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Preface

The principal goal of this class is to impart the fundamentals of
quantitative research. Our focus will be on drawing causal conclu-
sions from data—when are causal conclusions licensed, what are
typical pitfalls when drawing causal conclusions, and how can you
design and optimise studies that avoid these pitfalls? Throughout,
it is imperative that you not only understand the recommendations
given in this booklet but also the logic behind them. There are two
reasons for this.

First, you need to know when the recommendations apply and
when they don’t. You might get away with just memorising the rec-
ommendations and their scope for now. But in a couple of months,
you’re bound to apply them where they don’t make any sense.
Understand the logic behind the recommendations, and you’ll be
better able to weigh your options.

Second, many researchers in the social sciences—even seasoned
ones—operate on rules of thumb, so they inevitably end up apply-
ing recommendations they’ve picked up somewhere in situations
where they don’t apply. You need to be able to make an informed
judgement about the research carried out by others and cogently
argue for this judgement. A simple I took this class that taught me
that you shouldn’t control for colliders won’t do. (You’ll learn about
colliders and why you shouldn’t control for them soon enough.)

This booklet contains the reading assigments (about one for
every fortnight), lecture scripts,1 and a couple of appendices with 1 If you’re reading this without taking

my class, start with the lecture scripts
and intersperse them with the reading
assignments.

content that we won’t systematically cover in class but that I think
you’ll find useful: some tips for reading results sections, and some
pointers for increasing the transparency of your research reports.
The graphing assignments that constitute your weekly homework
are available from https://janhove.github.io/graphs.

I occasionally refer to some blog entries I wrote. These links
are clickable in the PDF version of this booklet, but in case you’re
reading this from paper, all blog entries can be found at https:
//janhove.github.io/archive.html.

Jan Vanhove
jan.vanhove@unifr.ch

https://janhove.github.io

https://janhove.github.io/graphs
https://janhove.github.io/archive.html
https://janhove.github.io/archive.html
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Part I

Reading assignments





1
Descriptive statistics (Johnson, 2013)

Read Johnson (2013). Then explain the following terms and con-
cepts in a manner that you find intelligible by providing your own
definition, clarifying example or illustration.

1. Continuous vs. categorical variables (pp. 289–290)

2. Histogram (pp. 292–293)

3. Bimodal distribution (p. 292)

4. Outliers (p. 292)

5. Normal distribution (pp. 293–294)

6. Arithmetic mean vs. median vs. mode (pp. 295–296)

7. The effect of outliers on the mean and median (p. 297)

8. Quantile, percentile, and quartile (p. 298)

9. Standard deviation and variance (p. 299)

10. Left- and right-skewed distributions (p. 301)

11. Pearson correlation (p. 305, first paragraph)

12. Regression line (p. 305)

13. Ordinal vs. nominal variables (p. 307)

14. Bar chart (pp. 307–308)

15. Contingency table (p. 311)

Do you know the difference between a bar chart and a his-
togram? What kind of variable are ZIP codes?





2
An experiment (Ludke et al., 2014)

Read Ludke et al. (2014). As you’re reading the results section,
focus on the descriptive statistics and the graphs; you don’t have to
bother with the statistical tests for now. Then answer the following
questions.

1. What is this study’s most important research question or its
most important aim?

2. Briefly describe this study’s design. Is this study a ‘true experi-
ment’?

3. How did the researchers try to ensure that any differences be-
tween the conditions could be attributed to differences between
speaking, rhythmic speaking and singing rather than to other
factors?

4. “Digital audio recordings were made during each experimental
session.” (p. 46, 2nd column, last paragraph) Why?

5. What does this mean: “Measures of participants’ mood, back-
ground experience, and abilities in music and language were
also administered in order to check that the randomly assigned
groups were matched for these factors.” (p. 43, 2nd column, last
paragraph)

6. What can you glean from Figure 2 (p. 48)? (In your own words,
without referring to the running text.)





3
Pedagogical interventions (Slavin et al., 2011)

This week’s text (Slavin et al., 2011) is pretty challenging, especially
in terms of the analysis and the way the results are presented. But
the introductory and methodological sections discuss some con-
cepts that we’ve already discussed (especially p. 49) and introduces
some new procedures.

First try to read the text in full, but skip the parts you find unin-
telligible. Then answer the following questions:

1. “[C]hildren’s reading proficiency in their native language is a
strong predictor of their ultimate English reading performance.”
(p. 48, middle, left) What does this mean?

2. What do the following terms mean?

(a) matching (p. 49, middle, right)

(b) selection bias (p. 49, middle, right, and p. 50, top, left)

(c) teacher/school effects (p. 49, bottom, right)

(d) within-school design (p. 51, left). What would the opposite, a
between-school design, look like?

3. What is the independent variable in this study? What are the
dependent variables?

4. How were the pupils assigned to the different groups?

5. Slavin et al. discuss at length how many pupils in each group
(TBE vs SEI) couldn’t be tested (Table 2) and whether the charac-
teristics of these pupils differed between the conditions (Table 3).
Why do you think they discuss this at all?

6. “Children were pretested . . . on the English Peabody Picture
Vocabulary Test (PPVT) and its Spanish equivalent, the Test de
Vocabulario en Imagenes Peabody (TVIP).” (p. 51, right) Why
did the researchers go to the bother of conducting such pretests?
Try to find at least two reasons.





4
Within-subjects experiments (Kang et al., 2013)

The study by Kang et al. (2013) serves as an example of a research
design we haven’t encountered yet. Additionally, it uses some turns
of phrase commonly found in research reports:

1. Are both studies experiments with control groups?

2. “The Hebrew nouns were learned in one of two training con-
ditions – retrieval practice or imitation – that were manipulated
within subjects across separate blocks and semantic categories.”
(p. 1261)

(a) What does “manipulated within subjects across separate
blocks” mean?

(b) What does “manipulated within subjects across semantic
categories” mean?

3. p. 1262:

(a) “The order of items in each test was randomized for each
learner.” Why?

(b) “In Experiment 2, the order of both tests was counterbal-
anced across learners. . . ” “Counterbalanced across learn-
ers” is experimental jargon. It merely means that half of the
learners first took Test A and then Test B, whereas the other
half first took Test B and then Test A. But why didn’t all
learners simply take the tests in the same order?

4. “The α level for all analyses was set at .05” merely means that p-
values smaller than 0.05 were regarded as statistically significant.
This is rarely mentioned explicitly.





5
A quasi-experiment (Kirk et al., 2014)

Context The Simon task was (and still is) commonly used in re-
search on any cognitive advantages of bilingualism. In a nutshell,
the theory is that bilinguals have to constantly inhibit one of their
languages. Because of this, they practice their ‘inhibitory control’.
The Simon task is purported to tap into this same skill (suppressing
impulses). As a result, some researchers have interpreted smaller
Simon effects in bilinguals as evidence for cognitive advantages of
bilingualism. However, these studies have drawn criticism (see the
references in Kirk et al., 2014).

Questions

1. Studies in which the cognitive skills of mono- and bilinguals are
compared are examples of quasi-experiments.

(a) What’s meant with the term quasi-experiment?

(b) Quasi-experiments tend to be both less conclusive and more
effortful than true experiments. Why?

2. What’s the contribution of this study to the debate about cogni-
tive advantages of bilingualism?

3. Why did the researchers collect data in five (rather than, say,
two) groups of participants?

4. Which purpose did the background questionnaires and the
WASI-Tests serve (pp. 642–643)?

5. “Colour assignment to key location was counter-balanced across
participants.” (p. 643, top right) What does this mean concretely?
Rewrite this sentence without using the word counter-balanced.
And why was this done?

6. “The experiment began with eight practice trials for which par-
ticipants received feedback, followed by randomised presentation
of 28 critical trials presented without feedback.” Why?

7. Skip the results section. As is often the case, the results are re-
ported in unreadable sentences (many of which are superfluous,
in my view). But do take a look at Figure 1 and try to formulate
your own conclusions on the basis of it.





6
A correlational study (Slevc & Miyake, 2006)

Reading help “Zero-order correlations” are correlation coeffi-
cients expressing the relationship between two measured variables.
(“First-order correlations” are correlation coefficients expressing the
relationship between two variables from which the influence of a
third variable was statistically ‘partialled out’.)

To help you make sense of Table 3:

• R2: The proportion of the variation (‘variance’) in the outcome
variable that can be described using the predictor variables in-
cluded in the regression model.

• ∆R2: The increase in R2 compared to the previous step (i.e., the
improvement in R2 attributable to the current predictor).

• df, F: You can ignore this for this class.

• Final β: Expresses the form of the relationship between the pre-
dictor in question and the outcome.

Questions

1. What was the most important goal that Slevc & Miyake (2006)
set themselves?

2. Why did they have this aim?

3. Why did they collected the variables age of arrival, length of resi-
dence, language use and exposure and phonological short-term mem-
ory?





7
Hidden flexibility (Chambers, 2017, Chapter 2)

There are no guiding questions for this text; it should be intelli-
gible enough. But by way of preparing for it, try to answer these
questions.

1. You recruit 60 participants, aged 8–88. Half of them are assigned
to the experimental group; the others to the control group (ran-
dom assignment). You run a significance test comparing the
mean age in both groups. What’s the probability that you’ll ob-
tain a significant result (i.e., p ≤ 0.05)?

2. Each of your participants throws a fair six-sided dice. You run
another significance test to check if there’s a mean difference in
the number of pips obtain in the control and in the intervention
groups. (Evidently, the intervention doesn’t make you throw dice
any better.) What’s the probability that you’ll obtain a significant
result (i.e., p ≤ 0.05)?

3. What do you know about the probability of observing either a
significant age difference between the two groups, or a signif-
icant difference in the mean number of pips obtained, or two
significant differences?





Part II

Lectures





1
Association and causality

1.1 Two examples

Below are two examples of empirical findings and some possible
conclusions. Answer the following questions for both of these ex-
amples.

1. Do the conclusions follow logically from the findings?

2. What are some plausible alternative explanations for the find-
ings?

3. Which additional findings would strengthen the conclusions?

4. Which additional findings would call the conclusions into ques-
tion?

1.1.1 Example 1: Receptive multilingualism in Scandinavia

When talking their respective native languages, Danes understand
Swedes better than the other way around. Furthermore, Danes like
Swedish better than Swedes do Danish (e.g., Delsing & Lundin
Åkesson, 2005).

Conclusion: Danes understand Swedes better than the other way
round because they like the language better.

1.1.2 Example 2: Content and language integrated learning

Pupils in Content and Language Integrated Learning (CLIL) pro-
grammes in Andalusia perform better on English proficiency tests
than other Andalusian pupils (Lorenzo et al., 2010).

Conclusion: Taking CLIL classes improves pupils’ English profi-
ciency.
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In both examples, an association of some sort is found in the
data, and a causal explanation of this association is put forward:
Not only do Danes both understand and like Swedish better than
Swedes do Danish (association), it’s suggested that one reason why
they understand the other language better is that they like it better
(explanation). Similarly, not only do CLIL pupils in Andalusia
outperform non-CLIL pupils (association), it’s suggested that they
outperform them because of the CLIL programme (explanation).

Uncovering associations and drawing causal conclusions from
them is a key goal in empirical research. But it’s also fraught with
difficulty: after a moment’s thought, you’ll often be able to come
up with alternative explanations for the findings. To the extent that
there exist more, and more plausible, alternative explanations, the
causal explanation proferred becomes more tenuous: The causal
claim may still be correct, but in the presence of competing expla-
nations, it can’t be shown to be correct—that is, there isn’t much
evidence for the claim. A key goal of designing an empirical study
is to reduce the number and the plausibility of such alternative
explanations.

1.2 A definition of association and causality

Two factors (or variables)1 are associated if knowing the value of 1 I use these terms interchangeably.
Sometimes, factors are constant rather
than variable in the context of a study,
but let’s save our pedantic inclinations
for other things.

one factor can help you hazard a more educated guess about the
value the other factor. That’s a mouthful, but convince yourself that
the following are examples of associations:

• a person’s size in centimetres and their size in inches;

• the time of day and the temperature outside;

• a person’s height and their weight;

• a person’s shoesize and the size of their vocabulary in their na-
tive language;

• a person’s age and their father’s age;

• a person’s nationality and the colour of their eyes.

Five remarks are in order:

• Associations work in both directions: knowing the time of day
allows you to venture a more educated guess about the tempera-
ture outside than not knowing it, but also vice versa.

• Associations needn’t be linear (e.g., the relation between weight
and height levels off after a certain weight).

• Associations needn’t be monotonous, e.g., the relationship be-
tween the two variables can go up and then down again (as in
the time of day/temperature example).
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• Associations needn’t be perfect (e.g., there’s a lot of variation
about the general trend for taller people to be heavier).

• Associations can be found between variables that aren’t typically
expressed numerically (e.g., eye colour and nationality).

Typical examples of associations in research are mean differences
between groups and correlations.2 2 You’ll also often see the words ‘asso-

ciation’ and ‘correlation’ used inter-
changeably. I prefer to use ‘association’
as the hypernym and reserve ‘correla-
tion’ for a specific type of association.
See Chapter 8.

As for causality, a common-sense understanding will be suf-
ficient for our purposes. But when in doubt, you can turn to the
following broad definition:

We say that there is a causal relationship between [two variables] D
and Y in a population if and only if there is at least one unit in that
population for which intervening in the world to change D will
change Y . . . . (Keele et al., 2019, p. 3)

Three remarks are in order:

• Saying that D causally influences Y doesn’t imply that D alone
causally influences Y. (You can get lung cancer from smoking,
but also from exposure to radon, air polution or just genetic bad
luck.)

• Saying that D causally influences Y doesn’t mean that changing
D will result in a change in Y for all members of the population.
(Some non-smokers get lung cancer, and not all smokers get it.)

• Saying that D causally influences Y doesn’t imply that chang-
ing D will result in a change in Y in all situations. (Smoldering
cigarette stubs cause forest fires, but only during droughts. By
the same token, droughts cause forest fires, but these need a
spark to get started.)

1.3 Visualising causality: directed acyclic graphs (DAGs)

1.3.1 Why?

Research would be pretty easy if you could safely conclude that a
causal link existed between two variables any time you observed an
association between them. Fortunately for teachers of methodology
courses who’d be on the dole otherwise, this isn’t the case. But sim-
ply parrotting back Correlation is not causation isn’t too helpful. To
help us figure out how associations between two variables can arise
in the absence of a causal link between them, we turn to directed
acylic graphs (DAGs).

Graphs are mathematical objects in which nodes can be con-
nected by edges. In directed graphs, these edges point from one
node to another. If, in a directed graph, it is impossible to start from
some node and end up in the same node by following edges, then
that graph is also acyclic. The examples below will make this a lot
clearer. Graphs are studied in mathematics and computer science
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for sundry purposes; here, we will use DAGs as a tool for visually
representing the causal links between the factors at play in a study.

As we’ll see below, when DAGs are used for the purpose of rep-
resenting causal links, they are subject to a number of rules that
may appear cumbersome at first. However, when DAGs are prop-
erly specified, they allow researchers to figure out which factors
they should control for, which factors they can but needn’t control for
and which factors they must not control for. Moreover, DAGs are
useful for learning how associations in empirical data can occur
both in the presence and in the absence of causal links between the
variables of interest.

1.3.2 Some examples

Before laying down the rules for drawing DAGs, let’s look at a
couple of possible DAGs for the Andalusian CLIL study.

Figure 1.1 is the simplest of DAGs. It represents the assumption
that there is a direct causal influence from the treatment variable
(CLIL) on the outcome variable. These variables are represented by
nodes. There exists a directed edge (i.e., an arrow) between them
that shows the assumed direction of the causal link.

CLIL ENG

Figure 1.1: DAG representing a causal
influence of CLIL on English profi-
ciency (ENG).

The pupils’ English proficiency won’t be affected by their taking
CLIL classes or not alone but by a host of other unobserved factors
as well. In Figure 1.2, the unobserved factors are conveniently bun-
dled and represented as ‘U’. The U is circled to make it clear that
these factors were not observed or measured. While this convention
isn’t universal, it’s useful and we’ll adopt it here.

CLIL ENG

U Figure 1.2: DAG representing a causal
influence of CLIL and of unobserved
factors on English proficiency.

Important: If we don’t draw an arrow between U and CLIL, this
means that we assume that there is no direct causal relationship
between these two factors. But presumably, some unobserved fac-
tors will also account for why some pupils are enrolled in CLIL
classes and others aren’t; see Figure 1.3. As we’ll discuss later,
these unobserved factors, some of which may affect both the ’treat-
ment’ (CLIL) and the ’outcome’ (English proficiency), confound the
causal link of interest.
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CLIL ENG

U Figure 1.3: Unobserved factors as
confounders (1).

Figure 1.4 also features the unobserved factors as possible con-
founders, but this time there is no assumed causal link between
CLIL and ENG.

CLIL ENG

U Figure 1.4: Unobserved factors as
confounders (2).

1.3.3 Rules for drawing DAGs

1. The direction of the arrows shows the direction of the assumed
causality (hence directed).

2. Bidirectional arrows are forbidden, i.e., no A↔ B.

3. You’re not allowed to draw graphs where you can end up at the
same place where you started by just following arrows (hence
acyclic). For instance, you’re not allowed to draw a DAG like
Figure 1.5.

A

B

C

Figure 1.5: An illegal DAG: A, B and C
are allowed to influence themselves.

Mutual influencing factors can be represented in a DAG, how-
ever, but you need to break down the temporal structure. Figure
1.6 shows how you can break down the temporal structure im-
plicit in Figure 1.5 to produce a legal DAG.

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

Figure 1.6: Reciprocal influences can
be represented legally in a DAG if you
break down the temporal structure.
A1, A2, A3 and A4 represent the same
variable measured at four points in
time. The value of this variable at a
given point in time is determined in
part by its value at the previous point
in time (e.g., A3 is influenced by A2) as
well as by the value of another variable
at the previous point in time (e.g., C2

influences A3).

4. Unobserved factors can, and often should, be drawn. By conven-
tion, we draw a circle around them to make it clear that they are
not directly observed.

5. “DAGs insistently redirect the analyst’s attention to justifying
what arrows do not exist. Present arrows represent the ana-
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lyst’s ignorance. Missing arrows, by contrast, represent definitive
claims of knowledge.” (Elwert, 2013, p. 248)

6. A factor that isn’t of interest and that only affects one factor
already in the DAG and/or is affected by only one factor already
in the DAG doesn’t have to be drawn for you to be able to derive
correct conclusions from the DAG. For instance, the U in Figure
1.2 doesn’t have to be drawn (it only affects one factor that was
already in the DAG). However, the U in Figure 1.3 does have
to be drawn since it affects two factors that were already in the
DAG. That said, it can be difficult to decide if a variable should
be included in a DAG or not, and we shouldn’t let perfect be the
enemy of good.

1.3.4 Chains, forks and inverted forks

A DAG that is drawn by following the rules specified above is al-
ways built up out of at most three types of building blocks: chains,
forks, and inverted forks.

Chains A chain is a sequence of causal links. In Figure 1.7, A →
B → C → D forms a causal chain. Note that causality doesn’t flow
‘upstream’ against the direction of the arrows, so there is no causal
chain from D back to A.

A B C D

Figure 1.7: A chain.Chains may transmit genuine causal influences, that is, altering
the values of (say) A may bring about a change in some values
in (say) D. In other words, A causally affects D, albeit indirectly
through B and C. Since the causality is directional, altering the
values of D won’t bring about any changes in the values of A, B or
C.

Moreover, chains may induce associations between the vari-
ables involved. Based on the DAG in Figure 1.7, we wouldn’t be
surprised to find some association between the values of A, B, C
and D. The DAG doesn’t tell us what this association will look
like, but we’ll encounter some common forms of association in the
weeks to come.

Note that it is possible that changes in A aren’t reflected in
changes in D, for instance because the effect that A has on B is quite
small and only large changes in B affect C. This is why I wrote that
changes in A may (rather than will) bring about changes in D.

If you want to prevent chains from transmitting associations
between two variables, the paths between these variables have to
be blocked somewhere. This is achieved by controlling for one
(or several) of the variables along the path. We’ll discuss how you
can control for a variable in more detail in the weeks to come, but
a conceptually easy (if often practically arduous) way is to ensure
that only people, words, etc. with the same value on that variable
are included in the study. For instance, if for some reason you need
to control for eye colour, you could include only green-eyed people
in your study.
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Forks When a single factor causally affects two or more other
factors, a fork is formed; see Figure 1.8. In this example, A causally
influences both B and C.

A

B C
Figure 1.8: A fork.

Forks themselves don’t transmit causal influences between the
prongs, that is, altering the values of B won’t change the values of
C and vice versa: Causality doesn’t travel upstream. If you want to
represent a causal link between B and C, you have to add it to the
DAG.

Importantly, forks may induce associations between the factors
at the prongs: Based on the DAG in Figure 1.8, we wouldn’t be
surprised to find some association between the values of B and
C. This is not because of a causal link between them but because
A influences both of them. A is also referred to as a confounding
variable or confounder.

To better appreciate the fact that causal forks can give rise to
associations between the variables at the prongs, consider the ficti-
tious example in Table 1.1. Here, A causally influences both B and
C, and both B and C are additionally influenced by separate factors
(UB and UC). The causal factors A, UB and UC can each take on
two values (0, 1), and the outcomes of B and C are determined by
simple equations.

A UB UC B := A + UB C := A + UC

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 1

1 0 0 1 1

1 0 1 1 2

1 1 0 2 1

1 1 1 2 2

Table 1.1: Illustration of how a causal
fork can give rise to associations
between the variables at the prongs.

Taking a closer look at this table, we see that B and C are as-
sociated: The overall probability that B is at least equal to 1 is
6/8 = 75%. But if you already know that an observation’s value
for C is 2, then you can be absolutely confident that its B value is at
least 1. By the same token, if you know that its C value is 0, you’d
be less confident about this guess:3 3 P(B ≥ 1|C = 0) reads as ‘the

probability that B will be at least 1

when C equals 0.’• P(B ≥ 1|C = 0) = 1/2.

• P(B ≥ 1|C = 1) = 3/4.

• P(B ≥ 1|C = 2) = 2/2.

If you want to prevent a fork from transmitting an association
between the variables at the prongs, you can control for the con-
founder (or otherwise block the path on which the confounder lies).
Again, we’ll discuss this in more detail in the weeks to come. But to
appreciate this fact, again consider Table 1.1. We’ve already estab-
lished that P(B ≥ 1|C = 0) ̸= P(B ≥ 1|C = 1). But once we ‘control
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for’ A by fixing it at a specific value (e.g., A = 0), we find that the
probability of observing B ≥ 1 doesn’t depend on C any more.

• P(B ≥ 1|C = 0, A = 0) = 1/2.

• P(B ≥ 1|C = 1, A = 0) = 1/2.

Similarly, we could fix A at 1 and vary C and observe the same
phenomenon:4 4 We can’t fix A at 1 and evaluate this

probability at C = 0 for the simple
reason that there’s no row in the table
with A = 1 and C = 0.

• P(B ≥ 2|C = 1, A = 1) = 1/2

• P(B ≥ 2|C = 2, A = 1) = 1/2

We’ll encounter plenty of examples of confounding variables,
but a silly example may be helpful to internalise the concept: While
I don’t have the numbers handy, I’m confident that there is some
positive association between the number of drownings in the Aare
and the daily revenue of Bernese ice-cream vendors. Why?

Inverted forks Figure 1.9 shows an inverted fork where two vari-
ables both influence a third one. The ‘handle’ of an inverted fork is
called a collider since the two causal arrows clash into each other in
A.

A

B C

Figure 1.9: An inverted fork.
Inverted forks don’t transmit causal influences between the

variables at the prongs, that is, there is no causal link between B
and C (causality doesn’t travel upstream). The intriguing thing
about inverted forks is this, though: When the collider (i.e., A) is
not controlled for, the variables at the prongs remain unassociated.
However, controlling for the collider may induce an association
between the variables at the prongs even in the absence of a
causal link between them.5 5 Controlling for a descendant of

a collider may likewise induce an
association between the variables at
the prongs. A factor’s descendants are
the factors that are causally affected by
it. A factor’s ancestors are the factors
that it is affected by.

The effects of controlling for a collider are not intuitive, so let’s
consider an example.

University teachers can testify that there is some negative as-
sociation between their students’ intelligence and their diligence.
This doesn’t mean that the most intelligent students are all lazy and
none of the most diligent students are particularly clever—just that
there is some tendency for the most intelligent students to be less
hard-working than the less clever ones. There is a simple and plau-
sible causal explanation for this association: The most intelligent
students quickly figure out that they don’t need to work as hard in
order to obtain their degree, so they shift down a gear.

IQ

university

work

Figure 1.10: To the extent that dili-
gence (work) and intelligence (IQ)
both determine if someone gets into
university, some association between
these two factors will be found if we
only look at university students.

But there is an equally plausible if less simple explanation: by
only looking at university students, we’ve controlled for a collider
without realising it; see Figure 1.10. Even if diligence and intelli-
gence are completely unassociated in the human population, they
are bound to be associated if we only look at university students.
Figure 1.11 on the facing page illustrates why: If we consider the
population as a whole, it’s possible that there is no (or hardly any)
association between diligence and intelligence (left panel): If we
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know a person’s degree of diligence, we can’t make a more edu-
cated guess as to their intelligence than if we don’t. But if we only
consider university students (filled circles in the right panel), we’re
bound to find a negative association between diligence and in-
telligence: If we know that a university student is pretty lazy, we
also know that they need to be pretty intelligent—otherwise they
couldn’t have made it into university.
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Figure 1.11: Collider bias in action:
If you only look at the filled (or at
the unfilled) circles, you’ll discover
an association between diligence and
intelligence, even though there is no
causal link between them.

By only looking at university students, we’ve unwittingly con-
trolled for a collider, which by itself can explain the negative associ-
ation between diligence and intelligence observed among university
students. This doesn’t mean that our first causal explanation is nec-
essarily wrong, but it does illustrate that there is a non-obvious but
plausible additional explanation that we need to reckon with. Note
also that both explanations can simultaneously be correct: There
may be some (negative) causal influence of intelligence on dili-
gence, but by only looking at university students, we would then
end up overstating the strength of this causal effect.

In Figure 1.11, we’ve assumed—for ease of exposition—that there
is a perfect deterministic relationship between diligence and intelli-
gence on the one hand and university enrolment on the other hand
(viz., if the sum of both scores is above 10, enrolment is granted).
In reality, this relationship won’t be perfect (some highly intelligent
and highly diligent people don’t go to university), but even so, con-
trolling for (or ‘conditioning on’) a collider can produce associations
between two factors in the absence of a causal link between them.

Other fairly common examples of this collider bias are only
superficially different:

• There is a negative association between how easily accessible
a restaurant is from a tourist resort and how good the food is.
Come up with an explanation that does not assume any direct or
indirect causal influence of food quality on location or vice versa.

• People with a highly active dating life sometimes complain that
their hottest dates tend to be comparatively boring. Come up
with an explanation that does not assume any direct or indirect
causal influence of attractiveness on interestingness.
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In sum, unbroken chains both transmit causality and induce
associations; forks induce associations without causality un-
less measures are taken (e.g., controlling for the confounder);
and inverted forks induce associations without causality if the
collider (or one of its descendants) is controlled for.

1.4 Exercises

1. Draw a DAG that represents the belief that Danes’ understand-
ing of Swedish is causally affected by their attitudes towards
Swedish.

2. Draw a DAG that represents the belief that Danes’ attitudes
towards Swedish are causally affected by their understanding of
Swedish.

3. Draw a DAG that represents the belief that Danes’ attitudes
towards Swedish and their understanding of Swedish causally
affect each other (i.e., the more the like it, the better they under-
stand it, which leads to their liking it even better).

4. Draw a DAG that represents the belief that Danes who like
Swedish seek out more contact with Swedish (e.g., by watching
Swedish television), which leads to their understanding it better,
which in turn leads to their seeking out even more contact with
Swedish etc.

5. Consider the DAG in Figure 1.12.

A

B

C

D

E

F

Figure 1.12: DAG for Exercise 5.

(a) Can A causally affect F?

(b) Can C causally affect D?

(c) Can there be an association between C and D if no factors
are controlled for? Why (not)?

(d) Can there be an association between C and D if E is con-
trolled for? Why (not)?

(e) Can there be an association between C and D if F is con-
trolled for? Why (not)?

(f) Can there be an association between C and D if A is con-
trolled for? Why (not)?

(g) Can there be an association between C and D if B is con-
trolled for? Why (not)?

6. Consider the DAG in Figure 1.13.

A B C

D E

F

Figure 1.13: DAG for Exercise 6.

(a) Can A causally affect F?

(b) Can A causally affect E?

(c) Can there be an association between A and E? Why (not)?
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(d) Can there be an association between A and E if F is con-
trolled for? Why (not)?

(e) Can there be an association between B and D if no factors are
controlled for? Why (not)?

(f) Can there be an association between B and D if A is con-
trolled for? Why (not)?

(g) Can there be an association between B and D if F is con-
trolled for? Why (not)?

(h) Can there be an association between B and D if C and F are
controlled for? Why (not)?

(i) Can there be an association between B and D if E and F are
controlled for? Why (not)?

7. Consider the DAG in Figure 1.14.

A B C

D E

F G

Figure 1.14: DAG for Exercise 7.

(a) Can A causally affect D?

(b) Can there be an association between A and D if no factor is
controlled for? If so, via which path?

(c) Can there be an association between A and D if C is con-
trolled for? If so, via which path?

(d) Can there be an association between A and D if F is con-
trolled for? If so, via which paths (plural!)?

(e) Can there be an association between A and D if G is con-
trolled for? If so, via which paths (plural!)?

(f) Can there be an association between A and D if B and C are
controlled for? If so, via which path?

(g) Can C causally affect E?

(h) Can there be an association between C and E if no factor is
controlled for? If so, via which path?

(i) Can there be an association between B and E if no factor is
controlled for? If so, via which path?

(j) Can there be an association between B and E if C is con-
trolled for? If so, via which path?

(k) Can there be an association between B and E if D is con-
trolled for? If so, via which path?

(l) Can there be an association between B and E if D and F are
controlled for? If so, via which path?

(m) Can there be an association between B and E if D and G are
controlled for? If so, via which path?

1.5 Optional: Further reading

Rohrer (2018) is an accessible introduction to DAGs. I don’t recom-
mended you read it right away, though, but save it in case you need
a refresher from a different source in a couple of months or years.





2
Constructing a control group

2.1 A made-up example

Imagine that a new self-learning method for fostering Danish read-
ing skills in speakers of German has been developed. You’re tasked
with finding out if this new method works better than the old one.

First attempt You find four students of German philology who
want to learn Danish. You ask them to work autonomously with
the new learning method half an hour a day for three weeks. After
three weeks, you give them an article from a Danish newspaper,
which they are to summarise orally in German. Two raters judge
these summaries at their own discretion (20-point scale); the mean
of the two ratings per learner counts as their reading comprehen-
sion score. The average group score is 11/20.

What can you conclude from this study?

One of several problems with this study is that there is no base-
line against which to compare the participants’ average result: We
don’t know whether 11/20 indicates that the new learning method
works better or worse than the old one, or whether the old and
new learning method are roughly equally effective. So we need a
comparison or control group. Control group: Subjects that didn’t

take part in the intervention.

Second attempt You convince four law students to also take part in
the study. They’re asked to work with the old learning method half
an hour a day for three weeks. Then they take the same test as the
German philology students. Their group mean is 8/20. Quasi-experiment: Data collection

with a control group, but the control
and intervention groups weren’t
constructed by randomly allocating the
participants (see below).
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2.2 Critical questions

The second attempt outlined above also falls short on a number
of criteria. There are a couple of critical questions we can ask, and
slightly modified versions of these questions can be asked for stud-
ies in general.

Internal validity Can the difference in test scores between the two
groups be ascribed to the difference in learning methods, or do
alternative explanations for it present themselves?

External validity Does the finding apply only to the present sample
or also to a larger population? To what population, exactly?

Ecological validity (Especially for applied research.) To what extent
do the findings carry implications for the world outside of the
lab (e.g., teaching, policy)?

Internal reliability (a) Confronted with the same data, would other
researchers draw the similar conclusions? (The overall results
may leave room for interpretation.) (b) Are the measurements
consistent? For instance, would different observers agree on the
measurements? (The raw data may leave room for interpreta-
tion.)

External reliability Can the results of this study be confirmed in an
independent replication? Replication: A new study to verify

previously obtained results.

The definitions of different types of validity and reliability vary
from source to source. The labels aren’t too important; the ques-
tions behind them are.

Questions concerning validity and reliability can rarely be an-
swered with a clear ‘present’ or ‘absent’. But our second attempt
outlined above is deficient in both respects. Discuss a few problems.

Some relevant terminology:

Confounding variable See Chapter 1.

Inter-rater reliability The extent to which different raters would
score the observations similarly.

Intra-rater reliability The extent to which the same raters would
score the observations similarly on a different occasion.

Anticipate and resolve problems related to lacking validity
and reliability before collecting the data. This often involves
making compromises or coming to the realisation that you can’t
satisfactorily answer all your questions in a single study. Do not
assume that some statistical method will solve your problems.
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Depending on your goals, some types of validity or reliability
may not be as important as others. For instance, for most studies in
psycholinguistics, university students are recruited as participants,
and their results don’t necessarily generalise to the population
at large. But the purpose of these studies is often to demonstrate
that some experimental manipulation can affect language use and
processing, not that it will yield the same exact effect for everyone.
From this perspective, these studies’ lack of external validity isn’t
too damning (Mook, 1983).

2.3 Increasing internal validity through randomisation

Our first priority is to maximise the study’s internal validity, that
is, we want to maximise the chances that any association we find
the data is due to the factor of interest. Confounding in particular
represents a substantial threat to internal validity: As we’ve seen
in Chapter 1, confounding variables induce associations between
the variables of interest even in the absence of a causal link between
them. Moreover, even if a causal link does exist between the vari-
ables of interest, confounding variables can bias the association
between them: The association may systematically under- or over-
estimate the strength of the causal link. Keeping confounding in
check is therefore key.

Your first inclination may be to try to ensure that the interven-
tion and control groups are identical in all respects save for the
treatment itself. That way, any differences in the outcome variable
can’t be explained by confounding due to pre-existing differences
between the groups. However, it is often impossible to assign a
fixed number of participants to two groups in such a way that these
groups are identical in all respects even in the utterly unrealistic
case where all the relevant information is available beforehand (see
demonstration in class). Clearly, it’s entirely impossible to do so
when not all of the relevant information is available beforehand.

The solution is to assign the participants (or whatever your units
of observation are) to the study’s conditions at random, i.e., deliber-
ately leave the allocation up to chance and chance alone. The DAGs
in Figure 2.1 show what such randomisation achieves. When the
participants themselves (or their parents, or their circumstances,
etc.) determine which condition they end up in (X), confounding
is a genuine concern (left). However, when we assign the partici-
pants to the conditions at random, we know that there is no system-
atic link between pre-existing characteristics (U) and X, let alone a
causal one. That is, randomisation prevents any causal arrows from
entering X (right)! The result of this is that the non-causal path be-
tween X and Y (via U) is broken and that the X-Y relationship is no
longer confounded by U.

Studies in which the participants (or whatever the units of ob-
servation are) are randomly assigned are called true experiments. True experiment: Subjects are ran-

domly assigned to one of the condi-
tions.

Random allocation by itself doesn’t guarantee that the results of
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U

X Y

U

Xr Y

Figure 2.1: Left: The X-Y relationship is
confounded by U: there are two paths
from X to Y, but only one causal one.
Right: Randomising the values of X
prevents arrows from U entering X,
which effectively closes the non-causal
path via the confounder.the experiment can be trusted or interpreted at face value, but it

does eliminate one common threat to the study’s internal validity:
confounding.

Randomise wherever possible – unless you have a very good
reason not to (see weeks to come)!

2.3.1 Why experiments?

1. “Experiments allow us to set up a direct comparison between
the treatments of interest.

2. “We can design experiments to minimize any bias in the com- Bias: A systematic distortion of the
results, e.g., due to confounding
variables. A single unbiased study
isn’t guaranteed to estimate the size of
the causal effect correctly, but roughy
speaking, the study is equally likely
to overestimate this effect size as it is
to underestimate it. If a study is more
likely to overestimate the effect size
than to underestimate it (or vice versa),
it is biased.

parison. [especially randomisation]

3. “We can design experiments so that the error in the comparison
is small. [see weeks to come]

4. “Most important, we are in control of experiments, and having
that control allows us to make stronger inferences about the
nature of differences that we see in the experiment. Specifically,
we may make inferences about causation.” (Oehlert, 2010, p. 2,
my emphasis)

2.3.2 What does randomisation do?

1. “Randomization balances the population on average.”

2. “The beauty of randomization is that it helps prevent confound-
ing, even for factors that we do not know are important.” (Oehlert,
2010, p. 15, my emphasis)

We’ve already discussed the second point, but the first point
warrants some explanation. Let’s say that you have ten partici-
pants and you know both their sex and their IQ (Figure 2.2 on the
next page). If you randomly assign these participants to two con-
ditions with five participants each, you may end up with one of
the six allocations shown in Figure 2.3—or any of the 246 others.1 1 There are

(
10

5

)
= 10!

5!·(10–5)! = 252

different ways to split up ten people
into two groups of five. ‘5!’ (read: ‘five
factorial’) means 5 · 4 · 3 · 2 · 1, and ‘

(
10

5

)
’

is read as ‘10 choose 5’.

Note that in none of them, the intervention and control groups are
perfectly balanced with respect to both IQ and sex. So randomi-
sation clearly does not generate balanced groups in any particular
study. However, each participant is as likely to end up in the in-
tervention group as they are to end up in the control group, so on
average—across all 252 possible random allocations—sex, IQ, as
well as all unmeasured variables, are balanced between the two
groups. For our present purposes, this means that randomisation is
an equaliser: the result may not be two perfectly equal groups, but
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at least one group isn’t systematically given an advantage relative
to the other. As we’ll see in Chapter 4, randomisation also justifies
the use of some common statistical procedures.
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Figure 2.2: Ten participants sign up for
a study. You measure their IQ and you
also know their sex (represented here
using circles and crosses).
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Figure 2.3: Six possible random as-
signments (out of 252) of the ten
participants from Figure 2.2. The dot-
ted vertical lines show the mean IQ in
each group.

2.3.3 Exercise: Randomised or not?

For each description, decide whether the participants were ran-
domly assigned to the experiment’s conditions and, if not, explain
how the lack of randomisation could result in confounding.

1. 60 participants trickle into the lab. The first 30 are assigned
to the experimental condition, the final 30 are assigned to the
control group.

2. Experiment with a school class: Pupils whose last name starts
with a letter between A and K are assigned to the control group,
the others to the experimental group.

3. Participants come to the lab one by one. For each participant,
the researcher throws a dice. If the dice comes up 1, 2, or 3, the
participant is assigned to the experimental condition; if it comes
up 4, 5, or 6, the participant is assigned to the control condition.
After four weeks, no more participants sign up. The control
group consists of 17 participants; the experimental group of 12.
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4. To investigate the effects of bilingualism on children’s cognitive
development, 20 bilingual 4-year-olds (10 girls, 10 boys) are
recruited. 20 monolingual 4-year-olds (10 girls, 10 boys) serve as
the control group.

5. 32 participants sign up for an experiment. The researcher en-
ters their names into http://www.random.org/lists/, clicks
Randomize and assigns the first 16 to the control group and the
others to the experimental group.

‘Random’ does not mean ‘haphazard’, ‘arbitrary’ or ‘at the
researcher’s whim’.

2.3.4 How to randomise?

When collecting data using computers Have the computer randomly
assign the participants to the conditions without your involvement.
Programmes for running experiments such as OpenSesame (https:
//osdoc.cogsci.nl/), PsychoPy (https://www.psychopy.org/)
or jsPsych (https://www.jspsych.org/) all contain functions for
allocating participants randomly.

When the data collection does not take place at the computer and you know
who’ll be participanting beforehand Randomise the list of participants
using https://www.random.org/. Assign the first half of the list
to the experimental condition and the second half to the control
condition.

This procedure is known as complete randomisation. It guar-
antees that the number of experimental units is the same in each
condition (or at most one off if the number of units isn’t divisible
by the number of conditions).

When the data collection does not take place at the computer and you don’t
know who’ll be participating beforehand Randomly assign each par-
ticipant individually and with the same probability to a condition
as they sign up. This procedure is known as simple randomisation.
In contrast to complete randomisation, you’re not guaranteed to
end up with an equal number of units in each condition. This is
usually of little concern, and in fact, simple randomisation arguably
reduces the potential for the researchers’ biases to affect the study’s
results (Kahan et al., 2015). Importantly, there is nothing wrong
with having unequal sample sizes.2 2 See blog entry Causes and consequences

of unequal sample sizes.

Humans make for poor randomisation devices. Always
randomise mechanically (preferably with a computer).

2.3.5 Exercise: True experiment or not?

For each description, decide if the study is a true experiment.

http://www.random.org/lists/
https://osdoc.cogsci.nl/
https://osdoc.cogsci.nl/
https://www.psychopy.org/
https://www.jspsych.org/
https://www.random.org/
https://janhove.github.io/design/2015/11/02/unequal-sample-sized
https://janhove.github.io/design/2015/11/02/unequal-sample-sized
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1. 163 Swiss speakers of German (age: 10–86 years) attempt to
translate 100 Swedish words into German to see how the abil-
ity to recognise cognates in a foreign language varies with age
(Vanhove, 2014).

2. Eight Swiss speakers of German indicate how beautiful they find
the French on a 7-point scale. Additionally, they all record a text
in French. In a ‘perception experiment’, 20 native speakers rate
all recordings on a 5-point scale from ‘very strong foreign accent’
till ‘no foreign accent whatsoever’. The question is whether the
speakers’ attitudes are related to the strength of their accent in
French (Kolly, 2011).

3. ”This study presents the first experimental evidence that singing
can facilitate short-term paired-associate phrase learning in an
unfamiliar language (Hungarian). Sixty adult participants were
randomly assigned to one of three ”listen-and-repeat” learning
conditions: speaking, rhythmic speaking, or singing.” After 15

minutes of learning, the learners’ Hungarian skills are tested and
compared between the three conditions (Ludke et al., 2014).

4. ”The possible advantage of bilingual children over monolinguals
in analyzing word meaning from verbal context was examined.
The subjects were 40 third-grade children (20 bilingual and 20

monolingual) . . . The two groups of participants were compared
on their performance on a standardized test of receptive vo-
cabulary and an experimental measure of word meanings, the
Word–Context Test.” (Marinova-Todd, 2011)

5. ”The present paper considers the perceived emotional weight of
the phrase I love you in multilinguals’ different languages. The
sample consists of 1459 adult multilinguals speaking a total of 77

different first languages. They filled out an on-line questionnaire
with open and closed questions linked to language behavior and
emotions. Feedback on the open question related to perceived
emotional weight of the phrase I love you in the multilinguals’
different languages was recoded in three categories: it being
strongest in (1) the first language (L1), (2) the first language and
a foreign language, and (3) a foreign language (LX) . . . Statistical
analyses revealed that the perception of weight of the phrase I
love you was associated with self-perceived language dominance,
context of acquisition of the L2, age of onset of learning the
L2, degree of socialization in the L2, nature of the network of
interlocutors in the L2, and self-perceived oral proficiency in the
L2.” (Dewaele, 2008)

The word ’experiment’ can be used in a stricter or in a looser
sense. The mere fact that a study is referred to as an ’experi-
ment’ does not mean that it’s a true experiment (control group
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+ randomisation): the use of the label doesn’t automatically
imply that confounding has been taken care of.

Most quantitative studies in our research area aren’t experi-
ments in the strict sense.



3
Alternative explanations

3.1 The roles of variables in research

Some common terminology:

Dependent variable or outcome variable.

Independent variable or predictor variable. In experiments, such vari-
ables are ‘manipulated’ by the researchers.

Control variable. Additional variable that was collected as it may
be related to the outcome. We’ll discuss the usefulness of control
variables later.

3.2 Alternative explanations for results

In the study by Ludke et al. (2014) (see reading assignments), the
question about internal validity boils down to this: Can the dif-
ference in the outcome be ascribed to the difference between the
conditions (control vs. intervention; singing vs. rhythmic speaking
vs. speaking)? Or are there other explanations for it?

In Chapter 2, we focused on the threat that confounding poses
to a study’s internal validity and how this threat can be neutralised
using randomisation. We saw that randomised (‘true’) experiments
(probabilistically) negate the influence of confounding variables
on the results: one group isn’t systematically given an advantage
compared to the other (e.g., higher motivation, greater affinity with
a topic etc.). This increases the study’s internal validy, but:

Even if confounding variables are taken into account, other
systematic factors may give rise to a spurious difference be-
tween the experiment’s conditions or may mask an existing
effect of the conditions.

3.3 Explanation 1: Expectancy effects

Perhaps the researchers or their assistants (subconsciously) nudged
the data in the hypothesised direction. This can happen even when
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the measurements seem perfectly objective. For instance, when
you’re counting the number of syllables in a snippet of speech,
there are bound to be a number of close decisions (Does German
haben [ha(b)m] have one or two syllables?). This isn’t too big a
problem in itself, but it does become a cause for concern if you
tend to reach different decisions depending on which condition the
participant was assigned to.

Relatedly, it’s possible that the participants want to help (or
thwart) the researchers achieve what they think are the researchers’
goals. In this case, differences in the outcome variable between
the conditions may arise not because of the intervention itself but
because of unwanted changes in the participants’ behaviour. Such
changes in behaviour needn’t come about consciously.

Expectancy effects Both on the part of the participants (e.g., placebo
effect) or on the part of the researchers.

Single-blind experiment Typically used to describe that the partici-
pants don’t know which condition they’re assigned to.

Double-blind experiment If neither the participants nor the re-
searchers themselves (at the time of collecting and preparing
the data) know which condition the participants were assigned
to.

Blinding isn’t always possible, and it may be immediately obvi-
ous to the participants what the intervention entails. But in stud-
ies with raters, it’s usually easy to prevent them from knowing
which condition the participants were assigned to, as in Ludke
et al. (2014).

3.4 Explanation 2: Failed manipulation

A second class of alternative explanations is that the experiment
didn’t run quite as the researchers expected it to. For instance,
the participants may have misunderstood, or failed to act on, the
instructions, or the script used to run the experiment could contain
a crucial coding error.

Manipulation checks Example 1: Ludke et al. (2014) recorded their
participants to make sure that the participants who were sup-
posed to sing or speak rhythmically did so.

Example 2: Lardiere (2006) had her participant judge L2 sen-
tences for their grammaticality. To ensure that the participant
rejected sentences for the (syntactic) reason intended by the
researcher, she was also asked to correct any sentences she re-
jected. The researcher found out that the participant rejected a
fair number of syntactically correct sentences, but that she did so
for stylistic (rather than strictly syntactic) reasons. The researcher
then (correctly) didn’t draw the conclusion that the participant’s
syntactic knowledge was incomplete.
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Satisficing Sometimes, participants don’t really pay any attention
to the stimuli or to the instructions. For instance, questionnaire
respondents may answer in a specific pattern (e.g., ABCDED-
CBA. . . ) rather than give their mind to each question. Figure 3.1
provides another example of satisficing.
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Figure 3.1: A large number of raters
were asked to each rate about 50 short
texts on a 9-point scale. These two
clearly lost interest at some point
(Vanhove, 2017).

If you want to run a study online or at the computer, check out
Oppenheimer et al. (2009) for a neat and unintrusive way to find
out if your participants read the instructions.

Positive control Does the intervention yield an effect in cases where
it should (with near-certainty) yield an effect? If not, then the
experiment may have been carried out suboptimally.

Example: In L2 research, the task given to the L2 speakers is
sometimes also given to a group of L1 speakers to make sure
that the latter can complete it.

The term negative control refers to traditional control groups
(of which we know that they shouldn’t show an effect of the
intervention).

Pilot study See classes on questionnaires. Some goals of pilot stud-
ies are to make sure that the participants understand, and act on,
the instructions, identify any remaining glitches in the experi-
mental software and (if relevant) check if the responses obtained
can be coded satisfactorily.

3.5 Explanation 3: Chance

A third important possible non-causal explanation for one’s results
is that they’re due to chance. The entire next chapter is devoted to
attempt to get a handle on this explanation.





4
Inferential statistics 101

This chapter explains the basic logic behind p-value-based infer-
ential statistics. It does so by explicitly linking the computation of
p-values to the random assignment of participants to conditions
in experimental research. If you have ever taken an introductory
statistics class, chances are p-values were explained to you in a dif-
ferent fashion, presumably by making assumptions about how the
observations in the sample were sampled from a larger population
and by making reference to the Central Limit Theorem. For the
explanation in this chapter, however, we’re going to take a differ-
ent tack and we will ignore the sampling method and the larger
population. Instead, we’re going to leverage what we know about
how the observations, once sampled, were assigned to the different
conditions of an experiment. The advantages of this approach are
that it connects the design of a study more explicitly to the analysis
of its data and that it is less math-intensive while permitting one to
illustrate several key concepts about inferential statistics.

The goal of this chapter is for you to understand conceptually
what statistical tests attempt to achieve, not for you to be able to
use them yourself. As a matter of personal opinion, statistical tests
are overused (Vanhove, 2021). I think that, in your own research,
your focus should be on describing your data (e.g., by means of
appropriate graphs) rather than running umpteen significance tests.
Analysing data and running statistical tests are not synonymous.

4.1 An example: Does alcohol intake affect fluency in a second
language?

Research question Does moderate alcohol consumption affect verbal
fluency in an L2?

Method Ten students (L1 German, L2 English)1 are randomly 1 Ten participants is obviously a very
low number of participants, but it
keeps things more tractable here.

assigned to either the control or the experimental condition (five
each); they don’t know which condition they’re assigned to. Partici-
pants in the experimental condition drink one pint of ordinary beer;
those in the control condition drink one pint of alcohol-free beer.

Afterwards, they watch a video clip and relate what happens in
it in English. This description is taped, and two independent raters
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who don’t know which condition the participants were assigned
to count the number of syllables uttered by the participants during
the first minute. The mean of these two counts serves as the verbal
fluency/speech rate variable.

Results The measured speech rates are shown in Figure 4.1. On
average (mean), the participants in the with alcohol condition ut-
tered 4.3 syllables/second, compared to 3.7 syllables/second in the
without alcohol condition.

without alcohol intake

with alcohol intake

3.5 4.0 4.5 5.0

Daniel
Yves

Maria
Nicole

Sandra

Michael
Thomas

Lukas
Laura
Nadja

speech rate (syllables/s)

Figure 4.1: Individual results of a
randomised experiment.

4.2 The basic question in inferential statistics

We have dealt with major threats to internal validity, viz., con-
founders (neutralised using randomisation) and expectancy effects
(neutralised using double blinding). But there is another threat to
internal validity that we need to keep in check: While we found a
mean difference between the two conditions (4.3 vs. 3.7), this dif-
ference could have come about through chance. We are, then, faced
with two types of accounts for this mean difference:

• The null hypothesis (or H0): The difference between the means
is due only to chance.

• The alternative hypothesis (or HA): The difference between the
means is due to chance and systematic factors.

Assuming the H0 is correct, the participants’ results aren’t affected
by the condition (alcohol vs. no alcohol) they were assigned to. For
instance, Sandra was assigned to the with alcohol condition and her
speech rate was measured to be 5.0. But had she been assigned
to the without alcohol condition, her speech rate would also have
been 5.0. Assuming the H0 is correct, then, the difference in speech
rate between the two conditions must be due solely to the random
assignment of participants to conditions, due to which more fluent
talkers ended up in the with alcohol condition. Another roll of the
dice could have assigned Sandra to the control condition instead
of Michael, and since under the H0, the speech rate of neither is
influenced by the condition, this would have produced a slower
speech rate in the with alcohol condition than in the without alcohol
one (3.9 vs. 4.1; see Figure 4.2).

without alcohol intake

with alcohol intake

3.5 4.0 4.5 5.0

Michael
Daniel

Yves
Maria
Nicole

Thomas
Lukas
Laura
Nadja

Sandra

speech rate (syllables/s)

Figure 4.2: If only chance were at
play, Michael’s (3.1) and Sandra’s
(5.0) results would be unaffected by
the experimental condition and the
outcome might equally well have
looked like this (swapping Michael
and Sandra).

Frequentist inferential statistics seeks to quantify how surpris-
ing the results would be if we assume that only chance is at play.
To do so, it attempts to answers the following key question: How
likely is it that a difference at least this large would’ve come
about if chance alone were at play?

If it’s pretty unlikely that chance alone would give rise to at least
the difference observed, then this can lead one to revisit the as-
sumption that the results are due only to chance—perhaps some
systematic factors are at play after all. By tradition, the thresh-
old between ‘pretty likely’ and ‘still too likely’ is 5%, but there is
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nothing special about this number. If the result falls below this
5% threshold, the difference is said to be ‘statistically significant’.
This is just a phrase, however, and arguably a poorly chosen one:
statistical ‘significance’ doesn’t tell you anything about a result’s
practical or theoretical import.2 Before discussing these and other 2 From now on, avoid using the words

‘significance’ and ‘significant’ in their
non-technical sense when writing
about quantitative research.

misunderstandings about significance tests, let’s see how you can
compute how often you would observe a mean difference of at least
4.3 – 3.7 = 0.6 if chance alone were at play.

4.3 Testing the null hypothesis by exhausitive re-randomisation

With 10 participants in two equal-sized groups, there were 252

possible assignments of participants to conditions, each of which
was equally likely to occur. To see how easily a difference as least
as large as the one observed (4.3 vs. 3.7) could occur due to random
assignment alone, we can re-arrange the participants’ speech rates
into each of these 252 combinations and see for each combination
what the difference between the with and without alcohol condition
means is (Figure 4.3).
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Figure 4.3: There are 252 different
ways in which the 10 participants
could have been split up into two
groups. These are the differences
between the means for all 252 possibil-
ities.

In 22 out of 252 cases, the re-arrangement of participants to
conditions produced a difference at least as large in magnitude
(positive or negative) as the difference we actually observed. In
other words, the probability with which we would observe a differ-
ence of at least 0.6 between the conditions if chance alone (random
assignment) is at play is 22

252
= 0.087 (8.7%). This is the infamous

p-value.
Since p = 0.087 > 0.05, one would typically conclude that a

difference of 0.6 or more is still likely enough to occur under the
null hypothesis of chance alone and that, hence, there is little need
to revisit the assumption that the results may be due to chance
alone. Crucially, this doesn’t mean that we have shown H0 to be
true. It’s just that H0 would account reasonably well for these data.

4.4 On ‘rejecting’ null hypotheses

Researchers will often say that they ‘reject’ the null hypothesis in
favour of the alternative hypothesis if p < 0.05. While this practice
is subject to often heated debate (see McShane et al., 2019), it’s
important to realise that p can be < 0.05 even if the null hypothesis
is true,3 and that p > 0.05 even if the alternative hypothesis is true. 3 In theory, in fact, p < 0.05 in 5% of the

studies in which H0 actually is true by
definition. In practice, however, things
aren’t so simple. We’ll return to this in
a later class.

Consequently, researchers who are in the business of ‘rejecting’ null
hypotheses can make two types of errors, depending on whether
H0 or HA is actually true.

H0 is actually correct HA is actually correct

p > 0.05 Fine—we didn’t reject H0 Wrong conclusion
p < 0.05 Wrong conclusion Fine—we rejected H0 in favour of HA

Table 4.1: If you’re in the business of
rejecting null hypotheses, there are two
types of errors you can make. Incor-
rectly rejecting the H0 is commonly
referred to as a Type-I error; incor-
rectly not rejecting the H0 is referred to
as a Type-II error.

Without additional information (e.g., in the form of converging
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evidence from other studies or logical reasoning), we can’t really
know whether ‘p < 0.05’ represents an error or a true finding. (!)

Note, furthermore, that the HA stipulates that the results are
due to a combination of chance and systematic factors. It doesn’t
stipulate which systematic factors, though. What we would like to
conclude is that the systematic factor at play is our experimental
manipulation, but expectancy effects, failed manipulations, con-
founding and collider bias are also systematic factors. What is
more, the experimental manipulation may exert a systematic effect
on the results, but for different reasons than we think they do.4 4 For instance, a systematic difference

between the with and without alcohol
conditions needn’t be due to alcohol
intake per se but may be related to the
taste of the beers in question instead.
Or maybe alcohol increases speech
rate—not because the participants be-
come more fluent per se, but because
they use simpler syntactic construc-
tions that they can produce more
quickly. In other studies, different
theoretical explanations may account
for any given finding—in addition to
more mundane reasons such as con-
founding, expectancy effects and the
like.

4.5 Analytical short-cuts

Exhausitive re-randomisation is cumbersome for larger samples5

5 How many ways are there to split up
40 participants into two equal-sized
groups?

and more complex research designs; analytical short-cuts (e.g.,
the t-test, χ2-test, ANOVA etc.) and their generalisations usually
produce similar results and are used instead. In the context of
experiments with random assignment, the p-values etc. that these
procedures return have the essentially same interpretation and are
subject to the same caveats as those above.

4.6 Statistical power

A study’s statistical power is the probability with which its signif-
icance test will yield p < 0.05. In studies in which one group is
compared to a different group, this probability depends on three
factors (see Figure 4.4):

1. The size of the difference in the outcome between the groups
that the systematic factors cause. Even if they don’t cause any
difference, it is possible to obtain a statistically significant differ-
ence due to chance (see table above).

2. The number of observations.

3. The variability in the outcome variable within each group.

The precise numbers along the y-axis in Figure 4.4 aren’t impor-
tant; what’s relevant is the direction and the shape of the curves.

4.7 Exercises

1. Take a look at Figure 4.4 and answer the following questions:

(a) How do the effect size, the number of observations and the
within-group variability in the outcome affect the probability
that a study will yield a statistically significant result?

(b) Other things equal, what yields a greater improvement in a
study’s power: 10 additional participants per group when
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Figure 4.4: These three graphs show
how the statistical power of a study
varies with the effect size (left), the
number of observations per group
(middle) and the variability in the
outcome variable within each group
(right).

each group already consists of 10 participants, or 20 ad-
ditional participants per group, when each group already
consists of 50 participants?

(c) How could researchers reduce the within-group variability in
the outcome variable?

2. p-values are commonly misinterpreted. By way of preparation
for the next exercise, answer the following questions.

(a) What, roughly, is the probability that, when you’ll die, it’ll be
because a shark bit your head clean off?6 6 In the notation of probability theory,

you’d write this as

P(head bitten off by shark | dead).
(b) What, roughly, is the probability that, when a shark bites

your head clean off, you’ll die?7

7 I.e.,
P(dead | head bitten off by shark).

(c) Is 0.087 the probability that the null hypothesis in the alcohol
example is correct? If not, then which probability exactly
does this p-value of 0.087 refer to?

3. Consider the following vignette and some possible interpreta-
tions of the results reported in them. Decide for each interpre-
tation if it follows logically from the vignette and the correct
definition of the p-value. Explain your reasoning.

Vignette: In an experiment that was carried out and analysed
rigorously, we find that the mean difference between the control
and intervention groups amounts to 5 points on a 100-point
scale. This difference is “statistically significant”, with a p-value
of 0.02.

(a) It’s unlikely that we would have found a difference of 5

points or larger between both groups if the null hypothesis
were indeed true. More precisely, this probability would
have only been 2%.

(b) The null hypothesis is incorrect; the alternative hypothesis is
correct.

(c) It’s unlikely that the null hypothesis is indeed correct. More
precisely, the probability that it is correct is only 2%.
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(d) It’s highly likely that the alternative hypothesis is correct.
More precisely, the probability that it is correct is 98%.

(e) A new but similar study would likely yield a low p-value as
well. More precisely, there is a 98% probability that such a
study would yield a significant p-value (i.e., p < 0.05).

(f) If we concluded that alternative hypothesis is correct, we
would be wrong at most 2% of the time.

(g) If we concluded that alternative hypothesis is correct, we
would be wrong at most 5% of the time.

4. Consider the following vignette and some possible interpreta-
tions of the results reported in them. Decide for each interpre-
tation if it follows logically from the vignette and the correct
definition of the p-value. Explain your reasoning.

Vignette: In an experiment that was carried out and analysed
rigorously, we find that the mean difference between the control
and intervention groups amounts to 5 points on a 100-point
scale. This difference is “not statistically significant”, with a p-
value of 0.64.

(a) It’s pretty likely that we would have found a difference of 5

points or larger between both groups if the null hypothesis
were indeed true. More precisely, this probability would
have been 64%.

(b) The null hypothesis is correct; the alternative hypothesis is
incorrect.

(c) It’s pretty likely that the null hypothesis is indeed correct.
More precisely, the probability that it is correct is 64%.

(d) It’s fairly unlikely that the alternative hypothesis is correct.
More precisely, the probability that it is correct is 36%.

(e) A new but similar study would likely yield a high p-value
as well. More precisely, there is a 64% probability that such a
study would yield a non-significant p-value (i.e., p > 0.05).

5. If the null hypothesis is indeed correct, what is the probability
of observing a p-value between 0.20 and 0.50? (To arrive at the
correct answer, first consider what the probability of observing
a p-value lower than 0.20 is. And if that doesn’t help, consider
what the probability of observing a p-value lower than 0.05 is.)

4.8 Optional: Further reading

The blog entries Explaining key concepts using permutation tests and
A purely graphical explanation of p-values may be of some use. For
an explanation in German, see Chapter 12 of my statistics booklet
(available from https://janhove.github.io). Goodman (2008)
discusses some common misinterpretations of p-values; his list is
far from exhaustive.

https://janhove.github.io/teaching/2015/02/26/explaining-key-concepts-using-permutation-tests
https://janhove.github.io/teaching/2014/09/12/a-graphical-explanation-of-p-values
https://janhove.github.io
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Analysing quantitative data and running significance tests aren’t
synonymous; see my booklet as well as Winter (2019) for intro-
ductions to statistics for linguists that don’t emphasise signficance
testing. Nonetheless, quantitative research in the social sciences,
including in applied linguistics, has developed something of a sig-
nificance fetish, with authors inundating their readers with signif-
icance tests and p-values that they themselves don’t seem to really
understand while giving them little insight into what the data actu-
ally look like. For further lamentations and some suggestions, see
Vanhove (2021).





5
Increasing precision

5.1 Precision

Up till now, our chief goal has been to increase the study’s internal
validity:

• Bias introduced by confounding can be countered by randomly
assigning the participants (or whatever is being investigated) to
the conditions. This won’t always be possible, but randomisation
remains the ideal.

• Bias introduced by expectancy effects, especially on the part of
the researchers, can be reduced by blinding—for instance, by
preventing raters from knowing which experimental condition
the participant was assigned to.

• To decrease the chances that the results are affected by technical
glitches or misunderstandings, the experiment should be piloted,
and checks for comprehension and satisficing can be incorpo-
rated.

These three points concern bias—we want to prevent our study
from systematically under- or overestimating the answer to the
question we’re interested in, which is often a causal question. But
as we saw when discussing statistical tests, there is a random el-
ement to the results of any given study. In a study with random
assignment, the luck of the draw may produce an estimated effect
that is larger or smaller than the actual effect—it’s just that ran-
domisation helps to prevent this estimate from being systematically
too large or too small. Roughly speaking, randomisation is equally
like to yield overestimates as it is to yield underestimates.

But an estimate obtained from an unbiased study can be completely
off-target. To appreciate this, consider a six-sided dice. The average
number of pips on a six-sided dice is 1+2+3+4+5+6

6
= 3.5. Let’s pre-

tend we didn’t know this and we wanted to estimate this number
(i.e., 3.5) by throwing the dice and jotting down the number of pips
showing face-up.

• If you do this just once, you’ll just obtain an integer between 1

and 6 with equal probability (six possibilities). If you obtain a
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1, your estimate will be off by 2.5 pips; if you obtain a 2, you’ll
be off by 1.5 pips; . . . ; if you obtain a 6, you’ll be off by 2.5 pips.
Taking into account all six possibilities, your average estimation
error is 1.5 pips. Note that the estimation procedure itself is
unbiased: underestimates and overestimates are equally likely to
occur, and they’re of the same size, so they will cancel each other
out.

1 2 3 4 5 6

observed average number of pips

Figure 5.1: If you throw a six-sided
dice once, you’ll observe one of these
6 outcomes. The dashed vertical line
highlights the true mean number of
pips.

• If you throw the dice twice, you’ll now observe one of 6
2 = 36

possible outcomes. When you average the number of pips on
both throws, you can still obtain an estimate of 1 (when you
throw two 1s), but there’s just a 1-in-36 probability of that hap-
pening. But 6 of the possible outcomes will be right on the mark
(1+6, 6+1, 2+5, 5+2, 3+4, 4+3). Taking into account all 36 possi-
bilities, your average estimation error is 0.97 pips. Again, this
estimation procedure is unbiased.

1 2 3 4 5 6

observed average number of pips

Figure 5.2: If you throw a six-sided
dice twice and take the mean number
of pips observed, you’ll obtain one of
these 36 outcomes.

• If you throw the dice five times, you’ll observe one of 6
5 = 7776

possible outcomes. When you average the number of pips on the
five throws, there’s just a 1-in-7776 probability that you’ll end up
estimating the average number of pips on the dice as 1. Taking
into account all 7776 possibilities, your average estimation error
is 0.62 pips. Again, this estimation procedure is unbiased.

1 2 3 4 5 6

observed average number of pips

Figure 5.3: If you throw a six-sided
dice five times and take the mean
number of pips observed, you’ll obtain
one of these 7776 outcomes.

So as you increase the number of throws (i.e., as you increase
the sample size), the average observation tends to correspond more
closely to the true average. Put differently, your estimate tends to
become more precise. It’s still possible to be completely off mark,
but it’s less probable. Clearly, the third ‘design’ (throwing the dice 5

times) is preferable to the first and second design—not because it’s
unbiased (all three attempts are unbiased), but because the estimate
it yields can be expected to be closer to the truth.

In a similar vein, even unbiased studies can often be improved
upon by taking steps that increase their precision. The precision of
an estimate obtained in a study can itself be estimated and is typi-
cally expressed by means of standard errors, confidence intervals,
or credible intervals. We won’t concern ourselves here with how
these statistics are to be calculated and interpreted; a rough appre-
ciation of precision along the lines of the dice example suffices.

5.2 Factors affecting precision

Precision is affected mainly by the following two factors:

• the number of data points. Other things equal,1 larger studies 1 This phrase is crucial. Large samples
in and of themselves do not a good
study make.

yield more precise estimates. As the dice example illustrates, the
effect of increasing the sample size yields diminishing returns:
the same number of added observations results in a greater
increase in precision if the original sample is small compared to
when it is large.
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• the variability of the data within each group. The more variable
the data within the groups are, the less precise the estimates will
be. (In the dice example, the estimation error would be lower
if our dice didn’t have the values 1 and 6.) For the exercises in
Section 4.7, you already identified a couple of ways to reduce the
variability of the data within the groups (restricting the study to
a more homogeneous group; using more precise measurements).
But we can also reduce this variability through a combination of
experimental design and statistics, see Sections 5.3 and 5.4.

Note that both of these factors also affect statistical power in the
same way (see Figure 4.4 on page 53).

5.3 Matching and blocking

Matching Matching is a procedure in which researchers manually
assign the participants (or whatever is being investigated) to
the different conditions in such a way that both conditions are
comparable on one or a number of background variables.

• Actual meaning: For each participant in condition A, find a
similar participant (e.g., same age, sex and L2 skills) and as-
sign this participant to condition B. This way, each participant
has a counterpart in the other condition.

• What is often meant: Assign participants to conditions A and
B in such a way that the average age (etc.) is similar or the
same in both conditions. The individual participants them-
selves don’t need to have any particular counterpart in the
other group.

The rationale behind matching is that, by equating the conditions
on one or a number of background variables, these variables
can’t act as confounding variables. However, matching is not rec-
ommended: It’s possible that the researchers, while matching the
participants on one background variable, inadvertently introduce
a bias with respect to another background variable. Moreover,
(pure) matching only allows you to equate those confounding
variables that you matched for (see Figure 5.4). Randomisation
also equates other (and indeed unknown) confounding variables
and is superior to matching.

Am

U

X Y

Figure 5.4: Matching the conditions (X)
on A doesn’t prevent confounding by
other (perhaps unobserved) variables
(U).
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Blocking This is a type of matching, but unlike (pure) matching,
it is used in combination with (rather than as an alternative to)
randomisation.2 2 “[M]atching is no real help when

used to overcome initial group differ-
ences. This is not to rule out matching
as an adjunct to randomization, as when
one gains statistical precision by assign-
ing students to matched pairs, and
then randomly assigning one member
of each pair to the experimental group,
the other to the control group. In the
statistical literature this is known as
‘blocking.”’ (Campbell & Stanley, 1963,
p. 15; my emphasis)

• Example 1: Based on a pool of participants, we build pairs
of participants of the same sex and age and with a similar
IQ. From each pair of participants, we randomly (rather than
arbitrarily) assign one participant to condition A and one to
condition B. In doing so, we both equate the two groups in
terms of age, sex and IQ, but, due to the randomised assign-
ment, we also prevent confounding by unobserved factors.3

3 This technique is extremely rarely
used in our line of research, possibly
because the pool of participants
is rarely known at the start of the
experiment.

• Example 2 (see Ludke et al., 2014): We randomly assign half
of the female participants to condition A and half to condition
B; same for the male participants. Again, randomised assign-
ment helps to prevent confounding variables from biasing the
results, and we have the added benefit that the two conditions
will be perfectly balanced in terms of sex.

Blocking can increase a study’s statistical precision—provided
it is taken into account during the analysis.4 The stronger the 4 If you incorporate blocking in the

design of your study, but you don’t
take this into account when analysing
the data, you’re not reaping its full
benefits. For this class, you don’t have
to know how to take blocking into
account in the analysis, just that you
have to take it into account. But see
Vanhove (2015) for some options.

outcome is related to the blocking factors, the more powerful
blocking is.

Note that blocking takes place before the random assignment.
You can’t block after the fact.

How does blocking increase precision? Let’s say you’re comparing the
efficacy of two methods for learning Dutch as a foreign language.
Six German-speaking and eight French-speaking learners sign up
for your study, they work with one of the two learning methods for
a while, and then take the same test at the end.5 5 Again, the number of participants in

this fictitious example is low to keep
things tractable.• The speakers of German can be expected to have an advantage

because of the similarity between Dutch and German. Let’s say
this advantage corresponds to 3 points on a 20-point test scale.
(Realistically, you wouldn’t be able to peg this number down so
precisely.)

• Within each language group, learners still vary in their ability to
learn Dutch.

• Let’s say that, unbeknownst to you, learning method B yields a
boost in test performance of 1 points relative to learning method
A. Figure 5.5 shows what each learner’s scores would have been
like if they’d been tested on both methods.

There are
(

14

7

)
= 3432 ways to randomly assign these 14 partici-

pants to two conditions (A and B) with 7 participants each. For the
learners in Condition A, we’d observe the scores shown as circles in
Figure 5.5; for the learners in Condition B, we’d observe the scores
shown as crosses. If we then took the mean difference between
these groups, we’d end up observing one of the 3432 values shown
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Figure 5.5: The test scores that each
learner would obtain for each learning
method. But we can’t test all learners
on one and the same method, so for
half of the learners, we’ll observe their
scores for Method A, and for the other
half, we’ll observe their scores on
Method B.

in Figure 5.6 on the following page. Complete random assignment
would yield a mean estimation error of about 1.1 points.

However, we’ve identified a likely important source of variabil-
ity in the data: language group. It makes sense to block on this
factor, i.e., restrict the random assignment in such a way that half
of the learners in each language group are assigned to one learn-
ing method and the other half to the other learning method. Of
the 3432 total possible random allocations, only 1400 feature four
French speakers in one condition and four in the other, as well as
three German speakers in one condition and three in the other.6 6 There are 70 ways to split up the

eight French speakers into two groups
of four, and 20 ways of splitting up
the German speakers into two groups
of three. Combining these yields
70 · 20 = 1400 possibilities.

The average estimated difference between the two learning methods
among these 1400 allocations is still 1, but the average estimation
error is now only 0.9—an increase in efficiency of about 15%; see
Figure 5.7. What has happened is that, by restricting the randomisa-
tion in this fashion, we limited both the number of allocations that
would have yielded overestimates (when the Method B condition
would’ve consisted mainly of advantaged German speakers) and
those that would have yielded underestimates (when the Method
B condition would’ve consisted mainly of disadvantaged French
speakers). In our example, complete randomisation resulted in 476

out of 3432 (14%) allocations with an absolute estimation error of
more than 2 points; blocked randomisation resulted in only 112 out
of 1400 (8%) such allocations. Also see Table 5.1 on the next page.

So blocking on influential factors prevents the randomisation
from generating some of the ‘unlucky’ allocations, thereby reducing
the study’s average estimation error, i.e., increasing its precision.

5.4 Leveraging control variables

Control variable Additionally collected variable that isn’t of actual
interest but that may account for differences between partici-
pants in terms of the outcome.



quantitative methodology 62

0

1000

2000

3000

−2 0 2 4
difference between group means

(B − A)

ra
nd

om
is

at
io

n

Possible results when using complete randomisation Figure 5.6: Across all 3432 possible
random assignments, the mean esti-
mation error of the difference between
the two learning methods is about 1.1
points. The vertical line highlights the
average estimate (viz., 1) across all
3432 possible random assignments.
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Possible results when blocking on language group Figure 5.7: Of the 3432 possible ran-
dom assignments, only 1400 have
an equal number of French speakers
assigned to each learning method, as
well as an equal number of German
speakers assigned to each learning
method. Across these 1400 assign-
ments, the mean estimation error is
just 0.9. The average estimate (viz., 1),
highlighted by the vertical line, doesn’t
change.

Interval Complete randomisation Blocked randomisation

(-3.5,-2.5] 0.03 0.00

(-2.5,-1.5] 2.16 0.93

(-1.5,-0.5] 12.70 9.79

(-0.5,0.5] 18.85 20.21

(0.5,1.5] 32.52 38.14

(1.5,2.5] 18.85 20.21

(2.5,3.5] 12.70 9.79

(3.5,4.5] 2.16 0.93

(4.5,5.5] 0.03 0.00

Table 5.1: In what percentage of ran-
domisations did the mean difference
end up in each interval? Note that
for blocked randomisation, a greater
percentage of randomisations yield a
mean difference close to the true dif-
ference between the learning methods
(i.e., 1) than for complete randomisa-
tion.
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Example: the ‘language aptitude test’ in Ludke et al. (2014).

In randomised experiments, the added value of control variables
is mostly statistical: If control variables can account for differ-
ences in the outcome between participants, they can be used to
statistically reduce the variability within the groups. Similarly to
blocking, this yields greater power and precision.7 Note that the 7 Contrary to common belief, including

powerful control variables in the
analysis is useful even if the groups are
balanced with respect to these control
variables. In fact, they’re even more
useful than when the groups aren’t
balanced.

use of a control variable to this end is planned before the data
are collected. Don’t try out a bunch of ‘control variables’ during
your analysis to see which works best!

Pretest Often, the most potent indicator of a participant’s perfor-
mance at the end of the experiment is their performance at the
start of the experiment. A pre-intervention measure of their per-
formance is therefore a useful control variable.8 8 On taking into account pretest re-

sults, see Vanhove (2015).It’s also possible to ‘block’ on pretest scores. To this end, sort
the participants according to their pretest score and divide them
up into pairs like so: (12)(34)(56)(78). . . . Within each pair, ran-
domly assign one participant to the control group and one to the
intervention group. (You can similarly block on other continuous
variables.)

Pre- and post-tests don’t have to look identically. Any
measure of pre-experiment performance is better than no
measure at all.

Of course, if the pre- and posttests aren’t similar and can’t be
scored on the same scale, you won’t be able to make any claims
about how much the participants progressed in each condition.
But that’s not important! What’s important in a pretest/posttest
design is the comparison between the conditions on the posttest
scores. The purpose of the pretest scores is to increase the pre-
cision of this comparison. This can be achieved by using them
as you would any other blocking or control variable, so they
don’t have to be expressed on the same scale as or be otherwise
comparable with the posttest.

In fairly small studies, blocking tends to increase precision a bit
more than merely using control variables in the analysis, but in
the vast majority of cases, either is a good idea compared to the
alternative of not leveraging any prior information!9 9 We don’t need to concern ourselves

with the freak cases where blocking
or using control variables reduces
precision (viz., tiny studies in which
the blocking or control variables are
uninformative with respect to the
outcome; Imai et al., 2008.)

Even if you’re conducting a randomised experiment, it pays
to think about which factors are likely to strongly affect the
outcome so that, if feasible, you can take these factors into
account using blocking or by means of control variables.

Don’t go overboard with this, though. One or two strong block-
ing or control variables are likely to be helpful; umpteen variables
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that might conceivably bear some relation to the outcome aren’t. Us-
ing several highly intercorrelated control variables isn’t too useful
either: they will all tend to do the same work, which makes them
mutually superfluous.

Don’t control for post-treatment variables! A fairly common error is
that researchers control for variables that are themselves (directly or
indirectly) affected by the treatment. The reason is that controlling
for a ‘descendant’ of a variable is like controlling for the variable
itself, only less strongly.

• If you ‘controlled’ for the treatment variable (e.g., throwing
away data in order to keep it constant), you wouldn’t be able
to compare the outcome variable according to different values
of the treatment variable (since there aren’t any). Controlling
for a descendant of the treatment variable (even by statistical
means rather than by selecting observations) similarly amounts
to throwing away data, just to a lesser extent. Rather than in-
creasing power and precision, you’ll lose some.

• If you ‘controlled’ for the outcome variable, you wouldn’t be
able to find any differences between the treatment groups even
if the treatment produced some differences (since you fixed all
outcome observations to the same value). Similarly, controlling
for a descendant of the outcome variable (even by statistical
means) typically amounts to artificially pulling the differences
between the treatment groups towards zero.

See the DAGs in Figure 5.8 for these and two other cases.

A

Xr Y

A

Xr Y

A

Xr Y

A

Xr Y

Figure 5.8: In all four DAGs, A is
causally affected by Xr.

Top left: A is a collider. Controlling
for it opens up a non-causal path
between Xr and Y.

Bottom left: Controlling for A closes
a causal path from Xr to Y. You’d be
answering the question What’s the
causal effect of Xr on Y other than that
mediated by A?. This may be interesting
in its own right, but you have to be
aware that this question differs from
the question What’s the causal effect of Xr
on Y?

Top right: Controlling for A is like
controlling for Y, just less strongly. If
you want to estimate the causal effect
of Xr on Y, controlling for Y would be
a dreadful idea, so controlling for A
would only be a slightly less dreadful
idea.

Bottom right: Controlling for A isn’t
as terrible here as it is in the top right
panel. But it’s unnecessary, and you’ll
lose some precision.

Example: Say you want to find out if a pedagogical intervention
boosts learners’ conversational French skills. It may be a good idea
to control for the learners’ vocabulary knowledge. But if you collect
the measure of vocabulary knowledge after the intervention, it’s
possible that this measure is also affected by the intervention. If you
control for it, you could find yourself in one the situations depicted
in Figure 5.8.

A poorly chosen pretreatment control variable won’t be too
helpful, but it won’t hurt your study either. But controlling for
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a posttreatment variable can bias your results or decrease their
precision. Luckily, in true experiments, there’s a simple solution:

Collect control variables at the outset of the study (before the
intervention) so that you’re sure that the control variables aren’t
themselves influenced by the intervention.





6
Pedagogical interventions

The following remarks are especially relevant for pedagogical inter-
ventions, but they apply to other studies, too.

6.1 Mortality

Less lurid and more descriptive terms are drop-outs, outmovers, and
panel attrition.

In addition to lowering the sample size, drop-outs may bias
the results of the study. As Figure 6.1 shows, being a drop-out or
not can be a post-treatment factor, but one that has insidiously
already been controlled for: the participants whose data goes into
the analysis all have the same value on this variable.

Ds

Xr Y

Ds

Xr Y

Ds U

Xr Y Figure 6.1: The fact that some par-
ticipants stayed in the study and
others can be treated as a factor in its
own right (Ds; D for ‘drop-out’, s for
making clear that selection took place).

Ideally, mortality doesn’t depend on the condition (X), the partic-
ipants’ prior knowledge (U), or their progress (Y). When mortality
does vary by condition, prior knowledge or learning progress, you
have take into account the selection effect when interpreting the
results.1 1 In a study with two measurement

times, assessing learning progress for
the drop-outs is impossible, but if you
have several measurement times, you
can check if those who progressed
little thus far are more likely to drop
out of the study.

Figure 6.2 illustrates how mortality can bias the study’s esti-
mates. It is in fact possible that an observed ‘treatment’ effect is
little more than a selection effect: If only gifted or highly motivated
learners remain part of the treatment condition but the control con-
dition isn’t as selective, it’s hardly surprising that at the end of the
study, you’ll find better scores in the treatment condition than in
the control condition.

6.2 Clustering

In typical pedagogical settings, the participants can’t be randomly
assigned to the experiment’s conditions on an individual basis.
Instead, entire intact groups of participants (e.g., entire classes,
entire schools, entire school districts etc.) are assigned to the same
condition. This induces clustering: Due to teacher/class/school
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Intervention too difficult for some Figure 6.2: Example of the biasing
effect of sample mortality. Left: Had it
been possible to test all participants,
we’d have found a mean difference
of 5 points. Right: If the drop-out
likelihood is itself affected by the
intervention, we could end with a
biased estimate.

etc. effects, participants belonging to the same cluster (class, school,
etc.) tend to be somewhat more alike in their performance than
participants belonging to different clusters.

Teacher/school effects

Within- vs between-school design See Figure 6.3. In a within-school
(or similarly, within-class etc.) design, the school effect is neu-
tralised using blocking, whereas the remaining possible con-
founding variables are ideally taken care of using randomisation.
This increases precision relative to a between-school design. One
possible drawback of a within-school design is that the pupils
in the control and treatment classes in the same school influence
each other (e.g., by comparing notes or helping each other make
sense of what’s being taught), which may wash out an existing
treatment effect.

Figure 6.3: Within- vs between-school
designs.

Cluster-randomised design When clusters are assigned in their en-
tiry to the same condition (e.g., all pupils in the same class are
assigned to the same learning condition rather than each on an
individual basis).

In a cluster-randomised design, you need to take the cluster-
randomisation into account when analysing the data.

To appreciate the need for taking clustering into account dur-
ing the analysis, consider an experiment with 6 classes of 10 pupils
each. There are over one-hundred quadrillion ways to split up 60
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pupils into two groups of 30 (≈ 1.2× 10
17). But there are only 20

ways to split up six classes into two groups of three classes each.
The analysis needs to be based on the assumption that the alloca-
tion obtained is one of 20 possible ones, not one of a gazillion ones.

You need to be able to recognise a cluster-randomised design
and to know that you need to take the cluster-randomisation into
account during the analysis. But for this class, you don’t need to
know how to take it into account.2 If you want to conduct an exper- 2 One simple but valid approach is to

compute the mean of each cluster and
then analyse these means instead of
the raw data.

iment that uses cluster-randomisation, see Vanhove (2015), Vanhove
(2020), and references therein.

What you also need to know about cluster-randomisation is this:

Studies with one intact group as the experimental group and
another intact group as the control group are useless.

The reason is that class, school and teacher effects can’t be sepa-
rated from the effect of the intervention if you just have one intact
group per condition.

6.3 Exercise

Let’s say you want to run a pedagogical experiment (e.g., to com-
pare two learning methods for French as a foreign language) in
which randomisation has to take place at the class level rather than
at the individual level. Other things equal (e.g., number of classes,
number of pupils), what are the advantages and drawbacks of the
following designs? What’s the worst option? What’s the best?

1. All classes are taught by the same teacher.

2. Each class is taught by a different teacher.

3. One teacher teaches all classes in the control condition, and
another teacher teaches all classes in the intervention condition.

4. Each teacher teaches two classes: one in the control condition,
and one in the intervention condition.





7
Within-subjects experiments

7.1 Advantages and drawbacks

Blocking increases power and precision by pairing up similar par-
ticipants and randomly assigning one of each pair to each condi-
tion. In within-subjects designs, this idea is taken to an extreme: the
same participants are tested in the different conditions.

In a within-subjects experiment, every participant serves as
their own control.

Advantage 1: Easier to explore interindividual differences With a between-
subjects experiment, you can only estimate the average effect of
an intervention. Within a within-subjects experiment, you can
additionally gauge which participants gain more from an inter-
vention than others.

Advantage 2: Statistical precision A study’s statistical precision de-
pends on (a) the amount of data and (b) the variability in the
data. The main (!) advantage of a within-subjects design is that it
easily accounts for an important source of variability: interindi-
vidual differences.

How much more precise a within-subjects experiment is than a
between-subjects experiment varies from case to case.1 1 Quené (2010) estimates that within-

subjects designs have the statistical
precision of between-subjects designs
with four times as many participants.
The precise factor depends on the
extent to which the participants’ per-
formance in one condition correlates
with their performance in the other
condition: The stronger this correla-
tion, the greater the added value of a
within-subjects experiment. But even
if you can’t quantify this added value:
Within-subjects designs offer more
statistical precision.

Possible drawback 1: Lack of ecological validity (Not too relevant for
basic research.) In applied settings, you typically want the study
to mimick the context in which its findings are to be imple-
mented. But in such a context, people (e.g., pupils) won’t be
exposed to several conditions (e.g., learning methods) but rather
to just one.

Possible drawback 2: Order and carry-over effects When participants
are tested in several conditions, it’s possible that they learn
something in one condition that affects their performance in
the other condition (carry-over effect). It’s also possible that their
performance in the last condition differs from their performance
in the first condition because they’ve had more practice or be-
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cause they’ve grown tired of being tested (order effects). Luckily,
these dangers can be minimised.

7.2 Minimising order effects

Complete counterbalancing To prevent learning or fatigue effects
from exerting a systematic effect on the results, you can vary the
order of the conditions between the participants. In complete
counterbalancing, all possible orders are taken into account. If
you have two within-subjects conditions, half of the participants
first complete condition A and then B, and the other half first
complete condition B and then A. If you have three conditions,
there are six possible orders2; one sixth of the participants com- 2

3! = 3× 2× 1 = 6.

pletes A, then B, then C; one sixth completes A, then C, then B,
etc.:

A A B B C C
B C A C A B
C B C A B A

Table 7.1: Complete counterbalancing
for a within-subjects experiment with
three conditions (or stimulus sets and
the like).

Latin squares If a within-subjects experiment has lots of conditions,
complete counterbalancing is impractical. For four conditions,
for instance, there are already 24 possible orders—we may not
even have that many participants! The Latin square lends itself
to such cases.3 Latin squares are arrangements of symbols in a 3 ‘Latin’ because the symbols used are

typically letters of the Latin alphabet.grid in which each of the symbols used occurs exactly once in
each row and exactly once in each column. The grid below is a
Latin square of size 4—one of the 576 possible arrangements of
the symbols A, B, C, and D that form a Latin squares. (Can you
come up with a couple of the other 575 ones?)

A B C D
B C D A
C D A B
D A B C

Table 7.2: A Latin square for a within-
subjects experiment with four condi-
tions (or stimulus sets and the like).

Let’s say you picked the Latin square above for your study.
You’d then randomly assign one quarter of the participants to
the condition (or stimulus set) order ABCD (first row), one quar-
ter to BCDA (second row), one quarter to CDAB (third row) and
one quarter to DABC (fourth row). The conditions (or stimulus
sets) are randomly assigned to one of the letters, too.

Other possibilities In which order should be show our participants
50 pictures that they are to describe if we want to prevent order
effects from biasing the results?4

50! = 3× 10
64 is an astronom- 4 Of course, it’s possible that we

just accept such ‘bias’ if we aren’t
interested in differences between the
images, but just in differences between
the participants. If that’s the case,
these steps may be superfluous.

ical number, and even just 50 different Latin square orders seem
impractical. One of several possible solutions is to present the
images in a new random order for each participant. The draw-
back of doing this is that perhaps image 3 occurs much more
often at the start than at the end of the data collection.
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In many psycholinguistic studies, participants need to react to
several stimuli per condition (e.g., 12 stimuli per condition). The
order of the stimuli in these studies are often randomised so that
the conditions are mixed up (e.g., ABAABBBAB etc.).

If you have a genuine choice between a between-subjects and
a within-subjects design for your own research, pick the within-
subjects design. (Unless, of course, you have an excellent reason
not to do so.)

The possible danger of carry-over effects typically isn’t large
enough to offset the certain gain in statistical precision.

7.3 Exercises

1. From Ludke et al. (2014):

Participants were randomly assigned to one of three learning
conditions: speaking, rhythmic speaking, and singing. The par-
ticipants heard 20 paired-associate phrases in English and an
unfamiliar language (Hungarian) (. . . ). (. . . ) The 15-min learning
period was followed by a series of five different production, recall,
recognition, and vocabulary tests for the English–Hungarian pairs.

Re-design this between-subjects experiment as a within-subjects
experiment. What would this description look like? For the time
being, ignore the rhythmic speaking condition. (There are several
acceptable solutions.)

2. As above, but with all three conditions. (There are several ac-
ceptable solutions.)

7.4 Optional: Further reading

Latin-square designs are used, albeit less commonly, in studies
other than within-subject experiments. See Richardson (2018) for
an overview and some finer points that weren’t discussed here; his
article is geared towards educational researchers.





8
Quasi-experiments and correlational studies

Whether a study counts as a quasi-experiment or a correlational
study depends on whom you ask. Some researchers use the term
quasi-experiment to refer to cluster-randomised experiments, whereas
others use the term pre-experiment to refer to group comparisons
without randomisation. Similarly, different researchers draw the
border between quasi-experiments and correlational studies at
different places. As far as I’m concerned, the communalities be-
tween the two outnumber the differences. For what it’s worth, I use
quasi-experiment for group comparisons and correlational study when
the predictor is continuous. What’s important is that, because no
random assignment was used, we can’t assume that the treatment
variable is independent of pre-treatment variables—confounding is
a real threat.

Quasi-experiment Group comparison, but the groups weren’t con-
structed using random assignment.

• Example 1: Comparison of pupils with and without an immi-
gration background.

• Example 2: Comparison of kids that take heritage language
classes and kids that don’t.

It doesn’t matter whether the groups could have been constructed
using random assignment, just whether they were.

Correlational study No group comparison. Instead, one assesses to
what extent variation in an outcome (dependent) variable can
be accounted for by differences in one or more continuous pre-
dictors (independent variables). The values of these predictors
weren’t assigned to the units of observation randomly. More
often than not, control variables are taken into account as well.

• Example 1: Researchers collect IQ and L2 proficiency data in a
group of learners and assess how strongly both types of data
covary.

• Example 2: Using archival data, researchers gauge how well
they can account for whether children will pass their A-levels
based on the results of a vocabulary test when the children
were 12 years old.
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Why carry out quasi-experiments and correlational studies?

But just because full experimental control is lacking, it becomes
imperative that the researcher be thoroughly aware of which specific
variables his particular design fails to control.

The average student or potential researcher reading the previous
section of this chapter probably ends up with more things to worry
about in designing an experiment that he had in mind to begin with.
This is all to the good if it leads to the design and execution of bet-
ter experiments and to more circumspection in drawing inferences
from the results. It is, however, an unwanted side effect if it creates a
feeling of hopelessness with regard to achieving experimental control
and leads to the abandonment of such efforts in favor of even more
informal methods of investigation.

[W]e shall . . . survey the strenghts and weaknesses of a heteroge-
neous collection of quasi-experimental designs, each deemed worthy
of use where better designs are not feasible.” (Campbell & Stanley, 1963,
p. 34; their emphasis in italics, mine in bold-face)

Note that the goal of quasi-experiments and correlational studies
is often to draw causal conclusions, but the findings—for better or
for worse—tend to be couched in non-causal language (Grosz et al.,
2020).

Controlling for confounds is difficult Consider the following descrip-
tion.

“There were 40 participants who composed two language groups
and two age groups. Twenty of the participants were younger adults
ranging in age from 30 to 54 years (mean age = 43.0 years), and 20

were older adults ranging in age from 60 to 88 years (mean age =
71.9 years). In each age group, half the participants were mono-
lingual English speakers living in Canada, and the other half were
Tamil–English bilinguals living in India. (. . . ) All the participants in
both groups had bachelor’s degrees . . . ” (Bialystok et al., 2004, p. 44)

While the authors didn’t explicitly claim to have done so, you
might end up thinking that level of education was controlled for
in this study. A couple of minutes’ thought should reveal that this
wasn’t the case. (Does having a minimum requirement of having
Bachelor’s degrees equate both groups with respect to level of
education?) But more interestingly, by introducing this minimum
requirement, the authors may have introduced additional bias. How
so?1 1 If you’re stuck, consult https:

//www150.statcan.gc.ca/n1/

daily-quotidien/171129/

dq171129a-eng.htm and look up
similar data for India.

8.1 Correlation coefficients

See Table 2 in Slevc & Miyake (2006).
Correlation coefficients (r) express how closely the (X,Y) data

points fall on a straight line.

• r = 1: All points fall exactly on an increasing line.

• r = –1: All points fall exactly on a decreasing line. Correlation
coefficients of 1 or –1 (or close to it, e.g., r = 0.99) tend not to

https://www150.statcan.gc.ca/n1/daily-quotidien/171129/dq171129a-eng.htm
https://www150.statcan.gc.ca/n1/daily-quotidien/171129/dq171129a-eng.htm
https://www150.statcan.gc.ca/n1/daily-quotidien/171129/dq171129a-eng.htm
https://www150.statcan.gc.ca/n1/daily-quotidien/171129/dq171129a-eng.htm
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be too interesting: They typically indicate that the two variables
express the same thing (e.g., body length in centimetres and in
inches).

• r = 0: There’s no linear relation between the two variables what-
soever.

Correlation coefficients work in both directions: rXY = rYX.
Figure 8.1 shows eight examples of scatterplots and the cor-

relation coefficients for the data presented in them. Note that a
correlation coefficient close to zero doesn’t imply that there is no
relation between them; correlation coefficients different from 1 or
-1 don’t imply that the relation between two variables is imperfect;
and it’s possible for a positive correlation coefficient to reflect a
relationship that’s largely negative, and vice versa. Do these exam-
ples contradict the rough definition of correlation coefficients given
above?
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Figure 8.1: Examples of scatterplots
and their associated correlation coeffi-
cients.

The same correlation coefficient can correspond to a multi-
tude of relationships between two variables. Never ever com-
pute a correlation coefficient without drawing a scatterplot
first.
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Honing your intuitions about correlation coefficients To hone your
intuitions about correlation coefficients, you can use the plot_r()

function from the cannonball package for R.2 2 If you run into the error message
‘Failed to install ‘unknown package’
from GitHub’, try running the com-
mand Sys.unsetenv("GITHUB_PAT")

first.

# Install the package

install.packages("devtools")

devtools::install_github("janhove/cannonball")

# Load the functions

library(cannonball)

# Draw 16 plots with 20 data points each and r = 0.6

plot_r(n = 20, r = 0.6)

# With 50 data points each and r = 0.0

plot_r(n = 50, r = 0.0)

# With 40 data points and r = -0.9

plot_r(n = 40, r = -0.9)

Type ?plot_r at the R prompt to access the function’s help page
and read the text under ‘Details’.

8.2 Statistical control using hierarchical regression

In correlational studies, control variables are often used to adjust
statistically for known confounders. One technique used to accom-
plish this is hierarchical regression; see Table 3 in Slevc & Miyake
(2006) for an example. We will discuss this technique mainly so that
you are better able to appreciate the shortcomings of this technique
and ones similar to it.

Example If you measure the shoe size and vocabulary knowledge
of 4- to 16-year-olds, you’ll observe a positive correlation between
the two. This isn’t surprising; see Figure 8.2.

age

shoe vocab
Figure 8.2: Shoe size and vocabulary
knowledge are correlated since age
acts as a confound.

We’ll use this silly example to illustrate the principle behind
hierarchical regression; see Figure 8.3.

• Top left: Shoe size and vocabulary knowledge are positively
correlated.

• Top right and middle left: Age—the confound—is correlated
positively with both shoe size and vocabulary knowledge.

• Middle right: This plot shows the vertical distance between the
points in the middle left panel and the regression line. This
shows how much the participants vary in their vocabulary test
scores once the linear association between age and vocabulary
knowledge has been partialled out.
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• Bottom left: The association between shoe size and the vocabu-
lary test scores with the linear association of age partialled out
is much less strong. In this simulated example, the fact that the
remaining association isn’t exactly zero is due entirely to chance.

160 200 240

20
30
40
50
60
70
80

shoe size

vo
ca

bu
la

ry
 te

st

4 6 8 10 12 14 16

160

180

200

220

240

age

sh
oe

 s
iz

e

4 6 8 10 12 14 16

20
30
40
50
60
70
80

age

vo
ca

bu
la

ry
 te

st

−30

−20

−10

0

10

20

va
ria

tio
n 

vo
ca

bu
la

ry
 te

st
w

ith
 a

ge
 'p

ar
tia

lle
d 

ou
t'

160 200 240

−30

−20

−10

0

10

20

shoe size

va
ria

tio
n 

vo
ca

bu
la

ry
 te

st
w

ith
 a

ge
 'p

ar
tia

lle
d 

ou
t'

Figure 8.3: Hierarchical regression
used to control for the age confound
in the relationship between shoe
size and vocabulary knowledge. The
coloured circles in each panel show
data belonging to the same three
participants. The straight lines are
regression lines. This is the straight
line that best captures the tendency in
the cloud of data points.

8.3 Caveats

To recapitulate, in correlational studies and quasi-experiments, it’s
usually necessary to control for possible confounds if you want
to interpret an association between two variables causally. For
instance, the association between A and B (say, musical ability
and L2 skills) may be due to the confound C (say, phonological
short-term memory capacity); see Figure 8.4.

If the association between A and B is due completely to C, all
the variance in B that can be accounted for using A can also be
accounted for using C.

If, by contrast, the association between A and B is not completely
due to C, at least some part of the variance in B that can be ac-
counted for using A cannot be accounted for using C (‘unique
variance’); see Figure 8.5.

When researchers write that there’s an association between A
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Figure 8.4: An association between
musical ability and L2 skills may
be due to the confounding effect of
phonological short-term memory.

Figure 8.5: If the association between
musical ability and L2 skills isn’t
entirely due to their joint overlap with
phonological short-term memory
capacity, then of the overlap in the
variances between musical ability
and L2 skills won’t also overlap with
the variance in phonological short-
term memory. This is the variance in
L2 skills uniquely accounted for by
musical ability.

and B when controlling (statistically or otherwise) for C, what they
mean is that this unique variance between A and B exists.

You need to be hyper-aware of the following caveats concerning
statistical control:

1. Controlling for a number of possible confounds doesn’t rule out
the possibility that there are even more confounds; Figure 8.6.

Ac Bc

U

X Y

Figure 8.6: Perfectly controlling for
A and B closes the non-causal paths
X ← A → Y and X ← B → Y. But it
leaves open the non-causal path via U.

2. The methods typically used to account for confounding variables
account for linear relationships between the confounds and the
variables of interest. If these relationships aren’t linear, the con-
found won’t be fully accounted for. In DAG parlance, the path
via the confound won’t be fully closed.

3. The ‘confound’ may be a post-treatment variable. See Section 5.4
on page 61.

4. Statistical control may be imperfect because the confound was
measured with some error. We’ll treat this in more detail in
Chapter 9.

The following excerpt makes the same points:

“When experimental designs are premature, impractical, or im-
possible, researchers must rely on statistical methods to adjust for
potentially confounding effects. Such procedures, however, are quite
fallible. We examine several errors that often follow the use of statis-
tical adjustment.

“The first is inferring a factor is causal because it predicts an out-
come even after “statistical control” for other factors. This inference
is fallacious when (as usual) such control involves removing the lin-
ear contribution of imperfectly measured variables, or when some
confounders remain unmeasured.
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“The converse fallacy is inferring a factor is not causally important
because its association with the outcome is attenuated or eliminated
by the inclusion of covariates in the adjustment process. This atten-
uation may only reflect that the covariates treated as confounders
are actually mediators (intermediates) and critical to the causal chain
from the study factor to the study outcome.3 3 What’s meant is a causal chain

such as A → B → C. A is causally
important, but if you control for B, you
won’t find any association between A
and C.

“Other problems arise due to mismeasurement of the study factor
or outcome, or because these study variables are only proxies for
underlying constructs.

“Statistical adjustment serves a useful function, but it cannot transform
observational studies into natural experiments, and involves far more
subjective judgment than many users realize.” (Christenfeld et al., 2004,
abstract, my emphasis)

Large sample sizes don’t solve these problems.

Also see the blog entry Controlling for confounding variables in
correlational research: Four caveats.

https://janhove.github.io/design/2015/08/24/caveats-confounds-correlational-designs
https://janhove.github.io/design/2015/08/24/caveats-confounds-correlational-designs




9
Constructs and indicators

We’re faced with an inescapable fact of life.

Most measurements are imperfect.

Saying that a study’s measurements aren’t perfect isn’t much of
a criticism. But it’s crucial to appreciate the consequences of imper-
fect measures—pointing out that a study’s findings can plausibly be
accounted for by the fact that its measurements are imperfect is a
valid criticism.

Construct or latent variable. Lots of characteristics can’t be observed
or measured directly. Instead, their existence, as well as their
relative value, are inferred on the basis of other, observable vari-
ables.

Indicator or manifest variable. These are variables that can be mea-
sured or observed directly and from which information about
the construct is inferred. Table 9.1 lists some examples.

Construct Example indicator

Intelligence Your result on an intelligence
test

Working memory capacity The length of a sequence of
digits you can repeat in re-
versed order

Language aptitude Your result on the LLAMA-D
test

L2 reading skills The number of correctly an-
swered items on a reading test

Attitudes towards Danish Your answer to the question
‘How beautiful do you think
Danish is?’

Socio-economic status Your father’s occupational cate-
gory

Table 9.1: Examples of constructs and
indicators.
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Measurement error Even the best indicators are rarely perfect. Better
indicators just have a smaller measurement error.

Even variables that don’t act as a proxy for some cognitive or
social construct are often measured with some error. Examples
include body weight (bathroom scales are imperfect, and the re-
sult is rounded), blood pressure (if you have a sphygmomanome-
ter1, check its manual), and age (invariably rounded down to the 1 I had to look this up.

integer below when reported).

9.1 Systematic and random measurement error

Measurement error can include both a systematic and a random
component.

The systematic component of an instrument’s measurement
error is the extent to which it tends to over- or underestimate what
it’s supposed to measure.2 For instance, a miscalibrated kitchen 2 This can be defined in terms of

the mean difference between the
measurements and the corresponding
true values:

1

n

n

∑
i=1

(measurementi – true valuei).

scale may overestimate weights by 10 g on average, and an overly
harsh language test may tend to label learners’ L2 skills one CEFR
level below their actual proficiency on average.

Note that it’s possible for an instrument to systematically overes-
timate values on one part of the scale and to underestimate them on
another part.

When there’s no gold standard to which the measurements can
be compared, it may be impossible to assess their systematic mea-
surement error.

The random component of an instrument’s measurement error
is the extent to which the measured values differ from the true
values + systematic error.3 Another way of putting this is: By how 3 You could define this in terms of

the mean absolute difference between
the actual measurements and the
corresponding expected measurements
(true value + systematic error):

1

n

n

∑
i=1

|measurementi – expected measurementi|

In practice, the root mean squared
difference is used instead. This yields
different values, but the general idea is
the same.

much will the measurements vary if the true values are the same?
For instance, an kitchen scale may, on average, measure weights
accurately (no systematic error), but the individual readings may be
off by up to a couple of grams in either direction (random error).

As a second example, consider a group of 365 7-year-olds, all
born on different days of the year. Just one of them actually is 7

years old on the day; the reported values of the others will be off by
1 day, 2 days, . . . , 364 days. The reported age, then, systematically
underestimates their true age by 0+1+2+...+364

365
= 182 days. The

random component is 0, though, as children born on the same day
will report the same age, even though this reported age will be
lower than their actual age.

As a final example, consider a poorly calibrated bathroom scale.
If you put a calibrated mass of precisely 60 kg on it on five different
occassions, it returns readings of 61.1, 60.4, 60.4, 60.5 and 61.2. The
mean observation for the same mass is 61.1+60.4+60.4+60.5+61.2

5
=

60.78, i.e., an overestimate of 0.78 kg. The mean absolute difference
between the observations and their expected value (here: 60.78) is
|0.32|+|–0.38|+|–0.38|+|–0.28|+|0.72|

5
= 0.42.4 4 You won’t have to do such calcu-

lations yourself. The main thing is
that you appreciate the difference
between the systematic and random
components of measurement error.



quantitative methodology 85

9.2 Consequences of measurement error

The consequence of systematic measurement error is clear: Your
data are biased. This isn’t necessarily a problem: If you’re compar-
ing two groups for both of which you have data that are biased to
the same extent, the difference between them won’t be biased. And
for variables such as age, the systematic error (roughly 182 days)
tends to be small relative to the variability of the true values, in
which case it’s probably inconsequential.5 5 But see, for instance, Helsen et al.

(2005) and Sprietsma (2010) on the
consequences of ‘relative age’ (i.e., age
differences within an age group, e.g.,
15-year-olds) in sports and education.

The consequences of random measurement error are much less
intuitive and bear pointing out.

Less power and precision Measurement error on the outcome variable
will increase its variability. Since power and precision are lower
when there’s more variability in the outcome, measurement error
on the outcome lowers power and precision.

Statistical control is imperfect Measurement error on a control vari-
able means that controlling for this observed variable won’t fully
eradicate the confounding caused by the construct itself. The DAG
in Figure 9.1 illustrates this.

A

Aobs

X Y
Figure 9.1: The X–Y relationship is
confounded by A. A, however, can’t be
observed directly. A proxy (indicator)
Aobs can be controlled for instead, but
this won’t fully shut the non-causal
path X← A→ Y.

“[F]allibility in a covariate usually implies that there would be more
adjustment if the variable were measured without error.” (Huitema,
2011, p. 569)

Controlling for Aobs is better than not controlling for it. But
researchers routinely mistake controlling for an indicator with
controlling for a construct, and their causal conclusions are over-
confident as a result. A discussion of this problem can be found in
Westfall & Yarkoni (2016), Vanhove & Berthele (2017) and Berthele
& Vanhove (2020).

Regression to the mean When observations are due partly to skill or
some underlying construct and partly to chance (e.g., measurement
error), a second round of observations will likely show that the
extreme scores have become less extreme, i.e., they’ve regressed to
the mean.

• First consider an example where the observations are purely
due to luck, with no skill or construct involved: playing roulette.
Playing roulette is a losing proposition: For every 100 francs bet,
you stand to lose about 5 francs (= the mean). But on any given
night, some players will luck out and make a killing, whereas
other players get extraordinarily unlucky and lose much more
than the expected 5%. Their winnings or losses are a dreadful
measure of their skill level: they all have the same skill level,
which corresponds to a loss of 5%.

The next night, however, the lucky players from the day before
probably won’t get as lucky again (their luck the day before
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was extraordinary), and similarly for the unlucky players—all
again stand to lose about 5% of their investment. Some might
get lucky or unlucky twice in a row, but they’re more likely to
end up somewhere near the 5% mark, i.e., most of the lucky and
unlucky players will regress to the mean.

• The same principle is at play when the observations come
about in part through skill (or some other construct) and in part
through chance. For instance, the most successful stock broker of
the year 2032 is likely not to perform as well in the year 2033—
even if the conditions on the stock market are comparable and
the broker didn’t start to rest on his laurels. The reason could
simply be that he had more than his fair share of luck in 2032—
you need some luck to come out on top—and wasn’t as lucky
in 2033. As a result, his performance in the next year is likely to
be closer to the average performance (i.e., he’s regressed to the
mean of stock broker performance).

• If you administer a reading test to a group of learners one week
and another reading test a couple of weeks later, you’re likely to
find that the very worst readers on the first test are still pretty
poor readers on the second test (= the skill part), but their perfor-
mance won’t be as atrocious—it’ll seem as though they’ve made
some progress. Similarly, the best readers on the first test are
likely to still be good readers on the second test, but their per-
formance probably won’t be as exceptional—it’ll seem as though
they’ve become worse.

But this pattern can be explained in terms of measurement error:
Even if none of the learners actually learnt or unlearnt some-
thing, you’re likely to find such a pattern. The reason is that, if
you obtained a dismal score, you’re likely to be a pretty poor
reader and to have had some bad luck—perhaps the topic of the
reading test just wasn’t suited for you, or you were coming down
with the flu. A couple of weeks later, you might encounter a
topic you know a thing or two about or you might be in better
physical shape. Similarly, if you scored exceptionally well on the
first test, you may have had some luck with the test’s topic or
with other circumstance, and these may not be as conducive next
time round.

9.3 Exercise

A nationwide standardised maths test is administered to all 5th
graders. It turns out that the classes with the highest mean test
scores tend to be pretty small. One possible explanation is that
small classes are more conducive to learning maths. Another ex-
planation is that this finding is an artefact of measurement error.
(These explanations aren’t mutually exclusive.)

1. Explain how measurement error can give rise to this finding.
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2. How could you tease the two explanations apart?





10
Questionable research practices

10.1 A paradox

Sterling et al. (1995) inspected 563 articles in psychology journals
(published in 1986–1987) in which significance tests were used to
answer the research question. In 538 of them (96%), the researchers
reported a significant result that confirmed their own hypothe-
sis. In medical journals, the figure was lower but still pretty high
(270/316, 85%).

Figure 10.1: Table 1 from Sterling et al.
(1995).But at the same time, the sample sizes in psychological research

are fairly small (Marszalek et al., 2011; Sedlmeier & Gigerenzer,
1989): The average study in applied psychology published in 1995

only contained 22 participants per condition. This implies that
many of these studies must have had fairly low statistical power
(see Chapter 4 on page 49): Even if the null hypothesis hadn’t been
correct in any of these studies, it’d have been impossible to reject it
in 96% of cases.

For a long time (see already Sterling, 1959), it was believed that
the reason for this discrepancy (low power, lots of significant re-
sults) was due to publication bias: Researchers prefer to write up
the studies in which they obtained significant results, and editors
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and reviewers tend to reject studies with non-significant findings.
The studies that were conducted but that produced non-significant
findings were believed to languish in the researchers’ file-drawers.

But while some studies never make it into print, the vast major-
ity do. So where did the non-significant findings go?

10.2 Hidden flexibility

More recently, scholars with an interest in meta-science (i.e., sci-
ence about science) have come to realise that research projects
afford a great deal of flexibility. Researchers can—consciously or
subconsciously—leverage this flexibility to produce a steady stream
of significant findings—even if the data are nothing but noise.1 1 If the data aren’t just noise, such

flexibility will spuriously amplify
the signal. For instance, even if A
influences B, the literature as a whole
will tend to overestimate the extent of
this influence.

Simmons et al. (2011) call this flexibility researcher degrees of
freedom and superbly demonstrate how significant findings can be
conjured from thin air if researchers afford themselves some leeway
in analysing their data.

Sources of researcher degrees of freedom include:

• A researcher can run intermediate analyses and decide to stop
or to continue collecing data based on the results. See Simmons
et al. (2011) and Section 10.3 for the consequences of this.

• Sometimes, there are several ways in which a task or test can
be scored, or how some variable can be constructed. When one
way yields a significant finding and the other doesn’t, it’s easy
to convince yourself that the one that produced significance
was obviously the right one. Relatedly, researchers routinely
collect multiple outcome variables, but it’s tempting to focus on
the one that ‘worked’ (i.e., produced significance) rather than
on those that didn’t. See Simmons et al. (2011), https://www.
flexiblemeasures.com/crtt/, Gelman & Loken (2013), and von
der Malsburg & Angele (2017). For a discussion with a focus on
bilingualism research, see Poarch et al. (2019).

• HARKing (hypothesizing after the results are known; Kerr,
1998): A largely exploratory analysis is reported as though it
were planned all along. Inevitably, the researchers will find in
the data what they claim to have anticipated. (This can happen
without any bad intent on the part of the researchers.)

• Convenient errors and biased debugging: Everyone makes mis-
takes, but you’re more likely to catch your own mistakes when
the results don’t pan out than when they do. As a result, the
mistakes that remain in the literature aren’t distributed randomly
but tend to favour the researchers’ hypotheses.

Trying out several defensible analyses and glossing over the ones
that didn’t produce significance is referred to as p-hacking.

The practices listed above are examples of questionable re-
search practices. Traditionally, these aren’t viewed as outright fraud

https://www.flexiblemeasures.com/crtt/
https://www.flexiblemeasures.com/crtt/
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(which includes fabricating or manipulating data), though arguably,
it will become increasingly difficult to invoke plausible deniability
as professional researchers can be expected to know their conse-
quences.

For possible solutions, see Chambers (2017).

10.3 Exercise: False-positive psychology

The consequences of researcher degrees of freedom/p-hacking are
best appreciated by seeing them. Do these exercises in order.

1. Open the app at https://plurilinguisme.shinyapps.io/
fppsy/ and carefully read the description.

2. Click ‘Simulate!’, leaving all settings at their default values.
Describe what the two graphs (reproduced here as Figure 10.2
for your convenience) are showing.

Figure 10.2: When you run the app
using its default settings, you’ll obtain
two graphs similar to these. Your
graphs won’t be identical as they are
based on simulations with random
data.

3. First try to answer the following questions by thinking about
them. Once you’ve written down your answer, check it by run-
ning the simulation.

(a) Increase the ‘maximum number of additional participants
in each group’ to 30. Leave the other settings at their default
values. How will the graphs change?

(b) Leaving all other settings as they currently are, what will
happen if instead of analysing the data after 10 new partici-
pants per condition, they’re analysed after 5 new participants
per condition? Or after just 2 new participants per condi-
tion?

(c) What’ll happen when the correlation between the two de-
pendent variables becomes weaker (e.g., r = 0.1 instead of
r = 0.5)? Why?

(d) What’ll happen when the correlation between the two de-
pendent variables becomes stronger (e.g., r = 0.95)? Why?

(e) For which combination of the different parameters will you
obtain the highest Type-I error? Think before running the
simulation!

https://plurilinguisme.shinyapps.io/fppsy/
https://plurilinguisme.shinyapps.io/fppsy/
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(f) For which combination of the different parameters will you
find a Type-I error rate of about 5%? Are there any parame-
ters that don’t play a role? Think before running the simula-
tion!

10.4 Optional: Further reading

Most studies referred to in this chapter are both accessible and
short. If you read Simmons et al. (2011) (warmly recommended!),
also read their short retrospective article (Simmons et al., 2018) lest
you misinterpret the take-home message. Peterson (2016) presents
an ethnographic study that gives you some insight into what ques-
tionable research practices look like in the field.

A highly accessible book-length treatment of these topics, and
then some, which I cannot recommend highly enough, is Ritchie
(2021). Chambers (2017) is also recommended.



Part III

Appendices





A
Reading difficult results sections

Results sections in quantitative research reports can be daunting.
Sometimes, the analyses are necessarily complex and require so-
phisticated knowledge about statistics and research design on the
part of the reader. But too often, results sections are more difficult
than they need to be (Vanhove, 2021).

Don’t allow yourself to be dazzled by complicated analyses
and incomprehensible results sections—the complexity may be
largely superficial.

Here are some tips for muddling through difficult results sec-
tions with minimal psychological damage.1 1 Based on the blog entry Surviving the

ANOVA onslaught.
1. Identify the central, genuine research questions and the corre-

sponding hypotheses. Research papers surprisingly often contain
‘padding’ research questions that are unrelated to the core goal
of the study. When scanning the results section, you can usually
leave aside the paragraphs about these uninteresting research
questions. For example, in a report on a pretest/posttest experi-
ment where participants were randomly assigned to conditions,
you may find ‘research’ questions such as Do participants in the
treatment condition have different pretest scores from those in the con-
trol condition? or Do participants have higher scores on the posttest
than on the pretest? Both questions are uninteresting as they don’t
tell you whether the treatment actually worked.

2. Draw a graph of the predictions. (!) Having identified the key
research questions and hypotheses, I often find it useful to sketch
what the data would look like if the researchers’ predictions
panned out and what kind of data would, within reason, falsify
their hypotheses. These graphs are usually simple hand-drawn
line charts that illustrate the expected group differences. I find
that they help me to better understand the logic behind the study
and to focus on the important analyses in the Results section.
You may find that several radically different patterns are in line
with the authors’ stated hypotheses; this tells you something
about how specific their hypotheses are. (It’s good to have spe-
cific as opposed to very general hypotheses!) It can also be useful

https://janhove.github.io/teaching/2016/05/18/surviving-anova-onslaught
https://janhove.github.io/teaching/2016/05/18/surviving-anova-onslaught
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to draw some simple graphs of data that would not be consistent
with the authors’ hypotheses. This, too, can help you work out if
the hypotheses are fairly specific (a good thing) or if pretty much
any pattern in the data would be consistent with them (a bad
thing).

3. Look for a graph in the paper. Ideally, the paper will contain a
graph of the main results that you can then compare with the
graphs you drew yourself. Do the results seem to confirm or dis-
confirm the researchers’ predictions? Sometimes, a good graph
will allow you to carry out the easiest of significance tests your-
self: the inter-ocular trauma test—if the conclusion hits you
between the eyes, it’s significant.2 If the results are less clear cut, 2 To be clear, this isn’t a formal signifi-

cance test. But it’s a useful heuristic!you’ll need to scan the Results section for the more details, but
by now, you should have a clearer idea of what you’re looking
for—and what you can ignore for now. If the paper doesn’t con-
tain a graph, you can often draw one yourself on the basis of the
data provided in the tables.

4. Ignore tests unrelated to the central research questions. Results
sections sometimes contain significance tests that are unrelated
to the research questions the authors formulated up front (see
Vanhove, 2021). Such tests include include balance tests in ran-
domised experiments (e.g., “The control and intervention group
did not differ in terms of SES (t(36) = 0.8, p = 0.43).”), tauto-
logical tests (e.g., “A one-way ANOVA confirmed that partici-
pants categorised as young, middle-aged and old differed in age
(F(2, 57) = 168.2, p < 0.001).”) as well as some less obvious cases.
By and large, these tests tend to add little to the study. In non-
randomised experiments, systematic differences on background
variables between the groups may represent confounds, but these
can be assessed based on the descriptive statistics and don’t need
to be rubber-stamped with a significance test.

Evidently, you’ll get better at this with practice, and it’ll be help-
ful to educate yourself on basic statistics, too. The latter will help
you to understand better what was done, but also it will also allow
you to ask more critical questions, not least of which is Are these
analyses at all relevant?.



B
Reporting research transparently

Many a research report leaves out information that is crucial for
interpreting its findings correctly. And often, readers are implicitly
asked to just take the authors word for it and trust that the analyses
were run appropriately—even though reporting errors are common
(Nuijten et al., 2016) and suboptimal or downright wrong analyses
abound. Here are some tips to help ensure that your methods and
findings are transparent to the readers.

1. You may be tempted to write long reports detailing everything.
But such reports quickly become unreadable. My own preference
is to aim for a crisp main text that doesn’t inundate the reader
with numbers and numbing details. Instead, I try to communi-
cate the findings mainly through plots and refer to copious on-
line materials for the details (Vanhove, 2021, also contains further
guidance for writing quantitative research reports and some use-
ful references). Using these online materials, interested readers
should at least be able to the results occurring in the report, and
so the online materials that I make available minimally comprise
the data sets and the computer code necessary for reproducing
the plots and numbers in the main text. Materials such as stim-
ulus lists, questionnaires, code for running the experiment itself
etc. should in my view also be shared by default. For projects
involving lots of tedious steps that will be of little interest to the
average reader, I also like to make available a technical report
that documents every little detail (e.g., Vanhove et al., 2019).

That said, don’t let perfect be the enemy of goods. If you’re able
to share your computer code but it’s poorly documented, that’s
better than not sharing your code at all.

2. It’s easier to share code, data, and materials if you made the
decision to do so at the start of the project rather than a couple of
weeks before handing in your report.

3. Nowadays I exclusively use https://osf.io/ for making avail-
able online materials. See https://osf.io/yxzfm/ for examples.

4. For further guidance, see Klein et al. (2018), and Levenstein &
Lyle (2018, focus on sharing data), and Soderberg (2018, short
tutorial on using osf.io).

https://osf.io/
https://osf.io/yxzfm/
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