
Master’s Thesis:

Positive Scalar Curvature, Enlargeability

and

The Positive Energy Theorem
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Abstract. In this Master’s thesis, we discuss the notion of enlargeability as obstruction to
the existence of positive scalar curvature metrics on Riemannian manifolds. We will follow the
approach of M. Gromov and H.B. Lawson, who used techniques from spin geometry to prove
this result in ’80. More specifically, they used a slightly modified version of the celebrated
Lichnerowicz formula and showed that it contradicts the Atyiah-Singer index theorem in the
presence of positive scalar curvature if the manifold at hand is enlargeable. We introduce some
of the necessary prerequisites to be able to properly discuss the subject, such as: Riemannian
Geometry, Spin Geometry, Characteristic classes and the Atiyah-Singer index theorem.

The last chapter is dedicated to the Positive Energy Theorem, a result that has its historical
roots in General Relativity. We will use the non-existence of positive scalar curvature metrics
on certain compact manifolds to discuss a proof of the Positive Energy Theorem that is due
to J. Lohkamp.
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Chapter 1

Introduction: Positive Scalar
Curvature and Topology

This Master’s thesis belongs to one of the numerous intersections of geometry and topology.
Namely, we explore a certain relation of curvature, a notion from Riemannian geometry, to
the topology of the space at hand. This is conceptually interesting in the following sense:
Curvature is a description of the shape of the given space around a point. By this, we mean
specifically that it is local in nature, i.e. it suffices to know what the space looks like in a
small neighbourhood around the given point to be able to compute curvature. Furthermore,
curvature is sensitive to small perturbations of the geometry of the space, provided these
perturbations affect the neighbourhood of the point at which one measures. Topology on the
other hand seems to be the opposite with respect to the two aforementioned properties in the
sense that it is concerned with the global structure of a space. Small neighbourhoods of the
given space carry no topological information, only the whole space does. Small perturbations
(that fulfill some natural conditions) do not change the topological data associated to the
space. These are the premises of topology, rather than deep mathematical insights.

Nonetheless, we will see that even seemingly weak conditions on curvature can have a dra-
matic effect on the global picture of the space.

Riemann surfaces. To illustrate what we mean, we will have a look at Riemann surfaces1.
First of all, these are two-dimensional objects and thus suit the (limited) human imagination.
Secondly they played a predominant historical role in the development of considerable parts
of geometry and topology as we understand these disciplines today. For these reasons they
provide adequate examples for the concepts we discuss here. Riemann surfaces are defined as
smooth two-dimensional surfaces with a particularly nice additional structure2. For orientable
surfaces, such a structure can always be chosen (although not unambiguously so) therefore

1not to be confused with Riemannian manifolds.
2They can succinctly be defined as one-dimensional complex manifolds.
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we won’t worry about this too much here.

By a celebrated result, namely the so-called Uniformization Theorem, Riemann surfaces can
be put into three different categories: elliptic, parabolic and hyperbolic. These correspond
to the three different curvature cases: positively curved (e.g. spheres), flat (e.g. the plane,
cylinders, tori), negatively curved (e.g. surfaces of genus > 1). When we restrict ourselves to
compact Riemann surfaces, the only remaining example for positive curvature is the 2-sphere.
This is in stark contrast to the hyperbolic case, where there are infinitely many examples.

Positive curvature in general. This scarcity of positively curved manifolds seems to persist
in higher dimensions, as it is actually an active field of research to find interesting examples
of positively curved spaces for the different curvature notions3. We will restrict our attention
to scalar curvature, which is somehow a weak notion of curvature since it only associates a
number to every point of the space, whereas other curvatures are -roughly speaking- arrays
of numbers. These concept are introduced and, to some extent, discussed in chapter 2.
Nevertheless positive scalar curvature is a restrictive condition on topology. It is one of the
goals of this master’s thesis to illustrate this.

Spin Geometry. It took mathematicians quite a long time to get some kind of grip on this
interaction of positive scalar curvature with topology. One reason for this is that virtually all
results of this type rely on one crucial tool that requires a proper understanding of various
mathematical disciplines: spin geometry. Chapter 4 provides some overview of this subject
with an emphasis on its differential geometric aspects. We completely omit the algebraic and
representation theoretic prerequisites for which we refer to chapter I of the standard reference
[LaMi].

Here we will briefly discuss the historic origins of spin geometry. The first mathematician
who has properly understood the so-called spinors seems to have been Élie Cartan around
the year 19104 in the context of representations of Lie groups. Similar ideas were put to
use in theoretical physics in the 1920’s in the wake of the emergence of quantum theory.
Around 1928 Paul Dirac first wrote down the relativistically consistent quantum equation of
motion which was subsequently named after him. In his efforts to achieve this, he invented
the so-called Dirac operator, which is of fundamental importance for our purposes. He had
the idea of trying to factorize a certain equation in which the Laplacian, a second order
differential operator, occurred. He thus needed to take the (a priori ill-defined) square root of
this Laplacian operator. Imposing that the resulting operator D be of first order, this means

3For dimension two most curvature notions coincide (up to constants) and thus there was no need to specify
for our discussion of Riemann surfaces

4In 1913, his paper [Ca] was published.
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solving the following system equations for the coefficients γk:

D = γ1
∂

∂x1
+ γ2

∂

∂x2
+ ...+ γn

∂

∂xn

D2 = ∆ = − ∂2

∂x2
1

− ∂2

∂x2
2

− ...− ∂2

∂x2
n

which yields the following relations:

γk · γj + γj · γk = 0 for k 6= j

γk · γk = −1

This purely formal manipulation begs the question of what kind of mathematical object these
γk actually are and how their product is defined. Dirac supposed them to be matrices equipped
with the corresponding product and identified matrices that fulfill these relations in the con-
text of space-time (i.e. in dimension four with different signs (−,+,+,+) in the definition
of the Laplacian). Abstractly, the above relations define a so-called Clifford algebra. These
objects were already considered in the 1870’s by their name-giving mathematician William
K. Clifford, building on the works of William R. Hamilton and Hermann Grassmann, but
apparently Dirac wasn’t aware of this. In conclusion, this somehow naive attempt of taking
the square root of a differential operator turned out to be something very profound: By doing
this, one is forced to leave the classical vector-based realm for its Clifford-algebraic extension.

How scalar curvature enters. As it turns out, the fact that Dirac’s trick works out is
specific to the context where the underlying space is flat in an appropriate sense. In general,
a curvature term will appear. This idea of relating curvature to second-order differential
operators is sometimes called Bochner’s method or Weitzenböck formulae. In the context of
the Dirac operator, the corresponding formula goes back to André Lichnerowicz5 and was
proved in 1963. The curvature term in the so-called Lichnerowicz formula is one fourth of
scalar curvature:

D2 = ∆ +
1

4
κ

This formula is essential for our purposes. Its proof will be given in chapter 4 and its appli-
cations will be discussed in chapter 7. The Dirac operator can be linked to an interesting
topological invariant called the Â-genus by the Atiyah-Singer index theorem. In chapter 6,
we will merely discuss the latter result, a proof of which would be beyond the scope of this
thesis. In conclusion, the Lichnerowicz formula links scalar curvature to the Dirac operator,
the index theorem links the Dirac operator to the Â-genus and thus the Â-genus is related
to scalar curvature. More precisely, the existence of positive scalar curvature metrics for a

5Interestingly enough, already the physicist Erwin Schrödinger knew about this formula in the setting
of space-time. He derived and applied it in his 1932 paper [Scr]. Some people therefore call this formula
Schrödinger-Lichnerowicz formula.
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certain manifold implies the vanishing of the corresponding Â-genus, thus it can be seen as
an obstruction to the existence of positive scalar curvature metrics.

Enlargeability. Enlargeability is a topological property of manifolds which is strongly re-
lated to its fundamental group. It is one of the goals of this thesis (chapter 7) to show that
enlargeability is an obstruction to the existence of positive scalar curvature metrics on spin
manifolds. The idea is -roughly speaking- that the fundamental group of a positively curved
space should be small in an appropriate sense6. This is again reflected in our basic example
of Riemann surfaces: The 2-sphere is the only positively curved compact Riemann surface as
well as the only one with trivial fundamental group. Enlargeability reflects the fact that the
fundamental group of the space at hand is large by imposing that the space admits arbitrarily
large covering spaces. In ’79 R. Schoen and S.T. Yau published two papers ([SY1/2]) around
this idea but in which they used minimal surface techniques and more specifically the regu-
larity of minimal surfaces, a method that works properly only in dimensions ≤ 7. In ’80 M.
Gromov and H.B. Lawson employed arguments from spin geometry to prove results along the
same lines (see [GrLa]). This is the approach we will adopt. One uses certain twisted spinor
bundles for which there is a modified Lichnerowicz formula in which an additional curvature
term appears (depending on the curvature of the vector bundle with which one twists). As it
turns out, enlargeability is a suitable condition to gain some control over this additional term
so that the Lichnerowicz argument can still be applied. Thus a modified Â-genus vanishes
in the presence of positive scalar curvature. Computing the topological index and using the
Atiyah-Singer index theorem shows that this vanishing doesn’t occur.

The Positive Energy Theorem. Contrarily to other field theories, the formalism of Gen-
eral Relativity doesn’t allow for a sensible definition of (local) energy density; only for a
global numerical quantity (called total energy) which, in a sense, measures the asymptotic
gravitational behaviour of the system7. The notion of total energy for a system in General
Relativity was formalized by the physicists R. Arnowitt, S. Deser and C. Misner in their ’61
paper [ADM]. It was conjectured that this total energy was positive for sufficiently reasonable
space-time geometries, since positivity of energy is physically associated to the stability of the
system. This is known as the Positive Mass conjecture. Again, this conjecture was proven in
’79 by Schoen and Yau in a series of papers [SY3/4/5] by the use of minimal surface techniques
which fail in dimensions ≥ 7. In ’81 Witten presented another remarkable proof in [Wi] using
spin geometry which can be applied to spin manifolds in arbitrary dimensions. The alternate
proof for spin manifolds which we will present in chapter 8 goes back to J. Lohkamp [Lo]
and was published in ’97. Lohkamp’s idea can be roughly described as follows: After reduc-
ing the problem to a space-like hypersurface with positive scalar curvature (this was known
before Lohkamp’s paper) one can show that the assumption of negative energy leads to a
contradiction. More specifically, this assumption can be used to modify the given metric so

6See the introduction to the fundamental paper [GrLa] for details on this idea.
7See the introduction to [Wi].
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that the hypersurface is Euclidean outside of a compact which has itself non-negative (and
somewhere strictly positive) scalar curvature. This contradicts the results from chapter 7 in
the sense that such a manifold could be glued into an otherwise flat compact manifold that
cannot carry positive scalar curvature metrics, such as the torus for example.
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Chapter 2

Some Aspects of Riemannian
Geometry

In this first chapter we provide an introduction to the tools and concepts from Riemannian
Geometry that are important in the context of Spin Geometry. Amongst other things this
means that we work in the abstract setting of smooth vector bundles. The classical case can
be extracted from this setting by choosing the tangent bundle as vector bundle over the base
manifold. We do this on several occasions explicitly, since some results are specific to that
context (the Levi-Civita connection for example). At the end of the chapter we discuss the
various notions of curvature. Our approach is mainly based on [Jos], [Pet16] and the lecture
notes [Izm] and [Des] (for the part on vector bundles).

2.1 Vector bundles

Let X be a smooth manifold.

Definition 2.1.1. Let E be a smooth manifold, and π : E → X a smooth map. A triple
(E,X, π) is called a smooth vector bundle of rank n if the following hold:

1) π−1({x}) is an n-dimensional real vector space;

2) For every x ∈ X there is a neighbourhood U ⊂ X and a diffeomorphism:

ϕ : π−1(U)
∼=−→ U × Rn

with the additional property that for every x′ ∈ U the restriction:

ϕ|π−1({x′}) : π−1({x′})
∼=−→ {x′} × Rn

is a vector space isomorphism. ({x′} × Rn is a vector space by dropping {x′})
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E is called total space, B base space and π projection map. The vector spaces π−1({x}) are
called fibres and often denoted by Ex. The pairs (U,ϕ) are sometimes referred to as bundle
charts, their collection as bundle atlas. In a context where there is no ambiguity over which
base space the bundle is considered, the vector bundle is often just referred to as E.

Remark 2.1.2. There are different generalizations of the definition of a vector bundle. In
the category of topological rather than smooth manifolds, one can just replace smooth by
continuous in every occurrence to get the according definition. Furthermore, the model space
for the fibres needn’t be Rn, it can for example be complex.

Example 2.1.3. The tangent bundle TX
The archetypal example for a smooth vector bundles is the tangent bundle (TX,X, π) associ-
ated to any smooth manifold X. By π, we denote the projection map of vectors to their base
points. It is easy to see that the defining properties of vector bundles are met: The fibres
are vector spaces and the bundle charts can be constructed from the manifold charts in the
obvious manner.

Definitions 2.1.4. A vector bundle morphism between (E,X, π) and (E′, X ′, π′) is
a pair of smooth maps F : E → E′, f : X → X ′ s.th. the the following hold:

1) The following diagram commutes:

E E′

X X ′

π

F

π′

f

2) For every x ∈ X the map F |x : Ex → E′f(x) is linear.

Vector bundle isomorphisms are defined correspondingly.

To describe the above commutative diagram, one says that F covers f . Property 2) is referred
to as F being linear in every fibre. Very often the concept of vector bundle morphism is
applied in the more restricted context where E and E′ are bundles over the same base space
and f = idX . The corresponding diagram takes the following form:

E E′

X

π

F

π′
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In the case where furthermore E′ = E, these maps are called bundle endomorphisms and
their set is denoted by EndE.

Definition 2.1.5. A vector bundle of rank n (E,X, π) is called trivial if it is isomorphic
to the bundle (X × Rn, X, π1), where π1 denotes the projection onto the first factor.

Because of this terminology, the condition 2.1.1.2) is called local triviality. One of the crucial
steps in properly understanding vector bundles is the clear distinction between local triviality
on the one hand and triviality of the bundle on the other. In fact, the triviality or non-
triviality of vector bundles over X is strongly related to the topology of X. Considerable parts
of algebraic topology take bundles over X as geometric input to gain topological information
about X. Examples of this idea are topological K-Theory (see for example the classic [At]
or [Ha09]) and Characteristic classes (see Chapter 5). Contractible spaces (i.e. topologically
trivial spaces), for example, can be shown to admit only trivial vector bundles. We illustrate
these ideas by the following (humble) example:

Example 2.1.6. TS2 is non-trivial
By 2.1.3, the tangent bundle TS2 is a vector bundle over the 2-sphere. TS2 is non-trivial.
Proof: Suppose TS2 ∼= S2 × R2. This isomorphism can be used to construct a non-vanishing
vector field on S2. This can be done by transporting for example p 7→ (p; (1, 0)) ∈ S2×R2 over
to TS2. The resulting vector field has to be non-vanishing, since the map is an isomorphism.
This is a contradiction to the hairy ball theorem (see [C.1.5]).

�

Next, we will review some methods of constructing new bundles from known ones. The first
will be the so-called pull-back construction.

The needed data to carry out the pull-back construction is a rank-n bundle (E,X, π), a
smooth manifold X ′ and a smooth map f : X ′ → X. The basic idea is to turn X ′ into the
base space of a new vector bundle by defining the fibre over the point x′ ∈ X ′ to be the fibre
of E over f(x). Define the following subset of X ′ × E:

f∗E =
{

(x′, e) ∈ X ′ × E | f(x′) = π(e)
}

and the map (which is just projection onto the first factor):

f∗π : f∗E −→ X ′

(x′; e) 7−→ x′

Notice that by taking the projection on the second factor:

F : f∗E −→ E

(x′; e) 7−→ e
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we get the following commutative diagram:

f∗E E

X ′ X

f∗π

F

π

f

which means that F covers f and that we have thus a bundle morphism: (f∗E,X ′, f∗π) →
(E,X, π) provided that we have indeed constructed a vector bundle. Furthermore the map F
can easily be seen to be a fibre-wise vector space isomorphism (but obviously not necessarily
a bundle isomorphism).

Claim: (f∗E,X ′, f∗π) is a smooth vector bundle of rank n.
Proof: X ′ × E is a smooth product manifold of which f∗E is a submanifold by the implicit
function theorem, furthermore f∗π is clearly a smooth map. The fibre f∗Ex′ is by construc-
tion equal to the fibre Ef(x′) and thus an n-dimensional vector space. The local triviality
requirement is met by defining the following bundle atlas: For all x′ consider the chart (U,ϕ)
around f(x′). We get a chart around x′ by taking the pair:

(f−1(U), ϕ ◦ F |f∗π−1(f−1(U)))

where ϕ ◦ F |f∗π−1(f−1(U)) is a fibre-wise vector space isomorphism since both ϕ and F are.

�

Definition 2.1.7. We call (f∗E,X ′, f∗π) the pull-back bundle of (E,X, π) under f .

Properties 2.1.8. Basic properties of the pull-back

1) If f : X ′ → X is a diffeomorphism, then (f∗E,X ′, f∗π) and (E,X, π) are isomorphic as
vector bundles;

2) Given a sequence of smooth maps Z
g→ Y

f→ X and a bundle E over X, we have the
following contravariance property:

(f ◦ g)∗E = g∗f∗E

Another method of constructing new bundles is applying functors to an existing vector bundle.
Contrary to the pull-back construction this yields bundles over the same base space. Let Vect
denote the category of vector spaces, and T a functor of the type:

T : Vect× ...×Vect −→ Vect

T may be co- or contravariant.
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Definition 2.1.9. T is called smooth functor if for all V,W ∈ Vect, the map (in the
covariant case):

T : Hom(V,W ) −→ Hom(T (V ), T (W ))

or (in the contravariant case):

T : Hom(V,W ) −→ Hom(T (W ), T (V ))

is smooth. In the case where T takes multiple arguments from Vect, smoothness is defined
correspondingly.

Examples 2.1.10. Examples of smooth functors on vector spaces

1) ⊕ : (V,W ) 7→ V ⊕W the direct sum,

2) ⊗ : (V,W ) 7→ V ⊗W the tensor product,

3) ∗ : V 7→ V ∗ dualization,

4) Λi : V 7→ ΛiV i-th exterior product.

Proposition 2.1.11. If T is a smooth functor taking k arguments in Vect and
{(Ei, X, πi)}i∈{1,...,k} a collection of smooth vector bundles, then (T (E1, ..., Ek), X, π) is
a smooth vector bundle as well (where the fibres are defined in the obvious manner:
T (E1, ..., Ek)x = T ((E1)x, ..., (Ek)x)).

Applying the proposition to the examples from 2.1.10 yields a large set of examples of smooth
vector bundles:

Examples 2.1.12. Let E and F be vector bundles over the base space X, then the following
are vector bundles over X as well:

1) E ⊕ F the direct sum of vector bundles,

2) E ⊗ F the tensor product of vector bundles,

3) E∗ the dual vector bundle,

4) ΛiE i-th exterior product of a vector bundle,

5) T rsE = E ⊗ ...⊗ E
r-times

⊗E∗ ⊗ ...⊗ E∗
s-times

the tensor bundle of type (r, s), which is a combina-

tion of examples 2) and 3).

14



By ΛiX = ΛiT ∗X respectively T rsX = T rs TX we will denote the result of these constructions
applied to the cotangent bundle T ∗X = (TX)∗, respectively the tangent bundle TX (see
2.1.3). Next, we discuss sections of vector bundles.

Definition 2.1.13. For a smooth vector bundle (E,X, π) a smooth map σ : X → E is
called smooth section of E if it is a right-inverse to π, i.e. if the following holds:

π ◦ σ = idX

The set of sections of E is denoted by Γ(E).

The defining condition of sections is quite a natural requirement: If evaluated at some point
x of the base manifold, we want σ to take its values in the fibre over the same base point, i.e.
we require σ|x ∈ Ex. Γ(E) can easily be seen to be itself a real vector space. Many important
objects from differential geometry occur as sections of appropriate vector bundles:

Examples 2.1.14. Examples of sections

1) Γ(TX) = X(X) is the set of vector fields on X,

2) Γ(ΛiX) = ΩiX is the set of differential i-forms,

3) Γ(T rsX) = T rs X is the set of (r, s)-tensor fields.

In the spirit of the proof of 2.1.6, one can show the following:

Proposition 2.1.15. A rank-n vector bundle is trivial if and only if it admits n sections
that are linearly independent in every fibre.

As an example, one can show that if the base manifold is a Lie group G, then the tangent
bundle is trivial, i.e.

TG ∼= G× T1G ∼= G× g

by choosing a basis {e1, ..., en} of T1G and transporting it to every TgG by using group (left-)
multiplication by the element g, denoted by Lg. This means that for all i ∈ {1, ..., n}, we
define the sections of TG by:

σi|g = dLg(1)ei

Since Lg : G → G is a diffeomorphism, every dLg(1) : T1G → TgG is a vector space isomor-
phism and the σi are thus linearly independent in every point.
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2.2 Metrics and Connections

Let (E,X, π) be a smooth vector bundle over the n-dimensional base space X. To be able to
measure lengths and angles in the fibres of E, we introduce the following concept:

Definition 2.2.16. A section
〈·, ·〉 ∈ Γ(E∗ ⊗ E∗)

is called (bundle) metric of E if it is symmetric and positive definite in every fibre.

By a partition of unity, one can show that every vector bundle can be equipped with a bundle
metric. For any point x ∈ X this definition clearly yields an inner product on Ex, denoted
by 〈·, ·〉x. {(Ex, 〈·, ·〉x)}x∈X is thus a family of Euclidean vector spaces smoothly indexed by
the base manifold X. As such it is clear how lengths and angles can be measured. By non-
degeneracy, this inner-product yields a canonical isomorphism between E and its dual, which
is of fundamental importance in differential geometry:

ι : E
∼=−→ E∗

(x, v) 7−→ 〈v, ·〉x

Remark 2.2.17. Induced metrics
A metric on the bundle E induces a natural metric on its dual E∗ in the following manner:
Consider sections that locally form a basis of every fibre {σ1, ..., σn}, these can be chosen
orthonormal with respect to the given bundle metric by applying the Gram-Schmidt process.
To this orthonormal frame, we associate its dual frame {s1, ..., sn} (which are projections onto
the σi). This dual frame is a local coordinate frame for E∗. The metric structure on E∗ comes
from declaring this dual frame to be orthonormal, i.e. to define 〈·, ·〉E∗ , we put:

〈si, sj〉E∗ = δij

and require it to be linear. This construction is independent of the chosen basis. Another way
to see this is by using the isomorphism ι described above. For any two sections s, r ∈ Γ(E∗),
we have:

〈s, r〉E∗ = 〈ι−1 ◦ s, ι−1 ◦ r〉

The same idea yields an inner product on all tensor bundles derived from E. All of these are
usually again denoted by 〈·, ·〉 to simplify notation.

Putting E = TX yields the most important special case of bundle metrics:
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Definitions 2.2.18. A bundle metric 〈·, ·〉 on TX is called Riemannian metric on X
and is often denoted by g(·, ·) = 〈·, ·〉. The pair (X, g) is called Riemannian manifold.

Additionally to the fibre-wise measurements mentioned above, Riemannian metrics serve dif-
ferent basic purposes: They can be used to measure lengths of (piecewise) smooth curves
c : I → X by integrating the norm of the velocity vector:

lengthg(c) =

∫
I
‖ċ‖gdt

By taking the infimum over all paths linking two given points on the manifold, this length mea-
surement turns the manifold into a metric space (whose toplogy coincides with the manifold
topology). Riemannian metrics also locally induce a volume form whose volume measurement
is consistent with the Euclidean structure of the tangent spaces. This isn’t surprising since
the local construction of an orthonormal frame in the tangent bundle yields information on
the volume of parallelepipeds by requiring that the unit n-cube have volume 1.

Next, we turn the related idea of a connection on a smooth vector bundle. The purpose of
connections is to make sense of the directional derivative of sections. Given any vector bundle,
there is no intrinsic way of forming a derivative of its sections. The problem is the following
one: One would like to write down something of the form:

lim
t→0

σt − σ0

t

where σ0 is the value of the section in the point where we take the derivative and σt is the
value along some integral curve c of the vector in whose direction we would like to take the
derivative. Alas, the difference quotient we wrote down doesn’t make sense in a canonical
manner, since σ0 and σt live in different fibres, namely Ec(0) and Ec(t). By prescribing a way
of forming such derivatives, one connects a given fibre to its neighbouring fibres. This idea
can be made rigorous by so-called parallel transport (which won’t be discussed here, see for
example [Jos] chapter 4).

Definition 2.2.19. A connection ∇ on (E,X, π) is an R-linear map:

∇ : Γ(E) −→ Γ(T ∗X ⊗ E)

σ 7−→ ∇σ

s.th. the following product rule holds for every function f ∈ C∞(X) and every section
σ ∈ Γ(E):

∇(fσ) = df ⊗ σ + f∇σ
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Some explanations are in order. Given a vector field V , one gets a map:

∇V : Γ(E) −→ Γ(E)

by evaluating ∇σ in the T ∗X-argument as follows:

σ 7−→ ∇σ(V ) = ∇V σ

This is called the covariant derivative in direction V and explains why we have in-
deed constructed an analogue to the directional derivative. One can show that the quantity
∇V σ|x ∈ Ex depends only on the value V |x ∈ TxX, i.e. it has pointwise dependence in the
vector component. The dependence on the section σ is local on the other hand, which means
that one needs the values of σ in a neighbourhood of x to compute ∇V σ|x. We get the simplest
example for such an object by considering tangent vectors of Rn, i.e. the bundle (TRn,Rn, π).
A natural connection is given for all Y ∈ Γ(TRn) by component-wise differentiation:

Y 7→ ∇Y = dY

which can easily be seen to meet all the requirements. Unfortunately, this example isn’t ad-
equate for a proper understanding of the full scope of the definition, since different fibres of
TRn are copies of Rn and can be canonically identified by Euclidean parallel transport, thus
the above mentioned problem of deriving vector fields doesn’t exist in the first place.

Once a connection ∇ is fixed on E, it can be extended to other vector bundles constructed
from E. (For simplicity, these extensions will all be called ∇ as well)

Proposition 2.2.20. Extension of ∇

1) There is a unique connection on the dual bundle:

∇ : Γ(E∗) −→ Γ(T ∗X ⊗ E∗)

s.th. the following rule holds for all σ ∈ Γ(E), σ∗ ∈ Γ(E∗), V ∈ Γ(TX):

d(σ∗(σ))V = ∇V σ∗(σ) + σ∗(∇V σ)

2) Given a second bundle over the same base space equipped with a connection
(F,X, π′,∇′), there is a unique connection ∇ on the tensor product E ⊗ F (see
2.1.10):

∇ : Γ(E ⊗ F ) −→ Γ(T ∗X ⊗ E ⊗ F )

s.th. for all σ ∈ Γ(E), ρ ∈ Γ(F ), we have:

∇(σ ⊗ ρ) = ∇σ ⊗ ρ+ σ ⊗∇′ρ
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The requirement in 1) makes sense, since σ∗(σ) ∈ C∞(X). These formulae obviously all
represent the occurrence of some kind of product rule. By combining 1) and 2), the connection
can actually be extended to tensor fields of all types: Recall from 2.1.12 that all T rs are tensor
products of E and its dual, thus we get a unique connection ∇:

∇ : Γ(T rsE) −→ Γ(T ∗X ⊗ T rsE)

By the same principle, i.e. by combining known derivations and requiring some product rule,
∇ can be extended to so-called vector-valued differential forms. Since this extension makes
use of the exterior derivative d (intrinsically) associated to X, it is denoted by d∇. We will
use this construction to define curvature (see 2.3.25).

Definition 2.2.21. Extension of ∇ to vector-valued forms
Define the map:

d∇ : Γ(E ⊗ ΛkX) −→ Γ(E ⊗ Λk+1X)

by putting for all k-forms ω ∈ ΛkX and sections σ ∈ Γ(E):

d∇(σ ⊗ ω) = ∇σ ∧ ω + σ ⊗ dω

and extending linearly.

The term ∇σ ∧ ω requires an explanation, since ∇σ ∈ Γ(E ⊗ ΛkX) isn’t a pure differential
form. To make sense of the wedge product we ignore the Γ(E)-component of ∇σ, i.e. for an
elementary object of the tensor bundle σ⊗ ω ∈ Γ(E ⊗ΛkX), and a one-form η ∈ Γ(T ∗X) we
put:

η ∧ (σ ⊗ ω) = σ ⊗ (η ∧ ω)

and extend linearly to the whole of the tensor product bundle.

Up to this point, we have treated the concepts of metric and connection independently of each
other. We will now see that on the tangent bundle of a Riemannian manifold, the connection
is unique if we require some additional properties. Formally, this yields a canonical way to
turn a pair (X, g) into a triple (X, g,∇) where ∇ is a connection on TX.

Definitions 2.2.22. A connection ∇ on TX is called torsion-free if the following holds
for all vector fields V and W :

∇VW −∇WV = [V,W ]
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A connection ∇ on any smooth vector bundle (E,X, π) equipped with a metric 〈·, ·〉 is
called metric if the following holds for all V ∈ Γ(TM) and σ, τ ∈ Γ(E):

V (〈σ, τ〉) = 〈∇V σ, τ〉+ 〈σ,∇V τ〉

Remark 2.2.23. As a consequence of 2.2.20 we have seen that a given connection can be
extended to all tensor types. Applying this to the metric tensor g ∈ Γ(T ∗X ⊗ T ∗X), one can
check that the covariant derivative ∇g satisfies:

(∇g)(V,W,U) = U(g(V,W ))− g(∇UV,W )− g(V,∇UW )

for all vector fields U, V,W . Comparing this to the defining property of the metric connection
yields that being metric is equivalent to:

∇g = 0

In general, any tensor T s.th. ∇T = 0 holds is called parallel.

Theorem 2.2.24. The Levi-Civita connection
Let (X, g) be a Riemannian manifold. There is a unique torsion-free metric connection

on the tangent bundle of X.

This connection is called Levi-Civita connection or sometimes Riemannian connection.
The proof of this theorem is computational and will not be given here (see for example [Jos]
4.3.). It relies on the fact that the following equality, called Koszul formula:

2g(∇UV,W ) = U(g(V,W ))−W (g(U, V ))+V (g(U,W ))−g(U, [V,W ])+g(W, [U,W ])+g(V, [W,U ])

can be shown to hold for any torsion free metric connection ∇. On the other hand, this
formula uniquely defines ∇, since the right-hand side is independent of the connection and g
is non-degenerate. Notice how the Koszul formula is specific to the context of E = TX, since
cyclic permutations can only by carried out if all of the arguments are of the same type (i.e.
vector fields).

2.3 Curvature

To introduce the concept of curvature, we will adopt a top-down approach, by starting with
an abstract definition and subsequently introducing the more concrete curvature quantities
(sectional, Ricci and scalar curvature). Obviously, we put special emphasis on the concept of
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scalar curvature.

Given a smooth vector bundle with a connection (E,X, π,∇), using 2.2.21, we can define
the following:

Definition 2.3.25. Define the curvature operator associated to ∇:

R∇ : Γ(E) −→ Γ(E ⊗ Λ2X)

σ 7−→ R∇σ

by composition of the following maps:

Γ(E)
d∇−→ Γ(E ⊗ Λ1X)

d∇−→ Γ(E ⊗ Λ2X)

This operator has surprising properties. Contrarily, to d∇ (which is a derivation), R∇ can be
shown to be C∞(X)-linear, i.e. we have:

R∇(fσ) = fR∇σ

for all functions f and sections σ. Thus it can be viewed as a section of the following bundle:

R∇ ∈ Γ(E∗ ⊗ E ⊗ Λ2X) ∼= Γ(EndE ⊗ Λ2X)

Furthermore, the following formula can be derived by using the definition of d∇:

Proposition 2.3.26. For all V,W ∈ Γ(TX) and σ ∈ Γ(E), we have:

(R∇σ)(V,W ) = ∇V∇Wσ −∇W∇V σ −∇[V,W ]σ ∈ Γ(E)

Here, the (V,W )-argument is interpreted as decomposable bivector V ∧W ∈ Λ2TX, therefore
the formula makes sense.

Given a Riemannian manifold (X, g), we will now considerably reduce the level of abstraction
by considering these concepts on the tangent bundle to X equipped with the Levi-Civita
connection. Since this will leave no ambiguity concerning the choice of connection, we will
denote the curvature operator simply by R. Since now we have E = TX and by omitting
some of the symmetries, R can just be viewed as a (1, 3)-tensor:

R ∈ Γ(EndTX ⊗ Λ2X) ⊂ Γ(T ∗X ⊗ TX ⊗ T ∗X ⊗ T ∗X) ∼= Γ(T 1
3X)
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By use of the isomorphism TX ∼= T ∗X induced by the metric, we can associate to R a
(0, 4)-tensor (again denoted by R):

R(V,W,U, Y ) = g(RV,WU, Y )

(Where we have adopted the classical notation RV,WU = (RU)(V,W ).) The resulting element
from Γ(T 0

4X) has considerable symmetry (part of which we already know about, but have
omitted to get to this point of view):

Proposition 2.3.27. Symmetries of R and Bianchi identities
For all vector fields V,W,U, Y , the following identities hold:

1) R(V,W,U, Y ) = −R(W,V,U, Y ) = −R(V,W, Y, U)

2) R(V,W,U, Y ) = R(U, Y, V,W )

3) RV,WU +RU,VW +RW,UV = 0 (1st Bianchi)

4) (∇UR)(V,W )Y + (∇VR)(W,U)Y + (∇WR)(U, V )Y = 0 (2nd Bianchi)

By these symmetries, the (0, 4)-version of R can be viewed as a well-defined section:

R ∈ Γ((Λ2TM)∗ ⊗ (Λ2TM)∗)

Next, we will turn to the curvature quantities derived from the curvature tensor, the first of
which is sectional curvature. Sectional curvature associates a number to every 2-plane in the
tangent space, in other words it is a function on the bundle of 2-Grassmannians of TX.

Definition 2.3.28. The sectional curvature at x ∈ X of the plane π ⊂ TxX spanned
by v, w ∈ TxX is defined by:

secx(π) = −R(v ∧ w, v ∧ w)

g(v ∧ w, v ∧ w)
=

g(Rv,ww, v)

g(v, v)g(w,w)− g(v, w)2

The inner product in the denominator of the first form of secx(π) is induced by g on Λ2TX
(see the Remark 2.2.17). The sectional curvature is well-defined on the space of planes since
the space of bivectors associated to π is one-dimensional. To gain some intuition on this
concept, we highlight the following link to classical differential geometry of surfaces:
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Remark 2.3.29. Sectional curvature is Gauss curvature of certain 2-submanifolds of X in
the following sense: Let π be a plane in TxX. In a neighbourhood of x, the image of π under
the exponential map is a 2-submanifold of X:

Σx(π) = expx(π) ∩ U

Gauss curvature of this submanifold in x equals the sectional curvature:

secx(π) = KΣx(π)(x)

In particular, if X is two-dimensional, then Gauss curvature equals sectional curvature.

Although sec is derived from R, the following holds true:

Theorem 2.3.30. The sectional curvature (for all points and with respect to all planes)
determines the curvature tensor R completely.

The next curvature quantity we will discuss is Ricci curvature.

Definition 2.3.31. Ricci curvature at x ∈ X for the vectors v, w ∈ TxX is defined as
follows:

Ricx(v, w) =
n∑
j=1

R(ej , v, w, ej)

(where {e1, ..., en} is an orthonormal basis of TxX)

This definition is independent of the chosen orthonormal basis. Furthermore, one can easily
show, by using the symmetries of R, that the Ricci tensor is a symmetric section:

Ric ∈ Γ(T ∗X ⊗ T ∗X) = Γ(T 0
2X)

Just as taking an appropriate trace of R ∈ Γ(T 0
4X) yields Ric ∈ Γ(T 0

2X), taking the trace
again will yield a (0, 0)-tensor, i.e. a function on the manifold. This function is called scalar
curvature:

Definition 2.3.32. Scalar curvature at x ∈ X is defined as the following number:

κ(x) = tr(Ricx) =
n∑
j=1

Ricx(ej , ej)

(where {e1, ..., en} is an orthonormal basis of TxX)
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Scalar curvature in x ∈ X can be interpreted as the average of all sectional curvatures of the
coordinate 2-planes of TxX:

κ(x) =
n∑
j=1

Ricx(ej , ej)

=
n∑

i,j=1

R(ei, ej , ej , ei)

=

n∑
i,j=1

secx(πij)

= 2
∑
i<j

secx(πij)

where πij = span({ei, ej}) for some orthonormal basis {e1, ..., en} of TxX. In particular, scalar
curvature is twice Gauss curvature in the case where X is a 2-manifold.

Remark 2.3.33. (see [GHL] p.139) To gain some geometric insight on what scalar curvature
measures, we note that the scalar curvature at some point x ∈ X is related to the volume
growth of balls centred around x compared to balls in flat space. Denote by BX

r (x) the ball
of radius r around x in the manifold X, then we have the following expansion:

volg(B
X
r (x))

voln(BRn
r (0))

= 1− κ(x)

6(n+ 2)
r2 +O(r4)

Where the balls in X are determined by the metric space-structure induced by the Riemannian
metric (see the remarks after 2.2.18). Notice how the minus in the second-order term makes
sense since for example the volume of balls on the sphere is smaller than in the Euclidean
case, whereas hyperbolic balls have more volume that Euclidean ones.

Remark 2.3.34. Scalar curvature plays a prominent role in General Relativity. It appears
as the Lagrangian of the so-called Einstein-Hilbert action:

AEH(g) =

∫
X
κgdvolg

from which the Einstein field equations can be derived using the principle of least action.
Note that General Relativity is not exactly cast in the framework of Riemannian Geometry,
since its associated bilinear form is Lorentzian, i.e. has signature (−,+,+,+) (or the opposite
depending on convention) instead of being positive definite. All involved definitions can easily
be adapted to this context.
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Chapter 3

Principal bundles

Smooth principal bundles are essentially locally trivial bundles where some Lie Group G
serves as model space for the fibres and that is equipped with a sufficiently nice G-action.
The archetypal example of such a bundle is the so-called frame bundle of a smooth manifold,
which consists of all bases of the tangent space at a given point (this works in any given
vector bundle). Its structure group is the general linear group, since the latter operates
transitively on the bases of the vector space to which it is associated. Interestingly, a number
of additional geometric structures on smooth manifolds (orientation, Riemannian metrics,
complex structures, symplectic structures, etc.) can be viewed in a unified way as so-called
reductions of the structure group of the frame bundle. In later chapters, this idea will we
applied to the spin group in order to produce a bundle that has Spinn as structure group.
Our treatment is mainly based on [KNI], with Appendix B of [Fri] serving as secondary
reference.

3.1 Principal bundles

Definition 3.1.1. Let P,X be smooth manifolds, G a Lie group and π : P → X a smooth
map. The 4-tuplet (P,X,G, π) is called G-principal bundle if the following hold:

1) G acts freely on the right on P by a smooth group action:

P ×G −→ G

(p, g) 7−→ pg = Rgp

2) The map π is surjective and for all p, q ∈ P we have π(p) = π(q) if and only if there
is a g ∈ G s.th. q = pg,
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3) Every point x ∈ X has a neighbourhood U ⊂ X s.th. π−1(U) is trivial in the
following sense: There is a pair of maps (Φ, ϕ)

Φ : π−1(U)
∼=−→ U ×G

ϕ : π−1(U) −→ G

where Φ is a diffeomorphism of the form Φ = π × ϕ and ϕ is G-equivariant, i.e.
ϕ(pg) = ϕ(p)g for all p ∈ P and g ∈ G.

For simplicity, we will denote principal bundles (P,X,G, π) often by their so-called total
space P . X is called the base space, π the projection map and G the structure group of the
principal bundle. The set Px = π−1({x}) is called fibre over x and one can deduce from the
definition that π−1({x}) is diffeomorphic to G. Furthermore, one can show that X ∼= P/G
with projection map π.

Example 3.1.2. The trivial bundle X ×G
The bundle (X ×G,X,G, π) equipped with the obvious right-action and the projection onto
the first factor is a G-principle bundle called the trivial G-principal bundle over X.

Example 3.1.3. The frame bundle FE
Given a smooth rank-n vector bundle (E,X, π), we can associate to it the so-called frame
bundle (FE,X,GLn, π) in the following way. We construct fibres over every point x ∈ X:

FEx = {(v1, ..., vn) ∈ (Ex)n | v1, ..., vn are linearly independent}

whose elements are called frames. The corresponding total space:

FE =
⋃
x∈X

FEx

with the obvious projection π. The free GLn-action is defined as follows:

FE ×GLn −→ FE

((x, v1, ..., vn), G) 7−→
(
x,
∑

Gi1vi, ...,
∑

Ginvi

)
This action is clearly transitive. To show that FE is locally trivial, fix a point x0 ∈ X and take
a bundle chart on some neighbourhood U ⊂ X of x0. This chart yields (by trivialization) a
canonical basis for E|U , which we will denote by the vector fields X1, ..., Xn ∈ Γ(E|U ). Every
frame (v1, ..., vn) over U , can be expressed in these vector fields as follows:

vi =

n∑
j=1

vjiXj
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for all i ∈ {1, ..., n}. We can now define Φ by:

Φ : π−1(U) = FE|U −→ U ×GLn
(x, v1, ..., vn) 7−→ (x, (vji )ij)

The matrix (vji )ij is non-degenerate, since it transforms one basis into another by defini-
tion. Φ can easily be seen to be a diffeomorphism and ϕ can be defined in the obvious way.
Thus we have indeed constructed a GLn-principal bundle. We will see that this bundle is of
fundamental importance for our purposes and in differential geometry in general.

Remark 3.1.4. An alternative view of fibre bundles can be extracted from the definition as
follows. Choose an open covering of X =

⋃
Uα, s.th. the π−1(Uα) are trivial with trivializing

maps Φα = π × ϕα. By the G-equivariance property, one can show that the following maps
are well-defined (where the product comes from the group structure of G):

ϕαβ = ϕαϕ
−1
β : Uα ∩ Uβ −→ G

These are called transition functions and they obviously have the following property on Uα ∩
Uβ ∩ Uγ

ϕαγ = ϕαβϕβγ (♣)

As it turns out, conversly, knowing X, G and the data (Uα, ϕαβ)α,β is sufficient to construct
a principal bundle with transition functions ϕαβ provided the data fulfills (♣). See [KNI]
I.5.2. for details.

Definition 3.1.5. Let (P,X,G, π) and (P ′, X ′, G′, π′) be two principal bundles. A mor-
phism of principal bundles is a pair of maps F : P ′ → P smooth; f : G′ → G a group
morphism s.th. for all p ∈ P ′ and g ∈ G′:

F (pg) = F (p)f(g)

i.e. the following diagram commutes:

P ′ ×G′ P ′

P ×G P

F×f F

Isomorphisms are defined correspondingly.

Since the respective structure groups act transitively on fibres, morphisms preserve fibres. In
particular, they descend to the base spaces. This can be expressed by the following diagram:
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P ′ P

X ′ X

π′

F

π

F

For simplicity, we will denote all maps of this triple (F, F , f) by the same letter.

Next, we will discuss so-called reductions of the structure group, which are of crucial impor-
tance in spin geometry.

Definition 3.1.6. Given two fibre bundles over the same base space (P ′, X,G′, π′) and
(P,X,G, π) and a Lie group morphism f : G′ → G, an f-reduction (of the structure
group) is a morphism of principal bundles (F, f) (i.e. the morphism on the structure
groups is the prescribed f) so that F leaves the base space invariant: F = idX . This
corresponds to the following commutative diagram:

P ′ P

X

π′

F

π

In the classical case, this definition is used if F is an embedding (in addition to the above
requirements), i.e. F : P ′ → P an embedding and f : G′ → G a group monomorphism. In
the case where such a morphism exists, one says that the structure group G can be reduced to
G′. This terminology is justified by the following result: (see [KNI] I.5.3.)
There is a reduction of the structure group G to G′ < G (Lie subgroup) if and only if there
is a covering of X and transitions functions that have values in G′ (See 3.1.4).

We need the more general definition 3.1.6, since we want to discuss Spin-principal bundles
as reductions of SO-principal bundles. Semantically speaking, this is not a reduction of the
structure group (nor would it be according to the classical definition discussed above), since
Spin double-covers SO. It is nonetheless an occurrence of a structure group reduction as we
defined it.

Example 3.1.7. The orthonormal frame bundle FOE
Let (E,X, π) be a smooth vector bundle of rank n equipped with a bundle metric g. Similarly
to 3.1.3, we define the fibres of FOE to be:

FOEx = {(v1, ..., vn) ∈ (Ex)n | gx(vi, vj) = δij}
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Which means that we require the frames to be orthonormal w.r.t. the Riemannian metric. In
the same way as for FE, this can be checked to be an On-principal bundle. Let f : On ↪→ GLn
denote the canonical inclusion. FOE is the f -reduction of FE where we take as bundle
morphism the natural fibre-wise inclusion:

FOE ↪→ FE

Since every orthonormal frame is a frame. This map obviously descends to the identity on
the base space. This shows how the choice of a Riemannian metric leads to the reduction
of the structure group from GLn to On. Conversely, one can show that every choice of an
f -reduction of FE induces a Riemannian metric on X (see KNI I.5.7.).

Example 3.1.8. The oriented frame bundle F+E
Let (E,X, π) be an oriented vector bundle of rank n. Define the fibres of F+E to be:

F+Ex = {(v1, ..., vn) ∈ (Ex)n | v1, ..., vn is a basis with the preferred orientation}

This yields an GL+
n -principal bundle. For the canonical inclusion f : GL+

n ↪→ GLn, F+E is
an f -reduction of FE. Again, the converse holds as well: (see [Fri] Appendix B.1.) Every
f -reduction of FE induces an orientation on X.

Next, we discuss sections of principal bundles:

Definition 3.1.9. For a principal bundle (P,X,G, π) a smooth map σ : X → P is called
smooth section of P if it is a right-inverse to π, i.e. if the following holds:

π ◦ σ = idX

Similarly to 2.1.15, one can show the following criterion for trivial bundles:

Proposition 3.1.10. The bundle (P,X,G, π) is trivial (i.e. isomorphic to X ×G) if and
only if it admits a global section.

This might seem surprising at first, since triviality is a strong requirement. But consider the
following:

Example 3.1.11. The proposition infers that FE is trivial if and only if there is a global
frame. But in terms of the vector bundle E this means precisely that there are n sections
(of the rank n-vector bundle E) whose values are linearly independent in every fibre. Thus
the triviality of the frame bundle (as principal bundle) is equivalent to the triviality of E as
vector bundle (see 2.1.15).
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3.2 Associated bundles

The so-called associated bundle construction provides a way to associate vector bundles to
a given principal bundle. The data needed to carry out this construction is the initial fibre
bundle (P,X,G, π) and a representation of G in the general linear group of some vector space
V , i.e. a homomorphism:

ρ : G −→ GL(V )

The resulting vector bundle will have copies of V as fibres. This construction is not restricted
to vector spaces (see [KNI] I.5.), but this special case is sufficient for our purposes.

Under the above assumptions, G has the following free action on the product P × V :

G× P × V −→ P × V
(g, p, v) 7−→ (pg−1, ρ(g)v)

The quotient of this action will be denoted by P ×ρ V and can be checked to be a smooth
vector bundle. The projection map πρ is defined by the following diagram:

P × V P X

P ×ρ V

π1 π

πρ

where the vertical map is the canonical projection onto the quotient and π1 is projection onto
the first factor.

Definition 3.2.12. We call the so-obtained (P ×ρ V,X, πρ) the vector bundle associ-
ated to P via the representation ρ.

To illustrate this concept, consider the following examples:

Examples 3.2.13. tensor bundles as associated bundles

1) TX = FX×ρnRn The tangent bundle is associated to the frame bundle via the canonical
representation ρn : GLn → GL(Rn);

2) T ∗X = FX ×ρ∗n R
n where ρ∗n(g) = ρn(g−1)T denotes the dual representation;

3) T rsX = FX ×T rs ρn T
r
sRn where T rs ρn is induced by the previous representations.

For a detailed discussion of how to view all tensor bundles as derived objects from the frame
bundle, see [Pet98] Appendix B.4.
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3.3 Connections on principal bundles

Let (P,X,G, π) be a smooth principal bundle. As the total space is locally a product space by
definition, it is natural to ask whether the same holds for the tangent spaces. As it turns out,
there is no such canonical decomposition. A connection is the choice of one such splitting.
By Gp we will denote the subspace of vectors tangent to the fibre over p, i.e.

Gp =

{
v ∈ TpP

∣∣∣∣ ∃γ : (−ε, ε)→ G ⊂ Pπ(p) s.th. v =
d

dt

∣∣∣∣
t=0

γ(t)

}
Although the inclusion G ⊂ Pπ(p) depends on the chosen trivialization around p, the existence
of such a γ can easily be checked to be independent of this choice. Furthermore, one can
show:

Gp ∼= g (♣)

isomorphic, by associating to every vector in the Lie Algebra g its left invariant vector field in
the corresponding fibre. For every V ∈ g, denote the corresponding vector field on P by V ∗.

Definition 3.3.14. A connection on P is a smooth assignment p 7→ Qp of subspaces
Qp ⊂ TpP for all p ∈ P s.th. the following hold:

1) The tangent space of the total space splits: Tp = Gp ⊕Qp,

2) The assignment behaves as follows under the action of G: Qpg = (Rg)∗Qp for all
g ∈ G.

The subspaces Gp are called vertical, since they correspond to the fibre-part of the tangent
space, whereas the manifold-components Qp are called horizontal. A related concept that
contains the same information is the following one:

Definition 3.3.15. A connection one-form on P is an g-valued one-form ω ∈ Γ(T ∗P⊗
g) s.th.

1) ω(V ∗) = V for all V ∈ g,

2) (Rg)
∗ω = ad(g−1)ω for all g ∈ G.

These concepts are equivalent in the following sense: (see [KNI] II.1.1.)
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Proposition 3.3.16. Connections on P and connection one-forms on P are in bijective
correspondence.

Given a connection on P , the corresponding form can be obtained by using the splitting
3.3.14.1) to get a projection TpP → Gp that yields ω by composing with the isomorphism
(♣). Conversely, given a connection one-form ω, the distribution of tangent subspaces defined
by Qp = kerωp is a connection. Note how this is geometrically consistent with viewing ω as
the projection onto the vertical component of the tangent bundle of P .

We will discuss the connections of one bundle in particular, namely the bundle of oriented
orthonormal frames. For this, let (E,X, π) be an oriented smooth vector bundle of rank n > 2
(see [LaMi] II.§1. for the other cases) with bundle metric g. The first thing we notice is that
the structure group can be reduced from GLn to SOn by the presence of a metric and an
orientation. Since SOn = On∩GL+

n , this can be achieved by consecutively applying Examples
3.1.7 and 3.1.8 to FE. This yields the bundle of oriented orthonormal frames, which we
will denote by (FSOE,X, SOn, π). The Lie algebra associated to SOn is the algebra of skew-
symmetric n × n-matrices, denoted by so(n). The connection form is thus an so(n)-valued
one-form or, equivalently, a skew-symmetric matrix of one-forms.

Connections of FSOE are strongly related to metric connections on (the vector bundle) E (see
2.2.19 and 2.2.22):

Proposition 3.3.17. Every connection 1-form ω on FSOE defines a unique metric con-
nection on E and vice-versa. This correspondence is given by the following equation:

∇σi =
n∑
i=1

(σ∗ω)ji ⊗ σj (♠)

Where σ1, ..., σn ∈ Γ(E|U ) a pointwise positively oriented orthonormal basis on a coordi-
nate neighbourhood U . Equivalently, σ = (σ1, ..., σn) is a section of FSOE|U .

The equation (♠) makes sense: Recall that ∇σi ∈ Γ(T ∗U ⊗ E) and here ω ∈ Γ(T ∗FSOE ⊗
so(n)), but σ : U → FSOE|U , thus (σ∗ω)ji ∈ Γ(T ∗U). Moreover, one can show that this
determines ∇ independently of the choice of the orthonormal frame σ. For a thorough dis-
cussion of the frame-dependent vector bundle-based approach and its invariant counterpart
in fibre bundles, we refer to [Pet98] Appendix B.
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In the case of E = TX, where we will denote the bundle of oriented orthonormal frames by
FSOX, 3.3.17 can be applied to the Levi-Civita connection (see 2.2.24) to yield:

Proposition 3.3.18. Levi-Civita connection on FSOX
There is a unique connection on FSOX so that its associated connection on E (by 3.3.17)
is torsion-free.

Remark 3.3.19. Connections on principal bundles induce unique connections on their as-
sociated vector bundles. For a short discussion of a special case, see [LaMi] II.§4.7. For a
general treatment, see [KNI] Chapter III.
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Chapter 4

Overview of Spin Geometry

Spin structures are certain reductions of the structure group of the frame bundle of a vector
bundle to the spin group. Based on representations of the spin group, one can associate
vector bundles to these principal Spinn-bundles, called spinor bundles. These turn out to
have an interesting Clifford-module structure which allows us to define a natural first-order
differential operator, namely the Dirac operator. This construction is essential in the context
of positive curvature geometry, since applying Bochner’s method to the Dirac operator yields
scalar curvature as difference between the square of the Dirac operator and the connection
Laplacian. At the end, we discuss twisted spinor bundles, which are needed in 7.3. [LaMi]
served as main source for this chapter, [Fri] as secondary reference.

4.1 Spin structures and spin manifolds

Let (FSOE,X, SOn, π) be the bundle of orthonormal frames associated to an oriented vector
bundle E equipped with a bundle metric. Recall that Spin is the universal double-cover of
SO (see [LaMi] I.§2.). Thus we have a Lie group morphism:

λ : Spinn −→ SOn

Definition 4.1.1. The bundle (FSpE,X, Spinn, π
′) is called spin structure on E if it is

a λ-reduction of (FSOE,X, SOn, π) s.th. the associated bundle map

Λ : FSpE −→ FSOE

is a double-covering map.

By Definitions 3.1.5 and 3.1.6, this construction can be summed up by the following com-
mutative diagram:
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FSpE × Spinn FSOE × SOn

FSpE FSOE

X

Λ×λ

π′

Λ

π

A spin structure doesn’t always exist. We mention the following topological constraint without
discussing its proof (see [LaMi] II.§1. for details):

Theorem 4.1.2. Existence of spin structures on vector bundles
Let (E,X, π) be an oriented vector bundle with a bundle metric. There is a spin structure
on E if and only if the second Stiefel-Whitney class vanishes: w2(E) = 0.

For a short discussion of Stiefel-Whitney classes, see 5.1.

As is often the case, one important special case of the above is E = TX:

Definition 4.1.3. LetX be an oriented Riemannian manifold. X is called spin manifold
if there is a spin structure on TX.

Notice that this makes sense, since orientation and Riemannian structures for manifolds are
exactly defined as orientation on TX and the existence of a bundle metric on TX respectively.
Moreover, since by definition w(X) = w(TX), the application of 4.1.2 directly yields:

Proposition 4.1.4. Existence of spin structures on manifolds
The oriented Riemannian manifold X is spin if and only if its second Stiefel-Whitney class
vanishes: w2(X) = 0.

4.2 Clifford and Spinor bundles

Using the associated bundle construction (see 3.2), we will construct two bundles that are
fundamental ingredients of spin geometry. The first one is called Clifford bundle and occurs
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as associated to the frame bundle. The second one on the other hand is associated to spin
structures and its sections will be the so-called spinors. After their definition, we will discuss
how they are interrelated by a module structure.

Let (E,X, π, g) be an oriented smooth rank n vector bundle equipped with a metric. The
frame bundle can thus be reduced to FSOE. Recall that every orthogonal transformation of
Rn induces a unique automorphism of C`(Rn) (see [LaMi] I.§1.). This can be viewed as a
representation:

c`(ρn) : SOn −→ Aut(C`(Rn))

Definition 4.2.5. The Clifford bundle associated to (E,X, π, g) is the vector bundle
(C`(E), X, π′) defined as follows:

C`(E) = FSOE ×c`(ρn) C`(Rn)

Contrarily to the spinor bundles, the only topological obstruction to this construction is
orientation. We get a bundle of algebras, i.e. every fibre of the obtained bundle is a Clifford
algebra:

C`(E)x = C`(Ex, ‖·‖x)

For the construction of spinor bundles, one needs the following data: A vector bundle E as
before with additionally w2(E) = 0 s.th there is a spin structure FSpE and a C`(Rn)-left
module denoted by M . This module structure induces a metric on M with respect to which
Clifford multiplication by vectors is orthogonal (see [LaMi] I.§5.)

Definitions 4.2.6. A real spinor bundle is associated to the spin structure FSpE by

S(E) = FSpE ×µM

where µ : Spinn → SO(M) is the representation canonically yielded by the module
structure of M , i.e. for every ξ ∈ Spinn and m ∈M , define:

µ(ξ)m = ξ ·m

If MC is a complex C`(Rn)⊗ C-module, define similarly complex spinor bundles:

SC(E) = FSpE ×µMC
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Another way to view µ is as the composition of Spinn ↪→ C`n → End(M), where the second
comes from the module structure of M .

Example 4.2.7. As the most basic example, consider M = C`(Rn) for which µ can obviously
just be chosen as Clifford left-multiplication denoted by `:

C`Sp(E) = FSpE ×` C`(Rn)

Proposition 4.2.8. The module structure of S(E)
The real spinor bundle S(E) is a module over C`(E) in the sense that µ descends to the
quotient:

FSpE × C`(E)×M FSpE ×M

C`(E)× S(E) S(E)

µ

µ

Proof: It suffices to prove that µ is invariant under the operation of Spinn on FSpE ×M , i.e.
that the following diagram commutes for all ζ ∈ Spinn:

FSpE × C`n ×M FSpE ×M

FSpE × C`n ×M FSpE ×M

ζ?

µ

ζ?

µ

Where the operation by ζ is denoted by ζ?. Recall that C`n is viewed here as C`n → End(M),
thus the C`n factor is acted upon by conjugation. Compute:

(µ ◦ ζ?)(p, ξ,m) = µ(pζ−1, ζξζ−1, ζm) = (pζ−1, ζξm)

On the other hand:

((ζ?) ◦ µ)(p, ξ,m) = (ζ?)(p, ξm) = (pζ−1, ζξm)

Thus the diagram commutes.

�

A similar result holds in the complex case. Since we now have a map between bundles:

µ : C`(E)× S(E) −→ S(E)
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This yields a map between corresponding sections:

µ : Γ(C`(E))× Γ(S(E)) −→ Γ(S(E))

defined as:
µ(σ, τ)|x = µ(σ|x, τ |x)

For any two sections σ and τ of the respective bundles, their product µ(σ, τ) will be just
denoted by σ · τ .

Next, we will briefly discuss connections on Clifford and spinor bundles. Let (E,X, π) be an
oriented vector bundle with a bundle metric and a spin structure Λ : FSpE → FSOE with some
spinor bundle S(E) (the part on connections on Clifford bundles is obviously independent of
any spin structures). Furthermore, we fix a connection on the bundle FSOE. By 3.3.19, this
induces a connection on C`(E), denoted simply by∇. This∇ can be shown to be well-behaved
with respect to Clifford multiplication in the following sense:

Proposition 4.2.9. For any two σ, τ ∈ Γ(C`(E)), the following product rule holds:

∇(σ · τ) = (∇σ) · τ + σ · (∇τ)

For the spinor bundle, we first lift the connection on FSOE to the double-covering FSpE via
the map Λ. Again by 3.3.19, this yields a connection on the associated spinor bundle S(E),
which is again just denoted by ∇. Since these two connections stem from the same connection
on FSOE, one can show that they are compatible with the module structure in the following
sense:

Proposition 4.2.10. For any two σ ∈ Γ(C`(E)), τ ∈ Γ(S(E)) the following product rule
holds:

∇(σ · τ) = (∇σ) · τ + σ · (∇τ)

Notice that the above formula contains two different connections, although this is suppressed
in the notation. The point in all of this is that there is one basic object, namely the connection
on the frame bundle FSOE, from which, once it is chosen, one canonically derives the connec-
tions on C`(E) and on any spinor bundle S(E). In particular, if we set E = TX, everything
is canonical, since the natural choice on the frame bundle is the Levi-Civita connection (see
3.3.18).
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4.3 The Dirac operator and its Bochner formula

Let X be a spin n-manifold with a given spin structure on its tangent bundle. By C`(X) we
denote the Clifford bundle of TX. Furthermore, we take some spinor bundle S(X), stemming
from TX as well. By the discussion in 4.2, we take the canonical connections (both denoted
by ∇) inherited from the Levi-Civita connection. Under these circumstances, we can define
the Dirac operator:

Definition 4.3.11. The Dirac Operator is defined as follows:

D : Γ(S(X)) −→ Γ(S(X))

σ 7−→
n∑
j=1

ej · ∇ejσ

where e1, ..., en is an orthonormal basis of the tangent space.

The definition is independent of the chosen basis: Let ẽ1, ..., ẽn be another orthonormal basis
of the given tangent space. We then have (using G ∈ O(n)):

ẽj =
∑
k

Gjkek

for some G ∈ O(n). Let D̃ denote the Dirac Operator defined by this second basis. For all
σ ∈ Γ(S(X)), we have:

D̃σ =
∑
j

ẽj · ∇ẽjσ

=
∑
j

(∑
k

Gjkek

)
· ∇∑

lGjlel
σ

=
∑
j,k,l

GjkGjlek · ∇elσ

=
∑
k,l

δklek · ∇elσ

= Dσ

The Dirac operator is a differential operator of order one in the sense of 6.1.1. Furthermore,
one can compute the symbol of D and D2 (see 6.1.2 for the definition of the symbol):
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Proposition 4.3.12. The symbols of D and D2

σξ(D) = iξ ·
σξ(D

2) = ‖ξ‖2

Thus the Dirac Operator and its square are elliptic (see 6.1.5).

Furthermore, the Dirac operator is formally self-adjoint. Given a bundle metric on Γ(S(X)),
we can define an L2-inner product on Γ(S(X)) (more specifically for compactly supported
sections of S(X)) by defining:

〈σ1, σ2〉L2 =

∫
X
〈σ1, σ2〉dvol

Proposition 4.3.13. (see [LaMi] II.§5.) The Dirac operator is self-adjoint with respect
to 〈·, ·〉L2 , i.e. for all compactly supported sections σ1, σ2 ∈ Γ(S(X)) the following holds:

〈Dσ1, σ2〉L2 = 〈σ1, Dσ2〉L2

The following is a direct consequence: (assuming finite-dimensionality, which is given by the
fact that D and D2 are elliptic)

Proposition 4.3.14.
kerD = kerD2

Before discussing the Bochner identity, we need to define the connection Laplacian. Let
(E,X, π,∇) be a smooth vector bundle with bundle metric and connection.

Definition 4.3.15. For any two vector fields V,W ∈ Γ(TX), define the invariant sec-
ond derivative:

∇2
V,W : Γ(E) −→ Γ(E)

σ 7−→ ∇2
V,Wσ = ∇V∇Wσ −∇∇VWσ

Where we used the Levi-Civita connection on TX.
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One can show that ∇2σ is tensorial in both arguments, i.e. that ∇2σ ∈ Γ(T ∗X ⊗ T ∗X ⊗E).
Furthermore, the invariant second derivative is related to the curvature operator of E by:

∇2
V,W −∇2

W,V = RV,W (�)

Definition 4.3.16. The connection Laplacian is defined as the negative trace of the
invariant second derivative:

∇∗∇ : Γ(E) −→ Γ(E)

σ 7−→ −
n∑
j=1

∇2
ej ,ejσ

for a basis orthonormal basis e1, ..., en of the tangent space.

The connection Laplacian has the same symbol as the square of the Dirac operator and is
thus elliptic. Furthermore it can be shown to be symmetric and formally self-adjoint. This
implies that ∇∗∇ is positive in the following sense:

〈∇∗∇σ, σ〉L2 = 〈∇σ,∇σ〉L2 = ‖∇σ‖2L2 ≥ 0

We return to the initial setting of a given spin n-manifold, over which we take some spinor
bundle S(X) endowed with its connection coming from the Levi-Civita connection on TX.
This yields a corresponding connection Laplacian, which is linked to the square of the Dirac
operator by the following identity (which holds in a more general context, see [LaMi] II.§8.2.):

Theorem 4.3.17. Bochner identity

D2 = ∇∗∇+ R

Where R is defined in terms of the curvature operator of S(E) (denoted by Rs) by:

Rσ =
1

2

n∑
i,j

ei · ej ·Rsei,ejσ

We have three operators of the same type:

D2,∇∗∇,R : Γ(S(X)) −→ Γ(S(X))
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and thus the formula makes sense. Furthermore, one can easily check that R is linear as
opposed to the other two operators.
Proof: (Bochner identity)
Around a given point x ∈ X, choose a local orthonormal frame field E1, ..., En ∈ Γ(TX|U )
s.th. ∇Ej |x = 0 for all indices j. Then we can compute at x ∈ X:

D2σ =
∑
i

Ei · ∇Ei

∑
j

Ej · ∇Ejσ


=

∑
i,j

Ei · Ej · ∇Ei∇Ejσ

∇Ej |x=0
=

∑
i,j

Ei · Ej · ∇2
Ei,Ejσ

= −
∑
i

∇2
Ei,Eiσ +

∑
i<j

Ei · Ej ·
(
∇2
Ei,Ejσ −∇

2
Ej ,Eiσ

)
(�)
= ∇∗∇σ + Rσ

�

The proof thus shows that 4.3.17 reflects the decomposition of D2 into a trace component
∇∗∇ and an off-trace component R.

In our specific case (see the setup in 7.2), the curvature term R can be identified with
one fourth of scalar curvature (see 2.3.32). This remarkable fact is known as Lichnerowicz
formula.

Theorem 4.3.18. Lichnerowicz formula

/D
2

= ∇∗∇+
1

4
κ

Proof:
We need some facts on the involved curvature operators. By R we denote the curvature
operator of the tangent bundle TX and by Rs the curvature operator of the spinor bundle
S(X). These are related by the following formula (see [LaMi] II.§4.15.):

RsV,Wσ =
1

2

∑
i<j

〈RV,W ei, ej〉 ei · ej · σ (?)
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where V,W ∈ TxX and e1, ..., en ∈ TxX an orthonormal basis, if we consider the equation in
the point x ∈ X. Another crucial ingredient are the following two identities which are specific
to the context where the Levi-Civita connection is chosen on TX (see 2.3.27.2) and 3)):

〈RV,WU, Y 〉 − 〈RU,Y V,W 〉 = 0

RV,WU +RU,VW +RW,UV = 0

for all tangent vectors V,W,U, Y at all base points. Let x be a point on the base manifold
X and e1, ..., en an orthonormal basis of TxX. Using 4.3.17, we only need to identify the
curvature term R:

Rσ =
1

2

∑
i,j

ei · ej ·Rsei,ejσ

(?)
=

1

8

∑
i,j,k,l

〈Rei,ejek, el〉ei · ej · ek · el · σ

This fourfold sum can be separated in terms where i, j, k are distinct:

1

8

∑
l

1

3

∑
i,j,k distinct

〈Rei,ejek +Rek,eiej +Rej ,ekei, el〉ei · ej · ek

 · el · σ
And in terms where at least two of the indices i, j, k coincide. The first term vanishes, due to
the first Bianchi identity (see above or 2.3.27.3)). The latter term can be rewritten as:

1

8

∑
l

∑
i,j

〈Rei,ejei, el〉ei · ej · ei +
∑
i,j

〈Rei,ejej , el〉ei · ej · ej

 · el · σ
=

1

8

∑
l

∑
i,j

〈Rei,ejei, el〉ej −
∑
i,j

〈Rei,ejej , el〉ei

 · el · σ
since ei · ej · ei = ej and ei · ej · ej = −ei. Thus (recalling 2.3.31) we have:

Rσ =
1

4

∑
i,j,l

〈Rei,ejei, el〉ej · el · σ

= −1

4

∑
j,l

Ric(ej , el)ej · el · σ

=
1

4
κσ

�
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Remark 4.3.19. The Lichnerowicz formula yields a lot of information about spin manifolds
with positive scalar curvature. More specifically, it implies that ker /D = {0} in the presence of
positive scalar curvature by a short computation and by positivity of the connection Laplacian.
Via the Atiyah-Singer index theorem, this yields the vanishing of the so-called Â-genus. See
5.5 for the definition of the Â-genus and 7.2 for a discussion on how it relates to positive
scalar curvature.

4.4 Twisted spinor bundles

For our purposes, a slight generalization of the Lichnerowicz formula is required. Let X be
a compact Riemannian spin manifold and S(X) one of its spinor bundles endowed with the
connection inherited from the Levi-Civita connection. Additionally, let E be a smooth vector
bundle over X, equipped with a bundle metric and a metric connection. We want to consider
the product bundle S(X)⊗ E, on which Clifford multiplication is defined as follows:

ξ · (σ ⊗ τ) = (ξ · σ)⊗ τ

for all ξ ∈ C`(X), σ ∈ S(X) and τ ∈ E. Furthermore, we equip the product bundle with the
product metric and the product connection, i.e. for the given connections ∇S on S(X) and
∇E on E, define:

∇(σ ⊗ τ) = (∇Sσ)⊗ τ + σ ⊗ (∇Eτ)

The associated connection Laplacian will be denoted by ∇∗∇, the Dirac operator by DE .
The appropriate modification for the Lichnerowicz formula is exactly what one might expect:
The general Bochner curvature term splits in two parts, the first corresponding to the spinor-
part of the bundle and thus turning out to be one fourth of scalar curvature, the other one
corresponding to the E-part in the product bundle and thus depending on the curvature of
E.

Theorem 4.4.20. Lichnerowicz formula for twisted spinor bundles

D2
E = ∇∗∇+

1

4
κ+ RE

Where the last summand is defined by:

RE(σ ⊗ τ) =
1

2

n∑
i,j

(ei · ej · σ)⊗REei,ejτ

for all σ ∈ S(X), τ ∈ E and extended linearly to all elements of the tensor product.
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Proof: One can show that the curvature operator of the product connection (simply denoted
by R) operates as follows on tensor products of simple type:

R(σ ⊗ τ) = (RSσ)⊗ τ + σ ⊗ (REτ)

Again starting with the Bochner identity 4.3.17, we want to identify R:

R(σ ⊗ τ) =
1

2

n∑
i,j=1

ei · ej ·Rei,ej (σ ⊗ τ)

=

1

2

n∑
i,j=1

ei · ej ·RSei,ejσ

⊗ τ +
1

2

n∑
i,j

(ei · ej · σ)⊗REei,ejτ

=
1

4
κ(σ ⊗ τ) + RE(σ ⊗ τ)

Where the last line uses the proof of the classical Lichnerowicz formula.

�
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Chapter 5

Characteristic classes, the Chern
character and the Â-genus

Characteristic classes associate to a given vector bundle an element in the cohomology ring of
the base space of the vector bundle, i.e. for a generic characteristic class denoted by c and a
(not necessarily smooth) vector bundle (E,B, π) we have c(E) ∈ H∗(B,R), where R is some
coefficient ring (in our case R ∈ {Z2,Z}). All characteristic classes vanish on trivial bundles,
thus they can be viewed as a measure of non-triviality of vector bundles. Stiefel-Whitney
classes are important in our context since they occur as an obstruction to the existence of
spin structures (see 4.1.2); Chern and Pontryagin classes will be used in the later chapters.
We will use a purely axiomatic approach and omit the construction of the characteristic classes
as well as most proofs. Detailed accounts of the subject can be found in the classic [MiSt]
as well as [Ha09].
The Chern character is a priori a formal power series of the first Chern class of complex line
bundles (the so-called formal roots). It can be extended to general complex vector bundles
by use of the splitting principle. To discuss it properly, one needs furthermore some facts
about symmetric polynomials (see Appendix A). The main interest of the Chern character
is the fact that it yields an isomorphism from K-Theory tensored with Q to rational coho-
mology. Our treatment of this subject is based on [LaMi] III. §11. The Â genus is of utmost
importance in the study of the topology of manifolds with positive scalar curvature. Via the
Atiyah-Singer index theorem it is the index of the Dirac operator and can be shown to be an
obstruction to the existence of scalar positive metrics on a given manifold. See chapter 7 for
details.

(As opposed to our treatment up until this point, this chapter is set in the continuous rather
than the smooth category.)
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5.1 Stiefel-Whitney classes

Stiefel-Whitney classes are defined for real not necessarily oriented vector bundles. The first
Stiefel-Whitney w1 class actually measures orientability in the sense that w1(E) = 0 if and
only if E is orientable.

Theorem 5.1.1. Existence and uniqueness of Stiefel-Whitney classes.
Given a base space B, there is a unique map

w : {real vector bundles over B} −→ H∗(B,Z2)

(E,B, π) 7−→ w(E)

which we will denote by w = 1 + w1 + w2 + ... with wi ∈ H i(B,Z2), s.th. the following
hold:

1) w(f∗E) = f∗w(E);

2) w(E ⊕ F ) = w(E)w(F );

3) wi(E) = 0 ∀i > rankE;

4) w1(γ1) (where we denote by γ1 the canonical line bundle over RP1) is the generator
of H∗(RP1,Z2)

The first property is called naturality and is shared by all characteristic classes, it immediately
implies that the classes are invariant under vector bundle isomorphisms and the fact that
w(E) = 1 if E is trivial. The formulation of the second property is shorthand notation for
the following:

wi(E ⊕ F ) =
∑
j+k=i

wj(E)wk(F )

where the product on the right-hand side is to be understood as the cup product of the
cohomology ring. Furthermore we have that w(E ⊕ ε) = w(E) for all trivial bundles ε. This
property is called stability and is a direct consequence of 2). The fourth property serves as
normalization. Note also how the trivial prescription w ≡ 1 (up to the rank of the vector
bundle) would qualify as Chern class if 4) was to be omitted. The canonical line bundle over
RP1 has the following total space:

γ1 = {([x0 : x1], y0, y1) ∈ RP1 × R2 | (y0, y1) lies on the line spanned by (x0, x1)}

with projection map:

πγ1 : γ1 −→ RP1

([x0 : x1], y0, y1) 7−→ [x0 : x1]
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which is to say that the fibre over a given point p ∈ RP1 consists of 0 and all points in R2 \{0}
that project to p under the quotient map R2 \ {0}� RP1.

5.2 Chern classes

Chern classes are only defined for complex vector bundles. Their coefficient ring is Z, which
is linked to the fact that C-vector bundles carry a canonical orientation on their underlying
real bundles. For a detailed discussion of orientation and its influence on the coefficient ring,
see [MiSt] §9.

Theorem 5.2.2. Existence and uniqueness of Chern classes.
Given a base space B, there is a unique map

c : {complex vector bundles over B} −→ H2∗(B,Z)

(E,B, π) 7−→ c(E)

which we will denote by c = 1 + c1 + c2 + ... with ci ∈ H2i(B,Z), s.th. the following hold:

1) c(f∗E) = f∗c(E);

2) c(E ⊕ F ) = c(E)c(F );

3) ci(E) = 0 ∀i > rankE;

4) c1(γ1
C) (where we denote by γ1

C the canonical line bundle over CP1) is a generator
of H∗(CP1,Z)

Where the canonical line bundle γ1
C is defined analogously to γ1 in 5.1.

Remark 5.2.3. Relation to the Euler class.
Denote by ER the 2n-dimensional real bundle associated to E, which is obtained by omitting
the complex structure. ER has a canonical orientation (see [MiSt] §14.) thus it has an Euler
class e(ER) ∈ H2n(B,Z) which is equal to the n-th Chern class:

cn(E) = e(ER)

It is possible to take this equality as starting point to define the Chern classes by top-down
recursion, an approach that is carried out in [MiSt] §14. The idea is roughly to consider a
new n − 1-dimensional bundle over E \ {0} and to extract a suitable isomorphism from the
Gysin sequence to carry the information over to the cohomology of the original base space.
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A complex bundle of dimension n can be viewed as a real 2n-bundle together with an integrable
complex structure J : E → E, that is, a bundle endomorphism s.th. J2 is fibrewise the negative
of the identity map. Complex multiplication in the fibres is determined by the equation

(a+ ib)v = av + bJ(v)

By reversing the complex structure, one can construct the conjugate bundle associated to E,
denoted by E:

Definition 5.2.4. The conjugate bundle associated to E is the bundle E with the
same underlying real bundle ER = (E)R and the following complex multiplication

(a+ ib)v = av − bJ(v)

The Chern classes of the conjugate bundle are determined by those of the original bundle:

Lemma 5.2.5. Chern classes of the conjugate bundle

ck(E) = (−1)kck(E)

5.3 Pontryagin classes

Pontryagin classes are defined for real vector bundles and are derived from Chern classes by
complexification. For a vector space V , its complexification is given by V ⊗ C, which is a
complex vector space.

Definition 5.3.6. Let E → B be a real n-dimensional vector bundle. Let the complex-
ification of E be the complex bundle E ⊗ C→ B with fibres (E ⊗ C)p = Ep ⊗ C.

For vector spaces, one has V ⊗C = V ⊕ iV , which is by the definition of the complexification
the pointwise picture for bundles. Thus we have:

(E ⊗ C)R = E ⊕ E

Before turning to the Pontryagin classes themselves, we note the following isomorphisms of
vector bundles which will be of use later on:
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Proposition 5.3.7.

1. For a real vector bundle E we have:

E ⊗ C ∼= E ⊗ C

2. For a complex vector bundle E we have:

ER ⊗ C ∼= E ⊕ E

3. For an oriented real vector bundle E:

(E ⊗ C)R ∼= E ⊕ E

where the isomorphism preserves orientation when n(n−1)
2 is even and reverses it if

not.

The first isomorphism is simply given by:

E ⊗ C → E ⊗ C
(p, v + iw) 7→ (p, v − iw)

For the remaining ones, we refer to [MiSt] §15. pp. 176-178.

In order to define the Pontryagin classes for a real vector bundle E, combine 5.2.5 and 5.3.7.1.
to see:

c(E ⊗ C) = 1 + c1(E ⊗ C) + c2(E ⊗ C) + ...+ cn(E ⊗ C)

= c(E ⊗ C) = 1− c1(E ⊗ C) + c2(E ⊗ C) + ...+ (−1)ncn(E ⊗ C)

The odd Chern classes are thus uninteresting since they are all of order 2. This leads to the
following definition:

Definition 5.3.8. The Pontryagin classes
For a real n-dimensional bundle E, the i-th Pontryagin class is defined by:

pi(E) = (−1)ic2i(E ⊗ C) ∈ H4i(B,Z)

The total Pontryagin class is defined correspondingly:

p(E) = 1 + p1(E) + ...+ pm(E)
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where m is the largest integer m ≤ n
2 .

Naturality and stability under addition of trivial bundles for Pontryagin classes is directly
inherited from Chern classes. The product rule is however replaced by the following:

p(E ⊕ F ) ≡ p(E)p(F )

modulo elements of order 2. Or equivalently:

2p(E ⊕ F ) = 2p(E)p(F )

This is clearly due to the fact that in the definition of Pontryagin classes we ignored the Chern
classes of order 2. (see [MiSt] §15. p.175)
Next we will see that in the special case where the initial bundle E is complex, the Pontryagin
classes are determined by the Chern classes.

Proposition 5.3.9. Let E be complex, then:

1− p1 + p2 − ...+ (−1)npn = (1− c1 + c2 − ...+ (−1)ncn) (1 + c1 + c2 + ...+ cn)

or coefficient-wise:

pk = c2
k − 2ck−1ck+1 + 2ck−2ck+2 − ...− (−1)k+12c1c2k−1 + (−1)k2c2k

By ci we denote ci(E) and by pi we denote the corresponding Pontryagin class of the under-
lying real vector bundle: pi(ER). Notice how in the first formula all odd Chern classes on the
right-hand side cancel and the equality thus makes sense.

proof:

p(ER) = c(ER ⊗ C)
5.3.7.2

= c(E ⊕ E)

= c(E)c(E)
5.2.5
= (1− c1 + c2 − ...)(1 + c1 + c2 + ...)

�

In order to showcase the usefulness of the tools that have been introduced, we give a proof of
the well-known fact that S4 has no almost complex structure:
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Application 5.3.10. S4 has no almost complex structure.
Proof: An almost complex structure on M is a complex structure on TM . Suppose that S4

is almost complex, i.e. that TS4 is a complex vector bundle. First:

c(TS4) = 1 + c1 + c2

= 1 + e(TS4)

where we have used the fact that c1 ∈ H2(S4,Z) = {0} and 5.2.3. But the Euler number of
the sphere is 2, therefore:

c(TS4) = 1 + 2α

where α ∈ H4(S4,Z) is the generator preferred by the orientation. Since TS4 is complex, we
can use 5.3.9 to compute the Pontryagin class:

p(TS4) = (1 + 2α)(1 + 2α)

= 1 + 4α

But since the normal bundle NS4 of the 4-sphere S4 ⊂ R5 as well as the direct sum NS4⊕TS4

are trivial, we have:
p(TS4) = 1

5.4 The Chern character

Definition 5.4.11. Let ` be a complex line bundle over a manifold X. Using the Chern
class c1(`) ∈ H2(X,Z) we define the Chern character to be:

ch(`) = ec1(`) =
∞∑
k=0

c1(`)k

k!
∈ H2∗(X,Q)

For a sum of line bundles `1 ⊕ ...⊕ `k define correspondingly:

ch(`1 ⊕ ...⊕ `k) = ec1(`1) + ...+ ec1(`k) ∈ H2∗(X,Q)

In order to define the Chern character for arbitrary complex vector bundles, we will use the
following result:

Theorem 5.4.12. The Splitting Principle
For any n-dimensional complex vector bundle E → X over a manifold, there is a space
FE and a map p : FE → X s.th.
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1) p∗ : H∗(X,Z)→ H∗(FE,Z) is injective,

2) The pullback bundle splits as sum of line bundles:

p∗E = `1 ⊕ ...⊕ `n

proof: Associate to E its corresponding projective bundle p : PE → X, given by pointwise
projectivization, i.e. where a given fibre Ex is replaced by its projective space PEx. Now pull
E back to yield a bundle p∗E → PE. This bundle contains a canonical line bundle given over
every point in PE (i.e. every line in E) by the same line. Call the obtained line bundle `1.
For any hermitian metric, we thus get a splitting

p∗E = `1 ⊕ `⊥1

This process can obviously by iterated until the remaining complement is itself a line bundle.
Injectivity of p∗ : H(X;Z) → H(PE;Z) is a consequence of the Leray-Hirsch theorem. See
[LaMi] Appendix C for details.

�

Thus we can extend the definition of the Chern character to all complex vector bundles:

p∗ch(E) := ch(p∗E)

Before further investigating the Chern character, we apply the splitting principle to the Chern
classes. By injectivity of the by p induced map on cohomology, we can look at p∗c(E) instead
of c(E) without loosing information. Using the axiomatic properties of the Chern classes (see
5.2.2) we can write for any complex vector bundle E:

p∗c(E) = c(p∗E)

= c(`1 ⊕ ...⊕ `n)

= c(`1) · ... · c(`n)

= (1 + c1(`1)) · ... · (1 + cn(`n))

=: (1 + x1) · ... · (1 + xn)

The xi = c1(`i) are called Chern roots or formal roots of the vector bundle E. With the
splitting principle in mind, we write from now on c(E) = p∗c(E), thus by writing out the
product in the last line:

c(E) = (1 + x1) · ... · (1 + xn) =

n∑
k=0

σk(x1, ..., xn)
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Equivalently:
ck(E) = σk(x1, ..., xn)

Where we use the elementary symmetric polynomials σk (see A.0.2). The k-th Chern class
of E is thus the k-th symmetric polynomial evaluated in the Chern roots of E. Together with
the fundamental theorem on symmetric polynomials (see A.0.3), this yields the following:

Proposition 5.4.13. If p∗E = `1 ⊕ ...⊕ `n, then:
Any symmetric polynomial with coefficients in Q of the Chern roots xi = c1(`i) depends
only on the Chern classes of E. Furthermore it is a polynomial expression of the latter
and thus an element in the ring H2∗(X,Q).

We will now return to our original object of study, the Chern character, by showing that
5.4.13 applies:

ch(E) = ec1(`1) + ...+ ec1(`n)

= ex1 + ...+ exn

= n+
n∑
i=1

xi +
1

2

n∑
i=1

x2
i + ...

=
∞∑
k=0

1

k!

(
n∑
i=1

xki

)

Using the polynomials qk(x1, ..., xn) =
∑

i x
k
i , (see A.0.2), rewrite:

ch(E) =

∞∑
k=0

1

k!
qk(x1, ..., xn)

=:

∞∑
k=0

chk(E)

Since the qk are symmetric, the principle applies. In fact, one can give the explicit expression
of qk in terms of σk using polynomials sk (These formulae are called Newton’s identities, see
A.0.4). Therefore:

chk(E) =
1

k!
sk (σ1(x1, ..., xn), ..., σk(x1, ..., xn))

=
1

k!
sk(c1(E), ..., ck(E))
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Proposition 5.4.14. (see [LaMi] III.§11.) The Chern character is additive and multi-
plicative, i.e. for two bundles E and E′ over X, we have:

ch(E ⊕ E′) = ch(E) + ch(E′)

ch(E ⊗ E′) = ch(E)ch(E′)

Example 5.4.15. complex vector bundles on S2n

Let E be a complex vector bundle over an even-dimensional sphere. Computing the Chern
character of such a bundle turns out to be fairly easy. This is mainly due to the fact that
all H i(S2n,Q) are trivial except for i ∈ {0, 2n}. Since chk ∈ H2k(S2n,Q) this directly implies
that only ch0 and chn are of interest. By the above:

ch0 = dimCE

For chn we take a look at the Newton identities. Since all chk = (1/k!) sk = 0 if k ∈
{1, ..., n− 1}, the recursion formula simplifies to: sk = (−1)k−1kσk, therefore:

chn(E) =
1

n!
sn

=
1

n!
(−1)n−1nσn

=
(−1)n−1

(n− 1)!
cn(E)

In conclusion:

ch(E) = dimC(E) +
(−1)n−1

(n− 1)!
cn(E)

5.5 The Â-genus

Define the following power series:

â(x) =
x/2

sinh(x/2)
=

x

ex/2 − e−x/2
= 1− 1

24
x2 +

7

27325
x4 + ...

which has only terms of even order since x/2 as well as sinh(x/2) are odd functions. Given a
smooth oriented vector bundle (E,X, π) of rank 2n, by the use of its formal roots x1, ..., xn
(see below), we can formally define:

Â(E) =

n∏
i=1

â(xi) =

n∏
i=1

xi

exi/2 − e−xi/2
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Similarly, we denote by Â(X) the case where E is the tangent bundle. Since â is even, Â
is a polynomial in the squares x2

1, ..., x
2
n. Furthermore, it is easy to see that this polynomial

is symmetric. In the spirit of 5.4.13, it is thus a polynomial expression of σk(x
2
1, ..., x

2
n).

Analogously to the proof of the fact that the elementary symmetric polynomials in the xi are
equal to the corresponding Chern classes, we will now prove that the σk(x

2
1, ..., x

2
n) correspond

to Pontryagin classes. This proves that Â(E) ∈ H4∗(X,Q).

Theorem 5.5.16. Modified Splitting Principle
For any 2n-dimensional oriented real vector bundle E → X over a manifold, there is a
space FE and a map p : FE → X s.th.

1) p∗ : H∗(X,Z)→ H∗(FE,Z) is injective,

2) The pullback bundle splits as sum of line bundles:

p∗(E ⊗ C) = `1 ⊕ `1 ⊕ ...⊕ `n ⊕ `n

By this modified splitting principle, we can compute using 5.2.5:

c(E ⊗ C) = c(`1 ⊕ `1 ⊕ ...⊕ `n ⊕ `n)

= c(`1)c(`1) · ... · c(`n)c(`n)

= (1 + x1)(1− x1) · ... · (1 + xn)(1− xn)

= (1− x2
1) · ... · (1− x2

n)

But by the definition of Pontryagin classes (5.3.8), this yields:

p(E) = (1 + x2
1) · ... · (1 + x2

n)

And thus we have the desired identity:

pi(E) = σk(x
2
1, ..., x

2
n)

For a full discussion of these matters using general multiplicative sequences, we refer to [LaMi]
III.§11. The Â-genus of an even dimensional oriented manifold X is defined as Â(X) evaluated
on the fundamental class of X.

Definition 5.5.17. The Â-genus

Â(X) = Â(X)[X] ∈ Q
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This genus turns out to be an integer for spin manifolds. This is explained by the Atiyah-
Singer index theorem, which identifies it with the index of the Dirac operator associated to
the given spin manifold. We will need a slightly more general notion, namely the twisted Â-
genus which turns out to be the index of the twisted Dirac operator (see 4.4). The twisted
Â-genus depends on the tangent bundle of a manifold X (with the same properties as before)
and some other vector bundle E over X and is defined as:

Â(X,E) =
(

chE · Â(X)
)

[X]
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Chapter 6

The Atiyah-Singer index theorem

In this chapter, we briefly discuss the Atiyah-Singer index theorem. Proved in ’63, this result
establishes a strong link between analysis and topology. More concretely, it relates the index
of differential operators of sections over some compact manifold to the topological index of the
same manifold. This is best understood in the setting of K-Theory in the sense of Appendix
B. The proof is omitted here, since it is quite involved and since we are mainly interested in
the application of the theorem to Dirac operators. Moreover we don’t discuss the functional
analytic aspects of differential operators. The lecture notes [Des] along with [LaMi] served
as main references. Further applications can be found in [HBJ].

Preliminary remark: All base spaces in this chapter are taken compact and without bound-
ary, however we want to refer to the K-Theory of not necessarily compact spaces (vector bun-
dles for instance). Let Y therefore be a locally compact space. In what follows, we will denote
by K(Y ) the reduced K-Theory of the one-point compactification of Y , i.e. K(Y ) = K̃(Y +).

6.1 The analytic index for elliptic differential operators

Let E and F be smooth complex vector bundles of dimensions p and q respectively over a
given space X.

Definition 6.1.1. A linear map D : Γ(E) → Γ(F ) is called differential operator (of
order m) if it can be written around every point x ∈ X as

D =
∑
|α|≤m

Aα(x)
∂|α|

∂xα

for Aα p× q-matrices of smooth C-valued functions, which are not all zero in the highest-
order term, i.e. for |α| = m.
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Some explanations might be in order: We are allowed to write down partial derivatives since
this is a local condition: For a given x ∈ X there is an open coordinate neighbourhood U 3 x
i.e. we have trivializations E|U ∼= U ×Cp and F |U ∼= U ×Cq and the partial derivatives are to
be interpreted with respect to these. D is thus an operator that is locally given by a matrix
with polynomial entries in partial derivatives of order ≤ m which is non-trivial in the top
degree.

To every differential operator we associate its symbol:
Consider the cotangent bundle:

π : T ∗X → X

Via π, the preexisting vector bundles can be pulled back to T ∗X to yield bundles π∗E → T ∗X
and π∗F → T ∗X.

Definition 6.1.2. The symbol of a differential operator D is for all ξ ∈ T ∗xX a map:

σξ(D) : π∗E|ξ −→ π∗F |ξ

that is locally given by:

σξ(D) = im
∑
|α|=m

Aα(x)ξα

for ξ =
∑
ξkdxk. This means that we replace the partial derivatives ∂/∂xk in the local

expression by iξk.

Example 6.1.3. The Laplace operator ∆
Let E and F be two trivial C-line bundles over X. The Laplace operator thus takes a C-valued
function on X into another one. It is defined by:

∆ : Γ(E) = C∞C (X) −→ Γ(F ) = C∞C (X)

f 7−→
∑
j

∂2f

∂x2
j

(This is a global definition by triviality of the bundles.)
For some ξ =

∑
ξjdxj ∈ T ∗X the corresponding symbol is given by:

σξ(∆) =
∑
j

(iξj)
2 = −

∑
j

ξ2
j = −||ξ||2

Which is to be understood as multiplication by the number −||ξ||2 and is thus an isomorphism
provided ξ is non-zero. The Laplace operator is thus elliptic, by the definition given below.
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Example 6.1.4. The exterior derivative d
Let X be a smooth n-dimensional manifold, and T ∗X

π→ X its cotangent bundle. Define the
complexified differential forms Ωi

C(X) = Γ(Λi(T ∗X ⊗C)). The exterior derivative d is a map
increasing the degree of a given form by one:

d : Γ(E) = Ωi
C(X) −→ Γ(F ) = Ωi+1

C (X)

defined in local coordinates by:

d

∑
|I|=k

aIdxI

 =
∑
|I|=k

n∑
j=1

∂aI
∂xj

dxj ∧ dxI

=

 n∑
j=1

∂

∂xj
dxj

 ∧
∑
|I|=k

aIdxI


Where the last form is particularly useful to compute the symbol of d (recall that the symbol
is obtained by replacing ∂/∂xk by iξk):

σξ(d)η = iξ ∧ η

Definition 6.1.5. A differential operator D : Γ(E) → Γ(F ) is elliptic if σξ(D) is an
isomorphism for all non-zero ξ ∈ T ∗X.

For elliptic D, we can thus consider π∗E
σ(D)−→ π∗F which is an isomorphism when restricted to

T ∗X \X i.e. for all ξ 6= 0. Thus this map defines an element in L1(T ∗X,T ∗X \X) = K(T ∗X)
(See Appendix B).

Theorem 6.1.6. Properties of elliptic operators

1. If D is elliptic, then kerD and cokerD are finite-dimensional;

2. The number dimkerD − dimcokerD only depends on the symbol σ(D).

By this theorem we can define for any elliptic differential operator D:

Definition 6.1.7. Let a-Ind(D) be the quantity dimkerD − dimcokerD ∈ Z called the
analytic index of D. Since σ(D) ∈ K(T ∗X), we have:

a-Ind : K(T ∗X) −→ Z
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6.2 The analytic index for elliptic complices

We recall the result Ln ∼= L1
∼= K (see Appendix B) and thus we can adapt the above

construction to sequences of vector bundles and differential operators.

Definition 6.2.8. Let E0, ..., Em be smooth complex vector bundles over X and Di :
Γ(Ei)→ Γ(Ei+1) be differential operators of fixed degree p with Di+1 ◦Di = 0. Then

0→ Γ(E0)
D0−→ Γ(E1)

D1−→ ...
Dm−1−→ Γ(Em)→ 0

is called elliptic complex if the associated sequence pulled back to T ∗X

0→ π∗E0
σ(D0)−→ π∗E1

σ(D1)−→ ...
σ(Dm−1)−→ π∗Em → 0

is exact on T ∗X \ {0}.

Thus the differential forms and the exterior derivative (discussed in 6.1.4) form an elliptic
complex. Such an elliptic complex D thus defines an element σ(D) ∈ Lm+1(T ∗X,T ∗X\{0}) ∼=
K(T ∗X) (again, see Appendix B). One can prove that the associated cohomology groups
Hj = kerDj/imDj−1 are finite-dimensional. Similarly to the case of only two vector bundles,
we define the analytic index:

Definition 6.2.9.

a-ind : K(T ∗X) → Z

σ(D) 7→
n∑
j=1

(−1)jdimHj

6.3 The topological index of a smooth manifold

Before writing down the definition of the topological index, some preparations are necessary.
Let π : E → X be a complex vector bundle of dimension n. We want to associate to E an
exact sequence of vector bundles over X. We therefore consider Ek := π∗(ΛkE) ⊂ E × ΛkE
the exterior powers of E pulled back to X. We get a sequence

0→ E0 −→ E1 −→ E2 −→ ... −→ En → 0
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by taking the wedge product with the base point in the fibres. More precisely, we can look at
the following pointwise operation:

{v} × ΛkE|v → {v} × Λk+1E|v
ω 7→ v ∧ ω

Since this sequence is exact on E \ {0}, it defines an element λE ∈ Ln+1(E,E \ {0}) =
Ln+1(B(E), S(E)) = K(B(E), S(E)) = K̃(B(E)/S(E)) = K̃(E+) = K(E), where we used
the following notation:

S(E) = {v ∈ E| ||v|| = 1}
B(E) = {v ∈ E| ||v|| ≤ 1}

The space B(E)/S(E) is sometimes called Thom space and denoted by Th(E).

Theorem 6.3.10. Thom isomorphism (see [At] 2.7.)

K(X)
λE⊗−→ K(B(E), S(E)) = K(E)

is an isomorphism.

Let f : X ↪→ RN be a proper embedding and N its normal bundle. The complexification
NC = N ⊗ C ∼= N ⊕N is the normal bundle of f∗ : TX → TRN where the first N is viewed
as normal component to the manifold and the second one as normal to the respective tangent
space. The normal bundle of TX is diffeomorphic to a regular neighbourhood U of TX in
TRN = R2N (see [MiSt] 11.1 p.115), which yields in K-Theory

K(NC)
∼=−→ K(U)→ K(TRN )

Precomposing this map with the Thom isomorphism

K(TX)
λNC⊗−→ K(NC) −→ K(TRN )

we see that any proper embedding X ↪→ RN thus yields a covariant map on the level of the
corresponding K-Theories. Since K(TRN ) = K(R2N ) ∼= K({pt.}) = Z also by the Thom
isomorphism, we finally get a map

t-ind : K(TX) −→ Z

6.4 The Atiyah-Singer index theorem
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Theorem 6.4.11. Atiyah-Singer index theorem
Let D be an elliptic complex with symbol σ(D) ∈ K(T ∗X). Then:

a-ind(σ(D)) = t-ind(σ(D))

See [LaMi] III.§13. for details and a proof. In light of this theorem, we will write from now
on ind(D) = a-ind(σ(D)) = t-ind(σ(D)).

Example 6.4.12. The de Rham complex
Let X be a compact n-dimensional manifold. The exterior derivative d yields a complex, since
d2 = 0

0→ Ω0(X)
d−→ Ω1(X)

d−→ ...
d−→ Ωn(X)→ 0

The corresponding symbol complex

0→ π∗Ω0(X) −→ π∗Ω1(X) −→ ... −→ π∗Ωn(X)→ 0

In the fibre over ξ, these maps are given by ξ∧ (see 6.1.4), which makes the complex exact for
ξ 6= 0. We are thus in the above defined situation of an elliptic complex. Since the cohomology
associated to this complex is de Rham cohomology, the Atiyah-Singer index theorem yields
for this case:

t-ind(σ(d)) =
n∑
j=0

(−1)jdimHj
dR

=
n∑
j=0

(−1)jbj

= e(X)

where Hj
dR denotes the j-th de Rham cohomology group, bj the corresponding Betti number

and e(·) the Euler characteristic.

Remark 6.4.13. The cohomological formula for the topological index (see [HBJ] 5.2.)
Given an elliptic complex over an n-dimensional X:

0→ Γ(E0) −→ Γ(E1) −→ ... −→ Γ(Em)→ 0

with symbol σ(D), one can express the index in purely cohomological terms via the Chern
character of the bundles Ei and the formal roots x1, ..., xn of the tangent bundle (see chapter
5 for both concepts):

ind(D) =

( m∑
i=0

(−1)ich(Ei)

)
n∏
j=1

(
xj

1− e−xj
1

1− exj

) [X]

63



Chapter 7

Enlargeability and Positive Scalar
Curvature

In this chapter we introduce the concept of enlargeability of manifolds and discuss its adverse
relation to positive scalar curvature. The prototypical example of an enlargeable manifold
is the torus. Thus, Tn can’t carry a metric of positive scalar curvature. Furthermore en-
largeability has some nice stability properties: It is stable under taking products between
enlargeable manifolds and it is stable under direct sum with arbitrary manifolds (see [LaMi]
IV. Theorem 5.3.). Thus we can expect enlargeability to be applicable to a wide range of
manifolds. The proof of the fact that enlargeability excludes the existence of positive scalar
curvature relies on the Atiyah-Singer index theorem and on spin geometry, namely it uses the
Dirac operator of twisted complex spinor bundles and its Bochner formula (4.4):

/D
2
E = ∇∗∇+

1

4
κ+ RE

The difference to the usual Lichnerowicz formula is obviously the E-curvature term RE . As
it turns out, enlargeability is a sufficient condition to gain some control over this error term
and to be able to apply a Lichnerowicz-type argument to show the vanishing of the index
of /DE in the presence of positive scalar curvature. We will show that this contradicts the
Atyiah-Singer index theorem.

7.1 Enlargeability

Definition 7.1.1. Let ε > 0. A smooth map:

f : (X, gX) −→ (Y, gY )
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between Riemannian manifolds is called ε-contracting if one of the following (equivalent)
statements hold:

‖f∗(p)v‖Y ≤ ε‖v‖X ∀(p, v) ∈ TX

⇔ lengthY (f(γ)) ≤ ε · lengthX(γ) ∀γ : [0; 1]→ X piecewise C1-curve

⇔ ‖f∗(p)‖X,Y ≤ ε ∀p ∈ X (where ‖·‖X,Y denotes the operator norm)

Note that the existence of ε-contracting maps between two given manifolds contains no ge-
ometric information, since such maps always exist (constant maps are ε-contracting for all
given ε > 0). The notion is also not intrinsic to the manifold, i.e. depends on the Rieman-
nian metric: consider that in the compact case every given f can be made ε-contracting for
every given ε by suitably scaling the metric on X up or the metric on Y down. In order to
compare manifolds in size in a meaningful way, we will use the notion of degree of a map (see
Appendix C). Non-zero degree for a map f : X → Y means, roughly speaking, that X is
wrapped around Y by f at least once. Thus if there is an ε-contracting map of non-zero degree
form X onto Y , we can say that Y is smaller than X by an order of at least ε. Note that this
still depends on the chosen metric, by the same argument as above. Therefore let us define
the notion of enlargeability by comparing (coverings of) Riemannian manifolds to the round
n-sphere of unit radius. This will turn out to be a notion that is independent of the chosen
metric.

Definition 7.1.2. A compact n-dimensional Riemannian manifold (X, g) is enlargeable
if for all ε > 0 there is an orientable covering (X̃ε, g̃ε) of X and an ε-contracting map

fε : (X̃ε, g̃ε)→ (Sn, gst.)

which is constant outside of a compact set and has non-zero degree. If for each of the X̃ε

we can choose finite coverings, (X, g) is called compactly enlargeable.

Remarks 7.1.3.

1. On the coverings, we chose the lifted Riemannian metrics: Let π : X̃ → X be a covering.
Define the lifted metric g̃ of g by:

g̃|p(v, w) := g|π(p)(π∗(p)v, π∗(p)w)

2. The maps fε need to be constant outside of a compact set, since otherwise the notion
of degree would not be well-defined. See C.4.10 for details.
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3. The existence of degree one maps onto the sphere isn’t a constraint: For a given manifold
M , take a coordinate neighbourhood U and a ball B ⊂ U . The map M �M/(M \B) ≈
Sn has degree one.

Example 7.1.4. the n-torus Tn
The flat n-torus Tn = Rn/Zn is enlargeable. Consider therefore the universal covering space
Rn. Although the fact that Rn has ε-contracting maps onto the unit sphere might be intu-
itively clear, one can write out the following argument:

Proof:
We consider here (Sn, gst.) ⊂ (Rn+1, geucl.). Define the following map:

exp : Rn −→ Sn ⊂ Rn+1

x 7−→ cos(‖x‖)en+1 + sin(‖x‖) x

‖x‖

(We view Rn ↪→ Rn+1 by x 7→ (x, 0))
As the name suggests, this is nothing else than the exponential map 1 for the unit sphere with
the north pole as base point: exp(·) = exp(en+1, ·) when we identify Ten+1Sn with Rn. Thus,
exp maps the open ball of radius π diffeomorphically to Sn \ {−en+1} and collapses ∂Bπ(0)
to the south pole −en+1. This suggests to define the following map:

Φ : Rn −→ Sn

by defining Φ to be equal to exp on the open ball Bπ(0) and equal to the south pole every-
where else. By the fact mentioned above, this yields a continuous map.

We now replace Φ by a smooth map Φ̃ and show that these maps both have degree one.
For this we want to apply the differential topological approach to the degree (see C.6.12) of
counting preimages of regular points. To define the smooth map Φ̃ we apply the Whitney
approximation theorem for manifolds2 (see [BJ] Theorem 14.8). Choose as closed subset
A = Bπ/2(0) ∪ (Rn \B2π(0)) ⊂ Rn, Φ is clearly smooth on A, since it is a diffeomorphism on

Bπ(0) and constant outside of Bπ(0). Applying the Whitney approximation theorem yields a
map Φ̃ that is homotopic relative A to Φ. By the fact that the degree is a homotopy invariant,
we have:

deg Φ = deg Φ̃

We thus only need to show that Φ̃ has degree one. By the fact that Φ̃ can be chosen arbitrarily
close to Φ, we can choose a point p ∈ Φ̃(Bπ/2(0)) ⊂ Sn that has one single point as preimage

1The exponential map is defined in most texts on Riemannian geometry. See for example [DCa] chapter 3
Example 2.11

2Whitney approximation theorem: Let f : X → Y be a continuous map between smooth manifolds
that is smooth on a closed A ⊂ X. Then there is a smooth f̃ : X → Y s.th. f̃ homotopic to f relative A and
arbitrarily close to f .
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(Recall that Bπ/2(0) ⊂ A, and Φ is a diffeomorphism on this set). Since Φ̃ = Φ on A, p is a
regular point. Up to reversal of orientation, we thus have:

deg Φε = deg Φ = deg Φ̃ = 1

Claim: Φ̃ is ε0- contracting for some ε0 > 0.
Let n(p) := ‖Φ̃∗(p)‖Rn,Sn denote the value of the operator norm ∀p ∈ Sn. Since n ≡ 0 outside
of B2π(0) (everything being collapsed to one point), we can define ε0 to be the maximum of
n on the compact set B2π(0).

For a given ε > 0 define Φε(x) = Φ̃ (ε/ε0 x) ∀x ∈ Rn. By the fact that multiplication by a
constant c has operator norm c (note (c·)∗ = c· since it is linear) and that ‖Ψ ◦Ξ‖ ≤ ‖Ψ‖‖Ξ‖
for all operator norms, compute:

‖(Φε)∗‖Rn,Sn = ‖Φ̃∗ ◦ ((ε/ε0)·)∗‖Rn,Sn ≤ ε0
ε

ε0
= ε

Thus Φε is an ε-contracting map from Rn onto the unit sphere.

Furthermore Φε is constant outside of B2πε0/ε(0) (the complement being collapsed to the
south pole).

�

The torus is even compactly enlargeable. For this, consider the tori Rn/(kZ)n for k ∈ N
as covering spaces, which yield kn-fold coverings and can be checked to admit themselves
ε-contracting maps onto Sn if k is chosen large enough.

Proposition 7.1.5. Properties of enlargeability for compact manifolds

1) Let Y be enlargeable and f : X → Y of non-zero degree. Then X is enlargeable as
well.

2) Enlargeability is invariant under homotopy- equivalences. In particular: Enlarge-
ability is intrinsic to the manifold, i.e. doesn’t depend on the metrics.

Proofs:
1) Let ε0 be an upper bound on the operator norm of f∗ (given by compactness), i.e.

‖f∗(x)‖X,Y < ε0 ∀x ∈ X
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Given ε > 0, by enlargeability of Y choose a covering space Ỹ of Y and an ε/ε0-contracting
h of non-zero degree onto the n-sphere and constant outside of a compact set. We obtain a
suitable covering space of X using a pullback construction: Define:

X̃ := {(x, ỹ) ∈ X × Ỹ | f(x) = πY (ỹ)}

along with the projection: πX : X̃ → X by πX(x, ỹ) := x. One can check that πX : X̃ → X
is a covering. Furthermore one gets the induced map on the bundles f̃ : X̃ → Ỹ by setting
f̃(x, ỹ) := ỹ. This map is easily seen to be proper. By the defining condition of X̃, we get

πY ◦ f̃ = f ◦ πX

Thus we get a commuting diagram:

X̃ Ỹ Sn

X Y

πX

f̃

πY

h

f

By equipping the coverings with their respective lifted metrics, πX ,πY become local isometries.
In particular, their operator norms equal 1. Therefore, by commutativity, the following holds
locally:

f̃∗ = ((πY )∗)
−1 ◦ f∗ ◦ (πX)∗ ⇒ ‖f̃∗‖X̃,Ỹ ≤ ‖((πY )∗)

−1‖Y,Ỹ ‖f∗‖X,Y ‖(πX)∗‖X̃,X = ε0

Which means that f̃ is also ε0-contracting. Thus the composition h◦ f̃ yields an ε0 · ε/ε0 = ε-
contracting map from X̃ onto the unit sphere.
Next, we prove deg(f) = deg(f̃) by counting preimages of the map f̃ :

f̃−1({ỹ0}) = {x̃ ∈ X̃|f̃(x̃) = ỹ0}
= {(x, ỹ0) ∈ X × Ỹ |f(x) = πY (ỹ0)}
= f−1({πY (ỹ0)})

The orientation around πY (ỹ0) corresponds to the orientation around ỹ0, thus f̃ is also a
degree-one map.

1) �

2) Let X and Y be homotopy equivalent, i.e. there are two maps f : X → Y and g : Y → X
such that f ◦ g ' id and g ◦ f ' id. Then, by functoriality and since deg(·) ∈ Z:

Hn(f ◦ g) = Hn(f) ◦Hn(g) = id⇒ deg(f)deg(g) = 1⇒ deg(f) = deg(g) ∈ {−1, 1}

Thus homotopy equivalence provides non-zero degree maps in both directions and we can
apply 1)
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2) �

Theorem 7.1.6. Any compact manifold X that can carry a metric with non-positive
sectional curvature (sec ≤ 0) is enlargeable.

Proof:
Let X̃ be the universal covering of X. By Cartan- Hadamard (see for example [DCa] 7.3.),
expx : TxX̃ → X̃ is a global diffeomorphism and its inverse is distance decreasing or in other
words we obtain a 1-contracting map:

exp−1
x : X̃ −→ TxX̃ ∼= (Rn, geucl.)

By the fact that the exponential map is a diffeomorphism, it has degree3 ±1. The composition
Φε ◦ exp−1

x (see 7.1.4) is thus ε-contracting, has non-zero degree and is constant outside of a
compact set.

�

7.2 The setup in spin geometry

Before turning to the relation between enlargeability and positive scalar curvature, we will
discuss the spin geometric setup needed in the proof of 7.3.7. In order to make our account
more readable, all aspects of this setting will be discussed here instead of the different (the-
matically more appropriate) earlier chapters.

Let (X, g) be an Riemannian spin manifold of dimension 4m = n whose tangent bundle will
serve as initial vector bundle on which all of the following constructions will be carried out.
Recall that, in order to associate a spinor bundle to some spin structure we choose on X,
we need a representation of the corresponding Clifford algebra. As it turns out, there is a
unique complex irreducible such representation in even dimensions (see [LaMi] I.§5.). The
restriction of this representation to the group Spinn ⊂ C`n yields a (complex) representation
of the respective spin group:

∆C : Spinn −→ GLC(M)

3Strictly speaking, Appendix C doesn’t treat the topological degree in the case where both manifolds under
consideration are non-compact. To remedy the problem, one can use one-point-compactification of X̃ and Rn
(since the exponential map is a diffeomorphism, the one-point-compactifications will be spheres) which will
yield a diffeomorphism between spheres. Alternatively, the local degree (see C.2) can be used to define a global
degree in the case of proper maps. This is carried out in [Do] VIII.4.
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For some complex C`(Rn) ⊗ C-module M . This can also be done in the real case, but the
complex case has the following additional property when n is even: The representation splits
into two different (in the sense that they are not equivalent by conjugation), irreducible
representations (This comes essentially from the Z2-grading of Clifford algebras):

∆C = ∆+
C ⊕∆−C

The crucial point in all of this is the following one: The so-obtained representations don’t
descend to SOn under the double-covering map λ : Spinn → SOn. Recall from 3.2 that
tensor bundles come from representations of the general linear group (respectively SOn in
the oriented Riemannian case), therefore the fact that the spin representations don’t descend
means that we obtain new bundles by this construction, i.e. bundles that aren’t tensor bundles
(see also the discussion in [Pet98] Appendix C.2.). Denote these bundles as follows:

/S
(±)
C = FSpE ×∆

(±)
C

M

They will be equipped with the canonical connection stemming from the Levi-Civita connec-
tion. One can show that the splitting carries over to the vector bundles:

/SC = /S
+
C ⊕ /S

−
C

The Dirac operator of the bundle /SC will be denoted by /D. Since by the definition of the Dirac
operator the corresponding spinor is Clifford-multiplied with a vector (i.e. the Z2-grading is
interchanged), the Dirac operator inverts the splitting. Therefore we can define restricted
operators:

/D
+

: Γ(/S
+
C ) −→ Γ(/S

−
C )

/D
−

: Γ(/S
−
C ) −→ Γ(/S

+
C )

The application of the Atiyah-Singer index theorem to this operator yields:

Proposition 7.2.7.
ind /D

+
= Â(X)

See 5.5 for a discussion of the Â-genus. For our purposes, we need the twisted version the
spinor bundle /SC⊗E (see 4.4), for which we have a corresponding restricted Dirac operator:

/D
+
E : Γ(/S

+
C ⊗ E) −→ Γ(/S

−
C ⊗ E)

In this case, the index theorem yields the following:
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Proposition 7.2.8.

ind /D
+
E = Â(X,E) =

(
chE · Â(X)

)
[X]

This formula can be proved by the use of the cohomological formula 6.4.13. For this we use
the fact that the formal roots of the bundles /S

+
C and /S

−
C can be expressed using the formal

roots x1, ..., xn of the tangent bundle in the following manner (see [AS] section 3):

1

2
(±x1 ± x2 ± ...± xn)

With an even number of minuses for /S
+
C and an odd number for /S

−
C . Using the definition of

the Chern character 5.4.11, we want to develop the expression:

ch(/S
+
C )− ch(/S

−
C ) =

∑
#{minuses} even

e
1
2

(±x1±x2±...±xn) −
∑

#{minuses} odd

e
1
2

(±x1±x2±...±xn)

In order to carry out computations, we interpret the signs as elements of Z2 = {−1,+1}:

ch(/S
+
C )− ch(/S

−
C ) =

∑
(σ1,...,σn)∈(Z2)n

σ1σ2 · ... · σne
1
2

(σ1x1+σ2x2+...+σnxn)

=
(
e
x1
2 − e−

x1
2

) ∑
(σ2,...,σn)∈(Z2)n−1

σ2 · ... · σne
1
2

(σ2x2+...+σnxn)

=
(
e
x1
2 − e−

x1
2

)(
e
x2
2 − e−

x2
2

) ∑
(σ3,...,σn)∈(Z2)n−2

σ3 · ... · σne
1
2

(σ3x3+...+σnxn)

= ...

=
n∏
i=1

(
e
xi
2 − e−

xi
2

)
Substituting this in 6.4.13 (Notice that /D

+
E : Γ(/S

+
C ⊗ E) −→ Γ(/S

−
C ⊗ E) can be interpreted

as an elliptic complex of length 2.) and using the multiplicativity of the Chern character (see
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5.4.14) yields:

ind( /D
+
E) =

(ch(/S
+
C ⊗ E)− ch(/S

−
C ⊗ E)

) n∏
j=1

(
xj

1− e−xj
1

1− exj

) [X]

=

chE
(

ch(/S
+
C )− ch(/S

−
C )
) n∏
j=1

xj
(1− e−xj ) (1− exj )

 [X]

=

chE
n∏
i=1

(
e
xi
2 − e−

xi
2

) n∏
j=1

xj(
e
xj
2 − e−

xj
2

)(
e−

xj
2 − e

xj
2

)
 [X]

=

chE

n∏
j=1

xj

e−
xj
2 − e

xj
2

 [X]

=
(

chE Â(X)
)

[X]

Where we have used that n is even in the last line in order to get the right sign. This proves
7.2.8 (and the untwisted case 7.2.7 by leaving out the vector bundle E).

The following isn’t needed per se in our applications, but since the ideas are very similar to
the techniques used in the proof of 7.3.7, we will briefly discuss them: The above applications
of the index theorem combined with the Lichnerowicz formula yield an interesting obstruction
to the existence of positive scalar curvature metrics on manifolds, namely:

Theorem 7.2.9. If the compact spin manifold X admits a metric of positive scalar
curvature, then Â(X) = 0

This theorem holds for arbitrary dimensions when one considers a more refined invariant,
denoted by Â(·) (see [LaMi] II.§8.12). We will prove it for dimensions divisible by 4.

Proof: By the Atiyah-Singer index theorem we have ind /D
+

= Â(X). Thus it suffices to prove

that ker /D
+ − coker /D

+
= 0. Furthermore, since /D is self-adjoint, ker /D

−
= coker /D

+
, we will

prove that:
ker /D

2
= {0}

in the case where κ ≥ 0 everywhere and κ > 0 in at least one point. This is by 4.3.14
equivalent to the triviality of the kernel of /D. Suppose ψ ∈ Γ(/SC) so that /Dψ = 0. The
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Lichnerowicz formula implies:

∇∗∇ψ +
1

4
κψ = 0

⇒ 〈∇∗∇ψ,ψ〉+
1

4
κ〈ψ,ψ〉 = 0

⇒ 〈∇∗∇ψ,ψ〉L2 +
1

4

∫
X
κ‖ψ‖2 = 0

⇒ ‖∇ψ‖2L2 +
1

4

∫
X
κ‖ψ‖2 = 0

Since both terms must vanish, we have ∇ψ = 0 and since this implies that ‖ψ‖ is constant,
this constant must be zero by evaluation at a point where κ > 0.

�

7.3 Positive scalar curvature

In this section we will discuss and prove the fact that enlargeability is an obstruction to the
existence of positive scalar curvature. This type of result was first proved by Schoen and Yau
for dimensions ≤ 7 (see [ScYa] and [ScYa2]) in ’79 by the use of techniques from minimal
surface theory. In ’80 Gromov and Lawson proved the result for spin manifolds in arbitrary
dimensions using spin geometry (see [GrLa]). The second approach will be discussed here
and we closely follow the exposition of [LaMi] IV. §5.

Theorem 7.3.7. Compactly enlargeable spin manifolds manifolds cannot carry a metric
of positive scalar curvature.

Remarks 7.3.8.

1) Recall that this theorem is stated in the context of compact manifolds, since compactness
is contained in the definition of enlargeability.

2) The theorem holds for (not necessarily compactly) enlargeable manifolds, but its proof
requires more refined techniques (see [LaMi] IV. §6. p.316f for details).

7.3.7 combined with 7.3.8.2) and 7.1.6 yield the following result:

Theorem 7.3.9. Exclusion theorem
Compact manifolds which can carry a metric with non-positive sectional curvature don’t
admit positive scalar curvature metrics.
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Proof of 7.3.7: Step 0: Preparations

Let X be a compactly enlargeable manifold with X̃ε the corresponding spin covering mani-
fold, which admits an ε-contracting map fε of non-zero degree onto the sphere of the same
dimension. Suppose it carries a metric of positive scalar curvature, i.e.

κ > 0

everywhere. If X is odd-dimensional, replace it by X × S1; it can be easily checked that all
relevant properties remain unchanged: enlargeability is stable under taking cartesian products
and the product metric on X × S1 has positive scalar curvature. Thus we assume from here
on out that X is even-dimensional. By compactness of X we can choose κ0 s.th.

κ ≥ κ0 > 0

Step 1: Choose a suitable bundle over the sphere and pull it back to X̃ε

Since ch : K(S2n) → H∗(S2n;Z) is an isomorphism (see [AH]) and we have computed in
5.4.15:

ch(E) = dimC(E) +
(−1)n−1

(n− 1)!
cn(E)

it is possible to choose a complex vector bundle E0 over S2n s.th. cn(E0) 6= 0. Take a unitary
connection ∇E0 on E0 and denote by RE0 the corresponding curvature tensor. We can now
pull the bundle back along with its connection by defining:

(E,∇E) = (f∗εE0, f
∗
ε∇E0)

Step 2: Preparations to the Lichnerowicz argument

Consider the complex spinor bundle /SC (see 7.2) endowed with its canonical connection ∇/SC

(stemming from the Levi-Civita connection) over X̃ε. We will work with the twisted spinor
bundle /SC ⊗ E (see section 4.4) and its corresponding Dirac operator:

/DE : Γ(/SC ⊗ E) −→ Γ(/SC ⊗ E)

for which the following modified Lichnerowicz formula holds (see 4.4.20):

/D
2
E = ∇∗∇+

1

4
κ+ RE (♣)

where we denote by ∇ the natural connection on the tensor product defined by the following
relation:

∇(σ ⊗ v) =
(
∇/SCσ

)
⊗ v + σ ⊗

(
∇Ev

)
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and by RE :

RE(σ ⊗ v) =
∑
j<k

(ejekσ)⊗
(
REej ,ekv

)
Which means that R ∈ Γ(End(/SC ⊗ E)) is a symmetric section of the bundle of endomor-
phisms of /SC ⊗ E. In order to be able to apply the classical Lichnerowicz-argument, we
have to gain some control over the curvature term RE . More precisely, we will show that the
following holds for a suitable choice of ε:

‖RE‖ < 1

4
κ0 (?)

On Γ(End(/SC ⊗ E)) we take the operator norm with respect to the given norm on /SC ⊗ E.
To prove (?), we show the following inequalities:

‖RE‖
(1)

≤ kn‖RE‖
(2)

≤ ε2kn‖RE0‖

where kn is a constant depending on dimension. Thus one can choose:

ε <

√
κ0

4knmax{‖RE0‖}

which proves the inequality (?). To show (1), compute (at a given point p ∈ X̃ε):

‖RE‖ = max
‖σ⊗v‖=1

{
‖RE(σ ⊗ v)‖

}
= max

‖σ‖·‖v‖=1


∥∥∥∥∥∥
∑
j<k

ejekσ ⊗REej ,ekv

∥∥∥∥∥∥


‖ek‖=1

≤ max
‖σ‖·‖v‖=1

∑
j<k

‖σ‖‖REej ,ek‖‖v‖


=

∑
j<k

‖REej ,ek‖

≤ n(n− 1)

2
‖RE‖

and thus kn = (n(n−1))/2. We have used the following inequality ‖RE‖ = (
∑
‖REej ,ek‖

2)1/2 ≥
‖REej ,ek‖.

In order to prove (2) choose, at a given point p ∈ X̃ε, an orthonormal basis {ψ1, ..., ψkn} of
Λ2TpX̃ε which diagonalizes the symmetric bilinear form:

(ψ,ψ′) 7→ 〈(fε)∗ψ; (fε)∗ψ
′〉
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i.e. we have
〈(fε)∗ψj ; (fε)∗ψk〉 = λjδjk

Where f∗ : Λ2TpX̃ε → Λ2Tf(p)S2n is the induced map on bivectors. By the definition of
enlargeability, fε is an ε-contraction on vectors and thus an ε2-contraction on bivectors. We
therefore have the following:

λj = 〈(fε)∗ψj ; (fε)∗ψj〉 = ‖(fε)∗ψj‖ ≤ ε2‖ψj‖ = ε2

Define for all 1 ≤ j ≤ kn:

ζj =
1

λj
f∗ψj

which yields an orthonormal basis for Λ2Tf(p)S2n the space of bivectors on S2n based at f(p).

We can now compute using the fact that (E,∇E) is the pullback of (E0,∇E0) under f :

‖RE‖2p =

kn∑
j=1

‖REψj‖
2

=

kn∑
j=1

‖RE0
f∗ψj
‖2

=

kn∑
j=1

λ2
j‖R

E0
ψj
‖2

≤ ε4‖RE0‖2

Which proves (2) and thus (?).

Step 3: The Lichnerowicz argument

In order to show that index( /D
+
E) = 0, it suffices to show:

ker( /DE) = ker( /D
2
E) = {0} ∈ Γ(/SC ⊗ E)

To prove this, we need some preparations. Let p ∈ X̃ and ξ ∈ Γ(/SC ⊗ E) a twisted complex
spinor. We apply the Cauchy-Schwarz inequality and (?):∣∣∣〈RE

p (ξp); ξp
〉
p

∣∣∣ ≤ ∥∥RE
p (ξp)

∥∥
p
‖ξp‖p ≤

1

4
κ0 ‖ξp‖2p (†)

Define the operator A ∈ Γ(End(/SC ⊗ E)) by:

A = RE +
1

4
κ
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where the last term is multiplication by the number κ. Still looking at the pointwise picture,
we use (†):

〈Ap(ξp); ξp〉p =
〈
RE
p (ξp); ξp

〉
p

+
1

4
κ(p) 〈ξp; ξp〉p ≥

1

4
(κ(p)− κ0) ‖ξp‖2p (‡)

We prove that A is a positive operator, i.e. that for the L2-inner product we have 〈A(ξ); ξ〉 ≥ 0.
Notice that contrary to (†) and (‡), this is a global rather than a pointwise statement, since
it involves an integral over the manifold. Recall that κ(p)− κ0 ≥ 0 everywhere and combine
this with (‡) to yield:

〈A(ξ); ξ〉L2 =

∫
X̃ε

〈Ap(ξp); ξp〉p dvolg̃ε

≥
∫
X̃ε

1

4
(κ(p)− κ0) 〈ξp; ξp〉p dvolg̃ε

≥ 1

4
〈ξ; ξ〉L2

≥ 0

Notice that the integral over X̃ε makes sense since X is compactly enlargeable. Now rewrite
(♣) as:

/D
2
E(ξ) = ∇∗∇ξ +A(ξ)

and take ξ0 ∈ ker /D
2
E which implies:〈

/D
2
Eξ0; ξ0

〉
L2

= 0 = 〈∇∗∇ξ0 +A(ξ0); ξ0〉L2 = 〈∇ξ0;∇ξ0〉L2

≥0

+ 〈A(ξ0); ξ0〉L2

≥ 〈ξ0;ξ0〉 ≥ 0

Therefore, we have ∇ξ0 = 0 and 〈ξ0; ξ0〉L2 = 0 which implies that ξ0 itself vanishes every-

where. The kernel of /D
2
E is thus trivial and the index of /D

+
E vanishes as well.

Step 4: Contradiction to the index theorem
By use of the Atiyah-Singer index theorem (see 7.2.8) and the computation in 5.4.15 , we
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compute the index:

index( /D
+
E) = Â(X̃ε, E)

=
(

chE · Â(X̃ε)
)

[X̃ε]

=

((
dimC(E) +

(−1)n−1

(n− 1)!
cn(E)

)
· Â(X̃ε)

)
[X̃ε]

= dimC(E)Â(X̃ε) +
(−1)n−1

(n− 1)!
cn(E)[X̃ε]

=
(−1)n−1

(n− 1)!
cn(f∗εE0)[X̃ε]

=
(−1)n−1

(n− 1)!
f∗ε (cn(E0))[X̃ε]

=
(−1)n−1

(n− 1)!
deg(fε)cn(E0)[S2n]

6= 0

Since by the choice of E0, we have cn(E0) 6= 0 and deg(fε) 6= 0 by enlargeability.

�
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Chapter 8

The Positive Energy Theorem

For the discussion of the Positive Energy Theorem, we will closely follow J. Lohkamp (see
[Lo]). The version of this theorem that occurs in General Relativity consists of a claim about
a space-time, i.e. a Lorentzian four-manifold. The problem can be reduced to questions about
space-like hypersurfaces of positive scalar curvature. The restriction of the Lorentzian metric
to a space-like hypersurface is positive definite, thus one can work in a purely Riemannian set-
ting. Considerations from physics show that one can further restrict the context to so-called
asymptotically flat manifolds with some additional asymptotic condition on scalar curvature.
This will thus be the context for this chapter. Lohkamp proved that for these specific man-
ifolds, the condition of negative energy can be interpreted purely geometrically: The metric
on the manifold can be modified so that it becomes Euclidean outside of a compact without
losing positive scalar curvature. If the manifold is spin, this leads to a contradiction by the
results we proved in chapter 7.

8.1 The setup

Let (X, g) be Riemannian manifold with positive scalar curvature.

Definition 8.1.1. A Riemannian n-manifold (X, g) for n > 2 is called asymptotically
flat if there is a compact K ⊂ X s.th. the following hold:

1) There is a diffeomorphism φ : X \K −→ Rn \ Dn = {x ∈ Rn| ‖x‖ > 1}

2) With respect to the chart φ, the metric g satisfies the following conditions for some
p > n−2

2 : (i) The metric is Euclidean (denoted by g0) up to an asymptotically
vanishing contribution in the sense that:

g = g0 + h
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with hij(x) = O(‖x‖−p) for all i, j. The derivatives of the metric are controlled as
follows:

‖x‖
∣∣∣∣∂gij∂xk

(x)

∣∣∣∣+ ‖x‖2
∣∣∣∣ ∂2gij
∂xk∂xl

(x)

∣∣∣∣ = O(‖x‖−p)

Furthermore, in order to be able to define the energy of this type of manifold, we need to
assume that its scalar curvature is controlled as follows:

κg(x) = O(‖x‖−q) (♣)

for some q > n.

Definition 8.1.2. The total energy of an asymptotically flat manifold satisfying (♣) is
defined by the expression:

E(X, g) = bn lim
ρ→∞

∫
Sρ

n∑
i,j=1

(
∂gij
∂xi
− ∂gii
∂xj

)
νj dvolSρ

Where Sρ is the Euclidean sphere of radius ρ, dvolSρ is the volume form induced on this
sphere by the inclusion Sρ ⊂ Rn, ν is the outwards pointing unit normal vector of Sρ and
the constant bn is defined as:

bn =
1

4(n− 2)voln−1Sn−1

Energy can be shown to be independent of which chart φ is chosen for the asymptotic flatness
structure. We will only show that the limit makes sense.

Proof: (Existence of the limit)
Under the asymptotic assumptions, one can show (by a direct computation) that scalar cur-
vature has the following form (see [Sch]):

κg(x) =
n∑

i,j=1

(
∂2gij
∂xi∂xj

− ∂2gii
∂xj∂xj

)
+O(‖x‖−2p−2) (♠)

The left-hand side can be integrated by (♣) and O(‖x‖−2p−2) can be integrated since p > n−2
2 ,

thus the sum on the right-hand side is integrable as well. For any ε > 0, we can choose ρ0
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large enough so that for every ρ1, ρ2 satisfying ρ2 > ρ1 > ρ0 we have:∣∣∣∣∣∣
∫
Sρ2

n∑
i,j=1

(
∂gij
∂xi
− ∂gii
∂xj

)
νj dvol

n−1
Sρ
−
∫
Sρ1

n∑
i,j=1

(
∂gij
∂xi
− ∂gii
∂xj

)
νj dvol

n−1
Sρ

∣∣∣∣∣∣
=

∫
Bρ2\Bρ1

n∑
i,j=1

div

(
∂gij
∂xi
− ∂gii
∂xj

)
dvoln

=

∫
Bρ2\Bρ1

n∑
i,j=1

(
∂2gij
∂xi∂xj

− ∂2gii
∂xj∂xj

)
dvoln

< ε

Where we have used the divergence theorem, the asymptotic behaviour of scalar curvature
prescribed in (♣), together with (♠) and where Br denotes the Euclidean ball of radius r.
The the limit defining the energy exists.

�

8.2 The Positive Energy Theorem

We will mention some reductions that go back to R. Schoen and S.T. Yau without giving all
the details (they can be found in [Sch] section 4). More precisely, these reductions show that
it is sufficient to consider metrics that:

1) Have vanishing scalar curvature,

2) Are conformally flat near infinity,

And this, of course, without losing asymptotic flatness and with total energy arbitrarily close
to the total energy of the initial metric. This is essentially Proposition 4.1. from [Sch].

For this type of metric g, we will prove the positive energy theorem:

Theorem 8.2.3. Positive energy theorem

E(X, g) ≥ 0

Before turning to Lohkamp’s proof of the positive energy theorem, we will roughly describe
the above mentioned reductions. Let (X, g) be a Riemannian manifold as in the previous
section. First, the condition of scalar flatness can be deduced from the properties of the
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so-called conformal Laplacian, which is defined as the following modification of the usual
Laplace-Beltrami operator ∆:

L : C∞(X) −→ C∞(X)

f 7−→ −cn∆f + κg · f

Where cn is a dimensional constant cn = 4n−1
n−2 . This operator has the advantage that it de-

scribes the transformation behaviour of scalar curvature under conformal changes of the met-
rics nicely. Recall the transformation behaviour of scalar curvature under conformal changes:

Proposition 8.2.4. Scalar curvature under conformal changes
Define g̃ = λg for a strictly positive function λ. Then we have:

κg̃ =
1

λ

(
κg − cnλ−

n−2
4 ∆λ

n−2
4

)

By a direct computation, one can deduce that under the conformal change g̃ = λ
4

n−2 g, scalar
curvature behaves as follows:

κg̃ = λ−
n+2
n−2Lλ

One can show that the kernel of L contains a strictly positive function u that tends to 1 at
infinity (see [Ba] for this). Using this, define the conformally modified metric:

g1 = u
4

n−2 g

which is obviously scalar flat since Lu = 0. For the conformal flatness at infinity, one defines
an appropriate cut-off function ϕ that is equal to one around the compact K (see 8.1.1) and
vanishes near infinity. Using this, one can define:

g2 = ϕg + (1− ϕ)g0

Where g0 is the Euclidean metric given by the chart for X \K (again, see 8.1.1). These two
modifications of the metric can be suitably combined to yield the desired metric denoted by g.

We need one last remark before turning to the actual proof of the positive energy theorem.
Since (X, g) is asymptotically flat and conformally flat near infinity, the metric can be written
as:

g = h
4

n−2 g0

close to infinity such that h(x) tends to one as x→∞. By the fact that κg = 0 everywhere,
h is harmonic (again by the conformal behaviour of scalar curvature) and one can show that
it has the following expansion (see [Lo]):

82



Proposition 8.2.5.

h(x) = 1 +
E(X, g)

4(n− 1)‖x‖2−n
+O(‖x‖n−1)

Thus, the total energy of the manifold can be seen as a coefficient in the expansion of the
metric close to infinity. This is the form of the energy that we will use from now on (in [Lo]
this is used as the definition of the total energy).

8.3 Proof of the Positive Energy Theorem

We will now discuss Lohkamp’s proof of the Positive Energy Theorem for the case where
(X, g) is a spin manifold. First, we will prove the (already above mentioned) fact that the

function h is harmonic. For this, apply 8.2.4 to our case, where g = h
4

n−2 g0:

κg = h
n−2

4
(
κg0 + cnh

−1∆h
)

But, by construction, we have κg0 = κg = 0, therefore h is harmonic. The proof of the Pos-
itive Energy Theorem is roughly divided into two steps: The first consists of showing that
under the assumption that energy is negative, one can choose another metric on X so that
the manifold is isometric to flat Euclidean space outside of a compact without destroying
positive scalar curvature inside of that compact set. The second step is showing that this is
contradictory to what we already know about the topology of manifolds with positive scalar
curvature.

Step 1:

Proposition 8.3.6. The geometry of (X, g) for negative energy
If E(M, g) < 0, then there is another complete metric g′ on X so that:

1) κg′ ≥ 0 everywhere and κg′ > 0 somewhere,

2) There is a compact set K ⊂ X and a radius R > 0 so that the following are isometric:

(X \K, g′) ∼= (Rn \BR, g0)

(Where Br denotes the Euclidean ball of radius r centred at the origin.)

83



For the proof of this we will use the following somewhat technical proposition:

Proposition 8.3.7. For S = B6 \ B1 ⊂ (Rn, g0) if the function u ∈ C∞(S) is harmonic
and of the form u = 1

‖x‖n−2 + f with f arbitrarily small |f | < δ, then there is a strictly

positive H ∈ C∞(S) so that:

1) ∆H ≥ 0 with strict inequality somewhere in the interior of S,

2) H = u in a neighbourhood of ∂B1,

3) H equal to some strictly positive constant in a neighbourhood of ∂B6.

The proof of this proposition is entirely constructive:

Proof of 8.3.7: The idea of proof is the following: First we will deal with the special case
where f = 0. This simplifies the situation considerably by noticing that u is then rotationally
symmetric, since 1

‖x‖n−2 is. By the fact that rotationally symmetric functions F ∈ C∞(Rn \
{0}) are in bijection to functions in one (positive) variable G ∈ C∞(R>0) via the relation
F (x) = G(‖x‖). Thus, we will try to find some h1 ∈ C∞(R>0) whose associated rotationally
symmetric function will satisfy conditions 1)-3). Afterwards, we will generalize to the situation
where f is non-zero. First we will compute the Laplacian of F in terms of G to gain some
insight on which conditions to impose on h1.

∆F (x) = G′′(‖x‖) +
n− 1

‖x‖
G′(‖x‖) (�)

Recall that the Euclidean norm ‖·‖ : Rn → R has partial derivatives:

∂‖·‖
∂xi

(x) =
xi
‖x‖

Therefore:

∆F (x) = ∆G(‖x‖) =

n∑
i=1

∂2(G ◦ ‖·‖)
∂x2

i

(x)

=

n∑
i=1

∂

∂xi

(
G′(‖x‖) xi

‖x‖

)

=

n∑
i=1

[
G′′(‖x‖) x2

i

‖x‖2
+G′(‖x‖)

(
1

‖x‖
− x2

i

‖x‖3

)]
= G′′(‖x‖) +

n− 1

‖x‖
G′(‖x‖)
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Define the function g ∈ C∞(R \ {0},R) by g(t) = 1
tn−2 . Notice that this is the one-variable

function corresponding to 1
‖x‖n−2 under the above described bijection. We want to construct

another function h1 ∈ C∞(R>0,R>0) which has the following properties (as mentioned above,
this will correspond to the H we want to construct in the rotationally symmetric picture):

i) h1 = g on the interval ]0, 2],

ii) h1 constant and strictly larger than 0 on [5,∞),

iii) h′′1(t) + n−1
t h′1(t) ≥ 0 on ]2, 5[ and strictly positive on some interval in [3, 4].

To achieve this, we define auxiliary functions fd,s ∈ C∞(R,R≥0) depending on parameters
d, s > 0 as:

fd,s(t) = se−
d

5−t

for t strictly smaller than 5 and constantly vanishing elsewhere. It is easy to see that this
will indeed yield a smooth function for all choices of d and s. We claim that the parameters
d, s > 0 can be chosen so that:

i)’ f ′′d,s + (n− 1)f ′d,s > 0 on the interval ]1, 5[,

ii)’ f ′′d,s(4) > g′′(4) = (2− n)(1− n)4−n,

f ′d,s(4) > g′(4) = (2− n)41−n and

fd,s <
1
2g on ]1, 5[.

To prove this claim, compute:

f ′d,s(t) = −s d

(5− t)2
e−

d
5−t

f ′′d,s(t) = s

(
d2

(5− t)4
− 2d

(5− t)3

)
e−

d
5−t

For any real k, we have furthermore:

(f ′′d,s + kf ′d,s)(t) = sd

(
d− 2(5− t)− k(5− t)2

(5− t)4

)
e−

d
5−t

Therefore one can choose d0 large enough (depending on k) so that f ′′d,s + kf ′d,s > 0 on ]1, 5[
for any s > 0, d ≥ d0. The condition (i)’ thus is satisfied for k ≥ n− 1.

Next, choose some k large enough so that

k ≥ 2
g′′(4)

g′(4)
=

1− n
2

(I)
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For any d > d0(k), we may choose the scaling s > 0 so that

f ′′d,s(4) = 2g′′(4) = 2(2− n)(1− n)4−n (II)

Which immediately implies the first condition of (ii)’. The second condition can be verified
by computing using f ′′d,s(4) + kf ′d,s(4) > 0 and the above (I) and (II):

f ′d,s(4) > −
f ′′d,s(4)

k
= −2g′′(4)

k
≥ 2g′′(4)g′(4)

2g′′(4)
= g′(4)

The third condition can simply be fulfilled by taking d large enough (g is bounded below on
the interval ]1, 5[), which is compatible with all previous choices. This proves the claim.

We call f0 some function fd,s which fulfils (i)’ and (ii)’. The next steps consists in recovering
from f0 and g a function h1 fulfilling (i)-(iii). For this, we will define yet another smooth
auxiliary function k1 > 0 that interpolates between g′′ on [1, 3] and f ′′0 on [4,∞) in a suitable
sense, we mean by this that k1 meets the following conditions:

a) k1 = g′′ on [1, 3],

b) k1 = f ′′0 on [4,∞),

c) k1 ≥ g′′ on [3, 4]

This is possible by property ii)’ of f0. We define h1 to be the following integral (with integra-
tion constants = 0).

h1(z) =

∫ z

1

[(∫ y

1
k1(x)dx

)
+ g′(1)

]
dy + g(1)

One can easily see that h1 = g on [1, 3] and h1 = f0 on [4,∞), thus i) and ii) are satisfied
(recall that f0 = 0 on [5,∞)). The condition iii) is obviously satisfied on [1, 3] since h1 = g
on this interval and g is associated to an harmonic function. For the interval [4,∞), this
property is true by i)’ combined with the fact that f ′ < 0. On ]3, 4[ we use the fact that
h′′1 = k1 ≥ g′′ which yields h′1 ≥ g′ and combine it with g′′(t) + n−1

t g′(t) = 0 to get the
corresponding inequality. This shows the Proposition for the special case where f = 0 as one
can easily check that taking H1 to be the rotationally symmetric function associated to h1

yields a function satisfying 1)-3). We will now deduce the general case.

Choose ψ ∈ C∞(Rn, [0, 1]) to be cut-off function so that ψ = 1 on the ball B3.4 and = 0
outside of the slightly larger B3.6. We are now in position to define the desired function:

H = h1 + ψf

Properties 2) and 3) obviously remain true under this modification of h1. Thus we only
need to check that 1) holds, for which we need some control over ∆(ψf). Here we use the
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hypothesis |f | < δ. Namely, since f is harmonic, its higher partial derivatives are bounded
by the supremum of f times a constant (depending on dimension, the order of the partial
derivatives as well as the radius of the ball which is considered)1. Therefore, we can compute:

|∆(ψf)| ≤ |ψ∆f |+ |f∆ψ|+ 2|〈∇f,∇ψ〉|

≤ sup
B3.6\B3.4

(|f |)|∆ψ|+ 2c(1, n, d) sup
B3.6\B3.4

(|f |)
√∑

i

∂ψ

∂xi

Since we consider all of this on the annulus B3.6 \ B3.4, the partial derivatives of ψ as well
as the constant c(|α|, n, d) are bounded. Thus for sufficiently small δ, we have |∆(ψf)| < ε
for all ε < 0. Since h1 was constructed so that ∆H1 ≥ c > 0 on some annulus containing
B3.6 \B3.4, condition 1) will hold for a small enough ε.

�

Proof of 8.3.6: Recall the setup from 8.2: M \K is equipped with the metric g = h
4

n−2 g0,
where g0 is the Euclidean metric given by the chart coming from asymptotic flatness. Fur-
thermore, h is harmonic and has the following expansion:

h(x) = 1 +
E(X, g)

4(n− 1)‖x‖n−2
+ f

For some f vanishing of order n− 1, i.e. sup(|f |‖x‖n−1) = c0 <∞ for some constant c0. The
idea is to show, that f can be taken arbitrarily small |f | < δ in order to be able to apply
8.3.7. This can be done by the following rescaling argument. For some λ > 0, define:

sλ : Rn −→ Rn

x 7−→ λx

For which s∗λ(g0) = λ2g0. Consider the rescaled metric

gλ =
1

λ2
s∗λg = h

4
n−2

λ g0

where the corresponding hλ can easily be seen to be given by:

hλ(x) = s∗λh(x) = h(λx)

1See [GT] section 2.7.: If f is harmonic on some Ω which has a compact subset Ω′ ⊂ Ω, then higher
partial derivative of multi-index α is controlled by (where |α| denotes the length of the multi-index α and
d = dist(Ω′, ∂Ω)):

sup
Ω′
|∂αf | ≤

(
n|α|

dist(Ω′, ∂Ω)

)|α|
sup

Ω
|f | = c(|α|, n, d)sup

Ω
|f |
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By the expansion of h, we have:

hλ(x) = 1 +
E

4(n− 1)λn−2‖x‖n−2
+ f(λx)

= 1 +
Eλ

4(n− 1)‖x‖n−2
+ fλ(x)

Where we have thus determined the behaviour of the energy and f under rescalings: fλ =
f ◦ sλ, Eλ = λ2−nE. Thus, using the asymptotic behaviour of f :

|fλ(x)|‖x‖n−1 =
|f(λx)|‖λx‖n−1

λn−1

<
c0

λn−1

Which implies, by the transformation behaviour of E, that the term fλ vanishes faster than
the energy term, i.e. for λ→∞ we have that:∣∣∣∣4(n− 1)fλ

Eλ

∣∣∣∣→ 0

and can thus be chosen arbitrarily small. By 8.3.7 applied to u(x) = 1
‖x‖n−2 + 4(n−1)

E f , we

can define a function:

ĥ = 1 +
E

4(n− 1)
H

and a metric:
ĝ = ĥ

4
n−2 g0

which can be easily seen to be isometric to the Euclidean metric outside of K ∼= B1. Further-
more, ĝ has positive scalar curvature (and strictly somewhere) by application of 8.2.4 and
by ∆H ≥ 0 (with strict inequality somewhere):

κĝ = −cnh
n−6

4 ∆h

= −4

(
n− 1

n− 2

)
h
n−6

4 ∆

(
1 +

E

4(n− 1)
H

)
= −

(
E

n− 2

)
h
n−6

4 ∆H

≥ 0

Under the assumption of negative energy, with strict inequality somewhere.

�
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Step 2:
Here, we need to assume that X is spin.
Recall that under the negative energy assumption we have constructed a non-negative scalar
curvature metric g′ on X that is Euclidean outside of some compact set K and has strictly
positive scalar curvature somewhere in K. Take now some large enough Euclidean square
that contains K and identify opposite edges in the same way as for a torus. The notion of
Euclidean square makes sense in X \K due to the fact that X is Euclidean outside of K. This
yields a manifold homeomorphic to the connected sum of X̂ (the one-point compactification
of X) and the n-torus Tn equipped with a non-negative curvature metric (that is positive
somewhere). Since X is spin and enlargeability of the torus implies enlargeability of X̂#Sn
(if one of the summands is enlargeable, the connected sum is enlargeable, see [LaMi] IV.
Theorem 5.3.), we have an enlargeable spin manifold with positive scalar curvature metrics.
This is a contradiction to 7.3.7.

�
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Appendix A

Symmetric polynomials

The purpose of this appendix is to discuss some facts about symmetric polynomials, in partic-
ular the corresponding fundamental theorem. These facts are used in Chapter 5 to construct
the Chern character. See [La] IV.6. for details on symmetric polynomials.

Let R be a commutative ring and R[x1, ..., xn] the associated ring of polynomials in the n
variables x1, ..., xn. By Sn we denote the symmetric group, i.e. the group of permutations on
n distinct elements. Sn then operates in the following manner on R[x1, ..., xn]:

Sn ×R[x1, ..., xn] −→ R[x1, ..., xn]

(π, P (x1, ..., xn)) 7−→ (πP )(x1, ..., xn) = P (xπ(1), ..., xπ(n))

Definition A.0.1. We call symmetric polynomials the elements of R[x1, ..., xn] which
are invariant under the above operation, i.e. which satisfy: πP = P ∀π ∈ Sn

Examples A.0.2. Examples for symmetric polynomials

1) Symmetric polynomials can be non-homogeneous, e.g. x1 + x2 + 1 is symmetric;

2) The elementary symmetric polynomials {σk(x1, ..., xn)}k≤n are symmetric. The poly-
nomial σk in n variables is defined as the sum of all possible terms xi1 ...xik , where all
ij differ. For n = 3 one would get for example:

σ0(x1, x2, x3) = 1

σ1(x1, x2, x3) = x1 + x2 + x3

σ2(x1, x2, x3) = x1x2 + x1x3 + x2x3

σ3(x1, x2, x3) = x1x2x3
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By the fundamental theorem of symmetric polynomials mentioned below, the elemen-
tary symmetric polynomials are in some sense the building blocks of all symmetric
polynomials;

3) The polynomials qk(x1, ..., xn) = xk1 + ...+ xkn are symmetric.

Theorem A.0.3. Fundamental theorem of symmetric polynomials
Every symmetric polynomial P (x1, ..., xn) can be uniquely written as a polynomial ex-
pression in the elementary symmetric polynomials, i.e. ∃! Q(y1, ..., yn) ∈ R[y1, ..., yn]

P (x1, ..., xn) = Q(σ1(x1, ..., xn), ..., σn(x1, ..., xn))

Example A.0.4. Newton’s identities for the qk
As mentioned above, the qk are symmetric polynomials, thus by the theorem, they can be

expressed using the elementary symmetric polynomials: ∃! sk s.th.

qk = sk(σ1, ..., σk)

The corresponding polynomials can be computed recursively by formulae called Newton’s
identities:

sk = (−1)k−1kσk +
k−1∑
i=1

(−1)k+i−1siσk−i

Which yields for the first few k:

s1 = σ1

s2 = σ1s1 − 2σ2 = σ2
1 − 2σ2

s3 = σ1s2 − σ2s1 + 3σ3 = σ3
1 − 3σ1σ2 + 3σ3
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Appendix B

The Atiyah-Bott-Shapiro
construction

The goal of this appendix is to review an alternate approach to relative K-theory that was
developed by Atiyah, Bott and Shapiro in ’63 in [ABS] which will is used in the formulation of
the Atiyah-Singer index theorem. Elements of K(X,A) will essentially be seen as equivalence
classes of sequences of vector bundles over the subspace A. We will closely follow [ABS], but
the lecture notes [Des] served as secondary reference.

B.1 Sequences of vector bundles

Definitions B.1.1. Basic definitions

1) A set of vector bundles {En, ..., E0} over a common base space X together with a
collection of homomorphisms αi : Ei → Ei−1 for i ∈ {1, ..., n} belongs to the set
Cn(X,A) (for A ⊂ X) if the sequence:

0→ En|A
αn|A−→ En−1|A

αn−1|A−→ ...
α2|A−→ E1|A

α1|A−→ E0|A → 0

is exact. Write in shorthand notation E = (Ei, αi) ∈ Cn(X,A).

2) A morphism ϕ between two objects E = (Ei, αi), F = (Fi, βi) in this category is
given by a collection of bundle morphisms ϕi : Ei → Fi so that βi ◦ ϕi = ϕi−1 ◦ αi
(Isomorphisms are defined correspondingly). Equivalently the following diagram
commutes:

... Ei Ei−1 ...

... Fi Fi−1 ...

αi+1

ϕi

αi

ϕi−1

αi−1

βi+1 βi βi−1
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3) E ∈ Cn(X,A) is called elementary if it is of the form:

0→ 0→ ...→ Ej
id→ Ej−1 → ...→ 0→ 0

4) Define E⊕F = (Ei, αi)⊕ (Fi, βi) = (Ei⊕Fi, αi⊕βi) the direct sum for Cn(X,A).

5) E,F ∈ Cn(X,A) are called equivalent (denote E ∼ F ) if they are isomorphic up
to addition of elementary objects, i.e.

E ∼ F ⇔ E ⊕Q1 ⊕ ...⊕Qr ∼= F ⊕ P1 ⊕ ...⊕ Ps

for Pi, Qj ∈ Cn(X,A) elementary.

The set of equivalence classes under the relation defined in 5) is denoted by Ln(X,A). Since
one can check that the direct sum is well defined on the equivalence classes, Ln is equipped
with the structure of a semi-group. Furthermore, one has inclusions:

Cn(X,A) ↪→ Cn+1(X,A)

by adding a zero bundle at the end of the sequence. These descend to homomorphisms of the
quotients:

Ln(X,A)→ Ln+1(X,A)

Our goal will now be to show that the grading in this set of equivalence classes is irrelevant
and that they are isomorphic to the relative K-theory K(X,A), i.e. that we have:

L1(X,A) ∼= Ln(X,A) ∼= K(X,A)

B.2 Relation to K-Theory

Lemma B.2.2.
L1(X,∅) ∼= K(X,∅) ∼= K(X)

Proof: Elementary objects in C1(X,∅) are of the form 0 → Q
id→ Q → 0, therefore E ∼ F

with:
E =

(
0→ E1

∼=→ E0 → 0
)

and F =
(

0→ F1
∼=→ F0 → 0

)
if and only if there are elementary Q and P s.th.

E ⊕Q ∼= F ⊕ P ⇒ E1 ⊕Q ∼= F1 ⊕ P and E0 ⊕Q ∼= F0 ⊕ P
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Define the map:

χ1 : L1(X,∅) → K(X)(
E1

∼=→ E0

)
7→ E0 − E1

The map is well defined, since χ1 is a morphism and yields 0 when applied to elementary
objects, thus E ∼ F ⇒ χ1(E) = χ1(F ). Furthermore it is surjective, since elements of K-
Theory can always be represented as E0 − E1. To show injectivity, assume χ1(E) = 0 and
thus E0 ⊕ G ∼= E1 ⊕ G for some vector bundle G over X by definition of K(X). Therefore
E1 ⊕G→ E0 ⊕G ∼= 0→ 0 in L1(X,∅), which proves injectivity.

�

We generalize the map χ1 used in the proof above:

Definition B.2.3. A transformation of functors χn : Ln(X,A) → K(X,A) is called
Euler characteristic for Ln(X,A) if for A = ∅ the following holds:

χn(En → ...→ E0) =
n∑
i=0

(−1)iEi

One can show that the above lemma holds without the restriction A = ∅ with any Euler
characteristic χ1 as isomorphism, i.e.

χ1 : L1(X,A)
∼=→ K(X,A)

Lemma B.2.4. χ1 exists and is unique.

Proof: Uniqueness
Let χ′1 be a second Euler characteristic for L1. Define:

ϑ = χ′1 ◦ χ−1
1 : K(X,A)→ K(X,A)

For A = ∅, we have ϑ = id by the definition of the Euler characteristic. The general case can
be reduced to this by considering the following diagram:

K(X,A) = K̃(X/A) K(X/A)

K(X,A) = K̃(X/A) K(X/A)

ϑ ϑ=id
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The canonical horizontal maps are injective and the right vertical map is the identity by what
preceded. Thus the left one is as well.

�

Proof: Existence
We will explicitly construct χ1 to show its existence. Given an element in L1(X,A) it can
be represented by E1

α→ E0. A bundle over the new base space Y = X0 ∪A X1 (where X0

and X1 are disjoint copies of X) is given by a glueing construction: We think of the vector
bundles E0 and E1 as E0 → X0 and E1 → X1 respectively. To view them as a bundle over
Y , identify them over A by the map α, i.e.

α|A : E1|A
∼=→ E0|A

This yields a vector bundle that we will denote by [E1, α, E0]→ Y .

Next, we will look at the situation in K-Theory. Since X0/A ≈ Y/X1, the inclusion map
(X0, A) ↪→ (Y,X1) induces an isomorphism K(Y,X1)→ K(X0, A). Furthermore, since there
are natural retractions πi : Y → Xi whose induced maps split the short exact sequence of the
pair (Y,Xi), K(Y ) can be viewed as direct sum K(Y ) = K(Y,Xi)⊕K(Xi). Define χ1 now by
viewing E1

α→ E0 ∈ L1(X,A) as [E1, α, E0] ∈ K(Y ) and by applying the following sequence
of maps:

K(Y )
pr−→ K(Y,X1) ∼= K(X0, A) ∼= K(X,A)

One can show furthermore that for A = ∅ the image of this map equals E1 − E0.

�

In a next step we will show that the maps Ln → Ln+1 discussed above are isomorphisms.
Before doing so, we need an auxiliary result on the extension of monomorphisms of vector
bundles:

Lemma B.2.5. Let E and F be vector bundles over X with Y ⊂ X and f |Y : E|Y →
F |Y a monomorphism. If dimF > dimE + dimX then f can be extended to a global
monomorphism and this extension is unique up to homotopy.

Proof: The proof relies on a general extension result for fibre bundles. Namely, we consider
the fibre bundle Mon(E,F ) of monomorphisms over X. To be more precise:

Mon(E,F )|x = {Ex
i→ Fx| i injective}

One can show that the fibres of this bundle are homeomorphic to GL(n)/GL(n − m) for
n = dimF and m = dimE. This can be seen by identifying Fx = Rn and Ex = Rm, then
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Fx = imf ⊕ imf⊥, where dim(imf) = m and thus dim(imf⊥) = n −m. A homeomorphism
can be defined:

Mon(E,F )|x −→ GL(n)/GL(n−m)

i 7→ [(i(e1), ..., i(em), f1, ..., fn−m)]

where f1, ..., fn−m complete the image vectors to a basis. This map can easily be seen to
have a well-defined inverse, since GL(n −m) acts transitively on the set of bases for imf⊥.
The fibres are thus (n−m− 1)-connected1 and can be extended uniquely up to homotopy if
dimX ≤ n−m− 1 by a general result on sections of fibre bundles (see [Hu] ch. 2 Theorem
7.1). A section of Mon(E,F ) is a global monomorphism between the two vector bundles.

�

Lemma B.2.6.
Ln(X,A)

∼=−→ Ln+1(X,A)

This immediately implies the goal of this section: L1(X,A) ∼= Ln(X,A) ∼= K(X,A) by
induction on n
Proof: (During the proof, the pair (X,A) remains fixed, thus we will drop it in the notation.)
In order to be able to use the above Lemma, we restrict our attention to the subset:

C′n+1 = {E ∈ Cn+1 | dimEn
(†)
> dimEn+1 + dimX} ⊂ Cn+1

This can be done since every element in Ln+1 can be represented by an element in C′n+1, which
can be seen by adding an elementary object to E if the condition (†) isn’t met.

One can choose E ∈ C′n+1 and extend αn+1 to a monomorphism on X α′n+1 by the above
lemma. We will try to rewrite E = E′ ⊕ P , for E of length n and P an elementary sequence.
A natural candidate for P is

0→ En+1
id−→ En+1 → 0

Define E′n = cokerα′n+1 = En/imα′n+1. The rest of E′ is defined by the lower sequence of the
following diagram

0 En+1 En En−1 ... E0 0

0 E′n

α′n+1 αn

p

αn−1 α1

ρ′

1See [Hu] 7.5. combined with the fact that GL(n)/GL(n−m) ≈ Vm(Rn), where Vk(Rn) is a Stiefel variety
(again, see [Hu] 7.1.)
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Where p denotes the projection map to the quotient and ρ′ is defined by commutativity of
the diagram. Choosing a metric on En induces a splitting of the exact sequence

0→ En+1

α′n+1−→ En
p−→ E′n → 0

Which proves
E ∼= E′ ⊕ P

Let us show that this yields a well-defined map from the isomorphism classes in C′n+1 to
those in Cn. If α′′n+1 another extension of αn+1 then we know by the previous lemma that
α′′n+1 ' α′n+1 homotopic. This implies E′n

∼= E′′n by an isomorphism that makes the following
diagram commutative:

E′n En−1

E′′n

ρ′

∼=
ρ′′

Hence E′ ∼= E′′.

Moreover, we will show that the class of E′ in Ln depends only on the class of E in Ln+1 i.e.
that the map:

C′n+1 → Cn
E 7→ E′

descends to a map Ln+1 → Ln. Adding an elementary sequence to any two terms other than
En+1 and En is easily seen to have no effect on the map E 7→ E′, i.e. we have:

(E ⊕ P )′ = E′ ⊕ P

for any such elementary sequence P . Assume now that P is added to the first two terms,
which means we have to consider:

0→ En+1 ⊕ P
αn+1⊕idP−→ En ⊕ P → En−1 → ...→ 0

The first term of (E⊕P )′ will thus be (E⊕P )′n = coker(αn+1⊕ idP ) = (En⊕P )/im(αn+1⊕
idP ) = En/imαn+1. This means that we have determined

(E ⊕ P )′ = E′

for this case.
Finally, we notice that this map is inverse to the map Ln → Ln+1 defined above.
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�

One can furthermore show the following:

Lemma B.2.7. There is a unique Euler characteristic χn on Ln(X,A) s.th. the following
diagram commutes:

L1(X,A) Ln(X,A)

K(X,A)

χ1

∼=

χn

χn is in particular an isomorphism, since χ1 is.
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Appendix C

The topological degree

The concept of the degree of a map is rather common in topology, since it has a formulation
in terms of algebraic topology as well as differential topology. The degree of a map f : X → Y
measures, roughly speaking, how often X is wrapped around Y by f . In differential topology
this idea is carried out by counting preimages of regular points with multiplicity, in algebraic
topology one looks at the map induced by f on the top (co-)homology groups.
Our exposition of the subject is tailored to the use of the degree in the definition of enlarge-
ability (see 7.1.2). In that context, one wants to make sense of the degree of maps of the
type:

f : X → Sn

Where X is not necessarily compact but f is constant outside of a compact set. To acheive
this, we use cohomology with compact support. We will also discuss how this approach re-
lates to differential forms and the differential topological approach. In order to illuminate the
matter unhindered by the technical complications of the more general cases, we discuss as an
introduction the case where the two manifolds are compact. [MiSt] Appendix A and [BoTu]
served as references for our exposition. Other sources from algebraic topology include [Ha01]
2.2, [Do] IV.§4/§5 / VIII.§4. A purely differential topological approach is carried out in [Mi]
4./5.

If not explicitely stated otherwise, (co-)homology classes are taken over Z.

C.1 Introduction: The compact case

Let X be a compact, connected topological n-manifold.

Definition C.1.1. X is called orientable if Hn(X) = Z
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The choice of a generator µ ∈ Hn(X) is called an orientation. We denote an oriented
manifold by (X,µ).

See [Ha01] section 3.3. for geometric explanations on how this is related to the orientation
of vector spaces. In the context of differentiable manifolds, there are a number of different
approaches to orientation: A differentiable manifold is orientable if it can be equipped with
a differentiable structure whose transition maps have positive determinant. This approach is
discussed in most books on differential geometry (see e.g. [DCa] p.18). One can check that
this is equivalent to the existence of a non-vanishing n-form on the manifold.

Let (X,µ) and (Y, ν) be two closed, connected, oriented n-manifolds. To a continuous map
f : X → Y one can associate the degree as follows:

Definition C.1.2. The degree of f , denoted by degf , is an integer defined by the
following diagram:

Hn(X) Hn(Y )

Z Z

∼=

f∗

∼=
(degf)·

where f∗ denotes the induced map on the top homology class. This makes sense, since
any morphism Z→ Z is multiplication by an integer.

Properties C.1.3. Basic properties of the degree

1) Homotopy equivalences have degree 1 or −1;

2) The degree is multiplicative in the following sense: deg(f ◦ g) = degfdegg;

3) The degree is a homotopy invariant: f ' g ⇒ degf = degg. Interestingly, one can
show that the converse also holds in the context of maps X → Sn, where X any closed,
oriented n-manifold. In this context the degree is thus a complete homotopy invariant.
See [Hi] p.129 for details.

Proofs: Apply functoriality and homotopy invariance of Hn. �

Example C.1.4. Using complex multiplication from S1 ⊂ C, define:

fk : S1 → S1

z 7→ zk
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Then fk has degree k. This can easily be seen using the differential topological approach of
counting preimages of regular points (see C.6). The same holds for the maps w 7→ wk on S3

with multiplication induced by the inclusion S3 ⊂ H.

Application C.1.5. The Hairy ball theorem

Every smooth vector field on S2n vanishes somewhere.
Proof: Suppose X ∈ Γ(TS2n) is non-vanishing. For every point p of the sphere there is a
unique plane Πp containing p, the vector X|p and the centre of the sphere. Define a homo-
topy Ht by mapping p to p rotated by tπ in the plane Πp in the sense prescribed by Xp. Then
H0 = id and H1 = −id. Let’s show deg(id) = 1 and deg(−id) = −1, which finishes the proof
by homotopy invariance by deg.

The first statement is a direct consequence from functoriality of Hn. For the second statement,
consider that −id is an orientation reversing homotopy equivalence (S2n ⊂ R2n+1 and −id
reverses orientation in odd dimensions). For details on this, see [Do] section IV.4.

�

C.2 Orientation

Let X be a connected n-manifold. Since it is not necessarily compact, the treatment from 1.1
doesn’t apply. We will use relative homology to construct a localized version of orientation
and cohomology with compact support to define the degree. First notice that for all x ∈ X

Hi(X,X \ x) ∼= Hi(Rn,Rn \ 0)

Therefore the only non-zero homology group of (X,X \ x) is Hn(X,X \ x) ∼= Z. This allows
us to define:

Definition C.2.6. µx ∈ Hn(X,X \ x) is a local orientation at x if it is a generator of
Hn(X,X \ x) ∼= Z.

Before transferring this concept to the whole of the manifold, we need some remarks:
Let U be some neighbourhood of the point x. The natural inclusion:

ιx : (X,X \ U) ↪→ (X,X \ x)

induces a map ιx∗ on the n-th homology classes that will be of interest. For example, if U = B
a ball with respect to a coordinate chart containing x, then ιx is an isomorphism. This means
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that choosing a local orientation µx induces an orientation for every other point in B. More
precisely, define µy for y ∈ B by:

µy = (ιy∗ ◦ ι−1
x∗ )µx

We are now in a position to define orientation:

Definition C.2.7. The prescription µ : X 3 p 7→ µp ∈ Hn(M,M \ p), where µp is a local
orientation, is an orientation on M if for all p ∈ M there is a compact neighbourhood
K and a class µK ∈ Hn(M,M \K) so that ιp∗(µK) = µp.
The pair (M,µ) is called oriented manifold.

One can show that prescribing a local orientation at a point x prescribes a unique orienta-
tion in every compact neighbourhood of x, i.e. there is a unique µK ∈ Hn(M,M \K) s.th.
µK 7→ µx under the map induced by inclusion. µK is sometimes called the fundamental class
of K.

Using this homological approach, one can define the local degree of maps between two
oriented manifolds (X,µ) and (Y, ν) in the following manner: Given a continuous f : X → Y
and a compact K ⊂ Y s.th. f−1(K) ⊂ X compact as well, define degKf by the equation

f∗(µf−1(K)) = degKf · νK (♣)

This can be used to define the degree of f by putting degf = degKf for some compact K,
which can be shown to be independent of the choice of K and thus well-defined. See [Do]
VIII.4. for details. The crucial problem is that f needs to be proper for this approach to
make sense, since we need f−1(K) to be compact. This is generally not true in the context in
which we want to apply the concept of the degree (see for example 7.1.4). We will therefore
formulate similar ideas in terms of cohomology with compact support.

C.3 Cohomology with compact support

In this section, we briefly introduce cohomology with compact support and formulate the
corresponding Poincaré duality result. For details and proofs, see [MiSt] Appendix A. [BoTu]
§1 introduces the same concept on Rn in terms of de Rham cohomology.

Definitions C.3.8.

1) A cochain c ∈ Ci(X) is said to have compact support if there is a compact set
K ⊂ X s.th. c vanishes outside on Ci(X \ K) i.e. c belongs to the submodule
Ci(X,X \K),
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2) Denote by Cicpt(X) ⊂ Ci(X) the submodule formed by cochains with compact sup-
port,

3) Denote by H i
cpt(X) the cohomology groups associated to the chain complex

{Cicpt(X)}.

One can show that:
H i
cpt(X) ∼= lim

−→

(
H i(X,X \K)

)
where the direct limit is taken over all compact K ⊂ X. Using this isomorphism, we can
construct a morphism

Hn
cpt(X)→ Z

in the case of oriented (X,µ) by evaluation on the fundamental class:

α 7→ α′[µK ] = 〈α′;µK〉

where α′ ∈ Hn(X,X \K) represents α for some K by the above isomorphism. This is inde-
pendent of the choice of α′

Using this evaluation morphism one can define a bilinear pairing, called cap product:

∩ : Ci(X)× Cn(X) → Cn−i(X)

(α, ξ) 7→ α ∩ ξ

where α ∩ ξ is the unique element in Cn−i(X) so that the following holds:

〈β;α ∩ ξ〉 = 〈βα; ξ〉

The cap product can be used to construct a Poincaré duality isomorphism:

Theorem C.3.9. Poincaré duality in the compactly supported case

H i
cpt(X) −→ Hn−i(X)

α 7−→ α′ ∩ µK

(where α′ ∈ Hn(X,X \K) represents α) is an isomorphism.
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C.4 The cohomological degree

Let X be a connected, oriented n-manifold and f a continuous map:

f : X → Sn

that is constant outside of a compact subset K ⊂ X. One could replace Sn by some other
compact n-manifold, but taking the n-sphere is sufficient for our purposes. As a corollary to
C.3.9 and since X is connected, we can compute:

Hn
cpt(X) ∼= H0(X) ∼= Z

Definition C.4.10. The degree of f , denoted by degf is defined by the following
diagram:

Hn(Sn) Hn
cpt(X)

Z Z

∼=

f∗

∼=
(degf)·

We need to show that f∗ : Hn(Sn) → Hn
cpt(X) is well-defined, i.e. that for all α ∈ Hn(Sn)

the element f∗α has compact support:

Proof: Let ξ ∈ Cn(M \ K) be an element with support outside of K. We will show that
it is annihilated by f∗α. First define the canonical inclusion maps i : M \ K ↪→ M and
j : {∗} ↪→ Sn where ∗ denotes the point in Sn to which M \ K is mapped by f . In other
words, the following diagram commutes:

M Sn

M \K {∗}

f

i

f

j

We can now compute:

〈f∗α; i∗ξ〉 = 〈i∗f∗α; ξ〉
= 〈f∗j∗α; ξ〉

j∗α=0
= 0

Thus we have f∗α ∈ Hn
cpt(M).

�
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C.5 The degree in the smooth setting using differential forms

For an account of cohomology with compact support purely in the language of de Rham the-
ory and the definition of the degree in that context, see [Pet98] Appendix A.5/A.6.

For the rest of Appendix C, we will assume X to be a connected, oriented smooth n-manifold
and f : X → Sn to be a smooth map. Using the following de Rham isomorphisms (here we
take coefficients in R):

H i(Sn;R) ∼= H i
dR(Sn)

H i
cpt(X;R) ∼= H i

dR,cpt(X)

we can reformulate the definition of the topological degree in terms of differential forms. Any
given ω ∈ Ωn(Sn) defines an element in Hn

dR(Sn), since forms of the top degree are closed. The
corresponding pull-back under f is closed (for the same reason) and has compact support,
since: f |M\K is constant and thus f∗ω|M\K ≡ 0. Therefore we have [f∗ω] ∈ Hn

dR,cpt(X). This
point of view yields the following computational formula:

Proposition C.5.11. For ω ∈ Ωn(Sn) s.th.
∫
Sn ω 6= 0, the following holds:

degf =

∫
X f
∗ω∫

Sn ω

Proof: Using the above de Rham isomorphisms, consider the following commutative diagram:

Hn
dR(Sn) Hn(Sn,R) Hn

cpt(X,R) Hn
dR,cpt(X)

R R

∼=

∫
Sn ∼=

f∗

∼=

∼=

∫
X(degf)·

Therefore
∫
X f
∗ω = degf ·

∫
Sn ω

�

C.6 The differential topological degree

In this section, we will reformulate our definition of the degree in terms of notions from differ-
ential topology. In this setting, the degree is essentially viewed as a count of preimages of a
regular value weighted by whether orientation is preserved or reversed around the pair formed
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by the regular value and the preimage under consideration. This point of view is useful for
computations.

Let p ∈ Sn be a regular value and f−1({p}) ⊂ X the set of its preimages. For any x ∈ f−1({p}),
by the inverse function theorem, we can choose neighbourhoods U ⊂ Sn of p and Vx ⊂ X of
x s.th. Vx is mapped diffeomorphically onto U by f |Vx .

The local degree εx around the pair (p, x) is defined by the following diagram:

Hn
cpt(U) Hn

cpt(Vx)

Z Z

∼=

f∗

∼=
(εx)·

Where εx = ±1 depending on whether the orientation around these points is preserved or
reversed. Note how this is dual to (♣).

Proposition C.6.12. For f : X → Sn a smooth map between smooth manifolds and p a
regular value of f , we have:

degf =
∑

x∈f−1({p})

εx

independently of the choice of p.

Proof: Consider the following diagram:

Z Z

Hn(Sn) Hn
cpt(X)

Hn(U,U \ {p}) Hn(f−1(U), f−1(U \ {p}))
⊕

x∈f−1({p})
Hn(Vx, Vx \ x) ∼=

⊕
x∈f−1({p})

Z

∼=

(degf)·

∼=

∼=

f∗

f∗

⊕
εx

∼=

∑
x∈f−1({p})

�
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