
Cours on Lie groups

(fall 2018)

Below you find an incomplete list of definitions, examples and theorems from
the course on Lie groups:

Review: topological manifolds, smooth manifolds, smooth maps,
submanifolds, regular value

pre-image of a regular value is a submanifold (without proof)

Lie groups, homomorphism between Lie groups

G a Lie group, H ⊂ G a subgroup which is also a submanifold =⇒ H is
a Lie group

S1, Tn, Gl(n,R), Gl(n,C), O(n), U(n), SO(n), SU(n), symplectic group Sp(n),
dimension of these Lie groups

Review: tangent vectors, derivations, tangent space, tangent bun-
dle, differential of a smooth map, vector fields

left invariant vector fields

Lie group is parallizable, Lie bracket [X,Y ] of two left invariant vector fields is
left invariant, Jacobi identity

Lie algebra (LG, [ , ]), integral curves, one-parameter groups, ex-
ponential map exp : LG→ G

(exp∗)0 = idLG, naturality of the exponential map, exp for a matrix group
G ⊂ Gl(n,C)

Lie algebras of classical groups, sl(n,R), o(n), so(n), u(n), su(n), sp(n)

G connected =⇒ a homomorphism f : G→ H is determined by f∗ : LG→ LH.
G a Lie group and H a closed abstract subgroup =⇒ H is a submanifold (and,
hence, H a Lie (sub)group).
G,H Lie groups and f : G → H continuous homomorphism of groups =⇒ f
is smooth (and, hence, a homomorphism of Lie groups).
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adjoint Ad : G→ Aut(LG), ad : LG→ End(LG)

[X,Y ] = ad(X)(Y ). G abelian =⇒ [ , ] = 0.
For G connected holds: G abelian ⇐⇒ exp : LG→ G is surjective.
G abelian connected =⇒ G ∼= T k × Rl.
G compact abelian =⇒ G ∼= Tn ×B for B a finite abelian group.

complex G-representation ρ : G × V → V , representation space V ,
associated homomorphism G → Aut(V ), matrix representation, mor-
phism between G-representations, isomorphic/equivalent represen-
tations, unitary representations

standard U(n)-representation Cn, one-dimensional representations of S1 and
of Tn, adjoint representation Ad, direct sum of representations, tensor product
of representations, dual representation, conjugate representation, exterior alge-
bra, symmetric algebra, representations ΛkV , SkV

subrepresentation, irreducible representation, completely reducible
representation

Schur’s lemma. G abelian and V irreducible G-representation =⇒ dimV = 1.

G compact =⇒ there exists a left invariant normalized integral
∫

: C0(G)→ R,
every G-representation has a G-invariant scalar product and every G-representa-
tion is completely reducible.

character, irreducible character, class function

properties of the character: 2.19 and theorem 2.20

character of S1- and Tn-representations

Irr(G;C), dW : HomG(V,W )⊗W → V , multiplicity for an irreducible
representation in a given representation

d :
⊕

W∈Irr(G;C)HomG(V,W )⊗W → V is an isomorphism ofG-representations.

From now on all groups are assumed to be compact!

The isomorphism type of a G-representation G is uniquely determined by its
character.
〈χV , χV 〉 = 1 =⇒ V is irreducible.
V irreducible G-representation, W irreducible H-representation =⇒ V ⊗W
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irreducible (G×H)-representation.
Every (G×H)-representation is sum of representations of the form V ⊗W , where
V is an irreducible G-representation and W is an irreducible H-representation.

representations of SU(2) and SO(3)

Irr(SU(2);C) = {V0, V1, V2, . . .}, Irr(SO(3);C) = {V0, V2, V4, . . .}
Clebsch-Gordan formulas

Grothendieck construction, complex representation ring R(G)

R(SU(2)) ∼= Z[V1]
G and H compact Lie groups =⇒ R(G×H) ∼= R(G)⊗R(H).

R(T r), R(SU(2)× S1)

orthogonality relations 3.1

representative functions, T (G;C)

T (G;C) is a subalgebra of C0(G;C) and T (G;C) = T (G;C)

T (S1;C)

(Peter-Weyl) G compact =⇒ T (G;C) dense in (L2(G), || ||).
T (G;C) dense in (C0(G;C), | |1).
The irreducible characters generate a dense subspace in the vector space of all
continuous class functions (wrt. | |1).
Every compact Lie group G admits a faithful representation.
Every compact Lie group G is isomorphic to a closed subgroup of U(N) for
some N � 0.

maximal torus T of G, normalizer NG(T ), Weyl group W (G) :=
NG(T )/T

maximal tori exist
Suppose H ⊂ G is a subgroup. Then: H is a maximal torus ⇐⇒ H is a
maximal connected abelian subgroup,
NG(T )e = T and W (G) is a finite group.

Suppose G is connected and T is a max. torus. Then: every element is conju-
gate to an element in T (proof uses the Lefschetz fixed point formula),
all maximal tori are conjugate to each other.
For G connected the exponential map is surjective.
For G connected, S a connected abelian subgroup of G and g ∈ ZG(S) exists a
maximal torus which contains S and g.
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Rank rk(G) of a compact Lie group

Suppose G is connected, T̃ is a maximal torus and S is a connected abelian
subgroup. Then: ZG(T̃ ) = T̃ , ZG(S) is the union of all max. tori which contain
S,
the center Z(G) is the intersection of all max. tori.
For G connected the Weyl group acts effectively on T ,
two elements x, y ∈ T are conjugate in G ⇐⇒ ∃w ∈W (G) with w(x) = y.

Suppose G is connected. Then: R(G)→ R(T )W (G) is injective and
R(G) is isomorphic to a subring of Z[λ1, λ

−1
1 , . . . , λr, λ

−1
r ], where r := rk(G).

maximal tori, Weyl group and representation ring for U(n) ...
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