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Abstract

In the early 70’s, Cheeger used an isometric action of a compact Lie group G with a
biinvariant metric b on a Riemannian manifold (M, h) to create a parametrized family
of metrics (h{ )i~ on M which shrinks the orbits G - p. According to the Gray-O’Neill
Formula applied to the orbital submersions p : (M x G, h + $b) — (M, h{’), the Cheeger
metrics don’t carry a lower sectional curvature than the respective ones on M x G. This
construction discloses new non-negatively or even positively curved manifolds.

This thesis first details the technical aspects of the Cheeger deformation following Miiter’s
approach and, as an illustration of this process, we explore the example of the rotation
of C through an S'-action. We then expose some properties of the sectional curvatures
SEChG compared to the initial one secy. In the last chapter, we discuss the Lawson-Yau
Theorem (1974) stating that a compact manifold with a non-abelian symmetry always
admits a Riemannian metric of strictly positive scalar curvature. In 2018, Cavenaghi and
Speranca found a more intuitive proof of this result by using Cheeger deformations. A
concrete formula for the scalar curvatures scalhtc developped through all the accumulated
knowledge plays a crucial role in their argumentation.
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Introduction

This thesis covers two relatively recent discoveries in Riemannian Geometry, namely the
Cheeger deformations - a detection method of some new nonnegatively curved metrics -, and
the Lawson-Yau Theorem - proving the existence of a metric of positive scalar curvature
on compact and connected manifolds on which a compact, connected and non-abelian Lie
group acts smoothly. But let’s first briefly explain the different notions of curvatures.

A manifold M always admits a Riemannian metric h, allowing convenient measures of angles
and lengths of curves on M. A goal of Riemannian Geometry is to compare the geometrical
aspects of (M, h) with the ones of the euclidean space R™ equipped with the standard
inner product heye. This can be done through the sectional curvature secy, which catches
some information about the "acceleration" of A compared to hey.. This interpretation is
illustrated by the so-called geodesics, the curves linking two points in the most direct way,
that is by minimizing the distances. By definition, their trajectory is entirely determined
by the chosen metric. Roughly speaking, on a manifold with a positively curved metric,
geodesics with slight different directions get closer, while with a negatively curved metric,
these curves would move away from each other. Riemannian manifolds of positive and
negative sectional curvature can be depicted through the sphere S? = R? endowed with the
round metric t*heye and the hyperbolic manifold (H?, hhyp), respectively.

Note that these two examples are so-called space forms, i.e. manifolds of constant sectional
curvature. However, for more general manifolds, this quantity is only a local property in
the sense that its amplitude and even its sign can differ from a point to another, but of
course in a smooth manner. In addition, the sectional curvature is defined on 2-planes
which means that it may be positive for some pairs of tangent vectors and negative for
others when the manifold dimension exceeds 2.

Some general results have been formulated on metrics of negative sectional curvature or
negative Ricci curvature, a notion derived from sec. As an example, the Cartan-Hadamard
Theorem states that the Euclidean space is the universal cover of any complete Riemannian
manifold of nonpositive sectional curvature via the exponential map [Car92, Chapter 7,
Theorem 3.1]. In this situation, the fundamental group contains all topological information.
More recently, Lohkamp proved that manifolds of dimension at least 3 always admit a
metric of negative Ricci curvature [Loh94].

Contrary to the above statements, results on positive and nonnegative sectional curvature
often need some very specific assumptions and therefore concern a limited number of
manifolds. One can ask what is the topological significance of metrics of positive sec-
tional curvature. For example, the Bonnet-Schoenberg-Myers Theorem (1935) states that
a complete Riemannian manifold with this property is automatically compact [Ber03,



Theorem 62]. However, as remarked by Yau in 1982, it is not known whether a compact
and simply connected manifold endowed with a metric of nonnegative sectional curvature
also admits a metric of positive sectional curvature [Ber03, Fact 325|. Gromoll and Meyer
also demonstrated an interesting result : if a manifold M admits a non-compact complete
and positively curved metric h, then a diffeomorphism exists between R™ and M [GW69.

One sometimes uses a well-known Riemannian manifold (M, ) to study the possible metrics
that another one, M, can admit. A convenient tool in this direction is the Gray-O’Neill
Formula (1966-67) which studies the relation between the sectional curvatures of the total
and the base spaces of a Riemannian submersion 7 : (M, h) — (M, h) :

sec(V,W) = sec(V,W) + EH[V, Ww1Y

2
fla

where V,W e X(M) are orthonormal vector fields with horizontal lifts V, W € X(M).
Hence, the base space carries not lower curvature than the total space.

Based on this formula and inspired by the Berger spheres, Cheeger developed in 1973 a
method allowing some Riemannian manifold (M, h) to - possibly - increase its sectional
curvature whenever a compact Lie group G acts isometrically on it [Che73]. The idea consists
in the construction of a new isometric G-action on the product manifold (M x G,h + %b),
where t > 0 is a variating parameter and b is a biinvariant metric. The resulting orbital
submersions!, p: (M x G,h+ 1b) — (M, ) = (M x G/@, h$), create a smooth variation
of Riemannian metrics {h{};~0 on M. This Cheeger deformation h — h$' has the interesting
property to shrink along the orbits - the vertical directions - while letting horizontal spaces
unchanged. The point of this method is to discover new nonnegatively curved metrics by
using the key property that the biinvariant metrics carry nonnegative sectional curvature.

The first part of this thesis details the Cheeger method in three chapters by following the
1987’s Phd thesis of Miiter [Mii87|. To ease understanding of quite specialized concepts,
basic tools of Riemannian Geometry and Lie groups Theory are recalled in Appendices A
and B, respectively. The notions defined in this part are mainly based on the taken notes
of the lectures [Gonl7|, [Baul6| and [Des18| given at the University of Fribourg.

Chapter 1 is dedicated to concepts related to the Gray-O’Neill Formula, as well as its
implications on the homogeneous manifolds. In Chapter 2, we explore the essential link
between the manifold at hand and the Lie group acting on it. Indeed, elements = of the
Lie algebra g generate vector fields X* on M through the G-action. These are called
the action fields on M and are tangent to the orbits. Each tangent space T,,M can also
split into a wvertical space V, - made up of the tangent vectors of the form X*(p) - and
its orthogonal component, the horizontal space H,. The relation between the metrics b
and h are highlighted by the orbit tensor S. At last, the construction of Cheeger properly
speaking only appears in Chapter 3 but a concrete example of the rotation of C through an
Sl-action illustrates all abstract notions introduced so far.

In Chapter 4, we present some of the curvature characteristics of the Cheeger metrics hY,
notably the existence of a lower bound for secpe but also some conditions for a positive
scalar curvature scalyc. Proofs of this section come from [DG19, Section 5.1]. We then
undertake a more advanced analysis on the additional term (; appearing in the computation

'The orbital submersions are the Riemannian submersions built from the quotient map of the considered
action.



of sec,c as a function of the original sectional curvature secy,. Several years after Miiter’s
work, Wolfgang Ziller wrote a concise summary of the Cheeger construction and exposed
main conclusions, as well as some further applications and specific results |Zil06].

In the sequel, we'll rather focus on the scalar curvature in the Cheeger metrics h¥, that’s
why we briefly define this notion here. The scalar curvature scal of a Riemannian manifold
(M, h) assigns a real number to each point p of M by taking some sort of averaging of the
sectional curvature over the different directions. To be precise :

scal(p) := 2 2 sec(ej, e5),

1<i<j<n
where (e1, ..., e,) is an orthonormal basis of T),M.

In a sense, scal loses some information compared to sec, but it possess some useful utilization
to measure how the volume of the ball By(r) € M centered at p and with radius r > 0
differs from the one of the euclidean unit ball B¢(1) ¢ R™ [GHLO04, Theorem 3.98] :

vol (By(r)) = 1" -vol(B*(1)) - (1 — m 1%+ o(r?)).

If we think again of the sphere S? which has positive scalar curvature, the volume of a
calotte - a portion of the sphere - has some missing "matter" compared to a disc in R?,
since it grows slower with the radius r than in the flat space. Intuitively, if we try to flatten
this shape, it would tear at some places.

The final aim of this thesis, developed in Chapter 5, is to prove the Lawson-Yau Theorem
[LY74], which states that if a compact, connected and non-abelian Lie group G acts
effectively and isometrically on a compact and connected Riemannian manifold (M, h),
then M admits a metric of positive scalar curvature.

Cavenaghi and Sperancgas’s article [CS18| gives an alternative proof of this statement
through Cheeger deformations. We follow their approach to explore a concrete formula of
the scalar curvature for the Cheeger metrics htG . Each of the three components involved in
this formula plays a central role in the proof of the Lawson-Yau Theorem to find a Cheeger
metric of positive scalar curvature. The first component can be bounded from below by a
compactness argument, while the other two diverge either if we look at singular or regular
points. Hence, for both kinds of points, there exists a t, > 0 with scalhtc (p) > 0 for all
t>t,, pe M. Again, by a compactness argument, a common lower bound exists for the
parameters t to obtain scalhtc > 0.



Chapter 1

Isometric actions on Riemannian
manifolds

This first chapter introduces some basic elements entailed in the Cheeger construction,
requiring two Riemannian manifolds related by a special submersion.

1.1 Riemannian submersions and Gray-O’Neill formula

We first consider a submersion 7 : M — M between two connected manifolds, i.e. the
following holds :

(i) m is smooth ;
(ii) its differential dmp : TﬁM — Tr(p)M is surjective Vp € M.
As a consequence, dim M > dim M.
Remark 1.1. In this thesis, we will always assume a submersion to be surjective.

Several notions are related to this map :

— Definitions 1.2 - FIBER & VERTICAL/HORIZONTAL SPACE

For p € M, the fiber at p F, := 7~ !(p) forms a submanifold of M by the Submersion
Theorem. All together the fibers form the foliation F := (Fp) /-

We now endow M with a metric iz, which allows us to break each tangent space Tﬁ]\Z/ ,
p € M, down into two components :

e the (7-)vertical space at p : V; := T F ;) = ker(dmp) ;
e the (7-)horizontal space at p: H; := V;‘ = {u? € TyM | hy(d,%) =0 Vo e Vﬁ}.

Hence,
TsM =V, @ Hp.
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and each tangent vector v € Tf,M splits into its vertical and horizontal components :
b =9 + 0’ with 9¥ € V; and 0" € H,.
This distinction forms :

o the (m-)vertical distribution : V:= (V) ;

o the (m-)horizontal distribution H := (H;),y-

M m(p) =:p

We denote by X(-) the Lie algebra of the vector fields of a manifold.

— Definition 1.3 - HORIZONTAL LIFT

Since the restriction d7r13|HA is an isomorphism for all p € M, to every X € X(M)
P
corresponds a horizontal lift X € X(M), i.e. for all pe M :

e X is horizontal in all points : X (p) € Hp s

e X and X are w-related : dﬂ’ﬁ(X(ﬁ)) = X (n(p)).

The same result exists for curves in M.

Let’s now also endow the base space M with a metric h. Then, there may exist a stronger
relation between the Riemannian manifolds (M, h) and (M, h) than a mere submersion :

— Definition 1.4 - RIEMANNIAN SUBMERSION

One calls a map 7 : (M, h) — (M, h) a Riemannian submersion if
(i) 7 : M — M is a submersion ;

(ii) the restricted differential dmy |3, is an isometry for all p e M, i.e. if we denote
by X and Y the horizontal lifts of X,Y € X(M), then :

hp(X,Y) = hayp) (X, Y).

In this case, h is called submersion metric.
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We denote by vV and V the Levi-Civita connections for (M ) fL) and (M, h), respectively.
Let’s construct two vector fields tensors on M :

— Definitions 1.5 - TENSORS RELATED TO A RIEMANNIAN SUBMERSION — ]
Let X,Y € X(M).
We define :

e the second fundamental tensor of the fibers 7T :

) T TR
TY = (VXVYV) +(vXVY”) ;

e the O’Neill tensor A :

; aNH e oY
AgY = (VXHYV) ~|—(VXHYH> :

— Proposition 1.6

Let 7 :(M,h) — (M,h) be a Riemannian submersion ;

X,V e x(M)*, where X(M)* denotes the set of horizontal vector fields on M.

Then the following identity holds :

To prove it, we first need some more basic properties :

— Lemma 1.7

We consider a Riemannian submersion 7 : (M, h) — (M, h) ;
a vertical vector field V e X(M)Y ;
some X,Y e X(M) with horizontal lifts X,Y e X(M)*.

Then :

(i) [V, X] is vertical ;

1See Definition A.15
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Proof 1.7:

Ad (i) : We know that dn(V) = 0 since V vertical.
Thus, by Naturality of Lie brackets (Proposition A.9):

s (X, V1)) = [dms(X (5)), dmp(V (5)) | = [X ((

=5
N—
~—
o
3>
e
Il
o
e

= [X,V](p) € ker(dmp) = V; Vpe M.
= [X,V]ex(M).
v
Ad (i) :
Loh(X, V) = Vi(X, V)~ h ([V,X],Y) —h (X [f/,f/]) — Vh(X,7).
=0 by‘?i) and =0 by (i) and
orthogonality orthogonality

Now, since 7 is a Riemannian submersion, we have :
WX, Y)(B) = h(X,Y)(p) Vpe M and Vp e (p).
= hW(X,Y) stays constant in vertical directions.
= LoM(X,Y)=Vh(X,Y)=0.
v

Ad (i) : We simply use the Koszul formula :

~ ~ ~

(VY. V) = X B(Y,V) +Y WV,X) —Vh(X,Y)

—— —_—— —_——
=0 by =0 by (44)
orthogonality orthogonality =0

+h ([X,f/],f/) —h ([ff,v],x) +h ([V,X],if)

v

=0 by (i) and =0 by (i) and
orthogonality orthogonality
- B([X,f/], v)
v
We compute the other equalities similarly
Ad(iv)
PN €77} B T P SEPSIIN 1. /s~y - N N
oV, V) & 5h ([X, 1, v) — 5h ([X,Y]V, V) Ve X(0)Y.

= %[X,Y]V is the vertical component of @XY.

Moreover, by definition V/X\Y s horizontal.
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Let ZeX(M);
Z e X(M)™ its horizontal lift ;

~

pe M.
Then
XAV, 2)) = d (A(Y, 2)) (X)) T2 Xh(Y, 2) (x(2)). (%)

Furthermore, by isometry and the Naturality of Lie Brackets A.9:

h(IX.71.2) () = (X, Y], 2) (x() (+%)
This leads us to :
Koszul
(T V. 2)p) T XY, 2) () + VIZ, X)) — Zh(X,V)(H)

0 (IX,71.2) ()~ b (1Y, 20, %) ()
+h (12.%.7) ()

WLE XY, 2) (7(p) + YR(Z, X) (n())
~Zh(X,Y) (x(§)) + h([X, Y], 2) (x(p))
—h ([Y, Z], X) (=(p)) + h([Z,X],Y) (x(p))

Koszul

ormula A~
P ah(vxY, Z) (v(5))
TR (VXY Z) ().
= WYY, 2)(p) = MIxY, Z)(h).
Since it holds for any Ze .’{(]\2[)”, we conclude that V/XT/ is the horizontal
component of @XY,

Claim
= @X}Af = VxY + %[X',Y]V
v
|
Proof 1.6:
Using Lemma 1.7 (iv), it is straightforward to show :
X, Y)Y = 94V —VxY
= (VY)Y +0
X and Y . . Vv A . H
horizontal (VXH Y’H) + (VXH YV )
-0
—_—
. =0
= ALY
[ |
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Using the previous identities leads to the following essential result of Riemannian Geom-
etry, which links the sectional curvatures of the two Riemannian manifolds related by a
Riemannian submersion :

— Theorem 1.8 - GRAY-O’NEILL FORMULA

Let m: (M, h) — (M,h) be a Riemannian submersion ;
k and k be the numerator maps involved in the sectional curvatures? of 2-planes
for (M, ﬁ) and (M, h), respectively ;
XY e X(M) ;
X,V e %(M ) the horizontal lifts of X and Y, respectively.

Then, o R R X )
KX AY) = k(X AY) +3h(AgY, ALY)

rop. 1. A A ~ ~ A~ 2

: <p:>16k:(X/\Y)=k:(XAY)+Z [X,Y]VHB.

In particular, for p € M and an orthonormal basis (X (p), Y(p)) of a 2-plane o in T, M, we
have :
sec(o) = sec(d),

where & := span(X(p), ?(p)) C T;M is the horizontal lift of o at pe 7~ (p).

It implies that the basis space (M, h) carries not lower curvature than the total space
(M, h). Observe then that if G := M is a compact Lie group equipped with a biinvariant
metric b := h, by Corollary B.15, (M, h) also has non-negative curvature.

Proof 1.8:
Let again V e X(M)V.
Recall the following identites from Lemma 1.7 (iii) and (iv):

h (%X,?) 5}1 ([X v1” V) : ()
W (97.7) = ;;3 (x.97".7) - #)
VeV =Xy + %[X, 71" (#)

Observe also that the horizontal lift of dm ([X, ?]H> =drm ([X, ?]) is [ﬁ], by
Naturality of Lie Brackets.

Then it suffices to compute :

A~ ~ A~ ~

B(X AY) h <R(X )Y, )

X
= B(@ YX) ( Y,X)—B(ﬁmif,f()

2See Definition A.29
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Y oh(vemy X))+ %i‘ (7,977, %) = (95757, X)
S
B %ﬁ <©Y[X’Y]V’X) 3 <©[X7Y]HY,X> —h (@PQY]VY,X)
oy

=0 by orthogonality

A (17,7577, X)

=0 by oraogonality
1
4
1. AA'HAVA 1AAAVAAV
Sh <[[X,Y] ,Y] ,X> —5h ([X,Y] X, 7] )

<

~

=0 by orthogonality

™ isometry h(

Vvay,X) — h(VyVXY,X) — h(v[X,Y]K X)
35 v vV v vV
_Zh([X7Y] 7[X7Y] )

= h(RX,Y)Y,X)— ZH[X,Y]VH2

= KX AY) = I TP

1.2 Orbital submersions

Many notions used in this section are discussed in Appendix B. We construct now a special
type of Riemannian submersion, using a Lie group G acting on a Riemannian manifold
(M, h) through pu: G x M — M.

Note 1.9. From now on, all Lie groups are assumed to be compact. Then so are all the
quotient spaces G/Gp, pe M.

— Theorem 1.10 - HOMOGENEOUS SPACE CHARACTERIZATION THEOREM ]

For any p € M, the following diffeomorphism links the orbit G - p of p € M with the
left coset space of the isotropy group G, at p :

m : GG, 5> G-p
9Gp — g-p

Proof 1.10:

See [Bre72, Corollary 1.3 p.303/, [Kaw91, Theorem 3.43] or
[Lee12, Theorem 21.18].

10
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Furthermore note that each left coset space G/G), is diffeomorphic to the corresponding
quotient set G/Gp- Theorem 1.10 entails that the orbits G - p inherit from the compactness

of G/Gp and are closed due to the Hausdorff property of M.

Characterization of orbital submersions

We equip M /G with the quotient topology, i.e. the finest topology such that the quotient

map 7: M — M J¢; is continuous :

Uc M/G open < n~Y(U) < M open.

— Proposition 1.11

Suppose G acts freely and isometrically on (M, ﬁ)
Then :

(i) The orbital space M /¢ has a smooth manifold structure ;

(ii) There exists a canonical metric h on M /¢ such that the quotient map

7 (M, k) — (M /ci» h) is a Riemannian submersion, called orbital submersion.

To prove this proposition we’ll need two results :

— Theorem 1.12 - QUOTIENT MANIFOLD THEOREM

Let G be a Lie group acting smoothly, freely and properly on a smooth manifold M.

Then the quotient space M Jc; forms a smooth manifold with a unique smooth structure

making the quotient map 7 : M — M J¢; into a submersion.

Proof 1.12: See [Lee12, Theorem 21.10).

Lemma 1.13

A smooth action of a closed subgroup of Iso(M, h) on a Riemannian manifold (M, h)
with closed orbits is proper.

Proof 1.13: See [AB15, Proposition 3.62].

Proof 1.11:
Ad (1) : Remember that a free action is effective. That’s why the homomorphism
G — Diff(M), g — pg, has a trivial kernel, where pg(p) := pu(g,p) = g-p. Since G

acts 1sometrically on (M, ﬁ) and is compact, it is isomorphic to a closed subgroup
G of Iso(M, h).

11
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By Lemma 1.13, the action is also proper. Thus, by using Theorem 1.12, we

conclude that M/G has a smooth structure and that the quotient map ©™ forms a

submersion.
v
Ad (i) : We construct a submersion metric h on M .
Let peM la ;
pent(p) =M ;
v,we T,M q.
m submersion = 30,1 € Hp horizontal lifts of v and w.
Let simply define h such that dﬂ'ﬁ‘HA becomes an isometry :
P
hp(v,w) 1= hy(0, ).

It remains to show the well-definition of h.
Claim : hy(v,w) is independent of the chosen element of w1 (p)
Proof of the claim :

Let pr,pa € 71 (p).

By definition it means that py ~ pa regarding the G-action on (M, iL) Thus,

there exists g € G with

P2 =g-P1=: ¢g(P1)-

Let 9;,1; € Ty, M fori=1,2.

W.l.o.g. (dgg), (01) = 02 and (dog), (1) = w2 by the previous statement.

Then,

~ . . ¢g isometry o . .
hp, (01,01) 7= oy (1) ((dog)p, (01), (dog)p, (1))
= hyp, (02, W2).
Claim
|

A straightforward example of orbital submersion appears in the context of homogeneous
manifolds, related to a geometric concept we will first introduce : the principal bundles.

12
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Fiber and principal bundles

The key idea behind fiber bundles consists of a smooth manifold which we can locally see
as a product of two other manifolds.

— Definitions 1.14 - FIBER BUNDLE

Let FE, B and F' be smooth manifolds ;
7w : ' — B be a smooth surjective map.

To be called a (smooth) fiber bundle the 4-tuplet (E, B, w, F') must satisfy the
local triviality condition :

For all b € B there exists an open neighborhood U, c B of b such that a
diffeomorphism ¢y, : 7=1(Up) — Uy, x F exists and for which the following
diagram is commutative :

71 Ub *>Ub><F

I

We have the following terminology :

e I/ = the total space ;
e B = the base space ;
F' = the fiber ;

e 7 = the bundle projection ;

Uy = a trivializing neighborhood ;

{(Ub, dv)}pc g = the local trivialization of the bundle ;
o 1y = (;Sb_l :Uy x F — 771 (Uy) = a bundle chart ;
o for be B, 771 ({b}) = F — the fiber over b.

If there exists a global trivialization, one speaks of a trivial fiber bundle.

— Examples 1.15

(i) PRODUCT MANIFOLD

A product manifold M7 x My is canonically a trivial fiber bundle when projected
onto Mj or My with global trivialization idjs, « pr, and that we can denote by
(Ml X M27 M17 prOjl)MQ) :

M1XM2 M1XM2

proj 1l .
proj;
My

td sy x My

13
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(il) MOBIUS STRIP

A Mobius band has local similarities with a product space but differs by its
global shape. There exist several equivalent definitions to construct it. Here is
one of them?:

Let E :=[0,1] x R on which we introduce the following equivalence relation ~ :
(07t) ~ (17 _t>'

We simply define the M&bius strip as the quotient space M := E /~

nm

M is the total space of a fiber bundle (M,S', 7, R)%.

In comparison with previous example, the "normal band" corresponding to
Mobius strip - i.e. without twist - would be simply the infinite cylinder S! x R,
which is a trivial fiber bundle. But for M, only local trivializations exist.
Therefore the Mdbius bundle is non-trivial.

Often some fiber bundles have peculiarities as to how local trivializations stick together,
using smooth actions by a Lie group :

— Definitions 1.16 - G-BUNDLE & PRINCIPAL BUNDLE

To the elements introduced for a fiber bundle (E, B, 7, F') let’s add a Lie group G,
the structure group, acting smoothly and freely from the right on the fiber F'; and
trivially from the right on the B-component of U, x F.

(E, B, 7, F) is named G-bundle if additionally for all by, by € B, there exists a smooth
map fpp, : Up, N Up, — G, called transition map, such that the following holds for
all z e 71 (Up, " Uy,) :

¢b2 (x) = ¢b1 (.CU) : fb1b2 (W(m))

Furthermore, one speaks of principal G-bundle (E, B, 7, G) if among all other
conditions the fiber F' is G, or equivalently if G acts freely and transitively on F.

3See [GHL04, Exercise 1.11]. A different and very complete description of the Mdbius bundle can be
found in [Leel2, Example 10.3].
“See [Kaw91, Example 2 p.65]

14



CHAPTER 1. ISOMETRIC ACTIONS ON RIEMANNIAN MANIFOLDS

The matching condition between local trivializations of a principal G-bundle can be
expressed in terms of bundle charts :

— Lemma 1.17 - MATCHING CONDITION EQUIVALENCE (PRINCIPAL BUNDLES)
Let’s use the notations of Definition 1.16.
We fix z € 771 (Up,) n 71 (Up,).

Let b:=mn(x)e B,
91,92 € G such that (;sz(aj) = 1/}[):1(33) = (ba gl)v L= 1)2

Then
d)bz (:L‘) = ¢b1 (I) : fb1b2 (b) (*)
Py (b, 91) = by (bs 91 - for0,(D)).- (%)
Proof 1.17:

=2 T=T<= 7wbbl (ba gl) = ¢b2 (b792) (;) wa (b7gl ’ fble (b>) v
< ¢ (@) = U (W (5,00)) 2 (0,91 Forns () = 00 (@) i (B).
[ |

We commonly use the alternative notation G — E > B for a principal G-bundle, which
suggests a G-action on . We even observe the following equivalence: a fiber bundle
(E, B,7,G) becomes principal with structure group G if and only if its fibers correspond
to the orbits of a free proper left action on E. In this case, the orbit space is simply B.

15
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Proposition 1.18 - UNDERLYING ACTION OF A PRINCIPAL BUNDLE

A principal G-bundle G — E 5 B admits an underlying free proper G-action from
the left : u: G x E — E whose orbits coincide with the fibers of the bundle.

Proof 1.18: Based on [AB15, Proposition 3.33].
Let x e E.

Define b := w(z) € B and g € G such that x = (b, g) € 71 (Uy) for a local
trivialization (Uy, 3 1).

Recall that G acts freely and properly on Uy x G from the right by
(Y, 91) - g2 := (¥, 91 - 92),

because right multiplication is trivially free and proper.

Let’s simply construct y: G x E — E as follows :
(g, 2) =10 (795" (2)) = ¢a(b,g-9)

Claim: The definition of u is independent of the bundle chart.

Consider another suitable local trivialization (Ug,wﬁ_l) and define g € G
such that x = (b, g) € 71 (Ug).

By the matching conditions required for a principal bundle, g and g are
related by right multiplication with fza(b) and then :

(b.9) = (0,3~ f5a(b)). (*)
Pl @ @) = (b
Y o (b, 9) - f5a0))
= a7 (0.5 Fu®))
(:) 1/}01 (? : (b,g))
= Yalg-v5'(2))
= ,ux,y)

Claim

The facts that G acts properly and freely on E and that the orbits coincide with

the fibers of m come directly from the definition of .
[ |

Conversely :

Theorem 1.19

Given a free proper left (or right) action p: G x M — M, the orbit space M /¢ admits
a smooth structure which gives rise to the principal G-bundle G — M 5 M /G-

16



CHAPTER 1. ISOMETRIC ACTIONS ON RIEMANNIAN MANIFOLDS

Proof 1.19: See [AB15, Theorem 3.34] for a sketch.
[ |

A special notion appears in the context of principal fiber bundle : the twisted spaces.

Twisted spaces

First, for a Lie group G, we write AG := {(g,9) € G x G} = G.

— Definition 1.20 - TWISTED SPACE

Let G — E 5 B be a principal G-bundle with underlying free proper left G-action
pu1:Gx E— FE;
F be a smooth manifold with a right G-action pg : F x G — F.

From p; and pg, we construct the diagonal action p: AG x (E x F) — E x F by :

(g, (z, £)) == (malg~ " 2), p2(f. 9))-

The orbit space of u is called the twisted space that we write :

ExqgF:={[z,f]|z€E,feF}.

— Theorem 1.21

The twisted product E xg F' admits a smooth structure and generates a G-bundle
F — E x¢ F5 B called the associated bundle with fiber F.

Proof 1.21: See [AB15, Theorem 3.51] for a sketch.

— Lemma 1.22

Let M be a smooth manifold ;
G be a Lie group, acting freely and properly on M and by right translation on
itself.

Then we obtain the following diffeomorphism :

MXGGgM.

Proof 1.22:
Consider the following map :

p o M xg G - M

[mvg] = [gil -m, 6] — gil sm.

We easily check that p is surjective, injective and smooth. Moreover, the inverse
map p~t :m > [m,e] has these same properties.
|

17



CHAPTER 1. ISOMETRIC ACTIONS ON RIEMANNIAN MANIFOLDS

Homogeneous manifolds

Recall from Definition B.9 that if a Lie group G acts transitively and by isometries on a
Riemannian manifold (M, h), we call it homogeneous. This subsection aims to construct
such a manifold and to use it to illustrate the Gray-O’Neill formula.

Let (G,b) be a Lie group together with a biinvariant metric ;
H < G be a closed subgroup acting freely and properly on G by right translation ;
m: G — G/H the canonical projection.

Remark 1.23. H is a Lie subgroup by the Closed Subgroup Theorem?.

Remark 1.24. According to Theorem 1.19, the right translation of H on G gives rise to a
principal bundle H — G 5 G/ 'H-

If we refer to Proposition 1.11, there exists a metric b on G/H making

m o (Gb) — (G,

into an orbital submersion.

We now introduce the left translation of G over G :

v o GxG — G
(91,92) = 9g1- 92

¥ induces a left action on G/ H :

v o Gx (Glgb) — (G,
(91, lg2] ) ~— lg1-92]-
— [—4

=g2H =(91-92)H

Lemma 1.25

G/H is a homogeneous G-manifold, i.e. G acts by isometries on (G/H, b).

Proof 1.25: -
The left translation v being smooth and transitive, 1 inherits these properties.

Furthermore, G — (G/H,l;) 1sometrically since ¥ is an 1sometry and ™ is a

Riemannian submersion.
[ ]

Definition 1.26 - NNORMAL HOMOGENEOUS

We call b normal homogeneous when it is not only homogeneous but it also results
from a biinvariant metric b.

®See [Leel2, Theorem 20.12]
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As mentioned after the Gray-O’Neill Formula 1.8 :

A normal homogeneous metric has non-negative curvature.

” Proposition 1.27

Proof 1.27: )
Consider the previous orbital submersion 7 : (G,b) — (G/H, b).

Let XY € X (G/H> and denote by X,Y their horizontal lift in X(G).

Then, by the Gray-O’Neill Formula 1.8:

/;(XAY) — KX AY)+3-b(AxY, AxY)
Propd B.14
w0 X YR+ X YY)
=

Suppose now that a Lie group G acts isometrically and transitively on a Riemannian
manifold (M, h), that is it acts homogeneously.

We fix a point p € M and observe that the orbit map u? : G — M, g — ¢-p, is a submersion

by Theorem 1.10 since 7 is:
7N

G/Gp = G/G, —fi G-p=M

Remark 1.28. This little example shows that any homogeneous G-manifold can be
represented through a non-unique orbital space.
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Chapter 2

Action fields

2.1 Lie exponential map

Let G be a fixed Lie group.

— Lemma 2.1
Let x e g =1T.G.

Then, there exists a unique 1-parameter subgroup v, : R — G being the integral curve
of the left-invariant vector field X € X(G)" generated by z, i.e. the following holds
for all t € R:

Vz(t) = XL ('Vx(t))a
with

Xr(g) := (dLg)e(x),

where L, : G — G, g — g - ¢ is the left translation by g € G.

Proof 2.1:

Ezxistence and uniqueness of the integral curve :

Due to the compactness of G, the left-invariant vector field X has a global

flow* : .
0 : R,+) — (Diff(G), o)
y . 0; : G — G
g — 0(tg).

Let’s recall the main property of 6 :

a9 =Xilg)  VgeG. (*)

We define
Yo (t) := 0(t,e),

1See Definition A.6
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CHAPTER 2. ACTION FIELDS

and verify for tg e R :

Yz(to) = %’tztoe(t’e) = %S: O(to + s, €)
= 4| _0(s,0(t0,)) © X, (0(t0, ¢))
= XL('Yx(tO))-

The unicity comes from the Fundamental Theorem for Autonomous ODE’s® if
we look the initial value problem in local charts of G.

Y. being a 1-parameter subgroup :

Let’s analyze the following curves for any s € R:

&L R — G and & : R
t

t — Y(s+1t) — Yz (8) vz (t)

We denote by Ly the left translation map on G by g € G.
We then obtain for allt e R :

) = Smlstn) = X(uls+n) = X(60),
and |
1) = (s) () M (L), 0 Sl
() (X)X (1,(6) (0]
= X(&(1)).

Since & and & are both integral curves for X with the same initial condition
£1(0) = &(0) = vx(s), we conclude that & = &.
[ |

This curve 7, is used to define a map linking a Lie group G with its Lie algebra g :

— Definition 2.2 - LIE EXPONENTIAL MAP
The Lie exponential map of G is defined as :

exp : g — G
r o~ (1).

— Properties 2.3 - LIE EXPONENTIAL MAP
The following holds for all X € g and for all te R :
(i) exp(tz) = 72(t) ;

(ii

(ii

)
) exp(—tx) = exp(tz) " ;

) exp(tix + tax) = exp(t1x) - exp(tex) ;

(iv) exp is a local diffeomorphism, i.e. 3 open neighborhood U of 04 € T.G = g with
e € exp(U) such that exp|y: U — exp(U) is a diffeomorphism.

2See [Leel2, Theorem D.1 (b)]
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Proof 2.3: See [AB15, Proposition 1.50].

The property (iv) is due to the smoothness of exp and the fact that the differential
(dexp)o, = idy after identification of Ty, (T.G) with T.G = g.
[ |

2.2 Action fields

Let’s come back to the context of a smooth G-action on a manifold M : p: G x M — M.
The next definition shows that each left-invariant vector field on G induces a smooth vector
field on M, coherent with the action structure by using the exponential map :

— Definitions 2.4 - ACTION FIELD & INFINITESIMAL GENERATOR

Every x € g induces a smooth vector field X* € X(M), called action field, defined at
each point p € M as follows :

X*(p) = | n(esplta).p).

We define the infinitesimal generator of p as the map assigning the action field to
every r € g :
*« g — X(M)
x —  X*

Remark 2.5. Action fields are examples of Killing vector fields for Riemannian manifolds
(M, h), as defined in Section B.5. That’s why we sometimes call it the corresponding
Killing vector field to x € g.

There exists another definition (e.g. in [Vog15]), involving orbit maps® pP. However, these
two expressions are equivalent.

Proposition 2.6

For z € g and for pe M :
X*(p) = (dp?), (2).

Proof 2.6: Adapted from [SA08, Proposition 2.10].
Let ge @G ;
reg;

Xg € X(G) the right-invariant vector field generated by x, which is defined by
XR(9) := dRy(x) for all g € G, where Ry is the right translation map by g ;
pe M.

3See Definitions B.8
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Then
(dpP), (Xr(9)) = dugy)(dRg(x),0p)

= dugy) [%Lo (exp(tz) ~g,p)]

i), M exp(tr) - g.p)

i, Mexp(t), g p)

= X*(g-p).

In particular, for g =e :

(duP), (Xr(e)) = (dpP), (z) = X*(p).

Let’s illustrate this new correspondance between vector fields in G and in M :

— Example 2.7 - ACTION FIELD

We consider the natural action p : S* x 2 — S? by rotation :

X1.(9)

— Proposition 2.8

The infinitesimal generator of p, = : g — X(M), is a Lie algebra antihomomorphism,
ie. :

*([z,y]) = [X,Y]" = = [X* Y7,
forall z,y € g.

Proof 2.8: Based on [Lee12, Theorems 20.15 and 20.18].
Let x,y € g which generate the right-invariant vector fields Xg, Yr € X(G)%;
p € M and its orbit map pf : G — M,§— g - p;
g € G and the right translation map Ry : G — G, g g-g ;
q:=g-p=puP(g) and its orbit map p?.
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@ Claim : = s a linear map.

Define the curve
v : R —
t — exp(tx),

whose initial velocity is

d d
7 (0) = —‘ exp(tx) = (dexp)go —| txr ==z
dt 1t=0 —

dt lt=0
=idg IS
Hence,
d (0)=e
X*(p) = — te) -p= (P o) (0) =" (duP)e(x).
() = G|,y () P = (17 07) (0) | 2 (dp)e(a)

Since a differential is linear, X*(p) depends linearly on z, for any p € M.
Thus * is linear.

v
@ Claim : X and X* are uP-related.
(G-9)'p = gq VjeG
o WoR,(g) - 1i(G) YieG
Hence,
X*(wP(g) = X*(0)
Prop. 2.6
BT (dp)e(x)
= (d(p? o Ry)) (x)
g
= (duP)g o (dRg)e(x)
= (dﬂp)g (XR(Q))
v

® Claim : [Xg,YR] is pP-related to [ X*,Y*].

This result comes directly from the Naturality of Lie Brackets A.9. Since
Xpr and Yg are pP-related to X* and Y™, respectively, then :

(di?)g [Xr, YR] (9) = [X*,Y*] (9 p) VgeG.
v
@ Claim : [X*)Y*] (p) = —[X,Y]*(p).
XY (p) 2 (du")e[Xr Vil (e)
P () ([X1, Vi) ()

= — = ([XL,Yz] (e)) (p)

- XY
v
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2.3 Splitting of tangent spaces and orbit tensors

Consider a smooth action p of a Lie group G on a Riemannian manifold (M, h).

In a similar way as for Riemannian submersions, we proceed to an orthogonal decomposition
of each tangent space:

— Definition 2.9 - VERTICAL AND HORIZONTAL SPACES

We split the tangent space T, M, p € M into :

e The vertical space = the tangent space of the orbit at p :
Vp =T, (G- p) ={X"(p) | z € T.G};
e The horizontal space = its orthogonal complement :

Hp:=T,MOV, ={{eT,M|h(,V,)=0}.

Consequently, for each tangent vector v € T, M there exists some v € g = T.G

and a unique £ € H, with v = X; + & . Furthermore, if p is free, z is
—_—
—V =wH

uniquely determined by v.

Remark 2.10. The dimensions of orbits and thus of their tangent spaces may vary with
p€ M. As a result, we can’t define vertical and horizontal distributions.

We now equip G with a biinvariant metric b and suppose the action p to be isometric. We
introduce a link between metrics b on G and h on M :

— Definition 2.11 - ORBIT TENSOR

We define the orbit tensor S of the action of (G,b) on (M, h) by

b(S(p)z,y) = h(X*(p),Y*(p)),

for all pe M, z,y € g, and with S(p) : g — g a self-adjoint homomorphism.

Let g, < g denote the Lie algebra of the isotropy group G, < G and m,, its orthogonal
complement in g with respect to b, for all p e M.

Remark 2.12. g, = {reg | X* = 0}.

Lemma 2.13

S(p)| :m, — m, is a self-adjoint automorphism, for all p € M.
mp
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Proof 2.13:
Letpe M.

Then b(S(p)x,y) = h(X*(p),Y*(p)) = h(X*(p),0p) = 0.
Self-adjoint: By symmetry of h.

Injectivity:  ker (S(p)|mp) = {zem,|S(p)z =04}
= {zemy [0(SP)z,y) = h(X*(p),Y*(p)) = 0Vy € g}
= {zem,| X*(p) =0,}
= MpNgp

= {Og}-

Remark 2.14. The restriction *‘m : my, — V), is an isomorphism for all p € M.We conclude
P

that each X*(p) € V), determines a unique S(p)z € m,,, for € m,, which allows us to define
the following map (also denoted by S(p)) :

— Lemma 2.15

For any p € M, the well-defined map

Sp) - V, — Vp
X*(p) — (SX)*(p):==(S(p)z) (p),

is an isomorphism.

Proof 2.15:
Linearity: Trivial since the maps S(p) : my, — m, and * : g — X(M) both are
linear.
Injectivity:  ker (S(p)) = {X*(p) € Vp | (Sz)" (p) = 0p}
= {X*(p) € Vo | ((SX)*(p),Y™(p)) = 0 Vy € mp}
h and b
et ()€ Vp [0(S(p)x, S(p)y) = 0¥y € mp}
= {X*(p) € Vp | S(p) = Og}
S(ii;en::;;mp {X*(p) € Vp | x = 0g}
= {Op} :
Surjectivity: Results from the injectivity of S(p) and the finite dimension of V.
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Chapter 3

Cheeger deformations

Throughout this chapter, let (M, h) denote a Riemannian manifold on which a compact
Lie group (G,b) equipped with a biinvariant metric acts isometrically through p. Recall
that such an action is proper and has closed orbits.

The two previous chapters presented key notions to define the so-called Cheeger construction
which transforms the initial metric h of a manifold M into new ones (htG) i shrinking
along the orbits" and enlarging the curvature as ¢t grows. We now present this process in
details.

3.1 Construction

From the action G —~ M, we define G —~ (M x G,h + %b) for all ¢ € R.( by using left
translations on G :

v Gx(MxG) — M x G
(9,(,9) — (1g(p),9-9),

where h + %b is a product metric.!

Lemma 3.1

1 is free and isometric with respect to h + %b for any t € Rog.

Proof 3.1:

Free: Trivial since the left translations g- on G are free, for all g € G.

Remember that T(, 5y(M x G) = T,M x T5G.

1See Definition A.34
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Then,

(h+ lb)( )((Ul,iﬁl) (’Ug,.%g)) = hp(vl,vz) + %bg(l‘l,xg)
1o (p) ((Aig)p(v1), (dpig)p(v2))
tby ((dLg)g(@1), (dLq)5(a2) )

‘g
+%bg(pg)( dg) p,g) (v1,71),
(dibg) (.3 (027 2)).

where the equality () holds since G acts on (M,h) by isometries and b is a
biuinvariant metric.

h
+
(R

According to Proposition 1.11, for all ¢ € Ry~ the twisted space M X oG inherits a metric thG
such that the quotient map 7w : (M x G, h + %b) — (M xa G, htG) is an orbital submersion.

Similarly to Lemma 1.22, we can prove that M xo G =~ M by the diffeomorphisms
p: (M x G)/G — M, p([p,g]) = g~! - p. By turning p into isometries, for all ¢ € Ry~o we
get new metrics htG on M, called the Cheeger metrics,

(h‘tG)p(U7 'lU) = (BtG)[p7e] (dﬁil(v)a pil(w))v
for all p e M and for all v,w e T,,M.

In the end, we have a parametrized family of orbital submersions :

(p . (M xG,h+1b) — (M,h?))
(p,9) = g ),

Now consider the centralizer of G in the isometry group Iso(M, h) 2

C(G) = Zraoguim(G) = {6 € Iso(M,h) | ¢ g0 6 = iy Vg € G} 2 Z(Iso(M, h).

Lemma 3.2
’70(6;) x G acts isometrically on (M, k), for all ¢ € Ray.

Proof 3.2:
Let t>0;
¢ € C(G);
g,9 € G;
pe M.

C(Q) gives rise to a new parametrized family of isometric actions :

0 : (C(G)xG)x (MxG,h+1b) - (MxGh+1b)
((¢.9). (p.9)) = (¢).-97").

2Since G acts on (M, h) isometrically, {ug : (M,h) — (M,h) | g€ G} is considered as a Lie subgroup
of Iso(M, h).
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Claim : (po 0)((¢,9), (p,§)) = (¢ g © p)(p, §)

(pod)((6,9), 7)) = (3-9797" ()
Pl ¢((g~§_1)~p>

pg(g=1p)
= (pougop)(p9)

Claim
Finally C(G) x G —~ (M, htG) by composition of isometries:

0 ((#,9),p) :== (dopgop)pe)

The following commutative diagram summarizes the whole situation :

1 isometric 1 isometric and

G—action eree G—action
(M,h) ———— (M x G,h + 1b)
._____1nJect1ve » orb.
‘ . ﬂi orb. subm.
e 4 subm.
M x G 7G P G
(¢ VG hE) — ey (ML)
0 isometric
(C(G)xG)—actions
where
L M —- MxG

p — (pe)

is smooth and injective.

3.2 Metric tensor C; of h{ with respect to h

We now explore the relation between the initial metric A and the Cheeger metrics h¥, t € Rxq.
This investigation requires the understanding of the vertical and horizontal spaces in
T(M x G) with respect to h + 1b for the action ¢. We’ll describe characteristics of the

points (p, e) for all p € M only, since any other point (p,g) € M x G can be studied with
¥ (9,(97" - pe)).

For pe M and x € T.G, we denote by :

e X*(p) the action field on M at p generated by z through the actionu : G x M — M ;

e H, < T, M the horizontal space at p with respect to h for . As we’ll see later, H, is
also the horizontal space at p with respect to h$, for any ¢ > 0.
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— Proposition 3.3

Let t>0;
p€ M and v e T,M;
geG;
reT.G =g.
Then :

(i) The action field generated by x on M x G is

X*(p,9) = (X*(p), Xr(9)) s

where Xpg is the right-invariant vector field on G induced by z.

The vertical space V;, 4 is thus made of vectors of this form ;

(ii) The horizontal space with respect to h + %b is determined by the vertical compo-
nents of T, M :

Hip o ={(V*(p) + & —tS(p)y) | ye g, &€ Hy},
where S(p) : T.G — T.G is the orbit tensor of h with respect to b ;
(ili) The differential of the orbital submersion p: (M x G,h+ +b) — (M, h{) is

dp(p,e)(vaw) =V - X*(p) 5

(iv) If x € T.G is such that X*(p ) vY, then the differential of p at the horizontal
vector (v,—tS(p)x) € H(p e b

dp(p.e) (v, —tS(p)z) = (Id + tS)v¥ + o™,

where SvY := (SX)*(p).

Proof 3.3: def
Ad (i): X*(p.g) = d% ¥ (exp(sz), (p,9))
0<” exp(sz),p), exp(sz) - g)

=Rg(exp(sz))

Y (x*(p), dRy(x))
= (X*(p),Xr(9)),

where (%) comes from the result (dexp)o = idr,q.

v

Ad (ii): Every tangent vector w € T,M has a vertical part Y*(p) € V, and a
h-horizontal component & € H,. That’s why an element (w,2) € Ty o (M x G)
can be written as (Y*(p) + &, 2).

Suppose now (w, z) to be (h + %b) -horizontal.
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Then, for any x*(p,e) = (x* (), Xx) € Tip,e) (M x G),

0 = (h + %b)(p,e) ((X*(p) + 572)7)(*(1)’ 6))
= W(X*(p) + & X*(p) + 1b(2,X)

=h(X*(p),x*(p))
= b(S(p)z,x) +b(§2x)

b (S(p)x + %z, X) .

By nondegeneracy of the inner product, we conclude that S(p)x + %z =0, and

thus :

(w,2) = (Y*(p) + & —tS(p)a) € AL, .

v

Ad (iii): We use the following curves defined on a commun open interval (a,b) < R
to calculate the differential of p :

e a:(a,b) > M with a(0) = p and o/ (0) = v ;

e 3: (a,b) > (M x G),s — (a(t),exp(s-x)), satisfying 3(0) = (p,e) and
B(0) = (v, z) ;

e v:(a,b) > G x M,s— (exp(—s-x),at)).

We’ll need the following differentials :
o dpep)(0,w) = w for allwe TpM ;
o diep)(y,0) =Y*(p) ;

e ()o(1) = (& eap(=s-2).0/(0)) = (=a.0).

S=

We finally calculate :

dp(p,e) (v, ) = Ic S:O(ﬂ o B)(s)

=] (ot 0 e)

=exp(—s-x)

— 4 o)

" (dae,py © dyo) (1)

= doe p) (—x,v)

= v=X*(p)
v
Ad (i) dpg (v, —tS(p)2) 0= (—£5X)*(p)
= (vv + UH) +t(SX)*(p)
= (Id+tS)vY +v™.
v
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The following family of tensors will characterize the Cheeger construction h v htG by linking

the original metric to the new ones. Note that we’ll also consider the case ¢t = 0.
— Definition 3.4 - METRIC TENSOR OF h{ WITH RESPECT TO h
Let ¢ = 0.
We define Cy : T,M — T,M by
Cyv := (Id + tS(p)) Y + o™,

forallpe M, veT,M.

— Lemma 3.5

Cy is an tnwvertible tensor field.

Proof 3.5:
Fort =0: CO = IdTM

Fort > 0: We suppose by contradiction, that (Id + tS) is not invertible and so
not injective.

= Jz e T.G — {0} such that tSx = —zx.
Then, 0 > —1b(z,z) = b(Sz,z) = h(X*, X*) > 0. 4

= Id + tS injective and thus invertible.

Let’s define h§ := h.

We now prove that the name given to Cy is well chosen :

— Theorem 3.6
Let t>=0;
peM;
v,we TpM

x =1 (UV) em, and y := x| (wv) € m,,.

We define .
f LM — H(pﬁ)
v - (0,-tS(p)T),

where 7 := #1 (17V) € my,.
Then,

(i) dppey o f = Ct_l, i.e. f(v) and f(w) are the horizontal lifts of Ct_lv and Ct_lw,
respectively ;

(i) h¥(v,w) = h(C,w).
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Proof 3.6:
Fort =0, the statements are clear. So consider the case t > 0.

Ad (1) : Direct consequence of Proposition 3.3 (iv). By the following commutative

diagram, f(v) and f(w) are the p-horizontal lifts of C; v and C; 'w, respectively :

dp(p e —1
Kt 3 f@ L} Ct: v c TpM
(pse) (v,—tS(p)x) (Id+tS)vY +v*
\ TC;I
v eT,M

M . The idea is to work with Ct_1 by using the statement (i) :
b (C Vo, C ) _ hE (dp(p.e) (f(0)), dpgpe) (f(w)))
p fen subm (4 10 (v, —tS(p)), (w, —tS(p)y))
— h(v,w) +b(S(p)z,tS(p)y)
= h(v,w) + h (X*(p), t(SY)*(p))
B(oM4(SY)¥ () =0 h (0,0 + H(SY)* (p))
= h(v,C{lw).

The invertibility of Cy leads to the desired result.
[ |

Remark 3.7. The horizontal vectors in T),M with respect to h and htG coincide, because
C} is the identity on H,, and by the second statement of Theorem 3.6. That’s why no "t"
indice is required in the notation H,.

The last theorem permits to link the orbit tensor S; of the action (G,b) on (M, h$), t =0,
with the initial one S =: Sy :

— Corollary 3.8
Let t > 0.

The orbit tensor Sy of (G,b) —~ (M, h{) satisfies
Sy = S(Id +tS)™L.

Proof 3.8:

Let z,yeT.G ;
pe M.

Then,
W (X*(p),Y*(p)) I R (CX* (), V()
= A((Id+tS)T X (p), Y*(p))
= b(?(p)([d +tS) z,y).

=:S¢(p)
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3.3 Shrinking along the orbits of (h%);~

Theorem 3.6 implies that the family of Cheeger metrics (htG)t20 forms a differential variation
of h, meaning that the following maps are smooth, for all X,Y € X(M) :

G : Rsg — C%®(M)
t  — AF(X,)Y)

This leads to the question of knowing how the Cheeger metrics htG change with ¢, which is
answered by the following result :

— Theorem 3.9
Let 0<ty =11 <tg;

peM;
v,we TM.

(i) The metrics h{’ are independent of ¢ in horizontal components, i.e. for vectors
perpendicular to the orbits :

he (UH,U}) = h(v™, w).

(ii) The Cheeger metrics decrease with ¢ in direction tangent to the orbits :

[ (0%, w)] = [ (0%, w)| = [ (07, w)].

Proof 3.9:
Ad (i):
Step @ : All eigenvalues of S(p) are positive

Let X € R be an eigenvalue of S(p) ;
x € my, an eigenvector of S(p) corresponding to X.

x # 0= X*(p) #0, since x ¢ gp.
Then,
0 < h(X*(p),X*(p)) =b(S(p)z,z) = b(Ax,x) = A\b(, x).

——
>0

= X > 0, which means that S(p) is positive definite.

Step @ : Figenspaces are orthogonal with respect to b, h and htG , respectively

Consider x1,x2 € my, eigenvectors of S(p) corresponding to the eigenvalues A € R
and Ao € R, respectively, with Ay # As.

The orbit tensor S(p) : my, — my, being self-adjoint implies that b(x1,x2) = 0. The
consequences for h and htG are :

h(XF(p), X5(p)) = b(S(p)x1, 22) = Mib(z1,22) =0,
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= B(XF(p), X5 () + th((S™1X1)*(p), X3 (p))
= 0+tb(l‘1,l‘2)
_—

This also shows that for \y = \o and b(x1,z2) =0 :

h (X3 (

p), X5(p)) = h{ (X{(p), X5(p)) = 0.

Step ® : Effect of the Cheeger deformation h$ for any vectors of Vp

Let oY :=

Ct (Uv> ,UNJ

= Ci(w") eV

z:=x+1(0Y) emy, and y :=«"1(@Y) em, ;
d:=dimV, ;
xq) an orthonormal basis of x~ 1 (V,) = m, S T.G with respect to b
with corresponding eigenvalues (A1, ...\2) ;

(a;l,...,

Ai=min{\; | i=1,...,

d}.

There exist i, 5; € R, ¢ = 1,....d such that x = Zf;l ajx; and y = 2?21 Bix; and
by linearity of the infinitesimal generator = of the action pu, X*(p) = Z?zl a; X*(p)

and Y*(p) =

S BiX(p).

It suffices to compute the initial metric :

h (vv, w)

X (p) L X (p)

if i#]

b(z,ai) =1

and the Cheeger metric :

htG (UV, w)

(v, wY)

h(C7 'Y, C oY)

o1 aiih (G X (0), € X ()

Sy il (X (), X7 (p >) + 2th (X7 (p), (SX.)*(p))
+ 20 ((SX:)*(0), (SX.)* () |

Sy il |b(S ()i )—I—th(S( )i, S(p)a;)
+ 25(S(p)?wi, S(p)as) |

S iBihi(1+ Ait)?,

hG (UV wV)

K (C7 oY, CteY)

S aBihf (O X (p), O X ()

Sy ah (X3 0). O X ()

Sy il [ R(XE (), XE (9) + th(X7F (), (SX0)* () |
Sy | b(S ()i, a:) + (S S(p)a) |

S aiBihi(1+ M),
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We finally compare :

|h (Y, w)| = ‘2?21 a; BiNi(1 + )\it)’

1+Xt

INE'

>1 J R
‘Zz‘=1 a;Bixi(1+ Nt) (1 + )\)‘

’Z?:l Oélﬁl)\l(l + )\it)z‘
’h (UV, w)‘ .

VAN

I

Ad (ii):
The idea is to express htG as a function of h for the orthonormal basis (x1, ..., x2)
to then compare hg with hg, 0 < t1 =:t < ta, for general vectors v,w € T, M.

We consider the same quantities as in step ® but with x := %! (UV) € my, and
Yy = _— (wV) eEmy.

We still have that o, B; € R are the coefficients in x = Z?zl ;T andy = Z?zl Bix;
and thus X*(p) = Zle a; X} (p) and Y*(p) = Zle BiX*(p).

Define k; := ﬂizg € (0,1) fori=1,....d, and k := max{k; | i = 1,...,d}. For

1 # j, we already know that htG(XZ-”‘(p),X]’-“(p)) = 0. And fori=j:
he (X7 (p), X7 (p) = h(CX}(p), X} (p))
= b((Id+tS(p))~'wi, S(p)x:i)
= ob(@i S(p)zi)
= (X (), X ().

Then,
RE@Yw)| = | ansih (X 0), X))
=[S ke (X7 (), X7 0)|

1+ Mt
d 1
= ‘Zi=1 Z
14+ M\to
—_—

aBih(XF (p), X7 ()

SR ‘ZL @iBihf (X7 (p). Xz‘*(p))‘
"G (0¥, wY)).
[ ]

The last result shows that Cheeger deformations preserve the length of vectors perpendicular
to the orbits while shrinking the lengths of tangent ones. The following section illustrates
this notion by a concrete example.
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3.4 Example: S' -~ C

This example is inspired by the work of Lawrence Mouillé, with a clear explanation in
[Moul7a| but with other calculations in [Moul7b]. We will use the polar coordinates (r,6)
to describes the complex elements.

Consider the circle (S, ) acting on the complex plane (C, -) by multiplication, representing
rotation about the origin O :

u o S'xC — C
(eid’,rew) s rel@th)

The following illustration shows the orbits, which are the origin 0 and the concentric circles
centered at 0O :

Think of the associated vector fields related to polar coordinates (r, ) : a‘i and %.

Let’s denote by h the metric on the complex plane C given by the euclidean scalar
product, i.e. the real part of the hermitian scalar product :

h(ri1e, reei??) = Re(rlrgeiwl*e?)) :
b the induced metric from h on S' < C, which is biinvariant ;

hy 1, t = 0, the metrics on C resulting from the Cheeger construction.

Theorem 3.9 tells us that in radial directions, the vectors’s lenght is preserved and thus
H%(p) I pot =1, for any ¢ > 0 and for all complex point p € C. On the contrary, the vectors
t

tangents to the orbits will shrink more and more. Let’s calculate it accurately by following
the Cheeger construction.

According to Lemma 3.1, (S',b) acts on ((C x S h + %b) freely, by isometries and with
closed orbits, for all t € Rg:

v o Stx(CxSYH - C xSt
(ewl’ (rei, 6i¢2)) > (reil91+0) gilér+02)),
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1) generates an orbital submersion :

p : (CxSLh+1) — (Cn)
(T€i976i¢> s rei0—9)

For any given ¢ > 0, the computation of the induced metric h ' requires to know the vertical
spaces V, < T,,C for the initial action p, the horizontal spaces pr = Tp1)(M x G) for 1,
and also the differential of p at (p, 1), for all p € C.

Let t>0;
p:=re?eC.

Vertical space V, € T,C = C

(i) Lie algebra of S*

We may observe it directly from the drawing of S on the complex plane :

St 1151

—_

=5l =TS =R c C.

Let z := i\ € s! fixed for the next steps.

(ii) Exponential map on S*

The integral curve v, : R — S1 of the left invariant vector field Xy € %(Sl)L

generated by x is
iAS

Then,

d

i (ewp(s:n), rew) =7

X*( rew)— d .

_ ,,,,ei(5>\+9) — i)\rei(0+0) — Z')\Teie
ds

s=0

s=0

Hence,

V, = {ixre? | XeR}|.

As a direct consequence,

Hp =Vy = {xre? | XeR}|.
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Differential dp, 1)

Let t>0;
(v,2) := (v,iX) € T(,1)(C x ST) = T,C x TS

(i) Method 1 : use Proposition 3.3 (iii)

‘dp(nl)(v, x)=v—X*p)=v— i\ret?

(ii) Method 2

Consider the following curve :
v : R — ((C % 51)
s (rei<ﬁs+0) , eiAs) )
Then,
dp(p’l)(v,x) = (PO’Y)I (0) = <ir ( v )\> ei(ir:ws+9_>‘s)>

.7.9 — =V — 'l’)\relg.
iret

s=0

Horizontal space ’pr’l) with respect to p: (C x ST, h + $b) — (C, hS') at (p,1)

(i) Orbit tensor S

Then, since the metric b is induced by h,

h(S(p)z,y) = b(S(p)z,y) = h(X*(p), Y*(p)) = h(are”, yre’) = |re”|} - h(z,y).

=r2

Hence,

S(p) = S(re??) = r2|.

We simply use Proposition 3.3 (ii) :

pr,l) = {(iMre? + Agre?, —iditr?) | Ay, A € R}

To determine H%(p)“hy at any point p € M, it suffices to focus on the points r € R-q since
t

this norm stays constant on the orbits [r]. So let fix r € R~g. We now compute in two
steps the length of a%(r) = ir € T,C = C in the Cheeger metrics hfl.

(i) Horizontal lift (v,2) := (iAi7 + Aor, —iMitr?) € M, | of ir with respect to p

The coefficients A1, Ao € R should satisfy

dp(p1) (v, ) = iAir + Agr + iAitr® = ir

M = e
(:’{ Ay= 0

Therefore, the horizontal lift of ir is (14::1”2 ,— 1l+t;i2> € ,Hfr,l)'
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1,. .
IG5 = ki (irir)
! p orb.

subm. (h + %b) ((v,2), (v,2))
. . . 2 . 2
Wi mi5e) + 1015 — i)
r? + 1. 3%
(1+tr2)2 "t (1+tr2)2

r2

1+tr2

Hence,

0
HE(T)Hhtsl = \/%7 :

As a conclusion, the Cheeger process is a continuous transformation of the initial metric
h = hg " which shrinks vectors tangent to the orbits :

time |G st = 7= 18], and Tmpo |00 =0
We visualize the initial Riemannian manifold (C, k) as an imbedding in R which takes up

the (x,y)-plane. As for the transformed manifolds <C, hfl>, they bend upwards since the
squeezed orbits are forced to get closer to the z-axis :

We now aim to calculate the sectional curvature sec,s1 of C at p € C with respect to the
t

Cheeger metrics (hts 1) The strategy consists in the use of the Gray-O’Neill formula on

t>0" 5
the orthonormal basis (a—ar(p) ﬂ) of T,,C.

eI
t

We will make computations with Levi-Civita connection more convenient by working with
partial derivative vector fields on S' and C.

Let fix again ¢ >0
p:=re?eC.
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Orthonormal basis of T{;, 1)(C x S 1y with respect to h + %b composed of the horizontal lifts

of our basis vectors of T,C

(i) Generators of H{

pr,l) = {(ereze + Agret? , —IAtr ) | A1, A2 € R} is a two-dimensional vector sub-

space of T{;, 1)(C x S1), generated by 8/\,73 = (%(p), 0) and é’p (60 (p), —tr? aa(z)(l))
where ¢ is the angular coordinate in S*.

= pr?l) = spanp ((’7‘23,6%)

(ii) Horizontal lifts of - 5-(p) and

From definition of p, we deduce easﬂy its differential at (p,1) for partial derivatives

0 0 0 .
0 20 and 2 °
o) (£(0),0) = &)
dpp) (5(0),0) = @)
dpp1y (0, 5(1)) = %)
We search the coefficients a5, a5, S5, 85 € R such that
@ G P P
dppy(ag o +azd) = &)
dpoon) (B O +5A Fy = _@®
Pl \Por %0,
0 14+ tr2) 2 - 9
aap ar(p) 0( +ir )ag(p) = o (p)
=
By &)+ 85 1L+ 50 = YHE50)
amp = 1
aég =0
=
Pz =0
. = 1
bz = wATe
~ 0
P D i 25 (P) becti
= 0r and m& are the horizontal lifts of £-(p) and ”%(”)”hfl at (p, 1), respectively,

and form an orthonormal basis of T, 1)(C x S 1), since p is a Riemannian submersion.

At this step, the Gray-O’Neill Formula 1.8 leads to :

_ 0 ae(p)
sec, 1 (1,C = sec, g1 A
hf(p ) h ( ()’” (P)H 51
hy
D 1 ap 3 ||| Ap Y v||®
- Sec(h""%b) (ar’ rv/14+tr? 59> t1 [ar’ rv/1+tr? 9:| halb (*)
T
C is flat ~ ~V]]2
w.I.t h 3 ap ap
4r2(1+tr2) Yo L
htLo.
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Lie Bracket term [(%3, é\g]

The following formula permits to compute [8%3 , 85] by using components of d7 and @) in

the basis B = ((£(p),0), (),0), (0, §(1))) of T1)(C x ) = T o) R? = R

=10 g=11
0 B 42 5

(i) Coordinate formula for the Lie Bracket?

Let X,Y € X(M) for a smooth manifold M ;
n:=dim M ;
(2%)i=1, .. some local smooth coordinates for M.

X,Y can be expressed in coordinates in the local charts :
n n
0 0

i=1 i=j

Then the Lie Bracket [X, Y] has the following coordinate expression :

N SV A
Y] = Z <)\Z ozt M 61:") oxd’

ij=1

We directly make the computation at the point (p,1) :

0

5 ] _ (o o1 O )
[ar,a(,] ?(EtTQ) ,3 (o, 2r 551 )

ar

~ ~7V
Projection [0?, é’g] on the vertical space V, 1)

dim V, 1) = dim T}, 1)(C x S1) — dim /anl) = 3 — 2 = 1 which means that a vector
v =: (v1,v2) =: (a,,« %(p) + ag a%(p),ﬁ%(l)) € T(p1)(C x S') generates Vi, 1y. Two

conditions determine v :

h+1b)(dh,v) = 0

{(h+%b)(8}’,u) -0
(

(p),'Ul +%b(0,’l}2) =0
(p),v1) + $b(—tr? (1), v2)

P
Il
(@]

3See [Leel2, Theorem 8.26]
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( 0 0 0 0
arh( 500 5:0)) + a0 h( 5.0 750) =0
<4 N N o
arh(350): 3:0)) +ash(550), 550)) = Br2b( 550 35(0) = 0
) =0 ’ ) 2 -1 .
@{ o = 0
ag = f.

We can thus define v := (a%(p), %(1)) and conclude that

Vip,1) = spang(v) = spang (((je(p), ;(Z)(l)>) .

5. (s 10) (23] )

= 5 v
2,

h(O,%(P))+%b(f2tr%(1),%(1)> U
= h(%(PL%(p))+%b<%(1),%(1)> (689(19)7 a‘l(l))

Hence,

28] - s (e S m)|

We continue the sectional curvature computation of the two-plane 7),C in the Cheeger

. 1
metric by

*) 3
5€Chs! (T;€) = 472(1 + tr?)

4]

2 3 4122 ( 2, 1)
= T —_
peto AL+ 02) (14 r2)? t

Finally,

3t

Sechfl (Tp(C) = m .

Depending on t > 0, the Cheeger sectional curvature :

e tends to the original one when ¢ gets closer to 0 : limy_,q S€c, g1 (Tp(C) =0=secqy (Tp(C) ;
t

e increases endlessly as ¢ grows at the origin 0 € C : limy—, 1o sec, 51 (Tp(C) = +00.
t
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Some properties of Cheeger
deformations

4.1 Cheeger deformation through a Riemannian submersion

A Cheeger construction h vt hS on a Riemannian manifold (M, h) can be transmitted to a
Riemannian submersed manifold (M, h), h e h$, while preserving the isometric relation

between (M, h) and (M, h) :

— Theorem 4.1

Let m: (M, h)— (M,h) be a Riemannian submersion
G be a compact Lie group acting isometrically on (M , ﬁ) through a smooth left
action i : G x M — M which preserves the fibers,
ie. forallpe M, ge G if pr1,p2 € 7 1(p) then 7 (fi(g,p1)) = 7 (fi(g,P2)) ;
b be a biinvariant metric on G ;
h vt h& be the Cheeger construction induced by (G,b) on (M, h).

Then :
(i) G acts canonically and isometrically, on (M, h) ;

(ii) With the Cheeger construction h vt h{ resulting from (G,b) —~ (M, h),

7 (M,h$) — (M, h§) remains a Riemannian submersion for any ¢ € Rx.

We first require an intermediate result :

— Proposition 4.2

Let f: (My, hy) — (My, hy) and f : (My, hi) — (My, hy) be Riemannian submersions ;

T e (Ml, le) — (M7, h1) be a Riemannian submersion preserving the fibers, i.e.
if p1,G1 € My satisfy f(p1) = f(q), then f(m1(p1)) = f(m1(G1)).
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Then 7 induces a Riemannian submersion mo : (MQ, iLQ) — (Ma, hg) such that the
following diagramm commutes :

(My, h1) —— (My, hy)

Proof 4.2:
Let ]52 € Mz N
pref )M
1 € ker ((dﬂ'l)ﬁl) - Tf)lMl-
We simply construct m by mo(p2) := f(m1(p1)).

Ty 18 ©
e well-defined since w preserves the fibers ;

e a submersion since it is formulated through a composition of submersions.

Concerning the wi-vertical vector &1, we observe that

dmy(df(21)) = df (dm1(21)) = Ony(pa)-
=0z (p1)

= df(#1) is a my-vertical vector in Ty, Ms.

Let’s study mo-horizontal vectors 52, Mo € ker(dm)l c TﬁQMQ and their f—horizontal
lift &1, € ker(df)*: < T, My :

o fl and 11 are 71-horizontal : Bl(él,il) = hy (ég,df(il)) 0 R

e dmy (51) and dmy (1) are f-horizontal : considery; € ker (dfm(ﬁl)) < Tryp)yMa-
Then, hy(dmy(61),y1) = he((df o dm1)(&), df (y1) ) = 0.
~—

=0y (p2)
Hence, R
o f Riem. o
ho(fayip) S ha(ér,i)
w1 Riem. .
Sy (dr(&), dr (i)
f Riem.

S o ((df o dm)(€), (df o m) ()
= ha ((dma Odf)(él)v(d@odf)(ﬁl))

= ho (dwz(éz),dm(ﬁ?))'

We proved then that dmo is a linear isometry on the horizontal spaces, which means
that  is Riemannian submersion.
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Proof 4.1:

Ad (1) : Using the fiber preservation property, we define

uw o GxM — M
(g.p) — =(i(g.9)),

where p e M is any point of the fiber 7 1(p).
We verify easily that p is a well-define smooth action.

Let ge @G ;
peM ;
penip)c M ;
v,w e T,M ;
b, € Hp = ker(dmp)t < TpM.

Since ﬂ‘?—b 18 an isometry, its differential sends w-horizontal vectors on mw-horizontal
P

vectors, which implies that (dfig),(0) € Hp,(p)- Therefore (diig);(0) is the hori-

zontal lift of (dpg)p(v) at p by chain rule and unicity of horizontal lift. The same

holds for w instead of v.

Hence,

= g (), ). (disg), ().

which proves that G —~ (M, h) isometrically.

Ad (ii) : (G,b) generates a Cheeger deformation (h{'),_, on (M, h).

t=0

Since m X idg, p and p are Riemannian submersions and that ™ x idg preserves
the fibers, we directly use Proposition 4.2 to conclude that the following diagram
holds for any t € Rsg -

TXidg

(M x Gyh+ 1b) ——25 (M x G, h+ 1b)

L I
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4.2 Key features concerning sectional and scalar curvatures

For the rest of this chapter, we consider the same isometric action (G,b) —~ (M, h) and
the associated Cheeger deformation (M, htG)t>0 as in Chapter 3. We also use the following
notations :

® secy, secy, secy, 1, and secy,a for the sectional curvatures of the Riemannian manifolds
t t

(M, h), (G,b), (M x G,h+ %b) and (M, h§), respectively ;
o kp,kp, Ky, 1 and khf for the numerator term of their sectional curvature!, respectively ;
o Ry, Ry, Ry, +1p and RhtG for their curvature tensor, respectively.
The three following results can be found in [DG19, Propositions 5.1 to 5.3].

The sectional curvature of (h$)sg is non-decreasing, which allows lower bounds on seCpG

— Proposition 4.3 - LOWER BOUND FOR sec),c

Let pe M ;
v,we T,M
T = *_I(UV) em, and y := *_l(wv) € m,,.

Then :
(i) There exists a map « : R>¢ — (0, 1] such that the following holds for all ¢t > 0 :
SeCyG (Cflv, C’;lw) > a(t) - secp(v,w) ;
(ii) secp, =20 = secpe > 0, and sec, >0 = secpe >0 ;
(iii) If [S(p)z, S(p)y] # 0, we obtain even that

lim sec,¢ (C7 v, C7 w) = +o0.
t—+00 h ( t Tt )

Proof 4.3:
Ad(i): The case t = 0 being clear, we suppose t > 0.

Recall from Theorem 3.6 (i) that the p-horizontal lift of C; 'v (respectively C;  w)
at (p,e) € M x G is (v, —tS(p)x) (respectively (w, —tS(p)y)). Based on this, we
deduce that

span (gv, —tS(p)iﬁz, SZU, —tS(p)yz) ;
=:f(v) =:f(w)

s the p-horizontal lift of the plane span (Ct_lv, C’t_lfw).

1See Definition A.29
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CHAPTER 4. SOME PROPERTIES OF CHEEGER DEFORMATIONS

We define two maps a, B : Rsg — Rsqg by -

N 2N A
) = sz,
and
I(=tS@)x) A (-5,
B®) =~

h+do
The denominator is the sum of the two numerators :
[£ @) A @)y 1y = [0 A wli + [(=tS@)2) A (<tSP))IL,

Hence : 0 < af(t) <1, 0 < f(t) and tlirroloﬂ(t) = 1.

Let’s then compute the sectional curvature of the horizontal lift plane, with the
idea to use the Gray-O’Neill formula later :

def (ht£0) (B 1, (f(0).f (W) f (w),f ()
secrepp (0. Sw) = ( 700} T2 )

ht+b

Prop. A.35 h(Rp (v,w)w,v)
N If (W)~ f(w)]

h+ip
Lo(Ry, (—tS(p)2.~tS(p)y)~tS (p)y. 1S (p)z)

1f@)Af (w3

h++b

JvAwl? - secr (v,w)
FOLSICOIN

(~tS(E)a) A (~tSEW)13, - secy, (~tS(p)a.~tSp(w))
[T T

h+do

I
+

= a(t) - secp(v,w) + B(t) - SBC%b( — tS(p)z, —tS(p)y)

Femma 430 (1) - see (v, w) + B(t) - t - secy (S(p). S(p)y),

where we also use in the last equality that

span( — tS(p)z, —tS(p)y) = span(S(p)z, S(p)y).

Finally, by Gray-O’Neill formula and since (G,b) carries a non-negative sectional
curvature? :

secy6 (Citv, O w) = sech+%b(f(v),f(w)) > a(t) - secy (v, w).

Ad(i) : Direct consequence of the last equation (i), since Cy is surjective.

v

2See Corollary B.15
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Ad(iii): [S(p)z, S()y] # 0 = ||[S(p)z, S()y]|2 = 0.

lim -8t -t-”—
= e o0 ||s@ersmyl]

= tlirf Secye (Ct_lv, C’t_lw) = 400, since a(t) - secp(v,w) stays bounded.
—+00

v
[ |

We obtain even some information on the scalar curvatures® of the Cheeger metrics (htG)t20
given specific properties of (M, h):

— Proposition 4.4 - SOME CONDITIONS FOR THE POSITIVITY OF scal;c

We can easily identify situations for which (M, h$) have strictly positive scalar curva-
ture:

(i) If secp, = 0 and scal, > 0, then Scalhtc: >0forallt>0;

(ii) If sec, = 0 and Ype M Jz,y € T.G = g such that [S(p)z, S(p)y] # 0,
then scalyc > 0 for all t > 0 ;
(iii) Let K be a compact subset of M.

If Vp e K 3,y € g such that [S(p)z, S(p)y] # 0,
then 3ty > 0 with the property that scalhtc (p) >0, forall pe K, t > t.

Proof 4.4:
Let t>0;
peM ;

(€1, ...,en) be an h-orthonormal basis of T,M .
Ad(i) : It implies that

scalp(p) = 2 Z secy (e, e5) > 0.

1<i<j<n

Therefore there exists a 2-plane span(ex,e;) < TpM, k # 1, with secp(ek,e;) > 0,
and by Proposition 4.3 (i) :

1 1 a(t)>0
SeCHG (Ci ler, Cler) = af(t) - sech (e, e) >

We finally construct a hS-orthonormal basis (€1, ...,é,) of T,M by completing

-1 -1
(€1, €x) = ( G e G @ ) Since, by Proposition 4.3 (ii), secp, =0 :

e e
HCt k htG Cy e htG

scalye (p) = 2 Z secyc (€5, €5) > 0.

1<i<j<n

3See Definition A.39
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Ad(ii) : We denote by x,y € T.G vectors such that [S(p)x, S’(p)y] # 0.
In the last proof, we calculated for v := X*(p), w:=Y™*(p) :

o [LS@)z, SE)lll,

1
S€CyG (Cy 1, G w) = alt) - seep(v,w)+~ - B(t) ¢ >0.

4 2
— [[Sw)z A S)ll, —5~
>0 0
>
. . C;lv C;lw .
We proceed as in the first case by completing —L T to obtain
| Ct thtG | Ct thtG

an orthonormal basis (€1, ...,€,) of T,M and compute

scalh?(p) =2 Z sechtc(éi,éj) > 0.
1<i<j<sn

v

Ad(iii) : For all p € M, define k(p) := min {secp(v,w) | v,w e T,M}, which
exists since T,M has finite dimension.

The compactness of K allows us to find a minimal k among all p € K, which
means that
secy, = Kk on K.

If k > 0, the statement follows directly from the definition of scalar curvature. So
assume Kk < 0.

For a given p € K, consider x,y € g with [S(p)z, S(p)y] # 0. By Proposition 4.3,
there exists tg € R such that

n—1
secg (C’t_lX*(p),Ct_lw*(p)) > ( 2 i) - (=K) >0,
i=1

for all t > tf.

Let’s fit t > 0. We can easily assume that ey := C; ' X*(p) and eg := C; Y *(p)
are htG—orthonormal to each other, since the sectional curvature only depends on
the generated 2-plane. We complete (e1,e2) by an orthonormal basis (e1, ..., e,) of
T,M and obtain :

scalpe(p) = 2X1cicjen S€Cng (€ir€;)
> 2 ((Z?_f i) - (=) + X 1<i<i<n Fé)
(6,5)#(1,2)
> 0

By compactness of K, we can define a lower bound to := minyeg th such that the
statement holds for all t > tg.

v
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4.3 secyc as a function of secy

In the proof of Proposition 4.3 (i), we partially calculated the numerator th of the sectional
curvature of the Cheeger metric secye with respect to the initial one kj,. Let’s finish this
calculation and then examine more accurately the additional term (; observed in the
Gray-O’Neill Formula. We use the same notation :

Let t>0;

peM;

v, w € T, M generating a 2-plane ;

x =1 (Q}V) em,, and y:= *"! (wv) em,.
Recall that f(v) := (v,—tS(p)z) and f(w) := (w, —tS(p)y) are the p-horizontal lifts of
C; v, respectively C; lw.

By Gray-O’Neill Formula 1.8 :

b (CT oA CTw) = Ry (1) & f@) + 0|7, s

2

h+1b

=:(e(v,w)=:Gt
Prop.

AB - (h o 1) ((Rh(v,w)w, Ry(—tS(p)z, —tS(p)y)(—tS(p)y)),
(v, —tS(p)a:)) + ¢
= h(Rh(v,w)w,v)
+ 3b(Ro(—tS(p)z, —tS(p)y) (—tS(p)y), —tS(p)x) +

= kp(v A w)+ (=)t 1b(Ry(S()z, S()y)S(P)y. S(p)x) + G
Prop.

B.14(i) kh(v/\w)—i-%H[S( )z, S(p ]Hb’i_g

In order to calculate the sectional curvature secyc (Cr by, CF 1w) we also need the de-
nominator term HC[ IN C, 1“’”20' W.l.o.g, suppose v and w are h-orthonormal, which
t

means that k(v A w) = secy, (v, w). Indeed, the 2-plane C; ‘o < T, M generated by C; v
and C} Lw only depends on the one o generated by v and w and we can always find an
orthonormal basis of o.

Then,

ot ~ 7wl = hf<c;1v, cglv) - h? (G, C o)

p Riem.
Sllgm. (h+
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= h(v,v) - h(w,w) — (h(an))Q

+ t- (h(v,v) - b(S(p)y, S(P)y) — 2 - h(v,w) - b(S(p)x, S(p)y)
+ h(w,w) - b(S(p)z, S(p)z))

+ 2(b(S(p), S(p)2) - b(S(P)y. SP)y) — (B(S(P)a, Sp)y)°)
= L+t (ISE)lE + 1SEIR) + - 1SE)x A SEIE.

Hence, the Cheeger sectional curvature is expressed with the initial one through

secp(v,w) + % H[S(p)x,S(p)y]Hg + (v, w)
L+t ([S)z]; + 1S@ylE) + 2 [1Sk)z A Syl |

SeCyG (C; v, O 'w) = (4.1)

4.4 Analysis of the additional term (;

To reformulate the additional term (; (v, w) := 3 HAf(v)f(w)HZJrlb =3 H[f(v), f(w)]vHi "
t +?

we introduce a new concept related to action fields, which are in particular Killing vector
fields :

— Definition 4.5 - KILLING FORM wy

In the context of G —~ (M, h) by isometries, the Killing form corresponding to a
tangent vector x € g = TG is the following 1-form :

we  X(M) -  C*(M)
W o Ln(xrw).

— Proposition 4.6 - EXTERIOR DERIVATIVE OF THE KILLING FORM dw, — ]
Let z € g.
Then :

(i) The exterior derivative of the Killing form w, is the following 2-form :
dwy : X(M)xX(M) — C*(M)
VW) o (v X W) = A(Tw XL V).

(ii) In particular, for horizontal vector fields V*, W e X(M)* with respect to the
orbits of the G-action on (M, h) :

dwy (VI WH) = —h(ApWH, X*).

Remark 4.7. Note that the dimension of horizontal spaces H,, p € M, may differ from
a point to another. Therefore, the use of horizontal vector fields in (i) is sometimes an
abuse of langage. However, according to [Mii87, page 10|, one can construct a different sort
of O’Neill tensor A in the context of an isometric action of a Lie group G on (M, h). This
permits to use Riemannian submersion arguments viewed in Chapter 1 in a consistent way
for the second statement.
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Proof 4.6:

Let V,W € X(M).
Ad (1) : According to [Leel2, Proposition 14.29], the exterior derivative of wy can
be computed as follows :

dwy (V, W) = V(wg(W)) = W (wz(V)) — we ([V, W])
V compatible

winh end L (1 (9y X*, W) + h(X*, Ty W) = (7w X*, V)

symmetric

~h(X*, VW V) = h(X*, Ty W) + h(X*, 7w V)

= 3(n(vvxr W) = a(vwx*,V)).

v
Ad (ii) : For the horizontal vector fields :
dug (VH, WH) @ L(n(vyn X, WH) = h(Tyu X", VH))
Lemma 1.7 (iti) %(h(VWHVH,X*) . h(vVHW”,X*))
v sym:metric —%h([V”, WH],X*>
X* vertical _%h([vy WH]V X*)

Prop_. 1.6

We’ll also need the following Linear Algebra result :

— Lemma 4.8

In the context of an euclidean space (V,{-,-)), i.e. a R-vector space endowed with an
inner product, we observe the following property Vv e V :

(v,0) = max{<v “’>2}

weV | (w,w)

Proof 4.8:
Letv,weV, w#0.
The outcome results directly from the Cauchy-Schwarz inequality :

(v, w)?
(w, w)

(v, wH? < (v, v) - (w, w) < < (v, v).
]

We come back to the context of G acting isometrically on (M x G, h + % ) and having the
quotient map being the orbital submersion p : (M x G,h + b) — (M, h{’), for a given
t>0.
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— Theorem 4.9 - NEW EXPRESSION FOR THE ADDITIONAL TERM (;
Let t>0;
peM;

v, w € T, M generating a 2-plane ;
x ="t (UV) em,, and y 1= * ! (wv) €m,y.

Then,
._ . (dws (v, w) + £6([S (D), S(P)y), )
Q(v,w) =3 ||Af(v)f(w)||h+%b =3t r?;%}){{ th(Z*?p), Z*(p)) +1 } ’

where w, (v, w) := w,(V, W)(p).

Proof 4.9:
We denote by SXg, SYr, Zr € X(G)® the right-invariant vector fields
generated by S(p)z, S(p)y and z, respectively ;

SXr,SYL e X(G) the left-invariant vector fields generated
by S(p)x and S(p)y, respectively ;

Z* the action field generated by z on M x G ;

@l = (h + %b)(Z*, -) the Killing form related to z € g ;

W, 1= b(z,-) the Killing form related to z € g, defined on T.G.
Remember that f(v) = (v,—tS(p)z) and f(w) = (w,—tS(p)y) are (h + 1b)-
horizontal vectors in T(, ¢y (M x G).

From the computation formula of the exterior derivative of one forms, seen in
[Lee12, Proposition 14.29], we deduce easily :

dwt (f(v), f(w)) = dw (v, w) + tdw.(—tSXp, —tSYR)(e)

Pron 46 G (v, w) — tb(Asx,, SYr(e), 2)

Prop 16 g (v,w) — L([SX R, SYE](e), 2)

z=Zp(e) vertical

Prop. B.7 b([SXL,SYL](e), 2)

dw, (v, w) + %
= dwz(v>w) + %b([S(p)x,S(p)y],z)

Then, G _ 3(h+ 1b) (A f(w), Apey f(w))

{ (rt 20) (Ap f@).2* () }

Lemga 4.8
(h+10) (2% (.0).2% (n,e))

3 max
z€g

z7#0

Prop. 4.6

aut (F(0),f ()’ }
2

gy { h(2* ()2 () + 30z
270 ’ L

= 3¢ max | (4o WIS (). 50)).2))
e th(Z*(p),2%(p)) +1

lzlo=1
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Thanks to the last statements, we know that a manifold M of non-negative curvature

always admits equal or less flat 2-planes for its Cheeger metrics h{’, ¢t > 0, than for its
initial metric h.

— Corollary 4.10 - FLAT 2-PLANES IN THE CHEEGER METRICS

Let t>0;
peM;
v, w € T, M linearly independent ;
o = span(v,w) ;
z =1 (vY) emy, and y := =1 (wY) e m,,.

If M has non-negative curvature, secyc (Ct_la) <3€Ch§; (C; v, Ct_lw)> = 0 if and only
if the three following conditions are fulfilled :

(i) sec(o) =0;

(ii) [S(p)z,S(p)y] =0

(ili) dw,(v,w) =0 for all z € g.

Proof 4.10: Direct consequence of the last theorem and the equation (4.1).
[ |
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Chapter 5

Lawson-Yau theorem on positive
scalar curvature

In 1974, Lawson and Yau! discovered the existence of a Riemannian metric of positive
scalar curvature on a compact manifold with non-abelian symmetry, i.e. on which a compact,
connected and non-abelian Lie group acts smoothly and effectively. In their recent paper?,
Cavenaghi and Speranga used the Cheeger deformation process to prove this result in a
more intuitive way.

From now on, the considered connected manifold M is assumed to be compact as well as
the Lie group G acting isometrically on (M, h).

5.1 Ricci and scalar curvatures in the Cheeger metrics

We first introduce the horizontal Ricci curvature in the initial metric h, which is the part
of Ricci curvature at a vector v € T, M related to horizontal space H,.

— Definition 5.1 - HORIZONTAL RICCI CURVATURE

Let pe M,
veT,M;
n = dimT,M ;
n—1:=dim#H, ;
(w41, ..., wy) a h-orthonormal basis for H,,.

We call horizontal Ricci curvature at v the following real number :

Ric(v) := Z h(R(v, wi)w;, v).
i=l+1

Remark 5.2. The linearity of the map * : m, — V), permits to consider the metric tensor
Cyalsoin g: Cuz =« 1(CyX*(p)) = (Idg + tS(p))_lx, Vz € g.

'See [LY74]
2See [CS18]
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CHAPTER 5. LAWSON-YAU THEOREM ON POSITIVE SCALAR CURVATURE

— Lemma 5.3 - RICCI CURVATURE IN THE CHEEGER METRICS

Let t>0;
peM;
v=X*p)+£&eT,M with x € m, and £ € H,, ;
n = dim T, M.

There exists a b-orthonormal basis (y1,...y;) of my, scalars Ai,...,\; > 0 and a h-
orthonormal basis (w1, ..., wy) of T,M such that the Ricci curvature Ric,e in the

Cheeger metric h{’ satisfies :
(i) Ricye(v) = Ricft(Crv) + X, Gi(C) wi, Cro)
+ 20 e (n (wi A Cro) + 2

[ =285, ):

(i) limy o0 Richf (v) = Riczf(é) + limy oo Doy G (02/2101-, Ctv) + %Zé:l Iy, ac]Hg

Proof 5.3:

Ad (i) : Consider an b-orthonormal basis of eigenvectors of S(p) in mp, (Y1,..., 1),
with corresponding eigenvalues A\ < ... < A\;. Recall from Theorem 8.9 that A; > 0
Vi=1,..,1l.

Define w; := %/2 *(p) for i =1,...,1, which build a h-orthonormal basis of V, :

Z

1

Ai
b(S(p)yi,y;) = Wb(ynyj) = 0ij-
Complete it with a h-orthonormal basis (wiy1,...,w,) of Hy, to obtain an h-
orthonormal basis of TyM : (wr, ..., wy).

Observe that )
o P, :{ (1 + tA;) Pwy, i<l
W; 7> 1.

Hence (C’t_l/le, ...,Ct_l/an) forms a h{-orthonormal basis of T,M :

1

WG (C; Pwi, € Pwy) = h(C w7

1, 1+t ?-Hl
wj) = —isk i ) izk h(wi,wj) = (Si’j.
Lick (1+EN; )7+]11>k

We finally compute :

Ricys(v) = 30 (Ryg(Cy wi0)v, O )

i=1
n
= Z w,' A v)

Equ:M 1 Z < C w; A Ctv) + Ct (C U}“Ctv)>
2
v, S(p)Cy '

!
t
tlg

1/
[ N+t )1/2 X
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l

= Z h(%wi A Ctv) + Zn] kn (wi A Cyo)

1
i=1 (1 + t>\7’) 2 i=l+1

+ Z Gt (Ctl/zwi, Ctv)

i=1

+Zt3

2

22
[mwyza S(p)C’t_la;]

= RZ'C# (CtU) + Z G (Ctl/QwZ', Ct?./)

1=1
l

b

M\t3 2

4

(kzh w; A C’tv)

).

{y 1 f ig)(p) m]

b

Ad (ii) : We calculate separately the different limits :

e limy o, Crv = limy_o, (Id+ tS(p)) ' X*(p) + £ =€ ;

o fori=1,...,1 : limy_,q ﬁkh (wi A Ctv) = limy_ 0 ﬁkh(wi A §) =0;

) . 43 s 2 . s 2
= bt e [ ] - 5]
= L |[yi, ]Il
Hence,
) ) ) ) 1
lims o0 chhtc; (v) = ch}f (f) + limy oo Doy Ct(C’t/Qwi, Cyv) + %Zézl i, x]||§ )
v
[ |

Such an expression exists also for scalar curvature in Cheeger metrics :

— Lemma 5.4 - SCALAR CURVATURE IN THE CHEEGER METRICS

Let t>0;
peM;
n = dim T, M.

There exists a b-orthonormal basis (yi,...y;) of m,, scalars Ay,...,A\; > 0 and a h-
orthonormal basis (wi, ..., wy) of T, M such that the scalar curvature scalhtc in the

Cheeger metric h{ at point p satisfies :

scalhtc(p) = Y. (kh(Cl/Qwi A Cl/2w‘) + Ct(C'l/Qwi,Cz/2wj)>

i,7=1
At
+ Z” 1 050 (150 1 [yis y3]ll; -
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Proof 5.4:
As in the last proof :

e we construct a basis of my,, (y1,...y1), composed of b-orthonormal eigenvectors
of S(p) with eigenvalues 0 < A\; < ... < A\j ;

e we define w; = 1/2Y*( ) for i = 1,..,1, that we complete with a h-
orthonormal basis (wl+1,...,wn) of Hp to obtain an h-orthonormal basis
of T,M : (wr,...,wy).

We simply apply Definition A.39 of the scalar curvature scalhtc; to the Riemannian
manifold (M, h§). We consider an intermediate result (the third equality) in the
proof of Lemma 5.3 (i) and replace v simultaneously by C’;l/zwj, j=1..,n,n
Lemma 5.8 (i) since they build a h{' -orthonormal basis of T,M.

Notice the following identity we’ll need in the Lie bracket term :
«H(w)) =0, Vj> 1. (%)
Then,
scalpa(p) = 255y Ricyg (c, /wj)

(;) Z’.‘,f (kh(Ctl/Qwi A Ctl/Q'LUj) + Ct(Ctl/QwZ-, Ctl/Q’LUj))

7,7=1
{ (p)ﬁyiv S(p) 1/2

2
%
A (14+8M) (141X, )1/2 .

+Zz] 14

= iz (kh(cl/sz‘ A CPwy) + (t(Cl/%i,C;/ij))

AAt
+ i jm1 e R IsE= W) 1y will7

5.2 Orbit types and isotropy representation

The behavior of p € M in the G-action may affect the last term of scal hG in Lemma 5.4 in
the sense that a lower dimension [ of m, would decrease the number of summands. That’s
why we need a criterium, the orbit type, to distinguish between different kinds of points.
Many notions appearing in this section are explained in the fourth part of Appendix A.

— Definitions 5.5 - PRINCIPAL AND SINGULAR ORBITS

The maximum orbit type of G on M is the quotient space G/H where H € G is
a subgroup conjugated to a subgroup of each isotropy group G, < G, p € M (exists
according to the next result).

An orbit G - p is said :

e principal if its orbit type is maximum, i.e. if G-p = G/H, which means G - p is
of highest dimension for an orbit ;

e singular if it has a smaller dimension.
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Points of such orbits are called principal and singular, respectively.

We define the regular part of M as
M"™9 :={pe M | G- p principal orbit}.

— Theorem 5.6

Let a compact Lie group G act smoothly on a connected manifold M, which isn’t
obligatory compact.

Then :
(i) A maximum orbit type G’/H for G on M exists ;

(ii) The regular part of M, M"Y is open and dense in M.

Proof 5.6: See [Bre72, Chapter IV, Theorem 3.1].
|

In order to define a useful map from g to T,,M, for a singular point p € M, we now explore
some properties of the "isotropy representation". Let’s first define this concept :

— Definition 5.7 - REPRESENTATION OF A LIE GROUP

Let G a Lie group ;
V' a vector space.

A representation of G on V is a group homomorphism from G to Aut(V), the
automorphism group on V.

In the context of our isometric action G —~ (M,h), let p e M and g € Gp. Then the
differential (dpg), : TpM — TpM of pg = (g, ) € Iso(M, h) preserves :

e the norm ;
e the orthogonality, i.e. it sends h-horizontal vectors on h-horizontal vectors, i.e.
(dpg), (Hp) < Hyp.

Hence the following representation of the isotropy group G, restricted to the orthogonal
group of the horizontal space O (H,) is well-defined :

— Definition 5.8 - ISOTROPY REPRESENTATION
The isotropy representation of G for p € M, restricted to the horizontal space H,
is :

op + Gp — O (Hy)
g (dﬂg)p

H,

We will examine the differential of ¢, at the neutral element e € G in more details :

(dép), : 9p — 0(Hp),

with g, and o (#,,) the Lie algebras of the Lie groups G, and O (H,), respectively.
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— Proposition 5.9

Let V be a R-vector field of dimension n.

The Lie algebra of the orthogonal group on V, O(V), is the vector space of skew-
symmetric matrices :

o(V) = {Ae Mat(n,R) | AT = —A}

Proof 5.9:

The exponential map on the manifold O(n) at E, coincides with the ordinary
exponential map for orthogonal matrices :

exp : o(V) — O(V)
A s +oo A
i=0 i -

Let’s consider a curve through E,, in the direction A€ O(V) :

a : (—ee) — O()
t — t-A.
Then, for allt € (—e,€) :

E, =exp(t-A)-exp(t- A)T =exp(t- A) exp(t- A7) = exp (t- (A + AT)),

< 0=

d d

N E,=— A+ AT)) = A+ ATY. A+ AT

dt’t:O dtL:oeXp(t( +AY)) = (A+A%) -exp(A + A7),
< A+ AT =0.

Corollary 5.10

The differential of the isometry representation (d¢,), : g, — 0(H,) sends vectors

of g, on skew-symmetric endomorphisms of H,, i.e. the representing matrices are
skew-symmetric.

Proof 5.10: Direct consequence of Proposition 5.9.

— Theorem 5.11

Let pe M ;

TEGp;
vEH;
V e X(M) an extension of v, i.e. V(p) = v.

Then,

((dp).(2)) (v) = (Vv X7) (p)-

Proof 5.11:
Let’s denote by eXpI]JV[ : T,M — M the exponential map on the manifold M at

point p € M and by exp® : g — G the Lie exponential, so as not to confuse
between the two maps.
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Let ~% be the geodesic through p in direction v, i.e. Y5 (s) = expi)\/[(s ‘v), VseR ;
fiR?2— M, (t,s) — pu(exp®(t-z),75(s)), be a parametrized surface’.
Observe that :
e f represents a variation of the geodesic ¥4 by geodesics, which means that
J = % t=0f(t’ ) = X* o is a Jacobi field* along Vb ;
e J(0) = X*(p) = 0p.
Recall that the exponential map expy : TpyM — M is a local diffeomorphism.

According to [Car92, Chapter 5, Corollary 2.5/, since J(0) = 0y, the following
holds for all se R :

D
J(s) =s- 7 s:oJ(S) =5 Vop,J(0) =s- Vv X*(p),

after identification of the tangent spaces T.p M and Ts.,TpM = T, M through
normal coordinates®.

On the other hand, as v} (s) is identified to s - v,

) dp linear

J(s) = X* 0qf(s) = ((dp) (2)) (s - v s+ ((dep), (@) (v).

Hence,

((dp) (@) (v) = Vv X*(p).

5.3 Further considerations on the differential of the isometry
representation

Given a tangent vector v € T,M at p € M, Cavenaghi and Speranga generalizes the linear
map dop(-)(v) : gp = TpM,xz — (Vv X™*) (p) to any element of the Lie algebra g :

— Definition 5.12 - AUXILIARY LINEAR MAP Qv

Let pe M,
v e T,M with an extension V € X(M) ;
vi=98 R — M, s+ v(s) := exp(s - v) the geodesic through p in direction v.

We define a linear map :

3Since G and M are assumed to be compact, the geodesics are defined on R.
4See Definition A.36
See [GHLO4, 2.89 bis]

62



CHAPTER 5. LAWSON-YAU THEOREM ON POSITIVE SCALAR CURVATURE

This map has some interesting properties :

— Lemma 5.13
For pe M, if v € H,, then :
(1) Qv(gp) € Hyp;

(i) gp N ker(Qv) = gv,
where gy is the Lie algebra of Gy := {g € G, | ¢,(9)(v) = v}.

Proof 5.13: See [CS18, Lemma 2/.
|

Since G is equipped with a (biinvariant) metric b and gy is a subvector space of g,, we can
define the b-orthogonal complement of gy in g :

)L

po = (gv) S p|-

— Corollary 5.14

The auxiliary map restricted on py

Qv| :pv — Hp,
Pv

is injective for any pe M, v e H,.

Proof 5.14: Direct consequence of Lemma 5.13.

— Definition 5.15 - FAKE HORIZONTAL VECTOR WITH RESPECT TO v

Let pe M ;
v E Hyp.

We call fake horizontal vector with respect to v any element of Qv (py) < H,.
Furthermore, for w € H,, we denote the unique preimage of its h-orthogonal projection

on Qv (py) by wp, € py.

Remark 5.16. The fake horizontal vector Qv (wpv) is also the h$-orthogonal projection
on Qv (py) by the same argument as in Remark 3.7.

This fake horizontal vectors are crucial in the process of finding a positive lower bound for
the additional term (; implied in the scalar positive curvature formula given by Lemma
5.4, in case the last term vanishes. To prove the Lawson-Yau Theorem, we will need the
following result for singular points even if the statement holds for any kind of point.
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— Proposition 5.17 - LOWER BOUND OF (;

Let t>0;
peM;
v, w € Hp.

Then, if w is not h-orthogonal to Qv (pv), i.e. wyp, # 0 :

1Qv (wy, )}

Ge(v,w) = 3t 5
lwpy [

> 0.

We first introduce an intermediate result dealing with the Killing form term in our situation :

— Lemma 5.18

Let pe M ;
v € Hp, with an horizontal extension V € X(M)" ;
iR — M, s expi,\/[(s -v), be the geodesic going through p in direction v ;

u = Qv(up,) € Qv(pv), be a fake horizontal vector ;
zZ € g.

We define a vector field along 75‘R>0 :
U : Ry — TM
s U(s):=1U0% (¥(s)) e T p(s)yM.

s PV Yo

Then :

(i) limg_,g+ U(s) = u, so U extends smoothly to s =0 ;

(i) limg o+ dw:(U(s),V(s)) = —h(u, Vy Z*(p)), where V(s) := V(15(s)).

In the following two proofs, we write W(s) = W(fyg(s)), seR, for any W e X(M).

Proof 5.18:

Ad (1) : As in the proof of Theorem 5.11, we use normal coordinates to identify a
neighborhood of 0, = Uy, (0) with a neighborhood of v (0) = p.

The geodesic v = M can thus be identified with a geodesic % € T,M and Uy, is

a Jacobi field along ~5 which can be written as
Uy, (8) = s Vv Uy, (0), Vs > 0.
Hence,

1
lim U(s) = = lim s- vy Uy, (0) = vy Uy, (0) = u.

s—0t S s—0t

64



CHAPTER 5. LAWSON-YAU THEOREM ON POSITIVE SCALAR CURVATURE

Ad (i) :
Claim : dw. (U, (s),V(s)) = —%Vh(U;‘V (s), Z*(s)), for all s = 0.

Let’s first restrict to regular points v (s), for some s = 0.

Since the Lie derivatived Loxh of h vanishes in the direction of a Killing
vector field C* € X(M) (so in particular for action fields), we deduce the
following identity :

C*h(A, B) = h([C*, A], B) + h (A, [C*, B]) , VA, Be X(M). (+)

We calculate the differential of dw, as in the proof of Proposition 4.6 :

do. (U, V) = Uk w(V)=Vw.(Ug) —w. (U, V])
= Tz - vy, 20 - (T, V), 2))
ST .
Prop. 28 _1 (Vh(U,;kV, Z*) —h(V, [UZS, Z]*))
=0

= —iVWU,,Z¥).

pv>
So the equality holds at s, if vb(s) is reqular.

Now, suppose ¥5(s) is a singular point for some s = 0. Recall that the set
of all regular points M"Y is open and dense in M. As a consequence, for
an infinity of horizontal directions ‘N/(s) € Tp(M there exists a sequence
(i) pen of Tegular points on the geodesic through Y2 (s) in direction V (s)
converging to vh(s). By continuity of dw, and h, the equality also holds in
the direction V (s) for 5 (s).

Claim

Hence,
(U, V(e) = - IR ZED) g (+4)

And at s = 0, we know that

dw. (U}, (0),V(0)) = 0.
——

=0

Observe that the numerator Vh(Ug, (s), Z*(s)) and denominator 2s of (%) both
vanish at s = 0, because U;V(O) = 0. Therefore, we apply L’Hospital rule to
estimate the limit of the indeterminate form (**) when s — 0. Moreover, since
'(0) = v = V(0), the linear derivation V evaluated at h(U},,Z*) : M — R

pv

6See Definition A.15
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corresponds to the derivative of h(U* Z*) o :R—->Rat0 :

pv>

Vh(UE (5),2%(s))

2s

lim, o+ dw (U(s), V(s))

— lims*,0+

= —14 VU (9), 2% (s))
2
= —2ie|_ U5 (), 2%(5)

= 3 (M(B0 0, 2°0) + (U3, (0), iz (0)
+2h(RUR (0), 277 (0))).

The last equality holds because derivating with respect to s is equivalent to derivate
in direction V', which allows to use the compatibility of V with the metric h twice.
Let’s compute these covariant derivatives for the geodesic v :

. C%QQU;‘V (0) = =R (v, Uy, (0))v = =Ry (v,0,)v = 0, because of Jacobi Equa-
tion and tri-linearity of the curvature tensor Ry, ;

o C%QZZ*(O) = 0, by similar arguments ;

o 12U (0) = VvUg (0) = Qu(up,) = u ;

o 27%(0) = vy Z*(0) = Vv Z*(p).

So the two first terms vanish and we obtain :

lim+ dw.(U(s),V(s)) = —h(u, Vv Z*(p)).

s—0

Proof 5.17:

Recall the formula for the additional term obtained at the end of Chapter 4 for
the Cheeger metric h{ :

t 2
G(v,w) = 8| A f ()]s, = 3¢ max{ (dw:(v, ) + 35l Sply).2)) } >0,

) th(Z*(p), Z*(p)) + 1
where x = + 1(vY) = 0 € g and y := + H(wY) = 0 € g since v and w are
horizontal. That’s why the second term of the numerator will disappear.
We define the unit vector z := ”;l:'ﬁ < gp, so Z*(p) = 0, and obtain :
Ci(v,w) = 3t dw, (v, w)?. (%)

Let 5 :R — M, s~ expi,\/[(s -v) be the geodesic going through p in direction v ;
V,W € X(M) extensions of v and w, respectively.

Then, by Lemma 5.18,

dw(v,w) = — lim dw,(W(s),V(s)) = h(w, Vv Z*(0)).

s—0t
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_ QV(wpv)

By definition, Vv Z*(0) = Qv (z) = lwpy o

e T,M, so (x) becomes

2 2
o) 30 (0, 2450) 1 (01, 2L0) lovimll

" lwpyfly [wpy [ lwpy [

5.4 Lawson-Yau Theorem

Everything seen until this point permits to prove the following major result on some compact
manifolds :

— Theorem 5.19 - LAWSON-YAU THEOREM (1974)

Let (M, h) be a compact Riemannian manifold ;

G be a compact, connected and non-abelian Lie group acting effectively and by
isometries on (M, h).

Then there exists some metric h on M with positive scalar curvature, i.e.

scaly (p) > 0, Vpe M.

We follow the Cavenaghi and Sperancga approach to find a Cheeger metric h; fulfilling this
property7.

Proof 5.19:
Claim 1 : Our G-action can be reduced to the case of an effective S3- or SO(3)-

action on (M, h), regardless of the dimension of G.

Proof of the claim 1 :

According to [Bum0/, Theorem 19.1], there exists a Lie group homomorphism
¢ : S® — G with finite kernel. Therefore, S% acts (almost) effectively on M
through fi := po ¢ : S — Iso(M,h).

If ker(f1) = {1}, then [i is effective. In the other case, the induced action

'a/kerﬂ of the quotient set Sgﬁ{erﬂ ~ SO(3) on M is effective. —
|

We now consider the Cheeger construction h v h$ on (M, h) induced by (G,b).

Let’s recall the formula of scalar curvature at g € M developed in Lemma 5.4 for
a Cheeger metric hS, t > 0 :

scalye (q) = > (k:h (C’tl/QwZ- A C’tl/2wj) + Ct(Ctl/Zwi, C’tl/zwj)>

ij=1
l )\i)\‘t3 2
+ 2 j=1 aroy arog) i villly -

(*)

"See [CS18, Theorem 3.3|.
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where (y1,..., Y1) is a b-orthonormal basis of m, = (g4) composed of eigenvectors

of S(q) with the corresponding eigenvalues 0 < \; < ... < N\ ;
(Ctl/zwl, s Ctl/an) is a h{ -orthonormal basis of T,M.

For all g € M, let’s define

Ly:= min kp(w; A wj) = min secy(w;, wy).
1<i,j<n 1<ij<n

Since span{w;, w;j} = span{Ctl/Qwi, C’;/Qwi}, we obtain for all t > 0 and all
1<i,j<n:

kn(Cwi A CPwy) = seen(wi,w;) - [ CrPw; A CPwj 2

> Ly- UC;/Zwi A C;/ijH,Zl
'

<1
> min(0, Ly).

Hence, for the whole term,

Z kh(Cz/Qwi A C;/ij) > min <<g) -Lq,0>

i,j=1
By compactness argument, there exists a lower bound L for this sum on the

whole manifold M which holds for all t > 0.
Claim 2
|

By contraction, suppose that none of the Cheeger metric h§ carries a positive
scalar curvature. Then, there exists a sequence (pp), oy 0 M with scalpc (pn) <0,
Vn € N. By the compactness assumption and Bolzano-Weierstrass Theorem, a
convergent subsequence exists and we’ll denote by p € M its limit point.

n>=N.

Proof of the claim 3 :

We again argue by contradiction. Suppose that there exists a sequence
n; — +o0 in N such that scalye (p) > 0, for alli € N.

For a given n;, i € N, there exists a neighborhood U of p on which
scalpe > € >0,

because of the continuity of the scalar curvature scalhni. We denote by
U™ :=U n M"Y the open and dense subset of reqular points in U.

We know then that for all g € U™, the last term of (x) tends to infinity and
therefore exceeds L for all sufficiently big t > 0. By monotonicity of (s, the
last term in () and continuity of scalar curvature, this is true on the whole
neighborhood U, i.e. a common lowest T > 0 exists with the property that
scalhtc(q) >0, forallt >T, qeU.

Therefore, for all n > T with p, € U :

scalpc (pn) > 0. 4 Clegn 3
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Claim 4 : p is a singular point.

Suppose p is reqular. It suffices to show that there exists non-commuting
v, w € my, to obtain a diverging last term in (x) and contradict this hypothesis.

In our situation, G = S or G =~ SO(3) and in both cases, g = so(3). This
denotes the Lie algebra of skew symmetric (3 x 3)-matrices s0(3) which is
equipped with the Lie bracket defined by the commutator :

[A,B] = AB — BA, VA, B e so(3).

G acts effectively on M and p has principal orbit.

= G, #G.

= gp 9.

= dimg, > 2.

If G, was of dimension 2, this would mean that its Lie algebra g, would be
a 2-dimensional Lie subalgebra of s0(3). However, any linear independent
A, B € 50(3) has the property that [A, B] ¢ span(A, B). In other words, it
generates all 50(3). As a consequence, dimg, =0 or 1.

= dimm, > 2.

We can then choose linearly independent v, w € m, skew-symmetric matrices,
up to isomorphism. These v,w generates a linear independent u € s0(3)
through the Lie bracket :

[v,w] =u #0.

Hence, there exists some t > 0 such that the last term of (x) exceeds L,
which means that
scalyc (p) > 0. y

Claim 4
|

If dimm, > 2, then we have the same contradiction as in Claim 4 and the
statement follows.

Consider the opposite situation dimm, = 0 (g, can’t have dimension 2 as demon-
strated above). In this case, p is a G-fized point.

Since G acts effectively on M, it is the same for the G-action on T,M given by
the isotropy representation. We choose a horizontal vector v € H, with respect to
h in the open and dense subset of principal orbits. Recall the principal isotropy
Gy has mazximal dimension 1, since it can’t be the whole G.

= dimgv < 1.
= dimpv > 2.

Therefore, there exists a non-zero wy,, € py, which is also sent to a non-zero
fake horizontal vector Qv {wy, } € Hp. Define w € H, h-orthogonal to v with fake
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horizontal vector Qv {wy, }. By Proposition 5.17, the additional term is positive :

|Qv (wpy )

G(v,w) = 3t
[wey [

> 0.

Suppose v and w are normalized with respect to h and observe that the h-
orthonormal basis (wi1, ..., wy) of Hy can be constructed by completing (v, w).
As a consequence, w.l.o.g. v =w;y1 and w = wyio. Finally :

4
scalyc(p) = L + Stw —  +o0.
¢ HvaHg t=+a0
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Appendix A

Some Riemannian Geometry aspects

This appendix is largely based on the Riemannian Geometry lecture given at the University
of Fribourg by Dr. David Gonzélez Alvaro during the academic year 2017-18 (|Gon17]).

A.1 Basic recalls

Let M be a smooth manifold of dimension n ;
peM;
feC®(U) with U an open neighborhood of p.

We define the germ of f at p as the equivalence class of (f,U) for the following equivalence
relation :

(f,U) ~(g,V) < f =g on an open neighborhood of p, W € U n V.

The set of all germs of smooth functions at p is denoted by C,°(M).

— Definitions A.1 - TANGENT VECTOR & TANGENT SPACE

A tangent vector at p is a linear derivation of C;*(M), ie. v : CX(M) — R
satisfying VA e R, Vf,g € C;°(M) :

(i) v(A-f) =A-o(f);
(i) v(f-g) = f(p) - v(g) +v(f) - 9(p)-
The set of all tangent vectors forms the tangent space of M at p, forming a real

vector field :
T,M = {v: C;'(M) — R tangent vector at p}.

But sometimes we rather interpret 7;,M as a set of equivalent curves, since each smooth
a: R — M with a(0) = p defines a linear derivation v, through v, (f) := (f o @)’(0).
This tangent vector is usually denoted by o/(0) instead of v,. Hence we consider two
curves ay and ag as equivalent if o/ (0) = a4(0). Conversely, each tangent vector v is
related to a curve a through v = o/(0). In this context, the tangent space is written

T,M := {a: R — M | a(0) =p}/~'
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— Definition A.2 - DIFFERENTIAL
Let ¢ : M — N be a smooth map between manifolds.

The following linear map is named the differential of ¢ at point p :

dg, : T,M — Ty
v=a/(0) — v(g):=(60a)(0).

It respects the chain rule:
d(Y 0 ¢)p = dipg(p) © ddp,
for any smooth ¢ : My — My, ¢ : My — M3 and p € M;.

Remark A.3. If ¢ : M — N is a diffeomorphism, then d¢, is an isomorphism.

A.2 Vector fields

— Definitions A.4 - VECTOR FIELD & LIE BRACKETS

A vector field on M refers to any section of the projection map «w : TM — M, i.e.
any smooth map X : M — T'M respecting X (p) € T,M Vpe M.

X admits another interpretation, generalizing the linear derivation X (p) € T,M :

X : C*(M) — C*(M)
f - X,
where Xf M — R
p = (X)) = X)) = df(X(p)).

The vector fields set X(M) has a vector space structure and is even a Lie algebra
considering the following Lie brackets on X(M) :

[] + X(M)xX(M) — X (M)
(X,Y) - [X,Y]:= XY -YX.

We have seen that a tangent vector may be defined from a curve but on the other way we
can construct curves from vector fields :

— Definition A.5 - INTEGRAL CURVE

Let X e X(M). .

V)
An integral curve of X is a differential curve o : I — M whose velocity at each
point a(t) € M equals the tangent vector X (a(t)) € Toy)M :

d(t) = X (a(t)).

Note that some integral curves may not be defined on R.!

'See [Leel2, Examples 9.9 and 9.10]
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— Definition A.6 - FLOW OF A VECTOR FIELD

Let X € X(M).

We call flow domain for M any open subset D € R x M such that
DP:={teR|(t,p) € D} = (ap, bp),

with a, <0 < b, for all pe M.

A local flow of X is a smooth map 6 : D — M respecting for all well-defined ¢,s € R
and for all pe M :

(i) 0(0,p) =p;
(i) 0(s,0(t,p)) =0(s +1.p) ;
(i) | 6(t,p) = X(p).

In the case D = R x M, we speak of the global flow of X. Then, (i) and (ii) imply
that € becomes a smooth action of R over M, and 6 generates a group homomorphism :

0 : R,+) — (Diff(M), o)
" . 915 M - M
p = 0tp)’

where Diff(M) is the diffeomorphism group of M.

Remark A.7. For all p e M, the following is an integral curve :

or - (ap,bp) — M
t o~ 0@ p)

— Definitions A.8 - ¢-RELATED, PUSH-FORWARD & ¢-INVARIANT
Let ¢ : M — N be smooth.
Two vector fields X € X(M) and Y € X(N) are ¢-related if for all pe M :

dep (X (p)) =Y (o(p))-

Now suppose ¢ to be a diffeomorphism. Given X € X(M), we construct ¢,X € X(IV),
called the push-forward vector field, which is the unique ¢-related vector field to

X:
(¢:X) (¢(p)) = dop(X(p)), Vpe M.

For a diffeomorphism ¢ : M — M, X € X(M) is said ¢-invariant if ¢, X = X.
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— Proposition A.9 - NATURALITY OF LIE BRACKETS

Let ¢: M — N be a smooth map ;
X1, X2 € X(M) and Y1, Y, € X(N) such that X; is ¢-related to Y;, i = 1,2.

Then [X7, X»] is ¢-related to [Y7, Ya].

Proof A.9: See [Leel2, Proposition 8.30].
[ |
— Corollary A.10 - PUSH-FORWARD OF LIE BRACKETS
Let ¢: M — N be a diffeomorphism ;
Xl, XQ (S %(M)
Then,
¢*[X17X2] = [¢*X1; ¢*X2]
Proof A.10:
Letpe M.
Define Y; := ¢ X; the ¢-related vector field to X;, i = 1,2.
Then
¢« X1, Xo](¢(p)) = dop ([ X1, X2] (p))
Prop. A.9
B dop(X0), dey(X2)] (p)
= [0 X1, 0 Xa] (6(p))-
[ |

A.3 Riemannian metric

— Definitions A.11 - RIEMANNIAN METRIC & ISOMETRY

A (Riemannian) metric 2~ on M is a map associating an inner product h, on T, M
to each p € M, for which p — h, (X (p),Y (p)) is smooth for all X,Y e X(M).
(M, h) is called a Riemannian manifold.

We sometimes use the norm |v|, := 4/h(v,v), for v e T,M.

Given an immersion ¢ : M — N, a metric Y on N induces the pullback metric
M = ¢*hN on M :

(¢*hN)p (Uv w) = (hN)¢(p) (dgbp(v)’ d¢P(w))’

forallpe M, v,we T,M.
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We define an isometry as a diffeomorphism ¢ : (M, h™) — (N, h'V) satisfying

The isometry group of (M, h) equipped with the map composition o is

Iso(M,h) :={¢: (M,h) — (M, h) isometry}.

Note A.12. One often deletes the index p in the function hy( , ) when there is no possible
confusion.

— Examples A.13 - RIEMANNIAN MANIFOLDS

Common Riemannian manifolds are :

o (R", heye) where heuc(aii , a%j) = 9,5 is called the euclidean metric ;

o (H", hpyp) where hhyp(al = b% . heu%1 ’’’’’ a1 8) is called the hyperbolic

metric ;

e (S" 1 1*heye) for the canonical embedding ¢ : S*~! «— R™.

— Proposition A.14

Every smooth manifold admits a Riemannian metric.

Proof A.14:
Idea : Use partition of unity and local charts arguments.

See [do Carmo, p.43] for details.
|

Analogously to smooth functions, we can derivate a metric in the direction of a vector
field.

— Definition A.15 - LIE DERIVATIVE OF A METRIC

Let (M, h) be a Riemannian manifold,;
VeX(M).

We define the Lie derivative of the metric h according to V as follows :

(Lvh)(X,Y) :=V(M(X,Y)) = h([V,X],Y) = h(X,[V,Y]).
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A.4 Covariant derivative and geodesic

This section focus on curves on a Riemannian manifold (M, k), and more particularly the
curves minimizing the distance between two points, called geodesics. This requires some
kind of derivation notion of vector fields along curves based on the following notion :

— Definitions A.16 - AFFINE CONNECTION

An (affine) connection on M is any R—bilinear map

v o X(M) x X(M) — X(M)
(X7Y) = VxY,

satisfying VX,Y, Z € X(M),Vf,ge C*(M) :
(i) VixqgvyZ=f-VxZ+g-VvZ,
(i) vx(Y +2)=VxY +VxZ;
(i) Vx(f-Y)=fvxY + Xf Y (Leibniz Rule for V).
Furthermore, V is called :

e compatible with the metric h if
Xn(Y,Z) = h(VxY,Z) + WY, VxZ),
VXY, Z e X(M) ;

e symmetric if
VxY - vy X = [X,Y],

VXY, Z € X(M).

— Theorem A.17 - LEevVI-CIvITA

For a fixed Riemannian manifold (M, h), there exists a unique affine connection V
beeing compatible with A and symmetric. One names it Levi-Civita connection.

Proof A.17:
Such a connection V should satisfy the Koszul formula, which determines
uniquely V :
MvxY,Z) = HYW(X,Z)+XWZY)— ZhY,X)

_h([}/a Z]7X) - h([X, Z]7Y) - h([Y,X],Z)},
VX,Y, Z € X(M).

Remark A.18. Through the whole document, the "L-C"-mention may be implicit, since
we only employ L-C connections.
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— Definition A.19 - VECTOR FIELD ALONG A CURVE

Let 7 : (a,b) > M a curve on M.

A vector field along v is a smooth map V' : (a,b) — T'M such that V(t) € T,y M
Vt € [a,b]. The simplest example of such elements is the derivative of the curve +/(t).

One will denote by X(v) the set of vector fields along v and keep in mind that such a
map can be viewed as a restriction of a vector field V' e X(M) on v([a,b]) = M:

V(t) =V (1), vt € [a, b].

— Definition A.20 - COVARIANT DERIVATIVE & PARALLEL VECTOR FIELD —]

Let ¥ the Levi-Civita connection on (M, h) ;
v : [a,b] = M a curve.

A covariant derivative on (M, h) is a map

such that the following holds for all V' € X(v):

(i) 20wW) _ by, pw VW e X(7) ;

(i) 2YV — pDV Ay, yfe 0% ([a, b)) ;
(iii) for vector fields extensions V,% € X(M) of V, respectively 7/ (¢) :

2RO = (o) (), vee(ab),

A vector field along v, V' € X(7), is called parallel if % = 0, i.e. if its covariant
derivative is the trivial vector field along ~.

The following type of curves is a key notion when studying Riemannian manifolds, because
of their useful properties :

— Definition A.21 - GEODESIC

We call geodesic a curve v : (a,b) — M if the derivative vector field 7/(¢) along ~ is
parallel, i.e. V57 (v(t)) = 0yt) € TyyM, YVt € (a,b).

— Theorem A.22 - EXISTENCE AND UNIQUENESS OF GEODESICS

Given p € M and v € T, M, there exists a unique geodesic (up to the definition set)
AP : (—€,€) — M with 42(0) = p and 45’ (0) = v.

Proof A.22: See for example [Car92, Lemma 2.35]. [ |
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— Definition A.23 - EXPONENTIAL MAP OF A RIEMANNIAN MANIFOLD

Let pe M.

If Q, € T, M refers to the set of vectors v one which 7(1) is defined, the exponential
map of M at p is :
exp, : QpcTHL,M — M
v = w(l)

— Theorem A.24

For all p € M, exp,, is a local diffeomorphismus from a neighborhood of 0, € T;, M to a
neighborhood of p € M.

Proof A.24: See for example [GHLO4, Proposition 2.88]. [ |

Remark A.25. For Lie groups with a biinvariant metric, this definition of exponential
map is equivalent to the Lie exponential map introduced at the beginning of Chapter 2
(Definition 2.2).

— Properties A.26 - GEODESICS

(i) Since V is compatible with h, the norm of 4’ is constant :

.y @) =Bl oy w) 0. veelan)
-0

That’s why we often reparametrize the curve to obtain a normal geodesic, with
norm of the derivative equal to 1.

(ii) Geodesics are curves minimizing distances between two points : for a normal ball
B < M (exponential image of a ball in T,M, p € M), if a geodesic v : [a,b] - M
is contained in B, then every curve « : [a,b] — M joining y(a) and (b) is longer
than ~ :

b b
length(y) := J |7 ()] dt < J o/ ()| dt =: length(c).
a a
(iii) All compact Riemannian manifolds (M, h) are geodesically complete, i.e.

every geodesic is defined on the whole R. It allows the exponential map exp, to
be defined on the whole tangent space T,,M, for all p e M.

A.5 Sectional curvature

Locally, two Riemannian manifolds of the same dimension look topologically identical.
However, the L-C connection V leads to a useful map R permitting to distinguish them
through their curvature sec.
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— Definition A.27 - CURVATURE TENSOR

The curvature tensor of (M, h) is :

R : X(M)xX(M)x X(M) — x(M)
(X,KZ) — R(X,Y) = vayz—VyVXZ—V[X,y]Z.

As for the Euclidean space (R™, heye) R = 0, we may interpret the curvature tensor as
how the analyzed manifold deviates from the Euclidean case.

In fact, it appears that the vector (R(X,Y)Z) (p) € T, M only depends on the vectors
X(p),Y(p),Z(p) € T,M. This observation leads to the well-definition of the induced
map :

Ry : TyM x T,M x T,M — T,M.

Simple computations leads to a few useful characteristics :

— Properties A.28
Let X,Y,Z, W e X(M).
(i) R is C®(M)-tri-linear ;
(i) Bianchi identity : R(X,Y)Z + R(Y,Z)X + R(Z, X)Y =0 ;
(ili) h(R(X,Y)Z, W) =—-h(RY,X)Z, W) ;
(iv)
)

h
h(R(X,Y)Z, W) =—-h(R(X, Y)W, Z)
h

(v) h(R(X,Y)Z,W) = h(R(Z,W)X,Y).

— Definitions A.29 - SECTIONAL CURVATURE & SPACE FORM

Let pe (M, h),
II, = span(v,w) < T,M a 2-plane, i.e. a 2-dimensional vector subspace of T, M
with basis (v, w).

The sectional curvature of IIj refers to the following real value :

oy _kwaw)  h(AEww.)
sec(v, w) = sec(Ily) : v A wH}QL " Rh(v,v) - h(w,w) — h(v,w)?’

The denominator makes the sectional curvature of 11, invariant to its basis.
Interpretation of sec :

o If sec(v,w) = 0, the distance between geodesics starting at the same point and
with initial velocities in span (v, w) grows slower than in the flat space (R™, heye) ;

o If sec(v,w) < 0, the geodesics move away from each other faster than in the
euclidean case.

One calls a space form a Riemannian manifold having a constant sectional curvature,
ie. sec=ceR.
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Lemma A.30
For all A > 0,
1
SECAR =  S€Ch.
Proof A.30:
Observe by the Koszul formula, that (M,h) and (M,\h) owns the same L.-C.
connection :
vh = v

As a consequence, the curvature tensors are the same :
Consider now v,w € T,M, for any p e M and compute :

B (AR) (RAh (u,w)w,v)
seCn(V, W) = XAy (00)- (V) (0,10) — (k) (0,0)

A h(R(v,w)w,v)
A? h(v,w)-h(w,w)—h(v,w)?

= %sech(v,w).

— Examples A.31 - SPACE FORMS
The three common Riemannian manifolds in Examples A.13 are all space forms :
e sec R" =0 for heye ;
o sec H" = —1 for hpy, ;

o secS" 1 =1 for t*heye.

— Theorem A.32 - CLASSIFICATION OF SPACE FORMS, HOPF 1926
Let (M, h) be a complete simply connected Riemannian manifold, i.e. :
e complete : the exponential map exp, is defined on all T),M for all p € M,

e simply connected : M is path-connected and the fundamental group (= set of
homotopy classes) 111 (M) = {ids}.

If sec M = ¢, for c € R, then :
o if c =0, (M,h) is isometric to (R", heye) ;
o if ¢ <0, (M, L) is isometric to (H", hpyp) ;

e if ¢ >0, (M, 1h) is isometric to (S"71, t*heye).
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Note A.33. If a complete Riemannian manifold doesn’t fulfill the simple connectivity,
the result holds for its universal covering M with the covering metric. This Riemannian
manifold always exists according to [Leel2, Corollary 4.43|.

Proof A.32: See [GHLO4, Theorem 3.82].

Let’s now see the particular case of a product manifold.

Product manifold

From two Riemannian manifolds, we can construct a new one :

— Definition A.34 - METRIC ON A PRODUCT MANIFOLD

Let (M1, h1) and (Ma, h2) be Riemannian manifolds.

A possible metric on the product manifold My x My is hy + hs, simply defined as
(h1 + h2) ((v1,v2), (w1, w2)) 1= hy(v1,w1) + ha(ve, w2),

for all (v, v9), (w1, we) € My x M.

We call (M x Ma, hy + he) Riemannian product of M; and M,.

The curvature tensor R of (M; x Ma, h1 + hg) will take a form involving the ones R; of
(Ml, hl) and R2 of (MQ, hg) .

— Proposition A.35 - CURVATURE TENSOR OF A PRODUCT MANIFOLD

Let  (p1,p2) € My x My ;
V= (1)1,1)2),?1} = (wl,wg),C = (C17<2) € T(p17P2)(M1 X Mg).

Then :
(i) Ri(vr,w1)¢1 = R((v1,0), (w1,0))(¢1,0) ;
(ii) Ra(vz, w2)Ca = R((0,v2), (0,w2))(0,C2) ;
(i) R(v,w)¢ = (Ra(or, w)Ga, Ro(v,0)Ga ),

if we identify any &; € Tj, My with (€1,0) € T{p, po) (M1 x Mz) and any &3 € 1), Mo
with (0,52) (S} T(p1,p2)(M1 X MQ)

Proof A.35:
It comes out of the following identity, we easily prove with the Koszul formula :

VxY = (Vx, Y1,V%,Y2),  for any X = (X1, X2),Y 1= (Y1,Y2) € X(MyxMs).

See [AK03, Section 2] for details.
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A.6 Jacobi fields

A Jacobi field measures how geodesics differ from each other in an infinitesimal way. In
other words, they are variations of geodesics by geodesics. It is constructed through the
derivative of a parametrized surface.

We fix a metric h on M.
— Definition A.36

Let v : (—¢,e) — M be a geodesic.

A vector field J € X(7) is called Jacobi field if it satisfies the Jacobi equation for all
s€ (—€€):
D*J

a2 T R(7/(s), J(5))7'(s) = 0.

Construction of Jacobi fields

Let pe M ;
veT,M,
w e T5T,M = T,M ;
v : (a,b) = M the geodesic in T,M with v(0) = ¥ and v'(0) = w.

We define a parametrized surface on M :

f o (—€¢€) x(a,b) — M
(s,t) — exp, (s-v(t)).
Then,
J : (—€€) — T™M =T,TM
s — %{ t:O(S’t) = (dexpp)s.v(s cw) ,

is a Jacobi field along 7%. See [Car92] for details.

Properties of Jacobi fields

Jacobi fields are used to describe how parallel vector fields change along geodesics on space
forms and therefore how geodesics move away from each others :

M

J(t)
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— Proposition A.37

Let v be a geodesic on M ;
V e X(v) a parallel vector field.

If (M, h) is a space form with sec =: k € R, then

sin(s k) V(s) ifk>0;

vk
J(s) =<4 s-V(s) if k=0;
SV B v(s) if k<0

forms a Jacobi field along ~.

A.7 Ricci curvature and scalar curvature

Information contained in the curvature tensor R can be summarized in new curvature tools :

— Definition A.38 - RICCI CURVATURE

Let pe M,
(é1, ..., en) an orthonormal basis of T,M ;
v,w e T M.

The Ricci curvature of span(v,w) is defined as the following real value :

Ricy(v,w) := tr (h(R(-,v)w,-)) = Z h(R(e;,v)w,e;).
i=1

The Ricci curvature is a symmetric and bilinear form.

One often looks at the Ricel curvature of one vector v :

Ricy(v) := Ricy(v,v).

— Definition A.39 - SCALAR CURVATURE

Let pe M,
(é1,...,en) be an orthonormal basis of T),M.

The scalar curvature is a function scal : M — R given by the trace of Ric viewed
as a tensor on T, M :

scal(p) := tr(Ric,) = Z Ricy(e;) =2 Z sec(ej, e;5).
i=1

1<i<j<n

The last equality comes from the orthonormality of (e;)i=1,..» and

sec(ej,ei) =0Vi=1,..,n.
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Lie groups

This appendix focus on a very particular type of manifolds : the Lie groups. These
topological objects possess properties that may notably affect their metrics and define
interesting actions on smooth manifolds.

The elements defined here come for the most part from the two Lie groups lecture taught
by Dr. Oliver Baues respectively Prof. Anand Dessai at the University of Fribourg during
the fall semesters of 2016 and 2018 respectively (|Baul6| and [Des18|).

B.1 Basic recalls

— Definitions B.1 - LIE GROUP, & 1-PARAMETER SUBGROUP

A smooth manifold G with a group structure is called a Lie group if the internal law
and the inverse operations are smooth maps.

In this category, the Lie groups morphisms ¢ : G; — G2 are smooth group
homomorphisms. When G; = R, we speak of a 1-parameter subgroup of G for ¢.

— Examples B.2 - LIE GROUPS

(i) Every n-dimensional R-vector space - for instance (R", +) - is an n-dimensional
Lie group.

(ii) A torus T := S' x ... x §* =~ R" /n has a Lie group structure.
—_—

n factors

(iii) The isometry group (Iso(M,h),o) of a Riemannian manifold (M, h) and any of
its closed subgroups are Lie groups, according to the Myers-Steenrod Theorem
[AB15, Theorem 2.12]. The last section of this appendix will focus on the
1-parameter subgroups of isometries which generate Killing vector fields.
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— Definitions B.3 - LIE BRACKETS & LIE ALGEBRA

Let K be a field ;
V a K-vector space.

A Lie product or Lie bracket is any K-bilinear map [-,-] : V' x V — V satisfying
VX,Y,Z e V:

o Anti-symmetry : [X,Y] = —[Y, X];
o Jacobi identity : [[X,Y],Z]+[[Y,Z],X]|+[[Z,X],Y].
X,Y € V commute if [X,Y] = 0.

V' equipped with this new operation becomes a Lie algebra, that we often denote by
a lower-case fraktur letter : g := (V,[-,-]). In the Appendix A, the vector fields set
(X(M), [,]) illustrates this concept.

A linear map between Lie algebras v : (g1,[,-];) — (g2,[,],) is a Lie algebra
homomorphism when ¢ ([X,Y],) = [¢(X),¥(Y)],, VX, Y € g.

Given a Lie group G, we define the Lie algebra of G as the tangent space of G at
the neutral element e :

g:= Lie G :=T.G,

together with the Lie bracket being analog to the one for X(G) after identification of
T.G with specific vector fields, which we present just below.

B.2 Left- and right-invariant vector fields

— Definition B.4 - LEFT-/RIGHT-INVARIANT VECTOR FIELD
Let g € G and define the left-translation map Ly : G — G by Ly(h) := g - h.

A vector field X € X(G) is said left-invariant if it is Lg-invariant for all g € G, i.e.
(Ly), X = X YgeG.

We denote by X(G) the set of left-invariant vector fields on G.

Analogously, we define the right-translation map R4 and right-invariant vector fields
composing the set X(G)F.

Remark B.5. Every x € g can be identified to a unique left-invariant (resp. right-invariant)
vector field X, (resp. Xg) :
XL(e) =7
Xr(g) = (dLg), (x).
This observation reveals that g = T.G =~ X(G)F =~ X(G)".

In this context, Lie brackets on T.G are defined as follows for any x,y € T.G :

[z Y76 = [XL;YL]ae(G)(e) = (XLYL - YLXL)(Q)‘
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— Example B.6 - LEFT-INVARIANT VECTOR FIELD

On (S1, ), left-invariant vector fields take the following form :

Sl

X1,

The Lie brackets of left- and right-invariant vector fields generated by the same tangent
vectors are linked :

— Proposition B.7
Let G be a Lie group ;
geG;
T,y € g.
Then,
(X1, Yr](e) = — [Xr, YR] (e).
Proof B.7: Based on [Ban06].

We consider :
e the inversion map :
I : G — G
g = Ig)=g";

e the multiplication map :
u o GxG — G
(91.92) — g1-g2.

® Claim : the differential of p is the sum of differential of right- and left-translations.
i.e. dpi(g, g0)(&1,82) = dRg, (&1) + dLg,(§2), Vg1, 92 € G, V&1 € Ty, G, &2 € T, G.

Let g1,92 € G;
51 € TglG;
fg € ngG-

We define the parametrized curve

a : R — GxG
t — at) = (ci(t),ca(t)),

with c1,c9 : R — G such that
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Then,
(noa)(t) = p((cr(t), c2(t)) = cr(t) - ca(t).

Hence,
d'u(ghgz)(gl’ §2) = (uo 0‘)/ (0)

- (dRc2(0))01(0) (c1(0)) + (qu(O))cQ(o) (c5(0))
— (dRy,), (&) + (dLy),, (€2).

v
@ Claim : the differential of I is dI4(§) = —(dLg);(;) o (dRpg))g(&), for g€ G, & € TyG.
Let ge @G ;
§eT,G.

By definition of I, 1 (g,1(g)) = e. Therefore, by construction,

0 = dugrg) (& dly(&))
(dR1(g)), (€) + (dLg) gy (dI(€)).

e

Hence,
dly(€) = —(dLg)y, © (dRi), ().

Let x € T.G = g and define X1, and Xg as in the proposition :

X1(9) = (dLy), ()

Xr(g) = (dRy), () e
geG.

® Claim : Push-forward of left-invariant vector field by I is its opposite : [. X1 = —XR

Since I is a diffeomorphism, the push-forward vector field 1, Xy, is well-defined.
Evaluated at g € G, we obtain :

(I*XL) (g) Def.:A.S

dII—l(g) (XL (I_l(g)))
_<(dLg‘1)e_1 o (dRy), ) (Xz(g™h)
———
(dLg),
_ ((ng)e o (dLg)g,1> (Xr(g™h)
)

= —(dRy), (XL(Q g )

T

®

= —Xr(g).
v

Let’s now denote by [ X, Y] the right-invariant vector field generated by [ X, Y1] (€).
Rewrite also [X,Y]; := [Xp,Yy] since it stays left-invariant.
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@ [X,Y]|g =—[XRg, YR]

(=)

—[X,Y]r LJ{X,Y]L

C’or.:A.IO [I*XL, I*YL]

®
= [—XR, —YR]

= [XRr, YR].

® Finally, at the identity e € G :
[Xr, Yr](e) 2 —[X,Y]r(e) = —[Xz,Yz](e).

B.3 Action of a Lie group on a smooth manifold

— Definitions B.8 - SMOOTH ACTION & ORBITAL SPACE

Consider a Lie group (G, *);
a smooth manifold M.

A smooth (left) action of G on M, written G —~ M, consists of a map
w:Gx M— M,

fulfilling three properties :

(i) Vge G themap pig: M — M,p+— g-p:= pg(p) is a diffeomorphism ;

(i) pre = ida ;
(ill) fig, © pgy = Hgxgs V91,92 € G.
¢ induces an equivalence relation on M :

p~ q < 3g € G such that 1y(p) = q.
We define :

e (G as a transformation group of M ;

the isotropy group at p: G, :={ge G |g-p=>p};

the orbit of p: [p] =G -p={qe M |p~q};

the orbit mapof p: W : G —- M
g = g-p ;

the quotient space or orbital space: M/G ={[p] |pe M} ;

the quotient map as the canonical projection map « : M — M e
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The action is called :
o effectiveif g-p=pV¥pe M = g=cec, ie [\ Gp={e};

o freeif V/pe M :g-p=p= g =e, ie Gy are trivial Vp € M, which is a
particular case of an effective action ;

e transitive if for each pair p,q € M, there exists a g € G with p =g - q.
As a consequence, the quotient space contains only the neutral element [e] ;

e proper if themap ¢ : G x M — M x M, (g,p) — (g - p,p) is proper,
i.e. if K © M x M is compact, then 1»~!(K) is also compact.

Let’s now endow M with a metric h.

— Definitions B.9 - ISOMETRIC ACTION & HOMOGENEOUS MANIFOLD

h is said G-invariant metric when g4 € Iso(M, h) Vg € G. In such a case, we speak
of an isometric action or say that G acts by isometries on (M, h).

We call any Riemannian manifold (M,h) homogeneous if such a G exists and
if G acts transitively on M. h is then called homogeneous metric.

B.4 Left- and right-invariant metrics

A Lie group (G,-), being in particular a smooth manifold and thus Riemannian, admits
metrics. Due to the group structure of G, some of them take a particular form, whose
properties may be useful in Riemannian geometry.

— Definition B.10 - LEFT-, RIGHT- & BIINVARIANT METRIC

A metric [ on G is called left-invariant if every left translation L, is an isometry
regarding [. In other words, [ should satisfy :

1o (X(92), Y (92)) = lov-gs ( (L), (X(91 - 92)), (ALy,) , (V51 2)) ),
Vgl,gg € G, VX,Y € .}:(G)

We define a right-invariant metric r analogously.

If a metric is simultaneously right- and left-invariant, we name it biinvariant. We
often denote such metric by b.

Remark B.11. Any Lie group (G, ) admits a left-, respectively right-invariant metric. It
suffices to choose an inner product {-,-). on T.G and enlarge it to the whole tangential
bundle :

lg(X(g)v Y(Q)) = <(dLg*1)g (X(e))7 (dLgfl)g (Y(e>)>€7
Vg e G VX,Y € X(Q).

Nonetheless, we can’t construct a bi-invariant metric on any Lie group.
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” Proposition B.12

If a Lie group G is compact, then it owes a biinvariant metric b.

Proof B.12:
When a Lie group G is compact, it exists a unique left- and right-invariant integral
on C®(G). Let’s denote it by §, - w, for any volume form w € Q*(G). Considering
a right-invariant metric v on G, we define b as follows :

(XY 5= [ g (Ly)3(), (0L, )5 (V)
Vg e G,YX,Y € X(Q).

The arguments that b is biinvariant can be found in [AB15, Proposition 2.24].
[ |

— Lemma B.13

A Lie group G with a biinvariant metric b satisfies:
b(X,[Y.Z]) = b([X,Y]. Z),

VXY, Z e X(G)".

Proof B.13: See [AB15, Proposition 2.26 (i)]
]

Probably the most interesting property of a Lie Group equipped with a biinvariant metric
is its non-negative curvature which comes out of the following results :

— Proposition B.14

Let (G,b) be a Lie group with a biinvariant metric;
X,Y,Z e x(Q)".

Then :

(i) vxY =3 [X,Y];

(i) R(X,Y)Z = —
b(

(iii) b(R(X,Y

=
>

Proof B.1):
Ad (i) : Let’s consider the Koszul formula for any Z € X(G)*:

b(VxY,Z) = ${Yb(X,Z)+ Xb(Z,Y)— Zb(Y,X)
—b([KX],Z)—b([Y,Z],X)—b([X,Z],Y)}.
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Since X, Y, Z are left-invariant vector fields and b is a bitnvariant metric, the
smooth maps b(X,Z), b(Z,Y) and b(Y, X) are constant on M. Hence, the first

three terms vanish.

Previous identity becomes

BYXY,Z) = Hb(Y.X]Z) — b([Y 2 X) — b(X, 2], V)
Lemm:a B.13 %{—b([ ’X]’Z) +M+W}
e ol 4b([X, Y], 2),

Lie brackets

This equality holds for all Z € X(G)*. Therefore,

1
vxY = S [X.Y].
v

Ad (ii) : The equality ensues from the definition of the curvature tensor :

R(X, Y)Z = VxVyZ —VyVxZ — V[X,Y]Z

i)

= % [Y Z] 7VY[XaZ]_%[[X7Y]7Z]

i)

Rearrangin
= ii[[X Z],Y]] + [[Z, Y], X] +[[v. X1, 2]} + L[V, X]. 2]
=0 by Jac:;bi identity
= —1l[x,Y], 7]
v
Ad (iit)
bROLY)Y,X) Y _Ly([x,v]Y],X)
= 3h(XYY]X) - b([YX, Y], X)
Femma B3 _1p (Xy, [, X]) + b (Y X, [Y, X])
= b (XYL [V, X])
= —ib([X,Y],[X,Y])
- e ,
[ |
— Corollary B.15
Let (G,b) be a Lie group with a biinvariant metric ;
geq.
Then every 2-plane of TG has a non-negative sectional curvature.
Proof B.15: Direct consequence of (iii) in Proposition B.1J.
[ |
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B.5 Killing vector fields

In a word, Killing vector fields preserve the metric and distances of the Riemannian manifold
on which they are defined. Let’s now see what it means mathematically, supposing that
every integral curve is defined on the whole R, the other case being analog:

— Definition B.16 - KILLING VECTOR FIELD

A Killing vector field on a Riemannian manifold (M, h) describes a vector field
X € X(M) whose flow is a 1-parameter subgroup of Iso(M, h). That is, referring to
Definition A.6, the global flow 6 : R x M — M induces

0 : (R,+) — (Iso(M), o)
+ . 9,5 M - M
p = 0(tp).

We intuitively interpret X as a "displacement field", in that if we consider any N < M,

the map 6; N preserves distances for any t € R :

d(p,q) = d(0:(p), 0:(a)), ¥p,q € M.

X Killing vector field X not Killing vector field

Other characterizations of a Killing vector field, like the vanishing Lie derivative Lxh of
h in the direction X, are explained in [Pet98, p. 164 and following|, [Kob95, p. 42 and
following] or [GHLO04, Example 2.62].

The action fields studied in Chapter 2 are a typical example of Killing vector fields.
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