Electron energy loss spectra of pyrrole

Reference: Knut R. Asmis and Michael Allan, Université de Fribourg (unpublished).
Knut R. Asmis, Ph.D. thesis, Fribourg 1996

Fig. 1 Survey EEL-spectra of pyrrole. At medium and low residual energy ($E_{\mathrm{r}} \leq 6.0$ eV) two triplet bands at 4.21 and 5.17 eV are observed, previously assigned to the transitions into $1^{3} \mathrm{~B}_{2}$ and $1^{3} \mathrm{~A}_{1}$ valence excited triplet states (Van Veen 1976). The shoulder seen between 4.9 and 5.4 eV in the $E_{\mathrm{r}}=20 \mathrm{eV}$ spectrum is not attributed to the $1^{3} \mathrm{~A}_{1}$ state, but believed to result from a dipole-forbidden spinallowed transition (Flicker et al. 1976). A similar, weak feature is observed in the vapor absorption spectrum and is absent in the crystal spectrum (Bavia et al. 1976). It has been assigned to the ${ }^{1}(\pi, 3 \mathrm{~s})$ Rydberg state. The intense band extending from 5.4 to 6.7 eV is the result of various optically allowed Rydberg and valence transitions. The largest contribution is expected from the valence ${ }^{1} \mathrm{~B}_{2}$ excitation (5.98 eV peak, $E_{\mathrm{r}}=0.03 \mathrm{eV}$). Signal due to ${ }^{1}(\pi, 3 \mathrm{p}$) Rydberg transitions move the maximum of this band to 5.86 eV at $E_{\mathrm{r}}=20 \mathrm{eV}$. (see K. R. Asmis, Ph.D. thesis, for details.)

Fig. 2 Electron transmission spectrum (a) of pyrrole compared to excitations functions of pure vibrational excitation (b and c: $\Delta \mathrm{E}=0.77$ and 0.86 eV), the lowest triplet state (d: $\Delta E=4.20 \mathrm{eV}$), the second lowest triplet state ($\mathrm{e}: \Delta \mathrm{E}=5.10 \mathrm{eV}$) and the first optically allowed valence transition (f: $\Delta \mathrm{E}=5.86 \mathrm{eV}$). The shaded rectangles indicate assignment of the bands to "one-particle" (1p) and "two particles - one hole" (2p-1h) resonances. (see K. R. Asmis, Ph. D. thesis, for details)

