Cours du Prof. Dr. Anand Dessai

Algèbre linéaire II

Série 4 À rendre avant le jeudi 21 mars, 11h

Pour tous les exercices de toutes les séries une justification de votre réponse est attendue!

Exercice 1 1. Montrez que si $A \in M(n \times n, \mathbb{K})$ est une matrice de la forme $A = \begin{pmatrix} 0 & * \\ & \ddots & \\ 0 & & 0 \end{pmatrix}$, alors $A^n = 0$.

- 2. Déterminez si la matrice $A := \begin{pmatrix} 17 & 3\pi & e^{\sqrt{2}} & -8.3 \\ \sin(9.5) & -6.5 & \ln(7) & 0.0009 \\ \tan(0.77) & 4.4 & -6.5 & 0 \\ 0 & 0 & 0 & -6.5 \end{pmatrix}$ est nilpotente. (Indication : Utilisez série 13, ex. 1, ou trouvez une valeur propre de A^T .)
- **Exercice 2** 1. Soient V un \mathbb{K} -espace vectoriel de dimension $n, F \in \operatorname{End}(V)$ et p_F respectivement M_F le polynôme caractéristique respectivement minimal. Montrez que pour $\lambda \in \mathbb{K}$, on a : $p_F(\lambda) = 0 \iff M_F(\lambda) = 0$.
 - 2. Considérons l'ensemble $I := \{ p \in \mathbb{R}[t] \mid p(1)^2 + p(-2)^2 = 0 \}$. Montrez que I est un idéal dans $\mathbb{R}[t]$. Trouvez un polynôme normalisé $M \in \mathbb{R}[t]$ tel que I = (M).
 - 3. Soit V un \mathbb{K} -espace vectoriel de dimension n et $F \in \operatorname{End}(V)$. Montrez que si F est diagonalisable avec les valeurs propres $\lambda_1, \ldots, \lambda_r$ (toutes différentes), alors le polynôme minimal est égal à $M_F(t) = (t \lambda_1) \cdot \ldots \cdot (t \lambda_r)$.

Exercice 3

Soit $G: \mathbb{R}^3 \to \mathbb{R}^3$, $x \mapsto B \cdot x$, où $B:=\begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Montrez que $\ker(G) = \operatorname{span}(e_1)$ et $\ker(G^2) = \operatorname{span}(e_1, e_2)$. Soit $S^{-1} := (G^2(e_3) \ G(e_3) \ e_3)$. Montrez que $\det(S^{-1}) \neq 0$ et $S \cdot B \cdot S^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

- **Exercice 4** 1. Soient $A := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, $F : \mathbb{R}^3 \to \mathbb{R}^3$, $x \mapsto A \cdot x$, et $v := e_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Montrez que $\mathcal{A} := (F^2(v), F(v), v)$ est une base de \mathbb{R}^3 . Représentez F dans la base \mathcal{A} , c.-à-d. déterminez $M_{\mathcal{A}}^{\mathcal{A}}(F)$.
 - 2. Soient $B := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ et $G : \mathbb{R}^3 \to \mathbb{R}^3$, $x \mapsto B \cdot x$. Est-ce qu'il existe une base \mathcal{B} de \mathbb{R}^3 t.q. $M_{\mathcal{B}}^{\mathcal{B}}(G) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$?