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Preface 

Description of time-dependent processes is one of the most beautiful chapters of 
quantum mechanics. It has been useful in many areas of chemistry, for example 
photochemistry and understanding the properties of short-lived negative ions. It has 
become very popular with the invent of femtosecond laser experiments, and even 
more popular because of the award of the Nobel Prize to professor Zewail. 

My interest in the properties of wave packets was awakened many years ago because 
of its usefulness in rationalizing the motion of nuclei in short negative ions, 
encountered in electron-molecule scattering. But I am fascinated by the more recent 
applications in femtosecond chemistry which are, of course, even more exciting 
because they permit explicit observation of the time dependence. I have therefore 
included them in this course although my own research is concerned with electron-
molecule collisions and not with femtosecond laser chemistry.  

The course emphasizes graphical illustrations of the concepts, and not complex 
mathematics. It is designed for undergraduate students of chemistry, who know the 
time-independent Schrödinger equation, are familiar with the concepts of atomic and 
molecular orbitals, molecular vibration and rotation, but who have not been exposed 
to the time-dependent formalism of quantum mechanics. 
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1. Objectives 

- Description of motion in classical mechanics involves the position of an object 
expressed as a function of time. For example, a pendulum moves from left to right 
and back again. 

- Description of motion in quantum mechanics, as far as it is generally taught in 
undergraduate chemistry courses, involves a wave function which does not depend 
on time. The probability ( ) ( )xxP 2Ψ=  to find the particle in various places thus 
also does not depend on time, the particle “does not move”. 

 

- In this lecture you will learn how to describe motion in quantum mechanics in the 
sense that the probability to find a particle is in one place at a given time, and at a 
different place some time later. 

- You will learn about the time-dependent Schrödinger equation, and the properties 
of its solutions for various model potentials. 

- We will then discuss applications in electron-molecule scattering and in 
femtosecond laser experiments. 

 ( ) ( )tcos ω= Atx
( ) ( )tFctxP ≠

Figure 1-1. Description of motion in classical physics and in quantum 
mechanics. 
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2. Time independent Schrödinger equation 

- As an introduction, we will consider the solutions of the time independent 
Schrödinger equation which you already know, but from a slightly different point 
of view, which will permit extension into the time dependent formalism. 

- In particular, you will learn how to construct qualitative wave functions for various 
potentials and understand how does their shape depend on the shape of the 
potential. 

2.1. Properties of the wave functions. 

- we are looking for the solutions of the Schrödinger equation in a one-dimensional 
potential: 

  

E

Etot

Etot

Ekin( )x

“negative Ekin”

V x( )

x
 

- The time-independent Schrödinger equation is then: 

  ( )( ) ( ) ( )xExxVT tot Ψ⋅=Ψ+ˆ   

  ( ) ( ) ( ) ( )xExxVx
xm tot Ψ⋅=Ψ⋅+Ψ− 2

2

d
d

2
h  (1) 

 let’s reformulate it a little: 

  ( ) ( )[ ] ( )xxVEx
xm tot Ψ⋅−=Ψ− 2

2

d
d

2
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  ( ) ( )[ ] ( )xxVEmx
x tot Ψ⋅−−=Ψ

h

2
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2

2

  

  ( ) ( )[ ] ( )xxVEmx
x tot Ψ⋅−−=Ψ

h

2
d
d

2

2

 (2) 
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- Equation (2) tells us that a ‘good’ wavefunction is one whose second derivative is 
proportional to the kinetic energy and to the value of the wave function (at any 
given x). 

- Let’s see what is the graphical meaning of the second derivative. 

 Remember that a derivative is just the slope of the curve. The first derivative is a 
curve showing the slope of the original function; the second derivative is obtained 
by drawing the slope of the first derivative. 

 Let’s draw the second derivatives of a few trial functions and see what we learn: 

  

�( )x

�( )x

�( )x

x

x

x

d

d
2

dx

dx2

1 2 3 4 5 6

 

- Looking at the functions 1, 2, and 3 we see that the second derivative has 
something to do with the curvature of the original function. The function 1 is a 
straight line, is not curved, and the second derivative is zero. The function 2 is 
slightly curved and the second derivative (in the absolute value) is small. Finally 
the function 3 is more curved and its second derivative is (in the absolute value) 
large. 

Observation I: Second derivative expresses the curvature of a function. The 
second derivative (the absolute value) is large when the original 
function is strongly curved. 

- There is another interesting observation: The sign of the second derivative is 
opposite to the sign of the original function in the cases 2, 3, and 4. The sign is the 
same in the cases 5 and 6. 

Observation II: Functions curved back towards the axis have 2nd derivative with 
the opposite sign. 
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 Functions curved away from the axis have 2nd derivative with the same sign. 

- Finally the curves 2 – 6 show that curved functions can be formed whose second 
derivatives have the same shape as the original function — as required by the 
Schrödinger equation. 

The Schrödinger equation thus places the following requirements on the wave 
function: 

- Ekin > 0  —→  wave function bends towards the axis 

 Ekin < 0  —→  wave function bends away from the axis 

- the curvature is proportional to 

- the mass m 

- the absolute value of Ekin  

- the absolute value of wave function Ψ(x) 

In the following section we will construct and understand the wave functions in 
several model potentials. 

 

2.2. Wave functions in several model potentials. 

A very pretty simulation allowing you to draw your own potentials is given by Cemal 
Yalabik of the Bilkent University at his web page: 

http://www.fen.bilkent.edu.tr/~yalabik/applets/1d.html 

 

2.2.1. Free particle 

- Suitable initial values of Ψ(x) and its slope are chosen on the left. 

- The kinetic energy is positive, Ψ(x) curves towards the axis. 

�( )x

x

Ekin

Etot

V x( )

initial value and slope of ( )� x
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- The value of Ψ(x) decreases, therefore its curvature also decreases. Ψ(x) becomes 
zero as it crosses the axis and it becomes a straight line at this point.  

- Ψ(x) curves back up after crossing the zero line. Its (absolute) value increases 
initially after crossing the zero line, and it consequently becomes more and more 
curved (as if being afraid of departing too far from the base line).  

- If you continue to draw the red line according to these rules, you obtain a cosine 
wave! You see why Ψ(x) is called the wave function. 

Now try the same thing with less kinetic energy: 

 

�( )x

x

EtotEkin V x( )

initial value and slope of ( )� x

 

- Ψ(x) is now less curved — the wavelength becomes longer. Our rules contain the 

de Broglie relation 
p
h

=Λ  ! 

What happens when the kinetic energy becomes negative? 

 

x

Etot

Ekin

V x( )

 

- Ψ(x) curves away from the baseline. The farther it gets, the more it curves. It 
departs from the baseline exponentially. 
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A more precise description of a free particle. 

- The cosine function has one problem: The probability density ( ) ( )xxP 2Ψ=  
oscillates with x, which is not physically reasonable. We need a wave function 
which oscillates, but gives probability density which does not oscillate.  

- These requirements are fulfilled by a complex wave function 

  ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +==Ψ xpixpAeAx

xpi

hh
h sincos  (3) 

Re( ( ))� x Im( ( ))� x

x

Etot

direction of motion

Ekin
V x( )

 

 The real part of the wave function, Re(Ψ(x)), is shown in red. 

 The imaginary part of the wave function, Im(Ψ(x)), is shown in purple. 

- Note that if the particle moves in the opposite direction, with an impulse –p (where 
p is the absolute value of the negative impulse), then the wave function is  

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −

+
−

==Ψ
−

xpixpAxpixpAeAx
xpi

hhhh
h sincossincos  

 that is, the imaginary part is shifted by 180°. It is the phase relation of the real and 
the imaginary parts which determine whether the particle moves left or right! 

 

Re( ( ))� x Im( ( ))� x

x

Etot

direction of motion

Ekin
V x( )
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- The probability density is now a constant, as it should be: 

 ( ) ( ) ( ) ( ) const.sincos 2222*2 ==⎟
⎠
⎞

⎜
⎝
⎛ +=Ψ⋅Ψ=Ψ= AxpxpAxxxxP

hh
 

- The impulse p becomes imaginary when the “kinetic energy” is negative, and the 
wave function becomes a true exponential: 

  ( ) hkin
x mEeAx 2β     where,β −==Ψ     

 where Ekin is negative, making the argument of the square root positive. 

 

2.2.2. Particle in a potential well 

- Consider the energy E- in the diagram below. The kinetic energy is negative 
outside the well — the wave function is curved away from the axis. One can 
prevent that it “runs away” towards infinite values by a suitable choice of the initial 
values of the wave function at the left edge of the potential well. The wave 
function is chosen to slope towards the axis to the left. Since it curves away from 
the axis, it slope is less and less as we move further left. But the curvature 
diminishes, since the value of the wave function drops. With proper choice of the 
initial slope and value, the wave function is “captured” by the axis, it approaches it 
closer and closer, until it is nearly zero, but then it no longer curves, and remains 
zero. 

- The wave function is curved towards the axis within the well. For E- it reaches the 
right edge of the well too high, outside the well it curves away from the axes and 
“runs away”. Such function can not be normalized and is not physically 
meaningful. There is no meaningful wave function for the energy E- ! 

- There is no meaningful wave function for the energy E+ either, this time it is 
curved too much within the well and “runs away” downward. 

E
+

E0
E

-

V x( )

 

- But there is an energy, E0, when the curvature within the well is just right, and the 
function remains finite on both sides. 
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- The boundary conditions and the wavy nature of Ψ leads to discrete energy levels 
for a potential well.  

 

2.2.3. Potential barrier 

- Imagine the particle coming from the left. The wave function curves towards the 
axis as long as the potential energy is positive. It starts to curve away from the axis 
when it enters the “forbidden” region, just as if it would leave the potential well in 
the previous example. But the barrier stops before the wave function completely 
“dies off” to zero. Small remaining amplitude “survives” and continues oscillating 
after the end of the barrier. There is a (small) probability for the particle to tunnel 
through the barrier. 

E0

V x( )

 

- Consider the role of the height and the width of the barrier and the mass of the 
particle! 

- Applications:  

- Scanning tunneling microscopy. 

- Certain chemical reactions (in particular proton transfer) proceed even at 
0 K.  

 An example from the book of V. A. Benderskii et al. “Chemical 
Dynamics at Low Temperatures” (Phys. Chem. library S.8.91) is given 
below. 

 Note that the reaction rate no longer depends on temperature at the right 
side of the graph, that is at very low temperatures. Thermal energy is not 
needed to overcome an activation barrier — the proton tunnels through. 

 Note further that the tunneling rate is much less for D+ than for H+. 
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2.2.4. Double potential well  

- The dashed blue line is the energy of the discrete state of a single well. 

- Double well has two solutions, one slightly below, the other slightly above the 
solution of a single well. 

 

E+

E0
E-

V x( )

 

- Consider the role of the width and the height of the barrier between the two wells. 

- Can you see how the two solutions can be approximated as the in-phase and the 
out-of-phase superpositions of the wave functions of a single well? 

- Do you see the relation to the LCAO-MO approximation? 

Applications 

- The umbrella vibration of NH3 and PH3 
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2.2.5. Potential well with thin walls: resonances 

- There is a solution for each energy, but the amplitude inside is generally small: 
There is a continuum of states located mainly outside of the well.  

- Now consider the wave function at the energy E0, the same energy where a well 
with infinitely thick walls (as in the figure above) would have its discrete solution. 
Here the wave function accumulates inside the well, and starts to “die out” 
exponentially in the “forbidden region” within the walls, just as in the “normal” 
potential well. But the wall is now not infinitely thick, and some of the wave 
function survives, gets outside, to become a free particle. 

- If the spectrum, that is the “amplitude inside” is plotted schematically against 
energy, one obtains accumulation of the wave function inside the well over a 
certain range of energies. The center of the peak is around the energy at which the 
same potential well, but with infinitely thick walls, would have its discrete state. 

discrete states embedded in continuum

Energy

“A
m

pl
it

ud
e

In
si

de
”

 

Figure 2-2. Spectrum of states in a potential well with thin walls. 

- This “build-up” of wave function is called a “quasidiscrete state”, a “discrete state 
embedded in (or coupled to) a continuum”, or a “resonance”. 

Questions: 1. Consider the role of the wall thickness and height. (including 
infinitely thick and infinitely thin walls) 

  2. Why is the second band in figure 2-2 drawn wider than the first band? 

E
+

E0

E
-

V x( )

“amplitude inside”

 

Figure 2-1. Wave functions in a potential well with thin walls. 
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Applications 

- Negative ions: resonances in the collisions of free electrons with molecules. For 

example, the outermost electron of the negative ion of nitrogen, -N2 , is coupled to 
the continuum of free electrons: −− +→ eNN 22  

- Autoionizing states of atoms and molecules. Example is helium with two electrons 
in a 2s orbital, 2s2, coupled to a continuum of an ion and a free electron 

-2 e(1s)He)He(2s +→ + . 

- α decay of radioactive nuclei. 

 

2.3. Rotation. 

Rotation closely resembles the motion of a free particle, except that the particle moves 
in a circle. The fact that the wave function has to repeat itself after each 2π leads to 
quantization of energy and angular momentum. 

You already learned (in course of physical chemistry I and II) the wave functions for 
the rotator with a fixed axis: 

 ( ) ... ,2,1,0      , e2
1 ±±==ϕΨ ϕ
π kik  
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Graphically: 

  

Re( ( ))� �

Re( ( ))� �Re( ( ))� �

Re( ( ))� �Re( ( ))� �

Im( ( ))� �

Im( ( ))� �

Im( ( ))� �

Im( ( ))� �

direction of rotation

direction of rotation

direction of rotation

direction of rotation

�

�

�

�

�

��

��

��

��

��

�

�

�

�

�

k = 1�

k = 2�

k = 1�

k = 0

k = 2�

etc.  

- The dependence on ϕ is similar to what you just learned about a free particle, the 
phase difference between the real and the imaginary parts determines whether the 
particle rotates left or right. 

- The probability density does not depend on ϕ, for any k! 

  ( ) π
ϕ

π ==ϕΨ= 2
1

2

2
12  eikW  

- Consider the wave functions for the 2p electrons of the hydrogen atom. 

 n = 2, l = 1, m = 1  —  the 2p+1 orbital: 

  ϕ
ρ

θρ iN esine 2
211

−
=Ψ  

 and n = 2, l = 1, m = -1  —  the 2p-1 orbital: 
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  ϕ
ρ

θρ iN −−

− =Ψ esine 2
121  

The part dependent on ϕ has the same form as the wave function for the rotator above. 
Diagrams of the 2p-1 the 2p+1 orbitals could thus be drawn as follows (the 2s orbital is 
included for comparison): 

direction of
rotation

�

�

�

2p-1

2s

2p+1

x

x

x

y

y

y

+i

+i -i

-i

+r+r -r-r

-r
+r

 

(four colors are needed to draw complex orbitals — red and blue stand for positive 
and negative real numbers, violet and green for positive and negative imaginary 
numbers) 

But remember that the probability density for both of them does not depend on ϕ. 

 

�

|2p |+1

2

x

y

(|2p | is identical )-1

2
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3. Basic concepts of quantum mechanics  

3.1. Quantization of orientation of angular momentum 

In your study of chemistry you have probably learned so far that “good wave 
functions” (i.e., describing properly the nature) are those which satisfy the (time-
independent) Schrödinger equation. Wave functions not satisfying the Schrödinger 
equation are “bad”. 

It is necessary to learn more concepts of quantum mechanics, “to widen the horizon”, 
in order to understand the subtleties of the time-dependent phenomena. We have to 
extend the notion of what are “good” and “bad” wave functions. The behavior of the 
orientation of angular momentum is particularly suitable to illustrate the new 
concepts. 

The presentation given here is based on the beautiful book Feynman Lectures on 
Physics (volume III) 

 

3.2. The Stern-Gerlach experiment 

Imagine a particle with an angular momentum of 1. The angular momentum could be 
due to nuclear spin or to orbital angular momentum of an electron in a p-atomic 
orbital, we do not care. 

The axis of rotation can have different orientations. Can we measure the orientation? 

We can measure the component of the angular momentum in some direction (let’s call 
it z-direction) — this gives us a hint on the orientation. (Actually, in the quantum 
world we can not measure the other two components separately — part of the 
information about the exact orientation of the angular momentum vector remains 
hidden to us. The “z-component” is all we can hope to know about the orientation.) 

If the rotating particle is charged, the angular momentum is associated with a 
magnetic moment, the particle behaves as a little magnet. We shall measure the 
orientation of this tiny magnet. 

- Imagine a tiny magnet immersed in an outside magnetic field — there is no net 
force. At first you may think that the outside field will turn the tiny magnet around 
until its north pole points towards south pole of the big magnet (the orientation of 
the least energy). But do not forget that the tiny magnet is spinning — spinning 
objects are hard to tilt, they will precess. 

- A tiny magnet immersed in an inhomogeneous field, like on the right side of the 
picture, will experience a small force, because the field at the upper end of the 
magnet is stronger. The force is a measure of the z-component of the angular 
momentum — it is zero for a horizontal orientation of the tiny magnet (the field is 
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equally strong on both ends), it points downwards for a magnet oriented south 
down. 

 

N
N

N

N

S S

S

S

 

- This force will cause deflection of particles in the set-up shown above. A 
fluorescent screen at the end will tell us how much was a particle deflected, that is, 
how large was its z-component of the angular momentum. 

 

3.3. Quantization of Pz 

- The orientations of the particles from the source are entirely statistically distributed 
— we would expect to find all values of Pz from –P to +P (where P is the total 
angular momentum). But this is not at all what happens!! 

 

 

 

N

S

source

screen expectation
of classical

physics

actual finding

magnet

Figure 3-1. Forces acting on a tiny magnet in a homogeneous (left) and 
inhomogeneous (right) magnetic field. 

In reality, the experiment finds only three discrete values of Pz : h− , 0, and h . 
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- We say that Pz is quantized. Of course you already know that, but it is good to 
recall how perturbing and contraintuitive this property of small particles is. 

- We shall express the quantization with a quantum number lz, with possible values 
-1, 0, and 1. 

Let’s look at the experiment from the side to make the drawing simpler: 

  

N

S

 

Now let’s put four such filters in series, the second and third upside down, so that the 
particle trajectories are pushed back into one line: 

 

N
N

N
N

S
S S

S

 

Now let’s stop the particles with lz = -1 and lz = 0 with a piece of metal, so that only 
particles with lz = 1 will leave the apparatus: 

 

N
N

N
N

S
S S

S

 

Let’s call this a filter (with respect to lz) and make a simplified drawing of it. Let’s say 
that this filter is upright (“senkrecht”) and therefore call it the S-filter. Since only 
particles with lz = +1 pass, lets call it the +S-filter.  

  the +S filter  
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3.4. Eigenstates 

Now let’s make a “Gedankenexperiment”. Let’s take a mixture of particles from a 
source, pass them through the +S filter and measure their z-component of angular 
momentum Pz. 

 

the +S filter

N

S

the particles are
in the |+S> state
here

 

The result is what you may have expected: The particles which had lz = +1 in the first 
deflector, will have it also in the second deflector. Nothing flipped the axis of rotation, 
so it stayed the same. 

We shall say that the particles after passing the +S filter are in a pure state. We shall 
write this state as S+ . The “half bracket” is called a “ket” (the second half of the 
word bra-ket). 

The S+  state is an Eigenstate of the z-component of the angular momentum with 
the eigenvalue Pz = +h . 

Note that this a physical, not a mathematical definition of an eigenstate! 

 

Now we have a source of particles in a pure quantum state and we can do more 
experiments with them. 

 

3.5. Rotation of the frame of reference 

We shall try to better understand the deeply perturbing fact of quantization, the fact 
that the experiment always finds the particle with angular momentum upright or 
horizontal, but never tilted at an intermediate angle. 

It appears impossible. If we prepare the particle on the pure “upright” state S+ , and 
then look at them with a second magnet which is tilted with respect to S, let’s call it T 
(for tilted). S measures the component Pz along the axis z, T the component Pz´ along 
the rotated axis z´. The angle between z and z´ is 30°. We must then find the particle 
tilted with respect to z´, right? In fact we expect the result of the measurement to be 

hh ⋅=°⋅ 87,030cos . 
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the + filterS

N

S

the particles are
in the |+S> state
here

z´
z´z

30°

+h

-h

0

T

 

This is not at all what happens! We obtain the result h+  for some particles, 0 for 
others, and h−  for the rest. The component of the angular momentum is quantized, 
not with respect to the original axis z, but with respect to the new measurement z´!  

Let’s make a simplified drawing before continuing. The skewed rectangle indicates 
tilted magnets. 

 

3.6. Collapse of states (wave functions) 

We can now study the properties of the particles which passed the second magnet. We 
shall turn the measuring magnet into a filter, say +T, and pose the question in which 
state are the particles after they left the +T filter. One may expect that they will be in 
the S+  state, because we prepared them in the S+  state originally, and the T filter 
does not try to change the orientation of the angular momentum, it does not apply any 
torque, it only measures the component along z´ and selects some particles. 

But a second S filter tells us that the particle “have forgotten” that they were in the 
S+  state. 

the + filterS

z´ z´z
30°

+h

-h

0

T measurement

 
Figure 3-2.  
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+ filterS + filterS+ filterT

particles in
|+S> state

particles are no
longer in |+S> state

  

A second T filter shows that they are now in eigenstates with respect to the z´ axis, 
they are in the T+  state. 

+ filterS + filterT + filterT

particles in
|+S> state

particles are in
|+T> state

 

The mere fact of observing the particles in the T+  state changed their state 

from S+  to T+ . 

This is again very perturbing. Measurement plays a very important role in quantum 
mechanics: it can change the state things are in. The old state “collapses” into a new 
state. 

This property of nature has remarkable consequences, exemplified by the famous “Schrödinger cat”. 
The mere fact that someone opens the box with the cat (i.e., makes a “measurement”) changes its state 
(“from half alive, half dead” to either “alive” or “dead”). You’ll find many pages on this in the internet. 
The keywords to look for are Schrödinger cat, Einstein Podolsky Rosen (EPR) paradox, collapse of 
wave function, entanglement, dephasing, quantum computing. 

There is another important message in the above pictures: States which are not eigenstates of something 
may be perfectly physically meaningful (in the sense that they can be prepared experimentally). Thus 
the S+  state is well defined and meaningful, despite the fact that it is not an eigenstate of the T 
filter. This message will be important later, when we shall be talking of states which are not eigenstates 
of the Hamiltonian operator, that is are not solutions of the Schrödinger equation. This may be 
perturbing for chemists who grew up in the belief (at least I did) that only wave functions which are 
solutions of the Schrödinger equation are “good” wave functions. 

3.7. Amplitudes and probabilities 

A way to look at the above picture is: A particle is prepared in the S+  state and the 

T filter asks “is the particle in the T+  state?” In certain percentage of the cases the 
answer is “yes” otherwise “no”. We would like to know the probability W of “yes” 
and “no”.  
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It turns out that the probability is not the primary variable, there is something more 
fundamental behind it, we shall call it the amplitude A. The amplitude may be 
negative or even complex. The probability is calculated as the square of the absolute 
value of A  

    2AW =  

We shall write the amplitude to find a particle, originally prepared in the state S+ , 

in the state T+  in a later measurement as 

    STA ++=  

The right part of the expression, S+ , is called ket (you already know this), the left 

part, T+ , is called bra. Note that the expression is read from right to left. 

The amplitudes for all the combinations of preparing a particle in an eigenstate in one 
frame of reference and finding it in an eigenstate of a frame of reference rotated by an 
angle α can be expressed in a form of a matrix.  

 

 S−  S0  S+  

T−  ( )α+ cos12
1  α− sin

2
1  ( )α− cos12

1  

T0  αsin
2

1  αcos  α− sin
2

1  

T+  ( )α−− cos12
1  αsin

2
1  ( )α+ cos12

1  

You can now calculate the outcome of the experiment in figure 3-2! 

 ( )( ) 933,030cos12
1 =°+=++ ST ;  871,02 =++= STW  

 ( ) 354,030sin0
2

1 −=°−=+ ST ;  125,00 2 =+= STW  

 ( )( ) 067,030cos12
1 =°−=+− ST ;  004,02 =+−= STW  

The sum of the probabilities is 1, as it should. 
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Note that the average value of Pz´ is hh ⋅=°⋅ 87,030cos , that is, our expectation 
above is true for the average value, but not for the individual results of the 
measurements. 

 ( ) hhh 87.0004,00125,0871,0 =−⋅+⋅+⋅=′zP  

 

The amplitude for two filters in series is equal to the product of the amplitudes of the 
individual filters. As an example, the amplitude that a particle originally in the S+  
state (prepared by a +S filter not shown in the figure) passes a +T filter and then a +S 
filter  

 

+ filterS+ filterT

particles in
|+S> state

particles in
|+S> state

particles in
|+T> state

 

is  

  STTSA ++++=  

Exercise: calculate the value and the corresponding probability for α=30° 

All this can have incredible consequences. The amplitude that a particle originally in 
the S+  state is found in the S−  state in a second filter is, of course, zero: the pure 

S+  will be found to be a pure S+  in the second filter. 

 

- filterS+ filterS

particles in
|+S> state

 

Exercise: calculate this amplitude using the above matrix 

Now put a 0T filter between the +S and the –S filter: 
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+ filterS -S filter0T filter

particles in
|+S> state

particles in
|-S> state

particles are in
|0T> state

 

Is it not incredible? We introduced an additional filter into the way of the particles, 
taking some of the particles away, and the result is that more particles come out at the 
end! This shows that amplitudes undergo interference! 

The amplitude for particles coming out at the end is 

  STTSA +−= 00  

Exercise: calculate the amplitude and probability with T at α = 30° and verify that 
they are not zero 

 

3.8. Superposition and basis sets 

Now consider this arrangement: 

+ filterS +S filterT filter

particles in
|+S> state

particles are in
|+S> state

particles are in
|+S> state

 

Particles initially in the S+  state are introduced into the T filter and separated into 

the T− , T0 , and T+  states, but their paths are not perturbed, we do not observe, 
we do not know which way they took. Their paths are led together after the T filter in 
a coherent way. The state is not changed by the T filter in such a case, the particles 
remain in the S+  state.  

The amplitude for a particle to pass where several unperturbed paths are available is 
the sum of the amplitudes of the individual paths. In the above situation we have: 

 100 =+++++++++−−+= STTSSTTSSTTSA  

Exercise: verify that the expressions in the matrix above satisfy this relation 

Now let’s make a little abstraction. We write the above expression as 



 - 26 -

 { } 100 =+++++++−−+= STTSTTSTTSA  

Remember that 1=++ SS . This means that the expression in the curly bracket 

above is nothing but S+ . We thus write: 

 STTSTTSTTS +++++++−−=+ 00  

Remember that STST ++− 0 ,  are amplitudes, that is just numbers (positive, 

negative, sometimes complex), TTT +−  and ,0 ,  are states. The above expression 

thus means that the S+  state can be expressed as a linear superposition of the 

states TTT +−  and ,0 , , with the coefficients STST ++− 0 , , etc. If we call 
these coefficients c1, c2, and c3, we can write: 

 TcTcTcS +⋅+⋅+−⋅=+ 321 0  

The states TTT +−  and ,0 ,  are called the basis set used to express S+ . The 
basis set should be complete, that is, it should include all the eigenstates of a given 
measurement (in mathematical terms: of an operator), in our case of the T filter. 

In general we can write for some state Q  

  icQ
i

i ⋅= ∑  

 

3.9. The wave function 

All this is very different from the quantum mechanics which you learned so far, 
centered around the wave function. You may ask: where is the wave function in all 
this? 

Remember that wave function is a number (may be complex), depending on some 
coordinate (x, y, z, or ϕ for molecular rotation). Wave function is thus not a ket. 

Remember further that the square (of the absolute value) of the wave function is equal 
to the probability (density) of finding the particle in a given location. This means that 
the wave function corresponds to an amplitude in the above terminology. The wave 
function of some state Q  is  

  ( ) Qizyx zyx ,,,, =Ψ  

where zyxi ,,  are the eigenfunctions of position. Imagine them to be delta functions 

around the positions x, y, z. The state Q  is expressed as a superposition of the base 
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states zyxi ,, , and the wave function are the coefficients. The probability to find the 
particle at this position is thus 

  ( ) 22

,, ,, zyxQiW zyx Ψ==  

as you would expect. 

Of course, the eigenfunction of position are not very useful, except as a basis set in the above 
expressions. If you want to think of an experiment (i.e., a measurement) which would prepare a particle 
(an electron) in such a state, imagine a very fast particle (say a fast α particle) hitting an atom. The α 
particle has a very short DeBroglie wavelength and is thus capable of localizing the position of the 
electron in the atom (at the moment of the collision) to a precision much better than the dimension of 
the atom. This “measurement” thus converts the original state of the electron into one which is close to 
our eigenstate of position. (If you forgot how a measurement converts one state into another, see above) 
The price for this is, of course, that the new state is no longer an eigenstate of energy, the electron 
gained an unknown large amount of energy in the collision and races away at high speed. You will 
learn about the properties of states which are not eigenstates of energy in the next section: they form 
wave packets. 

 

3.10. Summary 

In this chapter we learned to understand a number of important concepts of quantum 
mechanics: 

- quantization 

- eigenstates 

- collapse of a state (wave function) upon measurements 

- amplitudes and probabilities 

- superposition principle 

- basis sets 

- wave function 

We also learned that “good” states (i.e., wave functions) are not only those which are 
solutions of the Schrödinger equation (that is, eigenstates of the energy (Hamiltonian) 
operator). The determining factor for whether a state (wave function) are “good” or 
useless is whether it can be prepared in some kind of experiment. 

Further reading: 

- R. P. Feynman, R. B. Leighton, M. Sands: The Feynman Lectures on Physics, 
Adison-Wesley (1963), Vol. III. 

- Alastair I. M. Rae; Quantum Mechanics, Institute of Physics Publishing (1992). 
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4. The time dependent formalism 

 

4.1. The time dependent Schrödinger equation 

The equation which appears to describe correctly this world (except relativistic 
effects) is 

  Ψ⋅+Ψ∇−=
∂
Ψ∂ V

mt
i 2

2

2
h

h      (4) 

where ( )tzyx ,,,Ψ=Ψ  is the time dependent wave function, ( )zyxVV ,,=  is the 
potential energy (we shall only discuss potentials which do not depend on time) and 
the “upside-down delta” is the Laplacian operator, a shorthand notation for:  

   2

2

2

2

2

2
2

zyx ∂
∂

+
∂
∂

+
∂
∂

=∇  . 

As in chapter 2, we shall consider only one dimension for simplicity. The time 
dependent Schrödinger equation for one dimension is 

  ( ) ( ) ( ) ( )txxVtx
xm

tx
t

i ,,
2

, 2

22

Ψ⋅+Ψ
∂
∂

−=Ψ
∂
∂ h

h   (5) 

This looks fairly frightening, but the solution is surprisingly simple: 

  ( ) ( ) tEi
xtx h

−
⋅Ψ=Ψ e,       (6) 

where ( )xΨ  is the time independent wave function, that is the solution of the time 
independent Schrödinger equation which you already know from chapter 2. 

  ( ) ( ) ( ) ( )xExxVx
xm tot Ψ⋅=Ψ⋅+Ψ− 2

22

d
d

2
h    (1) 

Exercise: Prove that the wave function (6) is a solution of the equation (5). 

 

So far it was simple: The hard part is solving the time independent Schrödinger 
equation (1) (we discussed this in some length in chapter 2). Once this is done, just 

multiply with the trivial factor 
tEi

h
−

e  and, voilà, the time dependent wave function is 
done. 

Let’s plot the magic factor 
ti

h

E

e
−

 to become familiar with it. 
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We have ⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

−
tEitEtEi

hh
h sincose . The diagram below shows the real part in red, 

the imaginary part in violet.  

t

Re Im

 

The factor 
tEi

h
−

e  with which the function is multiplied is thus first real, then negative 
imaginary, then negative real, then positive imaginary, ... The factor makes the 
function blink like a firefly! The frequency of the blinking is proportional to the total 
energy. 

 

4.2. Stationary and nonstationary states 

What is the consequence on the probability density? 

 ( ) ( ) ( ) ( )2222
2

22 sincose, xtEtExxtxW
tEi

Ψ=
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛⋅Ψ=⋅Ψ=Ψ=

−

hh
h  

The probability density is the same as for the time-independent Schrödinger equation! 
It does not depend on time, does not move in space. We still do not have a wave 
function describing a particle which is in one place at some time, and in a different 
place at a later time. We have not achieved our goal. 

Such a wave function, whose probability density does not depend on time, is called a 
stationary wave function, the state which it describes is called a stationary state. 

Our goal is a wave function with probability density moving around — a 
nonstationary wave function, describing a nonstationary state. 

Such a wave function can be constructed as a superposition of stationary wave 
functions having different energies.  

This may seem disturbing at first. A superposition of stationary wave functions having 
different energies is no longer a solution of the Schrödinger equation. Is it a “good” 
wave function then?  

You have familiarized yourselves with this type of questions in chapter 3. It is 
perfectly feasible in nature to prepare a particle, a molecule or something else in a 
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state which is not an eigenstate of some measurement, even in a state which is not an 
eigenstate of energy. As long as you find circumstances, “crazy” fields and forces etc., 
which prepare your system in such a state, it is a “good” state and the wave function 
describing it is a “good” wave function.  

Most spectroscopies prepare molecules in stationary states, you learned about 
microwave spectroscopy which prepared the molecule in the J = 1, J = 2, etc. states, 
about IR spectroscopy which prepared the molecules in the v = 1, v = 2, etc. states. 
These states had definite energies, they were eigenstates of energy, they were 
stationary states. Their wave functions were solutions of the Schrödinger equation.  

Strictly speaking, even these states were not 100% stationary, if you leave, for example HCl in the 
v = 1 state alone for some time, it will emit an IR photon and change its state to v = 0. The probability 
density thus does depend on time a little. But the nonstationary character is very weak, and we 
neglected it in the lecture at that time. 

We shall learn later what fields and forces are required to prepare molecules in states 
which are not eigenstates of energy, that is, in nonstationary states. (You guess, it is 
femtosecond laser pulses.) 

What you learned about Schrödinger equation is not lost, however, even when we 
now deal with wave functions which are not solutions of the Schrödinger equation. 
The solutions of the Schrödinger equation are very useful as a basis set. We shall 
express the nonstationary states as superpositions of stationary states (you learned 
about the superposition principle in chapter 3.8). The first step in solving the problem 
will be solving the Schrödinger equation. 

To summarize, we have the following procedure to deal with quantum chemical 
problems: 

Step 1: Solve the time independent Schrödinger equation → time independent wave 
function Ψ(x). 

Step 2: Add the 
tEi

h
−

e  factor  → time dependent, but stationary wave function Ψ(x,t). 

Step 3: Use the wave functions from Step 2 as a basis set to form time dependent non 
stationary wave function ΨNS(x,t). 

Note that the wave functions in Step 3 no longer describe eigenstates of energy. 
Energy measurements will give statistically distributed results. But this had to be 
expected. One formulation of the Heisenberg’s uncertainty principle is h≈∆⋅∆ tE . 
This means that exact knowledge of energy (∆E = 0) is only possible with a complete 
lack of knowledge about the temporal development of the particle’s position. 
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4.3. Electron in a box 

 

Let’s first see what are the properties of superpositions of stationary wave functions. 
The simplest example is a particle in a potential well. Take, as an example, an 
electron in a potential well with a width L = 10 Å, the walls infinitely high. 
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The solutions of the Schrödinger equation have energies 

  2
2

2

8
n

mL
hEn =  

The time-independent wave functions are 

  ( ) ⎟
⎠
⎞

⎜
⎝
⎛=Ψ x

L
n

L
xn

πsin2  

The time-dependent wave functions are 

  ( ) t
E

n

n

x
L
n

L
tx h

i-
eπsin2, ⎟

⎠
⎞

⎜
⎝
⎛=Ψ  

Now we can build our first nonstationary wave function ΨNS(x,t), as a superposition 
of the two lowest stationary wave function. 

 ( ) ( ) ( ){ }
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=Ψ+Ψ=Ψ

t
E

t
E

x
L

x
LL

txtxtx hh
21 i-i-

21NS eπ2sineπsin1,,
2

1,  

What is the proper origin of the energy scale? Can we choose a different origin of the 
energy scale, lying let’s say 1 eV higher or lower? If we do, the time-dependent wave 
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functions change, the factors 
ti

h

E

e
−

 oscillate with different frequencies! The answer is 
yes, any origin of the energy scale is allowed. The physically observable results, like a 
speed of a moving particle, depend only on the differences of the frequencies, not on 
the absolute frequencies. 

This means that, to make the mathematics simple, we can choose a new origin of the 
energy scale at the energy of the lowest state, 1 . The oscillating factor of the lowest 
state then becomes e0 = 1, and the expression for the wave function simplifiers: 

 ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=Ψ

−
− tEEi

x
L

x
LL

tx h
12

eπ2sinπsin1,NS
 

We can easily figure out qualitatively what does this function look like at two distinct 
points in time, namely then when imaginary component of the oscillating factor 
becomes zero. The factor is then 1 and –1: 

  1e0
12

0 =∴=
−

− tEEi
t h  

 and 1eeπ π

12

12

2
1 −==∴

−
= −

−
− itEEi

EE
t h

h  

  ( ) ( ) ( ){ }xxxtt 21NS0 2
1

Ψ+Ψ=Ψ∴=  

  ( ) ( ) ( ){ }xxxtt 21NS 2
1

2
1 Ψ−Ψ=Ψ∴=  

The nonstationary wave function is the sum of the stationary wave functions at t = 0, 
then it becomes complex, but a while later, at t1/2, it becomes real again, and equal to 
the difference of the stationary wave functions. Then the wave function becomes 
complex again, and after t = 2 t1/2 it becomes identical to what it was at t = 0, and the 
whole cycle repeats periodically. 

Let’s estimate graphically what the wave function looks like at t = 0 and at t1/2: 
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+ -

= =

probability
 

The probability densities shown at the bottom of the picture show that the particle was 
more on the left side of the box at t = 0, more on the right side of the box at t1/2. We 
reached our goal! The time t1/2 is, for our example, 1.8 ps. Electrons move fast. 

 

The picture on the left shows the probability 
|ΨNS(x,t)|2 to find the electron in the box for 
various intermediate times. 
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The price is that the nonstationary state is no longer an eigenstate of energy. If you 
measured the energy of the particle in this state, you would obtain, statistically 
distributed, the values E1 and E2. This is analogous to the situation which we 
encountered in section 3.5. 

 

4.4. Free particle 

You already know the wave function from section 2.2.1: 

  ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +==Ψ xpixpAeAx

xpi

hh
h sincos    (3) 

Now you know that writing down the time dependent wave function is easy: 

  ( )
⎟
⎠
⎞

⎜
⎝
⎛ −

==Ψ
tExpitE-ixpi

eAeAtx hhhh e,     (7) 

What does this function mean? Let’s look only at the real part of this function for 
simplicity: 

  ( ){ } ⎟
⎠
⎞

⎜
⎝
⎛ −=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=Ψ
⎟
⎠
⎞

⎜
⎝
⎛ −

tExpAeAtx
tExpi

hh
hh cosRe,Re  

At time t = 0 it is xp
h

cos , a cosine wave with the DeBroglie wavelength. Later, it is 

the same cosine wave, but shifted along x. 

 

x

Re( )� at = 0tmoves with vp

ridge

later

 

Let’s look with what speed does the wave move. Look at the position of the first 
ridge, that is at the place where the argument of the cosine is equal to zero.  

     0=− tExp
hh

 

The position of this ridge is at  t
p
Ex =  

The speed with which the wave moves is called the phase velocity vp. 
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p ==v  

What does the probability density? 

  ( ) 2

2

2, AeAtxW
t

E
x

p
i

==Ψ=
⎟
⎠
⎞

⎜
⎝
⎛ −

hh  

The probability density is a constant, it does not change with time.  

We did not have to calculate that. So far we talk about a state with a unique, definite energy E, such a 
state is stationary, and the probability distribution of stationary states do not change with time. 

The phase velocity is thus not very helpful, it does not have physical meaning. 

There is another problem with vp — it depends on the choice of the origin of the energy scale, 
physically meaningful variables should not do that. The phase velocity may even exceed the speed of 
light. 

As with the particle in the box above, we have to construct nonstationary wave 
functions as superpositions of the stationary ones to get explicitly moving particles. 

A particularly meaningful way to do this is to take many stationary waves with 
various impulses p centered around some impulse p0, and have the coefficients cp 
follow a Gaussian distribution. (The sum can actually be replaced with an integral 
because p is continuous.) 

 ( ) ( )∑ Ψ⋅=Ψ
p

pp txctx ,,NS  

The picture below shows the real part of the wave functions: the stationary wave 
functions are in blue, their sum in red, and the probability density in brown. 

 
x

probability

Re( )�NS

Re( )�p
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All the constituent stationary waves add constructively at the position indicated by the 
dashed line. The waves get more and more out of phase to the left and right of this 
position, they add more an more destructively, and their sum becomes zero after a few 
oscillations. We obtain a wave packet. The wave has also an imaginary part, and the 
two give the probability a simple Gaussian shape. 

The wave packet moves, but not with the phase velocity vp.  

We shall consider the sum of only two stationary waves to find out the velocity of the 
wave packet. First, we shall derive a useful formula for the sum of two exponentials 
with imaginary exponents eiα and eiβ . 

First note that α can be written as  

  
2
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and similarly for β: 
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We then have 
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For the sum of the two exponentials we can write 
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Now we shall apply this formula to a simple nonstationary wave function, made up of 
two stationary waves 
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The picture below shows the fast oscillating exponential in red, the slowly oscillating 

cosinus in blue. ( 1.0
2

        ,2
2

21210 =
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=
hhh

ppppp ) 

  

The probability density is 
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This describes a train of wave packets. To find the velocity with which the wave 
packets move, consider at which position is a spot for which the argument under the 
cosinus is constant, e.g., equal to zero. 
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The wave packet thus moves — we shall call its velocity the group velocity vg. 
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Is this something familiar? The total energy of a classical particle with the velocity v 
is the potential energy V plus the kinetic energy 
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The group velocity is 
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The wave packet moves with the same velocity as a classical particle! 



 - 38 -

What a miracle. The obscure complex oscillating factor 
tEi

h
−

e  somehow leads to the 
same velocity as classical physics! 

The wave packets constructed in this way also obey the Heisenberg’s uncertainty 
(some people argue that the term indeterminacy would be more appropriate) principle.  

The wave packets widen as they move along! A classical picture helps you to 
understand why: The particle described by the wave packet does not have a definite 
energy, so there are components which are faster and move ahead, and components 
which are slower, and lag behind. We shall return to this later, in section 6.9. 

The program “Superwave” shows a moving picture of a train of wave packets. It lets 
you experiment with E1 and E2 and thus change the width of the wave packets, and the 
phase and group velocities. You can even have the phases going backward and the 
wave packet going forward! 
(http://www-chem.unifr.ch/pc/dir_allan/SuperWave.html) 

 

4.5. Nonstationary wave functions in various potentials 

 

A very pretty real-time simulation allowing you to exercise the subject of this section 
is given by Cemal Yalabik of the Bilkent University at his web page. You can draw 
your potential there. 

http://www.fen.bilkent.edu.tr/~yalabik/applets/t_d_quant.html 

 

4.5.1. Harmonic potential 

- A suitable superposition of the time-independent wave functions ψv(x) gives a 
wave packet whose shape is identical to the shape of the v = 1 wave function. (with 
thanks to Dr. Duška Popović for teaching me these formulas) 
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 where the optimum coefficients are given by 
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 α is a measure of the mean energy of the oscillator according to the relation 
2αω= hE , with ω being the classical angular frequency of the oscillator. 

- This wave packet oscillates with the frequency of the classical oscillator! 
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- Increasing mean energy increases the amplitude, but not the frequency of the 
oscillations of the wave packet. 

The program “Superwave” shows a moving picture of the wave packet, with real time 
feedback. (http://www-chem.unifr.ch/pc/dir_allan/SuperWave.html) 

This program allows you to choose the right superposition to make a nice wave packet 
oscillating with varying amplitude. But it also allows you to choose the individual 
coefficients manually. This generally results in irregular waves wildly splashing 
around. There is something interesting about the apparently irregular motion of these 
waves — it repeats itself with a certain period. This phenomenon is called the 
recurrence, the period the recurrence time. 

This phenomenon is general. If you have a certain number of factors 
tEi

h
−

e  oscillating 
with different frequencies, you can always calculate a time after which all the phases 
have the same relation as in the beginning. The behaviour of any quantum system is 
repetitive. 

This may seem to have serious philosophical consequences. Does it mean that historical events recur in 
regular intervals? — They don’t. The recurrence time becomes longer dramatically with the complexity 
of the system. Small molecules may have recurrence time of picoseconds or microseconds, but larger 
systems have very long recurrence times. Many years ago, professor Martin Quack gave us an exercise: 
calculate the recurrence time of a bottle of whisky. I do not remember the exact answer, but it is much 
longer than the known age of the universe. So there is little chance that Napoleon will come again… 
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4.5.2. Potential barrier: tunelling 

This is a qualitative picture of what happens when a wave packet is sent towards a 
potential barrier: 

A beautiful animated view in two dimensions is shown by Géza Márk of the 
Technical University of Budapest at the web page 

http://newton.phy.bme.hu/education/schrd/2d_tun/2d_tun.html 

 

4.5.3. Double potential well: isomerization 

A nonstationary wave function made of the two lowest stationary solutions (see 
section 2.2.4) results in a wave packet slowly “sneaking” from one well to the other. 
(This picture shows the probability, that is the square of the wave function) 

   

The oscillations become faster when the barrier is more transparent (narrower, lower). 
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4.5.4. Potential well with thin walls: resonances 

This is a qualitative picture of what happens when a wave packet is sent towards a 
potential well with thin walls: 

Eresonance

Eresonance

V x( )

V x( )

 

When the mean energy of the wave packet is near the energy of the resonance (see 
section 2.2.5), part of it is trapped. It then slowly leaks out. This explains the 
temporary negative ions in electron scattering. 

 

4.6. Rotation 

The stationary wave functions have been discussed in section 2.3. 

Nonstationary wave functions can be formed as superpositions of the stationary wave 
functions with different energies. 
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The simplest example is a superposition of the wavefunctions with k = 0 and k = +1. 
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where α is a shorthand for tE
h

−ϕ . 

We want to know what does the probability density does: 
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and after replacing α with the full argument 
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What does this function look like? First note that it is repetitive, it repeats itself after 
the time τrot 
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We can now draw what does the function look like at t = 0, t =  τrot/4, t =  τrot/2, etc. 
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We have a wave packet rotating around! 

We can also make a three-dimensional nonstationary wave function by superposing, 
for example, the 3s and the 3p+1 orbitals in an atom such as Na. The result is a wave 
packet of an electron orbiting around a positive ion core. Such states have actually 
been prepared! 

 

4.7. Conclusions 

The somewhat obscure complex oscillating factor 
tEi

h
−

e  have appeared useless in the 
beginning. But accomplishes wonders! It is capable of correctly describing all time 
dependent phenomena: 

- motion of a free particle 

- harmonic oscillator 

- tunneling 

- the flip-flop inversion of ammonia 

- the time delay in electron collisions caused by resonances 
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5. Applications in electron scattering 

The wave packet picture is very useful for the description of certain negative ions.  

Negative ions are intermediates in most chemical reactions induced by electron impact. Electron impact 
induced chemistry is normally not part of chemical curriculum, but is widely used in industry. Ozone is 
synthesized using electron impact in discharges. Ozone is used for certain industrial synthesis, for 
chlorine-free bleaching of paper, and disinfecting drinking water. Electron impact (electrical 
discharges) in various gases are used in the majority of production steps of integrated circuits for 
electronics, for treatment of surfaces, etc. In terms of industrial sales, electron impact induced 
chemistry is very important. 

 

5.1. Trapping of electrons 

There are two fundamental types of negative ions. The first are bound negative ions, 
where the electron attachment is exothermic: 

  eV46.1OeO -
3

-
3 −=∆→+ E  

or 

  eV44.0OeO -
2

-
2 −=∆→+ E  

A very schematic diagram in terms of what you learned in chapter 2 would look like 
this: (the upper red curve is normally not occupied by an electron — it is an excited 
state of the negative ion) 
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bound state

resonance
(excited state)

electron - molecule distance
 

The electron attachment is endothermic in the second kind of the negative ions: 
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The second process is called autodetachment, the electron departs spontaneously. 
This negative ion is thus of the type “resonance” or “discrete state embedded in the 
continuum” in the nomenclature of section 2.2.5. 
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A very schematic diagram in terms of what you learned in chapter 2 would look like 
this: 

  

Eresonance

V x( )

electron - molecule distance  

 

5.2. Nuclear motion in temporary negative ions 

We shall now be concerned with the vibrational structure of the negative ions of the 
second type. It can be studied in electron attachment experiments, whereby an 
electron is attached to a neutral molecule in its vibrational ground state to produce the 
negative ion in various vibrational levels as illustrated in the figure below. 

(note that the horizontals scale in the two pictures above was the electron – molecule 
distance, in the pictures below the distance between the nuclei) 

 

O2

O2
- }

}
bound vibrational states of O-

2

O-
2 resonanceselectron

attachment

 

The situation is slightly complicated in -
2O by the fact that that the lowest four vibrational levels are 

bound anions, the higher levels are resonances since the electron can autodetach. But it should not be 
too confusing, we are concerned only with the higher levels here, the resonances. 

How does one measure the attachment spectra? The resulting “resonance” -
2N  (or -

2O  in a high 
vibrational state) can not be detected directly in a mass spectrometer because they decay by 
autodetachment long before they reach the detector. But the resonance can be detected indirectly, 
because it causes vibrational excitation of the molecule. The vibrational excitation causes the ejected 
electron to have less energy than the incident electron, and this energy loss serves to detect the 
vibrational excitation, which in turn evidences an attachment of the electron to form a temporary 
negative ion, the resonance: 

 ( ) ( ) ( ) ( )iri EEE <+>→→+= -e0N-N-e0N 222 vv  
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The figure below shows the observed spectra of -O2  and -N2 . Both spectra were 
recorded with the same instrumental resolution. 
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The spectrum of -O2  consists of sharp equidistant peaks, as expected for vibrational 
structure.  

The doubling of the peaks is caused by spin-orbit coupling and is not important for this discussion. 
(there are two electronic states of -

2O  lying close to each other, one with the spin and orbital angular 

momenta parallel, the other antiparallel to each other, i.e. 
2
3,

2
gΠ  and 

2
1,

2
gΠ )  

In contrast, the spectrum of -N2  shows broad bands, which are obviously not the 
sharp, discrete, stationary vibrational states which you know from courses about 
vibrational spectroscopy. 

The structure has been rationalized in terms of wave packets of the moving nuclei: 
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The consequence of the fast autodetachment and the resulting very short lifetime of 
-N2  is that its potential curve does not have a definite energy, it has a certain energy 

width Γ of the order of 0.1 eV. The nuclear motion is thus best viewed not as a 
stationary vibrational wave function with a discrete energy, but as a single “forth-and-
back” (that’s why the theory is called a “boomerang” model) of a wave packet.  

 

(figure from: D. T. Birtwistle and A. Herzenberg, “Vibrational Excitation of N2 by 
Resonance Scattering of Electrons”, J. Phys. B 4 (1971) 53.) 
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6. Applications with femtosecond lasers 

 

6.1. Preparation of vibrational wave packets 

We have seen that the wave packets do not have a unique energy. Their preparation 
thus requires non-monochromatic light. 

This appears to be an easy requirement — simply take a white lamp. But each photon 
of this white light was prepared through an electronic transition in the hot tungsten 
wire of the bulb, each is monochromatic by itself. White light from an incandescent 
bulb is just a mixture of monochromatic photons. 

We need light source where each photon is non-monochromatic. Fourier transform 
tells us that the corresponding light pulse must be very short.  

A very short light pulse will excite a superposition of several vibrational levels 
simultaneously, with the same phase, giving a vibrational wave packet. 

The short light pulse can be represented as a superposition of many continuous 
electromagnetic waves with different frequencies.  

t

light pulse

duration 


bandwidth

Fourier-transform
components

�E

 

The pulse duration τ and the bandwidth ∆E have the relation 

  h=⋅∆ τE  

A good quality light pulse will satisfy this relation. Such light pulse is said to be 
“transform-limited”. Real pulses may have longer τ or larger ∆E (it is easy to make 
non-monochromatic light — just take a bad monochromator). 

This means that a 50 ns long transform limited pulse has a bandwidth of  
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For comparison, the B excited state of I2 has a vibrational wavenumber 
-1

e cm125ν~ = . A 50 ns pulse is just right to excite a nonstationary state superimposed 
from several vibrational levels. 

For comparison, the period of oscillation of the electric field of light with λ = 600 nm 
is 
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This means that a 50 ns long light pulse consists of only about 25 oscillations of the 
electric field! The length of this pulse is around 15 µm! 

 

6.2. The Franck-Condon principle 

Franck-Condon (FC) principle is needed for direct observation of the motion of wave 
packets. 

It is useful to recall the FC principle here with emphasis on wave packets. 

The FC principle is based on the fact that electrons move much faster than nuclei. An 
electron transition (change of electronic motion) is fast on the time scale of the motion 
of the nuclei. (we shall later discuss exceptions to this rule) 

This means that the state of motion (position and impulse) of the nuclei does not 
change during the electronic transition. 

Examples: 

1. 3.2.

Ek

 

Case 1. is FC allowed, both the position and the momentum are the same. (The 
momentum is small in the vibrational ground state.) 

Case 2. is FC forbidden. The momentum of the nuclei is small in both the upper and 
lower states, but the position is different. 



 - 50 -

Case 3. is also FC forbidden. The position is the same, but the nuclei are nearly 
standing still on the lower surface, but moving fast on the upper surface. 

4. 5.

Ek

Ek

 

Case 4. is FC allowed, position is the same, and nuclei are nearly standing still at the 
turning point on the upper surface. 

Case 5. Only one of the three transitions shown is FC allowed. The position is O.K. in 
all three cases, but only in one case do the nuclei have the same momentum on both 
the lower and the upper surfaces. (The wave packets must move in the same direction 
in this case for the transition to be allowed.) 

 

6.3. Observation of wave packets 

Motion of wave packets can be observed directly in molecules with suitably arranged 
potential surfaces, like in the example below: 

h�pump (50 fs)

h�probe (50 fs)

S0

S1

S2

S3

detector for
laser inducer fluorescence
(LIF)
(operates continuously)

 

A pump pulse excites the molecule to the S1 state, forming a nonstationary vibrational 
state (a superposition of several stationary states). After a variable delay time, during 
which the wave packet is allowed to move, a second laser pulse attempts to excite the 
molecule from S1 to S2. The excitation succeeds only if the wave packet is in a 
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position making the transition Franck-Condon allowed, otherwise it fails. The S2 state 
is detected by its luminescence. 

Timing diagram: 

 

probe

pump

time

td td

 

The experiment consists of repetitive pump and probe pulses with slowly increasing 
delay time. The luminescence signal is plotted against the delay time: 

period tpLIF
signal

delay time td
 

 

A specific example is I2.  

 

The two figures below are from the classical papers M. Gruebele and A. H. Zewail, J. 
Chem. Phys. 98 (1993) 883, and Bowman, Dantus, and Zewail, Chem. Phys. Lett. 161 
(1989) 297. 
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The measured period is tp = 300 fs. 

The spectroscopically measured vibrational spacing of the B state of I2 is 
-1B

e cm 125ν~ =  (see the book of Herzberg and Huber). 
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This corresponds to a classical vibrational period of 
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The same number has been measured in two entirely different experiments: once in 
the time domain in the modern femtosecond experiment, once in the energy domain 
in the classical experiment! 

On a more sophisticated level, both methods can be used to obtain not only the 
vibrational frequency, but also finer details of the shape of the potential curve. 

 

6.4. Molecular dissociation 

Changing the wavelength of the pump radiation can vary the mean energy of the wave 
packet. 

Remember that wave packets do not have sharp energy — a fading gray band in the 
picture below schematically indicates this. 

The lowest energy pump pulse (top of the picture) prepares a wave packet entirely 
below the dissociation limit. It oscillates within the potential well for a long time. 

The intermediate energy pump pulse prepares the wave packet with energies, which 
span the dissociation limit. It splits at the outer flank of the well, part of it escapes and 
the molecule dissociates, part of it oscillates within the potential well with 
progressively diminishing amplitude. 

The highest energy pump pulse prepares the wave packet above the dissociation limit. 
It escapes and the molecule dissociates. 

pump

probe

S0

S1

S2

period tpLIF
signal

delay time td
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Shown below are two figures from the original work of A. H. Zewail. 
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6.5. Solvent effect 

The above experiment has also been performed with 100 bars of argon as a buffer gas, 
acting as a dilute solvent. 

Argon atoms collide with the iodine molecules in irregular intervals, each time 
reflecting part of the wave packet. 

The collisions quickly wash out the oscillations when the pump pulse is below the 
dissociation limit. 

The cage effect (a partly “hindered” dissociation) is observed with the pump pulse 
above the dissociation limit. 

 

6.6. Predissociation: A potential well with a leak 

The picture below shows a schematic diagram of the potential surfaces of NaI. 

Fig. 10. Wave packet dynamics 
(bottom) of iodine at three energies 
(top); below, at, and above dissociation 
to I + I*.  

From A. H. Zewail, “Femtosecond 
Reaction Dynamics”, ed. D. A. 
Wiersma, North Holland, Amsterdam 
1994 (ETH library P 81 617a:42) 
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The ground electronic state is, as you know, ionic. The doubly occupied σ orbital has 
a much larger coefficient on the more electronegative iodine.  

The dissociation energy of this state is, however, high. 

The electronically excited state has a much more even charge distribution because the 
σ* orbital has a larger coefficient on Na — hence the “covalent state”.  

The dissociation energy of the covalent state is lower, and the two potential curves 
thus cross. 

The complete Hamiltonian mixes the two states a little, however. This mixing has 
little effect when the two states are far apart in energy, but becomes important near 
the crossing, when the ionic and covalent states are very close to each other. It leads 
to an “avoided crossing”; the true, adiabatic potential curves (shown in color in the 
figure) do not cross. (The original ionic and covalent states are called the diabatic 
states — they are shown dashed in the figure.) 

If the nuclei moved strictly on the adiabatic potential curves, then we would expect 
them to oscillate on the excited state potential curve just as we saw in I2. 

 

LIF
signal

delay time td  
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But the true signal decreases exponentially: 

 

LIF
signal

delay time td
 

What is the cause? The break down of Born-Oppenheimer approximation. At places 
where the nature of the electron configuration changes very rapidly with R over a 
short section of the adiabatic potential curve, the potential curves partly loose their 
meaning. This means that the nuclei no longer move strictly on the potential curves, 
there is a certain probability that they “jump” from one potential curve to another. 

The consequence in our case is that the wave packet is split near the avoided crossing; 
one part is reflected back and performs one mode oscillation, the other part moves out 
(this is called predissociation). The reflected portion of the wave packet returns and is 
split again, etc. 

The femtosecond experiment shows this phenomenon with a beautiful clarity! 

Shown below is a figure from the original work of Mokhtari, Cong, Herek, and 
Zewail, Nature 348 (1990) 225. 
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6.7. Recurrence 

You have seen in section 4.5.1 that a suitably prepared wave packet in a harmonic 
potential does not get broader (in contrast to most other wave packets, for example the 
wave packet of a free particle, section 4.4). 

Real potential curves are anharmonic, however, and the wave packets may be slightly 
non-ideal. The consequence is that the wave packets broaden and broaden, and 
oscillations in the experiment become shallower and shallower, until they disappear 
entirely. 

Recurrence (a phenomenon which you already know from section 4.5.1) occurs quite 
quickly in this simple system, however, and the original wave packet re-emerges from 
the chaos, the oscillations in the experiment reappear after some time, become deeper 
and deeper, then the packet broadens again, the oscillations disappear, etc. 
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The recurrence time bears information on the anharmonicity and may thus be used to 
obtain the shape of the potential curve. 

 

6.8. Molecular rotation 

The effect of rotation becomes apparent in the experiment with I2 when longer time 
periods are observed 

The role of rotation may be understood in a more classical context. Initial orientation 
of the rotating molecules in the electronically excited state is obtained by use of 
linearly polarized light. Molecules whose transition dipole moment (oriented along 
the bond) is oriented along the direction of the electric field of the pump laser pulse 
are excited most efficiently, molecules oriented perpendicularly are not excited. 

The wavelength of the probe radiation is chosen such as to observe in the same Franck 
Condon region in which they were excited. 

Vibration is much faster than rotation — the vibrational oscillations are superimposed 
on the slower changes due to rotation. 

When the probe radiation is polarized parallel to the pump pulse (denoted || in the 
figure) then the signal is strong initially, before rotational motion reorients the 
transition dipoles away from the optimal direction. Signal then decreases as molecules 
turn away from this direction because of their thermal rotation. 

When the probe radiation is polarized perpendicularly to the pump pulse (denoted ⊥ 
in the figure) then the signal is weak initially, but then increases as molecules turn 
away from the perpendicular direction. 

Consider the molecules to be rotators with a fixed axis of rotation. What would be the 
classical period of rotation? You learned that the angular momentum of the quantum 
mechanical (QM) rotator is 

  h⋅= kP  

The angular momentum of a classical object rotating with the angular velocity ω is 

  ω⋅= IP  

The classical object having the same angular momentum as the QM rotator would 
thus spin with the angular velocity 

  
I

k h⋅
=ω     (radians/second) 

The classical rotational period is thus 
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where 
cI

B
π

=
4
h  is the rotational constant. 

In I2 we have Be = 0.02904 cm-1 = 2.904 m-1 (see the book of Herzberg and Huber: 
Constants of Diatomic Molecules), τrot = 570 ps.  

The experimental result shows rotational recurrences after 610 ps, a very similar 
value. 

The difference is due primarily to rotational stretching (J values around 20 are excited 
in I2 at room temperature). 

Rotational recurrences are actually observed after ,1,, 2
3

2
1  etc. classical rotational 

periods. 

A whole group of recurrences is observed because I and therefore the classical 
rotational period depend on the vibrational quantum number in the upper electronic 
state. 

Shown below is a figures from the original work of Dantus, Bowman, and Zewail, 
Nature 343 (1990) 737. 
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6.9. Chirped pulses: focussing the wave packets 

Remember that wave packets generally broaden as they move along. This is because 
the “faster components” in the superposition “run ahead”, the slower “lag behind”.  

Wave packets on a harmonic potential are, as you have seen, an exception. Real potential curves are 
anharmonic, however, and the wave packets on them do broaden. 

This means that it should be possible to make a wave packet which is not very narrow 
initially, but where the “slow components” in the front, the “fast components” are in 
the back. Such a wave packet would become narrower as it moves, reaching its 
narrowest width, and then broaden as all wave packets do. 

Such self-focussing wave packet can be prepared by a “chirped” light pulse, that is a 
pulse where mean wavelength increases during the pulse duration.  

Mean photon energy – time relationship of such a pulse with “positive” chirp is 
shown schematically below. 
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Chirped pulses are easier to make than one may guess. In fact short laser pulses 
become chirped as they move through some medium, for example air or glass. This is 
because index of refraction of the medium, and thus the speed with which light 
propagates, generally depend on wavelength. The index of refraction increases as one 
approaches an absorption band, which means that red light propagates faster in air 
than blue or ultraviolet light (leading to a negative chirp). 

Reference: B. Kohler, J. L. Krause, F. Raksi, K. R. Wilson, V. V. Yakovlev, R. M. 
Whitnell, Y. Yan, Acc. Chem. Res. 28 (1995) 133. 

 


