Lie Gruppen Übungsblatt Nr. 1

Das Übungsblatt ist fakultativ und geht nicht in die Bewertung ein. Sie haben die Möglichkeit bearbeitete Aufgaben zur Korrektur abzugeben. Abgabe bis: Mittwoch 14. November 07

Aufgabe 1: Zeigen Sie: $U(n) := \{A \in GL(n, \mathbb{C}) \mid \overline{A}^T = A^{-1}\}$ ist eine Lie Gruppe (Zeigen Sie zum Beispiel: E_n ist ein regulärer Wert der Abbildung

$$f: M(n \times n, \mathbb{C}) \to \{B \in M(n \times n, \mathbb{C}) \mid \overline{B}^T = B\}, \quad A \mapsto \overline{A}^T \cdot A)$$

Aufgabe 2:

- 1. Sind X, Y Vektorfelder auf der Mannigfaltigkeit M, so ist [X, Y] := XY YX ein Vektorfeld auf M.
- 2. Zeigen Sie die Jacobi-Identität:

$$[[X,Y],Z]+[[Y,Z],X]+[[Z,X],Y]=0$$
 für alle Vektorfelder X,Y,Z .

Aufgabe 3: Sei G eine zusammenhängende Lie Gruppe und H eine normale Untergruppe, die diskret ist (d.h. zu jedem $h \in H$ gibt es eine offene Umgebung U von G mit $U \cap H = \{h\}$). Zeigen Sie: H liegt im Zentrum von G.

Aufgabe 4: Zeigen Sie : Die Abbildungen

$$\exp: so(n) \to SO(n)$$
 und $\exp: u(n) \to U(n)$

sind surjektiv, aber exp : $sl(2,\mathbb{R}) \to SL(2,\mathbb{R})$ nicht.

Aufgabe 5: Sei G die Lie Gruppe der oberen Dreiecksmatrizen mit Einsen in der Diagonalen,

$$G = \{A = (a_{ij}) \mid a_{ii} = 1 \ \forall i \text{ und } a_{ij} = 0, \text{ falls } i > j\} \subset GL(n, \mathbb{R}).$$

Bestimmen Sie die Lie Algebra von G.

Aufgabe 6: Sei G eine 1-dimensionale zusammenhängende Lie Gruppe. Zeigen Sie: $G \cong \mathbb{R}$ oder $G \cong S^1$.

Aufgabe 7: Sei G eine Lie Gruppe und $\mu: G \times G \to G$, $(x,y) \mapsto xy$, die Multiplikation in G. Zeigen Sie:

$$\mu_*: LG \times LG \to LG, \quad \mu_*(X,Y) = X + Y$$

Aufgabe 8: Sei $a: \mathbb{R}^2 \to M$ eine differenzierbare Abbildung mit a(s,0) = p für alle $s \in \mathbb{R}$. Sei $\gamma: \mathbb{R} \to T_pM$ die Kurve $\gamma(s) = \frac{\partial}{\partial t}_{|t=0} a(s,t)$. Wir identifizieren $T_{\gamma(0)}(T_pM)$ kanonisch mit T_pM . Die Kurve γ definiert einen Tangentialvektor $\gamma'(0) \in T_pM$. Sei $\varphi \in \mathcal{E}(p)$. Zeigen Sie:

$$\gamma'(0)(\varphi) = \frac{\partial^2}{\partial s \partial t}|_{s=t=0} \varphi(a(s,t)).$$

Tip: OBdA ist $(M, p) = (\mathbb{R}^n, 0)$ und φ linear.

Aufgabe 9: Sei V ein n-dimensionaler reeller Vektorraum und B eine diskrete Untergruppe von V. Dann gilt: B wird von linear unabhängigen Vektoren g_1, \ldots, g_k erzeugt.

- 1. Suchen Sie eine geeignete Literatur (z.B. das Buch von Bröcker-tom Dieck, Seite 26).
- 2. Lesen und verstehen Sie den Beweis.