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Abstract
We have calculated and measured differential and integral cross sections for vibrationally
inelastic scattering of electrons by methane molecules. The calculations were carried out using
the discrete momentum representation (DMR) method. We solved the two-channel
Lippmann–Schwinger equation in the momentum space. The interaction between the scattered
electron and the target molecule is described by the exact static-exchange potential.
Correlation–polarization forces were included by a simple local density functional theory
potential of Perdew and Zunger (1981 Phys. Rev. B 23 5048). The cross sections calculated in
this way agree very well with our measurement and with other more recent experimental data,
but are larger than some older experimental and theoretical results.

1. Introduction

Knowledge of electron impact vibrational excitations of
methane is important in a wide variety of technological and
atmospheric applications. Methane has been identified as a
source of significant infrared absorption in the atmospheres of
Jupiter, Saturn, Uranus and Neptune (Broadfoot et al 1986).
Moreover, the methane molecule is involved in the network
of greenhouse gas kinetics of Earth’s atmosphere. Other
applications are found in gaseous discharges, gaseous laser
media, radiation detectors and in electron-impact-induced
chemical reactions on surfaces.

As a result of the interests from these various fields, there
has been considerable amount of experimental and theoretical
work devoted to the study of electron–methane collisions in
the last two decades. While calculation and measurement of
elastic scattering cross sections is a well-established task (for
a review, see Bundschu et al 1997), attempts at a theoretical
analysis of vibrational excitation cross sections are rather rare.

Both off-shell and adiabatic techniques were applied for
a single-centre expansion method by Althorpe et al (1995)
and for a complex Kohn variational method by Rescigno et al
(1995). Excitations of the symmetric mode have been analysed

for several Td molecules by Cascella et al (2001a) using local
exchange and polarization with adiabatic approximation for
the motion of the nuclei. Comparison between local and
separable exchange models and their impact on the adiabatic
excitations of all vibrational modes for methane can be found
in Cascella et al (2001b). The latest calculations by Nishimura
and Gianturco (2002) used a more rigorous treatment of
nuclear dynamics via a close-coupling formalism, although
exchange and correlation–polarization effects were included
in the local approximation.

In the experimental field it is important to note that
several measurements of the cross sections for vibrational
excitation were made and they will be listed in detail in
section 4.

In this work, we therefore aim to carry out fully ab initio
calculations for the vibrational excitations of the methane
molecule with exact static-exchange contributions and a close-
coupling scheme for the vibrational motion. Correlation–
polarization forces are included by a density functional
theory (DFT) potential introduced by Perdew and Zunger
(1981). The theoretical results are evaluated by comparison
with both existing experimental data and also with our new
measurements, which extend the energy and angular ranges of
the existing experimental cross sections.
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2. Experiment

The measurements of the vibrationally inelastic cross sections
were performed using a spectrometer with hemispherical
energy analysers (Allan 1992, 2005b, 2007). It is equipped
with a magnetic angle changer (Read and Channing 1996,
Zubek 1996), which permits measurements over the entire
angular range 0◦–180◦. The instrumental response function
was determined on elastic scattering in helium and all spectra
were corrected as described earlier (Allan 2005b). Absolute
values of the cross sections were determined by the relative
flow technique using the theoretical helium elastic cross
sections of Nesbet (1979) as a reference. The confidence limit
of the absolute cross section values is about ±25%. The cross
sections have a narrow peak in the forward direction which
is particularly difficult to measure, and whose measurement
is affected by the angular resolution of the instrument, about
3◦. The measurement is consequently less precise within the
first ∼5◦.

3. Theory

3.1. Overview of the DMR method

The vibrationally inelastic DMR method was discussed in
detail by Čurı́k and Čársky (2003) and only a brief summary
is given here. We made use of the following approximations.

• We introduce a one-electron optical potential for the
interaction between the scattered electron and the charge
density of the molecule. Furthermore we retain only
the first term of the optical potential expansion (see,
for example, Joachain 1975), ending up with the static-
exchange (SE) approximation.

• The SE approximation is corrected by a model DFT
potential Vcp that accounts for orbital relaxation of the
bound electrons and for the correlation between
the scattered electron and the bound electrons. We used
the interpolation formula suggested by Perdew and Zunger
(1981).

• Nuclear dynamics is described by the rotationally frozen
and vibrationally harmonic approximations. Moreover,
for the vibrational space of each normal mode we use
only a two-state approximation. Nishimura and Gianturco
(2002) have shown that the contributions from the
coupling with the higher vibrational states are negligible
for the CH4 molecule in the whole energy regime from
0.5 eV to 12 eV.

These approximations allow us to describe the scattering
problem via the two-channel Lippmann–Schwinger equation
in the three-dimensional momentum space:

〈χ1k1|T̂ |χ0k0〉 = 〈χ1k1|Û |χ0k0〉

+
1∑

i=0

∫
dk

〈χ1k1|Û |χik〉〈χik|T̂ |χ0k0〉
k2

0 − 2Ei − k2 + iε
, (1)

where Û stands for twice the interaction potential V̂ , E0 = 0
(for the elastic channel) is the energy of the vibrational ground
state and E1 is the energy of the first excited vibrational state.

These two states are described by the vibrational functions
χ0 and χ1, respectively. The vectors k0 and k1 represent the
plane-wave functions for the incoming and outgoing electrons,
respectively.

Numerical discretization (p and i run through abscissas of
the radial and angular quadratures, respectively)

∫
dk

∫
dk̂ g(k) →

NRAD∑
p

wp

NANG∑
i

wig(kpi) (2)

of the integral on the rhs of equation (1) leads to a set of
two-coupled matrix equations:(

T00 T01

T10 T11

)
=

(
U00 U01

U10 U11

)
+

(
U00 U01

U10 U11

)
·
(

G0 0
0 G1

)

·
(

T00 T01

T10 T11

)
, (3)

with the interaction matrix elements defined as follows:

[U00]pi,qj = 〈χ0kpi |Û |χ0kqj 〉
[U11]pi,qj = 〈χ1kpi |Û |χ1kqj 〉

[U01]pi,qj = 〈χ0kpi |Û |χ1kqj 〉 = [U10]pi,qj .

(4)

The body-fixed scattering amplitudes for the vibrational
transitions are obtained by the matrix inversion in equation
(3). Evaluation of the matrix elements (4) was given by Čurı́k
and Čársky (2003). More details about the quadrature scheme
(2) of the singular kernels on the rhs of equation (1) can be
found in Polášek et al (2000) and Čársky and Čurı́k (2006).

3.2. Correlation–polarization potential

Several models for a potential that includes both correlation
and polarization effects in electron–molecule scattering
problems were proposed by Perdew and Zunger (1981),
O’Connell and Lane (1983) and Padial and Norcross (1984).
Since then many authors have successfully utilized a simple
and local form of the correlation energy provided by these
electron–gas type simulations noted above. Among these
we mention applications to the elastic electron–molecule
collisions (Čurı́k et al 2000) and vibrationally and rotationally
inelastic processes (Cascella et al 2001a, Telega et al 2004).
In contrast to most of the DFT potentials used in quantum
chemistry these models do not contain exchange interaction
and they are based on a hybridization of the local electron–
gas theory for short distances and the asymptotic form of the
polarization potential as

Vcp =
{

Vc, r � r0

Vp = − α0

2r4
, r > r0

, (5)

where the dipole polarization potential Vp is spherically
symmetric in the case of methane molecule. In the above
equation r0 is a matching radius where Vc = Vp and α0

is the static isotropic polarizability of the molecule. The
Vcp potential (5) is energy independent and very simple to
apply, depending only on the molecular charge density and
polarizabilities. For its short-range part Vc we followed the
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Figure 1. Rotationally summed ν = 0 → 1 integral cross sections for the excitation of the four vibrational modes indicated. The broken
curves represent our results with the SE optical potential while the full curves also include the correlation–polarization model (SEP),
summarized in equation (5). We compare our results with the calculations of Nishimura and Gianturco (2002), displayed with dotted lines.

conclusions of Padial and Norcross (1984) by choosing the
form of Perdew and Zunger (1981):

Vc(�r) =

⎧⎪⎪⎨
⎪⎪⎩

0.0311 ln rs − 0.0584,

+ 0.001 33rs ln rs − 0.0084rs rs < 1
γ
(
1 + 7

6β1
√

rs + 4
3β2rs

)
(1 + β1

√
rs + β2rs)2

, rs � 1
(6)

where the constants are γ = −0.1423, β1 = 1.0529, β2 =
0.3334 and the radius of a unity charge rs is a function of the
bound-electron density �(�r)

rs =
[

3

4π�(�r)
]1/3

. (7)

In order to calculate the matrix elements U01 in equation (4)
we also need to evaluate derivatives of Vcp with respect to
nuclear coordinates. This leads to the necessity of knowing
the derivatives of the dipole polarizabilities in equation (5)
and through equations (6) and (7) to derivatives of the electron
density �(�r). Both derivatives are evaluated by the use of
standard quantum chemistry software as will be described
below.

3.3. Dipole polarizabilities

Isotropic dipole polarizability of CH4 molecule has been
a subject of numerous computational (Amos 1979, Wong
et al 1991, Maroulis 1994) and experimental (Werner et al
1976, Hohm and Kerl 1993) studies. However the derivatives
of the dipole polarizabilities are difficult to find in the
literature. Therefore the first step in our computations was
to determine all the independent components of polarizability
tensor derivatives. We employed the linear response
approach (Dalskov and Sauer 1998) in the following ab initio
methods: second-order polarization propagator (SOPPA),
multiconfiguration self-consistent field (MCSCF), coupled

Table 1. Dipole polarizability and its non-zero derivatives
calculated by several ab initio methods with the daug-cc-pVTZ
basis set. Atomic units are used throughout the table.

Method α0
∂αxx

∂xH

∂αyy

∂xH

∂αzz

∂xH

MCSCF 16.15 2.81 1.85 1.85
SOPPPA 16.27 2.86 1.92 1.92
CCSD 16.41 2.92 1.92 1.92

cluster singles and doubles (CCSD), with basis sets starting
at aug-cc-pVDZ with the results being saturated at daug-cc-
pVTZ (Dunning 1989, Woon and Dunning 1994) or Sadlej’s
basis sets (Sadlej 1988). The results for the daug-cc-pVTZ
basis are summarized in table 1. Our CCSD results give
polarizability derivative for the symmetric stretch Rs of
the C–H bond ∂α0/∂Rs = 15.6 a.u. to be compared with
15.7 a.u. calculated by Maroulis (1994). Furthermore the
CCSD Born–Oppenheimer polarizability α0 = 16.41 a.u.
needs to be corrected by an additional value of 0.88 a.u.
that accounts for zero-point vibrations (Wong et al 1991).
This correction pushes our calculated α0 to 17.28 a.u. to
be compared with the experimental value of 17.26 a.u. of
Hohm and Kerl (1993). The encouraging agreement between
computed polarizabilities and available experimental and
theoretical data allowed us to use the CCSD values of table 1
for the following scattering calculations.

4. Results

Figure 1 shows the calculated dependence of the integral
inelastic (0 → 1) cross section on collision energy for
all four vibrational modes. As can be seen the cross
section is dominated by a broad shape resonance centred
around 7.5 eV. The effect of the Vcp interaction defined in
equation (5) appears to be negligible for the collision energies

3



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 115203 R Čurı́k et al
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Figure 2. Rotationally summed 0 → 1 differential cross section for the collision energy of 5 eV. Broken curves represent our results with
the SE optical potential while the solid lines also include the correlation–polarization given by equation (5) (SEP). The results of Tanaka
et al (1983), Shyn et al (1991), Bundschu et al (1997) and Allan (2007) are shown for comparison. The left panel is for the composite
stretching mode ν1 + ν3 and the right panel displays data for the composite deformation mode ν2 + ν4.
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Figure 3. Rotationally summed 0 → 1 differential cross sections for the collision energy of 10 eV. Broken curves represent our results with
the SE optical potential while the solid lines also include the SEP correlation–polarization model of equation (5). The results of Tanaka et al
(1983), Shyn (1991) and Allan (2007) are shown for comparison. The left panel is for the composite stretching mode ν1 + ν3 and the right
panel displays data for the composite deformation mode ν2 + ν4.

above 12 eV, but it shifts the shape resonance to lower energies
and strongly enhances the cross section in the resonant regime.
For a comparison figure 1 also displays results taken from
Nishimura and Gianturco (2002). Their calculation treated
nuclear dynamics in a close-coupling scheme as has been done
in the present work. However, the main source of differences
comes from the optical potential. The exchange part of the
interaction was treated in a local semiclassical approximation
in their work (Gianturco and Scialla 1987), while it is exact
in the present study. Also, the previous calculations used
a different correlation interaction Vc, based on the electron–
electron correlation energy as suggested by Carr et al (1961)
and Carr and Maradudin (1964). Since the magnitudes of
the cross sections of Nishimura and Gianturco (2002) are
somewhere between our uncorrelated and correlated results,
we conclude that either their correlation interaction or their
exchange interaction (or both) are weaker than those of our
model.

We further evaluate the two theoretical approaches by
comparing our calculated differential cross sections with
available experimental data at 5 eV (in figure 2) and 10 eV (in
figure 3). The present experimental data are listed for selected
angles in tables 2 and 3. The two C–H stretch vibrations
ν1 and ν3, and also the two deformation vibrations ν2 and
ν4 cannot be entirely resolved experimentally, even with high
instrumental resolution, because of the overlap of the rotational
band envelopes (Müller et al 1985, Allan 2005a). Only the
sums of the differential cross sections can meaningfully be
compared with the results of calculations. Each unresolved
pair contains one infrared active mode (non-zero transition
dipole moment) and the angular dependence of both cross
sections is therefore peaked around the forward direction, both
at 5 eV and 10 eV (figures 2 and 3), as expected (Itikawa 2000).
The more recent measurements, those of Bundschu et al (1997)
and Allan (2007), are in an excellent agreement at 5 eV, while
the older experiments carried out by Tanaka et al (1983) are
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Table 2. Experimental DCS for vibrational excitation, measured as a function of scattering angle θ , at 5 eV. The units are 10−22 m2 sr−1.

θ 0 1 2 3 4 5 6 7.5 10
ν2 + ν4 251 183 90.5 48.2 30.7 21.9 17.3 12.5 9.35
ν1 + ν3 73.5 68.0 54.6 42.8 33.3 26.7 21.9 17.1 14.0

θ 15 20 30 40 50 60 70 80 90
ν2 + ν4 6.88 5.79 4.75 4.01 3.79 4.00 4.42 4.74 5.08
ν1 + ν3 10.9 9.27 6.89 5.69 5.20 4.98 5.22 5.71 5.57

θ 100 110 120 130 140 150 160 170 180
ν2 + ν4 5.07 4.95 5.01 5.03 5.20 5.39 5.69 5.96 6.23
ν1 + ν3 5.12 4.28 3.46 3.20 3.48 4.20 5.32 6.16 6.88

Table 3. Experimental DCS for vibrational excitation, measured as a function of scattering angle θ , at 10 eV. The units are 10−22 m2 sr−1.

θ 0 1 2 3 4 5 6 7.5 10
ν2 + ν4 234 76 37 25 19.5 15.5 14.5 13.7 11.3
ν1 + ν3 97 82 48 28.4 19.7 15.8 13.6 11.7 10.5

θ 15 20 30 40 50 60 70 80 90
ν2 + ν4 8.91 8.09 6.86 5.89 5.05 4.21 4.26 4.70 4.82
ν1 + ν3 8.89 8.33 7.27 6.09 4.85 3.61 3.48 3.27 3.44

θ 100 110 120 130 140 150 160 170 180
ν2 + ν4 5.14 5.55 5.82 6.32 6.53 7.13 7.63 8.26 8.83
ν1 + ν3 3.36 3.35 3.56 3.95 4.99 6.10 7.90 9.79 10.9

significantly lower. Measurements of Shyn (1991) exhibit
similar behaviour for the mode ν2 + ν4. In the case of ν1 + ν3

mode the experimental data of Shyn (1991) closely follow
those of Bundschu et al (1997) and Allan (2007); however
they fall below them for scattering angles above 140◦.

Note that since the experimental differential cross sections
of Tanaka et al (1983), shown in figure 2, and of Shyn (1991)
are lower than the more recent results of Bundschu et al (1997)
and Allan (2007), they yield the integral cross sections that
agree well with the calculation of Nishimura and Gianturco
(2002). The present calculated cross sections, larger because
of the more elaborate treatment of the exchange interactions,
agree well with the more recent experimental cross sections of
Bundschu et al (1997) and Allan (2007). For the sake of clarity
not all available experimental data are included in figures 2 and
3, but a complete comparison was given by Allan (2007).

Our SEP calculations agree very well with the experiments
of Bundschu et al (1997) and Allan (2007), both in terms of
the shape and the absolute magnitude of the cross section.
The agreement extends even to large scattering angles,
where the data of Shyn (1991) drop, particularly at 5 eV.
Figure 2 also displays the role of correlation–polarization
forces in the resonant region. Although their impact is
dramatic our calculated results still lie somewhat lower for
the ν2 + ν4 mode for large scattering angles. This seems to
indicate some portion of short-range part of the correlation
potential Vc is missing since the quality of the short-range
interaction strongly affects larger scattering angles.

The remarkable improvement brought by the inclusion of
correlation and polarization is displayed even more visibly in
figure 4. It shows the dependence of the differential cross
section (DCS) on the collision energy for the fixed scattering
angle ϑ = 90◦. This scattering angle was chosen because
the resonance has a strong d-wave contribution resulting in a
significant enhancement of the DCS for 90◦ (visible in the left

panel of figure 2). The present experimental data are listed for
selected energies in table 4.

The excellent agreement of the present SEP calculation
with the present experiment and the experiment of Bundschu
et al (1997) confirms that the present method of including
correlation and polarization is successful. It works well over
the entire resonant region and down to about 1 eV. The dramatic
effect played by correlation and polarization at energies below
about 12 eV is evident, particularly for the symmetric stretch
vibration ν1. As already stated above, the data of Tanaka et al
(1983) and Shyn (1991) appear to be too low.

Finally, in order to complete our comparisons we also
simulated electron energy-loss spectra (EELS). The sharp
spectra represented by narrow vertical bars in figure 5 were
spread with an energy width determined from the elastic
peak of the measured spectra. This pragmatic approach by-
passes the complications brought by the complex details of
the rotational band envelopes (Müller et al 1985). As the last
step we normalized the experimental spectra on the calculated
elastic peak. The individual vibrations ν2, ν4 and ν1, ν3 are
partially resolved in the energy-loss spectra and this form of
comparison has thus the advantage of qualitatively indicating
the degree of agreement for all four individual vibrations,
particularly for the ν2 and ν4 pair. Again, figure 5 reveals an
excellent agreement between the calculated and the measured
cross sections for collision energies of 5 eV and 20 eV.
The calculation correctly reproduces the observation that ν2

is excited more strongly than ν4 at 5 eV and vice versa at
20 eV.

5. Summary and conclusions

In the present calculations we used the discrete momentum
representation to study the inelastic scattering of electrons
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Table 4. Experimental DCS for vibrational excitation, measured as a function of the incident electron energy E, at 90◦. The units are
10−22 m2 sr−1.

E (eV) 0.3 0.5 0.7 1.0 2.0 3.0 4.0 5.0 6.0
ν2 + ν4 3.42 2.91 2.49 2.19 1.92 2.40 3.44 4.62 6.22
ν1 + ν3 – 2.32 1.51 0.89 0.66 1.29 2.88 4.69 6.64

E (eV) 7.0 7.5 8.0 9.0 10.0 12.5 15.0 17.5 20.0
ν2 + ν4 6.94 6.97 6.80 6.12 5.29 4.00 3.23 2.77 2.32
ν1 + ν3 7.15 6.65 5.97 4.93 4.09 2.45 1.78 1.19 7.55

by the methane molecule. Our previously used (Čurı́k and
Čársky 2003) exact static-exchange potential was extended
by the local DFT-based correlation–polarization contribution
originally introduced by Perdew and Zunger (1981). Our
calculation correctly reproduced the existence of the broad
d-wave shape resonance which dominates the vibrationally
inelastic collisions around 7.5 eV and which was already
known from the measurements of Tanaka et al (1983) and Shyn
(1991) and which was found in the calculations by Nishimura
and Gianturco (2002). Our present calculations predict

that this resonance should be substantially more effective in
enhancing vibrational excitation, however. We obtain larger
cross sections for all vibrational modes, for the ν1 and ν4

modes by about a factor of 2, in comparison with previous
calculations. These larger values are in a very good accord
with the experimental findings of Bundschu et al (1997), Allan
(2007) and with the present experiment.

The current study represents our first attempt to improve
the static-exchange inelastic matrix elements (4) by a local
DFT correction derived from the derivatives of equations (5)
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and (6). From the good qualitative and quantitative agreements
with the present experimental data and the measurements
of Bundschu et al (1997) we conclude that such an optical
potential may be successfully applied for vibrationally
inelastic collisions with larger polyatomic molecules.
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