Cours on Lie groups

(fall 2013 and spring 2014)

Below you find an incomplete list of DEFINITIONS, *examples* and theorems from the course on Lie groups:

REVIEW: TOPOLOGICAL MANIFOLDS, SMOOTH STRUCTURE, SMOOTH MANIFOLDS, SMOOTH MAPS, SUBMANIFOLDS, REGULAR VALUE

pre-image of a regular value is a submanifold (without proof)

LIE GROUPS, HOMOMORPHISM BETWEEN LIE GROUPS

G a Lie group, $H \subset G$ a subgroup which is also a submanifold $\implies H$ is a Lie group (H will be also called a Lie subgroup)

 $S^1, T^n, Gl(n, \mathbb{R}), Gl(n, \mathbb{C}), O(n), U(n), SO(n), SU(n), symplectic group Sp(n), dimension dim(G) of these Lie groups$

REVIEW: TANGENT VECTORS, TANGENT SPACE, TANGENT BUNDLE, DIFFERENTIAL OF A SMOOTH MAP, VECTOR FIELDS

LEFT INVARIANT VECTOR FIELDS

Lie group is parallizable, Lie bracket [X, Y] of two left invariant vector fields is left invariant, Jacobi identity

Lie Algebra $(LG, [\ ,\]),$ integral curves, one-parameter groups, exponential map $\exp:LG\to G$

 $(\exp_*)_0=id_{LG},$ naturality of the exponential map, exp for a matrix group $G\subset Gl(n,\mathbb{C})$

Lie algebras of classical groups, $sl(n, \mathbb{R}), o(n), so(n), u(n), su(n), sp(n)$

G connected \implies a homomorphism $f: G \rightarrow H$ is determined by $f_*: LG \rightarrow LH$. G a Lie group and H a closed abstract subgroup $\implies H$ is a submanifold (and, hence, H a Lie (sub)group,).

G, H Lie groups and $f: G \to H$ continuous homomorphism of groups $\implies f$ is smooth (and, hence, a homomorphism of Lie groups.

ADJOINT Ad : $G \to Aut(LG)$, ad : $LG \to End(LG)$

$$\begin{split} & [X,Y] = \operatorname{ad}(X)(Y). \ G \ \text{abelian} \implies [\ , \] = 0. \\ & \text{For } G \ \text{connected holds:} \ G \ \text{abelian} \iff \exp: LG \to G \ \text{is surjective.} \\ & G \ \text{abelian connected} \implies G \cong T^k \times \mathbb{R}^l. \\ & G \ \text{compact abelian} \implies G \cong T^n \times B \ \text{for } B \ \text{a finite abelian group.} \end{split}$$

COMPLEX G-REPRESENTATION $\rho: G \times V \to V$, REPRESENTATION SPACE V, ASSOCIATED HOMOMORPHISM $G \to Aut(V)$, MATRIX REPRESENTATION, MOR-PHISM BETWEEN G-REPRESENTATIONS, ISOMORPHIC/EQUIVALENT REPRESEN-TATIONS, UNITARY REPRESENTATIONS

standard U(n)-representation \mathbb{C}^n , one-dimensional representations of S^1 and of T^n , adjoint representation Ad, direct sum of representations, tensor product of representations, dual representation, conjugate representation, exterior algebra, symmetric algebra, representations $\Lambda^k V$, $S^k V$

SUBREPRESENTATION, IRREDUCIBLE REPRESENTATION, REDUCIBLE REPRESENTATION, COMPLETELY REDUCIBLE REPRESENTATION

Schur's lemma. G abelian and V irreducible G-representation $\implies \dim V = 1$.

 $G \text{ compact} \implies \text{there exists a left invariant normalized integral } \int : C^0(G) \to \mathbb{R},$ every *G*-representation has a *G*-invariant scalar product and every *G*-representation is completely reducible.

CHARACTER, IRREDUCIBLE CHARACTER, CLASS FUNCTION

properties of the character: 2.19 and theorem 2.20

character of S^1 - and T^n -representations

 $Irr(G; \mathbb{C}), d_W : Hom_G(V, W) \otimes W \to V$, multiplicity for an irreducible representation in a given representation

 $d: \bigoplus_{W \in Irr(G : \mathbb{C})} Hom_G(V, W) \otimes W \to V$ is an isomorphism of G-representations.

From now on all groups are assumed to be compact!

The isomorphism type of a G-representation G is uniquely determined by its character.

 $\langle \chi_V, \chi_V \rangle = 1 \implies V$ is irreducible.

V irreducible G-representation, W irreducible H-representation $\implies V \times W$

irreducible $(G \times H)$ -representation.

Every $(G \times H)$ -representation is sum of representations of the form $V \otimes W$, where V is an irreducible G-representation and W is an irreducible H-representation.

representations of SU(2) and SO(3)

 $Irr(SU(2); \mathbb{C}) = \{V_0, V_1, V_2, ...\}, Irr(SO(3); \mathbb{C}) = \{V_0, V_2, V_4, ...\}$ Clebsch-Gordan formulas

GROTHENDIECK CONSTRUCTION, COMPLEX REPRESENTATION RING R(G), VIRTUAL REPRESENTATIONS

 $R(SU(2)) \cong \mathbb{Z}[V_1]$ G and H compact Lie groups $\implies R(G \times H) \cong R(G) \otimes R(H).$

 $R(T^r), R(SU(2) \times S^1)$

orthogonality relations 3.1

REPRESENTATIVE FUNCTIONS, $\mathcal{T}(G; \mathbb{C})$

 $\mathcal{T}(G;\mathbb{C})$ is a subalgebra of $C^0(G;\mathbb{C})$ and $\overline{\mathcal{T}(G;\mathbb{C})} = \mathcal{T}(G;\mathbb{C})$

 $\mathcal{T}(S^1;\mathbb{C})$

(Peter-Weyl) G compact $\implies \mathcal{T}(G;\mathbb{C})$ dense in $(L^2(G), || ||)$. $\mathcal{T}(G;\mathbb{C})$ dense in $(C^0(G;\mathbb{C}), ||)$.

The irreducible characters generate a dense subspace in the vector space of all continuous class function (wrt. | |).

Every compact Lie group G admits a faithful representation.

Every compact Lie group G is isomorphic to a closed subgroup of U(N) for some $N \gg 0$.

maximal torus T of G, normalizer $N_G(T),$ Weyl group $W(G):=N_G(T)/T$

maximal tori exist Suppose $H \subset G$ is a subgroup. Then: H is a maximal torus $\iff H$ is a maximal connected abelian subgroup,

 $N_G(T)_e = T$ and W(G) is a finite group.

Suppose G is connected and T a max. torus. Then: every element is conjugate to an element in T (proof uses the Lefschetz fixed point formula),

all maximal tori are conjugate to each other, the exponential map is surjective, for $S \subset G$ connected abelian and $g \in Z_G(S)$ exists a maximal torus which contains S and g.

RANK $\operatorname{rk}(G)$ of a compact Lie group

Suppose G is connected, \widetilde{T} a max. torus and S a connected abelian subgroup. Then: $Z_G(\widetilde{T}) = \widetilde{T}$, $Z_G(S)$ is the union of all max. tori which contain S, the center Z(G) is the intersection of all max. tori, the Weyl group acts effectively on T, two elements $x, y \in T$ are conjugate in $G \iff \exists w \in W(G)$ with w(x) = y.

Suppose G is connected. Then: $R(G) \to R(T)^{W(G)}$ is injective and R(G) is isomorphic to a subring of $\mathbb{Z}[\lambda_1, \lambda_1^{-1}, \dots, \lambda_r, \lambda_r^{-1}]$, where $r := \operatorname{rk}(G)$.

maximal tori, Weyl group and representation ring for U(2), SU(2), U(n), SU(n) and SO(k).