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Abstract

We study Spinc-manifolds with Pin(2)-action. The main tool is a vanishing theorem
for certain indices of twisted Spinc-Dirac operators. This theorem is used to show
that the Witten genus vanishes on such manifolds provided the first Chern class and
the first Pontrjagin class are torsion. We apply the vanishing theorem to cohomology
complex projective spaces and give partial evidence for a conjecture of Petrie. For
example we prove that the total Pontrjagin class of a cohomology CP 2n with S3-action
has standard form if the first Pontrjagin class has standard form. We also determine
the intersection form of certain 4-manifolds with Pin(2)-action.

1 Introduction

An important way to study smooth group actions on manifolds is based on the Lefschetz fixed
point formula (cf. [AtSeII68], [AtSiIII68]). The classical example is the famous theorem of
Atiyah and Hirzebruch which asserts that the index of the Dirac operator on a Spin-manifold
M vanishes if the group S1 acts non-trivially on M (cf. [AtHi70]). Consequently this
index, the Â-genus, obstructs non-trivial actions by compact connected Lie groups on Spin-
manifolds. Hattori extended this result to Spinc-manifolds in [Ha78] (cf. also [MaSc73],
[Kr76]) and gave various applications for S1-equivariant stable almost complex manifolds
including cohomology complex projective spaces, complex hypersurfaces and 4-manifolds
(cf. [Ha78] for details and other applications).

In [Wi86] Witten considered the index of “classical operators” on the free loop space
LM of a manifold M . Although a mathematically precise definition of such operators has
yet to be given Witten computed what their index should be by formally applying the
Lefschetz fixed point formula to the natural S1-action on LM . In this way Witten derived
invariants of the underlying manifold. It turned out that the “signature” of LM gives the
elliptic genus (of level 2) which had been studied before by Ochanine, Landweber, Stong
and others (cf. [Oc86], [Oc87], [LaSt88]). The invariant which corresponds to the index of
the “Dirac operator” on LM is known as the Witten genus, the “Dolbeault operator” leads
to the family of elliptic genera of higher level. Witten conjectured that the elliptic genus is
rigid on Spin-manifolds with S1-action. Soon afterwards Taubes and subsequently Bott and
Taubes proved this conjecture (cf. [Ta89], [BoTa89]). The rigidity of the elliptic genera of
higher level was proven by Hirzebruch in [Hi88] (cf. als [HiBeJu92], Appendix III). In [De96]
we extended these rigidity results to Spinc-manifolds (cf. also [De98]). We also showed a
vanishing theorem for certain indices of Spinc-Dirac operators.

The main aim of this paper is to illustrate how this result may be used to study Spinc-
manifolds with Pin(2)-action. In the next section we explain the vanishing theorem. We
introduce a series ϕc(M ; V, W ) of indices of twisted Spinc-Dirac operators depending on
a Spinc-manifold M and a pair of vector bundles (V, W ) over M . Given an S1-action
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on M , V and W Theorem 2.2 states that the series of equivariant indices ϕc(M ; V, W )S1

vanishes identically provided certain conditions on the first Chern class and equivariant first
Pontrjagin class are satisfied.

In order to apply Theorem 2.2 to Spinc-manifolds with S1-action we need to know that
the action lifts to the Spinc-structure and to the vector bundles V and W . Also the condition
on the equivariant first Pontrjagin class needs to be satisfied. It turns out that for S1-actions
which extend to nice Pin(2)-actions (see Definition 3.4) these conditions may be fulfilled in
many cases. This is the topic of Section 3.

In the last section we give applications of Theorem 2.2. We show that the Witten
genus vanishes on a Spinc-manifold with nice Pin(2)-action if the first Chern class and first
Pontrjagin class are torsion (see Theorem 4.1). A conjecture of Petrie states that the total
Pontrjagin class of a homotopy CPm with S1-action has standard form. We give partial
evidence for this conjecture (see Theorem 4.2). In particular we show that the conjecture
is true for S3-actions if the first Pontrjagin class has standard form and m is even (see
Corollary 4.3). We also consider 4-manifolds with nice Pin(2)-action. Using Theorem 2.2
we determine their intersection form in certain cases (see Theorem 4.8, Theorem 4.9).

Acknowledgement: This paper grew out of my doctoral thesis. First of all I would like
to thank my advisor Prof. M. Kreck for his support, advice and for many discussions on
the subject. The idea to study non-abelian group actions evolved from these discussions.
I would also like to thank Prof. W. Lück and my collegues at the University of Mainz for
many interesting and stimulating conversations and Fang Fuquan for pointing out to me
the conjecture of Petrie. In my thesis [De96] the applications involved Spinc-manifolds with
S3-action. The extension to nice Pin(2)-actions was carried out during a stay at the SFB
343 of the University of Bielefeld. I am greatful to Prof. St. Bauer for explaining to me
some common features of the cohomology of Pin(2) and S3. During the work I benefited
from various activities of the EU-project “Elliptic Cohomology”.1

2 A Vanishing Theorem for Spinc-indices

In this section we state a vanishing theorem (see Theorem 2.2) for certain equivariant indices
of twisted Spinc-Dirac operators (in the following also called equivariant twisted Spinc-
indices). This theorem which is proven in [De96] (cf. also [De98]) will be applied to Spinc-
manifolds with Pin(2)-action in Section 4.

Let M be a closed smooth connected manifold and let G be a compact Lie group (not
necessarily connected) which acts smoothly on M . For a G-equivariant elliptic differential
operator D on M the equivariant index indG(D) is defined as the (formal) difference of
kernel and cokernel of D:

indG(D) = ker(D)− coker(D).

Since D is elliptic both spaces are finite dimensional G-representations and indG(D) is an
element of the representation ring R(G). If indG(D) is trivial, i.e. any g ∈ G acts as the
identity on indG(D), we call the operator and also its index rigid. If G is connected indG(D)
is trivial if and only if the restriction to any S1-subgroup is rigid.

It is well-known that the S1-equivariant index is rigid for the following operators: the
signature operator for oriented manifolds, the Dirac operator for Spin-manifolds and the
Dolbeault operator for complex manifolds.

1EU-project CHRX-CT94-0441.
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In contrast the equivariant index of a Spinc-Dirac operator is in general not rigid. As an
example we consider CP 2 with the S1-action induced by λ(x0, x1, x2) := (x0, λ · x1, λ

2 · x2),
λ ∈ S1. Let P be a Spinc-structure for which the associated complex line bundle over CP 2

is isomorphic to γ5, where γ denotes the Hopf bundle. One can show that the S1-action
lifts to P . It turns out that for any lift the index of the Spinc-Dirac operator has the form
λd(1 + λ + λ2), in particular the index is never rigid.

In the remaining part of this section we recall a vanishing theorem of [De96]. Let M be a
2m-dimensional S1-equivariant Spinc-manifold and let ∂c denote the Spinc-Dirac operator.
Let V be an S1-equivariant s-dimensional complex vector bundle V over M and W an
S1-equivariant 2t-dimensional Spin-vector bundle over M .

From these data we build the q-power series R ∈ KS1(M)[[q]] of virtual S1-equivariant
vector bundles defined by

R :=
∞⊗

n=1

Sqn(T̃M ⊗R C)⊗ Λ−1(V
∗)⊗

∞⊗
n=1

Λ−qn(Ṽ ⊗R C)⊗4(W̃ )⊗
∞⊗

n=1

Λqn(W̃ ⊗R C).

Here q is a formal variable, Ẽ denotes the reduced vector bundle E − dim(E), 4(W ) is
the full complex spinor bundle associated to the Spin-vector bundle W and Λt :=

∑
Λi · ti

(resp. St :=
∑

Si · ti) denotes the exterior (resp. symmetric) power operation. The tensor
product is, if not indicated otherwise, taken over the complex numbers. We extend the index
function indG to power series.

Definition 2.1. Let ϕc(M ; V, W )S1 be the S1-equivariant index of the Spinc-Dirac operator
twisted with R, i.e.

ϕc(M ; V, W )S1 := indS1(∂c ⊗R) ∈ R(S1)[[q]].

In the non-equivariant situation we write ϕc(M ; V, W ).

Note that ϕc(M ; V, W )S1 evaluated on the identity element of S1 is equal to ϕc(M ; V, W ).
The series of equivariant Spinc-indices ϕc(M ; V, W )S1 vanishes provided certain conditions
on the first Chern classes and first equivariant Pontrjagin classes are satisfied. In order to
state these conditions we need to introduce some notation. Let N be a manifold with G-
action, G a compact Lie group. For a G-equivariant virtual vector bundle E over N and a
characteristic class u(E) the corresponding equivariant characteristic class will be denoted by
u(E)G. A G-equivariant Spinc-structure of N induces a G-equivariant complex line bundle
Lc over N (see the beginning of the next section). Its equivariant first Chern class c1(Lc)G

will also be denoted by c1(N)G.
Finally, let π denote the projection of the fixed point manifold MS1

to a point pt and let
x be a fixed generator of H2(BS1; Z).

Theorem 2.2. ([De96], Th. 3.6, [De98], Th. 3.2) Assume that the equivariant class
p1(V + W − TM)S1 restricted to MS1

is equal to π∗(I · x2) modulo torsion for some integer
I and assume that c1(M) and c1(V ) are equal modulo torsion. If I < 0 then ϕc(M ; V, W )S1

vanishes identically. �

The Spinc-indices ϕc(M ; V, W ) may be calculated in terms of cohomology (cf. [AtSiIII68]).
If one restricts to the coefficient of q0 in the cohomological description of ϕc(M ; V, W ) in the
above theorem one obtains the
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Corollary 2.3. Assume the conditions given in the beginning of Theorem 2.2. If I < 0 then〈
m∏

i=1

(
xi

e
xi
2 − e−

xi
2

)
·

s∏
j=1

(
e

vj
2 − e−

vj
2

)
·

t∏
k=1

(
e

wk
2 + e−

wk
2

)
, [M ]

〉
= 0.

�

Here ±xi (resp. vj and ±wk) denote the formal roots of M (resp. V and W ), [M ] denotes
the fundamental cycle of M and 〈 , 〉 denotes the Kronecker pairing.

3 Nice Pin(2)-actions

In this section we give conditions under which S1- and Pin(2)-actions lift to Spinc-structures
or complex line bundles. For the facts on spectral sequences used below we refer to [Mc85].
Let G be a compact Lie group (not necessarily connected) which acts smoothly on the
2m-dimensional Spinc-manifold M and let S1 denote a fixed subgroup of G. Let V (resp.
W ) be a complex (resp. Spin-) vector bundle over M . In order to apply Theorem 2.2 we
need to know that the S1-action lifts to the Spinc-structure and the vector bundles V and
W . We will use results of Hattori, Yoshida and Petrie given below. For a G-space X let
XG := EG×G X denote the Borel construction, where EG is a classifying space for G.

Theorem 3.1. ([HaYo76], Cor. 1.2) Let X be a smooth manifold with smooth G-action
and let L be a complex line bundle over X. Then the G action lifts to L if and only if c1(L)
is in the image of the forget homomorphism H2(XG; Z) → H2(X; Z). �

We recall some basic facts about Spinc-structures (for details we refer to [AtBoSh64]). Let
P denote a given Spinc-structure on M . The Spinc-principal bundle P induces two complex
line bundles. The first one is a complex line bundle Lc over M defined by the U(1)-principal
bundle P/Spin(2m) → P/Spinc(2m) ∼= M using the standard embedding of Spin(2m) into
Spinc(2m). The class c1(Lc) will be called the first Chern class of M and is also denoted by
c1(P ) or c1(M).

The group U(1) acts on P via the embedding U(1) ↪→ Spinc(2m). The quotient P/U(1)
may be identified with the SO(2m)-principal bundle Q of orthonormal frames (for the metric
induced by P ). The projection ξ : P → Q is a U(1)-principal bundle and defines the second
complex line bundle which we also denote by ξ. It is well-known that the pull-back of Lc to
Q is isomorphic to ξ2. Note that the S1-action on M lifts to Q via differentials.

Theorem 3.2. ([Pe72], Th. 6.2) If the S1-action lifts to the U(1)-principal bundle
ξ : P → Q then for a modified lift the Spinc-structure P → M is S1-equivariant. �

Combining the preceding two theorems with a spectral sequence argument one obtains the

Proposition 3.3. If the first Betti number b1(M) vanishes or c1(M) is a torsion element
then the S1-action lifts to the Spinc-structure P .
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Proof: A proof of the first statement is given in [Ha78]. For the convenience of the reader we
prove both statements. By Theorem 3.1 the S1-action on the principal bundle of orthonormal
frames Q lifts to the U(1)-principal bundle ξ : P → Q if and only if the first Chern class
of ξ is in the image of H2(QS1 ; Z) → H2(Q; Z). To show this we inspect the Leray-Serre
spectral sequence {Ep,q

r } for QS1 → BS1 in integral cohomology. Note that H∗(BS1; Z) is a
polynomial ring in one generator of degree 2. Thus all differentials in the spectral sequence
restricted to the subgroup of bi-degree (0, 2) are trivial except maybe

d2 : E0,2
2 → E2,1

2
∼= H2(BS1; H1(Q; Z)).

If b1(M) vanishes then b1(Q) vanishes, too (use for example the Leray-Serre spectral sequence
for Q → M). In this case H2(BS1; H1(Q; Z)) = 0 and d2 : E0,2

2 → E2,1
2 is the zero map.

If c1(M) is a torsion class then the first Chern class of ξ is also torsion since the pull-back
of Lc to Q is isomorphic to ξ2. Since E2,1

2
∼= H2(BS1; H1(Q; Z)) is always torsion free, the

image of c1(ξ) under d2 is zero.
Thus, in any case the class c1(ξ) lives forever, i.e. all differentials vanish on c1(ξ). This

implies that c1(ξ) is in the image of H2(QS1 ; Z) → H2(Q; Z). By Theorem 3.1 and Theorem
3.2 the S1-action on Q admits a lift to P for which the Spinc-structure P → M is S1-
equivariant. This completes the proof. �

In the next section we give applications of Theorem 2.2 for certain Pin(2)-actions which we
introduce next. Recall that Pin(2) is isomorphic to the normalizer of a torus in S3. The
group Pin(2) is a non-trivial 2-fold cover of the orthogonal group O(2) and may be presented
by the closure of

〈λ, g | gλg−1 = λ−1, g2 = −1〉,

where λ is a topological generator of S1.

Definition 3.4. A Pin(2)-action on M is called nice if and only if the action is almost
effective (i.e. the kernel of the action is finite) and the induced action on H∗(M ; Z) is trivial.

We remark that a non-trivial semi-simple group action G×M → M always induces a nice
Pin(2)-action. If {±ri} denotes the set of roots of G and if Hi is the subgroup of G which
corresponds to ±ri then Hi is isomorphic to SO(3) or S3. Since the action is non-trivial at
least one subgroup Hi acts non-trivially on M . After passing, if necessary, to the two-fold
cover it follows that the group S3 acts on M with finite kernel. Since S3 is connected its
action on the integral cohomology ring is trivial. Hence, the induced action of Pin(2), the
normalizer of S1 in S3, is nice. Also an almost effective O(2)-action which is trivial on the
integral cohomology ring gives rise to a nice Pin(2)-action induced by the covering map
Pin(2) → O(2). In the next lemma we collect some cohomological data of BPin(2) which
may be derived easily from the Leray-Serre spectral sequence for RP 2 → BPin(2) → BS3.

Lemma 3.5. The first few integral cohomology groups of BPin(2) are

H0(BPin(2); Z) ∼= Z, H1(BPin(2); Z) = 0, H2(BPin(2); Z) ∼= Z/2Z, H3(BPin(2); Z) = 0.

The rational cohomology of BPin(2) is concentrated in degree 4Z. �
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Next we give conditions under which Pin(2)-actions lift to complex line bundles.

Proposition 3.6. Let M be a manifold with nice Pin(2)-action and let L be a complex line
bundle over M . If b1(M) vanishes or L is spin then the Pin(2)-action lifts to L.

Proof: For both statements we will use the Leray-Serre spectral sequence {Ep,q
r } in integral

cohomology for the fibre bundle M
i

↪→ MPin(2)
π→ BPin(2). By Theorem 3.1 the Pin(2)-

action lifts to L if c1(L) is in the image of i∗ : H2(MPin(2); Z) → H2(M ; Z). Since the action
is nice Pin(2) acts trivially on the integral cohomology ring of M . Thus the E2-term is
given by Ep,q

2
∼= Hp(BPin(2); Hq(M ; Z)). Note that H3(BPin(2); Z) = 0 (see Lemma 3.5).

If b1(M) = 0 all differentials of the spectral sequence restricted to the subgroup of bi-degree
(0, 2) are zero. In particular they vanish on c1(L). If L is spin the same holds true since
c1(L) is divisible by 2 and

d2 : E0,2
2 → E2,1

2
∼= H2(BPin(2); H1(M ; Z)) ∼= (Z/2Z)b1(M)

takes values in a Z/2Z-module. Thus c1(L) is in the image of i∗ : H2(MPin(2); Z) → H2(M ; Z)
and the Pin(2)-action lifts to L by Theorem 3.1. �

Proposition 3.7. Let M be a manifold with nice Pin(2)-action. Consider the S1-action
induced by S1 ↪→ Pin(2). Let π denote the projection MS1 → BS1 and let x be a generator
of H2(BS1; Z). If the first Pontrjagin class p1(M) is torsion then the S1-action is fixed point
free or p1(M)S1 is equal to −π∗(I · x2) modulo torsion, where I is a negative integer.

Proof: Assume the action has a fixed point pt ∈ MS1
. Consider the Leray-Serre spectral

sequence {Ep,q
r } in rational cohomology. Note that H∗(BPin(2); Q) is concentrated in degree

4Z (see Lemma 3.5). Since the action is nice Pin(2) acts trivially on the rational cohomology
of M . Hence

Ep,q
2
∼= Hp(BPin(2); Q)⊗Hq(M ; Q)

vanishes if p 6≡ 0 mod 4. We claim that

H4(BPin(2); Q)
π∗→ H4(MPin(2); Q)

i∗→ H4(M ; Q) (1)

is exact: Since π ◦ i maps the fibre to a point one direction is trivial. So assume i∗(y) = 0.
Since i∗ factorizes as

H4(MPin(2); Q) � E0,4
∞ ⊂ E0,4

2 = H4(M ; Q)

and E0,4
∞ = H4(MPin(2); Q)/E4,0

∞ the element y is in E4,0
∞ . Since π∗ factorizes as

H4(BPin(2); Q) = E4,0
4 � E4,0

∞ ⊂ H4(MPin(2), Q)

we conclude that y is in the image of π∗.
Next let k∗ denote the homomorphism in cohomology induced by Z ↪→ Q. Since

k∗(p1(M)) vanishes by assumption and (1) is exact k∗(p1(M)Pin(2)) is in the image of π∗. By
the naturality of (1) with respect to the inclusion S1 ↪→ Pin(2) we conclude that

k∗(p1(M)S1) = −π∗(I · k∗(x)2).
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A priori, I is a rational number. However, the restriction of the integral class p1(M)S1 to
the fixed point pt gives I ∈ Z and I < 0. In fact, −I is equal to the sum of squares of
rotation numbers of the S1-action at the fixed point pt. Since the Pin(2)-action is almost
effective the induced S1-action is non-trivial and this sum is positive. �

We close this section with a simple application of the classical Lefschetz fixed point formula
for the Euler characteristic.

Lemma 3.8. Assume Pin(2) acts on M without fixed point. Then the Euler characteristic
of M is even.

Proof: Let g ∈ Pin(2) be an element with gλg−1 = λ−1 for any λ ∈ S1. Since the Pin(2)-
action has no fixed point g acts freely on MS1

. By the Lefschetz fixed point formula for the
Euler characteristic e(M) = e(MS1

). Now MS1 → MS1
/〈g〉 is a two-fold covering. Since the

Euler characteristic is multiplicative in coverings we conclude

e(M) = e(MS1

) = 2 · e(MS1

/〈g〉) ≡ 0 mod 2.

�

4 Applications

In this section we apply Theorem 2.2 and its Corollary 2.3 to Spinc-manifolds with nice
Pin(2)-action.

4.1 We prove the vanishing of ϕc(M ; 0, 0) if c1(M) and p1(M) are torsion elements. This
leads to a vanishing theorem for the Witten genus. First we recall the classical situation.

Using the Lefschetz fixed point formula Atiyah and Hirzebruch proved in [AtHi70] that
the Â-genus of a Spin-manifold M with non-trivial S1-action vanishes. The Â-genus of M is
the index of the Dirac operator and Atiyah-Hirzebruch in fact showed that the equivariant
index of the Dirac operator vanishes identically.2 This result has the following generalization.
If M is an S1-equivariant Spinc-manifold with first Chern class torsion the same argument
applies to show that the equivariant Spinc-index vanishes identically. Note that the non-
equivariant Spinc-index coincides with the Â-genus of M if c1(M) is torsion and coincides
with the index of the Dirac operator if the Spinc-structure is induced from a Spin-structure
on M .

Next we consider the Witten genus ϕW (the index of the hypothetical Dirac operator on
the free loop space) which is defined by the even power series (cf. [Wi86], p. 165)

x

ex/2 − e−x/2

∞∏
n=1

(1− qn)2

(1− qnex)(1− qne−x)
.

If M is a Spin-manifold and ∂ the Dirac operator then ϕW (M) = ind(∂ ⊗
∞⊗

n=1

Sqn(T̃M)).

The q-power series ϕc(M ; 0, 0) of twisted Spinc-indices is related to the Witten genus in
a similar way as the Spinc-index is related to the Â-genus. If c1(M) is a torsion element
ϕc(M ; 0, 0) coincides with the cohomological definition of the Witten genus. If M is spin
then ϕc(M ; 0, 0) coincides with the index-theoretical definition of the Witten genus.

2We remark that the 2-fold action always lifts to the Spin-structure.
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Theorem 4.1. Let M be a Spinc-manifold for which the first Chern class c1(M) and the
first Pontrjagin class p1(M) are torsion elements. Assume M admits a nice Pin(2)-action.
Then the S1-action induced by S1 ↪→ Pin(2) lifts to the Spinc-structure and for any such lift
the q-power series of equivariant twisted Spinc-indices ϕc(M ; 0, 0)S1 vanishes identically. In
particular, the Witten genus ϕW (M) vanishes.

Proof: By Proposition 3.3 the S1-action lifts to the Spinc-structure. If MS1
is empty the

Lefschetz fixed point formula implies that all S1-equivariant indices on M vanish identically
(cf. [AtSeII68]). In particular, the theorem follows in this case. So assume the action has a
fixed point pt ∈ MS1

. By Proposition 3.7 p1(M)S1 is equal to −π∗(I ·x2) modulo torsion for
some negative integer I. Thus, we are in the position to apply Theorem 2.2 for V = W = 0
to get the vanishing of ϕc(M ; 0, 0)S1 . Since ϕW (M) = ϕc(M ; 0, 0) it follows that the Witten
genus ϕW (M) vanishes, too. This completes the proof. �

As a consequence the S1-equivariant Witten genus vanishes on a BO〈8〉-manifold M with

nice Pin(2)-action. There is a “converse” to this: Let Ω
〈8〉
∗ denote the bordism ring of

BO〈8〉-manifolds. In [De96], Proposition 4.12, we proved that the kernel of the rational

Witten genus restricted to Ω
〈8〉
∗ ⊗ Q is generated by BO〈8〉-manifolds with nice Pin(2)-

action, in fact with non-trivial S3-action. Note that the kernel of the rational Â-genus is
generated by Spin-manifolds with non-trivial S1-action (cf. [AtHi70]).

Theorem 4.1 generalizes previous results. The vanishing of the Witten genus was proven
by the author for BO〈8〉-manifolds with non-trivial S3-action in [De94] and independently by
Höhn in unpublished work. As Stolz pointed out in [St96] the vanishing of the Witten genus
leads to some evidence for the following conjecture of Stolz and Höhn: If M is a Riemannian
BO〈8〉-manifold with positive Ricci curvature then the Witten genus of M vanishes. For
details we refer to [St96].

4.2 The next application of Theorem 2.2 deals with manifolds having the same integral
cohomology ring as CPm. Such manifolds will be called cohomology CPm’s. Obviously any
homotopy CPm is a cohomology CPm. The converse holds in the simply connected case.
The motivation is a conjecture of Petrie (cf. [Pe72], Strong conjecture, p. 105) which we
state in the following equivalent form:

If M is a homotopy CPm with non-trivial smooth S1-action then the total Pontrjagin
class has standard form, i.e. p(M) = (1 + x2)m+1, where x is a generator of H2(M ; Z).

The conjecture has an affirmative answer if m < 5 or if the number of connected compo-
nents of the fixed point manifold MS1

is less than 5 (cf. [Wa75], [De76], [Yo76], [TsWa79],
[Ma81], [Ja85]; for related results cf. [Pe72], [Pe73], [Ha78], [Ma88], [DoMa90]). Hattori
proved the conjecture in the case that M is stably almost complex, the S1-action preserves
the stable almost complex structure and the first Chern class has the standard form, i.e.
c1(M) = (m + 1)x (cf. [Ha78], Prop. 4.7). The next theorem which relies on Corollary 2.3
gives a partial answer to the conjecture of Petrie.

Theorem 4.2. Let M be a cohomology CPm with nice Pin(2)-action. If m is odd assume
that the Pin(2)-action has a fixed point. Let x be a generator of H2(M ; Z) and let b be the
integer defined by p1(M) = b · x2. Then b ≤ m + 1 and

b = m + 1 =⇒ p(M) = (1 + x2)m+1.
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Before we give the proof we point out some consequences. In each complex dimension m ≥ 5
there are infinitely many differentiable manifolds Mi of the same homotopy type of CPm

such that all these manifolds have standard first Pontrjagin class but non-standard total
Pontrjagin class. I.e. for each i the class p1(Mi) is equal to (m+1) ·x2 and the class p(Mi) is
not equal to (1 + x2)m+1, where x denotes a generator of H2(Mi; Z) (cf. [Hs66] and [Li89]).
Theorem 4.2 implies that for any m ≥ 5 these manifolds do not admit a Pin(2)-action with
the properties stated in the theorem. We single out the following special case.

Corollary 4.3. Let M be a cohomology CPm, m even, with standard first Pontrjagin class.
If p(M) 6= (1 + x)m+1 then M does not support a non-trivial S3-action. �

We remark that for m ≡ 1 mod 4 the α-invariant also obstructs S3-actions on M : The
α-invariant is a KO-theoretical generalization of the Â-genus and takes values in Z/2Z for
Spin-manifolds of dimension congruent 2 mod 8. Given a non-trivial S3-action Lawson and
Yau (cf. [LaYa74]) constructed a metric with positive scalar curvature on M . By a result of
Hitchin (cf. [Hi74]) the α-invariant vanishes on Spin-manifolds with such metrics.

The proof of Theorem 4.2 will use the following theorem which we derive from Theorem
2.2 and from results of Section 3. Let V and W be sums of complex line bundles over a
2m-dimensional Spinc-manifold M with b1(M) = 0. Assume W is spin. Let vi (resp. wk)
denote the first Chern class of the i-th complex line bundle occurring as a summand of V
(resp. of the k-th complex line bundle occurring as a summand of W ).

Theorem 4.4. Assume M admits a nice Pin(2)-action with fixed point. Assume c1(V ) is
equal to the first Chern class of M modulo torsion and p1(V +W−TM) is a torsion element.
Then the S1-action induced by S1 ↪→ Pin(2) can be lifted to the Spinc-structure and V and
W in such a way that ϕc(M ; V, W )S1 = 0.

Proof: Since b1(M) = 0 the induced S1-action lifts to the Spinc-structure by Proposition
3.3. Let L → M denote one of the complex line bundles occurring as a summand of V or
W . By Proposition 3.6 the Pin(2)-action lifts to L. We fix a lift of the Pin(2)-action to
each complex line bundle occurring as a summand in V or W .

Next we consider the equivariant class p1(V + W − TM)Pin(2). By assumption the re-
striction of this class to M is zero after passing to rational cohomology. The argument in
the proof of Proposition 3.7 applies to show that

p1(V + W − TM)S1 ≡ π∗(I · x2)

modulo torsion, where I is an integer. At the fixed point pt ∈ MPin(2) the tangent bundle
reduces to a non-trivial real S1-representation and may be (non-canonically) identified with
a complex representation with character

∑
λmi . At pt a line bundle Li of V (resp. W )

reduces to a complex one dimensional S1-representation with character λai (resp. λbi). Thus
the restriction of p1(V + W − TM)S1 to pt is equal to

I · x2 = (
∑

a2
i +

∑
b2
i −

∑
m2

i ) · x2,

where x is a generator of H2(BS1; Z). Since the restriction of a complex one-dimensional
Pin(2)-representation to S1 is a trivial representation ai = bi = 0. Thus I is a negative
number and Theorem 2.2 gives the vanishing of ϕc(M ; V, W )S1 . �
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Proof of Theorem 4.2: It follows from the ring structure of H∗(M ; Z/2Z) and the Wu
formulas that w2(M) ≡ (m + 1) · x mod 2. The relation p1(M) ≡ w2(M)2 mod 2 implies
b ≡ m + 1 mod 2. Since H3(M ; Z) is zero M admits a Spinc-structure and any class a · x,
a ≡ m + 1 mod 2, can be realized as the first Chern class of a Spinc-structure of M .

Note that the Pin(2)-action has a fixed point. If m is odd this is part of the assumptions.
If m is even this follows from Lemma 3.8 since the Euler characteristic of M is odd. Let
pt ∈ MPin(2).

We will now show that the assumption b > m + 1 leads to a contradiction. Let
b ≥ m + 3. Choose a Spinc-structure on M with c1(M) = (m + 1)x. Since b1(M) = 0
the induced S1-action on M lifts to any Spinc-structure (see Proposition 3.3). Let Lnx de-
note the complex line bundle with first Chern class equal to nx. We consider the bundles
V = L2x +(m−1) ·Lx and W = (b−m−3) ·Lx. Then c1(V ) = c1(M), the vector bundle W
is spin and p1(V +W −TM) = 0. By Theorem 4.4 the S1-action lifts to the Spinc-structure
and V and W in such a way that ϕc(M ; V, W )S1 = 0. By Corollary 2.3 we have〈

m∏
i=1

(
xi

e
xi
2 − e−

xi
2

)
· (e

x
2 − e−

x
2 )m · (e

x
2 + e−

x
2 )b−m−2, [M ]

〉
= 0,

where ±x1, . . . ,±xm denote the formal Pontrjagin roots of M . So 〈xm, [M ]〉 = 0 which gives
a contradiction. Hence, b ≤ m + 1.

Next we want to show that b = m + 1 implies p(M) = (1 + x2)m+1. This is trivial for
m = 1 and follows for m = 2 from the signature theorem (cf. [Hi56]). So assume m ≥ 3 and
b = m + 1. Let

Â = 1 + Â1 + Â2 + . . . = 1 +
−p1

24
+

7p2
1 − 4p2

5760
+ . . .

denote the multiplicative series for x/(ex/2−e−x/2), i.e. Â is equal to
∏l

i=1(xi/(e
xi/2−e−xi/2))

after replacing pj by the j-th elementary symmetric function in x2
1, . . . , x

2
l . Let Â(M) be

the series which one obtains by substituting the j-th Pontrjagin class of M for pj. We use
Theorem 4.4 for Vk := L2x + (m− 3− 2k) · Lx and Wk := 2k · Lx, where k = 0, 1, . . . , [m−3

2
].

For each k we choose a Spinc-structure with first Chern class equal to c1(Vk). Then Theorem
4.4 and Corollary 2.3 give〈

Â(M) · (ex − e−x) · (e
x
2 − e−

x
2 )m−3−2k · (e

x
2 + e−

x
2 )2k, [M ]

〉
= 0. (2)

For k = 0 the corresponding identity determines Â1(M) · xm−2, for k = 1 the corresponding
identity determines Â2(M) · xm−4 and so on. Note that the multiplication map

H2m−2k(M ; Z) → H2m(M ; Z), y 7→ y · xk,

is injective. So these identities together determine Âj(M) for j = 1, . . . , [m−1
2

]. The coeffi-

cient of pj in Âj is a non-zero rational number (cf. [Hi56], §1). Since H∗(M ; Z) has no torsion
we conclude that pj(M) is uniquely determined by the equations (2) for j = 1, . . . , [m−1

2
].

We will now show that the total Pontrjagin class of M has the standard form. Consider
first the case m odd. Then pj(M) = 0, j > m−1

2
, for dimensional reasons. So p(M) is already

uniquely determined by the equations (2). Since CPm admits a non-trivial Pin(2)-action
with fixed point the same identities also hold true for CPm. This implies p(M) = (1+x2)m+1.
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Next assume m is even. Then all Pontrjagin classes of M except pm
2
(M) are already de-

termined. The top Pontrjagin class pm
2
(M) can be calculated from the other Pontrjagin

classes and the signature formula. Here we use the fact that the coefficient of pj in the j-th
term of the multiplicative series of the signature genus is non-zero (cf. [Hi56], §1). So again
the total Pontjagin class of M is determined. Since all these identities also hold true for
CPm we get p(M) = (1 + x2)m+1. �

The last proof can be easily modified to study more general situations, for example homo-
topy complete intersections which support a nice Pin(2)-action with fixed point. The next
proposition shows that the first Pontrjagin class of such manifolds cannot be very large. The
proof which is essentially contained in the proof of Theorem 4.2 is left to the reader.

Proposition 4.5. Let M be a 2m-dimensional Spinc-manifold with b1(M) = 0, H2(M ; Z) =
Z〈x〉 and xm 6= 0. Assume M admits a nice Pin(2)-action with fixed point. If p1(M) = b ·x2

then b ≤ m + 1. �

The proposition may be applied to homotopy complex hypersurfaces. In this connection we
mention the following result of Hattori.

Proposition 4.6. ([Ha78], Prop 3.15) Let M be a non-singular hypersurface of degree d in
CPm+1, m > 1. Let τ denote the stable almost complex structure induced from the complex
structure of M . If M admits a non-trivial S1-action which lifts to τ then d ≤ m + 3. �

4.3 In this section we consider 4-manifolds with nice Pin(2)-action. We use Theorem 2.2 to
determine their intersection form in certain cases.

Let us first take a look at the problem of classifying (non-trivial) S1- and S3-actions on
closed manifolds in low dimensions. S1-actions on 3-manifolds were completely classified
by Orlik and Raymond in [OrRa67] (for S3-actions cf. [As76]). The classification of 4-
dimensional manifolds with S3-action was given in [As76] and [MePa86]. Such manifolds
fall into the classes: S4, ±CP 2, homogeneous S3-bundles over S1, S2-bundles over S2 and
quotients of S2-bundles over S2 by involutions. It turns out that the classification of 4-
manifolds with S1-action is much harder. Fintushel (cf. [Fi77], [Fi78]) reduced it to the
(difficult) classification of “legally-weighted” 3-manifolds. In the simply connected case he
and also Yoshida (cf. [Yo78]) gave a classification up to homotopy 4-spheres: Any simply
connected 4-manifold with S1-action is diffeomorphic to Σ]k(CP 2)]m(−CP 2)]n(S2 × S2),
where Σ is a homotopy 4-sphere. All these results are proved using techniques from the
theory of transformation groups.

If one restricts to oriented 4-manifolds another tool is available: Since any such manifold
admits a Spinc-structure one may try to use the Lefschetz fixed point formula (cf. [AtSeII68],
[AtSiIII68]) for the Spinc-Dirac operator to characterize G-actions on oriented 4-manifolds.
In [Ha78] Hattori proved the vanishing of the equivariant index of the Spinc-Dirac operator
in certain cases and used this result to derive the following

Proposition 4.7. ([Ha78], Prop. 3.14) Let M be an oriented 4-manifold with b1(M) = 0
and let τ be an S1-equivariant almost complex structure on M . If n ∈ N divides c1(τ) then
n ≤ 3. If n = 3 then the Euler characteristic of M is equal to three times the signature of
M , i.e. e(M) = 3sign(M). �
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The second part of this theorem may be rephrased in terms of the intersection form S of M :
If c1(τ) is divisible by 3 then S is isomorphic to (2q + 1)(+1)⊕ q(−1), i.e. S is isomorphic
to the intersection form of (2q + 1)(CP 2)]q(−CP 2), for some non-negative integer q. Next
we illustrate how Theorem 2.2 may be applied to 4-manifold with nice Pin(2)-action.

Proposition 4.8. Let M be an oriented 4-manifold with nice Pin(2)-action. Let S denote
the intersection form. Assume the Pin(2)-action has a fixed point.

1. Then S is either of odd type or trivial.

2. If M admits a Pin(2)-equivariant Spinc-structure then S is definite.

Proof: In the course of the proof we will use the fact that the induced S1-action lifts to any
Spinc-structure: Let Q be the principal bundle of orthonormal frames. We lift the Pin(2)-
action to Q via differentials. Let P be a Spinc-structure and ξ : P → Q the associated
U(1)-principal bundle. We will show that the first Chern class of ξ is in the image of
H2(QS1 ; Z) → H2(Q; Z). To this end we compare the Leray-Serre spectral sequences {Ep,q

r }
and {Êp,q

r } for QS1 → BS1 and QPin(2) → BPin(2), respectively. Note that in both spectral
sequences all differentials restricted to the subgroup of bi-degree (0, 2) are trivial except
maybe the second one. Since the action has a fixed point Pin(2) acts trivially on H1(Q; Z).
Thus these differentials are given by

H2(Q; Z) ∼= E0,2
2

d2−→ E2,1
2
∼= H2(BS1; H1(Q; Z)) ∼= Zb1(M) and

H2(Q; Z) ∼= Ê0,2
2

d̂2−→ Ê2,1
2
∼= H2(BPin(2); H1(Q; Z)) ∼= (Z/2Z)b1(M).

Since d2 factorizes over d̂2 and the homomorphism induced by S1 ↪→ Pin(2) we conclude
that d2 is zero on E0,2

2 . Thus H2(QS1 ; Z) → H2(Q; Z) is surjective. By Theorem 3.1 and
Theorem 3.2 the S1-action lifts to P .
Ad 1: Assume the intersection form S is even. We want to show that S is trivial, i.e.
b2(M) = 0. Since S is even w2(M) is the mod 2 reduction of an integral torsion class (cf.
[HiHo58]). We choose a Spinc-structure P0 on M with c1(P0) a torsion class and lift the
S1-action to P0. As remarked earlier the argument in [AtHi70] shows that the index of the
Spinc-Dirac operator ∂c for P0 vanishes:

ind(∂c) = 〈ec1(P0)/2 · (1− p1(M)/24), [M ]〉 = 0.

Since c1(P0) is a torsion class p1(M) vanishes and by the signature theorem (cf. [Hi56]) the
signature sign(M) = 〈p1(M)/3, [M ]〉 vanishes, too.

If b2(M) 6= 0 the intersection form must be indefinite and we may choose classes
x, y ∈ H2(M ; Z) with x2 = y2 = 0 and xy 6= 0. Let V = L2x + L2y, where Lz denotes
the complex line bundle with first Chern class z. By Proposition 3.6 the Pin(2)-action lifts
to each line bundle of V . Next choose a Spinc-structure P with c1(P ) ≡ c1(V ) modulo
torsion and lift the S1-action to P . Note that p1(V ) = 0. We are in the position to apply
Corollary 2.3 for V and P as above and W = 0. It follows that xy = 0 contradicting the
choice of x and y. Thus b2(M) = 0 and S is trivial.
Ad 2: Assume S is indefinite. By the first part S is odd and hence of the form p(+1)⊕q(−1)
with basis x1, . . . , xp and y1, . . . , yq. Let Lc denote the complex line bundle over M induced
by the given Pin(2)-equivariant Spinc-structure. Then c1(Lc) reduces to w2(M) modulo
2. Since Lc is Pin(2)-equivariant the differential H2(M ; Z) → H2(BPin(2); H1(M ; Z)) ∼=
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(Z/2Z)b1(M) vanishes on c1(Lc) and any other integral lift of w2(M). Let u ≡
∑

xi +
∑

yj

modulo torsion with mod 2 reduction equal to w2(M) and lift the Pin(2)-action to Lu. By
Proposition 3.6 the Pin(2)-action also lifts to L2x1 and L2y1 . Let V = Lu + L2x1 and let
W = Lu + Lu + L2y1 . Finally we choose an S1-equivariant Spinc-structure on M with first
Chern class equal to c1(V ).

By the signature theorem (cf. [Hi56]) 〈p1(M), [M ]〉 = 3(p−q). Since p1(V +W ) = p1(M)
we may apply Corollary 2.3 for V , W and P as above to derive the contradiction x2

1 = 0.
Thus S is definite. �

One may use Donaldson’s deep classification theorem [Do87] (any negative definite intersec-
tion form of an oriented closed 4-manifold is of the form (−1)⊕ . . .⊕ (−1)) to improve the
last result. Details are left to the reader.

Proposition 4.9. Let M be an oriented 4-manifold with nice Pin(2)-action. Assume the
Pin(2)-action has a fixed point and M admits a Pin(2)-equivariant Spinc-structure. Then
b2(M) ≤ 1, i.e. the intersection form is trivial or of the form (±1). �
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