Cours on Lie groups

(fall 2013 and spring 2014)

Below you find an incomplete list of definitions, examples and theorems from the course on Lie groups:

Review: topological manifolds, smooth structure, smooth manifolds, Smooth maps, submanifolds, Regular value
pre-image of a regular value is a submanifold (without proof)
Lie groups, homomorphism between Lie groups
G a Lie group, $H \subset G$ a subgroup which is also a submanifold $\Longrightarrow H$ is a Lie group (H will be also called a Lie subgroup)
$S^{1}, T^{n}, G l(n, \mathbb{R}), G l(n, \mathbb{C}), O(n), U(n), S O(n), S U(n)$, symplectic group $S p(n)$, dimension $\operatorname{dim}(G)$ of these Lie groups

Review: tangent vectors, tangent space, tangent bundle, differential of a Smooth map, Vector fields

LEFT INVARIANT VECTOR FIELDS
Lie group is parallizable, Lie bracket $[X, Y]$ of two left invariant vector fields is left invariant, Jacobi identity

Lie algebra ($L G,[$,$]), integral curves, one-parameter groups, ex-$ Ponential map $\exp : L G \rightarrow G$
$\left(\exp _{*}\right)_{0}=i d_{L G}$, naturality of the exponential map, exp for a matrix group $G \subset G l(n, \mathbb{C})$

Lie algebras of classical groups, $\operatorname{sl}(n, \mathbb{R}), o(n), s o(n), u(n), s u(n), s p(n)$
G connected \Longrightarrow a homomorphism $f: G \rightarrow H$ is determined by $f_{*}: L G \rightarrow L H$. G a Lie group and H a closed abstract subgroup $\Longrightarrow H$ is a submanifold (and, hence, H a Lie (sub)group,).
G, H Lie groups and $f: G \rightarrow H$ continuous homomorphism of groups $\Longrightarrow f$ is smooth (and, hence, a homomorphism of Lie groups.

ADJOINT Ad : $G \rightarrow A u t(L G)$, ad $: L G \rightarrow \operatorname{End}(L G)$
$[X, Y]=\operatorname{ad}(X)(Y) . G$ abelian $\Longrightarrow[]=$,0 .
For G connected holds: G abelian $\Longleftrightarrow \exp : L G \rightarrow G$ is surjective.
G abelian connected $\Longrightarrow G \cong T^{k} \times \mathbb{R}^{l}$.
G compact abelian $\Longrightarrow G \cong T^{n} \times B$ for B a finite abelian group.
COMPLEX G-REPRESENTATION $\rho: G \times V \rightarrow V$, REPRESENTATION SPACE V, ASSOCIATED HOMOMORPHISM $G \rightarrow A u t(V)$, MATRIX REPRESENTATION, MORPhism between G-REPRESENTATIONS, ISOMORPHIC/EQUIVALENT REPRESENTATIONS, UNITARY REPRESENTATIONS
standard $U(n)$-representation \mathbb{C}^{n}, one-dimensional representations of S^{1} and of T^{n}, adjoint representation Ad, direct sum of representations, tensor product of representations, dual representation, conjugate representation, exterior algebra, symmetric algebra, representations $\Lambda^{k} V, S^{k} V$

SUBREPRESENTATION, IRREDUCIBLE REPRESENTATION, REDUCIBLE REPRESENTATION, COMPLETELY REDUCIBLE REPRESENTATION

Schur's lemma. G abelian and V irreducible G-representation $\Longrightarrow \operatorname{dim} V=1$.
G compact \Longrightarrow there exists a left invariant normalized integral $\int: C^{0}(G) \rightarrow \mathbb{R}$, every G-representation has a G-invariant scalar product and every G-representation is completely reducible.

CHARACTER, IRREDUCIBLE CHARACTER, CLASS FUNCTION
properties of the character: 2.19 and theorem 2.20
character of S^{1} - and T^{n}-representations
$\operatorname{Irr}(G ; \mathbb{C}), d_{W}: \operatorname{Hom}_{G}(V, W) \otimes W \rightarrow V$, MULTIPLICITY FOR AN IRREDUCIble representation in a given representation
$d: \bigoplus_{W \in \operatorname{Irr}(G ; \mathbb{C})} \operatorname{Hom}_{G}(V, W) \otimes W \rightarrow V$ is an isomorphism of G-representations.

From now on all groups are assumed to be compact!

The isomorphism type of a G-representation G is uniquely determined by its character.
$\left\langle\chi_{V}, \chi_{V}\right\rangle=1 \Longrightarrow V$ is irreducible.
V irreducible G-representation, W irreducible H-representation $\Longrightarrow V \times W$
irreducible $(G \times H)$-representation.
Every $(G \times H)$-representation is sum of representations of the form $V \otimes W$, where V is an irreducible G-representation and W is an irreducible H-representation.
representations of $S U(2)$ and $S O(3)$
$\operatorname{Irr}(S U(2) ; \mathbb{C})=\left\{V_{0}, V_{1}, V_{2}, \ldots\right\}, \operatorname{Irr}(S O(3) ; \mathbb{C})=\left\{V_{0}, V_{2}, V_{4}, \ldots\right\}$
Clebsch-Gordan formulas
Grothendieck construction, Complex representation ring $R(G)$, virTUAL REPRESENTATIONS
$R(S U(2)) \cong \mathbb{Z}\left[V_{1}\right]$
G and H compact Lie groups $\Longrightarrow R(G \times H) \cong R(G) \otimes R(H)$.
$R\left(T^{r}\right), R\left(S U(2) \times S^{1}\right)$
orthogonality relations 3.1
REPRESENTATIVE FUNCTIONS, $\mathcal{T}(G ; \mathbb{C})$
$\mathcal{T}(G ; \mathbb{C})$ is a subalgebra of $C^{0}(G ; \mathbb{C})$ and $\overline{\mathcal{T}(G ; \mathbb{C})}=\mathcal{T}(G ; \mathbb{C})$
$\mathcal{T}\left(S^{1} ; \mathbb{C}\right)$
(Peter-Weyl) G compact $\Longrightarrow \mathcal{T}(G ; \mathbb{C})$ dense in $\left(L^{2}(G),\| \|\right)$.
$\mathcal{T}(G ; \mathbb{C})$ dense in $\left(C^{0}(G ; \mathbb{C}),| |\right)$.
The irreducible characters generate a dense subspace in the vector space of all continuous class function (wrt. | |).
Every compact Lie group G admits a faithful representation.
Every compact Lie group G is isomorphic to a closed subgroup of $U(N)$ for some $N \gg 0$.

MAXIMAL TORUS T OF G, NORMALIZER $N_{G}(T)$, WEYL GROUP $W(G):=$ $N_{G}(T) / T$
maximal tori exist
Suppose $H \subset G$ is a subgroup. Then: H is a maximal torus $\Longleftrightarrow H$ is a maximal connected abelian subgroup,
$N_{G}(T)_{e}=T$ and $W(G)$ is a finite group.
Suppose G is connected and T a max. torus. Then: every element is conjugate to an element in T (proof uses the Lefschetz fixed point formula),
all maximal tori are conjugate to each other, the exponential map is surjective, for $S \subset G$ connected abelian and $g \in Z_{G}(S)$ exists a maximal torus which contains S and g.

Rank $\operatorname{rk}(G)$ of A compact Lie group
Suppose G is connected, \widetilde{T} a max. torus and S a connected abelian subgroup. Then: $Z_{G}(\widetilde{T})=\widetilde{T}, Z_{G}(S)$ is the union of all max. tori which contain S, the center $Z(G)$ is the intersection of all max. tori, the Weyl group acts effectively on T, two elements $x, y \in T$ are conjugate in $G \Longleftrightarrow \exists w \in W(G)$ with $w(x)=y$.

Suppose G is connected. Then: $R(G) \rightarrow R(T)^{W(G)}$ is injective and $R(G)$ is isomorphic to a subring of $\mathbb{Z}\left[\lambda_{1}, \lambda_{1}^{-1}, \ldots, \lambda_{r}, \lambda_{r}^{-1}\right]$, where $r:=\operatorname{rk}(G)$.
maximal tori, Weyl group and representation ring for $U(2), S U(2), U(n), S U(n)$ and $S O(k)$.

