

Algèbre et géométrie II - SP 2010 **Série 24**

A rendre le vendredi 21 mai avant midi

http://homeweb4.unifr.ch/wiemelem/pub/algebra

Exercice 1. Soit E connexe par arc et localement connexe par arc, $p: E \to B$ un revêtement, $p(e_0) = b_0$, $F = p^{-1}(b_0)$ la fibre au-dessus du point b_0 ,

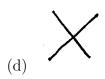
$$\mathfrak{D} = \{ \phi : E \to E; \phi \text{ homóm.}, p \circ \phi = p \}$$

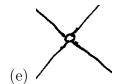
le groupe des automorphismes (transformations de Deck) de $E \to B$, $G = \pi_1(B, b_0)$ et $H = p_*(\pi_1(E, e_0))$ le groupe caractéristique.

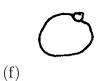
- 1. Montrez que la restriction de ϕ à la fibre $\phi|_F : F \to F$ est une application bijective et $\mathfrak{D} \to \text{Bij}(F)$, $\phi \mapsto \phi|_F$, est un homomorphisme de groupes.
- 2. Soit $\tilde{\alpha}_{\phi}$ un chemin avec $\tilde{\alpha}_{\phi}(0) = e_0$ et $\tilde{\alpha}_{\phi}(1) = \phi(e_0)$, soit $\alpha_{\phi} = p \circ \tilde{\alpha}_{\phi}$ et $[\alpha_{\phi}]$ la classe d'homotopie dans $\pi_1(B, b_0)$. Montrez que $[\alpha_{\phi}] \in N_G H$, c-à-d $[\alpha_{\phi}] h [\alpha_{\phi}]^{-1} \in H$ pour tout $h \in H$.
- 3. Montrez que $\mathfrak{D} \cong (N_G H)/H$.

Exercice 2. 1. Soit M une variété différentielle. Montrez que M a un atlas dénombrable.

- 2. Quel sous-espace de \mathbb{R}^2 a une structure différentielle ?
 - (a) $\mathbb{R} \times \{\frac{1}{n} \mid n \in \mathbb{N} \{0\}\}$
 - (b) $(-1,1) \times (-1,1)$
 - (c) \mathbb{Q}^2







Exercice 3. Soit $p: \mathbb{R}^2 \to \mathbb{R}^2/\mathbb{Z}^2 = T^2$. Pour $x \in T^2$ choisissez un voisinage ouvert $U_x \subset T^2$ de x tel que

- 1. $p^{-1}(U_x) = \coprod_{j \in \mathbb{Z}^2} V_{x,j}, V_{x,j} \subset \mathbb{R}^2$ ouvert
- 2. $p|_{V_{x,j}}:V_{x,j}\to U_x$ est un homéomorphisme.

Soit $h_{x,j} = (p|_{V_{x,j}})^{-1}$. Montrez que $\{h_{x,j}\}_{x \in T^2, j \in \mathbb{Z}^2}$ est un atlas différentiel pour T^2 .

Exercice 4. 1. Soit M une variété différentielle, \mathcal{A}_M un atlas de M, N un espace topologique et $f: N \to M$ un homéomorphisme. Montrez qu'il existe une structure différentielle unique sur N telle que f est un difféomorphisme.

2. Spécifiez une structure différentielle pour la surface

$$N = \{x \in \mathbb{R}^3; \max(|x_1|, |x_2|, |x_3|) = 1\}$$

du cube.