Cours du Prof. Dr. Anand Dessai

Algèbre linéare I

SÉRIE 3 À rendre avant le jeudi 11 octobre, 11h

Pour tous les exercices de toutes les séries une justification de votre réponse est attendue!

Exercice 1

Soit $\varphi: G \to H$ un homomorphisme de groupes.

- a) Montrez que si G est un groupe fini et φ est surjectif, alors H est aussi un groupe fini.
- b) Montrez que si $H \neq \{e\}$ et φ est surjectif, alors $G \neq \{e\}$.
- c) Montrez que si φ est un isomorphisme de groupes, alors son inverse $\varphi^{-1}: H \to G$, $\varphi(g) \mapsto g$, est aussi un isomorphisme de groupes.

Exercice 2 a) Déterminez pour chaque exemple si (G, \star) est un groupe :

(i)
$$G = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, p \neq 0, q \not\equiv 0 \bmod 5 \right\} \text{ avec } a \star b := a \cdot b,$$

(ii)
$$G = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \not\equiv 0 \bmod 5 \right\} \text{ avec } a \star b := a + b.$$

b) On définit sur $\mathbb{Q}^* \times \mathbb{Q}$ l'opération suivante :

$$(a,b)\star(\tilde{a},\tilde{b}):=(a\cdot\tilde{a},b+a^{2018}\cdot\tilde{b}),\quad (a,b),(\tilde{a},\tilde{b})\in\mathbb{Q}^*\times\mathbb{Q}.$$

Montrez que $(\mathbb{Q}^* \times \mathbb{Q}, \star)$ est un groupe. Est-il abélien ?

Exercice 3 a) Décrivez le groupe des unités de l'anneau ($\mathbb{Z}/18\mathbb{Z}, +, \cdot$). Déterminez l'inverse a^{-1} de a = [5] et [7] dans ($\mathbb{Z}/18\mathbb{Z}, +, \cdot$).

- b) Soit R un anneau intègre et $a \in R$, $a \neq 0$. Montrez que $a \cdot x = a \cdot \tilde{x}$ implique $x = \tilde{x}$ pour tout $x, \tilde{x} \in R$.
- c) Soit R un anneau. Montrez que le groupe R^* des unités est un groupe.
- d) Soit K un corps. Montrez que pour tout $a, b \in K$ on a $0 \cdot a = a \cdot 0 = 0$, $a \cdot (-b) = (-a) \cdot b = -a \cdot b$, $a \cdot b = (-a) \cdot (-b)$.

Exercice 4 a) Construisez un corps avec exactement 4 éléments. Décrivez l'addition et la multiplication.

b) Soit $R := \left\{ \frac{a}{3^n} \mid a \in \mathbb{Z}, n \in \mathbb{N} \right\}$. Montrez que R est un sous-anneau de \mathbb{Q} , mais pas un corps.