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This handout explains the basic logic behind p-value-based infer-
ential statistics. It does so by explicitly linking the computation of
p-values to the random assignment of participants to conditions in ex-
perimental research. If you have ever taken an introductory statistics
class, chances are p-values were explained to you in a different fashion,
presumably by making reference to the Central Limit Theorem. The
way they are explained here, however, has the advantage that it is less
math-intensive while permitting one to illustrate several key concepts
about inferential statistics.1 1 Ähnliche Erklärung auf Deutsch:

http://janhove.github.io/
statintro.html, Kapitel 12.

The goal of this handout is for you to understand conceptually
what statistical tests attempt to achieve, not for you to be able to use
them yourself. As a matter of personal opinion, statistical tests are
overused in quantitative research. In your own research, focus on
describing your data (e.g., by means of appropriate graphs) rather
than running umpteen significance tests.

An example: Does alcohol intake affect speech rate in a second
language?

Research question: Does moderate alcohol consumption affect verbal
fluency in an L2?

Method: Ten students (L1 German, L2 English)2 are randomly as- 2 Ten participants is obviously a very
low number of participants, but it
keeps things more tractable here.

signed to either the control or the experimental condition (five each);
they don’t know which condition they’re assigned to. Participants in
the experimental condition drink one pint of ordinary beer; those in
the control condition drink one pint of alcohol-free beer.

Afterwards, they watch a video clip and relate what happens in
it in English. This description is taped, and two independent raters
who don’t know which condition the participants were assigned to
count the number of syllables uttered by the participants during the
first minute. The mean of these two counts serves as the verbal flu-
ency/speech rate variable.

Results: The measured speech rates are shown in the plot on the
right. On average (mean), the participants in the with alcohol condi-
tion uttered 4.3 syllables/second, compared to 3.7 syllables/second in
the without alcohol condition.
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Figure 1: Individual results of a
randomised experiment.
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The basic question in inferential statistics

While we found a mean difference between the two conditions (4.3
vs. 3.7), this difference could have come about through chance. We
are, then, faced with two types of accounts for this mean difference:

• Null hypothesis (or H0): The difference between the means is
due only to chance.

• Alternative hypothesis (HA): The difference between the means
is due to chance and systematic factors.
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Figure 2: If only chance were at
play, Michael’s (3.1) and Sandra’s
(5.0) results would be unaffected by
the experimental condition and the
outcome might equally well have
looked like this (swapping Michael
and Sandra).

Assuming the H0 is true, the participants’ results aren’t affected
by the condition (alcohol vs. no alcohol) they were assigned to. For
instance, Sandra was assigned to the with alcohol condition and her
speech rate was measured to be 5.0, but had she been assigned to the
without alcohol condition, her speech rate would also have been 5.0.
Assuming the H0 is true, then, the difference between the two must be
due solely to the random assignment of participants to conditions, due
to which more fluent talkers ended up in the with alcohol condition.
Another roll of the dice could have assigned Sandra to the control
condition instead of Michael, and since under the H0, the speech rate
of neither is influenced by the condition, this would have produced a
slower speech rate in the with alcohol condition than in the without
alcohol one (3.9 vs. 4.1; see Fig. 2).

Frequentist inferential statistics seeks to quantify how surprising
the results would be if we assume that only chance is at play. To do
so, it attempts to answer the following key question: How likely is it
that a difference at least this large would’ve come about if chance alone
were at play?

If it’s pretty unlikely that chance alone would give rise to at least
the difference observed, then this can lead one to revisit the assump-
tion that the results are due only to chance—perhaps some system-
atic factors are at play after all. By tradition, the threshold between
‘pretty likely’ and ‘still too likely’ is 5%, but there is nothing special
about this number.3 Before discussing this further, let’s see how you 3 If the p-value associated with a

difference is below this threshold, the
difference is said to be ‘statistically
significant’. This is just a phrase,
however, and arguably a poorly
chosen one: statistical ‘significance’
doesn’t tell you anything about
a result’s practical or theoretical
import.

can compute how often you would observe a mean difference of at
least 4.3− 3.7 = 0.6 if chance alone were at play.

Testing the null hypothesis by exhausitive re-randomisation4

4 Further reading: Blog post Explain-
ing key concepts using permutation
tests: goo.gl/o7zFHx. Blog post
A purely graphical explanation of
p-values: goo.gl/UcO1mQ. Stats
booklet http://janhove.github.io,
chapter 12 (in German).

With 10 participants in two equal-sized groups, there were 252 pos-
sible assignments of participants to conditions, each of which was
equally likely to occur. To see how easily a difference as least as large
as the one observed (4.3 vs. 3.7) could occur due to random assign-

http://janhove.github.io
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ment alone, we can re-arrange the participants’ speech rates into each
of these 252 combinations and see for each combination what the
difference between the with and without alcohol condition means is
(Figure 3).
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Figure 3: There are 252 different ways
in which the 10 participants could
have been split up into two groups.
The are the differences between the
means for all 252 possibilities.

In 22 out of 252 cases, the re-arrangement of participants to condi-
tions produced a difference at least as large in magnitude (positive or
negative) as the difference we actually observed. In other words, the
probability with which we would observe a difference of at least 0.6

between the conditions if chance alone (random assignment) is at play
is 22

252 = 0.087 (8.7%). This is the infamous p-value.
Since p = 0.087 > 0.05, one would typically conclude that a dif-

ference of 0.6 or more is still likely enough to occur under the null
hypothesis of chance alone and that, hence, there is little need to re-
visit the assumption that the results may be due to chance alone.
Crucially, this doesn’t mean that we have shown H0 to be
true. It’s just that H0 would account reasonably well for these data.

On ‘rejecting’ null hypotheses

Researchers will often say that they ‘reject’ the null hypothesis in
favour of the alternative hypothesis if p < 0.05. While this practice is
subject to often heated debate, it’s important to realise that p can be
< 0.05 even if the null hypothesis is true,5 and that p > 0.05 even if 5 In theory, in fact, p < 0.05 in 5%

of the studies in which H0 actually
is true by definition. In practice,
however, things aren’t so simple.
We’ll return to this in a later class.

the alternative hypothesis is true. Consequently, researchers who are
in the business of ‘rejecting’ null hypotheses can make two types of
errors, depending on whether H0 or HA is actually true.

H0 is actually true HA is actually true

p > 0.05 Fine—we didn’t reject H0 Wrong conclusion
p < 0.05 Wrong conclusion Fine—we rejected H0 in favour of HA

On the basis of a single study, we can’t really know whether ‘p <

0.05’ represents an error or a true finding. (!)
Note, furthermore, that the HA stipulates that the results are due

to a combination of chance and systematic factors. It doesn’t stipulate
which systematic factors, though. What we would like to conclude is
that the main systematic factor at play is our experimental manipu-
lation, but expectancy effects and the like are also systematic factors.
What is more, the experimental manipulation may exert a systematic
effect on the results, but for different reasons than we think they do.6 6 For instance, a systematic difference

between the with and without alcohol
conditions needn’t be due to alcohol
intake per se but may be related to
the taste of the beers in question
instead.

Analytical short-cuts

Exhausitive re-randomisation is cumbersome for larger samples and
more complex research designs; analytical short-cuts (e.g., the t-test,



quantitative methodology: inferential statistics 101 4

χ2-test, ANOVA etc.) and their generalisations usually produce sim-
ilar results and are used instead. The p-values etc. that these proce-
dures return have the same interpretation and are subject to the same
caveats as those above.

Statistical power

A study’s statistical power is the probability with which its signifi-
cance test will yield p < 0.05. In studies in which one group is com-
pared to a different group, this probability depends on three factors:

1. The size of the difference in the outcome that the intervention
causes. Even if the intervention does not cause a difference, it is
possible to obtain a statistically significant difference due to chance
(see table above).

2. The number of observations.
3. The variability in the outcome variable within each group.
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Figure 4: These three graphs show
how the statistical power of a study
varies with the effect size (left), the
number of observations per group
(middle) and the variability in the
outcome variable within each group
(right). The precise numbers along
the y-axis aren’t too important;
what’s relevant is the direction and
the shape of the curves.

Exercise

Take a look at the graphs above and answer the following questions:

1. How do the effect size, the number of observations and the within-
group variability in the outcome affect the probability that a study
will yield a statistically significant result?

2. Other things equal, what yields a greater improvement in a study’s
power: 10 additional participants per group when each group al-
ready consists of 10 participants, or 20 additional participants per
group, when each group already consists of 50 participants?

3. How could researchers reduce the within-group variability in the
outcome variable?
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