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We report a very detailed test of the ab initio discrete momentum representation (DMR) method
of calculating vibrational excitation of polyatomic molecules by electron impact, by comparison
of its results with an extensive set of experimental data, covering the entire range of scattering
angles from 10◦ to 180◦ and electron energies from 0.4 to 20 eV. The DMR calculations were
carried out by solving the two-channel Lippmann-Schwinger equation in the momentum space,
and the interaction between the scattered electron and the target molecule was described by exact
static-exchange potential corrected by a density functional theory (DFT) correlation-polarization
interaction that models target’s response to the field of incoming electron. The theory is found to
quantitatively reproduce the measured spectra for all normal modes, even at the difficult conditions of
extreme angles and at low energies, and thus provides full understanding of the excitation mechanism.
It is shown that the overlap of individual vibrational bands caused by limited experimental resolution
and rotational excitation must be properly taken into account for correct comparison of experiment
and theory. By doing so, an apparent discrepancy between published experimental data could be
reconciled. A substantial cross section is found for excitation of the non-symmetric HCH twisting
mode ν4 of A′′1 symmetry by the 5.5 eV A′2 resonance, surprisingly because the currently accepted
selection rules predict this process to be forbidden. The DMR theory shows that the excitation
is caused by an incoming electron in an f -wave of A′2 symmetry which causes excitation of the
non-symmetric HCH twisting mode ν4 of the A′′1 symmetry and departs in p- and f -waves of A′′2
symmetry. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917304]

I. INTRODUCTION

This paper deals with the coupling of electronic and
nuclear motions in temporary negative ions of polyatomic
molecules, as revealed by the cross sections for vibrational
excitation by electron impact. In a more general context, this
subject is important for electron-driven chemistry with its
many applications. Computational modeling of these inelastic
processes for polyatomic molecules is not a resolved problem.
There have been many rigorous and successful attempts for
diatomic1–4 and triatomic5–7 molecules but very few results are
available for polyatomic systems. Our preliminary report on
cyclopropane8 indicated that the recently developed discrete
momentum representation (DMR) theory with improved
treatment of polarization represents a substantial progress in
this direction and in this paper we present a comprehensive
test of this theory and the insight which it provides.

We believe that at the present state a treatment of electron-
impact vibrational excitation of polyatomic molecules requires
numerically controlled approximations and the DMR theory
applied here is of this type. It shows that it is possible to retain
both the rigor of the theory and computational feasibility while
applying such approximations.9–11

In contrast to modeling of vibrational excitation, the
modeling of elastic collisions of electrons with polyatomic

a)Electronic mail: roman.curik@jh-inst.cas.cz

molecules became a well-established task during the last two
decades. Many authors report fixed-nuclear elastic data for
the polyatomic molecules obtained by use of the R-matrix
method,12,13 the complex Kohn variational method,14,15 the
Schwinger multichannel method (SMC),16–18 or the optical
potential method with single-center expansion of electron
wave function.19,20 This paper, therefore, does not emphasize
on elastic scattering, but some of it is also included since the
capacity of the DMR method to describe vibrational excitation
relies on its capacity to correctly reproduce the elastic cross
sections.

The cyclopropane molecule was chosen as the test case
because it represents a useful compromise between being
sufficiently large and at the same time having a manageable
number of vibrational modes. It also has a number of
resonances which are narrow for a saturated hydrocarbon
and thus permit convenient evaluation of the capacity of the
theory to describe correctly the energies and widths of the
resonances. A marked feature observed by experiments21 is
a quite narrow shape resonance at 5.5 eV of A′2 symmetry,
causing primarily excitation of the ν3 vibration, the C—C ring
stretching. These findings were confirmed computationally.22

In that study, the authors obtained a qualitative agreement
of the resonance position (calculated too high by 1 eV)
but the energy dependence of the cross section differed
significantly from experiment above the resonant energy. An
unresolved problem concerns a shape resonance reported

0021-9606/2015/142(14)/144312/10/$30.00 142, 144312-1 © 2015 AIP Publishing LLC
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experimentally at 2.6 eV,21,23 which has so far not been
reproduced by theory.24 The cyclopropane molecule is also
of practical interest; it was detected in cooler edges of the
fusion plasmas.25

The aim of the present study is twofold. It reports a
comprehensive test of the DMR theory against experiment.
Our earlier work8 successfully tested selected aspects of
the DMR theory — an energy-loss spectrum at an incident
energy of 5.5 eV, one case of an angular distribution and
two cases of cross section recorded as a function of electron
energy. To ascertain that the good agreement found in that
study was not fortuitous, we present here a comprehensive
comparison, at electron energies in the range 1.0–20 eV
and a wide range of scattering angles. Particular attention
is paid to problems arising from the overlap of vibrational
bands due to their proximity and the limited instrumental
resolution.

The second aim is to apply the theory, once validated
by the detailed comparison with experiment, to illuminate the
detailed properties of the resonances. It will be shown that the
present theory provides a detailed insight into the mechanism
of excitation, particularly of the non-totally symmetrical
vibrations. Our results are more general and go beyond those of
the symmetry selection rules, originally formulated by Wong
and Schulz26 and later elaborated by Gallup27 who based his
finding on theoretical grounds by using the Feshbach-Fano
partitioning technique.

II. EXPERIMENT

The experimental conditions of the present work were
the same as in our earlier study8 but a much larger body of
data is reported. Altogether, 24 energy-loss spectra normalized
to absolute values were measured at the scattering angles of
45◦, 90◦, 135◦, 180◦ and incident electron energies of 1.0,
2.6, 5.5, 10, 15, and 20 eV. Selected cross sections were
further measured as a function of electron energy at 45◦, 90◦,
135◦, and 180◦. The elastic cross section was measured as a
function of electron energy at 45◦, 90◦, 135◦, and 180◦ and
as a function of scattering angle at 1.0, 2.6, 5.5, 10, 15, and
20 eV. As in the previous study,8 the technical quality of the
data is substantially improved in comparison with the older
measurements21,23 in terms of resolution, extended angular
range made possible by the magnetic angle changer (MAC),
and accuracy of the absolute values.

Briefly, the measurements were performed with a spec-
trometer using hemispherical analyzers.28,29 Absolute values
of the cross sections were determined by the relative flow
technique and normalized to a theoretical helium elastic cross
section. The two-standard-deviation confidence limit for the
magnitudes of the inelastic cross sections is about ±25%.
The angular distributions were measured using combined
mechanical setting of the analyzer and magnetic deflection
using a magnetic angle changer. The resolution was about
15 meV in the energy-loss mode.

Integral elastic cross sections were derived by integrating
under the angular distributions. A narrow range around 0◦,
where elastic cross section cannot be measured, was obtained
by visual extrapolation.

III. DISCRETE MOMENTUM REPRESENTATION

The DMR method is a rigorous ab initio method30,31 based
on the two-channel Lippmann-Schwinger equation. For actual
calculations, we used the following numerically controllable
approximations:

– We introduce one-electron optical potential V for the
interaction between the scattered electron and the charge
density of the molecule. Moreover, we retain only the
first term of the optical potential expansion,32 ending up
with the static-exchange (SE) approximation.

– The SE approximation is corrected by a model density
functional theory (DFT) polarization potential Vcp that
accounts for orbital relaxation of the bound electrons and
for the correlation between the scattered electron and
the bound electrons. We used the interpolation formula
suggested by Perdew and Zunger.33

– Nuclear dynamics is described by the rotationally frozen
and vibrationally harmonic approximations. Moreover,
for the vibrational space of each normal mode, we use
only a two-state approximation.

As a result of this approximation, the two-channel
Lippmann-Schwinger equation for a transition operator T may
be written as

⟨χ1k1|T |χ0k0⟩ = ⟨χ1k1|U |χ0k0⟩
+

1
i=0


dk

⟨χ1k1|U |χik⟩⟨χik|T |χ0k0⟩
k2

0 − 2Ei − k2 + iε
,

(1)

where U stands for a double of the interaction potential
V , E0 = 0 (for the elastic channel) is the energy of the
vibrational ground state, and E1 is the energy of the first
excited vibrational state. These two states are described by
the harmonic vibrational functions χ0 and χ1, respectively.
The vectors k0 and k1 represent the plane-wave functions for
the incoming and outgoing electrons, respectively.

A numerical discretization of the integral on rhs of the
above equation leads to a set of two coupled matrix equations,



T00 T01

T10 T11


=



U00 U01

U10 U11


+



U00 U01

U10 U11



×


G0

G1





T00 T01

T10 T11


(2)

with the following interaction matrix elements:

[U00]i j = ⟨χ0ki |U |χ0k j⟩ = [U11]i j,
[U01]i j = ⟨χ0ki |U |χ1k j⟩ = [U10]i j .

(3)

The above identities are based on a first order expansion
of the interaction along the dimensionless normal mode
coordinate Q as

U(Q) = U(0) +Q
∂

∂Q
U(0) +O(Q2), (4)

where U(0) stands for the double of interaction potential
at equilibrium geometry. Neglecting the higher order terms
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O(Q2) results in a simple integration over the coordinate Q,

⟨χ0(Q)ki |U(Q)|χ0(Q)k j⟩ = ⟨ki |U(0)|k j⟩, (5)

⟨χ0(Q)ki |U(Q)|χ1(Q)k j⟩ = 1
√

2

∂

∂Q
⟨ki |U(0)|k j⟩. (6)

The interaction potential V (Q) = U(Q)/2 is generated
from target state electron density

ρ(Q) =

µν

Dµν(Q)gµ(Q)gν(Q), (7)

where Dµν(Q) is a Hartree-Fock density matrix and gµ(Q)
represents Gaussian type basis set. As already mentioned, the
interaction potential V (Q) consists of static, exchange and
correlation-polarization contributions

V (Q) = Vs(Q) + Vex(Q) + Vcp(Q). (8)

For simplicity in the following formulas, we suppress explicit
dependence on vibrational coordinate Q. Momentum-space
matrix elements (5) of Vs and Vex are then evaluated through
hybrid plane-wave and Gaussian repulsion integrals

⟨k|Vs|q⟩ =

µν

Dµν

�
gµgν |kq

�

− 1
2π2|q − k|2

M
A=1

ZAei(q−k).RA, (9)

⟨k|Vex|q⟩ = −

µν

Dµν

�
kgµ |gνq

�
, (10)

with the second term of Eq. (9) representing a nuclear
attraction to M nuclei positioned at vectors RA. The static
and exchange repulsion integrals are defined as follows:

�
gµgν |k q

�
=

1
(2π)3


dxdy

gµ(x)gν(x)ei(q−k).y

|x − y| , (11)

�
kgµ |gνq

�
=

1
(2π)3


dxdy

gµ(x)e−ik.xgν(y)eiq.y

|x − y| . (12)

In most of the present implementations of a correlation
potential in quantum chemistry, the Vcp is calculated as a
function of the electron density ρ and its spatial gradient ∇ρ.
Similarly, we evaluate Vcp on a rectangular spatial grid with
the molecule sitting in its center. The incorrect long-range
behavior of Vcp, so common in DFT modeling, is then cor-
rected by a polarization asymptotic potential.34 The required
polarizabilities are obtained by ab initio quantum chemistry
software as described below in this section. The momentum
space matrix elements are computed by use of fast Fourier
transform (FFT) technique applied on the following integral:

⟨k|Vcp|q⟩ = 1
(2π)3


dr Vcp(r)ei(q−k).r. (13)

Convergence of the above integral with respect to FFT box size
is quite slow owing to the long-range nature of Vcp. However,
the asymptotic tail of Vcp may be removed and evaluated
analytically34 leaving a short-range part of Vcp that is amenable
to the numerical evaluation based on FFT. Vibrational coupling
elements (6) require differentiation of Eqs. (9)–(13) with
respect to coordinates of the nuclei. The nuclear gradients
are implemented in the DMR method in analytical form.7

Electronic state of the target molecule is described at
the Hartree-Fock level. We used Gaussian type orbital basis
set of the DZP quality.35 Polarizability tensor components
used in the present calculations were obtained as linear
response functions in Kohn-Sham DFT calculations36 with
B3LYP hybrid functional and Sadlej’s polarized VTZ basis
sets37 as implemented in program Dalton Release 2.0 (2005).
The axes are defined to diagonalize the polarizability tensor,
with diagonal polarizabilities 38.8, 38.8, and 33.8 a.u.; the
average of these values, 37.1 a.u., compares favorably with
the experimentally measured value of spherical polarizability
α0 = 38.2 a.u.38 Evaluation of vibrational coupling elements
(6) also requires gradients of the above tensor with respect
to nuclear positions. These were obtained by numerical
differentiation with shifting nuclei out of the equilibrium by
h = 0.001 bohr.

IV. COMPARISON OF MEASURED AND CALCULATED
CROSS SECTIONS

A. Elastic cross sections

Although elastic scattering is not of our primary interest in
this paper, it is prudent to check whether our elastic data agree
well with available calculations and experiments because the
accuracy of our vibrationally inelastic cross sections depends
on the accuracy of the elastic results—the two channels are
coupled via Eq. (2). We find satisfactory agreement both
for the integral elastic cross section plotted as a function
of electron energy shown in Fig. 1 (for collision energies
below 10 eV) and for the differential elastic cross section at
5.5 eV, displayed in Fig. 2. The differential cross sections
were also measured at 0.4, 1.0, 2.6, 10, 15, and 20 eV and
compare favorably to the present and earlier calculations as
shown in supplementary44 figures S1 and S2. Disagreement
between theory and experiment for energies above 10 eV

FIG. 1. Comparison of the elastic integral cross sections. Previous elastic
measurements are shown with crosses 39 and squares,40 while circles repre-
sent the previously reported total cross section.41 Present experimental data
are denoted by diamonds. Present calculations are shown as red line, while
the orange line represents previous SMC,40 and blue line represents results of
single-center expansion method.42 The oldest SMC results43 are omitted here
for clarity reasons.
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FIG. 2. Comparison of the elastic differential cross sections at 5.5 eV. The
present experimental data are shown with the black line, while the previous
measurements are denoted by squares.40 The red line shows present calcula-
tions, blue line displays results of previous Schwinger multi-channel calcula-
tions,40 and the green line represents single-center expansion calculations.42

may be assigned to the use of a single (electronic) channel
model. Since the ionization potential of cyclopropane is at
about 10 eV45 and the lowest excited electronic states start at
about 6.3 eV,46 multiple electronic channels, not accounted for
by single channel approach, become open. On the other hand,
this limitation may increase confidence in the theory that its
excellent performance at lower energy is not fortuitous.

The elastic cross section may also provide hints about
the presence and positions of shape resonances, although for
polyatomic molecules, the effect is often visible only weakly
on the background of direct scattering. Humps indicative of
resonances are visible around 6–7 eV in the earlier theoretical
integral cross sections displayed in Fig. 1 (orange and blue
lines) but are not convincingly reproduced by the present
theory and the experiments. More evidence for a resonance
is provided by the strong f -wave character of the differential
cross section at 5.5 eV, displayed in Figure 2.

B. Cross sections for vibrational excitation

1. Electron energy-loss (EEL) spectra normalized
to absolute values

For polyatomic molecules, a detailed comparison between
theory and experiment is hindered by the fact that the
experiment suffers from overlap of close-lying vibrational
peaks, caused mainly by the limited instrumental resolution,
but also by the finite rotational temperature that broadens
the vibrational peaks. This means that it is not possible to
obtain an experimental cross section, plotted as a function of
scattering angle or as a function of electron energy, for a single
vibrational mode, without contributions of nearby partially
overlapping bands. We by-pass this problem primarily by
comparing EEL spectra instead of the more conventional
comparison of the differential cross section for a given
vibrational mode plotted as a function of scattering angle or
electron energy. We compare the experimental spectra with
profiles obtained by convoluting the calculated bar spectrum
by a simulated experimental profile, a Gaussian of 15 meV

FIG. 3. Computed and measured absolute electron energy-loss spectra for
the scattering angle ϑ = 90◦. Red line shows the present calculations while
the black line denotes the experimental spectrum. Collision energy is 5.5 eV.
The scale factor ×4 applies only to inelastic bands.

width. An additional advantage of comparing EEL spectra is
that it verifies all vibrational modes, because when the cross
section is not calculated properly, the profiles will not fit even
though the vibrational modes are not fully resolved.

A comprehensive test of the DMR theory against exper-
iment requires a comparison for wide ranges of scattering
angles and electron energies, as well as for all vibrational
modes. We, therefore, measured the electron energy-loss
spectra, normalized to absolute values, at the scattering angles
of 45◦ to 90◦, 135◦ and 180◦ and incident electron energies of
1.0, 2.6, 5.5, 10, 15, and 20 eV. Two representative spectra are
shown in Figures 3 and 4, the remaining spectra (24 spectra
altogether) are shown in supplementary44 figures S3, S4, and
S5.

It can be seen that agreement between theory and the
experiment is very good for all the scattering angles and the
collision energies up to 10 eV. However, above 10 eV, we
observe that the theory predicts higher intensities over all
the vibrational bands. We believe that the reason behind this

FIG. 4. Computed and measured absolute electron energy-loss spectra for the
scattering angle ϑ = 135◦ and collision energy of 10 eV. Red line shows the
present calculations while the black line denotes the experimental spectrum.
The scale factor ×10 applies only to inelastic bands.
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overestimate is the higher elastic cross section predicted by
theory for collision energies above 10 eV (see Fig. 1). Since
the elastic and inelastic channels are coupled in the present
theory, the higher elastic flux often causes also an artificial
increase in the inelastic channel.

We would like to emphasize that no scaling of data
was made in any of the EELS graphs. Both sets of data,
the experiment and the theory, are compared in absolute
values. Vertical lines, placed at the respective vibrational
frequencies, denote magnitudes of the calculated differential
cross sections. We also note that the bands observed experi-
mentally at 220–320 meV correspond to overtone excitations
and are therefore not amenable to treatment by harmonic
approximation inherent in the DMR model.

2. Dependence of cross sections on electron energy

Resonances appear as enhancements of vibrational cross
sections over narrow ranges of energies. Plots of cross sections,
as a function of electron energy, thus represent a sensitive test
of the capacity of the DMR theory to describe the energies
and widths of resonances.

The calculated vibrational excitation cross sections for
all 14 vibrational modes are displayed in Figure 5, ordered
by the increasing energy loss. The results are compared with
previous calculations22 for the three fully symmetric modes
ν1, ν2, and ν3. We note that in the case of the ν1 mode the two
computations agree well, present calculations being slightly
higher in the resonant region. The difference is larger for ν3.
For ν2, the agreement is good above about 5 eV, but the present
calculation yields a distinct resonant peak at 2.6 eV which is
missing in the previous calculation.

The resonance at 2.6 eV deserves a special mention.
Originally, it was assigned to the A′′2 pseudo-π resonance, on
the grounds of experimental finding,23 based on the selective
excitation of the CH2 scissoring normal mode. It has the
particularity of being much lower in energy than what is
generally reported as the lowest shape resonance in saturated
hydrocarbons where the vibrational excitation cross sections
peak around 8 eV.21,23 (Saturated hydrocarbons do not have
low-lying π∗ orbitals which give rise to low-lying shape
resonances in compounds as ethene or benzene.) Finding
this resonance at such a low energy helps to understand
electron transfer through saturated alkyl bridges47,48 because
it is related to the “empty state” giving rise to the conduction
band. Early R-matrix calculations24 failed to reproduce this
resonance. The more recent calculation22 yields a weak hump
at 3.7 eV, which was, however, seen in the A′1 symmetry,
in contrast to the assignment derived experimentally. A
direct comparison between the present theory and experiment,
confirming the presence of the A′′2 resonance, was already
published8 and we avoid further analysis of the A′′2 resonance
here.

In case of the ν3 mode, our calculated data place the
5.5 eV shape resonance at 6.0 eV while previous calculations22

placed it at 6.4 eV. Note that many scattering theories predict
shape resonances too high because of lack of, or insufficient,
polarization of the target. Compared to previous calculations,22

we predict a somewhat lower energy and the cross section
about twice as high. This indicates that the present version of
the DMR theory accounts for polarization somewhat better.
This point will be elaborated later.

The dominant feature of the excitation cross sections
summarized in Figure 5 is the 5.5 eV shape resonance that

FIG. 5. Calculated rotationally summed 0→ 1 vibrationally inelastic integral cross sections (full lines). The modes are ordered by increasing vibrational
frequency. Our results are compared to previous calculations22 shown with dashed lines. Each of the last two graphs contains two modes for space saving
purposes.
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FIG. 6. Zoom of the line spectrum from Fig. 3 with two experimental
resolution functions. The full line describes the present experiment, measured
at an energy loss of 147 meV and FWHM of 15 meV. The broken line denotes
the experiment of Refs. 50 and 51 measured at an energy loss of 130 meV
with FWHM of 35 meV. The vertical bars indicate the calculated differential
cross sections.

strongly influences the excitation of the ν3 and ν4 modes and
also causes a weak maximum for the ν5 mode. The fact that we
are speaking about one resonance influencing several modes
will be proven in Sec. V. This resonance was first observed
experimentally49 at 5.5 eV and it was attributed to the A′2
symmetry with arguments based on the mode selectivity of
the vibrational excitation together with symmetry and nodal
properties of virtual orbitals.21 This assignment was later
confirmed by scattering calculations.22,43

As already pointed out, the cross sections of Figure 5
cannot be directly compared to the experiment, which neces-
sarily samples several vibrations due to limited instrumental
resolution and rotational broadening. In fact, there are two
experiments for the nominally ν3 cross section,8,50 which
seemingly contradict each other. We elaborate this point in
detail on the supposed excitation of the ν3 vibration as shown
in Fig. 6. (Note that ν3 generally dominates over ν4 for VE at
5.5 eV. It is only at scattering angles around 90◦ as in Figure 6,
where the excitation of ν3 has a minimum and that of ν4 has a
maximum, that ν4 appears stronger than ν3.)

We take into account that the measured cross section
is due to excitation of several near-lying normal modes as
shown in Figure 6, a zoomed part of Figure 4, where we
added two resolution functions describing the two available
experiments.8,50 In the present experiment (and Ref. 8), the
electrons were gathered at the nominal energy loss of the
ν3 vibration, 147 meV, with a resolution [full width at half
maximum (FWHM)] of 15 meV (full line). In the second
independent experiment, the energy loss was set to 130 meV
and the authors reported a resolution of 35 meV (displayed by
a dashed line in Fig. 6). In the following, we shall assume that
the resolution functions do not depend on the collision energy
in the range of 1–20 eV. In Figure 7, we show differential
cross section for 0 → 1 vibrational excitation of all the 8
modes contributing to the signal of the second experiment,
while only 4 of them (ν3, ν4, ν5, ν13) are needed to reconstruct
the first measurement. Figure 8 shows the weighted sums of
cross sections for different modes with weights derived from
positions and widths of the resolution functions displayed in

FIG. 7. Inelastic differential cross section as a function of collision energy for
all 8 vibrational modes that contribute in reconstruction of experiments.8,50,51

Scattering angle is fixed at ϑ = 90◦.

Fig. 6. The weighted sums of the calculated data lead to a very
good agreement with both experimental results and explain
the seeming discrepancy between them: A wider resolution
function gives electron current that contains probability from
excitation of more vibrational modes, resulting in a higher
value of the cross section.

Finally, it is worth noting that the broad shoulder in the
experimental results visible in Fig. 8 around 10 eV can be
explained by the excitation of the ν13 mode that contributes to
the measured signal in both experiments (see Figs. 6 and 7).

V. SYMMETRY ANALYSIS OF VIBRATIONAL
EXCITATION VIA THE 5.5 EV SHAPE RESONANCE

The aim of this section is to determine computationally the
dominant electronic symmetry components that drive resonant
vibrational excitation at collision energy of 5.5 eV. Figure 5

FIG. 8. Inelastic differential cross section as a function of collision energy.
The two experiments are denoted by red crosses8 and blue triangles.50,51

The full line represents a weighted sum of calculated inelastic cross sections
for modes ν3,ν4,ν5,ν13; the broken line contains weighted contributions of
all the 8 modes displayed in Fig. 7, with the weights reflecting the two
instrumental profiles shown in Fig. 6.
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shows that there are two vibrational modes exhibiting strong
resonant behavior at 5.5 eV, namely, the ring stretch mode ν3
and HCH twist mode ν4. One may argue that there is also a
resonant enhancement of HCH wagging mode ν5; however,
we find it very weak and hence it will not be in our focus.

At present, the DMR method does not attempt to
reduce computational effort by making use of the symmetry
components corresponding to the point group of the molecule.
We have two reasons for this. First, the method is aimed at
larger molecular systems that generally have low symmetry,
and the computational gain would be small. Second, and more
importantly, even symmetric molecules (as cyclopropane)
reduce their symmetry if vibrational motion is included. We
may work within two possible schemes: We may reduce the
applied point group so that it is conserved for the particular
vibrational mode or we may use the equilibrium point group
(D3h in this case) and accept that irreducible representations
may become coupled by the vibrational motion. In the present
analysis, we have chosen the latter.

We start with the T10 matrix elements obtained by solving
the set of equations (2),

[T10]i j = ⟨χ1ki |T |χ0k j⟩, (14)

where vectors k j span the incoming momentum sphere with
radius determined by collision energy E, and the vectors ki

span the outgoing momentum sphere with radius determined
by energy of the outgoing electron. Since the angular grid
on the sphere is described by Lebedev angular quadrature
designed to integrate exactly spherical harmonics up to a
particular order,52 the partial-wave components of the T10
matrix are obtained by the straightforward technique

T l′m′
lm =


i j

wiw jSlm(k̂i)[T10]i jSl′m′(k̂ j), (15)

where wi are the weights of the Lebedev quadrature,52 the
vectors k̂i are unit vectors with directions of ki, and the
angular functions Slm are chosen as real spherical harmonics.
For a given orientation of the cyclopropane molecule in the
x y-plane, the real spherical harmonics may be transformed
by a real unitary transformation into angular functions that
belong to an irreducible representation of the D3h point group.
If we place one of the carbon atoms on the y-axis, this unitary
transformation is very simple as the real spherical harmonics
already form irreducible subspaces.53

Before we proceed to the analysis of the calculated
symmetry components, we summarize the resonant symmetry
selection rules first published by Wong and Schulz26 and
later confirmed by Gallup.27 The rules were inspired by a
very high resolution energy-loss spectrum of benzene which
showed that only relatively few vibrations are excited by the π∗

shape resonance, despite the large number of normal modes,
indicating a high selectivity of the excitation process. An
attempt was made to rationalize the high selectivity by defining
selection rules, the initial formulation of which stated that for
a shape resonance with a spatial symmetry Γr , the vibrational
modes that give non-zero element,

⟨Γ(χ1)|[Γ2
r]|Γ(χ0)⟩, (16)

can be excited. The [Γ2
r] is used as a symmetric part of

the square of the representation Γr , and Γ(χ0) and Γ(χ1) are
symmetries of initial and final vibrational functions. Here, we
consider Γ(χ0) equal A′1 (symmetric ground vibrational state),
and Γ(χ1) corresponds to the first excited state which inherits
the symmetry of the vibrational mode under examination. The
procedure to find the symmetric and anti-symmetric parts
of the squared irreducible representations can be found in
the literature.27,54 Wong and Schulz noted, however, that this
initial formulation of the rules is too restrictive because the
experimental spectrum showed excitation of several nodes,
namely, out-of-plane bending vibrations, which would be
forbidden by the simple rule. They then noted that all these
extra modes could be explained with the additional assumption
that the outgoing electron may also leave in an s-wave in which
case selection rule (16) was extended26,27 by an exception that
resonant vibrational excitation may also be expected for modes
with the symmetry Γr .

A. Excitation of the A′1 totally symmetrical vibrational
mode ν3

The present DMR model enables the explicit calculation
of values of the transition elements for all incoming and
outgoing partial waves and thus allows insight into the
applicability of the symmetry selection rules. The squared
elements |T l′m′

lm
|2 for the symmetric stretch mode ν3 are shown

as vertical columns for all combinations of the incoming and
outgoing partial waves up to lmax = 3 in the left panel of
Figure 9. The fact that a single column dominates the figure
demonstrates clearly that the resonant vibrational excitation
of the ν3 mode is driven by a single partial wave, which is
the lowest partial wave of A′2 symmetry. With the carbon ring
of the molecule placed in the x y plane and one carbon atom
on the y-axis, we may identify this partial wave as l = 3,
m = 3. This single contribution to the inelastic cross section
is diagonal and as such it describes a collision in which an
incoming A′2 wave excites the fully symmetric ring stretch
mode ν3 and leaves the system in the same partial wave, A′2. In
the right panel of Fig. 9, we display the calculated differential
cross section and the spatial shape of the corresponding virtual
orbital of A′2 symmetry. It is clear that the angular shape of
the differential cross section describes an almost pure f -wave
scattering event in agreement with what our analysis shows in
the left panel of Fig. 9.

Application of the selection rules to this event leads to the
symmetry element

⟨A′1|[A′22 ]|A′1⟩ = ⟨A′1|[A′1]|A′1⟩ = ⟨A′1|A′1|A′1⟩ , 0 (17)

and the excitation of the ν3 vibration via the 5.5 eV A′2
resonance is thus in accord with the selection rules.26,27

B. Excitation of the A′′1 vibrational mode ν4

The excitation of the HCH twist mode ν4 is forbidden
by the symmetry selection rules of Wong and Schulz26 and
Gallup27 since both the element for the primary selection rule

⟨A′′1 |[A′ 22 ]|A′1⟩ = ⟨A′′1 |[A′1]|A′1⟩ = ⟨A′′1 |A′1|A′1⟩ = 0 (18)

and for the s-wave exception
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FIG. 9. Symmetric C—C stretch ν3. The left panel displays the squared elements |T l′m′
lm

|2 for vibrational excitation of the ring stretch mode ν3 calculated via
Eq. (15). Partial waves up to lmax= 3 are separated into irreducible representations of the D3h point group. The integer numbers closest to the graph represent
the angular quantum number l of each angular function belonging to the symmetry component. The right panel displays shape of computed differential cross
section (upper picture) and shape of a virtual orbital corresponding to outgoing wave of A′2 symmetry (lower picture).

⟨A′′1 |[A′2]|A′1⟩ = ⟨A′′1 |A′2|A′1⟩ = 0 (19)

are zero. In contrast to this, the excitation of the HCH twist
mode ν4 is strong, in particular in the 90◦ spectrum. This is seen
in the calculated spectrum in Fig. 6 and is confirmed by the
experiment, despite the fact that the two vibrations ν3 and ν4
are not fully resolved. The first experimental indication is that
the 90◦ dip in the angular distribution measured at the energy
loss of 147 meV (Fig. 2 of Ref. 8) is less deep than a pure
f -wave, which would be expected for the excitation of ν3
alone. A second indication is a small (∼−4 meV) downward
shift of the energy-loss peak observed at ∼147 meV when
recorded at 90◦ (when ν4 dominates) as opposed to when
recorded at 135◦ or 180◦ (when ν3 dominates) (see Fig. 3 for

the 90◦ spectrum and Fig. 1 of Ref. 8 for the 135◦ spectrum).
The shift is observable despite the fact that the difference of
the ν3 (146.7 meV) and ν4 (139.6 meV) frequencies is only
7 meV, less than the experimental resolution of 15 meV.

A comparison of the squared elements |T l′m′
lm

|2 for the ν4
mode (Fig. 10) with those for the totally symmetrical mode
ν3 in Fig. 9 reveals that the resonant excitation mechanism is
quite different. The coupling between incoming and outgoing
partial waves is off-diagonal. Figure 10 shows that the resonant
vibrational excitation of the ν4 mode is caused by the incoming
partial wave (l = 3,m = 3) of the A′2 symmetry as in the
previous case of the ν3 mode. However, now the electron
causes excitation of the non-symmetric HCH twisting mode ν4
of the A′′1 symmetry and leaves the molecule dominantly in two

FIG. 10. HCH twist mode ν4. The left panel displays the squared elements |T l′m′
lm

|2 for vibrational excitation of the HCH twist mode ν4 calculated via Eq. (15).
The right panel displays the shape of the computed differential cross section (upper picture) and the shape of a virtual orbital corresponding to the outgoing wave
of the A′′2 symmetry (lower picture).
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different partial waves, l = 1, m = 0 and l = 3, m = 0, shown
as a pair of adjacent columns in the left panel of Fig. 10.
Note that in the angular momentum space limited to l ≤ 3
used here, and for a given orientation of the molecule, these
two partial waves form exactly the irreducible representation
A′′2 . The fact that there are two pairs of columns, arranged
symmetrically across the diagonal, is due to the principle of
microscopic reversibility, i.e., the symmetries of the incoming
and outgoing waves can be switched.

What we observe here is an f -wave resonance of A′2 sym-
metry that leaks partially to a p-wave in A′′2 symmetry while
causing resonant vibrational excitation of non-symmetric
ν4 mode of A′′1 symmetry. The dominant contribution of
the corresponding partial waves and the angular shape of
differential cross section (both displayed in Fig. 10) together
with strength of the resonance (shown in Fig. 5) confirm that it
is not a weak effect. The possibility of an outgoing p-wave has
not been foreseen in the formulation of the resonant selection
rules,26,27 which thus cease to be valid. Note that extending the
selection rules for an outgoing p or even higher l waves is not
very meaningful because too many excitations would become
allowed and the predictive power would suffer. The present
method is superior in that it allows a quantitative prediction of
the strength of each individual excitation mechanism.

VI. SUMMARY

We present a very comprehensive quantitative comparison
of the experimental cross section with the results of the
recent DMR theory, comprising the energy range from 0.4
to 20 eV, the scattering angle range from 10◦ to 180◦, and
all normal modes. An excellent agreement is observed for
collision energies under 10 eV and proves the capacity of
the DMR theory to quantitatively describe the vibrational
excitation process and thus, in a broader sense, the coupling
of electronic and nuclear motions in temporary negative ions,
with the great advantage of being applicable even to large
polyatomic molecules. For the collision energies above 10 eV,
the DMR method tends to overestimate absolute cross sections
in both elastic and inelastic channels.

We believe that the present form of the DMR theory
describes quantitatively three important aspects of the process,
the mode selectivity for all the vibrational modes, as revealed
by the good agreement with the electron-energy loss spectra,
the energies and widths of the resonances, as revealed by
the good agreement of the cross sections measured at a given
energy loss as a function of the electron energy, and the angular
distributions, informative of the symmetry aspects.

The importance of taking into account the overlap of
close-lying vibrations, not fully resolved experimentally, is
emphasized. Treating this aspect properly permitted us to
reconcile two absolute measurements8,50 which were seem-
ingly in contradiction. The difference of the two experimental
results is shown to be entirely explained by the different reso-
lutions and nominal energy-loss values of the two experiments
and thus different degrees of vibrational band overlap.

The 5.5 eV A′2 resonance was used to study the role
of symmetry in the mode selectivity with reference to the
symmetry selection rules derived by Wong and Schulz26

and Gallup.27 Detailed insight into this question is gained
by calculating the squared transition elements |T l′m′

lm
|2 for a

given vibration and all combinations of the incoming and
outgoing partial waves, and plotting them in a 3D diagram.
This procedure was applied to excitation of the ν3 totally
symmetrical C—C stretch mode where a single dominant
partial wave l = 3 of A′2 symmetry was found. This result
is in agreement with the conclusions previously published in
the literature21,22 and it conforms to the symmetry selection
rules.26,27 The calculations, confirmed by experiment, have
further revealed the excitation of the non-totally symmetrical
HCH twist mode ν4 that also exhibits a strong resonant
behavior at 5.5 eV and that is unexpected because it is
forbidden by the symmetry selection rules. In this case, we
identified the mechanism by which an f -wave resonance of
A′2 symmetry (the same as in the above case of ν3) leaks
partially to a p-wave in the A′′2 symmetry. This change of
electronic symmetry during the collision is mediated by the
resonant excitation of the non-symmetric HCH twisting mode
ν4. This inelastic scattering event shows that the symmetry
selection rules as generally formulated, i.e., which assume that
the partial wave of the electron either does not change in the
process of the inelastic scattering or that it changes such that
the electron departs in an s-wave, are not sufficiently general
and do not explain the observations for cyclopropane. The
present theory allows to calculate quantitatively the transition
matrix elements for all incoming and departing electron partial
waves and is thus more powerful than the selection rules. Note
that excitation of non-totally symmetrical modes often plays a
crucial role in electron-driven chemistry (dissociative electron
attachment) because the ensuing symmetry lowering offers a
pathway to by-pass an energy barrier. However, it has not been
conclusively proven that the symmetry lowering is required
to by-pass an energy barrier—but the experimental evidence
certainly indicates a propensity to lower the symmetry. The
dissociative electron attachment of CF4 is a good example.55
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11P. Čársky and R. Čurík, Theor. Chem. Acc. 133, 1466 (2014).
12J. Tennyson, Phys. Rep. 491, 29 (2010).
13Z. Masin and J. D. Gorfinkiel, J. Chem. Phys. 135, 144308 (2011).
14T. N. Rescigno, C. W. McCurdy, A. E. Orel, and B. H. Lengsfield III, in

Computational Methods for Electron-Molecule Collisions, edited by W. M.
Huo and F. A. Gianturco (Plenum Press, New York, 1995).

15C. S. Trevisan, A. E. Orel, and T. N. Rescigno, Phys. Rev. A 74, 042716
(2006).

16K. Takatsuka and V. McKoy, Phys. Rev. Lett. 45, 1734 (1980).
17P. Palihawadana, J. Sullivan, M. Brunger, C. Winstead, V. McKoy, G. Garcia,

F. Blanco, and S. Buckman, Phys. Rev. A 84, 062702 (2011).
18M. A. Khakoo, J. Muse, K. Ralphs, R. F. da Costa, M. H. F. Bettega, and M.

A. P. Lima, Phys. Rev. A 81, 062716 (2010).
19F. A. Gianturco, D. G. Thompson, and A. Jain, in Computational Meth-

ods for Electron-Molecule Collisions, edited by W. M. Huo and F. A.
Gianturco (Plenum Press, New York, 1995).

20I. Baccarelli, I. Bald, F. A. Gianturco, E. Illenberger, and J. Kopyra, Phys.
Rep. 508, 1 (2011).

21M. Allan and L. Andric, J. Chem. Phys. 105, 3559 (1996).
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48C. Benesch, M. Čížek, J. Klime, I. Kondov, M. Thoss, and W. Domcke, J.
Phys. Chem. C 112, 9880 (2008).

49A. E. Howard and S. W. Staley, ACS Symp. Ser. 263, 183 (1984).
50H. Kato, M. Hoshino, H. Kawahara, C. Makochekanwa, S. J. Buckman, M.

J. Brunger, H. Cho, M. Kimura, D. Kato, H. A. Sakaue, I. Murakami, T.
Kato, and H. Tanaka, National Institute for Fusion Science, NIFS-DATA-
105, 2009.

51C. Makochekanwa, H. Kato, M. Hoshino, H. Cho, M. Kimura, O. Sueoka,
and H. Tanaka, Eur. Phys. J. D 35, 249 (2005).

52V. I. Lebedev and D. N. Laikov, Dokl. Akad. Nauk 366, 741 (1999).
53S. L. Altmann and C. J. Bradley, Philos. Trans. R. Soc. London A 255, 199

(1963).
54L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Non-Relativistic

Theory, 3rd ed. (Pergamon Press, Oxford, 1977), p. 370, Sec. $94.
55F. H. Ómarsson, E. Szymanska, N. J. Mason, E. Krishnakumar, and O.

Ingólfsson, Phys. Rev. Lett. 111, 063201 (2013).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.21.16.139 On: Wed, 29 Apr 2015 17:00:13

http://dx.doi.org/10.1007/s00214-014-1466-9
http://dx.doi.org/10.1016/j.physrep.2010.02.001
http://dx.doi.org/10.1063/1.3650236
http://dx.doi.org/10.1103/PhysRevA.74.042716
http://dx.doi.org/10.1103/PhysRevLett.45.1396
http://dx.doi.org/10.1103/PhysRevA.84.062702
http://dx.doi.org/10.1103/PhysRevA.81.062716
http://dx.doi.org/10.1016/j.physrep.2011.06.004
http://dx.doi.org/10.1016/j.physrep.2011.06.004
http://dx.doi.org/10.1063/1.472819
http://dx.doi.org/10.1088/0953-4075/35/3/321
http://dx.doi.org/10.1021/ja00067a070
http://dx.doi.org/10.1088/0953-4075/30/15/016
http://dx.doi.org/10.1103/PhysRevLett.35.1429
http://dx.doi.org/10.1063/1.465346
http://dx.doi.org/10.1088/0953-4075/40/17/020
http://dx.doi.org/10.1103/PhysRevA.81.042706
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1088/0953-4075/43/17/175205
http://dx.doi.org/10.1063/1.1577329
http://dx.doi.org/10.1135/cccc19881995
http://dx.doi.org/10.1088/0953-4075/24/15/002
http://dx.doi.org/10.1063/1.2141950
http://dx.doi.org/10.1088/0953-4075/35/11/319
http://dx.doi.org/10.1088/0953-4075/35/3/321
http://dx.doi.org/10.1063/1.462817
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://dx.doi.org/10.1063/1.4917304
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://webbook.nist.gov
http://dx.doi.org/10.1016/j.cplett.2006.09.003
http://dx.doi.org/10.1021/jp711940n
http://dx.doi.org/10.1021/jp711940n
http://dx.doi.org/10.1021/bk-1984-0263.ch010
http://dx.doi.org/10.1140/epjd/e2005-00082-0
http://dx.doi.org/10.1098/rsta.1963.0002
http://dx.doi.org/10.1103/PhysRevLett.111.063201

