exploit Steinberg’s formula (2) and Table 1 in order to
establish the growth function fM .t/. The denominator polynomial of fM .t/ splits into the
factor t � 1 and a certain irreducible palindromic polynomial q.t/. As above, the software
CoxIter allows us to identify the growth rate of the reflection group Œ5; 3; 3; 3; 3� associated
to M , as given by the largest zero of q.t/, with the Perron number �M � 1:64759. Notice
that the factor t � 1 is responsible for the vanishing of the Euler characteristic of M ; see,
e.g., [21, (2.7)].

Example 9. For the Kaplinskaja prism K � H5 depicted in Figure 2, the denominator
polynomial of the growth function fK.t/ splits into the factor t � 1 and an irreducible
palindromic polynomial q.t/ of degree 32. By means of CoxIter, one deduces that the
growth rate is a Perron number of value �K � 2:08379.

In a similar way, one computes the individual growth series and related invariants and
properties of any cocompact (or cofinite) hyperbolic Coxeter group with given Vinberg
graph.

Growth rates satisfy an important monotonicity property on the partially ordered set
of Coxeter systems as follows. For two Coxeter systems .W; S/ and .W 0; S 0/, one defines
.W; S/ � .W 0; S 0/ if there is an injective map � W S ! S 0 such that mst � m0�.s/�.t/ for all
s; t 2 S . If � extends to an isomorphism betweenW andW 0, one writes .W;S/' .W 0;S 0/,
and .W; S/ < .W 0; S 0/ otherwise. This partial order satisfies the descending chain condi-



Hyperbolic Coxeter groups and minimal growth rates in dimensions 4 and 5 735

tion sincemst 2 ¹2; 3; : : : ;1º where s 6D t . In particular, any strictly decreasing sequence
of Coxeter systems is finite; see [28]. In this work, the following result of Terragni [34,
Section 3] will play an essential role.

Theorem 2. If .W; S/ � .W 0; S 0/, then �.W;S/ � �.W 0;S 0/.

Example 10. Consider the seven Esselmann groups Ei � Isom H4, 1 � i � 7, whose
Coxeter symbols consist of two triangular components separated by at least one edge of
weightm � 3; see Example 4. Each of their triangular components describes a cocompact
Coxeter group in Isom H2 of the type .2; 3; 8/, .2; 3; 10/, .2; 4; 5/, .2; 5; 5/, .3; 3; 4/ or
.3; 3; 5/. By means of Theorem 2, we conclude that

�Œ8;3� � �Ei ; 1 � i � 7: (4)

Notice. In the sequel, we will work with the Coxeter graph instead of the Vinberg graph
associated to a hyperbolic Coxeter group .W; S/. Hence, we replace each dotted edge
between two nodes �s and �s0 by an edge with weight1, just indicating that the product
element ss0 2 W is of infinite order.

3. Growth minimality in dimensions four and five

In this section, we prove the following two results as announced in Section 1.

Theorem A. Among all Coxeter groups acting cocompactly on H4, the Coxeter simplex
group Œ5; 3; 3; 3� has minimal growth rate, and as such it is unique.

Theorem B. Among all Coxeter groups acting cocompactly on H5, the Coxeter prism
group based on Œ5; 3; 3; 3; 3� has minimal growth rate, and as such it is unique.

Proof of Theorem A. Consider a groupG � Isom H4 generated by the set S of reflections
r1; : : : ; rN in the N facet hyperplanes bounding a compact Coxeter polyhedron P � H4.
The group G D .G; S/ is a cocompact hyperbolic Coxeter group of rank N � 5. Assume
that the group G is not isomorphic to the Coxeter simplex group L D Œ5; 3; 3; 3�. We have
to show that �G > �Œ5;3;3;3� � 1:19988.

In view of Theorem 1, we distinguish between the two cases whether all facets of P
are mutually intersecting or not. In the case that all facets of P are mutually intersecting,
P is either a Lannér simplex and G is of rank 5, or P is one of the seven Esselmann
polyhedra with related Coxeter groups Ei , 1 � i � 7, of rank 6.

(1a) The Coxeter graphs of the five Lannér simplices LD L1; : : : ;L5 in H4 are given
in Figure 1. The associated growth rates have been computed by means of Steinberg’s
formula and are well known; see also [4, 31, 33]. The software CoxIter yields the values

�Œ5;3;3;4� � 1:38868; �Œ5;3;3;5� � 1:51662;

�Œ5;3;31;1� � 1:44970; �Œ.34;4/� � 1:62282;

implying that the growth rate ofLD Œ5; 3; 3;3� is strictly smaller than those ofL2; : : : ;L5.
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(1b) Let us investigate the growth rates of the Esselmann groups E1; : : : ; E7. By
Example 10, (4), we have that

�Œ8;3� � �Ei ; 1 � i � 7:

It follows from Example 5 and Example 7 that

1:19988 � �Œ5;3;3;3� < 1:2 < �Œ8;3� � 1:23039;

which shows that the growth rate of L D Œ5; 3; 3; 3� is strictly smaller than those of the
Esselmann groups E1; : : : ; E7.

(2) Suppose that P has at least one pair of non-intersecting facets. Therefore, the
Coxeter graph † of P contains at least one edge with weight 1. Since P has at least
N � 6 facets, the graph † – being connected – contains a proper connected subgraph �
of order 3 with weights p; q 2 ¹2; 3; : : : ;1º of the form as depicted in Figure 4.

s s
s







J
JJ

1

p q

Figure 4. A subgraph � of †.

By construction, the subgraph � gives rise to a standard Coxeter subgroup .W; T /
of rank 3 of .G; S/ that satisfies .W; T / � .G; S/. By Theorem 2, Example 5, (3), and
Example 7, we deduce in a similar way as above that

�Œ5;3;3;3� < �Œ8;3� < �Œ1;3� � �� � �†;

which finishes the proof of Theorem A. �

Proof of Theorem B. Let G � Isom H5 be a discrete group generated by the set S of
reflections r1; : : : ; rN in the N facet hyperplanes of a compact Coxeter polyhedron P �
H5. The group G D .G; S/ is a cocompact hyperbolic Coxeter group of rank N � 6.
Assume that G is not isomorphic to Makarov’s rank 7 prism group based on Œ5; 3; 3; 3; 3�.
The associated Coxeter prismM is described and the growth rate �M is given in Example
8. We have to show that �G > �M � 1:64759.

Inspired by the proof of Theorem A, we look for appropriate Coxeter groups of smaller
rank such that their growth data can be exploited to derive suitable lower bounds in view
of Theorem 2. To this end, consider the following abstract Coxeter groups W1; W2 and
W3 with generating subsets S1; S2 and S3 of rank 4 as defined by the Coxeter graphs in
Figure 5.

The Coxeter systems .Wi ; Si / can be represented by hyperbolic Coxeter groups Gi
for each 1 � i � 3, and they will play an important role when comparing growth rates. In
fact, the Coxeter graph ofW1 coincides with the Coxeter graph of the cocompact Lambert
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s s s s s s s s s s ss
1 1 1 1 1 1

Figure 5. The three abstract Coxeter groups W1; W2 and W3.

quadrilateral group Q � Isom H2 with growth rate �Q � 1:72208; see Example 5. Since,
for the Makarov prism M , we have �M � 1:64759, we deduce the following important
fact:

�M < �Q D �G1 : (5)

Each of the remaining Coxeter groups W2 and W3 can be represented as a discrete sub-
group ofOC.3;1/ generated by reflections in the facets of a Coxeter tetrahedron of infinite
volume. Indeed, one easily checks that the associated Tits form is of signature .3; 1/ and
that some of the simplex vertices are not hyperbolic but ultra-ideal points (of positive
Lorentzian norm). More importantly, the following result holds.

Lemma 1. (1) �G1 < �G2 . (2) �G1 < �G3 .

Proof. By means of Steinberg’s formula (2), we identify for each Gi the finite Coxeter
subgroups with their growth polynomials according to Table 1 in order to deduce the
following expressions for their growth functions fi .t/, 1 � i � 3:

1

f1.t�1/
D h.t/; (a)

1

f2.t�1/
D h.t/ �

1

Œ2; 2; 3�
; (b)

1

f3.t�1/
D h.t/ �

1

Œ2; 2; 2�
: (c)

Here, the help function h.t/, t 6D 0, is given by

h.t/ D 1 �
4

Œ2�
C

3

Œ2; 2�
C

1

Œ2; 3�
: (6)

By taking the differences between (a) and (b), (c), respectively, one obtains, for all t > 0,

1

f1.t�1/
�

1

f2.t�1/
D

1

Œ2; 2; 3�
> 0;

1

f1.t�1/
�

1

f3.t�1/
D

1

Œ2; 2; 2�
> 0:

For x D t�1 2 .0; 1/, we deduce that the smallest zero of 1=f1.x/ as given by the radius
of convergence of the growth series f1.x/ of G1 is strictly bigger than the one of 1=f2.x/
and of 1=f3.x/. Hence, we get �G1 < �G2 and �G1 < �G3 . �

For later use, we also compare the growth rate ofW1 DQ with the one of the Coxeter
group W4 with generating subset S4 of rank 4 given by the Coxeter graph according to
Figure 6. Again, the group W4 can be interpreted as a discrete subgroup G4 � OC.3; 1/
generated by the reflections in the facets of a Coxeter tetrahedron of infinite volume.
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s s s s4 1 4

Figure 6. The abstract Coxeter group W4.

Lemma 2. �G1 < �G4 .

Proof. We proceed as in the proof of Lemma 1 and establish the growth function f4.t/ by
means of Steinberg’s formula. We obtain the following expression:

1

f4.t�1/
D 1 �

4

Œ2�
C

3

Œ2; 2�
C

2

Œ2; 4�
�

2

Œ2; 2; 4�
: (d)

By means of (a), (d) and (6), we obtain the difference function

1

f1.t�1/
�

1

f5.t�1/
D

1

Œ2; 3�
�

2

Œ2; 4�
C

2

Œ2; 2; 4�
D

t4 C 1

Œ2; 3� .t2 C 1/
> 0; 8t > 0;

and conclude as at the end of the previous proof. �

Let us return and consider a compact Coxeter polyhedron P � H5 with N facets and
associated hyperbolic Coxeter groupG. By Example 1, we know that there are no compact
Coxeter simplices anymore so that N � 7. Furthermore, by Theorem 1, P has at least one
pair of non-intersecting facets. In the sequel, we discuss the cases N D 7, N D 8 and
N � 9.

For N D 7, we are left with the three Kaplinskaja prisms (and their gluings) as given
by the Makarov prism M DWM3 based on Œ5; 3; 3; 3; 3�, its closely related Coxeter prism
M4 based on Œ5; 3; 3; 3; 4� as well as the Coxeter prism K with Vinberg graph depicted in
Figure 2 and treated in Example 9. By means of the software CoxIter (or some lengthy
computation), one obtains the growth rate inequalities

1:64759 � �M < �M4 < 1:84712 < �K � 2:08379;

which confirm the assertion of Theorem B in this case.
For N D 8, we dispose of Tumarkin’s classification list comprising all compact

Coxeter polyhedra with n C 3 facets. For n D 5, these polyhedra have Vinberg graphs
with exactly three (consecutive) dotted edges except for the polyhedron T �H5 depicted
in Figure 3.

The Coxeter graph associated to T contains the proper subgraph �–4–—–�–1–—–�–4–—–� which is
associated to the Coxeter group W4 studied above; see Figure 6. By means of Theorem 2,
Lemma 2 and (5), we deduce that

�M < �G4 � �T :

For the Coxeter graph of a polyhedron P with 8 facets in H5 that is not isometric to T , we
consider its proper order 4 subgraph �–1–—–�–1–—–�–1–—–�. In a similar way, by Theorem 2, Lemma 1
and (5), we obtain

�M < �Q � �P :
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LetN � 9. By Remark 1, the Vinberg graph of the polyhedron P �H5 withN facets
has at least two dotted edges. However, two dotted edges are separated by an edge in view
of the signature condition of the Gram matrix Gr.P /; see Section 2.1.

Consider the Coxeter graph † of order N of the hyperbolic Coxeter group G associ-
ated to P . By the above, there is a proper connected subgraph � of order 4 in †, depicted
in Figure 7, with weights p; q; r; s; t 2 ¹2; 3; : : : ;1º where at least one of them is equal
to1.

s s
s
s












�
�
�

Q
Q
Q

J
J
J
J
J

r s t

p q

1

Figure 7. The subgraph � D �.p; q; r; s; t/.

In view of Figure 5, describing the three Coxeter groupsG1;G2 andG3, and by means
of Theorem 2, the growth rate of†, and hence of P , can be estimated from below accord-
ing to

�Gi � �� � �† for at least one i 2 ¹1; 2; 3º:

By Lemma 1 and (5), we finally obtain that

�M < �G1 � �P ;

as desired. This finishes the proof of Theorem B. �
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