x yi⟨x, yi⟩
a=√3y1↔(1,0,3; √3,0,0,0,0,0,0,0,0; √3,0,0,0,0,0,0,0,0) 0
y2↔(√3,0,0; 0,0,0,0,0,0,1,0,0; 0,1,0,0,0,0,0,0,0) 0
y3↔(√3,0,0; 0,1,0,0,0,0,0,0,0; 0,0,0,0,0,0,1,0,0) 0
y4↔(√3,0,√3; 0,0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0) 0
(√3,√3,√3; 0,0,0,0,0,0,1,1,1; 1,0,0,0,0,0,1,0,1) 0
(√3,√3,√3; 0,1,0,0,0,0,0,1,1; 0,1,0,0,0,0,0,1,1) 0
(√3,√3,√3; 1,0,0,0,0,0,1,0,1; 0,0,0,0,0,0,1,1,1) 0
(0,√3,√3; 0,0,0,0,0,0,0,1,1; 0,0,0,0,0,0,1,0,0) -1
(0,√3,√3; 0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1,1) -1
(0,√3,√3; 1,0,0,0,0,0,0,0,1; 1,0,0,0,0,0,0,0,1) -1
(√3,√3,0; 1,0,0,0,0,0,0,1,1; 1,0,0,0,0,0,0,1,1) -1
(√3,√3,√3; 0,0,0,0,0,0,1,1,1; 0,0,0,1,0,0,0,0,0) -1
(√3,√3,√3; 0,0,0,0,0,1,0,1,0; 0,0,0,0,0,1,0,1,0) -1
(√3,√3,√3; 0,0,0,0,0,1,0,1,0; 1,1,0,0,0,0,0,0,1) -1
(√3,√3,√3; 0,0,0,0,1,0,0,0,1; 0,0,1,0,0,0,0,1,0) -1
(√3,√3,√3; 0,0,0,1,0,0,0,0,0; 0,0,0,0,0,0,1,1,1) -1
(√3,√3,√3; 0,0,1,0,0,0,0,1,0; 0,0,0,0,1,0,0,0,1) -1
(√3,√3,√3; 0,1,0,0,0,0,0,1,1; 1,0,0,0,0,1,0,0,0) -1
(√3,√3,√3; 0,1,0,0,0,0,1,0,0; 1,0,0,0,0,0,1,0,1) -1
(√3,√3,√3; 1,0,0,0,0,0,1,0,1; 0,1,0,0,0,0,1,0,0) -1
(√3,√3,√3; 1,0,0,0,0,1,0,0,0; 0,1,0,0,0,0,0,1,1) -1
(√3,√3,√3; 1,1,0,0,0,0,0,0,1; 0,0,0,0,0,1,0,1,0) -1
(√3,√3,√3; 1,1,0,0,0,0,0,0,1; 1,1,0,0,0,0,0,0,1) -1
(1,3,3; 0,0,0,0,0,0,√3,0,√3; √3,0,0,0,0,0,0,√3,0) −√3
(1,3,3; 0,√3,0,0,0,0,0,0,√3; 0,√3,0,0,0,0,0,0,√3) −√3
(1,3,3; √3,0,0,0,0,0,0,√3,0; 0,0,0,0,0,0,√3,0,√3) −√3
a= 3 (1,0,3; 1,0,0,0,0,0,0,0,0; 1,0,0,0,0,0,0,0,0) 0
The Lorentzian products ⟨yi, yj⟩
y2y3y4
y1−√3−√30
y20 0
y30
Table 2.0.27: Admissible pairs {x, yi}for σ∞=e
G2∪e
E8∪e
E8and where
x↔(0,0, a; 0,0,0,0,0,0,0,0,1; 0,0,0,0,0,0,0,0,1)
113