Electron energy loss spectra of pyrrole

Reference: Knut R. Asmis and Michael Allan, Université de Fribourg (unpublished).

Knut R. Asmis, Ph.D. thesis, Fribourg 1996

Fig. 1 Survey EEL-spectra of pyrrole. At medium and low residual energy ($E_r \le 6.0$ eV) two triplet bands at 4.21 and 5.17 eV are observed, previously assigned to the transitions into 1^3B_2 and 1^3A_1 valence excited triplet states (Van Veen 1976). The shoulder seen between 4.9 and 5.4 eV in the $E_r = 20$ eV spectrum is not attributed to the 1^3A_1 state, but believed to result from a dipole-forbidden spinallowed transition (Flicker *et al.* 1976). A similar, weak feature is observed in the vapor absorption spectrum and is absent in the crystal spectrum (Bavia *et al.* 1976). It has been assigned to the ${}^1(\pi,3s)$ Rydberg state. The intense band extending from 5.4 to 6.7 eV is the result of various optically allowed Rydberg and valence transitions. The largest contribution is expected from the valence 1B_2 excitation (5.98 eV peak, $E_r = 0.03$ eV). Signal due to ${}^1(\pi,3p)$ Rydberg transitions move the maximum of this band to 5.86 eV at $E_r = 20$ eV. (see K. R. Asmis, Ph.D. thesis, for details.)

Fig. 2 Electron transmission spectrum (a) of pyrrole compared to excitations functions of pure vibrational excitation (b and c: $\Delta E = 0.77$ and 0.86 eV), the lowest triplet state (d: $\Delta E = 4.20$ eV), the second lowest triplet state (e: $\Delta E = 5.10$ eV) and the first optically allowed valence transition (f: $\Delta E = 5.86$ eV). The shaded rectangles indicate assignment of the bands to "one-particle" (1p) and "two particles – one hole" (2p-1h) resonances. (see K. R. Asmis, Ph. D. thesis, for details)