
PROGRAM and ABSTRACTS

SCHEDULE

Monday Tuesday Wednesday Thursday Friday

09:00 – 09:15 Opening

09:15 – 10:15 Allcock I Stover II Pasquinelli Paupert Falbel

coffee break

10:45 – 11:45 Stover I Allcock II Deraux Will Parker

12:15 – lunch

15:30 – coffee

16:15 – 17:15 Reid Emery Raimbault

refreshments free afternoon

17:45 – 18:45 Kellerhals Thilmany Tumarkin

19:00 Aperitif 19:00 Dinner 18:15-19:00 Aperitif 19:00 Raclette

and Dinner Conference Dinner

Daniel ALLCOCK (Austin) :

Hyperbolic geometry and the Leech lattice

These will be expository talks about a discovery made by J. H. Conway around 1980, and later developments.
It is simple and beautiful and explains many things. Namely: the existence of the Leech lattice, and some of
its basic properties, implies the existence of a remarkable Coxeter group in hyperbolic 25-space. The details
of this 24-dimensional Euclidean lattice won’t matter very much for us. The Coxeter polytope is defined
in terms of it in a simple way; while it has infinite volume, it is akin to a horoball, and its volume is ”just
barely” infinite. The existence of this polytope explains Niemeier’s classification of the 24 even unimodular
lattices of rank 24. It explains the fundamental domains for Vinberg’s Coxeter groups in hyperbolic n-space
(n < 20), coming from Zn,1, including the strange fact that their diagrams get more and more symmetric
as n grows. It allowed the speaker to construct infinitely many finite-volume Coxeter polytopes in each
of these dimensions. It allowed Borcherds to find the highest-dimensional (so far) finite-volume hyperbolic
Coxeter groups, in H21. And it makes all of these Coxeter polytopes comprehensible, for example it’s a
pen-and-paper exercise to find their cusps. There are applications to algebraic geometry and Kac-Moody
algebras, and interesting generalizations to complex- and quaternionic-hyperbolic geometry, which alas I
probably won’t have time to say anything about.

Martin DERAUX (Grenoble) :

A smooth complex hyperbolic surface with a single end

Non-cocompact complex hyperbolic surfaces of finite volume have finitely many ends. I will briefly review
the description of their ends in terms of the Heisenberg group, and explain how to construct an infinite tower
of finite volume complex hyperbolic surfaces that are smooth, have a smooth toroidal compactification, and
such that each of these surfaces has a single end.
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Vincent EMERY (BFH Biel) :

Quaternionic hyperbolic lattices

I will report on (not so) recent results about volumes of quaternionic hyperbolic quotients. Joint work with
Inkang Kim.

Elisha FALBEL (Paris) :

CR structures and path structures

CR structures and path structures are geometric structures which appear on a three manifold equipped with
a contact structure. CR structures appear naturally as boundaries of complex manifolds. On the other hand
path structures are related to second order differential equations. I will explain several analogies between
these two seemingly different structures.

Ruth KELLERHALS (Fribourg) :

Small volume cusped hyperbolic manifolds constructed from Coxeter groups

Using the symmetric group Sn+1 and related Coxeter groups [3, 3, ..., 3, 6] we construct cusped hyperbolic
n-manifolds of small volume having small rank fundamental groups for n ≤ 5. In particular, we find a cusped
orientable arithmetic hyperbolic 5-manifold of volume 13 ζ(3)/2 starting from the ideal birectified 5-simplex.
This is joint work with Marston Conder.

John PARKER (Durham) :

Complex hyperbolic lattices and Euclidean triangle groups

As is well known, the group generated by reflections in the sides of a triangle is a lattice when the pairwise
products are rotations by integer submultiples of 2π. We can generalise this to groups generated by three
complex reflections of order (possibly) greater than 2. In this case the condition on the product is replaced
with a (generalised) braid relation. In a famous paper in 1980, Mostow constructed a family of lattices
generated by three complex reflections with braid lengths (3,3,3). Since the braiding lengths are odd then
the orders of the reflections are necessarily the same. In this talk I will consider lattices generated by three
complex reflections with braid lengths (2,4,4) and allow the reflections to have different orders. Surprisingly,
this construction yields (some of) Mostows lattices along with others constructed by Deligne-Mostow and
Deraux-Parker-Paupert.

Irene PASQUINELLI (Bristol) :

Complex hyperbolic lattices

Complex hyperbolic space is the still mysterious sibling of real hyperbolic space. In particular, it is the
only symmetric space of non-compact type where the relation between arithmeticity and lattices is not
completely understood. In my talk, I will first introduce complex hyperbolic space and the group PU(n, 1)
of its holomorphic isometries. Then I will talk about lattices in PU(n, 1) with a particular focus on the
non-arithmetic case. I will give an overview of the known constructions and I will talk about some future
directions of research, which we hope will lead to new constructions of non-arithmetic lattices.

Julien PAUPERT (Tempe) :

Higher complex hyperbolic representations of the modular group

The modular group Γ = PSL(2,Z) is the prototype of a (non-cocompact) lattice in the Lie group PSL(2,R)
(equivalently, PO(2, 1) or PU(1, 1)). Complex hyperbolic deformations of Γ, that is, deformations of Γ into
PU(2,1) under the corresponding embeddings, were studied among others by Falbel–Koseleff, Gusevskii–
Parker and Falbel–Parker, who in particular classified all discrete, faithful, parabolic-preserving represen-
tations. We consider analogous representations of Gamma into PU(n,1) for n at least 3. We classify the
connected components of the character variety and determine which of these contain (characters of) irre-
ducible parabolic-preserving representations. In dimension n = 3 we give an explicit parametrization of all
such representations using geometric coordinates, and in particular identify the previous families of discrete,
faithful, parabolic-preserving representations in this parametrization. This is joint work with Pierre Will.
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Jean RAIMBAULT (Marseille) :

Limits of Coxeter polytopes

In this talk I will present results about the limits in Chabauty topology of sequences of Coxeter polytopes
in hyperbolic space, and their applications to the finiteness problem for arithmetic reflexive lattices and to
invariant random subgroups of hyperbolic groups.

Alan REID (Rice) :

The geometry and topology of certain small volume cusped hyperbolic 4-manifolds

It is known that in dimension 3, the smallest volume cusped orientable hyperbolic manifolds contain immersed
but not embedded closed orientable totally geodesic surfaces. This talk will discuss higher dimensional
versions of this, as well considering questions related to the geometry of the complements of certain 2-tori
in S4 (that provide interesting examples of cusped hyperbolic 4-manifolds).

Matthew STOVER (Temple) :

Arithmeticity, superrigidity, and geodesic submanifolds

This minicourse will be dedicated to an overview of my work with Bader, Fisher, and Miller on arithmeticity
of real and complex hyperbolic manifolds with infinitely many (maximal, properly immersed) totally geodesic
submanifolds of dimension at least two. In honor of John Parker’s birthday and for concreteness, I will focus
on the case PU(2,1), which exhibits nearly all the interesting pathologies encountered in the proof.

Lecture 1. Superrigidity implies arithmeticity.
I will explain the Margulis method for deducing arithmeticity from superrigidity, explain why something
weaker than full superrigidity can be used to prove arithmeticity of a given fundamental group, and give
some technical reductions in the case PU(2,1) that refine the usual arithmeticity criterion.

Lecture 2. Proving superrigidity.
How does one prove a superrigidity theorem? I will give an overview of one take on the Margulis method
elegantly packaged by Bader and Furman, then explain how this can be used to prove superrigidity of certain
representations of (say) complex hyperbolic lattices, in particular those representations relevant for proving
arithmeticity of a complex hyperbolic 2-manifold with infinitely many properly immersed totally geodesic
submanifolds of real dimension at least two.

François THILMANY (Louvain) :

Lattices of minimal covolume in SLn(R)

A classical result of Siegel asserts that the (2,3,7)-triangle group attains the smallest covolume among lattices
of SL2(R). In general, given a semisimple Lie group G over some local field F , one may ask which lattices
in G attain the smallest covolume. A complete answer to this question seems out of reach at the moment;
nevertheless, many steps have been made in the last decades. Inspired by Siegel’s result, Lubotzky determined
that a lattice of minimal covolume in SL2(F ) with F = Fq((t)) is given by the so-called characteristic p
modular group SL2(Fq[1/t]). He noted that, in contrast with Siegels lattice, the quotient by SL2(Fq[1/t])
was not compact, and asked what the typical situation should be: “ for a semisimple Lie group over a local
field, is a lattice of minimal covolume a cocompact or nonuniform lattice? ”. In the talk, we will review the
basic notions at hand, some of the known results, and then discuss the case of SLn(R) for n > 2. It turns
out that, up to automorphism, the unique lattice of minimal covolume in SLn(R) (n > 2) is SLn(Z). In
particular, it is not uniform, giving a partial answer to Lubotzkys question in this case.

Pavel TUMARKIN (Durham) :

Farey graph and ideal tetrahedra

We explore a 3-dimensional counterpart of the Farey tessellation and show that it inherits many properties
of the usual 2-dimensional Farey graph. In particular, we get a classification of SL2-tilings over Eisenstein
integers in terms of pairs of paths on the graph. We also get a 3-dimensional counterpart of the Ptolemy
relation. The talk is based on a joint work with Anna Felikson, Oleg Karpenkov and Khrystyna Serhiyenko.
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Pierre WILL (Grenoble) :

Slim subsets of S3 and spherical CR uniformisations

Viewing the sphere S3 as the boundary at infinity of the complex hyperbolic plane, we call slim a subset
E of S3 such that ideal triangles with vertices in E are uniformly far from being contained in a complex
line. This property can be quantitatively described using the Cartan invariant. We prove that sufficiently
small deformations of real Fuchsian groups have slim limit sets, and discuss geometric properties associated
to the slimness property. In particular, we describe certain spherical CR uniformisations of 3-manifolds with
complex hyperbolic quasi-Fuchsian holonomy. This is joint work with Antonin Guilloux and Elisha Falbel.
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