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THE WITTEN GENUS AND S3-ACTIONS ON MANIFOLDS

Anand Dessai

0. In this paper we study the Witten genus ϕW on BO〈8〉-manifolds (a manifold M is a
BO〈8〉-manifold if M is spin and p1(M)/2 = 0). For a 4k-dimensional BO〈8〉-manifold M the
Witten genus is equal to a sequence of twisted Dirac operators:

ϕW (M) = ind(D(M)⊗
∞⊗
n=1

Sqn(TC)) · c = (
∞∑
n=0

ind(D(M)⊗Rn(TC)) · qn) · c.

Here TC denotes the complexified tangent bundle, Si(V ) is the i-th symmetric power of a

vector bundle V , St(V ) :=
∞∑
i=0

Si(V ) · ti,
∞∑
n=0

Rn(TC) · qn :=
∞
⊗
n=1

Sqn(TC) and c :=
∞∏
n=1

(1− qn)4k.

Our main result states that the Witten genus vanishes on a BO〈8〉-manifold M if and only
if a non-trivial multiple of M is BO〈8〉-bordant to a BO〈8〉-manifold with non-trivial S3-action
(see Corollary 5). This result is analogous to a theorem of M.F. Atiyah and F. Hirzebruch
(cf. [AtHi70]) which may be phrased in the following way: The Â-genus vanishes on a Spin-
manifold M if and only if a non-trivial multiple of M is Spin-bordant to a Spin-manifold with
non-trivial S1-action.

1. The Witten genus ϕW is given by the even stable characteristic power series

Q(x) =
x

ex/2 − e−x/2
·
∞
Π
n=1

(1− qn)2

(1− qnex)(1− qne−x)
· e−G2(τ)·x2

.

Here τ is in the upper half-plane, q := e2πiτ , σ1(n) :=
∑
d|n
d and G2(τ) := − 1

24 +
∞∑
n=1

σ1(n) · qn.

Thus, for a 4k-dimensional oriented closed manifold M with formal roots {±xi}2ki=1 the Witten

genus ϕW (M) is equal to
2k∏
i=1

Q(xi)[M ], where [M ] denotes the evaluation on the fundamental

cycle of M . Also, ϕW (M) is equal to the q-expansion in the cusp i∞ of a modular form of
weight 2k for Sl2(Z) and my be embedded in the ring C[[q]] (cf. [Br89]; consult [Se73] or
[Ko84] for an introduction to modular forms). The genus ϕ̃W given by the power series

Q̃(x) := Q(x) · eG2(τ)·x2
=

x

ex/2 − e−x/2
·
∞
Π
n=1

(1− qn)2

(1− qnex)(1− qne−x)

is closely related to the Witten genus in the following sense: If M is a manifold, s.t. all
Pontrjagin numbers of M involving p1(M) vanish, e.g. p1(M) is a torsion class, the two
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genera coincide. In this case ϕ̃W (M) =
2k

Π
i=1
Q̃(xi)[M ] is also the q-expansion in the cusp i∞

of a modular form of weight 2k for Sl2(Z). While the Witten genus has good modularity
properties the genus ϕ̃W does not in general. But ϕ̃W is related to the index of twisted Dirac
operators for Spin-manifolds. We will explain this next. Let TC be the complexified tangent

bundle of M and let
∞∑
n=0

Rn(TC) · qn :=
∞
⊗
n=1

Sqn(TC) (recall, Si(V ) is the i-th symmetric power

of a vector bundle V and St(V ) :=
∞∑
i=0

Si(V ) · ti). Then ϕ̃W (M) = (
∞∑
n=0

Â(M,Rn(TC)) · qn) · c,

where c :=
∞∏
n=1

(1 − qn)4k. If M is spin each coefficient of the q-expansion is the index of a

twisted Dirac operator:

ϕ̃W (M) = ind(D(M)⊗
∞⊗
n=1

Sqn(TC)) · c = (
∞∑
n=0

ind(D(M)⊗Rn(TC)) · qn) · c.

For a Spin-manifold M with G-action, G a compact Lie group, the equivariant genus
ϕ̃W (M)(g), g ∈ G, is defined by replacing the indices of the twisted Dirac operators by their
equivariant indices.

We will show that the vanishing of the Witten genus is directly connected to the existence
of an S3-action up to rational bordism (see Corollary 5).

Recall, that H4(BSpin; Z) ∼= Z and p1 ∈ H4(BSpin; Z) is two times a generator called
1
2p1. A Spin-manifold M is a BO〈8〉-manifold if and only if 1

2p1(M) = 0. A Spin-manifold
M is a rational BO〈8〉-manifold if and only if p1(M) is a torsion class.

Let MO〈8〉∗ be the bordism ring of BO〈8〉-manifolds. Let R be the ring in ΩSO∗ ⊗ Q
generated by manifolds M which have the property that all Pontrjagin numbers of M which
involve p1(M) vanish. With the help of the Pontrjagin-Thom construction follows that the
natural map MO〈8〉∗ ⊗Q→ ΩSO∗ ⊗Q is injective with image equal to R. Thus, two BO〈8〉-
manifolds are rationally SO-bordant if and only if they are rationally BO〈8〉-bordant and a
non-trivial multiple of any element of R, for example a rational BO〈8〉-manifold, is oriented
bordant to a BO〈8〉-manifold.

Theorem 1. Let M be an oriented closed manifold. If a non-trivial multiple of M is ori-
ented bordant to a rational BO〈8〉-manifold M̂ with non-trivial S3-action, then the equivariant
Witten genus ϕW (M̂)(g), g ∈ S3, is constant zero and ϕW (M) = 0.

Corollary 2. Let M be a rational BO〈8〉-manifold and ϕW (M) 6= 0. Then any compact
connected subgroup of the diffeomorphism group of M is a torus.

Theorem 3. The rational Spin-bordism ring has a basis sequence {M4k}k≥1, s.t.

1. M4k is a Spin-manifold for all k,

2. M4k is a BO〈8〉-manifold for k ≥ 2,

3. M4k is the total space of a Cayley plane bundle with structure group SU(2) and non-
trivial S3-action along the fibres for k ≥ 4.
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Corollary 4. Let M be an oriented manifold, s.t. all Pontrjagin numbers of M which involve
p1(M) vanish and assume ϕW (M) = 0. Then a non-trivial multiple of M is oriented bordant
to a BO〈8〉-manifold with non-trivial S3-action.

A theorem of M.F. Atiyah and F. Hirzebruch (cf. [AtHi70]) may be phrased in the following
way: The Â-genus vanishes on a Spin-manifold M if and only if a non-trivial multiple of
M is Spin-bordant to a Spin-manifold with non-trivial S1-action. If we restrict to BO〈8〉-
manifolds Theorem 1 and Corollary 4 give a corresponding result for the Witten genus and
S3-actions.

Corollary 5. Let M be a BO〈8〉-manifold. Then ϕW (M) = 0 if and only if a non-trivial
multiple of M is BO〈8〉-bordant to a BO〈8〉-manifold with non-trivial S3-action.

We do not know whether Theorem 1 is true if one replaces S3 by S1. If this is the case a
non-trivial multiple of a BO〈8〉-manifold with S1-action is bordant to a BO〈8〉-manifold with
S3-action. If not Corollary 2 is sharp, i.e. for any given torus T there exists a BO〈8〉-manifold
M with ϕW (M) 6= 0 such that T is contained in the diffeomorphism group of M .

2. Proof of Theorem 1. In this proof cohomology is always taken with rational coefficients.
Assume a non-trivial multiple of M , n ·M , is bordant to a rational BO〈8〉-manifold M̂ with
non-trivial S3-action. Then n · ϕW (M) = ϕW (M̂) = ϕ̃W (M̂).

Now choose any S1 ↪→ S3. Then the induced S1-action on M̂ is non-trivial. If the S1-
action has no fixed points the equivariant genus ϕW (M̂)(λ), λ ∈ S1, is constant zero by the
Lefschetz fixed point formula (cf. [AtSi68]).

So assume M̂S1 6= ∅. We want to show that p1(M̂)S1 ∈ im(π∗). Consider the following
commutative diagram of cohomology groups induced by S1 ↪→ S3:

H4(BS3) π∗−−−−→ H4(M̂ ×S3 ES3)

∼=
y y

H4(BS1) π∗−−−−→ H4(M̂ ×S1 ES1).

Let {E∗,∗r } be the Leray-Serre spectral sequence for the fibre bundle M̂ ×S3 ES3 → BS3.

Since BS3 is 3-connected the sequence 0 → E4,0
∞

π∗→ H4(M̂ ×S3 ES3) i∗→ E0,4
∞ → 0 is exact.

From M̂S1 6= ∅ follows that the horizontal arrows in the above diagram are injections. Thus,
H4(BS3) = E4,0

2 = E4,0
∞ . Since E0,4

∞ ↪→ E0,4
2 = H4(M) the sequence

0→ H4(BS3) π
∗

→ H4(M̂ ×S3 ES3) i∗→ H4(M)

is exact.
Since i∗(p1(M̂)S3) = 0 the class p1(M̂)S3 lives in the image of π∗. By naturality p1(M̂)S1 ∈

im(π∗). In [Li92] K. Liu showed that the equivariant Witten genus is constant zero for S1-
manifolds with p1(M̂)S1 ∈ im(π∗). Thus ϕ̃(M̂)(λ), λ ∈ S1, is constant zero. Since every
element of S3 is an element of a maximal torus S1 ↪→ S3 the equivariant Witten genus
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ϕ̃(M̂)(g), g ∈ S3, is constant zero and n · ϕW (M) = ϕW (M̂) = ϕ̃W (M̂)(1) = 0. This proves
the theorem.

Proof of Theorem 3. Let M4 = V (4) be the quartic in P 3(C). Let M8 and M12 be almost
parallelizable manifolds of dimension 8 and 12, respectively, with non-vanishing top Pontrjagin
class. Let M16 be the Cayley plane. We define M≥20 as follows:

Let T be the standard maximal torus of Spin(9) ↪→ F4. Consider a co-character f : S1 → T
which maps a generator u of the integral lattice of S1 to 2x1. By Lemma 6 the structure group
of η := (Bf)∗(ξ) allows a reduction to S1. The bundle has a non-trivial S3-action along the
fibres. Since p1(T4η) = 8u2 ∈ H4(BS1; Z) and p1(T4η) ≡ w2(T4η)2 mod 2 the bundle T4η
is spin.

Let k ≥ 5 and V d̂ a complete intersection of complex dimension 2k − 8 and of degree
d̂ = (d1, d2, d3, d4). Let j∗k−4 : V d̂ → BS1 classify ak−4 · h, where h is the pull-back of the
generator of H∗(CP∞; Z) with respect to the inclusion V d̂ ↪→ CP∞. For each k ≥ 5 we choose
d̂ and ak−4, s.t.

∑
d2
i = 8a2

k−4 + 2k − 3, where di > 0 for all i and ak−4 6= 0. It is a simple
consequence of the Lemma of Lagrange (about the sum of four squares) that we can always
find such di and ak−4.

Now define M4k for k ≥ 5 as the pull-back bundle of η under j∗k−4 : V d̂ → BS1. As a
pull-back bundle M4k has a non-trivial S3-action along the fibres for k ≥ 5. We claim that
M4k is BO〈8〉 and has non-vanishing Milnor number:

Since c1(V d̂) = (2k− 3−
∑
di)h ≡ (2k− 3−

∑
d2
i )h ≡ −8a2

k−4 ·h ≡ 0 mod 2 the manifold
V d̂ is spin. The tangent bundle of M4k splits as the direct sum of the bundle along the fibres,
T4M4k

∼= j∗k−4(T4η) and the pull-back of the tangent bundle of V d̂ under the projection
π : M4k → V d̂, i.e. TM4k

∼= j∗k−4(T4η) ⊕ π∗(TV d̂). Since T4η and TV d̂ are spin the same
holds for M4k. Next p1(M4k) = π∗(p1(V d̂)) + j∗k−4(p1(T4η)) = π∗(p1(V d̂) + 8a2

k−4 ·h2). Since
by construction p1(V d̂) = ((2k− 8 + 5)−

∑
d2
i ) · h2 = −8a2

k−4 · h2, we get p1(M4k) = 0. Since
H4(M4k; Z) is torsion free this proves p1/2(M4k) = 0 and M4k is BO〈8〉.

By Lemma 7 the coefficient α of x2k−8
1 in π!(s2k(T4ξ)) does not vanish. By construc-

tion ak−4 6= 0. Hence j∗k−4(u2k−8) is a generator of H4k−16(V d̂; Q) and the Milnor number
s2k(TM)[M ] = π!(s2k(T4M))[V d̂] = j∗k−4(22k−8α · u2k−8) of M4k is non-zero. For k ≤ 4 it
follows directly that the Milnor number of M4k is non-zero. Thus {M4k} defines a rational
basis sequence for ΩSpin∗ , i.e. ΩSpin∗ ⊗Q ∼= Q[M4,M8, . . .].

Proof of Corollary 4. The ring of modular forms M∗(Sl2(Z)) is a polynomial ring over C in
ϕW (M8) and ϕW (M12). The genus vanishes on {M4k}k≥4 by Theorem 1. Hence, the kernel
of ϕW restricted to R = Q[M8,M12, . . .] is the ideal I in R generated by {M4k}k≥4.

The condition on the Pontrjagin numbers of M imply that the rational oriented bordism
class x of M lives in R. Since ϕW (M) = 0, the bordism class x is an element of the ideal
I. Now for any element y ∈ I exists a natural number n 6= 0, s.t. n · y can be realized as a
BO〈8〉-manifold with non-trivial S3-action. This proves the corollary.
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Lemma 6. Let H ↪→ G be an inclusion of compact Lie groups and E the total space of an
universal G-bundle. Let ξ be the bundle E/H → E/G with fibre G/H. Given another closed

subgroup L
f
↪→ G the map φ : E ×L G/H → (Bf)∗(ξ), (e, gH) 7→ (eL, egH) of bundles over

E/L with fibre G/H induces a reduction L ↪→ G of the structure group G for the bundle
(Bf)∗(ξ).

Proof. Since φ((el, gH)) = (eL, elgH) = φ((e, lgH)) the map is well-defined. Also, it is surjec-
tive and induces the identity on the base space E/L. Now assume φ((e, gH)) = φ((e′, g′H)),
i.e. (eL, egH) = (e′L, e′g′H). This implies e′ = el for some l ∈ L and gH = lg′H. Hence,
(e′, g′H) = (el, l−1gH) ∼L (e, gH). This proves the injectivity of φ and completes the proof.

We will now show that the Milnor numbers of M4k, k ≥ 4, do not vanish. Recall, that the
Milnor class s2k(η) of a bundle η with formal roots {±yi}li=1 is given by

∑l
i=1 y

2k
i . The Milnor

number of a 4k-dimensional manifold M is given by s2k(TM)[M ]. As a tool we use integration
over the fibres. We will explain this in the general situation first: LetG be a compact connected
Lie group, U a closed connected subgroup of maximal rank and T a maximal torus of U . The
Weyl groups of G and U are denoted by W (G) and W (U). Now choose a set {ri}i=1,...,s by
fixing a sign for every complementary root ±ri of U ↪→ G. Let ξ : BU π→ BG be the induced
bundle with fibre G/U and T4ξ the bundle along the fibres. The rational cohomology of BU
and BG may be identified with the invariants of H∗(BT ; Q) under the action of the Weyl
group of U and G, respectively. Let π! : H∗(BU ; Q) → H∗(BG; Q) denote the integration

over the fibres of ξ, where T4ξ is oriented by e(T4ξ) =
s

Π
i=1
ri. Then

π!(x) =
∑

w∈W (G)/W (U)

w(
x
s

Π
i=1
ri

)

(cf. [BoHi58] or [KrSt93]).

Lemma 7. The Milnor numbers of M4k do not vanish for k ≥ 4.

Proof. Recall from the proof of Theorem 3 that the Milnor number of M := M4k is equal to

s2k(TM)[M ] = π!(s2k(T4M))[V d̂] = j∗k−4(22k−8α · u2k−8),

where α is the coefficient of x2k−8
1 in π!(s2k(T4ξ)). Recall also that it suffices to show that

α 6= 0.
For the standard maximal torus T 4 of Spin(9) with generators x1, . . . , x4 the complemen-

tary roots of Spin(9) in F4 are given by 1
2

∑
±xi (cf. [BoHi58]). As a set of representatives

of W (F4)/W (Spin(9)) we choose {1, w, w2}, where

w := s2x4 ◦ s 1
2 (x1−x2−x3+x4)

and sα denotes reflection along the hyperplane 〈α, 〉 = 0. More explicitly, w is given by

x1 + x2 7→ x1 + x2, x1 − x2 7→ x3 + x4, x3 + x4 7→ x3 − x4 and x3 − x4 7→ x1 − x2.
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If we put

y :=
x1 + x2

2
, y1 :=

x1 − x2

2
, y2 :=

x3 + x4

2
, y3 :=

x3 − x4

2
and define

P (y, y1, y2, y3) :=

∑
z∈{y,y1}

(
(z + y2)2k + (z − y2)2k + (z + y3)2k + (z − y3)2k

)
(y2 − y2

2)(y2 − y2
3)(y2

1 − y2
2)(y2

1 − y2
3)

then, π!(s2k(T4ξ)) is equal to

Q(y, y1, y2, y3) := P (y, y1, y2, y3) + P (y, y2, y3, y1) + P (y, y3, y1, y2).

The coefficient α of x2k−8
1 in π!(s2k(T4ξ)) is equal to Q( 1

2 ,
1
2 , 0, 0). It follows that α is equal

to 28−2k(22 − 22k + k(2k − 1)(2k − 2)) and is negative for k ≥ 4.
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