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Abstract

We prove a rigidity and vanishing theorem for Spin®-manifolds. Special cases include the rigidity
of the elliptic genus and the elliptic genera of higher level. We state some applications to Spin®-
manifolds with nice Pin(2)-action.

1 Introduction

The main aim of this paper is the proof of a rigidity and vanishing theorem for Spin®-manifolds. For a
Spin®-manifold M, a complex vector bundle V over M and a Spin-vector bundle W over M we define
g-power series @§(M;V,W) and ¢%, (M;V, W), where each coefficient is the index of the Spin®-Dirac
operator of M twisted with a virtual vector bundle associated to M, V and W (see Definition 3.1).
We assume S! acts on M and the action lifts to the SpinS-structure of M, to V and to W. In this
situation the g-power series above refine to power series of S'-equivariant indices which are denoted
by ¢§(M;V,W)g1 and ¢ (M;V,W)s:.

Our main result states that ¢f(M;V,W)e1 and ¢S (M;V,W)gs1 are rigid or vanish identically
provided the first equivariant Chern classes of M and V and the first equivariant Pontrjagin classes
of M, V and W satisfy certain conditions (see Theorem 3.2). As special cases we recover the rigidity
theorem of Bott-Taubes (cf. [3], [27]) for the elliptic genus and the rigidity theorem of Hirzebruch (cf.
[10]) for the elliptic genera of higher level (see Corollary 3.3). The proof of Theorem 3.2 which uses the
Lefschetz fixed point formula and the theory of Jacobi forms is in the same spirit as Liu’s treatment
of the rigidity of elliptic genera. For Spin-manifolds vanishing type results as given in Theorem 3.2
were proven by Liu in [21].

The vanishing theorem implies the vanishing of certain mixed characteristic numbers, i.e. certain
polynomials in the characteristic classes of the Spin®-structure, V and W vanish after evaluation on
the fundamental cycle of M. It leads to many new applications to Spin®-manifolds which admit an
almost effective Pin(2)-action which is trivial on integral cohomology (such actions will be called nice).
We state two of them which are proven in [6] (see also [5]).

The first application asserts the vanishing of ¢§(M;0,0) if ¢;(M) and p;(M) are torsion classes.
This result implies the vanishing of the Witten genus (see Theorem 3.4). For Spin-manifolds this
can also be derived from [21] (cf. [4]). The second application gives a partial answer to a conjecture
of Petrie concerning the total Pontrjagin class of a homotopy CP™ with S'-symmetry (see Theorem
3.5).

The paper is structured in the following way. In Section 2 we briefly recall the rigidity theorems
for classical operators and elliptic genera. In Section 3 we state our main theorem, a rigidity and
vanishing theorem for Spin®-manifolds and derive the rigidity of elliptic genera as a corollary. The
section ends with two applications to Spin©-manifolds with nice Pin(2)-action. In Section 4 we give
the proof of the rigidity and vanishing theorem. We show that the g-power series §(M;V,W)gs: and



oS (M;V,W)s1 converge for ¢ € C, |q| < 1, to holomorphic Jacobi functions of non-positive index

(see Proposition 4.9). Now the theorem follows from standard properties of Jacobi functions.

2 Classical Operators and Elliptic Genera

In this section we recall the rigidity of classical operators and elliptic genera. Let M be a closed
smooth connected manifold and let G be a compact Lie group which acts smoothly on M. For a
G-equivariant elliptic differential operator D on M the equivariant index indg(D) is defined as the

(formal) difference of kernel and cokernel of D:
indg(D) = ker(D) — coker(D).

Since D is elliptic both spaces are finite dimensional G-representations and indg(D) is an element of
the representation ring R(G). If indg(D) is trivial, i.e. any g € G acts as the identity on indg(D),
we call the operator D and also its index indg(D) rigid. Obviously the index is rigid if the G-action
is trivial. If G is connected indg (D) is rigid if and only if the restriction to any S'-subgroup is rigid.

In the following we restrict to the case that G = S' acts non-trivially on M, identify R(S') with
Z\, A" 1] and view indg: (D) as a finite Laurent polynomial in A. For any topological generator Ay of
S! the Lefschetz fixed point formula (L-F-F) of Atiyah-Segal-Singer (cf. [1], Theorem 2.9) expresses
the equivariant index indg1(D)(\g) in terms of local data vy at the connected fixed point components
Y of the St-action:

indgi1 (D)(Xo) = Y _ vy (M)

It follows from the L-F-F that vy (A) is a meromorphic function with possible poles only on the unit
circle S or in 0 and oo. Since indg:(D)(A\) € Z[A, A7!] has no poles on S' and the identity above
holds on the dense subset of topological generators of S the Laurent polynomial indg:(D)()\) extends
the sum 3" vy-()\) holomorphically to S'. Thus 3" vy ()) is a meromorphic function with possible poles
only in 0 and cc.

It is well-known that the classical operators are rigid. Here the classical operators we are referring
to are the signature operator for oriented manifolds, the Dirac operator for Spin-manifolds and the
Dolbeault operator for complex manifolds.” In all these cases each summand vy ()) is holomorphic in
0 and bounded at co. Hence by the theorem of Liouville the equivariant index of a classical operator
has to be constant as a function of A € S'.

For the Dirac operator @ this has a striking consequence: From the L-F-F follows directly that
each local contribution vanishes in 0 and oco. Thus the rigidity of indgi(9) implies the vanishing of
indg1(0). This is the famous vanishing theorem of Atiyah-Hirzebruch (cf. [2]). As a consequence
the (non-equivariant) index of the Dirac operator, the A-genus, is an obstruction to S'-actions on
Spin-manifolds.

In [28] Witten considered analogues of the classical operators on the free loop space LM of a
manifold M. Until now no mathematically rigorous definition for these “operators” is known. However,
Witten derived a formula for their indices by formally applying the L-F-F to the natural S*-action.

The group S' acts on LM by changing the parametrization of the loops. The fixed point set of
this action consists of the constant loops, which can be identified with the underlying manifold M.

fThe symbol of the Dolbeault operator is also defined for stable almost complex manifolds and its index is also rigid.



Applying formally the L-F-F for this S'-action Witten obtained invariants of the underlying manifold
M.

The invariants which correspond to the signature and the Dirac operator are the elliptic genus @y
and the Witten genus @ (cf. [28]). The elliptic genus had been studied before by Landweber-Stong
(cf. [18]) and Ochanine (cf. [23] and [24]). For a stable almost complex manifold with first Chern
class divisible by an integer N > 2 the invariant which corresponds to the Dolbeault operator is the
elliptic genus gy of level N (cf. [28]). For N = 2 it coincides with the elliptic genus. In all cases these
genera are given by g-power series where each coefficient is the index of a twisted classical operator.

Witten conjectured that the elliptic genus is rigid for an S!-equivariant Spin-manifold and that
the elliptic genus of level N is rigid for an S'-equivariant stable almost complex manifold with first
Chern class divisible by N. He also gave a heuristic proof using arguments from quantum field theory.
In the semi-free case a proof of the first conjecture was given by Ochanine in [24] (cf. also [18]). The
general case was proven by Taubes (cf. [27]) using a Dirac operator on the normal bundle to the
embedding of the manifold in its free loop space and by Bott-Taubes (cf. [3]) using elliptic function
theory. The second conjecture was proven by Hirzebruch (cf. [10] or [11], Appendix III). For some
related results we refer to [12], [13], [14] and [17].

Later Liu observed that the rigidity theorems for the elliptic genera are consequences of the holo-
morphicity of associated Jacobi functions (cf. [20] and [21], cf. also [7]). Again the proof is based on
the L-F-F. Each local datum vy is now a function in A and ¢ and extends to a Jacobi functions py (7, 2)

272 and g = €*™7. The equivariant genus converges normally

of index zero after the substitution A = e
to the meromorphic function F(7,z) = Y puy (7, z) which is elliptic in z for the lattice Z(1, ), where 7
is any fixed element in the upper half plane. Under the action of the full modular group the function
F transforms again to the limit of power series of equivariant indices which converge normally. Each
coefficient is a finite Laurent polynomial in A since it is an S'-equivariant index. A detailed analysis
now gives the holomorphicity of F. Since for fixed 7 the function F' is elliptic in the variable z the
theorem of Liouville shows that F' is constant in z. This implies the rigidity of the equivariant genus.

Liu also proved that under certain assumptions on the first equivariant Pontrjagin class the equi-
variant Witten genus is constant zero. Based on Liu’s work we showed in [4] (cf. also [6]) that the
equivariant Witten genus vanishes for BO(8)-manifolds with non-trivial semi-simple group action.
Independently, this was proven by Hohn, also using Liu’s results. A generalization to nice Pin(2)-
actions will be given in the next section (see Theorem 3.4).

Finally we remark that elliptic genera are used to define elliptic homology (cf. [15], [16], [19]
and the work of Hopkins and his collaborators). One hopes that a geometric definition of elliptic

(co)-homology will play a similar role in topology as K-theory and ordinary cohomology does.

3 A Rigidity Theorem for Spin®-manifolds

In this section we state our main theorem, a rigidity and vanishing theorem. We derive the rigidity of
elliptic genera as a corollary and state some applications to Spin®-manifolds with nice Pin(2)-action.
Let M be a 2m-dimensional S'-equivariant Spinc-manifold and let 9. denote the Spinc-Dirac

operator.! In contrast to the classical operators considered in the previous section the equivariant

"We speak of the Spin°-Dirac operator since we are only interested in its index which is independent of the choice of
connections.



index of the Spin®-Dirac operator is in general not rigid. For example CP? admits a Spin®-structure
and a linear S'-action such that the action lifts to the SpinS-structure and for any lift the equivariant
index of the Spin®-Dirac operator is not rigid (for details cf. [5], p. 22). For rigidity results under
additional assumptions we refer to [9] and [22].

We now come to the construction of certain g-power series of equivariant indices of twisted Spin®-
Dirac operators which are used in the rigidity und vanishing theorem (see Theorem 3.2). For a
2m-dimensional S'-equivariant Spin®-manifold M with Spin®-Dirac operator 0. the construction in-
volves an S'-equivariant s-dimensional complex vector bundle V over M and an S'-equivariant 2¢-
dimensional Spin-vector bundle W over M. From these data we build the g¢-power series
Ry € Kg1(M)][q]] of virtual S'-equivariant vector bundles defined by

o o o0
Ry := Q)5 (TM @ C) @ A_1 (V") @ QA_g (V @R C) ® AW) @ Q)Agn (W @r O).
n=1 n=1 n=1

Here ¢ is a formal variable, E denotes the reduced vector bundle E —dim(E), A(W) is the full complex
spinor bundle associated to the Spin-vector bundle W and A; := Y A%-# (resp. S; := ) S* ') denotes

the exterior (resp. symmetric) power operation. The tensor product is, if not indicated otherwise,

taken over the complex numbers. If ¢;(V) is divisible by an integer N > 2 and y := —e?™/N we also
consider Ry € Kgi1(M) ®z C[[g]] defined by
o0 . . o _ . . o .
Ry = QS (TM @ C) @ Ay(V*) @ R)(Ay-140(V) ® Aygn (V) @ AW) @ R)Agn (W @ C).
n=1 n=1 n=1

We extend the index function indg: to power series.

Definition 3.1. Let ¢§(M;V,W)g1 be the Sl-equivariant index of the Spin®-Dirac operator twisted
with R(), i.e.
@S (M;V,W) g1 := indg: (0. ® Roy) € R(S)[[g]]-

Let ¢ (M;V,W)g1 be the Sl-equivariant index of the Spin®-Dirac operator twisted with Ry, i.e.
5% (M;V,W)g1 == indg1 (0. ® Ry) € R(S") ®z C[[q]]-
In the non-equivariant situation we write o§(M;V,W) and ¢ (M;V, W), respectively.

We remark that these power series specialize to the Witten genus and to the elliptic genera. In fact, if
M is an S'-equivariant Spin-manifold with tangent bundle TM and if §, is the induced Spin®-Dirac
operator then

ew(M)g1 = ¢5(M;0,0)51  and e (M) g1 = 5(M;0,TM)g1.

If M admits an S'-equivariant stable almost complex structure 7(M) and if d is the induced Spin®-

Dirac operator then

on(M)g1 = o§(M;7(M),0)51.
Here @e(M)g1 and @ (M)g1 denote the equivariant elliptic genera and ¢ (M )g1 denotes the equi-
variant Witten genus.

In order to state the rigidity theorem for ¢§(M;V, W) and ¢S, (M;V,W)s1 we need to introduce
some notation. For an S'-equivariant virtual vector bundle E over M and a characteristic class u(E)
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the equivariant characteristic class will be denoted by u(F)gi. We recall that the Spin®-structure
induces an S'-equivariant complex line bundle L. over M. Let P be the Spin®-principal bundle over
M. Then L is defined by the U(1)-principal bundle P/Spin(2m) — P/Spin®(2m) = M using the
standard embedding Spin(2m) — Spin®(2m). Its equivariant first Chern class ¢;(L¢)g1 will also be
denoted by c;(M)g:. Finally, let 7= denote the projection of the fixed point manifold M* "toa point
pt and let = be a fixed generator of H2(BS';Z). Our main result is

Theorem 3.2. Assume that the equivariant class p1(V + W — T M) restricted to M5 s equal to
7*(T - %) modulo torsion for some integer T and assume that c;(M)g1 and ¢y (V)1 restricted to M5

are equal modulo torsion.

1. If T =0 then ¢§(M;V,W)s1 is rigid, i.e. each coefficient of the g-power series does not depend
on X € S*. If, in addition, c1(V) is divisible by an integer N > 2 then ¢S (M;V,W)g1 is rigid.

2. If T < 0 then ¢§(M;V,W)g1 vanishes identically. If, in addition, c¢i(V') is divisible by an integer
N > 2 then %, (M;V,W)s1 vanishes identically.

For Spin-manifolds vanishing type results as given in Part 2 were proven by Liu in [21]. The proof
of Theorem 3.2 will occupy the next section. We remark that in Part 2 the condition on the first
equivariant Chern class can be relaxed to ¢; (M )| Ast = cl(V)| st modulo torsion (cf. [5] for details).

As a special case we obtain the rigidity theorems for elliptic genera.
Corollary 3.3. 1. The elliptic genus is rigid for a Spin-manifold with S'-action.

2. The elliptic genus of level N is rigid for an S*-equivariant stable almost compler manifold M
with first Chern class divisible by N.

Proof: Let M be a Spin-manifold with S'-action. After doubling the action we may lift the S'-
action to the Spin-structure. Let V = 0 and W = TM. For the induced Spin®-structure one has
ca(M)si =c1(V)sr =0, p1(V+W —TM)g1 =0 and @e;(M)g1 = ¢§(M;0,TM)g1. Thus Theorem
3.2, Part 1, implies the rigidity of the elliptic genus.

If M admits an S'-equivariant stable almost complex structure 7(M) let V = 7(M) and W = 0.
For the induced Spin®-structure one has ¢;(M)g1 = ¢1(V) g1, p1(V4+W —TM)g1 =0 and pn(M)g1 =
@S (M;7(M),0)s1. Thus Theorem 3.2, Part 1, implies the rigidity of the elliptic genus of level N. W

The rigidity of elliptic genera implies their vanishing for actions of non-zero type (cf. for example [11],
p. 181). An analogous result holds true for ¢§(M;V,W)e1 and ¢$, (M;V,W)g1 (cf. [5], Theorem 3.9).

If M is a Spin®-manifold with ¢; (M) torsion then ¢§(M;0,0) is equal to the Witten genus. If M
is a Spin-manifold then ¢§(M;0,0)s: is equal to the equivariant Witten genus. In this situation the
statement for ¢§(M;0,0)s: in Theorem 3.2, Part 2, is a Theorem of Liu (cf. [21], Theorem 6).

One could also envisage more complicated rigidity theorems for Spin®-manifolds involving addi-
tional vector bundle data and corresponding conditions on the equivariant first Chern classes and the
equivariant first Pontrjagin classes. Since we don’t know of any interesting applications for these more

complicated versions we have restricted to the situation described above.



Theorem 3.2 leads to many new results for Spin®-manifolds with nice Pin(2)-action. The action
is called nice if Pin(2) acts almost effectively, i.e. with finite kernel, on the manifold and acts trivially
on the integral cohomology ring. In particular any non-trivial semi-simple group action leads to a
nice Pin(2)-action. We state two applications. The proofs are given in [6] (for the special case of

semi-simple group actions proofs are given in [5]).

Theorem 3.4. ([6], Th. 4.1) Let M be a 2m-dimensional Spin®-manifold with nice Pin(2)-action.
Assume the first Chern class of the Spin®-structure and the first Pontrjagin class of M are torsion.
Then the S'-action induced by S' — Pin(2) lifts to the SpinS-structure. For any lift the q-power
series of S'-equivariant twisted SpinS-indices 05(M;0,0)s1 vanishes identically. In particular the
Witten genus @w (M) is zero. [ |

Theorem 3.4 generalizes previous results. The vanishing of the Witten genus was proven by the author
for BO(8)-manifolds with non-trivial $3-action in [4] and independently by Hohn in unpublished work.
We remark that the vanishing of the Witten genus stated in Theorem 3.4 leads to some evidence for
the following conjecture of Stolz and Héhn: Let M be a Spin-manifold with &-(M) = 0. If M admits
a metric with positive Ricci curvature then oy (M) = 0. The conjecture implies the existence of a
simply connected manifold which admits a positive scalar, but no positive Ricci curvature metric (cf.
126]).

The second application deals with cohomology CP™’s, i.e. manifolds having the same integral
cohomology ring as CP™. Note that any homotopy CP™ is a cohomology CP™. The motivation is
a conjecture of Petrie (cf. [25], Strong conjecture, p. 105) which we state in the following equivalent
form: If M is a homotopy CP™ with non-trivial S'-action then the total Pontrjagin class has standard
form, i.e. p(M) = (1 4+ x2)™*! for a generator x of H?(M;Z). Using Theorem 3.2 we can show the

Theorem 3.5. ([6], Th. 4.2) Let M be a cohomology CP™ with nice Pin(2)-action. If m is odd
assume in addition that the Pin(2)-action has a fized point. Let x be a generator of H2(M;Z) and let
b be the integer defined by p1(M) =b-x2. Thenb<m+1 and

b=m+1= p(M) = (1+z?)™

This theorem is based on Part 2 of Theorem 3.2. The proof involves the following steps (details are

given in [6]):

1. The hypothesis implies that the S!-action induced by S' < Pin(2) has a fixed point (if m is
even this follows from the Lefschetz fixed point formula for the Euler characteristic).

2. Fory € H?(M;Z) let L, denote the complex line bundle with ¢; (L) = y. For k € {0,1,... [%52]}
let Vi := Loy + (b — 4 — 2k) - Ly, Wy := (2k) - L, and choose a Spin®-structure on M with
c1(M) = ¢1(Vg). Note that pi(Vy+ Wy, —TM) = 0. One can show that the Pin(2)-action lifts to
each line bundle occuring in V; and W},. Also the S'-action lifts to the chosen Spin®-structure.
At the Pin(2)-fixed point the equivariant vector bundles V;, and Wy reduce to sums of trivial
complex Pin(2)-representation. This in turn implies that p;(V;, + Wy — TM) g1 = 7*(Z - 22) for

some negative number 7.



3. Part 2 of Theorem 3.2 implies the vanishing of ¢§(M, Vi, Wy). In particular, the constant term
in the g-power series ¢§(M, Vi, Wy) is zero, i.e.

(AM) - (&~ ) - (eF — e 32 (e 4 =3, M) =0,

where A denotes the multiplicative sequence for the A—genus.

4. If b > m + 1 one of the above relations (k = W) gives the contradiction (z™,[M]) = 0. If
b = m + 1 the relations above together with the signature theorem completely determine .fl(M )
and therefore determine the total Pontrjagin class p(M). Since all these relations also hold true
for CP™ we conclude that p(M) = (1 + z2?)™+L.

4 Proof of Theorem 3.2

In this section we give the proof of the rigidity and vanishing theorem. In the following the (equivariant)
index of a twisted Spin®-Dirac operator will be called (equivariant) twisted Spin©-index. For technical
reasons we replace the action by the 2N-fold action. Note that replacing the action leads to a statement
equivalent to Theorem 3.2.

Here is an outline of the proof where we restrict to the statement for ¢, (M; V, W) (the reasoning for
©&(M;V, W) is similar): For any topological generator Ay = e2™% of S! the coefficients of the g-power
series % (M; V, W) g1 (o) of equivariant twisted Spin®-indices can be calculated via the Lefschetz fixed
point formula. This formula gives a local datum for each connected component Y of M S'. We in-
troduce a function F(Y)(r,z,¢) := F(fz)
€ = (T1yeen s Ty U1y v e 5 Vs, W1, .- - ,fgjt) € Cmt+stt. This function is meromorphic on (7,2,£) €

(Y)(r,2,&), where 7 is in the upper half plane #H, z € C and

H x C x C™+5+t has as building block the Weierstrass’ ®-function and has as input the local ge-
ometry of the S'-action on V, W and the Spin®-structure at Y (see Definition 4.2, Part 1). For a

topological generator Ao = e?™%0, z, close to zero, we show that the g-power series
N (M3 V, W) s1(Xo)

converges normally on B := {g € C | |q| < 1} for ¢ = ™7 and Ay = €?™% to the meromorphic
function :

5Py (P55 ) (€00

Yey

Here ) denotes the set of connected components of M*° " and Py is a polynomial in 6%1’ (% and %

over (Q which corresponds to evaluation on the fundamental cycle of Y (see Corollary 4.4). At this
point we use the condition on the equivariant first Chern classes of V' and the SpinC-structure stated
in Theorem 3.2.

Since each coefficient of the g-power series ¢%(M;V,W)g: is an equivariant twisted Spin®-index,
each coefficient is a finite Laurent polynomial in A. In particular as a function in A each coefficient
has no poles on S'. Since ¢S (M;V,W)g: converges normally to a meromorphic function it follows
from a function theoretical lemma (see Lemma 4.5) that

Fu(r2)i= Py (FO(r2 o) ) (€=0)

Yey



is holomorphic on (7, z) € H x R (see Proposition 4.6).

The condition on the equivariant first Pontrjagin class implies that Fy (7, z) is a Jacobi function
(i.e. transforms like a Jacobi form) of index Z for a subgroup of SLy(Z) of finite index (see Proposition
4.9). We show that under the action of the full group SLy(Z) the function Fy(7,z) transforms to
functions which are again the limit of normally convergent power series of twisted Spin€-indices. Here
we need all conditions on the equivariant characteristic classes. By the same reasoning as above we
conclude that all these transformed functions are holomorphic on A X R. Now the transformation
properties for Jacobi functions imply that Fy(7,z) is holomorphic on # x C. If Z = 0 this implies
that Fy(7,2) is constant in z and @5 (M;V,W)ge is rigid. If Z < 0 this implies that Fy(7,2) and
oS (M;V,W)gs1 vanish identically. This finishes the outline.

We now begin with the proof of Theorem 3.2. The conditions on the first equivariant Pontrjagin
classes and Chern classes will be assumed throughout this section. Since we have replaced the S'-action
by the 2N-fold action Z is divisible by (2N)2.

Let P — M denote the Spin®(2m)-principal bundle defining the Spin©-structure on M. For later
purposes we fix a U(s)-reduction Py of V, i.e. Py is an S'-equivariant U (s)-principal bundle over
M and there is a fixed S'-equivariant isomorphism V = Py Xy(sy C° of complex vector bundles.
Similarly, let Py be an S'-equivariant Spin(2t)-principal bundle over M with a fixed S!-equivariant
isomorphism W = Py X gpin(at) R?® of oriented vector bundles.

If ¢1(V) is divisible by an integer N > 2 the determinant line bundle det(V') admits an equivariant
N root L. In particular, N - ¢i(L)g: = ¢1(V)g:.! At each point of a given fixed point component
Y C MS' the line bundle L reduces to a complex one-dimensional S'-representation S' — U(1),
A= M) where [(Y) only depends on Y.

During the proof we will need to study a family of series of twisted Spin®-indices indgz)k (M)g1. If
not stated otherwise the index set will be always of the following form: € € {%, 5 TTH}, k € Z, and
either (a,k) =0 or a = LA}L” #0, aj € {0,... ,N — 1}, where N is an integer > 2. Note that for
(a, k) # 0 the integer N is part of the structure but is suppressed in the notation md((;’)k(M )gi. If
c1(V) =0mod N and («, k) # 0 let

—_— o0 ~ —_—
Sa,k(V) = Ay(V*) & ®(Ay‘1qn(v) &® qu”(V*)) ® Lka

n=1

@ Y’ o ~
where y := —¢~ - ¢®™ ¥ . Let So,0(V) =A1(V*)®@ @ A_»(V ®r C) and let

n=1

1 = S = T S =
RE(W) == A(W) ® QAp (W @r C), RE(W):= ®qu_n{_1 (W ®g C),
n=1

n=1 =

T+1

oo
R(T)(W) = @A_q% (W ®r C).
Recall that 0. denotes the Spinc-Dirac operator on the S'-equivariant Spin®-manifold M. We extend

the index function indg1 to power series and make the

TNote that the N-fold action always lifts to L with this property (cf. [11], p. 181).



Definition 4.1. The power series of equivariant Spin©-indices znd((;,)k (M)s1 € R(S!) ®z (C[[qﬁ]] is
defined by

ind$, (M) g1 = indg (9 ® (RQ)Sgn(TM ®g C) ® Sax(V) ® RO(W)).
n=1

1 1
Note that @S (M;V,W)g: = ind'?) (M) and @§(M;V,W)g: = indy) (M)g:. The other indices will
N i

enter the proof when we consider the modularity properties of % (M;V,W)gs1 and ¢f(M;V,W)s
(see Proposition 4.9 below).

We proceed to give the Lefschetz fixed point formula for ind((;,)k(M )st in terms of certain power
series associated to the Weierstrass’ ®-function (see Proposition 4.3 below). In order to state this
formula we describe the local geometry of the Spin€(2m)-principal bundle P and the principal bun-
dles Py and Py at a connected component Y of M S' in terms of classifying spaces and universal
equivariant roots.

We digress for a moment and consider an S'-equivariant H-principal bundle @ over M, where
H is a connected compact Lie group. Let Ty be a fixed maximal torus of H. Since Y is a trivial
Sl-space the action of S! on the restriction Q|y preserves the fibres and commutes with the principal
action of H. It is well-known that @y admits an S L_equivariant reduction Q' C Q)y with respect to
H' C H, where H' is the centralizer in H of the image f(S') of a homomorphism f : S' — Ty. The
homomorphism f is unique up to the action of the Weyl group W (H) on Ty. The S'-action on Q' is
given by the principal action via f from the right (for details we refer to [5], Appendix A.3).

Let {41,...,%} be a fixed basis of the Lie algebra ty of Ty = Ty, and let 4 be the standard
generator of the integral lattice of tg1. Then the differential df maps @ to > n;(Y) - 4;. We identify
the dual basis {u;} of {@;} with elements in the second cohomology of the classifying space of Ty via

transgression. So for any C-algebra A
H™(BTy; A) = Allug, ... u].

We call {u; + n;(Y) - z} € H*(BTy;C[z]) the universal equivariant roots of @ at Y. Of course,

the universal equivariant roots depend on the choices made above.

Notation: To simplify further calculations we will use the following notation, where u;, z may be

formal variables, cohomology classes or complex numbers, depending on the context.

i(
i(Y)
o [u(Y)| = u(¥)[(z) :== > ui + > ni(Y) - 2

o [8(Y)] = [4(V)](2) = Yo i + 2 - Yy mi(Y) - 2.

Y):=ui(Y)(2) := ui + ni(Y) - 2.

=

(Y
=u;(Y)(2) :==u; + 275 - n; (V) - 2.

°
=4}

Note that in the case of the principal bundles P, Py and Py above the n;(Y)’s have a familiar
interpretation as rotation numbers of associated vector bundles. For example, let Z1,... , Z;,, Zc denote
the standard basis of the integral lattice of tgo@m)xv(1)- We identify tgpine2m) With tsom)xu(1), using
the two-fold covering. Let

x(Y)(z)=zi+mi(Y)- -z, i=1,... ,m, and xc(Y)(2) =xc + mc(Y) - 2



denote the universal equivariant roots of P at Y. Then {£m;(Y)} are the rotation numbers of T M at
Y and m¢(Y) is the rotation number of the complex line bundle L, associated to the Spin®-structure.

Similarly, for the universal equivariant roots
viY)(z)=vj+sj(Y)-2,j=1,...,s and wiy(Y)(z) =wp +4:(Y) -2, k=1,... 1,

of V and WT the s; (resp. the £t;) are the rotation numbers of V and W at Y. Since we replaced
the action by its 2N-fold action all rotation numbers are divisible by 2/V.

The reductions of the groups Spin®(2m), U(s) and Spin(2t) at Y will be denoted by H', H{, and
Hj,,, respectively. The reductions of the principal bundles at Y will be denoted by P', P{, and P,
respectively. Let

fy:Y = B(H' x Hj, x Hyy)

denote a classifying map of the fibrewise product P’ @ P], @ P}, (this is the pullback of P’ x P, x P,
under the diagonal). Note that Y is even-dimensional and inherits an orientation from the reduction
P

We will now introduce certain power series associated to the Weierstrass’ ®-function which will be
used in the statement of the Lefschetz fixed point formula (see Proposition 4.3 below). Recall that

the Weierstrass’ ®-function ®(7, z) may be defined by the normally convergent infinite product

Imi-z iz 00 n 2wz _ n,—2miz
bo(g2) i=(e> —em ) H(l — (1 )_(;n);l ) omiw- (14 2 Cllg, ),
n=1

27T

where ¢ = ™7, 7 is in the upper half plane H and z € C. The function ®(7,z) is holomorphic on
H x C. As a function in z it has simple zeros in each point of the lattice Z - 7 + Z. The function
®(7,z) is periodic with respect to 7 — 7+ 1 and x — z + 2. Its Fourier-Taylor expansiont with
respect to 7 +— 7+ 1 and z = 0 is ¢o(g,z). For a = %sz’ a; € Z, N > 2, let ¢o(q, ) denote the
Fourier-Taylor expansion of ®(7,z + «) with respect to 7 — 7+ 2N and z = 0.

We give the Lefschetz fixed point formula for mdg)k (M)g:1 in terms of Fourier-Taylor expansions of

a meromorphic function F(S,)C(Y)(T,z,f) defined below. Let € = (1,... , Ty, V1, -+ , Vs, W1,... , W) €
('r+1

Cm+o+ and let D2 (2) := 1, D) (2) 1= D7 ) (2) = el¥0I/2 = (Swntomi S tn(r)2)/2,

Definition 4.2. 1. Let F(EI)C(Y) (1,2,€), (a, k) #0, and Féfg(Y)(T,Z,f) be the meromorphic func-

Q,

tions on H x C x C™t5* defined by

. 2Ami - z; (1,v; - a)
ch,l)c(Y)(T,Z,f) = (D(T SC) ’ H Q) 7— X; ( H J ) X
» e Z(Y);é() ) j=1

D(1,e
U=509
271 - ZI;
F(e) Y)(1,2,6) .= . O(7,v, X
0,0( )( [t} ) CD(T -Tz) H q> xz H ]
m;(Y)=0
"Here ©1,... ,9s is a standard basis for tu(s), Wi,... ,Ws one for tsoas) and we identify tspin(ar) With tso(2s), using

the two-fold covering.
iBy the Fourier-Taylor expansion with respect to 7 — 7+ 1 and z = 0 we mean the series obtained by replacing each
coefficient of the Fourier series associated to ® and the period 7 — 7 + 1 by its Taylor series at = 0.
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2. Let mpag = maz{|m;(Y)| | Y € ¥,i = 1,...,m} and let A(e)k(Y)( ) and AS)(Y)(z) de-

[e%

note the Fourier-Taylor erpansions of F(if,)c(Y)(T,z, 2—7”) and F, )(Y)( ,2m) with respect to
T+ 7+ 2N and & =0 for any fized irrational number z € (— m, mjm)
Note that Aff)k(Y)(z) and A((f’z)(Y)(z) converge normally’ to F(E)( Y)(r, ,2—m) and Féeg( Y)(r, =, 2—75”)
1
for any fixed irrational number z € (— mnlm, m:m) For example, 82) is equal to

[l Gaemiom | N s ST T:[ (Vi )/ Cm) | X

m;(Y)=

tbi(g, Wi (Y)/(2mi))

k=1

1
and converges normally on B x {0} C B x C™F5* to Fé %) (Y)(r,2,£) for any fixed irrational number
z € (—=1 —w), where B = {q € C | |g| < 1}. In the following we will identify the variables z;,

Mmaz ’ Mma
v; and wy, with cohomology classes of the classifying spaces of the maximal tori of H', H{, and Hj,,.

Let [Y] denote the fundamental cycle of Y and let ( , ) denote the Kronecker pairing. We are now
ready to state the

Proposition 4.3. (Lefschetz Fixed Point Formula) For any topological generator \g = e2™"%0 ¢
St with zy € (—— L)

Mmaz > Mmax

ind ) (M)s1 (%) = 3 (F(AS(1)(20)), [Y])

Yey

Proof: The proposition follows from the Lefschetz fixed point formula (cf. [1], Theorem 2.9) using
the condition on the first equivariant Chern classes. We restrict to the statement for the coefficient of
q° in md(e) (M) g1, (o, k) # 0, and leave the general case to the reader. This coefficient is equal to

indg1 (0 ® Ay(V*) ® RS (W) ® LF),

where R((f)(W) = A(W) if e = § and R(()e)(W) = 1 otherwise. The Lefschetz fixed point formula
implies that for any topological generator Ao = €>™% of S with zy € (—— L)

Mmaz ’ Mmax

indgs1 (9 ® Ay(V*) ® B (W) @ LF) (M) = 3 a(¥) (M),
Yey

where the local datum a(Y)()\g) at the connected component Y of M5’ is given by

s [ xe(Y)(20)/2 . Ty 1
<fY ’ ( .};[)foew—e‘“/z) ( .<1;I>¢Oe*i(Y><zo>/2—e—fw(Y)(zo)/z)x

A series converges normally on a subset V of C” if it converges normally on an open neighborhood of V.

11



(ﬁ 1+y- e*Vj(Y)(Zo)) -r((f) . ek (er(D)+2mil(Y)-20) [Y]> )
1+y ’

j=1
t - .
Here 7‘(()6) = T (e¥+0(0)/2 4 o= Wk (V)(20)/2) /2 if ¢ = % and 7‘(()6) = 1 otherwise. Recall that N-c;(L)g1 =
k=1
c1(V)g1 which implies
ek (er(L)+2mi-l(Y)-20) — f;(e%'W(Y)KZO)).

Recall also that the restriction of ¢1(M)g1 and ¢1(V)g1 to Y are equal modulo torsion which implies

fi(eXeM0)y = f (£lF()I(20)y

Thus a(Y) (o) is equal to

< || e ——— II F(V)(20)/2 — g% (V) (z0)/2

m;(Y)=0 m;(Y)#0

H . oVj : 1, ; ) ’r(()e) . e%.\\'](Y)Kzg) ’ [Y]> .

(€)

A calculation shows that 7, is the coefficient of ¢° in the Fourier-Taylor expansion of

(ﬁ (7, wk(yq))((jo)eg(m) + e)) DY),
k=1 ’

Comparing the factors of the last identity with Ag)k (Y) of Definition 4.2, Part 2, we conclude

al¥) (o) = (£ (AL (Vo). [¥])

where A(OZ)k(Y)O is the coefficient of ¢° in A((f,)k(Y). This completes the proof for the restricted

statement. [ |

Next we describe the evaluation on the fundamental cycle [Y] of Y in terms of differential operators.
Let A be any C-algebra, let

rp € H*(BH'; A), zv € H™(BH; A), zw € H*(BHyy; A)

and regard z := zp ® zy @ zw as an element of A[[z1,...,Zm,Ze,V1,... ,Vs, W1 ... ,wy]| using the
cohomology of the classifying spaces of the maximal tori and the Kiinneth formula. Then

(fy (), [Y]) = Py (2)(§ = 0,z = 0),

0 0 0

Bxe’ Dy Dy,

a‘zc, a%j, % the degree 2). This polynomial only depends on the mixed characteristic numbers of

where Py is a homogeneous polynomial in Q[a%i, of degree dim(Y") (we assign to %,

P', P{, and Py, onY but does not depend on the element z and the C-algebra A (for details we refer
to [5], Proposition 7.7).

In particular, ind;’)k(M)Sl(/\o) = > v Py (A((f,)k(Y)(zo)> (¢ = 0). Since Aff,)k(Y)(Z) converges
(TI)C(Y)(T,Z -£) Proposition 4.3 gives the

normally to F ) s

a

12



Corollary 4.4. For a fized topological generator Ay = €2™% ¢ S1 2, € (_mim’ mjm); the power
series
’Lnds’)k (M)S1 ()\0)
converges normally on B = {q € C| |q| < 1} to
(© ) =
> Py (For(V)(120,5=) ) (€=0).
’ e
Yey
|

The next step will be to show that the power series of equivariant twisted Spin®-indices mal(()z),c (M)s1(X)
converges normally on (¢, \) € B x S C B x C. We need the following lemma which I learned from

Thomas Berger and which is proven for example in [5], Lemma 7.13 or [7], Proposition 3.10.

Lemma 4.5. Let U be an open subset of C x C. Consider a series ¢ = Y > ¢y of holomorphic
functions ¢, on U such that ¢ converges normally on U' = {(q,\) € U | X # p} for some p € C. Then

¢ converges normally on all of U. |

Proposition 4.6. (No Poles on S1) The power series of equivariant twisted Spin-indices
indl (M) 1 (V)

converges normally on (qﬁ,)\) € Bx S' € BxC (if (a,k) = 0 we fiz any natural number N ). For

1 ;T ; .. . . . .
q2¥ = e¥™aN and \ = ™% the limit function is a holomorphic extension of

(9 ¢ _
Sy (FAMIes ) €= 0
Yey
to (r,2) EHxXxRCHxC.
Proof: Since z'nd((f,)k(M )st is a qﬁ—power series of S'-equivariant twisted Spin-indices over C each
coefficient is an element of R(S') ®z C which we have identified with its character in C[A\,A"!]. For

the following argument it is convenient to regard C[\, \~!] as a subring of (C[)\li, )\_%]. Then

_n_

z‘ndfj}k(M) 51 (0) = Y an(A2)g7,
n=0

where an(A\2) € C[A%,A73] is even. Now Yy Py (F(S;(Y)(T,Z, %)) (€ = 0) is equal to a finite C-

linear combination of coefficients of the Taylor expansion of F(Sf,)c (Y)(7, 2, %m) with respect to £ = 0.

It follows from Definition 4.2 that for some natural number r the product of

=11 JJ (™3 —e2mims)r
YeY \m;(Y)#0

and any such Taylor coefficient is given by the limit value of a power series in C[A 3 /\_%] [[qﬁ]], which

converges normally on (qﬁ,)\%) € Bx S' ¢ BxC for qﬁ = 23N and A7 = 275, Thus, there is a

13



o0 n n
power series »_ bn(/\%)qW, such that C-bn(/\%) is holomorphic on S and Z C-b, ()\%) 2N converges
n=0

n=0
normally on B x S! to

n

By Corollary 4.4 the series Z an(A0)g2¥ converges normally on B to

n=0

1
2Mmaz ’ 27774710.m

for any topological generator \g = €2™"%0 € S1, z; € (— ). This implies that the functions
an()\%) and bn(/\%) agree on a set with cluster point for any n € Ny. Thus an()\z) is a holomorphic
extension of bn()\%) to C*. Now Lemma 4.5 can be applied to ¢, := by - ¢2¥ and any p € Sh

It follows that indff)k(M)g(/\) = Y a,(N)g2~¥ and > b,()\)g2¥ converge normally on B x S to
’ =0 n=0

n=
>v Py (Fg,l(Y)(T, z, %)) (¢ =0). This completes the proof. [ ]
Recall from Definition 4.1 that ¢ (M;V,W)g1 = ind(é)O(M)Sl and @§(M;V,W)g1 = ind(()%o)(M)SL
By the last proposition these series converge to functions which are holomorphic on H x R. Next we
will study the modularity properties of F(fi)(Y)(T, z,¢&) and Fé,%) (Y)(r, 2z,&) under the assumption on
p1(V+ W —TM)g: given in Theorem 3.2. This will lead to modularity properties of ¢, (M;V,W)q1
and @§(M;V,W)g (see Proposition 4.9). Let

P2 (Y) = Zsj( -vj + Ztk S W — ZmZ(Y) z; and p(o 4 ZU + Zwk Zx
j=1 i=1 J=1

Note that the condition on the equivariant first Pontrjagin class implies fy (p(2,2)(Y)) = fy-(p(0,4)) =0

S t m

and implies that > s;(Y)%2+ Yt (Y)? — Y.mi(Y)? is equal to Z.
j=1 k=1 1=

(3)

1

In the next Proposition we give transformation properties for F(fz)(Y) and Fj3'(Y) which we

N> ’
derive from the Weierstrass’ ®-function. Recall that A = (‘é g) € SLy(Z) acts on the upper half plane
H by A(1) = (at +b)/(cT +d). Let T'1(N) := {A € SLy(Z)| A= ({ 1) mod N}.

We need the following notation: For A = (¢ %) € SLy(Z)and N > 2 an integer define e, ¢4 € {0,1}
and a¢,aq € {0,... ,N—1} by (€, €4) = (¢,d) mod 2 and (o, ag) = (¢,d) mod N. Let € := (ecT+6d)/2
and a = (a7 + ag) /N . We are now in the position to give the modularity properties of F'i L(Y) and

N
(3)
oo (Y).
Proposition 4.7. 1. Let either (a,k) = 0 or (o, k) = (%,0), where N is an integer, N > 2. For
any (a,b) € Z2
1 1 . o?r
FRYV) (7,2 + a7 +5,8) = FL (V)(7,2,€) - e72ri(@pua (OHC a2,

2. Let N > 2 be an integer. For any A= (%) € SLy(Z)

) = F\ o (V)(1,2,€ - (er + d)) - (er + )™~ dm¥)/25¢

ﬁvo ’C’T—f-d’

14



p(0,4)-(c-r+d)
2

. T.22 .
627”'0'2(Tz+d) . 627rz-c( +P(2,2)(Y)'Z)_

3. For any A= (%) € SLy(Z)

G Y)(Ar, 0 8) = S0 (V)(1,2,6 - (or + d)) - (er + d)m=s—Am/2¢

P(0,4)"(em+d)
2

. T.22 .
eQm-c-z(T:_d) . e27rz-c( +P(2,2)(Y)'z).

Proof: Ad 1: The Weierstrass’ ®-function satisfies the following transformation property:

. a2-r+2a-z
2

O(1,z+at +b) = B(1,2) - e 2™ . (—1)“+b (1)

1
We apply this identity to each factor appearing in the definition of FJ(V j)( ) and Féf) ) (Y). Since all
rotation numbers are even the statement follows by direct calculation.
Ad 2: For any variable u let v’ := u - (c7 + d). The Weierstrass’ ®-function satisfies the following

transformation property:

z
ct+d

;. C 22
O(Ar, ) =®(1,2) - (T +d) - 2T (2)

1
We apply this identity to each factor appearing in the definition of F(fz)(Y) and obtain
N

A 27 - \ H 1 "

%0 ! . .
N CT—I—d i (V)= O<I>( , Zy s (V)0 O(r,z; + mi(Y) - z)

li[cb(T v +5(Y) -z - )\ (ﬁQ(T,w;c—l—tk(Y)-z—l—%i)) y

j=1 (I)(Ta_%i) k=1 (I)(T, %1)

. . .22 P
(CT + d)m*dlm Y/2 627m'c'2(crz+d) . 627”'0( (02’4) +p(2,2)(Y)2) X

o2mie(—x L (0] 455 (V) 2)+5 L (wh +tk(Y)-2))

From the definition of o and e follows directly that %j =a+a7+band # = €+ ar + b, where
a,b, &,I; are integers. Using equation (1) one obtains the identity given in the second statement. The

proof of the third statement is analogous. |

Next we recall the transformation properties of Jacobi forms. For an introduction to the theory we
refer to [8]. Any subgroup I' < SLy(Z) of finite index acts on the lattice L := Z x Z by automorphisms,
where the action of A € T' is defined by matrix multiplication, (o, 8) — (a,8)A. Let ' x L be the
corresponding semi-direct product, i.e. the multiplication in I x L is given by (A, (o, 8))- (B, (7, 9)) :=
(A B,(a, 8)B + (7,9))-

Let f be a meromorphic function on # x C. Let (4, X) e Tx L, A= (2%), X = (o, B). For fixed

k,I € Z one verifies that the assignments

f‘[A]k I( ) f(AT, %-Fd) . (C’T + d)—k —2mi-I- c‘r+d
f‘[X]I( ) f(T, z 4+ ot + 6) . eQWi'I(OZQ'T-I—Za-z)
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define an action of I' X L on the field of meromorphic functions on H x C. Jacobi forms of weight &k
and index I for T’ are holomorphic functions on H x C which are fixed under the above action and
satisfy certain conditions in the cusps (cf. [8]).

We say a meromorphic function f on H x C transforms like a Jacobi form of weight k£ and
index I for T if and only if f is a fixed point under the action of I' X L for k£ and I, i.e. if and only if

f|[A]k,I(Ta Z) = f('r’ Z) and fl[X]I(Tv z) = f(Ta Z)

for any (A4, X) € I' x L. This is equivalent to

f(Ar, ﬁ) = f(1,2) - (eT + d)F - e2mil CT+d
f(r,2+ a1 + ) = f(1,2) - e7>ri (oS r20),

Definition 4.8. Let

and

By Corollary 4.4 % (M;V,W) and ¢§(M;V, W) converge to Fy and Fy, respectively, for any topo-

logical generator \g = e>™% ¢ S z € (== L_). By Proposition 4.6 these functions are

Mmaz’ Mmax

holomorphic on # x R. The first two parts of the next proposition show that Fx (7, z) (resp. Fy(T, 2))
transforms like a Jacobi form of weight m (resp. m — s) and index Z/2 for 'y (N) (resp. I'1(2)).

Proposition 4.9. Let N > 2 be an integer.
1. For any X = (a,b) € Z?
Fn(7,2)|[X]z/2 = Fn(7,2) and Fo(T,2)|[X]1/2 = Fo(T, 2).
2. For any A € T'1(N) (resp. Ae€T1(2))
Fn (7, 2)|[Almz/2 = FN (7, 2) (resp. Fo(T,2)|[Aln—sz/2 = Fo(T,2))-

3. For any A € SLa(Z) the function Fn (7, 2)|[Almz/2 (resp. Fo(T, 2)|[Alm—s1/2) has a holomorphic
extension to H x R which is given by the normally convergent series of twisted Spin€-indices
ind((f’)_ac(M) 1(A) (resp. znd( )( M)gi1())), where A = e?™% and q = e*™*7.

Proof: To show the first statement we use Proposition 4.7, Part 1, which specializes to

( R
F O(Y)('r,z-i-aT+b,2 ) =F?,

N> X N

=
—

(V) (7,2, =5) - e=2mioa "2+ T(%7 a2)
" 2

Since Py commutes with z — 2 + a7 + b and f}(p(2,2)(Y)) = 0 we get

Fy(T,z4+aTt+b) = ZPY <F}%é( )T,z +at +b, 25 )) (E=0)=

Uy
Yey
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P(2,2) (Y)
27

1 . a?r
Py (F(fz)(Y)(T, 5 o) e +I<T+“z”) (E=0)=
Vs

Qi T( 9ot
Fy(1,z) - e” 2 I(57Faz)

Thus Fn(7,2)|[X]z/2 = Fn(7,2) which proves the first statement for Fy(7,2). The calculation for
Fy(t, z) is analogous.

Next we show the other two statements. Let A = (2%) € SLy(Z) and let € = (.7 + €4)/2 and
a = (a.7 + ag)/N be as given before Proposition 4.7. For any variable u let v’ := (¢ + d)u.

Recall that Py is a homogeneous polynomial in Q[%, 62c’ 62] , awk] of degree dim(Y'), where 6%1-’
aaTc’ % and 5o have degree 2. Also recall that the number of m;(Y) which are zero is equal to

dim(Y) /2. We have the following identities:

(A c7'—|-d EPY(

Yey

—
ml'—‘

z ¢ o
(AT, C’T+d,2—ﬂ"i)> (5_0)_

ZI'-'

! . 22 -
5Py (FLa (2 5 ) (€ = 0 7T o 4 im0

2
Yey g

Z'P (Fo(f (V)1 2, i)) (€=0)- 62”'0'2(%‘5(1) (er 4 d)”

Yey ' 2mi
Here the first identity holds since Py commutes with (7,z) — (A7, ;2), the second identity follows
from Proposition 4.7, Part 2, using f3-(po4)) = fy(P(2,2)) = 0 and the last equation uses the fact that
Py has degree dim(Y"). Using Proposition 4.7, Part 3, a similar calculation gives

Fy(AT

=2 Pr ( 0 %) (€=0) 5D or )

Ter + d o

Thus Fy(, z)|[A]m,I/2 and Fy(T, 2)|[A)m_s /2 are equal to >v Py ( (Ef) a(Y)(7, 2 i)) (¢ =0) and

) 2me

>v Py (Fo(fg( N7, 2, oo )) (& = 0), respectively. Note that Part 2 of the statement is a special case

’» 2mi
of these calculations. By Proposition 4.6 the g-power series of twisted Spin€-indices ind(oz)_ac(M )st
and indé?)(M)y converge normally on (qﬁ, A) € Bx S'c BxC for qﬁ = ™3y and \ = €*70?
to Fy (T’ z)|[A]m,l'/2 and Fjy (Ta z)'[A]m—s,I/Q- Thus FN(Ta z)'[A]m,I/2 and FO(Ta Z)HA]m—s,I/Q admit

holomorphic extensions to H x R. |

Proof of Theorem 3.2: We first show that Fiy(7,z) and Fy(7, z) are holomorphic on H x C. Recall
that the Weierstrass’ ®-function ®(7, z) is holomorphic on H# x C. Let 7 € H be fixed. The set of zeros
of ®(7,2) is equal to Z - 7 + Z. It follows from Definition 4.2 that the poles of any Taylor coefficient
of F)(,z (1,2,&) or F}(,%O)(T, z,&) with respect to £ = 0 are in Q-7 + Q. From Definition 4.8 follows that
Fyn(7,z) and Fy(T, z) have only poles in z € Q-7+ Q. Let f(r,2) denote one of these functions and let
fr(2) := f(7, z). For rational numbers « and B we want to show that f;(z) has no pole in z = ar + ﬂ.
We may choose A € SLy(Z) such that %> € R Since f|[Alyz/0 (k=mif f=Fyandk=m—s
if f = Fy) has no poles on R by Prop081t10n 4.9, Part 3, the function f has no pole in z = a7 + ﬁ.

17



So f(7,z) is meromorphic on H x C and for any 7 € H the function f;(z) is holomorphic on C. Thus
f(r,2) is holomorphic on H x C.

Next recall from Proposition 4.6 and Definition 4.8 that the power series of equivariant twisted
Spinc-indices ¢ (M;V,W)g1()) converges normally on B x S! to the function Fy (7, z). By Proposi-
tion 4.9, Part 2, and the last argument Fy (7, z) is a holomorphic Jacobi function of index Z/2. Now
the statement for % (M;V,W)g1()) follows from general properties of Jacobi functions. In fact, for
any given Jacobi function of index I which does not vanish identically the difference of the number of
zeros and the number of poles (counted with multiplicities) in a fundamental domain of the action of
the lattice Z+7Z-7 on C is equal to 2-I (cf. [8], Theorem 1.2). Thus, if 7 is negative ¢$,(M;V, W)g1(N)
and Fy (7, z) have to vanish identically. If 7 is zero it follows from the transformation properties given
in Proposition 4.9, Part 1, that for fixed 7 € H the function F(7,2) is elliptic in the variable z with
respect to the lattice Z +Z- 7. Since Fn (T, z) is holomorphic Fn (7, z) is constant in z by the theorem
of Liouville. Since ¢$ (M;V,W)g1(X) converges normally to Fy(7,z) each coefficient of this power
series is constant in A, i.e. % (M;V,W)g1 is rigid. The argument for ¢§(M;V, W)ge1 () is analogous.
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