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Two fundamental classical operators

M oriented Riemannian manifold

signature operator  index sign(M)  genus sign : ΩSO∗ → Q

M Spin-manifold

Dirac operator  index Â(M)  genus Â : ΩSO∗ → Q
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Rigidity of the signature and the Â-genus
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Equivariant operators

Let M be a smooth manifold and G a connected compact Lie group
which acts smoothly on M (preserving the structure).

operator  G-equivariant operator

index  G-equivariant index

M oriented: signature sign(M) equiv. signature signG(M) ∈ R(G)

M Spin: index of Dirac operator Â(M) equiv. index ÂG(M) ∈ R(G)
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Lefschetz fixed point formula for S1-actions

Let M be a manifold with S1-action, D an S1-equivariant operator on
M and indS1(D) ∈ R(S1) = Z[λ, λ−1] the equivariant index.
By localizing the symbol of the operator one can associate to each
connected component X ⊂MS1

a local contribution νX(λ) of indS1(D).
νX(λ) is a meromorphic function with possible poles only in S1, 0 or ∞.

Theorem (Lefschetz fixed point formula, Atiyah-Bott-Segal-Singer)

indS1(D)(λ) =
∑
X νX(λ) for any topological generator λ ∈ S1.

Corollary

S1 cannot act on an orientable manifold with precisely one fixed point.

Idea of proof: Apply the Lefschetz fixed point formula to the signature
operator.

Anand Dessai elliptic genera, symmetry and curvature



Signature and Â-genus
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Rigidity of the signature

Theorem (rigidity)

The signature is rigid, i.e. signS1(M)(λ) = sign(M) for all λ ∈ S1.

Proof.

Apply the homotopy invariance of cohomology or the Lefschetz fixed
point formula.

The following properties are equivalent:

The rigidity of the signature for S1-actions.

The rigidity of the signature for G-actions.

(multiplicativity) sign(E) = sign(M) · sign(F ) for any fibre bundle
E →M with oriented fibre F and connected structure group G.
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Signature and group actions

Two consequences of the rigidity:

Let σ ∈ S1 be the element of order 2 and Mσ ◦Mσ a transversal
self-intersection of the fixed point manifold Mσ.

Then sign(M) = sign(Mσ ◦Mσ). Proof:
sign(M) = signS1(M)(σ) = sign(Mσ ◦Mσ). Then
sign(M) = sign(Mσ ◦Mσ).

signS1(M) = sign(MS1
)

The signature is the universal genus for any of these properties.

Idea of proof: ΩSO∗ ⊗Q = Q[CP 2,CP 4, . . .].
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An example

Example

Let M = CP 2 and let λ ∈ S1 act via

λ([z0 : z1 : z2]) = [z0 : λ · z1 : λ2 · z2]

=⇒ σ([z0 : z1 : z2]) = [z0 : −z1 : z2]

=⇒ Mσ ∼= CP 1 ∪ CP 0

=⇒ sign(Mσ ◦Mσ) = sign(CP 1 ◦ CP 1) = sign(pt) = 1

MS1
= {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]} =⇒ sign(MS1

) = 1−1 + 1 = 1
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Application to involutions

The identity sign(M) = sign(Mσ ◦Mσ) directly yields

Corollary

dimMσ < 1
2 dimM =⇒ sign(M) = 0.

These results are due to Hirzebruch and related to work of Conner-Floyd,
Boardman ...
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Signature and positive curvature

Betti number theorem (Gromov)

If M is of positive sectional curvature then the sum of the Betti numbers
of M is bounded from above by a constant C which depends only on the
dimension of M .

Corollary

M of positive sectional curvature =⇒ |sign(M)| < C.

Note: Positive Ricci curvature does not restrict the signature.

Examples of Sha-Yang and Perelman show: There are simply connected
manifolds of positive Ricci curvature which do not admit a metric of
positive sectional curvature.
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Rigidity of the Dirac operator

Let M be a Spin-manifold with S1-action.

Â-vanishing theorem (Atiyah-Hirzebruch)

If S1 acts non-trivially on M then the equivariant Â-genus vanishes

ÂS1(M) = Â(M) = 0.

Idea of proof: Apply the Lefschetz fixed point formula to the Dirac
operator to conclude that the equivariant index ÂS1(M) extends to a
holomorphic function on C which vanishes in ∞.

Conversely, if Â(M) = 0 then a multiple of M is Spin-bordant to a
Spin-manifold with non-trivial S1-action.
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Rigidity of the Dirac operator

The following properties are equivalent:

The vanishing of the equivariant Â-genus for non-trivial S1-actions
on Spin-manifolds.

The vanishing of the equivariant Â-genus for non-trivial G-actions
on Spin-manifolds.

(multiplicativity) Â(E) = 0 for any fibre bundle E →M with
Spin-fibre and non-trivial connected structure group.

The Â-genus is the universal genus for any of these properties.
Idea of proof: ΩSO∗ ⊗Q ∼= ΩSpin∗ ⊗Q ∼= Q[K3,HP 2,HP 3, . . .]
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Â-genus and positive curvature

Theorem (Lichnerowicz)

If M is a Spin-manifold with positive scalar curvature then Â(M) = 0.

Theorem (Lichnerowicz-Hitchin)

If M is a Spin-manifold with positive scalar curvature then α(M) = 0.

Rationally the converse is true (Gromov-Lawson).

Theorem (Stolz)

M simply connected Spin-manifold of dimension ≥ 5 with
α(M) = 0 =⇒ M admits a Riemannian metric with positive scalar
curvature.

Problem: Are there simply connected manifolds of positive scalar
curvature which do not admit a metric of positive Ricci curvature?
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The universally rigid genus for Spin-manifolds

The signature and the Â-genus are both rigid for connected group
actions on Spin-manifolds.
A universal genus with this property is

ϕuniv : ΩSO∗ → (ΩSO∗ /I∗)⊗Q,

where I∗ is the ideal generated by fibre bundles with Spin-fibre,
connected structure group and zero-bordant base.

Problem: Describe this universal genus geometrically.

This problem was studied in the 1980s by Landweber, Ochanine, Stong ...
... major breakthrough by Witten using the free loop space.
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Orientation and Spin-structures on LM

LM := Map(S1,M) space of loops in M , M simply connected
P →M principal bundle with structure group G

 LP → LM principal bundle with structure group LG
LM orientable

def.⇐⇒ the structure group LSO can be reduced to the
connected component of the identity.
LM orientable ⇐⇒ M is Spin

LM is Spin
def.⇐⇒ M is Spin with Spin-structure P →M and the

structure group LSpin of LP → LM can be lifted to the universal
central extension by S1.

LM is Spin if M is a String-manifold, i.e. if M is Spin and
p1
2 (M) = 0.
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Witten’s heuristic

S1 acts on LM by reparametrizing the loops.

(LM)S
1

= { constant loops } = M

Witten’s heuristic: Suppose

DLM is an S1-equivariant operator on LM .

the S1-equivariant index indS1(DLM ) could be defined.

one could use the Lefschetz fixed point formula formally to the
natural S1-action on LM to compute from indS1(DLM ) an honest
invariant of M .

Then indS1(DLM ) should be thought to be this invariant.
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Witten’s heuristic for the signature

M Spin-manifold  LM orientable
DLM hypothetical S1-equivariant signature operator on LM

apply formally the Lefschetz fixed point formula to indS1(DLM )
 one obtains the following honest invariant of M :

The elliptic genus (or signature of the free loop space) sign(q,LM)
sign(q,LM) is a modular function of weight 0 for
Γ0(2) := {A = ( a bc d ) ∈ SL2(Z) | c ≡ 0 mod 2}.
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The elliptic genus sign(q,LM)

The elliptic genus can be expressed as a series of twisted signatures:

sign(q,LM) = sign(M,

∞⊗
n=1

SqnTM ⊗
∞⊗
n=1

ΛqnTM)

=
∞∑
m=0

sign(M,Rm) · qm = sign(M) + 2sign(M,TM) · q + . . . ,

where St :=
∑
i S

i · ti (resp. Λt :=
∑
i Λi · ti) denotes the symmetric

(resp. exterior) power operation,
sign(M,E) is the index of the signature operator twisted with the
complexified vector bundle E ⊗ C
and R0 = 1, R1 = 2TM,R2 = 2TM +TM ⊗TM + Λ2TM +S2TM, . . .
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Witten’s heuristic for the Dirac operator

M String-manifold  LM is Spin
DLM hypothetical S1-equivariant Dirac operator on LM

apply formally the Lefschetz fixed point formula to indS1(DLM )
Y oga
 the Witten genus ϕW (M)

ϕW (M) = q− dimM/24 · Â(M,

∞⊗
n=1

SqnTM)

= q− dimM/24 · (Â(M) + Â(M,TM) · q+ Â(M,TM +S2TM) · q2 + . . .)

Â(M,E) := index of the Dirac operator twisted with E ⊗ C

ϕW (M) is a modular function of weight 0 for SL2(Z)
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Rigidity of the elliptic genus sign(q,LM)

Let M be an oriented manifold with smooth S1-action. Then each
twisted signature appearing in the definition of the elliptic genus refines
to an S1-equivariant twisted signature and sign(q,LM) ∈ Z[[q]] refines
to an S1-equivariant elliptic genus sign(q,LM)S1 ∈ R(S1)[[q]]

Rigidity theorem (Witten, Taubes, Bott-Taubes, Liu)

If M is a Spin-manifold then the elliptic genus is rigid, i.e.
sign(q,LM)S1(λ) = sign(q,LM) for all λ ∈ S1.
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Rigidity of the elliptic genus sign(q,LM)

The following properties are equivalent:

The rigidity of the elliptic genus for S1-actions on Spin-manifolds.

The rigidity of the elliptic genus for G-actions on Spin-manifolds.

(multiplicativity) sign(q,LE) = sign(q,LM) · sign(q,LF ) for any
fibre bundle E →M with Spin-fibre F and connected structure
group.

The elliptic genus is the universal genus for any of these properties.
Idea of proof: Construct a sequence (M4,M8,M12, . . .) of manifolds,
where M4 = K3, M8 = HP 2 and each M4k, k ≥ 3, is an HP 2-bundle
over a zero-bordant base, such that

ΩSO∗ ⊗Q ∼= ΩSpin∗ ⊗Q ∼= Q[M4,M8,M12, . . .].
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Elliptic genus and group actions

Let M be a Spin-manifold with S1-action, σ ∈ S1 the involution and
Mσ ◦Mσ a transversal self-intersection.

Then sign(q,LM) = sign(q,L(Mσ ◦Mσ)).
Proof: sign(q,LM) = sign(q,LM)S1(σ) = sign(q,L(Mσ ◦Mσ)).

The elliptic genus is the universal genus for this property.
Idea of proof: ΩSO∗ ⊗Q ∼= ΩSpin∗ ⊗Q ∼= Q[K3,HP 2,HP 3, . . .]
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Rigidity of the signature and the Â-genus
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The elliptic genus of homogeneous spaces

Recall that the elliptic genus is a series of twisted signatures

sign(q,LM) = sign(M) + 2sign(M,TM) · q + . . .

Strong rigidity theorem (Hirzebruch-Slodowy)

Let M be a homogeneous space. If M is Spin then
sign(q,LM) = sign(M).

Assume M is Spin and S1 acts on M with isolated fixed points.
Problem: Is sign(q,LM) strongly rigid, i.e. sign(q,LM) = sign(M)?
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Expansion in the Â-cusp

The elliptic genus sign(q,LM) is the Fourier expansion of a modular
function for Γ0(2) in one of its cusps (the signature cusp). In the other
cusp (the Â-cusp) the Fourier expansion of this modular function is given
by a series Φ0(M) of indices of twisted Dirac operators.

Φ0(M) = q− dimM/8 · Â(M,
⊗

n=2m+1>0

Λ−qnTM ⊗
⊗

n=2m>0

SqnTM)

= q− dimM/8 · (Â(M)− Â(M,TM) · q+ Â(M,Λ2TM + TM) · q2 + . . .).
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Applications to involutions

The identity sign(q,LM) = sign(q,L(Mσ ◦Mσ)) implies

Φ0(M) = Φ0(Mσ ◦Mσ)

Comparing the pole order of the left and right side gives

Theorem (Hirzebruch-Slodowy)

If the codimension of Mσ is > 4r then the first (r+ 1) coefficients in the
expansion Φ0(M) vanish.

Example

codim Mσ > 0⇒ Â(M) = 0, codim Mσ > 4⇒ Â(M,TM) = 0...

This can be generalized to elements σ of arbitrary finite order.
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The elliptic genus and positive curvature

Theorem (D.)

Let M be a 2-connected manifold of dimension 6= 8. If M admits a
metric of positive sectional curvature with effective isometric S1-action
then the first two coefficients in the expansion Φ0(M) vanish, i.e.
Â(M,TM) = Â(M) = 0.

Theorem (D.)

Let M be a Spin-manifold of dimension > 12r − 4. Suppose M admits
a metric of positive sectional curvature and an effective isometric action
by a torus T of rank 2r. Then the first (r + 1) coefficients in the
expansion Φ0(M) vanish.
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The elliptic genus and positive curvature

Corollary

There are simply connected manifolds of arbitrary large dimension with
non-trivial S1-action and small Betti numbers which admit an
S1-equivariant metric of positive Ricci curvature but no S1-equivariant
metric of positive sectional curvature.

The only known examples of manifolds of positive sectional curvature are
quotients of Lie groups (homogeneous spaces or biquotients). For the
Spin-examples the elliptic genus is strongly rigid.

Problem: Let M be a Spin-manifold of positive sectional curvature. Is
sign(q,LM) = sign(M)?
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Rigidity of the Witten genus ϕW (M)

Let M be a Spin-manifold with smooth G-action. Then each twisted
Dirac index appearing in the definition of the Witten genus

ϕW (M) = q− dimM/24 · Â(M,

∞⊗
n=1

SqnTM) ∈ q− dimM/24 · Z[[q]]

ϕW (M) = q− dimM/24·(Â(M)+Â(M,TM)·q+Â(M,TM+S2TM)·q2+. . .)

refines to an G-equivariant twisted Dirac index and ϕW (M) refines to
the G-equivariant Witten genus ϕW (M)G ∈ q− dimM/24 ·R(G)[[q]].

Â-vanishing theorem for the loop space (D., Höhn, Liu)

Let M be a String-manifold. If S3 acts non-trivially on M then the
equivariant Witten genus vanishes ϕW (M)S3 = ϕW (M) = 0.

Problem: Does the Witten genus vanish for S1-actions?
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Rigidity of the Witten genus ϕW (M)

The following properties are equivalent:

The vanishing of the equivariant Witten genus for non-trivial
S3-actions on String-manifolds.

The vanishing of the equivariant Witten genus for non-trivial
semi-simple group actions on String-manifolds.

(multiplicativity) ϕW (E) = 0 for any fibre bundle E →M with
String-fibre and semi-simple structure group.

The Witten genus is the universal genus for any of these properties.
Idea of proof: Construct a sequence (M4,M8,M12, . . .) of manifolds,
where M4 = K3, M4k, k ≥ 2, is String and each M4k, k ≥ 4, is a
Cayley plane bundle.
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Elliptic genera
Rigidity of the elliptic genus
Rigidity of the Witten genus

Rigidity of the Witten genus ϕW (M)
Witten genus and positive curvature
The universally rigid genus for String-manifolds

Witten genus and positive curvature

Stolz’ conjecture

Let M be a String-manifold. If M admits a metric of positive Ricci
curvature then the Witten genus ϕW (M) vanishes.

The conjecture is known to be true for

homogeneous spaces (apply the vanishing theorem)

biquotients G//H, where G is a simple Lie group (D.)

certain Kähler manifolds with positive Ricci curvature including
complete intersections in CPn (Landweber-Stong) or in exceptional
complex symmetric spaces (Förster).

Problem: Does the Stolz’ conjecture hold for Kähler manifolds with
positive Ricci curvature?
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The universally rigid genus for String-manifolds

The elliptic genus and the Witten genus are multiplicative for any fibre
bundle E →M with String-fibre and semi-simple structure group.
A universal genus with this property is

ϕuniv : ΩSO∗ → (ΩSO∗ /I∗)⊗Q,

where I∗ is the ideal generated by fibre bundles with String-fibre,
semi-simple structure group and zero-bordant base.

Problem: Describe this universal genus geometrically.
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