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Abstract

We discuss new obstructions to positive sectional curvature and symmetry. The
main result asserts that the index of the Dirac operator twisted with the tangent
bundle vanishes on a 2-connected manifold of dimension # 8 if the manifold admits
a metric of positive sectional curvature and isometric effective S'-action. The proof
relies on the rigidity theorem for elliptic genera and properties of totally geodesic
submanifolds.

1 Introduction

An important application of index theory in Riemannian geometry is in the
study of manifolds of positive scalar curvature. Soon after Atiyah and Singer
proved the index theorem Lichnerowicz used a Bochner type formula to show
that for a closed Riemannian Spin-manifold M the index of the Dirac operator
A(M) vanishes if M has positive scalar curvature.

Whereas the relation between index theory and positive scalar curvature (at
least for simply connected manifolds of dimension > 5) is well understood
[17,27,32,35,38,41] possible relations to stronger curvature conditions such as
positive Ricci curvature or positive sectional curvature remain obscure (see
however Stolz’ conjecture in [42]).

In this paper we give index theoretical obstructions to the existence of positive
sectional curvature (positive curvature for short) on Spin-manifolds under
mild symmetry assumptions.

For a Spin-manifold M let A(M,TM) denote the index of the Dirac operator
twisted with the complexified tangent bundle (this operator is also known as
the Rarita-Schwinger operator [50]). Our main result is the following
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Theorem 1 Let M be a closed 2-connected manifold of dimension # 8. If M
admits a metric of positive curvature with effective isometric S'-action then

A~ ~

A(M,TM) = A(M) = 0.

We note that the restriction on the dimension is necessary since A(M,TM)
is non-zero for M the quaternionic projective plane HP?. The curvature as-
sumption cannot be weakened to positive scalar curvature. A simple example
is given by the product of a 2-connected 8-dimensional manifold with A #1
and HP? (see the discussion in Section 4). We expect that the theorem re-
mains true if one drops the assumption on the connectivity. Partial results in
this direction are discussed in Section 4 and Section 6.

For a 12-dimensional manifold M Theorem 1 can be formulated in terms of
the signature. In this dimension the signature satisfies

sign(M) = 8 A(M, TM) — 32 A(M).

This follows from a direct computation or by comparing the elliptic genus in
different cusps.

Corollary 2 Let M be a closed 2-connected 12-dimensional manifold. If M
admits a metric of positive curvature with effective isometric S*-action then
sign(M) =0. O

Theorem 1 and its corollary hold under slightly weaker assumptions on the
symmetry. It suffices to assume that the cyclic subgroup of S* of order 4 acts
isometrically on M (see Theorem 12). It would be interesting to understand
how restrictive this symmetry assumption is. Looking at the literature one
sees that all presently known examples of positively curved simply connected
manifolds carry a metric of positive curvature with isometric S'-action. Be-
sides the biquotients found by Eschenburg [11,12] and Bazaikin [4], which are
in dimension 6, 7 and 13, the other examples carry a homogeneous metric of
positive curvature (the homogeneous examples were classified by Berger [6],
Aloff, Wallach [1,46] and Bérard Bergery [5]).

To put Theorem 1 in perspective we briefly summarize the main obstructions
to positive curvature presently known. Manifolds of positive curvature are clas-
sified in dimension < 4 [21]. In higher dimensions the only known obstructions
are given by restrictions on the fundamental group [16,34,43], Gromov’s Betti
number theorem [16] and the obstructions to positive scalar curvature (coming
from index theory and Spin-geometry, the minimal hypersurface method of
Schoen-Yau or Seiberg-Witten theory). Further progress concerning obstruc-
tions and classification has been obtained for positively curved manifolds with
large dimensional isometry group, large (discrete) symmetry rank or small co-
homogeneity [13,18-20,28,37,39,40,45,47,48 51]. These results require that the
dimension of the manifold is bounded from above by a constant depending on



the symmetry. We like to stress that Theorem 1 has a quite different flavor
since the dimension of the manifold can be arbitrarily large. Other results of
this kind will be discussed in Section 6.

The main topological ingredient in the proof of Theorem 1 is the Bott-Taubes-
Witten rigidity theorem [7,44,49] for the elliptic genus and its consequences for
cyclic group actions (see Section 3). We recall that the (weight zero) elliptic
genus P is a ring homomorphism from the oriented bordism ring to the ring of
modular functions for I'g(2) of weight zero. On the complex projective spaces
CP?% it is given by

0
3 B(CPM)E = (1= 2t )

where 0 and € are certain modular forms of weight 2 and 4, respectively.

Following Witten [49] the elliptic genus ®(M) of a Spin-manifold M expands
in one of the cusps of I'((2) as a series of twisted signatures which is best
thought of as the index of a hypothetical signature operator on the free loop
space of M. In a different cusp of T'y(2) the elliptic genus expands as a series
®y(M) of twisted Dirac operators

Oo(M)=q MBEAM, QR ApTIM@ Q SpaTM)

n=2m+1>0 n=2m>0

= ¢ dmM/B (A(M) — A(M, TM) - q+ AM,\>TM +TM) -¢* +...).
Here A(M , E) denotes the index of the Dirac operator twisted with the com-

plexification of the vector bundle E (we refer to [25,31] and Section 3 for more
information on the elliptic genus).

Theorem 1 says that for a 2-connected manifold M of dimension # 8 the first
two coefficients of ®y(M) vanish if M admits a metric of positive curvature
and isometric effective S'-action. An important step in the proof is to relate
(M) to the action of finite cyclic subgroups of S'. Using the rigidity theorem
we derive the following result which might be of independent interest.

Theorem 3 Let M be a closed Spin-manifold with smooth S*-action and let
o € St be of order o > 2. If codim M? > 20-r then the first (r+1) coefficients
of ®o(M) vanish.

Here codim M? denotes the minimal codimension of the connected compo-
nents of M? in M. If o is of order 2 the result is due to Hirzebruch and
Slodowy [26] who showed that the elliptic genus of M is equal to the elliptic
genus of a transversal self-intersection of the fixed point manifold M? (see Sec-
tion 3). In Section 5 we give a different argument which generalizes to cyclic
actions of arbitrary finite order.



Theorem 3 gives a purely topological relation between the codimension of M?
and the coefficients of ®q(M). Additional restrictions on M? arise from the
curvature assumption in Theorem 1. If o acts isometrically then any compo-
nent of M7 is a totally geodesic submanifold of M. By a result of Frankel [14]
totally geodesic submanifolds of a positively curved manifold intersect if they
have sufficiently large dimension. This leads to restrictions on the dimension
of the connected components of the fixed point manifold. Further constraints
arise from the recent work of Wilking [47] on the connectivity of the inclusion
map of totally geodesic submanifolds. These geometric properties together
with the rigidity theorem and its consequences are the main ingredients in the
proof of Theorem 1.

We don’t know how to prove Theorem 1 by more direct methods such as a
Bochner type argument for twisted Dirac operators. To prove the vanishing of
fl(M , T M) we need to use the entire elliptic genus. Note that any Bochner type
argument for the vanishing of A(M,TM) must be sensitive to the dimension
as no such argument can apply in dimension eight!

The paper is structured as follows. In the next section we review properties
of totally geodesic submanifolds. In Section 3 and Section 5 we recall the
rigidity theorem for elliptic genera and discuss relations between the fixed
point codimension of cyclic actions and the elliptic genus as exemplified in
Theorem 3. These sections do not rely on any curvature assumptions and
might be of independent interest. Theorem 1 is proved in Section 4. In the
final section we discuss related results for positive kth Ricci curvature and
higher symmetry rank.

2 Totally geodesic submanifolds

Throughout this and the following sections all manifolds are assumed to be
smooth closed manifolds and all actions are smooth. Let M be a Riemannian
manifold with positive sectional curvature (positive curvature for short). In
this section we briefly review properties of totally geodesic submanifolds of M.
Recall that a submanifold N C M (equipped with the induced Riemannian
metric) is totally geodesic if any geodesic of N is also a geodesic of M. We
begin with an old result of Frankel.

Theorem 4 ([14]) Let Ny and Ny be connected totally geodesic submanifolds
of a positively curved connected manifold M. If dim N; + dim Ny > dim M
then N1 and Ny have non-empty intersection. O

The proof uses a Synge type argument for the parallel transport along a
geodesic from N; to Ny which minimizes the distance.



Whereas it is difficult to find totally geodesic submanifolds for generic metrics
they do occur naturally as fixed point components in the presence of symmetry.
Theorem 4 clearly imposes restrictions on the fixed point manifold of isometric
actions. The following consequence is immediate.

Corollary 5 Let o be an isometry of a positively curved connected manifold
M and let F' be a connected component of the fixed point manifold M of
minimal codimension. Then the dimension of every other component is less
than the codimension of F'. O

In [15] Frankel applied Theorem 4 to show that the inclusion N — M of
a totally geodesic submanifold N of codimension x is 1-connected provided
Kk < w. Recently, Wilking generalized this result significantly.

Theorem 6 ([47]) Let M be an n-dimensional positively curved connected
manifold. Let N C M be a connected submanifold of codimension k. If N 1is
totally geodesic then the inclusion N <— M is (n — 2k + 1)-connected. O

The proof uses a Morse type argument on the space of path on M which start
and end in N. Following [47] we note that the existence of a highly connected
inclusion map N < M is reflected in cohomology via Poincaré duality. More
precisely, if N and M are oriented, N has codimension x and N — M is
(n — k — l)-connected then the homomorphism

UPD([N]) : H(M;Z) — H"™"(M;7)

given by taking the cup product with the Poincaré dual of N is surjective for
Il <i<n—k—1and injective for [ <i<n—k — L.

Wilking applied Theorem 6 and variants of it to the study of positively curved
manifolds with large symmetry [47,48]. Among other results he obtained struc-
ture theorems for positively curved n-dimensional manifolds with symmetry
rank > % + 1.

3 Rigidity and cyclic actions

In this section we recall the Bott-Taubes-Witten rigidity theorem for elliptic
genera and discuss applications to cyclic actions. For more information on
elliptic genera we refer to [25,31].

A genus in the sense of Hirzebruch [23] is a ring homomorphism ¥ from the
oriented bordism ring Q3¢ to a Q-algebra R [23]. The genus is called elliptic

(of level 2) if its logarithm g(f) = Y450 Yo%+ is given by a formal elliptic



integral
du

t

)= |

9(t) 0 vV1—28 -u2+e-ut (1)

where 6,e € R [36]. AClassical examples of elliptic genera are the signature
(6 =€e=1) and the A-genus (6§ = —%, ¢ = 0).

The theory of elliptic genera (of level 2) is related to the theory of modular
forms for

[o(2):={A € SLy(Z) | A= (§%) mod 2}.
Recall that the ring of modular forms M, (I'¢(2)) is a polynomial ring with
generators § and € of weight 2 and 4, respectively (see for example [25]). If
one chooses these generators in (1) one obtains the elliptic genus

@ Q3% — M,(To(2))
which is universal since § and ¢ are algebraically independent.

As in [26,49] we shall consider the (weight zero) elliptic genus ® which assigns
to a 4k-dimensional oriented manifold M the modular function ¢(M)/e*/2.
In one of the cusps (the signature-cusp) ®(M) expands as a series of twisted
signatures

sign(q, LM) := sign(M, Q) SpTM @ R AT M) € Z[q]].

n=1 n=1

Here Ay := 3, AP - t° (vesp. Sy := Y; S* - t*) denotes the exterior (resp. sym-
metric) power operation and sign(M, E) denotes the index of the signature
operator twisted with the complexified vector bundle £ ® C. If M is a Spin-
manifold then - as explained by Witten [49] - the series sign(q, LM) describes
the “signature” of the free loop space LM localized at the manifold M of
constant loops.

In a different cusp (the A-cusp) ®(M) expands as a series of characteristic
numbers

Do(M):=q ¥? AM, Q@ A pTM® K SpTM)

n=2m+1>0 n=2m>0

=g ¥ (AM) — A(M, TM)-q+AM,N>TM +TM)-¢*+...).

Here A(M,E) := (A(M) - ch(E ® C),[M]) where A(M) denotes the multi-
plicative sequence for the fl—genus, ch(E ® C) is the Chern character of the
complexification of the vector bundle E, [M] denotes the fundamental cycle
and ( , ) is the Kronecker pairing. If M is a Spin-manifold then A(M, E)
is equal to the index of the Dirac operator twisted with £ ® C by the Atiyah-
Singer index theorem [2]. In this case ®(M) has an interpretation as a series
of indices of twisted Dirac operators (twisted Dirac-indices for short).



Now assume a compact Lie group G acts smoothly on M and preserves the
Spin-structure (note that a smooth G-action always lifts to the Spin-structure
after passing to a two-fold covering action). Then each twisted signature and
each twisted Dirac-index occurring in sign(q, LM) or ®o(M) refines to a vir-
tual G-representation which we identify with its character.

The main feature of the elliptic genus is its rigidity under actions of com-
pact connected Lie groups. The rigidity was explained by Witten in [49] us-
ing heuristic arguments from quantum field theory and proved rigorously by
Taubes and Bott-Taubes [7,44] (cf. also [24,33]).

Rigidity Theorem 7 Let M be a G-equivariant Spin-manifold. If G is con-
nected then each equivariant twisted signature (resp. each equivariant twisted
Dirac-index) occurring as coefficient in the expansion of ®(M) in the signature-
cusp (resp. in the fl—cusp) 1s constant as a character of G. O

The rigidity theorem imposes strong constraints on the G-action. In the fol-
lowing we shall discuss some consequences for cyclic actions which are relevant
to the proof of Theorem 1.

We begin by recalling results of Hirzebruch and Slodowy on involutions. As-
sume S' acts on the Spin-manifold M (not necessarily preserving the Spin-
structure). Let ¢ € S' be the element of order 2. In [26] Hirzebruch and
Slodowy used the rigidity theorem to show that

sign(qg, LM) = sign(q, L(M? o M7))

where M? o M? denotes a transversal self-intersection of the fixed point man-
ifold M?. Changing cusps one obtains

Bo(M) = Bo(M o M?). 2)

If the S'-action does not lift to the Spin-structure (i.e. the S'-action is odd)
then the codimension of the connected components of M7 is always = 2 mod 4
(cf. [3], Lemma 2.4). In this case ¢¥™M/8 . &,(M? o M) € ¢'/% - C[[g]]. Since
qimM/8 . &y (M) € C[[q]] formula (2) implies the well known

Lemma 8 Let M be a Spin-manifold with S*-action. If the action is odd then
&y (M) vanishes identically. O

If the S'-action lifts to the Spin-structure (i.e. the S'-action is even) then
the codimension of all connected components of M7 is divisible by 4. In this
case formula (2) yields the following generalization of the Atiyah-Hirzebruch
A-vanishing theorem [3].

Theorem 9 ([26]) Let M be a Spin-manifold with S'-action and let o € S*
be the element of order two. If codim M? > 4r then the first (r+1) coefficients



of ®o(M) vanish. O

Here codim M? denotes the minimal codimension of the connected compo-
nents of M7 in M.

In the remaining part of this section we present a generalization of this theorem
to cyclic actions of arbitrary finite order. Let M be a Spin-manifold with S'-
action and let o € S* be of order 0 > 2. To a connected component Y of M5
we attach a rational number m,(Y") as follows:

The tangent bundle T'M restricted to Y splits equivariantly as the direct
sum of TY and the normal bundle v. The latter splits as a direct sum v =
@, v corresponding to the irreducible real 2-dimensional S*-representations
el (fgiif‘;,, Eg;%), [ > 0. For each [ > 0 we choose a complex structure on

v, as follows. If | = [ mod o for some [ € {0,...,[2]} we choose the complex
structure such that A € S* acts by multiplication with A\!. Otherwise we choose
the complex structure such that A acts by multiplication with A~!. In this way
we have fixed a complex structure on v such that the rotation numbers of
the S'-action are all in {0, ..., [2]} mod o . We denote by [ € {0,...,[2]} the
mod o reduction of the rotation number for v; (in other words [ is a number in
{0,...,[5]} which satisfies I = I mod o or satisfies | = — mod o). Let dimc v
denote the complex dimension of v;.

With these conventions the number m,(Y") is defined by

mo(Y) := () dimcy; - 1)/o.
1>0
Finally define
My := m};n me(Y)

where Y runs over the connected components of M5'. We are now ready to
state

Theorem 10 Let M be a Spin-manifold with S'-action. If m, > r then the
first (r + 1) coefficients of ®o(M) vanish.

To prove this theorem we analyze the expansion of the equivariant elliptic
genus in the A-cusp using the Lefschetz fixed point formula [2] and Theorem
7. The proof is carried out in Section 5.

Note that codim M? < 20 - m,. Hence, Theorem 10 implies the following

Corollary 11 (Theorem 3) Let M be a closed Spin-manifold with S*-action
and let o € S' be of order o > 2. If codim M? > 20 - r then the first (r + 1)
coefficients of ®o(M) vanish. O



4 Positive curvature and elliptic genera

In this section we prove the following generalization of Theorem 1.

Theorem 12 Let M be a closed connected Spin-manifold of dimension # 8
with bo(M) = 0. Assume M admits a metric of positive curvature and an effec-
tive S'-action such that the cyclic subgroup of order 4 acts by isometries. Then
A(M) and fl(M, T M) wvanish, i.e. the first two coefficients in the expansion
&y (M) vanish.

We remark that the vanishing of the second Betti number could be replaced
by the condition that the second homotopy group my(M) is finite since the
theorem is only interesting for even-dimensional manifolds and an oriented
even-dimensional manifold of positive curvature is simply connected [43]. Be-
fore we give the proof we will illustrate our result with a specific example.

Example 13 Let M be the product of the quaternionic projective plane HP?
and an 8-dimensional Spin-manifold B with by(B) = 0 and A(B) = 1 (the
latter can be constructed for example via plumbing). Note that M is Spin
and by(M) = 0. Computing the elliptic genus of M one finds A(M) = 0
and A(M,TM) # 0. On HP? = Sp(3)/(Sp(2) x Sp(1)) we choose a positively
curved metric induced from a bi-invariant metric on Sp(3). If we equip B with
some metric then after shrinking HP?, if necessary, the Riemannian product
M has positive scalar curvature and carries an isometric action of Sp(3). By
the work of Joyce (see [29], Table 1 on page 129) we can choose for B a
Ricci-flat Riemannian manifold with holonomy Spin(7). For this choice M has
non-negative Ricci curvature as well as positive scaler curvature and carries
an isometric action of Sp(3). According to our theorem M cannot carry a
metric of positive curvature at least if one restricts to metrics which satisfy
the symmetry assumptions given in Theorem 12. We don’t know whether M
admits a metric of positive Ricci curvature.

Proof of Theorem 12. The statement is trivially true if the dimension of M
is 4 or if the dimension of M is not divisible by 4. So assume dim M = 4k > 12.
Since M is an orientable even-dimensional manifold of positive curvature M
is simply connected [43]. Note that A(M) vanishes by [3,32]. So we are left to
show that the twisted Dirac-index A(M, T M) vanishes.

The proof is by contradiction. So assume A(M,TM) # 0. Let p € S' be
an element of order 4 and let ¢ := p? denote the involution. Since o acts
isometrically M7 is a totally geodesic submanifold of M. By Lemma 8 each
connected component of M7 has codimension = 0 mod 4. Theorem 9 implies
that the codimension of M7 is 4. Let X denote a connected component of



codimension 4. It follows from Corollary 5 that any other connected component
of M? is an isolated o-fixed point.

Using Theorem 10 (for o = 4) we see that either X = X” or the codimension
of X? in X is two. We claim that X = X?”. To prove this claim it suffices to
show that A(M,TM) vanishes if X # X?. So assume a connected component
F of X? has codimension two in X. Note that F' is totally geodesic. We apply
Theorem 6 to F' — X < M and use Poincaré duality to obtain the following
relations for the Betti numbers

bQ(M) - bQ(X) - bQ(F) - b4k_8(F) - b4k_8(X) - b4(X) - b4(M)

and
bi(M) = bj(X) = bag—a—j(X) = bag—s—j(M) = bj14(M)

for 3 < j < 4k — 7. Since by(M) = 0 it follows that the Betti numbers by;(M)
vanish for 0 < 4j < 4k. Combining this information with A(M) = 0 we see
that all Pontrjagin numbers of M vanish. In particular, A(M,TM) = 0 which
proves the claim.

Since X = X?* the action of p on the normal bundle vx of X C M induces a
complex structure such that p acts by multiplication with s = y/—1. We fix the
orientation of X which is compatible with the orientation of vx (induced by
the complex structure) and the given orientation of M. In the same way the
action of p induces a complex structure on the normal bundle of an isolated
o-fixed point and an orientation for this point.

We will now evaluate the expansion of the S'-equivariant elliptic genus in
the signature-cusp at p € S'. Recall that each coefficient of sign(q, LM) is
a twisted signature which refines to a virtual S'-representation. We identify
the virtual representation with its character and denote the series of equi-
variant signatures by signgi (g, LM). To compute signgi(q, LM)(p) we apply
the Lefschetz fixed point formula to each coefficient. Recall that the Lefschetz
fixed point formula [2] computes an equivariant index evaluated at p as a sum
of local contributions at the p-fixed point components. In our situation M?” is
the union of X and a possible empty set of isolated p-fixed points p;. For the
entire series one gets

signsi (¢, LM)(p) = pix + D lip,
!

where px (resp. pp,) denotes the local contribution at X (resp. at an isolated
p-fixed point p;). In cohomological terms px is given by (cf. [2], Section 3)

px = (Tx - Nx, [X])

10



where Tx is equal to

H( l+e™® (1+g"-e%)- (144" e ")
T

i 1—e st (1—qgm- emy)-(]_—qn.e—xj)> € H*(X;Q)[[q]]

and N is equal to

. (He W (i) H (14 g>-<1+q"-e‘yf-<-?>>> e H'(X;Q)[g]}

i=ia \1—e % - (=) (1—qn- eyf-z)-(l—q”-e*yﬂ-(—z))

Here = (resp. y1,y2) denote the formal roots of X (resp. vx). Since by(X) =
be(M) = 0 the first Chern class y; + yo of vx vanishes rationally. This implies

1+e 9. (—Z) 14 e¥t. (—Z)

Nx = T (0 Toen - ()

=—1.

Hence, the expression for ux simplifies to
For an isolated p-fixed point p; the term p,, is given by (cf. [2], Section 3)

. 00 . . 2k . 2%

1— 14+i-g")-(1—i-q" 1—

= [t L) A=) :i( ’.) = 41,
1+i,5(1—i-¢q")-(14+i-q") 1+

Using Theorem 7 we get sign(q, LM) = signgi(q, LM)(p) = —sign(q, LX)+c
where c is the integer obtained by summing up p,,. Equivalently,

O(M) = —B(X) +c (3)

Note that ®¢(M) € ¢~*/2C[[q]] whereas ®((X) € ¢'/2 - ¢~*/2C[[q]]. Comparing
the expansions in the A-cusp of both sides of (3) we see that ®y(M) € Z.
Since dim M > 12 this implies fl(M ,TM) = 0 which gives the desired contra-
diction. O

Remark 14 H. and R. Herrera have shown that the rigidity theorem also
holds for oriented manifolds with finite second homotopy group [22] (see also
Remark 15). In can be shown (along the lines of the proof above) that Theorem
12 remains true for these manifolds.

5 Proof of Theorem 10

We may assume that the dimension of M is divisible by 4 and that the fixed
point manifold M5" is not empty since otherwise M is rationally zero bordant

11



and ®o(M) vanishes. By Lemma 8 we may also assume that the S'-action lifts
to the Spin-structure. We fix a lift. The proof of Theorem 10 is divided into
three steps.

Step 1. In this step we describe the equivariant elliptic genus in terms of fixed
point data. Consider the expansion of ®(M) in the A-cusp. Recall from Sec-
tion 3 that the coefficients are indices of twisted Dirac operators associated to
the Spin-structure. Since the S'-action has been lifted to the Spin-structure
each index refines to a virtual S'-representation which we identify with its
character (an element of Z[\, A7!]) and the series ®y(M) refines to an ele-
ment of Z[\, A\"!][¢"2][[¢]] which we denote by g 51(M). By Theorem 7 each
coefficient of the g'/2-series ® ¢1(M) is constant as a function on S*.

Let Ay € S! be a fixed topological generat?r. By the Lefschetz fixed point
formula [2] the series ®q¢1(M)(Ao) € Clg™2][[g]] is equal to a sum of local
data

‘Po,sl(M)(/\o) = ZMY((J, o)
Y
where Y runs over the connected components of M5 .

Recall from Section 3 that we have decomposed the normal bundle v of YV
as a direct sum ;.o v, of complex vector bundles. The complex structure on
v, was chosen such that A € S' acts on v; by multiplication with A%!. Here
oy € {—1,+1} was chosen such that ol is equivalent to some I € {0, ..., (51}
modulo o. Let d; := dim¢ ;.

We fix the orientation for Y which is compatible with the given orientation
of M and the orientation of v induced from the complex structure of v. Let
{%x;} denote the set of roots of Y and let {z; ;};=1,.. 4, denote the set of roots
of v;. The local datum py (g, A\g) may be described in cohomological terms as
(cf. [2], Section 3):

uy(q,Ao)=<H i | : ),[Y]> (4)

j f(Q: x]) >0 4 f(qa X5 + all * 20

Here f(q,z) € C[[q1]][[z]] is equal to

(72 — e7®/2) . gM/*. [n—om>o(l —¢"-€”)- (1 —¢"-e7") :
[Th—omi1s0(1 — g™ -€%) - (1 —g"-e7?)

Ao = €, [Y] denotes the fundamental cycle of Y and ( , ) is the Kronecker
pairing. In general each local datum puy (g, \g) depends on \g. However, the
sum Yy py (g, Ao) is equal to ®q s1(M)(Ao) and therefore independent of \g
by Theorem 7.

12



Step 2. Each local datum is the expansion of a meromorphic function on H x C
where H denotes the upper half plane. As in the proof of the rigidity theorem
[7] (cf. also [24,33]) modularity properties of these functions will be central for
the argument. In this step we examine some of their properties.

We begin to recall relevant properties of the series f (see for example [8,25]).
For 0 < |g| < 1 and z € C satisfying |q| < |e*| < |q|™! the series f(q,z)
converges normally to a holomorphic function. This function extends to a
meromorphic function f(7,z) on H x C after the change of variables ¢ = ™7
where 7 is in #H. The function f(7,z) is elliptic in z for the lattice L :=

4mi - Z(1,7) and satisfies fr+1,2)=1i- f(r,2), f(r,2+2mi) = —f(r, 2) and

f(r,z+2mi-7) = —f(7,2)"". The zeros of f(r,z) are simple and located at
L and L + 2mi.

Let ¢ = €2™7 and let Ay = e¢* be a topological generator of S*. In view of
formula (4) and the properties of f the local datum puy (g, Ao) converges to
a meromorphic function iy on H x C evaluated at (7,z5). We proceed to
explain how this function is related to f For a function F' in the variables
x;,x;; which is smooth in the origin let 7 (F') denote the Taylor expansion of
F with respect to z;,z;; = 0. It follows from formula (4) that iy is related
to f by (see for example [8]):

ﬁY(T,zo):<T =2 I - ! ; ,[Y]>

i f(rx) o f(r,z+ ol - 2o

The properties of f stated above imply corresponding properties for fiy. In
particular, fiy is elliptic for the lattice L and satisfies

Iy (T +1,2) = (=)™ MA 50 (7,2),  fiy (7, 2 + 2m1) = L]y (7, 2).

For fixed 7 € H the poles of the functions jiy are contained in % - L for some
n € N depending on the rotation numbers of the S'-action at the connected
components Y C M5 (see for example [8]).

It follows that for any topological generator Ao = e* the series ®q g1 (M) ()
converges to the sum Yy fiy (T, 29). In general [iy (7, z) depends on z. By The-
orem 7 the sum Yy fiy (7, z) is independent of z.

Step 3. In the final step we study the series >y py in terms of the sum
Yy Ay (7, s(1)) where s : # — C approximates 7 — 2 - 2mi - 7. We choose
s(7) in such a way that fiy (7, s(7)) is periodic with respect to 7+ 7+ N for
some N € N (see below).

Note that in general the series py (g, A) does not converge if A is close to eo2miT
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and the g~ -expansion of by (1, 5(7)), denoted by ay, is different from the cor-
responding contribution py in the Lefschetz fixed point formula for @ 1 (M).
In particular, we cannot compare uy (g, e*™) and fiy (7, s(7)) directly. How-
ever, since the sum >y fiy (7, z) is independent of z the sum Yy ay is equal
to the expansion of the elliptic genus in the fl-cusp (see last step). Using the
properties of iy described above and the assumption on m, we will show that
>y ay has a pole of order less than dimTM — .

Here are the details. Recall from the last step that the poles of jiy are contained
in © - L for some n € N. Choose s(r) := (1 — ) -2-2ni -7 where (3 is a
fixed positive rational number < 1. Hence, s(7) is close to 2 - 27 - 7 and
T +— Qy(7,s(7)) is holomorphic on H for every connected component Y C
M5". Using oyl = lmod o, [ € {0, ..., [5]}, and the transformation property

f (7, z4+4mi-T) = f(7, 2) one computes that iy (7, s(7)) is equal to (T (Ay), [Y])
where

Ay = _ . - =
e H Flra; +2: (5 (L= 6) = B) - (2mi-7)

.....

and §; := 3- Q‘? Note that for some N € N (depending on £ and the rotation
numbers) every summand fiy (7, $(7)) is periodic with respect to 7 +— 7 + N.
We claim that its expansion ay € (C[q_%][[q%]] has a pole of order less than

dimM
s T.

Since the expansion of 7 (xj/f(T, xj)) (with respect to 7 — 7 +4) is equal to
z;/f(q, ;) the expansion of

T(~ ! ) 6
from;+2-(5-1=p)=6)-(2mi-1))

can be easily computed in terms of f. The computation shows that the ex-
pansion of (5) has a pole of order < § —L.(1— )+ . Since mo(Y) > m, > r
and 3, (3, are arbitrarily small it follows that ay € C[q’%][[q%]] has a pole of

order less than % — r. As explained in the beginning of this step the sum

>y ay is equal to the expansion of the elliptic genus in the fl—cusp. Hence,
®(M) € Clg 2][[g]] has a pole of order less than dmM 7 i.e. the first (r+1)
coefficients of ®y(M) vanish. O

Remark 15 A similar argument applies to orientable S'-manifolds for which
the equivariant elliptic genus is rigid, e.g. oriented manifolds with finite second
homotopy group [22] or Spin‘-manifolds with first Chern class a torsion class
[9].
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6 Higher symmetry rank and positive kth Ricci curvature

Theorem 12 indicates that the existence of a metric of positive sectional cur-
vature on a Spin-manifold is reflected in the expansion of the elliptic genus
in the A-cusp (at least under mild assumptions on the symmetry). The pur-
pose of this section is to discuss other results which illustrate this connection
between the elliptic genus and positive curvature.

We first like to point out that under slightly different symmetry assumptions
the conclusion of Theorem 12 also holds for Spin-manifolds with non-trivial
second Betti number. More precisely one has

Theorem 16 ([10]) Let M be a closed connected Spin-manifold of dimension
# 8 and let G be a compact connected Lie group which acts on M. Suppose M
admits a metric of positive curvature such that some subgroup Z /27 X Z./27
of G acts effectively and isometrically. Then the first two coefficient of ®o(M)
vanish, i.e. A(M) = A(M,TM)=0. O

Looking at HP? one sees that the restriction on the dimension is necessary.
In dimension 12 the result can be reformulated in terms of the signature (see
the paragraph before Corollary 2). As an illustration consider the product
M = HP? x K5 of the quaternionic projective plane and a Ks-surface. If we
equip K3 with a Ricci-flat metric then M has non-negative Ricci curvature,
positive scalar curvature and Sp(3) acts isometrically on M. By the theorem
above M does not admit a positively curved metric with, say, isometric Sp(3)-
action.

Higher vanishing results for the elliptic genus ®q(M) can be obtained under
stronger symmetry assumptions as illustrated by the following

Theorem 17 Let M be a closed connected Spin-manifold of dimension >
12r — 4. Suppose M admits a metric of positive curvature and an action by
a torus T of rank 2r such that the 2-torus Ty, C T acts isometrically and
effectively. Then the first (r + 1) coefficients in the expansion ®o(M) vanish.

Proof. The proof is by contradiction. So assume the first (r + 1) coefficients
of ®y(M) do not all vanish. Note that dim M = n = 4k > 12r since (M)
vanishes if the dimension of M is not divisible by 4. By [43] M is simply
connected.

In the lemma below we show that for some involution o € T; the fixed point
manifold M7 is connected of codimension 4 and contains a totally geodesic con-
nected submanifold F' C M7 of codimension 2. It then follows from Theorem
6 that the inclusion maps F' < M? and M? — M are both (n— 7)-connected.
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We apply Poincaré duality to conclude

bi(M?) =b;(F) = by_6_i(F) > byg_i(M°) =bia(M?)for 1 <i<n-—7
and

bi(M) =b;(M°) =b, 4 (M%) =by 4 ;(M) =0biy(M)for3<i<n-—T.

In particular, since b;(M?) = by (M) = 0, all odd Betti numbers of M“ and
M vanish.

The classical Lefschetz fixed point formula for the Euler characteristic gives
X(M) = x(MT) = x((M?)") = x(M?). Hence,

D bi(M) = x(M) = x(M?) =Y _b;(M). (6)

i>0 i>0

On the other hand since M? < M is (n—7)-connected Poincaré duality gives

ST (M) = 3 bi(MC) + by(M) + bs(M). (7)

i>0 i>0

Comparing equations (6) and (7) we find b,(M) = 0. Since b;(M) = b;14(M)
for 3 < i < n—7and A(M) = 0 all Pontrjagin numbers of M vanish.
In particular, ®;(M) = 0. This completes the proof based on the lemma
below. O

Lemma 18 Let M be as in Theorem 17. Assume the first (r + 1) coefficients
of ®o(M) do not all vanish. Then for some involution o € Ty the fized point
manifold M s connected of codimension 4 and contains a totally geodesic
connected submanifold F C M? of codimension 2.

Proof. As before we may assume that dim M = 4k > 12r. We examine the
action of the 2-torus Ty & (Z/27)* at a T-fixed point pt (which exists since
we assume Pg(M) # 0). For an involution o € T5 let N, denote the connected
component of M? which contains pt.

We split the tangent space T,;M into 2k complex one-dimensional 7T-repre-
sentations T,;M = R ®...® Ry,. With respect to such a decomposition the 7T-
action on T,M is given by a homomorphism 7 — U(1)%. Let
h : Iy ® (Z)2Z) — (Z/2Z)* denote the mod 2 reduction of the induced
homomorphism of integral lattices I — Iy1yor = 7% . Since the T-action is
effective h is injective. Let C := im(h) C (Z/27Z)? be the induced binary code.
We denote by wt(5) the weight of & € C (i.e. the number of entries of & equal
to 1) and by cowt(&) the co-weight 2k — wt (7).
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Note that the action of an involution ¢ = exp(c/2) € T, ¢ € Ir, on T, M is
described by the element 6 = h(¢) where ¢ denotes the mod 2 reduction of c.
In particular, codim N, = 2wt(5) and dim N, = 2cowt(7).

By Theorem 9 and Lemma 8 the fixed point manifold M? has codimension
< 4r and the dimension of each connected component of M7 is divisible by
4. Note that the connected components of M7 are totally geodesic. Since the
dimension of M is > 8r it follows from Corollary 5 that either codim N, < 4r
ordim N, < 4r—4. Hence, for any & € C either wt(5) < 2r or cowt(d) < 2r—2.

It is an elementary fact from linear algebra that C has a basis 74, . .., 2, such
that
- 1000 .. 02727..7
o1 0100 ... 0777..7
Az(-): 0010 .. 07727.07
72 0000 .. 1727.0.7

after permuting the representations R; (i.e. the columns), if necessary. From
the above inequalities for the weight and coweight we conclude that the ele-
ments &; of the basis have weight wt(d;) < 2r. Since the weight function is
sublinear, i.e. wt(d +¢') < wt(d) + wt(d'), and 2k > 67 it follows that the set
of elements in C with weight < 2r is closed under addition. Hence, wt(5) < 2r
for every ¢ € C. In particular, this inequality holds for }°;5; and 3, 5;
which implies wt(5;) = 2 and implies that each of the last (2k — 2r) columns
of A has an even number of non-zero entries. In particular, we can order the
elements &; of the basis such that wt(d; + 7,) = 2.

Next we shall rephrase these observations in terms of the fixed point compo-
nents N,. Let o; denote the involution which corresponds to ;. Then by the
above the codimension of NV, is 4 and the intersection N,, N/V,, has codimen-
sion 2 in N,,. For an arbitrary involution o we know that the codimension of
N, is at most 4r since wt(d) < 2r for any & € C.

We will now show that the conclusion of the lemma holds for ¢ := ;. Note
that by Theorem 4 and Lemma 8 the fixed point manifold M7 is the union
of N, and a possible empty set of isolated o-fixed points. Since an isolated
o-fixed point q is also a T-fixed point we can argue as above to conclude that
the connected component of M? which contains ¢ has codimension < 4r. Since
dim M > 4r we get a contradiction to g being an isolated o-fixed point. Hence,
there are no isolated o-fixed points and M? = N, is connected. This proves
the first part of the statement. The second part follows by taking F' to be the
connected component of M N M?2 which contains the T-fixed point pt. O

Next we will discuss relations between the elliptic genus and positive kth
Ricci curvature. Recall that a Riemannian manifold has positive kth Ricci
curvature (or k-positive Ricci curvature) if for any (£+1) mutually orthogonal
unit tangent vectors e, ey, ..., e, (at any point of M) the sum of curvatures
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>F | sec(e A e;) is positive [30]. Thus, 1-positive Ricci curvature is equivalent,
to positive curvature and (dim M — 1)-positive Ricci curvature is equivalent
to positive Ricci curvature. Totally geodesic submanifolds in a manifold of
positive kth Ricci curvature enjoy properties similar to the ones described
in Section 2. This allows to extend our method to this situation. Theorem 4
generalizes to manifolds of positive kth Ricci curvature as follows [30]:

Let Ny and Ny be connected totally geodesic submanifolds of a connected man-
ifold M of positive kth Ricci curvature. If dim Ny +dim Ny > dim M + (kK —1)
then N1 and Ny have non-empty intersection.

Similarly, Theorem 6 generalizes to positive kth Ricci-curvature (see [47], Re-
mark 2.1). Using these substitutes for Theorem 4 and Theorem 6 one can
derive vanishing theorems for the elliptic genus of Spin-manifolds with posi-
tive kth Ricci curvature and symmetry. As an illustration we shall prove the
following sample result.

Let M be a closed connected Spin-manifold of positive kth Ricci curvature.
Assume a torus 7T of rank R acts smoothly on M such that for some prime p
the induced action of the p-torus T, & (Z/pZ)*® is isometric and effective. To
keep the exposition simple we shall assume the generous bounds R > p-r—i—%
and dim M > 6p - r + (k — 1).

Proposition 19 Let M be a Spin-manifold of positive kth Ricci curvature
satisfying the assumptions above. Then the first (r + 1) coefficients in the
expansion ®o(M) vanish.

Proof. First note that if F; and F5 are two different fixed point components
of an isometry o then dim F} +dim F» < dim M + (k —1) by [30]. Now assume
the first (r+1) coefficients in the expansion ®4(A/) do not vanish and consider
the action of o € T}, on M. By Theorem 3 the codimension of M7 is < 2p-r.
Hence, a connected component I’ of M7 has either “small codimension”, i.e.
codim F < 2p-r, or “small dimension”, i.e. dim F' < 2p - r + (k — 1).

Consider a T-fixed point pt € M (which exists since we assume ®y(M) # 0)
and let F,, C M denote the component which contains pt. It is an elementary
exercise to show that the p-torus 7, has a basis o1, ..., og such that dim F,, >
2R—2 > 2p-r+ (k—1). This implies that the codimension of F,, is small (in
the above sense). Next consider two elements o, 0’ € T,,. Since the dimension
of M is > 6p -7 + (k — 1) the codimension of F,,, is small provided this
holds for F,, and F,.. Hence, the codimension of F, is small for every o € T},
i.e. codim F, < 2p - r for every o € T,. However, it follows from elementary
linear algebra that for some o € T}, the codimension of F, is at least 2R >
2p-r+ (k+ 1). This gives the desired contradiction. 0O
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We close this section with a speculation on the elliptic genus and positive
curvature. As illustrated by the results in this paper the coefficients of the A-
expansion ®q(M) of the elliptic genus obstruct positive curvature on a Spin-
manifold M under mild symmetry assumptions. For our approach it is essential
that a compact connected Lie group acts on a positively curved Spin-manifold
and that the action contains sufficiently many isometries. Without assump-
tions on the symmetry our method breaks down and does not lead to any
new obstructions. On the other hand all known examples of positively curved
simply connected manifolds admit metrics of positive curvature with lots of
symmetry. In fact in dimension divisible by 4 all known examples are homo-
geneous. For a Spin-homogeneous space M Hirzebruch and Slodowy [26] have
shown that the elliptic genus is strongly rigid in the sense that ®(M) is con-
stant as a g-power series (it reduces to the ordinary signature). This feature
motivates the

Question 20 Let M be a Spin-manifold. Is the elliptic genus ®(M) strongly
rigid if M admits a metric of positive curvature?

Less ambitious one might ask whether the twisted Dirac-index A(M ,TM)
vanishes if M admits a metric of positive curvature and dim M > 12.

A positive answer to any of these questions would give a new way to distinguish
between positive curvature and positive Ricci curvature and could be applied
in situation which are not obstructed by Gromov’s Betti number theorem.
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