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1. Motivation

Typical problem in Geometric measure Theory (GMT): “Given a k-dimensional sub-

manifold M ⊂ Rn with boundary, does there exist a k-dimensional submanifold N of

minimal volume with ∂N = ∂M?” In other words: does there exist a k-dimensional

minimal surface with prescribed (k − 1)-dimensional boundary?
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Some history:

(1) Already formulated by Lagrange around 1760.

(2) Solution for 2-dimensional surface “of disc type” by Douglas and independently by

Radó around 1930. Here, surface of disc type means mappings from D = {z ∈ C :

|z| ≤ 1} to Rn. Thus, look for u : D → Rn continuous on D, piecewise C1 on D

such that u|S1 parametrizes Γ and u has minimal area among all such maps.

(3) Federer-Fleming around 1960. Solution for surfaces of general genus and for higher

dimensional surfaces in Rn.

Direct method in the calculus of variations:

a) Let (Nm) be “volume minimizing” sequence with ∂Nm = ∂M for all m.

b) Try to extract “convergent subsequence”, Nml → N and show that ∂N = ∂M and

Vol(N) ≤ lim inf
l→∞

Vol(Nml).

c) Show that N is smooth submanifold up to a small singularity set.

Principal idea of de Rham and Federer-Fleming: Every compact oriented k-dimensional

submanifold N ⊂ Rn gives rise to a linear functional

[N ] : Dk(Rn)→ R

by

[N ](ω) :=

∫
N

ω,

where Dk(Rn) is the space of compactly supported k-forms in Rn. Convergence of func-

tionals Tm : Dk(Rn)→ R, Tm(ω)→ T (ω) for all ω ∈ Dk(Rn).

Aim of course: Develop Federer-Fleming theory of currents and solve the generalized

Plateau’s problem.

2. Measure theoretic background

2.1. Outer measure. Let X be a set and

2X := {A : A ⊂ X}.

Definition 2.1. A function µ : 2X → [0,∞] is called measure on X if

i) µ(∅) = 0

ii) µ(A) ≤
∑∞

k=1 µ(Ak) whenever A ⊂ ∪∞k=1Ak.

In the literature, such µ is usually called an outer measure but we will simply call it

a measure.

Remark 2.2. If µ is a measure on X, then µ(A) ≤ µ(B) for all A ⊂ B ⊂ X.

Definition 2.3. Let µ be a measure on X and B ⊂ X a subset. The restriction of µ to

B is the measure µxB on X defined by

(µxB)(A) := µ(B ∩ A)

for each A ∈ 2X .
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It follows directly from the definition of measure that µxB is a measure.

Definition 2.4. A subset A ⊂ X is µ-measurable if for every set E ⊂ X

µ(E) = µ(E ∩ A) + µ(E\A).

We will simply say “measurable” if there is no danger of ambiguity. Note that the

inequality “≤” always holds.

Example 2.5. i) If µ(A) = 0, then A is measurable.

ii) A ⊂ X is measurable if and only if Ac = X\A is measurable.

iii) LetA,B ⊂ X be measurable sets. IfA us µ-measurable, thenA is µxB-measurable.

Important properties of measurable sets.

Theorem 2.6. Let µ be a measure on X and {Ak}k=1 a countable collection of measurable

sets. Then

i)
⋃∞
k=1Ak and

⋂∞
k=1Ak are measurable.

ii) If the sets {Ak} are pairwise disjoint, then

µ(
∞⋃
k=1

Ak) =
∞∑
k=1

µ(Ak).

iii) If A1 ⊂ A2 ⊂ · · · , then

µ(
∞⋃
k=1

Ak) = lim
k→∞

µ(Ak).

iv) If A1 ⊃ A2 ⊃ · · · and µ(A1) <∞, then

µ(
∞⋂
k=1

Ak) = lim
k→∞

µ(Ak).

As a special case we obtain: Let A,B ⊂ X be measurable. Then

i) A ∪B and A ∩B are measurable.

ii) If A ∩B = ∅, then

µ(A ∪B) = µ(A) + µ(B).

Sketch of the proof. 1) It is straightforward to check that the previous comments hold and

thus i) and ii) holds by induction for finite collections.

2) It thus follows, if {Ak} are pairwise disjoint, then

µ(
∞⋃
k=1

Ak) ≥ µ(
n⋃
k=1

Ak) =
n∑
k=1

µ(Ak)

for any finite n and hence

µ(
∞⋃
k=1

Ak) ≥
n∑
k=1

µ(Ak)

and the equality follows from the σ-subadditivity of the measure.

3) Now iii) and iv) follow easily.
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4). Measurability of A :=
⋃∞
k=1Ak. Write Bn :=

⋃n
k=1Ak, then B1 ⊂ B2 ⊂ · · · and

A =
⋃∞
n=1 Bn.

Let E ⊂ X. Without loss of generality, we assume µ(E) < ∞. Then Ak and Bn are

µ-measurable and hence (µxE)-measurable. It follows

µ(E ∩ A) + µ(E\A) = (µxE)(A) + (µxE)(Ac)

= (µxE)(
∞⋃
n=1

Bn) + (µxE)(
⋂

Bc
n)

= lim
n→∞

[(µxE)(Bn) + (µxE)(Bc
n)]

= (µxE)(X) = µ(E),

which implies that A is measurable.

5) Easy to see that
⋂∞
k=1Ak is measurable. �

Definition 2.7. A collection of subsets of A ⊂ 2X is called σ-algebra if

i) ∅, X ∈ A
ii) A ∈ A implies Ac ∈ A
iii) Ak ∈ A, k = 1, 2, . . . implies

⋃∞
k=1 Ak ∈ A

Theorem 2.6 implies that

Corollary 2.8. If µ is a measure on X, then the collection A of µ-measurable subsets of

X forms a σ-algebra.

Definition 2.9. A measure µ on X is called regular if for all A ⊂ X, there exists a

µ-measurable set B with A ⊂ B and µ(B) = µ(A).

Exercise: If µ is a regular measure, then iii) of Theorem 2.6 holds even when the sets

Ak are not measurable.

2.2. Borel measures. Let (X, d) be a metric space.

Definition 2.10. A measure µ on X is called Borel measure on X if every open set in X

is µ-measurable.

The smallest σ-algebra containing all open sets in X is called Borel σ-algebra of X

and is denoted by B(X). The elements in B(X) are called Borel sets.

Remark 2.11. If µ is a Borel measure on X, then every Borel set in X is µ-measurable.

Theorem 2.12. (Carathéodory’s criterion) Let µ be a measure on X. Then µ is a Borel

measure if and only if

µ(A ∪B) = µ(A) + µ(B)(2.1)

for all A,B ⊂ X with d(A,B) > 0.

Here, the distance between two sets A,B is defined by

d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}.
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Remark 2.13. In specific examples, (2.1) is usually easy to verify, see below (Hausdorff

measure).

Proof. ⇒: Suppose A,B ⊂ X satisfy d(A,B) > 0. Then there exists U ⊂ X open nbhd

of A such that U ∩B = ∅. Since U is measurable,

µ(A ∪B) = µ((A ∪B) ∩ U) + µ((A ∪B)\U)

= µ(A) + µ(B).

⇐: It suffices to show that closed sets are measurable. Let A ⊂ X be closed and

E ⊂ X with µ(E) <∞. We want to show that

µ(E) ≥ µ(E ∩ A) + µ(E\A).

For k ∈ N, define

Ak := {x ∈ X : d(x,A) ≤ 1/k}.
Then d(E ∩ A,E\Ak) > 0 and so

µ(E) ≥ µ
(
(E ∩ A) ∪ (E\Ak)

)
≥ µ(E ∩ A) + µ(E\Ak).

It remains to show that µ(E\Ak)→ µ(E\A) as k →∞.

For this, set Rm := Am\Am+1 and notice that

E\A = (E\Ak) ∪
∞⋃
m=k

(E ∩Rm)

because A is closed. Then

µ(E\A) ≤ µ(E\Ak) +
∞∑
m=k

µ(E ∩Rm).

In order to prove our claim, it is enough to show that
∞∑
m=1

µ(E ∩Rm) <∞.

Since d(Rm, Rk) > 0 whenever |m− k| ≥ 2 it follows that for all N ∈ N,

N∑
m=1

µ(E ∩R2m−1) = µ(E ∩
N⋃
m=1

R2m−1) ≤ µ(E)

and similarly
∑N

m=1 µ(E ∩R2m) ≤ µ(E) from which we deduce

2N∑
m=1

µ(E ∩Rm) ≤ 2µ(E) ∀N ∈ N

and so
∑∞

m=1 µ(E ∩Rm) ≤ 2µ(E) <∞. �

Theorem 2.14. Let µ be a Borel measure on X and B ⊂ X a Borel set.
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i) If µ(B) <∞, then

µ(B) = sup{µ(C) : C ⊂ B and C is closed}.

ii) If ∃Ui ⊂ X open, i = 1, 2, . . . , such that µ(Ui) <∞ and B ⊂
⋃∞
i=1(Ui), then

µ(B) = inf{µ(V ) : B ⊂ V and V is open}.

A special case is if µ(X) <∞.

A sketch of proof. 1) ii) follows from i):

For given ε > 0, by i), choose Ci ⊂ Ui\B closed and such that

µ
(
(Ui\B)\Ci

)
≤ ε

2i
∀i ∈ N.

Then U :=
⋃∞
i=1 Ui\Ci is open, contains B and satisfies

µ(U\B) ≤
∞∑
i=1

ε

2i
= ε.

Therefore,

µ(U) = µ(U\B) + µ(B) ≤ µ(B) + ε.

2) By considering µxB instead of µ, we may assume that µ(X) < ∞. We want to

show that for every Borel set A ⊂ X

µ(A) = sup{µ(C) : C ⊂ A and C is closed}.(2.2)

Define

A := {A ⊂ X : A satisfies (2.2)}.

Then A contains all closed sets, in particular, ∅ and X. Verify that if Ak ∈ A, k ∈ N,

then
∞⋃
k=1

Ak ∈ A and
∞⋂
k=1

Ak ∈ A.

It follows that

A′ := {A ∈ A : Ac ∈ A}
is a σ-algebra. Show that A contains all open sets, hence A′ contains all closed sets, so

B(X) ⊂ A′. �

Definition 2.15. A measure µ on X is called Borel regular if µ is a Borel measure and

for all A ⊂ X, there exists B ∈ B(X) such that A ⊂ B and µ(B) = µ(A).

Lemma 2.16. If µ is a Borel regular measure on X and A ⊂ X is µ-measurable with

µ(A) <∞, then µxA is Borel regular.

Proof. Let U ⊂ X be open and E ⊂ X an arbitrary set. Since U is µ-measurable,

µxA(E) = µ(A ∩ E) = µ(A ∩ E ∩ U) + µ(A ∩ E\U)

= µxA(E ∩ U) + µxA(E\U),
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which implies that U is µxA measurable. Consequently, µxA is Borel. Next, let E ⊂ X

be arbitrary. Since µ is Borel regular, there exists a Borel set B such that A ⊂ B and

µ(B) = µ(A). Since µ(A) < ∞ and since A and B are µ-measurable, it follows that

µ(B \A) = 0. There thus exists a Borel set C such that B \A ⊂ C and µ(C) = 0. There

exists furthermore a Borel set D such that A ∩ E ⊂ D and µ(D) = µ(A ∩ E).

Set G := Bc ∪ C ∪D. Then G is a Borel set and E ⊂ G. Since A ∩Bc = ∅ it follows

that

µ(A ∩G) ≤ µ(A ∩Bc) + µ(A ∩ C) + µ(A ∩D)

≤ µ(C) + µ(D) = µ(A ∩ E).

This shows the Borel regularity of µxA. �

2.3. Hausdorff measures. Let (X, d) be a metric space and s ∈ [0,∞). For A ⊂ X and

δ > 0, we set

Hs
δ(A) := inf

{ ∞∑
i=1

ωs
(diamAi

2

)s
: A ⊂

⋃
i

Ai, diamAi < δ
}
,

where we use the conventions

• inf ∅ =∞
• (diam ∅)s = 0 for all s ≥ 0

• 00 = 1.

The number ωs are normalizing constants given by ωs = πs/2

Γ(s/2+1)
, where Γ is the Gamma-

function:

Γ(t) =

∫ ∞
0

e−xxt−1dx.

Note that ωn is the Lebesgue measure of the unit ball in Rn.

Definition 2.17. The Hausdorff s-measure of A ⊂ X is

Hs(A) := lim
δ→0
Hs
δ(A).

Note that 0 < δ < δ′ =⇒ Hs
δ(A) ≥ Hs

δ′(A).

Remark 2.18. In Definition 2.17, we may equivalently take the sets Ai to be closed or

open.

Simple properties:

i) H0 is the counting measure on X

ii) If X = Rn, then

– Hs(x+ A) = Hs(A) ∀x ∈ Rn,∀A ⊂ Rn

– Hs(λA) = λsHs(A) ∀λ > 0, ∀A ⊂ Rn

– For every bounded open set U ⊂ Rn, 0 < Hn(U) <∞.

By Haar’s theorem, there exists a unique (up to a multiplicative constant) translation

invariant Borel measure on Rn. The normalizing constants ωs are chosen in such a way

that Hn = Ln on Rn.
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We shall prove later that for an open set U of an m-dim submanifold M ⊂ Rn,

Hm(U) = VolM(U).

Theorem 2.19. Let X be a metric space. Then

i) Hs is a Borel regular measure on X for all s ∈ [0,∞)

ii) For all 0 ≤ s < t <∞ and A ⊂ X we have

Hs(A) <∞ =⇒ Ht(A) = 0

Ht(A) > 0 =⇒ Hs(A) =∞.

Proof. i) Straightforward to check Hs is a measure.

Borel measure: A,B ⊂ X with d(A,B) > 0. Then ∀0 < δ < d(A,B),

Hs
δ(A ∪B) = Hs

δ(A) +Hs
δ(B)

and so

Hs(A ∪B) = Hs(A) +Hs(B).

By Theorem 2.12, Hs is Borel.

Borel regular: A ⊂ X w.l.o.g. Hs(A) < ∞. Then ∀m ∈ N,∃Amk ⊂ X closed, k ∈ N,

such that diamAmk < 1
m

, A ⊂
⋃
k A

m
k and

∞∑
k=1

ωs
(diamAmk

2

)s ≤ Hs
1/m(A) + 1/m.

Then B :=
⋂
m

⋃
k A

m
k is Borel and satisfies A ⊂ B and for each m > 0

Hs
1/m(B) ≤ Hs

1/m(A) + 1/m ≤ Hs(A) + 1/m.

Thus Hs(B) = Hs(A).

ii) This follows because for 0 ≤ s < t and diamAk < δ(diamAk
2

)t ≤ (δ/2)t−s ·
(diamAk

2

)s
.

Left as exercise. �

Definition 2.20. The Hausdorff dimension of a set ∅ 6= A ⊂ X is defined by

dimH(A) := inf{s ≥ 0 : Hs(A) = 0} = sup{s ≥ 0 : Hs(A) =∞}.

Examples 2.21. 1) As mentioned above, Hn = Ln and X = Rn.

Claim: dimH(Rn) = n.

Hn(Rn) = Ln(Rn) = ∞ =⇒ dimH(Rn) ≥ n. On the other hand, Rn =
⋃
k B(0, k)

and Hn(B(0, k)) < ∞ which implies for s > n, Hs(B(0, k)) = 0,∀k ∈ N and thus

Hs(Rn) = 0,∀s > n. In particular, dimH(Rn) ≤ n.

2) Similarly, if M ⊂ Rn is m-dim submanifold, then dimH(M) = m.

3) Standard Cantor set C :=
⋂
k Ck ⊂ [0, 1], where C0 = [0, 1] and

Ck =
1

3

(
Ck−1 ∪ (2 + Ck−1)

)
k ≥ 1.
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Then C = 1
3

(
C ∪ (2 + C)

)
and so

Hs(C) = 3−sHs(C ∪ (2 + C)) = 2 · 3−sHs(C).

If 0 < Hs(C) < ∞ for some s > 0, then s = log 2
log 3

. One can show that for s = log 2
log 3

,

Hs(C) = ωs
2s

.

Remark 2.22. One can show that for any metric space X,

dimH(X) ≥ dimtop(X).

2.4. Covering theorems. Open and closed balls in a metric space (X, d) will be denoted

by

B(x, r) := {y ∈ X : d(y, x) < r} and B̄(x, r) := {y ∈ X : d(y, x) ≤ r}.
When we say a ball B in X, we understand that a center x and a radius r > 0 were chosen

(note that center and radii are not unique in general). For a ball B = B(x, r) we write

rad(B) := r. Given λ > 0 we write λB for B(x, λr).

Theorem 2.23. (5r-covering) Let X be a metric space and B a family of (open or closed)

balls such that

sup{rad(B) : B ∈ B} <∞.
Then there exists a disjoint subfamily B′ ⊂ B such that⋃

B∈B

B ⊂
⋃
B∈B′

5B.

Remark 2.24. In general, B′ can be uncountable. However, if for example X is proper

(i.e. bounded closed sets in X are compact), then B′ is a countable family.

Proof. Set R := sup{rad(B) : B ∈ B} and define for k = 0, 1, 2, . . .

Bk := {B ∈ B :
R

2k+1
< rad(B) ≤ R

2k
}.

We choose inductively subfamilies B′k ⊂ Bk as follows:

k = 0 By Zorn’s lemma, there exists maximal disjoint subfamily B′0 ⊂ B0. Here maximal

means cannot add disjoint balls from B0.

k  k + 1 Suppose B′0, . . . ,B′k have been constructed for some k ≥ 0. Zorn’s lemma implies

there exists maximal disjoint subfamily B′k+1 of{
B ∈ Bk+1 : B ∩B′ = ∅ ∀B′ ∈

k⋃
j=0

B′j
}
.

Set B′ :=
⋃
k B′k. Claim: For every B ∈ Bk, there exists B′ ∈

⋃k
j=0 B′j such that

B ∩B′ 6= ∅. Since otherwise, B′k is not maximal.

For such B, B′,

rad(B′) >
R

2k+1
≥ 1

2
rad(B)

and so B ⊂ 5B′.

�
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Exercise: Give a constructive proof of a maximal disjoint subfamily in the case the

metric space is proper.

Definition 2.25. A family G of subsets of X is said to be a fine covering of a subset A

if ∀x ∈ A, ∀ε > 0, ∃C ∈ G such that x ∈ C and 0 < diamC < ε.

Theorem 2.26 (Vitali covering theorem). Let X be a metric space, A ⊂ X and s ≥ 0.

Let G be a fine covering of A by closed sets. Then there exists a (finite or) countable

disjoint subfamily {Ck} ⊂ G such that one of the following holds:

i)
∑

k(diamCk)
s =∞

ii) Hs(A\
⋃
k Ck) = 0.

Remark 2.27. In practice, one has to exclude option i). Often this is possible. For

example, one choose G such that every C ∈ G is contained in a fixed set U with Hs(U) <

∞.

Proof. We choose Ck ∈ G inductively as follows:

k = 0 Define

– G0 = {C ∈ G : diamC ≤ 1}
– d0 := sup{diamC : C ∈ G0}.

=⇒: ∃C0 ∈ G0 such that diamC0 >
1
2
d0.

k  k + 1 Suppose we have chosen disjoint C0, . . . , Ck ∈ G0 for some k ≥ 0. Define

Gk+1 :=
{
C ∈ G0 : C ∩

k⋃
j=1

Cj = ∅
}
.

We consider two cases:

Case 1: Gk+1 = ∅.
A ⊂

⋃k
j=0Cj since Cj closed and by definition of fine covering and thus (ii)

holds trivially.

Case 2: Gk+1 6= ∅.
∃Ck+1 ∈ Gk+1 with diamCk+1 >

1
2
dk+1, where dk+1 = sup{diamC : C ∈ Gk+1}.

By above, we may assume the process does not stop. We assume that∑
k

(diamCk)
s <∞.(2.3)

We will show that for every δ > 0, Hs
δ(A\

⋃
k Ck) = 0.

For each k ≥ 0. Fix xk ∈ Ck.
Claim: For all n ≥ 0, A\

⋃n
k=0 Ck ⊂

⋃
m≥n+1 B̄(xm, 3 diamCm).

Let x ∈ A\
⋃n
k=0 Ck. Let C ∈ G0 such that x ∈ C and diamC > 0 and C ∩

⋃n
k=0 = ∅.

By (2.3), we have dm → 0 as m→∞. Hence ∃m ≥ n + 1 such that C ∩ Cm 6= ∅. Let m

be the smallest such number. Then diamC < 2 diamCm and so x ∈ B̄(xm, 3 diamCm).

Let δ > 0. For all n large enough, diamCm < δ/6, ∀m ≥ n and hence

Hs
δ(A\

n⋃
k=0

Ck) ≤
∞∑

m=n+1

ωs

(6 diamCm
2

)s n→∞→ 0.
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Thus Hs(A\
⋃∞
k=0Ck) = 0.

�

Covering theorems are very useful. For example, Vitali’s covering thm can be used to

prove

Theorem 2.28 (Lebesgue differentation theorem). Let f ∈ L1(Rn). Then

lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dy = 0

for Ln-a.e. x ∈ Rn. In particular,

lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

f(y)dy = f(x)

for Ln-a.e. x ∈ Rn.

Exercise: Try to prove Theorem 2.28.

Proof. We first show that if g is a non-negative, integrable and constant outside a compact

set K, then the function

ḡ(x) := lim sup
r→0

1

Ln(B(x, r))

∫
B(x,r)

g(y)dy

satisfies ḡ(x) ≤ g(x) for a.e. x. To this end, for each rational q, set Bq = {x : g(x) < q <

ḡ(x)} and select a bounded open set A ⊃ Bq. Consider the family

F =
{
B̄(x, r) : x ∈ Bq, B̄(x, r) ⊂ A and

1

Ln(B(x, r))

∫
B(x,r)

g(y)dy > q
}
.

Then F is a fine covering of Bq. By the Vitali Covering Theorem 2.26, we know that

there is a countable subfamily {B̄(xi, ri)} that covers Bq up to a set of measure zero. If

Ln(Bq) > 0, then ∫
A

g(y)dy ≥
∑
i

∫
B(xi,ri)

g(y)dy ≥
∑
i

qLn(B(xi, ri))

= qLn(Bq).

Since A is arbitrary,
∫
Bq
g(y)dy ≥ qLn(Bq). However, this is a contradiction, since g < q

on Bq. Thus ḡ ≤ g a.e.

Now for any rational q, we consider gq(y) := |f(y) − q| and apply our previous con-

clusion to infer for a.e. x

lim sup
r→0

1

Ln(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dy

≤ lim sup
r→0

1

Ln(B(x, r))

∫
B(x,r)

gq(y) + |q − f(x)|dy

≤ gq(x) + |q − f(x)| = 2|q − f(x)|.

The last inequality holds for a.e. x and so holds for a.e. x and all q. The claim follows

since q can be made arbitrarily close to f(x). �
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Another application of Vitali’s covering theorem.

Theorem 2.29. Let f : (a, b) → R be an increasing function. Then f is differentiable

L1-a.e. on (a, b).

Exercise: Try to prove Theorem 2.29.

Proof. See http://people.math.sc.edu/schep/diffmonotone.pdf or http://www.math.

uiuc.edu/~mjunge/54004-diffmon.pdf for the complete proof. We give a sketch here.

Without loss of generality, we may assume that f is increasing. We need to show that

A =
{
x ∈ (a, b) : f not differentiable at x

}
=
{
x ∈ (a, b) : lim inf

h→0

f(x+ h)− f(x)

h
< lim sup

h→0

f(x+ h)− f(x)

h

}
has measure zero (we can write lim infh→0 as minimum of lim infh→0− and lim infh→0+ and

similarly for lim suph→0). We only show that

A′ :=
{
x ∈ (a, b) : F−(x) < F+(x)

}
has measure zero, where F−(x) = lim infh→0+

f(x+h)−f(x)
h

and F+(x) = lim suph→0+
f(x+h)−f(x)

h
.

We can write

A′ =
⋃

s<t,s,t∈Q

As,t =
⋃

s<t,s,t∈Q

{
x ∈ (a, b) : F−(x) < s < t < F+(x)

}
and so it is enough to show that L1(As,t) = 0 for fixed rationals s < t.

Intuitively, A′′ = As,t is the set on which f grows slower than s on certain scales and

strictly faster than t on other scales. In order to apply the Vitali covering theorem, we

set

I− =
{

[x, x+ h] : x ∈ A′′, h > 0,
f(x+ h)− f(x)

h
< s
}
.

If L1(A′′) > 0, then we obtain by Vitali covering that for each ε > 0, there exists [xk, xk +

hk] ∈ I− disjoint such that

•
∑n

k=1 hk < (1 + ε)L1(A′′)

• L1
(
A′′ ∩

⋃n
k=1[xk, xk + hk]

)
> L1(A′′)− ε

•
∑n

k=1

(
f(xk + hk)− f(xk)

)
< s

∑n
k=1 hk < s(1 + ε)L1(A′′)

We apply the theorem again to

A′′′ := A′′ ∩
n⋃
k=1

[xk, xk + hk]

I+ :=
{

[y, y+r] : y ∈ A′′′, r > 0,
f(x+ r)− f(x)

r
> t, [y, y+r] contained in some [xk, xk+hk]

}
For ε > 0 sufficiently small and L1(A′′′) > 0, Vitali covering implies ∃[yl, yl + rl] ∈ I+

disjoint such that

• L1
(
A′′′ ∩

⋃m
l=1[yl, yl + rl]

)
> L1(A′′′)− ε

•
∑m

l=1

(
f(yl + rl)− f(yl)

)
> t
∑m

l=1 rl

http://people.math.sc.edu/schep/diffmonotone.pdf
http://www.math.uiuc.edu/~mjunge/54004-diffmon.pdf
http://www.math.uiuc.edu/~mjunge/54004-diffmon.pdf
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Consequently,
m∑
l=1

rl ≥ L1
(
A′′′ ∩

m⋃
l=1

[yl, yl + rl]
)

> L1(A′′′)− ε > L1(A′′)− 2ε.

Since f is increasing and each [yl, yl + rl] is contained in some [xk, xk +hk], it follows that

t(L1(A′′)− 2ε) <
m∑
l=1

(
f(yl + rl)− f(yl)

)
≤

n∑
k=1

(
f(xk + hk)− f(xk)

)
< s(1 + ε)L1(A′′).

This is impossible if ε > 0 is small enough and so L1(A′′) = 0.

�

2.5. Densities. Often important to compare a given measure µ to Hausdoff measures.

Definition 2.30. Let X be a metric space and µ a Borel measure on X. For x ∈ X and

s ≥ 0, the upper and lower s-dim density of µ at x is defined by

Θs(µ, x) := lim sup
r→0

µ(B(x, r))

ωsrs
,

Θs(µ, x) := lim inf
r→0

µ(B(x, r))

ωsrs
.

Note that the open balls B(x, r) can be replaced by closed balls B̄(x, r) without

changing value of Θs and Θs.

Notation: Given a set A ⊂ X, we write

Θs(A, x) := Θs(HsxA, x)

and similarly for Θs(A, x).

Lemma 2.31. Let µ be a Borel measure on X. Fix s, ε > 0. Then the function

f(x) := sup
0<r<ε

µ(B(x, r))

ωsrs

is lower semincontinuous. In particular, the function x 7→ Θs(µ, x) is a Borel function.

Analogously, x 7→ Θs(µ, x) is Borel.

Recall that a map f : X → Y , where Y is a topological space, is Borel if f−1(U) is

Borel ∀U ⊂ Y open.

Proof. For each λ > 0, we need to show that the level set

Fλ := {x ∈ X : f(x) > λ}
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is open. Fix x ∈ Fλ, we shall show that B(x, δ) ⊂ Fλ for some δ > 0. Since x ∈ Fλ, there

exists a rx ∈ (0, ε) such that
µ(B(x, rx))

ωsrsx
> λ.

Since

lim
k→∞

µ(B(x, rx −
1

k
)) = µ(B(x, rx)),

we know that for some k0, all k ≥ k0,

µ(B(x, rx − 1
k
))

ωsrsx
> λ.

Note that for each y ∈ B(x, 1
k
), B(y, rx) ⊃ B(x, rx − 1

k
), we thus get

µ(B(y, rx))

ωsrsx
>
µ(B(x, rx − 1

k
))

ωsrsx
> λ,

which implies y ∈ Fλ as desired. �

Theorem 2.32. Let X be a metric space, µ a Borel measure on X, and B ⊂ X a Borel

set such that ∃Vi ⊂ X open, i ∈ N, with µ(Vi) <∞ and B ⊂
⋃∞
i=1 Vi. Let λ, s > 0.

i) If Θs(µ, x) ≥ λ for all x ∈ B, then

µ(B) ≥ λHs(B).

ii) If Θs(µ, x) ≤ λ for all x ∈ B, then

µ(B) ≤ 2sλHs(B).

Proof. i). Without loss of generality we assume µ(B) <∞.

Let 0 < δ < 1. Then ∃U ⊂ X open such that B ⊂ U and µ(U) < µ(B) + δ. Define a

fine covering of B by

G :=
{
B̄(x, r) : x ∈ B, r < δ/2, B̄(x, r) ⊂ U, µ(B(x, r)) ≥ (1− δ)λωsrs

}
.

This is a fine covering of B since Θs(µ, x) ≥ λ for all x ∈ B. Apply Vitali’s covering

theorem, ∃ finite or countable disjoint subfamily {Cj} ⊂ G such that one of the following

holds: ∑
j

(diamCj)
s =∞

or

Hs(B\
⋃

Cj) = 0.

By definition of G, we have

(diamCj)
s ≤ 2s

(1− δ)λωs
µ(Cj)

and hence ∑
j

(diamCj)
s ≤ 2s

(1− δ)λωs
µ(
⋃

Cj) <∞.
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Thus Hs(B\
⋃
Cj) = 0. It follows

Hs
δ(B) ≤ Hs

δ(B\
⋃

Cj) +Hs
δ(
⋃

Cj)

≤
∑
j

ωs
(diamCj

2

)s ≤ 1

(1− δ)λ
∑
j

µ(Cj)

≤ 1

(1− δ)λ
µ(U) ≤ 1

(1− δ)λ
(µ(B) + δ).

Sending δ → 0 and we obtain λHs(B) ≤ µ(B).

ii). Fix λ′ > λ. For k ∈ N define

Bk :=
{
x ∈ B :

µ(B̄(x, r))

ωsrs
≤ λ′, ∀r ∈ (0, 1/k)

}
.

Note that Bk is Borel by lemma above and that

B1 ⊂ B2 ⊂ · · · and B =
⋃
k

Bk.

Thus µ(B) = limk→∞ µ(Bk). It then suffices to show that for every k ∈ N,

(2.4) µ(Bk) ≤ 2sλ′(Hs(B) + 1/k).

Fix k ∈ N. Then ∃Ai ⊂ X, i ∈ N such that Bk ⊂
⋃
iAi, diamAi < 1/k and∑

k

ωs ·
(diamAi

2

)s
< Hs

1/k(Bk) + 1/k.

Without loss of generality, we assume Ai ∩ Bk 6= ∅ for all i ∈ N. Choose xi ∈ Ai ∩ Bk.

Then

Bk ⊂
⋃
i

Ai ⊂
⋃
i

B̄(xi, diamAi)

and so

µ(Bk) ≤
∑
i

µ(B̄(xi, diamAi)) ≤
∑
i

λ′ωs(diamAi)
s

< 2sλ′(Hs(B) + 1/k),

from which (2.4) follows. �

Remark 2.33. Part ii) of Theorem 2.32 holds for arbitrary sets B ⊂ X. Indeed, define

B′k = {x ∈ X : . . . } then B′k Borel and hence µxB-measurable, which implies

µ(B) = (µxB)(
⋃
k

B′k) = lim(µxB)(B′k) = lim
k→∞

µ(B ∩B′k) = lim
k→∞

µ(Bk).

Corollary 2.34. Let X be a metric space, s > 0, and A ⊂ X such that Hs(A) < ∞.

Then

i) For Hs-a.e. x ∈ A, 2−s ≤ Θs(A, x) ≤ 1.

ii) If A is Hs-measurable, then for Hs-a.e. x ∈ Ac, Θs(A, x) = 0.
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Proof. i) a. Θs(A, x) ≤ 1: Without loss of generality, suppose A is Borel by Borel regu-

larity of Hs. For δ > 0, apply Theorem 2.32 with µ = HsxA and

B = {x ∈ A : Θs(µ, x) ≥ 1 + δ}

to obtain

∞ > Hs(B) = µ(B) ≥ (1 + δ)Hs(B).

Consequently, Hs(B) = 0.

i) b. Θs(A, x) ≥ 2−s. Apply Theorem 2.32 and Remark 2.33.

ii) ∃A′ ⊂ X Borel such that A ⊂ A′ and Hs(A′) = Hs(A). Since A′, A are Hs-

measurable, Hs(A′\A) = 0. Now apply Theorem 2.32 with µ = HsxA and for ε > 0,

B := {x ∈ X\A′ : Θs(µ, x) ≥ ε}.

Details are left as exercises. �

Definition 2.35. Let µ be a Borel measure on X and s ≥ 0 and x ∈ X. If

Θs(µ, x) = Θs(µ, x),

then we write Θs(µ, x) for this value and call it the s-density of µ at x.

Corollary 2.36 (Lebesgue density theorem). i). Let A ⊂ Rn be an arbitrary set. Then

for Ln-a.e. x ∈ A,

Θn(A, x) = 1.

ii). Let A ⊂ Rn be Ln-measurable. Then for Ln-a.e. x ∈ Ac,

Θn(A, x) = 0.

Exercise: Let µ be a measure on X and A ⊂ A′ ⊂ X such that

µ(A′) = µ(A) <∞.

Then for every µ-measurable set B ⊂ X we have

µ(A′ ∩B) = µ(A ∩B).

By definition of µ-measurability,

µ(A) = µ(A ∩B) + µ(A\B)

≤ µ(A′ ∩B) + µ(A′\B)

= µ(A′) = µ(A).

So we have equalitiy everywhere above. In particular, if A ⊂ A′ ⊂ X with Hs(A′, x) =

Hs(A) <∞, then

Θs(A
′, x) = Θs(A, x) ∀x ∈ X

and the same for Θs, Θs hold.

Proof of Corollary 2.36. Without loss of generality, we may assume Ln(A) < ∞. ii)

follows immediately from Corollary 2.34 ii).
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i) Ln is Borel regular =⇒ ∃A′ ⊂ Rn Borel such that A ⊂ A′ and Ln(A′) = Ln(A). By

ii), Θn((A′)c, x) = 0 for Ln-a.e. x ∈ A′. Since

1 =
Ln(A′ ∩B(x, r))

ωnrn
+
Ln((A′)c ∩B(x, r))

ωnrn

and Ln((A′)c∩B(x,r))
ωnrn

→ 0 for Ln-a.e. x ∈ A′, it follows that

Θn(A′, x) = 1 for Ln-a.e. x ∈ A′.

By the Exercise above,

Θn(A, x) = Θn(A′, x) = 1 for Ln-a.e. x ∈ A.

�

2.6. Riesz representation theorem. For the rest of this section, let (X, d) be a locally

compact and separable metric space.

Definition 2.37. A measure µ on X is called Radon measure on X if µ is Borel regular

and µ(K) <∞ for all K ⊂ X compact.

Exercise: There exists a countable family {Bk}k of open balls Bk = B(xk, rk) ⊂ X

such that B̄(xk, rk) is compact for each k and X =
⋃
k Bk.

Proposition 2.38. Let µ be a Radon measure on X. Then

i) For every set A ⊂ X,

µ(A) = inf{µ(U) : A ⊂ U,U open }.

ii) For every µ-measurable A ⊂ X,

µ(A) = sup{µ(C) : C ⊂ A,C compact }.

Proof. i) follows directly from Borel regularity, exercise above and Theorem 2.14.

ii) For n ≥ 1, define Kn :=
⋃
k B̄(xk, rk), where B̄(xk, rk) is given as in the exercise

above. Then Kn is compact and µ(A ∩Kn)→ µ(A) as n→∞. Thus it suffices to prove

ii) for A ⊂ X µ-measurable with µ(A) <∞ and A ⊂ K compact.

Define ν := µxA. Then ν is Borel regular by Lemma 2.16. Since ν(Ac) = 0, there

exists Ac ⊂ B Borel with ν(B) = 0. By Theorem 2.14, ∀ε > 0, ∃U ⊂ X open with B ⊂ U

and ν(U) < ε. Set C := U c. Then C is closed and C ⊂ A ⊂ K, which implies C is

compact. Since A\C = U ∩ A, we have

µ(A\C) = µ(U ∩ A) = ν(U) < ε,

from which we infer that

µ(C) = µ(A)− µ(A\C) > µ(A)− ε.

�

Define

Cc(X,R) :=
{
f : X → R : f is continuous with spt(f) being compact

}
,



18 NOTES TAKEN BY CHANGYU GUO, UNIVERSITY OF FRIBOURG

the support of a function f is

spt(f) := {x ∈ X : f(x) 6= 0}.

Observation: Every Radon measure µ on X gives rise to a linear functional

L : Cc(X,R)→ R

L(f) :=

∫
X

fdµ,

which is positive

f ≥ 0 =⇒ L(f) ≥ 0.

The following theorem gives an important converse.

Theorem 2.39 (Riesz representation theorem). Let X be a locally compact and separable

metric space. Let L : Cc(X,R) → R be a positive linear functional. Then there exists a

Radon measure µ on X such that

L(f) =

∫
X

fdµ ∀f ∈ Cc(X,R).

Thus there is a 1-to-1 correspondence between Radon measures on X and positive

linear functionals on C0(X,R). For the proof, we need the following.

Lemma 2.40. (Partition of unity) Let X be as in Theorem 2.39.

i). Let K ⊂ X be compact and let U ⊂ X be open such that K ⊂ U . Then there

exists f ∈ Cc(X,R) such that 0 ≤ f ≤ 1 and spt(f) ⊂ U and f = 1 on a nbhd of

K.

ii). Let K ⊂ X be compact and U1, . . . , Un ⊂ X be open with K ⊂
⋃n
k=1 Uk. Then

∃λ1, . . . , λn ∈ Cc(X,R) such that λk ≥ 0, spt(λk) ⊂ Uk,
∑n

k=1 λk ≤ 1 and

n∑
k=1

λk(x) = 1 for all x in a nbhd of K.

Proof. Exercise. �

Proof of Theorem 2.39. For U ⊂ X open, we define

µ(U) := sup{L(f) : f ∈ Cc(X,R), 0 ≤ f ≤ 1, spt(f) ⊂ U}

and for A ⊂ X arbitrary,

µ(A) := inf{µ(U) : A ⊂ U,U open}.

We claim that µ is a Radon measure on X.

(a) µ is a measure.

• µ(∅) = 0

• A ⊂
⋃∞
i=1 Ak, Without loss of generality, µ(Ak) <∞ for all k.

Let ε > 0 and let Uk ⊂ X be open such that Ak ⊂ Uk and

µ(Uk) < µ(Ak) + ε/2k.
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Set U =
⋃∞
k=1 Uk. Then U is open and A ⊂ U . Let f ∈ Cc(X,R) be such that

0 ≤ f ≤ 1 and spt(f) ⊂ U . Since K := spt(f) is compact, there exists n ∈ N such

that K ⊂
⋃n
k=1 Uk.

Let λ1, . . . , λn be given as in Lemma 2.40 ii) and set fk := λkf for k = 1, . . . , n.

Then fk ∈ Cc(X,R) with 0 ≤ fk ≤ 1 and spt(fk) ⊂ Uk and so L(fk) ≤ µ(Uk).

Since
n∑
k=1

fk = f
n∑
k=1

λk = f,

it follows that

L(f) =
n∑
k=1

L(fk)

=⇒ L(f) ≤
n∑
k=1

µ(Uk) < ε+
∞∑
k=1

µ(Ak).

Since f was arbitrary,

µ(A) ≤ µ(U) ≤ ε+
∞∑
k=1

µ(Ak)

and thus µ is a measure.

(b) µ is a Borel measure.

If U, V ⊂ X open and U ∩ V = ∅, then

µ(U ∩ V ) = µ(U) + µ(V ).

If A,B ⊂ X with d(A,B) > 0, then ∃U, V ⊂ X open such that A ⊂ U , B ⊂ V and

U ∩ V = ∅. Let W ⊂ X be open such that A ∪B ⊂ W . Then

µ(W ) ≥ µ(W ∩ (U ∪ V )) = µ(W ∩ U) + µ(W ∩ V )

≥ µ(A) + µ(B).

Since W was arbitrary,

µ(A ∪B) ≥ µ(A) + µ(B),

which implies µ is Borel.

(C) µ is Borel regular.

This follows from the definition of µ(A).

(d) µ(K) <∞ for K ⊂ X compact.

Let K ⊂ X compact. Then ∃f ∈ Cc(X) such that 0 ≤ f ≤ 1 and f = 1 on an

open set V with K ⊂ V . Since µ(K) ≤ µ(U) it is enough to show that µ(U) < ∞. Let

h ∈ Cc(X) with spt(h) ⊂ V and 0 ≤ h ≤ 1. Then

h ≤ f =⇒ f − h ≥ 0

=⇒ L(f) ≥ L(h) =⇒ µ(V ) ≤ L(f) <∞.



20 NOTES TAKEN BY CHANGYU GUO, UNIVERSITY OF FRIBOURG

(e) For every f ∈ Cc(X), we have

L(f) =

∫
X

fdµ.

It suffices to show this for f ≥ 0. Let ε > 0 and M := sup{f(x) : x ∈ X}. Let V ⊂ X

be open with spt(f) ⊂ V and µ(V ) <∞ and let

0 = y0 < y < y1 < · · · < yn−1 < M < yn

be such that yi − yi−1 < ε and µ({f = yi}) = 0 for all i = 1, . . . , n. Note that µ({f =

y}) > 0 only for countably many y ∈ R.

Define

U1 := {f < y1} ∩ V
and, for i ≥ 2,

Ui := {yi−1 < f < yi} ⊂ V.

Then Ui is open and pairwise disjoint, with

V =
n⋃
i=1

(
Ui ∩ {f = yi}

)
and thus ∃Ki ⊂ Ui compact such that µ(Ui) ≤ µ(Ki)+ ε

Mn
. By Lemma 2.40, ∃hi ∈ Cc(X)

such that 0 ≤ hi ≤ 1 and spt(hi) ⊂ Ui and hi = 1 on a neighborhood of Ki. Then the

function g := f ·
(
1−

∑n
i=1 hi

)
∈ Cc(X) and satisfies 0 ≤ g ≤M and

spt(g) ⊂ spt(f)\
n⋃
i=1

Ki ⊂
n⋃
i=1

(Ui\Ki) ∪ {f = yi}.

Thus, by approximating {f = yi} by open sets and using definition of µ, we obtain

L(g) ≤M
n∑
i=1

µ(Ui\Ki) ≤ ε

and thus 0 ≤ L(f)−
∑n

i=1 L(f · hi) ≤ ε.

Now observe that

• yi−1 · hi ≤ f · hi ≤ yi · hi
• µ(Ui)− ε

Mn
≤ µ(Ki)

as in (a)

≤ L(hi) ≤ µ(Ui) for all i.

Thus we calculate
n∑
i=1

L(f · hi) ≤
n∑
i=1

L(yi · hi) ≤
n∑
i=1

∫
Ui

f + εdµ

≤
∫
X

fdµ+ εµ(U)
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and
n∑
i=1

L(f · hi) ≥
n∑
i=1

yi−1(µ(Ui)− ε/Mn) ≥
n∑
i=1

∫
Ui

f − εdµ− ε

µ({f=yi})=0

≥
∫
X

fdµ− ε− εµ(U).

Therefore,

|L(f)−
∫
X

fdµ| ≤ ε+ εµ(V ).

Since ε was arbitrary, L(f) =
∫
X
fdµ.

(f) µ is unique (exercise).

Let µ, µ′ be two Radon measures on X such that∫
X

fdµ =

∫
X

fdµ′ ∀f ∈ Cc(X).

Enough to show that for all U ⊂ X open, we have µ′(U) = µ(U). Let U ⊂ X be open.

Case 1: µ(U) <∞.

Let ε > 0. Then ∃K ⊂ U compact such that µ(U) ≤ µ(K) + ε, which implies by

Lemma 2.40 that ∃h ∈ Cc(X) such that 0 ≤ h ≤ 1 and spt(h) ⊂ U and h = 1 on K.

Thus

µ(U) ≤ µ(K) + ε ≤
∫
X

hdµ+ ε

=

∫
X

hdµ′ + ε ≤ µ′(U) + ε.

Since ε > 0 was arbitrary, we have µ(U) ≤ µ′(U).

Case 2: µ(U) =∞.

Almost the same argument =⇒ µ′(U) =∞.

Switching the roles of µ and µ′ gives µ(U) = µ′(U) for all U ⊂ X open.

�

We now give a non-trivial generalization of the Riesz representation theorem: Let

(H, 〈·, ·〉) be a finite-dimensional Hilbert space. Define

Cc(X,H) = {f : X → H : f is continuous and spt(f) is compact}.

Let µ be a Radon measure on X and τ ∈ L∞(X,µ,H). Then µ and τ give rise to a linear

functional

L : Cc(X,H)→ R

L(f) :=

∫
X

〈f(x), τ(x)〉dµ(x)

and L satisfies the finiteness property

(2.5) sup
{
L(f) : f ∈ Cc(X,H), |f | ≤ 1, spt(f) ⊂ K

}
<∞

for every compact K ⊂ X.
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Remark 2.41. The function x 7→ 〈f(x), τ(x)〉 is µ-integrable. (Exercise)

The following theorem gives a converse.

Theorem 2.42 (Riesz representation theorem II). Let X be a locally compact and sepa-

rable metric space and 〈·, ·〉 a finite dimensional Hilbert space. Let L : Cc(X,H)→ R be

a linear functional satisfying the finiteness property (2.5) for all K ⊂ X compact. Then

there exists a unique Radon measure µ on X and a unique µ-measurable map τ : X → H

such that |τ(x)| = 1 for µ-a.e. x ∈ X and

L(f) =

∫
X

〈f(x), τ(x)〉dµ(x) ∀f ∈ Cc(X,H).

Remark 2.43. If H = R and L : Cc(X) → R is a positive linear functional, then L

satisfies (2.5) (exercise). Thus Riesez represenation theorem I, Theorem 2.39, is a special

case of Theorem 2.42 since τ = +1 µ-a.e. by positivity.

We do not prove this theorem here and refer e.g. [4] for a proof. We mention that the

Radon measure µ is constructed as in the proof of Theorem 2.39: for each U ⊂ X open,

µ(U) := sup
{
L(f) : f ∈ Cc(X,H), |f | ≤ 1, spt(f) ⊂ U

}
and for A ⊂ X arbitrary

µ(A) := inf
{
µ(U) : A ⊂ U,U open

}
.

One shows actually as in the previous proof that µ is a Radon measure.

2.7. Weak compactness of Radon measures and Banach-Alaoglu theorem. We

recall some elements from functional analysis that will play a role later.

Let V be a vector space over R. A norm ‖ · ‖ on V induces a metric on V by

d(v, w) := ‖v − w‖ ∀v, w ∈ V.

Proposition 2.44. Let V = (V, ‖ · ‖) be a normed vector space and T : V → R linear.

Then TFAE

i) T is continuous at 0.

ii) T is continuous on V .

iii) T is Lipschitz continuous.

iv) There exists L ≥ 0 such that

‖T (v)‖ ≤ L‖v‖

for all v ∈ V .

Proof. Exercise. �

The vector space of continuous linear functional on V = (V, ‖ · ‖) is called the dual

space of V and denoted by V ∗. It is equipped with the operator norm

‖T‖V ∗ := sup{T (v) : ‖v‖ ≤ 1},

which defines a norm on V ∗. We often write ‖T‖ instead of ‖T‖V ∗ .
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Proposition 2.45. The dual space (V ∗, ‖ · ‖V ∗) is a Banach space, i.e., the metric on V ∗

induced by ‖ · ‖V ∗ is complete.

Proof. Exercise. �

Example 2.46. For a sequence {an} ⊂ R define

‖(an)‖1 :=
∑
n

|an|

‖(an)‖∞ := sup
n
|an|.

Define

l1 := {(an) ⊂ R : ‖(an)‖1 <∞}
l∞ := {(an) ⊂ R : ‖(an)‖∞ <∞}

Then (l1, ‖ · ‖1) and (l∞, ‖ · ‖∞) are Banach spaces and

(l1, ‖ · ‖1)∗ = (l∞, ‖ · ‖∞).

Let V = (V, ‖ · ‖) be a normed space. If dim(V ) =∞, then the closed unit balls in V

and in V ∗ are not compact. In particular, there exists a sequence (Tn) ⊂ V ∗ with

‖Tn‖ ≤ 1 ∀n

which does not have a converging subsequence in V ∗.

Example 2.47. The sequence (en) ⊂ l∞ with

en = (0, · · · , 0, 1, 0, · · · )

does not have a convergent subsequence since

‖en − em‖∞ = 1 ∀n 6= m.

Definition 2.48. A sequence (Tn) ⊂ V ∗ is said to converge weakly-∗ to T ∈ V ∗ if

Tn(v)→ T (v) for all v ∈ V .

Notation: Tn
∗
⇀ T .

Proposition 2.49. Let T, Tn ∈ V ∗, n ∈ N. Then

i) If Tn → T , then Tn
∗
⇀ T .

ii) If Tn
∗
⇀ T , then ‖T‖ ≤ lim infn→∞ ‖Tn‖.

Proof. Exercise. �

Example 2.50. Let (en) be given as in Example 2.47. Then en
∗
⇀ 0.

Theorem 2.51. (Banach-Alaoglu) Let V be a separable normed space and (Tn) ⊂ V ∗ a

sequence satisfying

sup
n
‖Tn‖ <∞.

Then there exists a subsequence (Tnk) and T ∈ V ∗ such that

Tnk
∗
⇀ T.
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Proof. Set

M := sup
n
‖Tn‖ <∞.

Fix x ∈ V , we have

|Tn(x)| ≤ ‖Tn‖ · ‖x‖ ≤M‖x‖ ∀n ∈ N
and so the sequence {Tn(x)} ⊂ R is bounded.

Let A := {xm : m ∈ N} ⊂ V be a countable dense subset of V . Then for each m,

the sequence (Tn(xm)) has a convergent subsequence and so by the diagonal sequence

argument, there exist subsequence (Tnk) such that (Tnk(xm)) converges for every m ∈ N.

Define T : A→ R by

T (xm) := lim
k→∞

Tnk(xm) ∀m ∈ N.

Then T is M -Lipschitz since

|T (xm)− T (xl)| = lim
k→∞
|Tnk(xm)− Tnk(xl)|

≤M‖xm − xl‖ ∀m, l.

Thus there exists a unique M -Lipschitz extension of T to all of V , which we denote by T

again.

Let x ∈ V and let (xml) be a sequence such that xml → x. Then

|T (x)− Tnk(x)| ≤ |T (x)− T (xml)|+ |T (xml)− Tnk(xml)|+ |Tnk(xml)− Tnk(x)|
≤ 2M‖x− xml‖+ |T (xml)− Tnk(xml)|.

Thus Tnk(x)→ T (x) as k →∞, which implies T is linear and Tn
∗
⇀ T . �

Theorem 2.52. Let X be a compact metric space. Then the vector space C(X) =

{f : X → R : f continuous}, equipped with the sup-norm

‖f‖X := sup{|f(x)| : x ∈ X}

is a separable Banach space.

Note. (Cc(R), ‖ · ‖R) is not complete.

Proof. It is straightforward to show that (C(X), ‖ · ‖X) is Banach. We next verify the

separability. For each n ∈ N choose finitely many points xn1 , · · · , xnmn such that

X =
mn⋃
k=1

B(xnk ,
1

n
).

Let λn1 , · · · , λnmn be a partition subordinate to the balls B(xk, 1/n). Then the set

F := {
mn∑
k=1

qk · λnk : n ∈ N, qk ∈ Q} ⊂ C(X)

is countable.
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We show that F is dense. Let f ∈ C(X) and ε > 0. Select n ∈ N such that for all

x, y ∈ X with d(x, y) < 1/n we have

|f(x)− f(y)| < ε

2
.

Choose qkQ such that |f(xnk)− qk| < ε
2

for all k = 1, . . . ,mn. Let h ∈ F be the function

given by

h :=
mn∑
k=1

qkλ
n
k .

Let x ∈ X. If k is such that d(x, xnk) ≥ 1/n, then λnk(x) = 0. If k is such that d(x, xnk) <

1/n, then

|f(x)− qk| ≤ |f(x)− f(xnk)|+ |f(xnk)− qk| < ε.

Since
∑mn

k=1 λ
n
k(x) = 1, we obtain

|f(x)− h(x)| = |
mn∑
k=1

(f(x)− qk)λnk | < ε.

�

Theorem 2.53. Let X be a compact metric space and (µn) a sequence of Radon measures

on X such that

sup
n
µn(X) <∞.

Then there exists a subsequence (µnk) and a Radon measure µ on X such that∫
X

fdµnk →
∫
X

fdµ

for every f ∈ C(X).

Note. We say that µnk converges weakly to µ, we write

µnk ⇀ µ.

Proof. For each n ∈ N, define Tn : C(X)→ R by

Tn(f) :=

∫
X

fdµn ∀f ∈ C(X).

Then Tn ∈ (C(X), ‖ · ‖X)∗ and ‖Tn‖ ≤ µn(X). By the Banach-Alaoglu theorem, there

exists a subsequence (Tnk) and T ∈ (C(X), ‖ · ‖X)∗ such that Tnk
∗
⇀ T , i.e.,

Tnk(f)→ T (f)

for every f ∈ C(X). Since Tn is positive for all n ∈ N, T is positive as well. By the Riesz

representation theorem, there exists a Radon measure µ on X such that

T (f) =

∫
X

fdµ.

Therefore, µnk ⇀ µ. �

3. Lipschitz maps and rectifiable sets
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3.1. Lipschitz extensions.

Definition 3.1. A map ϕ : X → Y between metric spaces (X, dX) and (Y, dY ) is called

λ-Lipschitz if

dY (ϕ(x), ϕ(x′)) ≤ λdX(x, x′) ∀x, x′ ∈ X.

Theorem 3.2. (McShane) Let X be a metric space, A ⊂ X and ϕ : A→ R λ-Lipschitz.

Then there exits a λ-Lipschitz extension ϕ̂ : X → R of ϕ, i.e., ϕ̂|A = ϕ.

Note. If such ϕ̂ exists, then

ϕ̂(x) ≤ ϕ(a) + λd(x, a) ∀a ∈ A.

Proof. For x ∈ X, define

ϕ̂(x) := inf{ϕ(a) + λd(x, a) : a ∈ A}.

Then

• ϕ̂(x) > −∞.

Fix a0 ∈ A. Then

ϕ(a) + λd(x, a) ≥ ϕ(a0)− λd(a, a0) + λ
(
d(a, a0)− d(a0, x)

)
= ϕ(a0)− λd(a0, x),

from which we infer that ϕ̂(x) ≥ ϕ(a0)− λd(a0, x).

• ϕ̂ extends ϕ.

Let x ∈ A. Then ϕ(a) + λd(x, a) ≥ ϕ(x) = ϕ(x) + λd(x, x) for all a ∈ A. Thus

ϕ̂(x) = ϕ(x).

• ϕ̂ is λ-Lipschitz.

Let x, x′ ∈ X and without loss of generality we assume ϕ̂(x) ≤ ϕ̂(x′). Fix ε > 0.

Then there exists a ∈ A such that ϕ(a) + λd(x, a) ≤ ϕ̂(x) + ε. It follows

ϕ̂(x′)− ϕ̂(x) ≤ ϕ(a) + λd(x′, a)− ϕ(a)− λd(x, a) + ε

≤ λd(x, x′) + ε.

Since ε is arbitrary, ϕ̂ is λ-Lipschitz.

�

Exercise: For A = [0, 1] ∪ [2, 3], λ = 1 and ϕ(a) = 1 for all a ∈ A, draw the extension

given in the proof.

Corollary 3.3. Let X be a metric space, A ⊂ X and ϕ : A → Rn λ-Lipschitz. Then ϕ

has
√
nλ-Lipschitz extension ϕ̂ : X → Rn.

Here, Rn is equipped with the Euclidean norm

|(x1, . . . , xn)| :=
√
x2

1 + · · ·+ x2
n.

Proof. Write ϕ = (ϕ1, . . . , ϕn) and apply McShane’s extension to each ϕi. �
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Exercise: Let X be the tripod with the length metric and let A := {v1, v2, v3}. Find

a 1-Lipschitz map ϕ : A→ R2 which does not extend to an L-Lipschitz map ϕ̂ : X → R2

for any L <
√

2.

Question: What happens when the Euclidean norm in the corollary is replaced by

l∞-norm on Rn.

Remark 3.4. (a) Kirszbraun’s theorem: Every λ-Lipschitz map ϕ : A→ Rn, A ⊂ Rn,

extends to a λ-Lipschitz map ϕ̂ : Rm → Rn.

(b) Federer: Every λ-Lipschitz map ϕ : A ⊂ Rm → E, where E is a Banach space

extends to an Lλ-Lipschitz map ϕ̂ : Rm → E, where L depends only on m.

(c) The result in (b) is not true when Rm is replaced by an arbitrary metric space.

Proposition 3.5. Let ϕ : X → Y be a λ-Lipschitz map between metric spaces X and Y .

If A ⊂ X and s ≥ 0, then

Hs(ϕ(A)) ≤ λsHs(A).

In particular,

diamH(ϕ(A)) ≤ dimH(A).

Proof. Exercise. �

3.2. Differentiability of Lipschitz functions. Recall U ⊂ Rm open and quasiconvex,

ϕ : U → Rn C1-smooth with ‖dϕ‖ bounded → ϕ Lipschitz.

Let c : [a, b]→ U be C1-smooth curve from x to y with l(c) ≤ L|x− y|. Then

|ϕ(y)− ϕ(x)| =
∣∣∣ ∫ b

a

dϕc(t)(c
′(t))dt

∣∣∣
≤
∫ b

a

‖dϕc(t)‖|c′(t)|dt ≤ML|y − x|,

where M = sup{‖dϕz‖ : z ∈ U}.
Question: ϕ Lipschitz → ϕ differentiable?

Answer: Not everywhere, but almost everywhere.

First, we have the following classical theorem for functions of one variable.

Theorem 3.6. Let f : [a, b]→ R be an absolutely continuous function. Then f is differ-

entiable a.e. with f ′ ∈ L1([a, b]) and

f(x) = f(a) +

∫ x

a

f ′(y)dy ∀x ∈ [a, b].

Recall that f is absolutely continuous on [a, b] if ∀ε > 0, ∃δ > 0 such that for every

finite collection {[ai, bi]}Ni=1 of non-overlapping intervals [ai, bi] ⊂ [a, b] with
∑N

i=1 |bi−ai| <
δ we have ∑

i

|f(bi)− f(ai)| < ε.

Exercise: If f is Lipschitz, then f is absolutely continuous.

We now come to the important differentiability theorem for Lipschitz maps in higher

dimensions.
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Theorem 3.7. (Rademacher’s theorem) Every Lipschitz map ϕ : U → Rm is differentiable

Ln-a.e. in U .

Here, differentiability means differentiable in the sense of Frechet: ∃L : Rn → Rm

linear such that

lim
v→0

ϕ(x+ v)− ϕ(x)− L(v)

|v|
= 0.

If it exists, L is unique and will be denoted by dϕx.

An (a priori) weaker notion of differentiability is differentiability in the sense of

Gateanx: ∀v ∈ Rn, the directional derivative

Dvϕ(x) = lim
r→

ϕ(x+ rv)− ϕ(x)

r

exists and the map v 7→ Dvϕ(x) is linear.

Remark 3.8. For a map ϕ : U → Rm and x ∈ U , we have Frechet differentiability at x

implies continuity at x and Gateanx differentiability at x. However, Gateaux differentia-

bility at x does not imply continuity at x.

However, we have

Proposition 3.9. Let ϕ : U ⊂ Rn → Rm be a Lipschitz map and x ∈ U . If ϕ is Gateaux

differentiable at x, then ϕ is Frechet differentiable at x and

dϕx(v) = Dvϕ(x) ∀v ∈ Rn.

Proof. Exercise. Use Gateaux diff. at x in finitely many directions {v1, . . . , vk} ⊂ Sn−1

that are sufficiently dense in Sn−1. �

Proof of Theorem 3.7. Without loss of generality m = 1 and U = Rn.

Claim 1: For a.e. x ∈ Rn, the directional derivative Dvϕ(x) exists for all v ∈ Rn.

Let {vk} ⊂ Sn−1 be countable and dense. Fix k and let y ∈ v⊥k . Then by Theorem 3.6,

the function t 7→ ϕ(y + tvk) is differentiable at a.e. t ∈ R. By Fubini’s theorem, for a.e.

x ∈ Rn, the directional derivative Dvkϕ(x) exists and so for a.e. x ∈ Rn, the directional

derivative Dvkϕ(x) exists for all k ∈ N.

Let λ be the Lipschitz constant of ϕ. Since∣∣∣ϕ(x+ tv)− ϕ(x)

t
− ϕ(x+ tw)− ϕ(x)

t

∣∣∣ ≤ λ|v − w|,

we obtain

|Dvϕ(x)−Dwϕ(x)| ≤ λ|v − w|(3.1)

whenever Dvϕ(x) and Dwϕ(x) exist. Thus for a.e. x ∈ Rn the directional derivative

Dvϕ(x) exists for all v ∈ Sn−1 and thus for all v ∈ Rn since Dsvϕ(x) = sDvϕ(x).

Claim 2: For a.e. x,

(3.2) Dvϕ(x) = 〈∇ϕ(x), v〉 ∀v ∈ Rn.

In particular, v 7→ Dvϕ(x) is linear.
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Due to (3.1), it is enough to show (3.2) for a fixed v ∈ Rn\{0}, we will show that∫
Rn
ψ(x)Dvψ(x)dx =

∫
Rn
ψ(x)〈∇ϕ(x), v〉dx

for every ψ ∈ C1
c (Rn). From this it follows with the fundamental lemma of the calculus

of variations that

Dvϕ(x) = 〈∇ϕ(x), v〉 a.e. x ∈ Rn.

Fix ψ ∈ C1
c (Rn). Note that

ϕk(x) :=
ϕ(x+ 1

k
v)− ϕ(x)

1/k
→ Dvϕ(x) a.e. x ∈ Rn

and |ϕk(x)| ≤ λ|v| for all x, thus∫
Rn
Dvϕ(x)ψ(x)dx = lim

k→∞

∫
Rn
ϕk(x)ψ(x)dx.

We calculate∫
Rn
ϕk(x)ψ(x)dx = k

(∫
Rn
ϕ(x+

1

k
v)ψ(x)dx−

∫
Rn
ϕ(x)ψ(x)dx

)
= k
(∫

Rn
ϕ(y)ψ(y − 1

k
v)dy −

∫
Rn
ϕ(y)ψ(y)dy

)
= −

∫
Rn
ϕ(y)

ψ(y − 1
k
v)− ψ(y)

−1/k
dy

k→∞→ −
∫
Rn
ϕ(y)Dvψ(y)dy

= −
∫
Rn
ϕ(y)〈∇ψ(y), v〉dy.

So ∫
Rn
Dvϕ(x)ψ(x)dx = −

∫
Rn
ϕ(y)〈∇ψ(y), v〉dy.

This holds in particular with v = ei and thus∫
Rn

∂ϕ

∂ei
(x)ψ(x)dx = −

∫
Rn
ϕ(x)

∂ψ

∂ei
(x)dx.

For arbitrary v ∈ Rn, writing v = (v1, . . . , vn),∫
Rn
Dvϕ(x)ψ(x)dx = −

n∑
i=1

vi

∫
Rn
ϕ(x)

∂ψ

∂ei
(x)dx

=
n∑
i=1

vi

∫
Rn

∂ϕ

∂ei
(x)ψ(x)dx

=

∫
Rn
〈∇ϕ(x), v〉ψ(x)dx.

Claims 1 and 2 show that ϕ is Gateaux diff. a.e. on Rn. The theorem follows from

Proposition 3.9.
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�

Remark 3.10. The notions of Gateaux and Frechet differentiability make sense for maps

ϕ : U ⊂ Rn → E, where E is a Banach space. However, if dimE = ∞, then Lipschitz

maps to E need not be differentiable anywhere.

Example 3.11. Let ϕ : (0, 1)→ L1((0, 1)) be given by

ϕ(t) := χ(0,t).

Then ϕ is isometric embedding but nowhere differentiable.

Lipschitz maps are even more similar to C1-smooth maps than one would expect from

Rademacher’s theorem. Namely, we have

Theorem 3.12. Let ϕ : Rm → Rn be Lipschitz and ε > 0. Then there exists a C1-smooth

map g : Rm → Rn such that

Lm
({
x ∈ Rm : ϕ(x) 6= g(x)

})
≤ ε.

In other words: outside a set of arbitrarily small measure, ϕ agrees with a C1-smooth

map. The proof of the theorem relies on Radmarcher’s theorem and the so-called Whitney

extension theorem.

Theorem 3.13. Let ϕ : Rm → Rn be Lipschitz and

A := {x ∈ Rm : dϕx exists and rank(dϕx) < m}.

Then Hm(ϕ(A)) = 0.

Notice that the theorem only gives a non-trivial statement when m ≤ n. The state-

ment of the theorem is a kind of “Sard” type theorem. Recall that the classical theorem

of Morse-Sard asserts: If ϕ : U ⊂ Rm → Rn is Ck-smooth for some

k ≥ max{m− n+ 1, 1},

then the image of the set {x ∈ U : rank(dϕx) < n} has Lebesgue n-measure zero. It is

important that ϕ is sufficiently regular. Indeed, there exists a C1-smooth map ϕ : R3 → R2

which maps the unit cube [0, 1]3 surjectively onto [0, 1]2.

Example 3.14. A Lipschitz version of Kaufman’s example: divide [0, 1]3 into cubes of

side-length 1/3 and let Î1,j be the open cube of side-length 1/4 with same center. Divide

[0, 1]2 =: J0 into 16 squares J1,j of side-length 1/4. Define a map ϕ : I0\
⋃
Î1,j → [0, 1]2

by:

• ϕ maps ∂I1,j to the center of [0, 1]2 ∀j
• ϕ maps ∂Î1,j to the center of J1,j and I1,j\Î1,j “linearly” to the segment between

the two centers for j = 1, . . . , 16

• For j = 17, . . . , 27, ϕ maps I1,j to center of [0, 1]2

Repeat the procedure above to each Î1,j and J1,j by scaling and to smaller and smaller

cubes. This implies ϕ Lip. map defined on I0 minus Cantor set of measure zero. Since ϕ
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is Lipschitz, it has Lip. extension to I0 and so ϕ(I0) = J0 and rank(dϕx) ≤ 1 for almost

every x ∈ I0.

Proof of Theorem 3.13. By possibly replacing A by A∩B(0, R) we may assume that A is

bounded. Thus there exists an open set U ⊂ Rm open such that A ⊂ U and Lm(U) <∞.

Let 0 < ε, δ < 1, we define a fine covering of A by closed sets as follows: Let x ∈ A, then

there exists v ∈ ker(dϕx) with |v| = 1. Let W ⊂ Rm be the subspace orthogonal to v. Set

L := λ+
√

2, where λ is the Lipschitz constant of ϕ. For all sufficiently small r > 0 with

2Lεr < δ the closed set

Cx,r := {x+ w + tv : |t| ≤ r, w ∈ W, |w| ≤ εr}

satisfies Cx,r ⊂ U and has the property: if x 6= y ∈ Cx,r, then

|ϕ(y)− ϕ(x)− dϕx(y − x)|
|y − x|

≤ ε.

Let C be the family of all such closed sets Cx,r with x ∈ A and note that C is a fine

covering of A in the sense of Vitali. By Vitali Covering, there exists a countable disjoint

subfamily {Ci} of sets

Ci = Cxi,ri ∈ C
such that Lm(A\

⋃
Ci) = 0. Note that diamCi ≤ 2

√
1 + ε2ri ≤ 2

√
2ri and thus∑

i

(diamCi)
m ≤ 2

3m
2

ωm−1εm−1

∑
i

Ln(Ci)

≤ 2
3m
2

ωm−1εm−1
Lm(U) <∞.

Hence,

Hm
δ (ϕ(A)) ≤ Hm

δ (ϕ(A\
⋃

Ci)) +Hm
δ (ϕ(

⋃
Ci)).

In order to bound the second term, notice first that if y ∈ Ci = Cxi,ri , then

|ϕ(y)− ϕ(xi)| ≤ |dϕxiϕ(y − xi)|+ ε|y − xi|
y=xi+w+tv

= |dϕxi(w)|+ ε|y − xi|

≤ ελri +
√

2εri

and thus

ϕ(Ci) ⊂ B̄(ϕ(xi), Lεri).

It follows that

Hm
δ (ϕ(

⋃
Ci)) ≤

∑
i

ωm(Lεri)
m

= ωmL
m 1

2ωm−1

ε
∑
i

2riωm−1(εri)
m−1

≤ ωmL
m

2ωm−1

εLm(U).
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Thus Hm
δ (ϕ(A)) ≤ ε ωmL

m

2ωm−1
Lm(U). Since ε and δ were arbitrary, Hm(ϕ(A)) = 0.

�

3.3. Area and coarea formula. Recall that the usual change of variable formula shows

that ∫
V

f(y)dy =

∫
U

f ◦ ϕ(x)| det dϕx|dx

whenever ϕ : U → V is a diffeomorphism with U, V ⊂ Rm open and f ∈ Cc(V ). The area

formula (for Lipschitz maps) provides a generalization of this for maps between spaces of

different dimensions.

Definition 3.15. Let L : Rm → Rn be a linear map with m ≤ n and let A be the matrix

representing L in standard coordinates. The m-Jacobian of L is defined by

Jm(L) :=
√

det(ATA).

Note. Notice that ATA is symmetric, positive semi-definite m × m-matrix and so

det(ATA) ≥ 0.

Example 3.16. 1) L : R→ Rn defined by L(t) = tv for some v ∈ Rn. Then J1(v) = |v|.
2) L : Rn → Rn defined by L(x) = Ax for some n× n-matrix A. Then

Jn(L) =
√

det(ATA) = | det(A)|.

Theorem 3.17 (Area formula). Let ϕ : Rm → Rn be a Lipschitz map with m ≤ n. Then

i) If A ⊂ Rm is Lm-measurable, then

(3.3)

∫
A

Jm(dϕx)dLm(x) =

∫
Rn
N(ϕ|A, y)dHm(y),

where N(ϕ|A, y) = H0(A ∩ ϕ−1({y})).
ii) If g ∈ L1(Rm), then∫

Rm
g(x)Jm(dϕx)dLm(x) =

∫
Rn

( ∑
x∈ϕ−1({y})

g(x)
)
dHm(y).

Note. Implicitly contained in the statement is the assertion that the functions in the

integrals are measurable, respectively, integrable.

Example 3.18. 1) If c : [a, b]→ R is an injective Lipschitz curve, then

H1(c([a, b])) =

∫ b

a

|c′(t)|dt = l(c).

2) If M ⊂ Rn is m-dim smooth submanifold and (U, ψ) a chart and V ⊂ U open,

bounded with V ⊂ U , then

VolM(V )
def
=

∫
ψ(V )

Jm(dψ−1
x )dLm(x)

Area formula
= Hm(V ).
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Statement (ii) of the theorem follows by approximating g by simple functions. We

therefore only prove statement (i). The following lemma shows that (3.3) holds when ϕ

is a linear map.

Lemma 3.19. Let L : Rm → Rn be linear with m ≤ n. Then for every A ⊂ Rm Lm-

measurable with Lm(A) <∞, we have

(3.4) Hm(L(A)) = Jm(L)Lm(A).

Proof. If m = n, then

Lm(L(A)) = | det(L)|Lm(A)

by the usual transformation formula for Lebesgue measure and hence (3.4).

Suppose now m < n. Let T ∈ O(n) be such that T ◦ L has image in the subspace

Rm × {0}n−m ⊂ Rn. Notice that

det
(
(T ◦ L)T (T ◦ L)

)
= det(LTT TTL) = det(LTL).

We write

T ◦ L =

 C

−−
0


for some m×m-matrix C. Then

(T ◦ L)T (T ◦ L) = CTC

⇒ det(LTL) = det(CTC) = (det(C))2

⇒ Hm(L(A)) = Hm(T (L(A))) = Lm(C(A))

= | det(C)|Lm(A) = Jm(L)Lm(A).

�

For the general case of the area formula we will need:

Lemma 3.20. Let U ⊂ Rm be open and ϕ : U → Rn Lipschitz, where m ≤ n. Then for

every t > 1, there exists a countable collection {Ek}k≥0 of Borel sets Ek ⊂ U such that

i) U =
⋃∞
k=0Ek

ii) If x ∈ E0, then either ϕ is not differentiable at x or Jm(dϕx) = 0

iii) For every k ≥ 1, the restriction ϕ|Ek is injective

iv) For every k ≥ 1, there exists Lk : Rm → Rn linear such that

1

tm
Jm(Lk) ≤ Jm(dϕx) ≤ tmJm(Lk) ∀x ∈ Ek

and the maps ϕ ◦ (Lk|Ek)−1 and Lk ◦ (ϕ|Ek)−1 are both t-Lipschitz.

Roughly speaking, this asserts that ϕ is close to a linear map on suitable sets. More-

over, the restriction ϕ|Ek is bi-Lipschitz for all k ≥ 1. This will also be important later.

Proof. Let E0 be the set of points x ∈ U such that either ϕ is not differentiable at x or

Jm(dϕx) = 0. It can be shown that E0 is a Borel set (hard exercise).
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Fix ε > 0 such that 1
t

+ ε < 1 < t − ε, A ⊂ U countable and dense, G countable

and dense in the set of injective linear maps Rm → Rn. Let z ∈ A, L ∈ G, j ≥ 1. Let

E(z, L, j) be the set of points x ∈ U ∩B(z, 1/j) such that

1) ϕ differentiable at x and dϕx injective

2) For every y ∈ U ∩B(x, 2/j) we have

(3.5) |ϕ(y)− ϕ(x)− dϕx(y − x)| ≤ ε|L(y − x)|

3) The map dϕx ◦ L−1 is (t− ε)-Lipschitz

4) The map L ◦ (dϕx)
−1 is 1

1
t
+ε

-Lipschitz

Claim 1: E(z, L, j) satisfies properties (iii) and (iv) of the Lemma.

If x, y ∈ E(z, L, j), then |x− y| < 2/j and thus, by our choice, we have

1

t
|L(y − x)| ≤ |ϕ(y)− ϕ(x)| ≤ t|y − x|.(3.6)

Indeed,

|ϕ(y)− ϕ(x)| ≤ |dϕx(y − x)|+ ε|L(y − x)|
= |dϕx ◦ L−1(L(y − x))|+ ε|L(y − x)|
≤ (t− ε)|L(y − x)|+ ε|L(y − x)|
= t|L(y − x)|

and the other inequality follows similarly.

Since L is injective, it follows from (3.6) that ϕ|E(z,L,j) is injective. By (3.6) again,

the maps ϕ ◦
(
L|E(z,L,j)

)−1
and L ◦ (ϕ|E(z,L,j))

−1 are t-Lipschitz, which implies (iii) and

the second part of (iv).

It remains to estimate Jm(dϕx). We have

Jm(dϕx) = Hm(dϕx([0, 1]m)) ≤ (t− ε)mHm(L([0, 1]m))

≤ tmJm(L)

and similarly, Jm(dϕx) ≥ t−mJm(L). This proves claim 1.

Claim 2: the set E(z, L, j) covers U\E0.

Let x ∈ U\E0. Then ϕ is differentiable at x and dϕx is injective. Since G is dense in

the set of linear maps Rm → Rn there exists L ∈ G such that 3) and 4) hold. Since L is

injective, linear, there exists δ > 0 such that

|L(v)| ≥ δ|v| ∀v ∈ Rm

and ∃j ≥ 1 such that

|ϕ(y)− ϕ(x)− dϕx(y − x)| ≤ εδ|y − x|
≤ ε|L(y − x)|

for all y ∈ B(x, 2/j) ∩ U . Since A ⊂ U is dense, ∃z ∈ A such that x ∈ B(z, 1/j) and so

x ∈ E(z, L, j). Finally, one can show that the sets E(z, L, j) are Borel sets (exercise).

�
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Proof of Theorem 3.17. Let A ⊂ Rm be Lm-measurable. One can show that ϕ(A) is Hm-

measurable and that the function y 7→ N(ϕ|A, y) is Hm-measurable (see Evans-Ganepy).

It is easy to see that the function x 7→ Jm(dϕx) is a Borel function. Let t > 1 and let

{Ek}k≥0 be a collection of Borel sets as in Lemma 3.20.

Define A0 := A ∩ E0 and Ak := (A ∩ Ek)\
⋃k−1
j=0 Ej for k ≥ 1. Then Ak measurable

and pairwise disjoint with A =
⋃∞
k=0Ak. For every y ∈ Rn, we have

N(ϕ|A, y) =
∞∑
k=0

N(ϕ|Ak , y)

and ∫
Rn
N(ϕ|A, y)dHm(y) =

∞∑
k=0

∫
Rn
N(ϕ|Ak , y)dHm(y).

By the definition of E0, Rademacher’s theorem and Theorem 3.13 we have Jm(dϕx) = 0

for a.e. x ∈ A0 and Hm(ϕ(A0)) = 0, hence,∫
Rn
N(ϕ|A0 , y)dHm(y) = 0 =

∫
A0

Jm(dϕx)dLm(x).

Let k ≥ 1. Since ϕ|Ak is injective, it follows that∫
Rn
N(ϕ|Ak , y)dHm(y) = Hm(ϕ(Ak)).

Moreover, by (iv) of Lemma 3.20, we have

t−mHm(Lk(Ak)) ≤ Hm(ϕ(Ak)) ≤ tmHm(Lk(Ak))

and

t−mJm(Lk)Lm(Ak) ≤
∫
Ak

Jm(dϕx)dLm(x) ≤ tmJm(Lk)Lm(Ak).

Since

Hm(Lk(Ak)) = Jm(Lk)Lm(A)

by Lemma 3.20, we obtain

t−2m

∫
Ak

Jm(dϕx)dLm(x) ≤
∫
Rn
N(ϕ|Ak , y)dHm(y) ≤ t2m

∫
Ak

Jm(dϕx)dLm(x).

Summing over k yields

t−2m

∫
A

Jm(dϕx)dLm(x) ≤
∫
Rn
N(ϕ|A, y)dHm(y) ≤ t2m

∫
A

Jm(dϕx)dLm(x)

and hence the theorem follows by letting t→ 1. �

We next come to the coarea formula. Unlike the area formula it is concerned with

Lipschitz maps from a higher to a lower dimensional space. We first define the Jacobian

in this situation.

Definition 3.21. Let L : Rm → Rn be a linear map with m ≥ n and let A be the matrix

representing L in standard coordinates. The n-Jacobian of L is defined by

Jn(L) =
√

det(AAT ).
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Note. AAT is an n× n-matrix.

Example 3.22. Let L : Rm → R given by L(v) = 〈w, v〉 for some w ∈ Rn. Then

J1(L) = |w|.

Theorem 3.23 (Coarea formula). Let f : Rm → Rn be a Lipschitz map with m ≥ n.

i) If A ⊂ Rm is Lm-measurable, then∫
A

Jn(dϕx)dLm(x) =

∫
Rn
Hm−n(A ∩ ϕ−1({y}))dLn(y).

ii) If g ∈ L1(Rm), then∫
Rm

g(x)Jn(dϕx)dLm(x) =

∫
Rn

(∫
ϕ−1({y})

g(x)dHm−n(x)
)
dLn(y).

Remark 3.24. Implicitly contained in the statement is the assertion that the functions

in the integrals on the right are measurable resp. integrable.

The coarea formula is a kind of curvelinear version of Fubini’s theorem.

Corollary 3.25. Let f : Rm → R be a Lipschitz function. Then∫
Rm
|∇f |dLm =

∫ ∞
−∞
Hm−1({f = t})dL1(t).

Proof. From the coarea formula since J1(dfx) = |∇f(x)|. �

Corollary 3.26 (Polar coordinates). Let g ∈ L1(Rm). Then∫
Rm

gdLm =

∫ ∞
0

(∫
∂B(0,r)

gdHm−1
)
dL1(r).

In particular, for a.e. r > 0 we have∫
∂B(0,r)

gdHm−1 =
d

dr

(∫
B(0,r)

gdLm
)

by Lebesgue differentiation theorem.

Proof. The Lipschitz function ϕ : Rm → R given by ϕ(x) = |x| is differentiable everywhere

on Rm\{0} with∇ϕ(x) = x
|x| and thus J1(dϕx) = 1. Now the result follows from the coarea

formula. �

We give two other applications of the coarea formula: Let ϕ : Rm → Rn be a Lipschitz

map with m ≥ n.

1). If A ⊂ Rm has Lm(A) = 0, then

Hm−n(A ∩ ϕ−1({y})) = 0

for Ln-a.e. y ∈ Rn.

2). For Ln-a.e. y ∈ Rn we have

Hm−n
(
{x ∈ Rm : rank(dϕx) < n} ∩ ϕ−1({y})

)
= 0.
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This follows from the coarea formula and the fact that for a linear map L : Rm → Rn we

have

rank(L) < n⇒ Jn(L) = 0.

Notice that if ϕ is Ck-smooth with k ≥ m − n + 1, then the Morse-Sard theorem shows

that even

{x ∈ Rm : rank(dϕx) < n} ∩ ϕ−1({y}) = ∅
for Ln-a.e. y ∈ Rn.

We now turn to the proof of the coarea formula. The proof uses an approximation

which is somewhat similar to that used in the proof of the area formula. We do not

provide the whole proof but only sketch it.

Lemma 3.27. Let L : Rm → Rn be linear and A ⊂ Rm Lm-measurable. Then

Jn(L)Lm(A) =

∫
Rm
Hm−n(A ∩ L−1({y}))dLm(y).

Proof. We may assume m > n. There exists an orthogonal transformation P : Rm → Rm

such that

(3.7) {0}n × Rm−n ⊂ P (ker(L)).

Write T := L ◦ P and notice that

Jn(T ) =
√

det(TT T ) =
√

det(LPP TLT ) = Jn(L).

Now by (3.7), the linear map T can be written as

T = (B | 0)

for some n × n-matrix B. Clearly, we have TT T = BBT and hence Jn(T ) = | det(B)|.
Since the Lemma clear holds if det(B) = 0 and thus we may assume det(B) 6= 0. Observe

that

L−1({y}) = P (T−1({y}))
and hence

P−1(A ∩ L−1({y})) = P−1(A) ∩ T−1({y}) = P−1(A) ∩
(
{B−1(y)} × Rm−n

)
for all y ∈ Rn. It follows therefore from Fubini’s theorem that the function

y 7→ Hm−n
(
A ∩ L−1({y})

)
= Hm−n

(
P−1(A ∩ L−1({y}))

))
is Ln-measurable and together with the transformation formula∫

Rn
Hm−n

(
A ∩ L−1({y})

)
dLn(y) =

∫
Rn
| det(B)|Hm−n

(
A ∩ L−1({B(y)})

)
dLn(y)

= Jn(L)

∫
Rn
Hm−n

(
P−1(A) ∩ ({y} × Rn−m)

)
dLn(y)

= Jn(L)Lm(P−1(A)) = Jn(L)Lm(A).

�
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The next lemma is an analog of the linear approximation lemma 3.20. It will be used

in the (sketch of) proof of the coarea formula that will also be important later.

Lemma 3.28. Let U ⊂ Rm be open and ϕ : U → Rn Lipschitz, where m > n. Then

there exists a countable collection {Bk}k≥0 of Borel sets Bk ∈ U such that

i) U =
⋃∞
k=0Bk

ii) If x ∈ B0, then either ϕ is not differentiable at x or rank(dϕx) < n

iii) For every k ≥ 1 there exists a projection pk : Rm → Rm−n and Lipschitz maps

uk : Rm → Rn × Rm−n and vk : Rn × Rm−n → Rm such that uk(x) = (ϕ(x), pk(x))

and vk(uk(x)) = x for all x ∈ Bk.

For 1 ≤ l ≤ m we write

Λ(m, l) =
{
α : {1, . . . , l} → {1, . . . ,m} strictly increasing

}
and for α ∈ Λ(m, l) we denote by pα : Rm → Rl the projection

pα(x1, . . . , xm) = (xα(1), . . . , xα(l)).

The projections in the lemma are of the form pk = pαk for some αk ∈ Λ(m,m− n).

Proof. We define B0 as the set of x ∈ U such that either ϕ is not differentiable at x or

rank(dϕx) < n. Observe that if V ⊂ Rm is a linear subspace of dimension m−n, then there

exists some α ∈ Λ(m,m−n) such that pα(V ) = Rm−n. Thus for every x ∈ U\B0, there is

α ∈ Λ(m,m−n) such that the map uα : Rm → Rn×Rm−n given by uα(y) = (ϕ(y), pα(y))

satisfies rank(d(uα)x) = m. Thus we have

U\B0 =
⋃

α∈Λ(m,m−n)

Aα,

where Aα = {x ∈ U\B0 : rank(d(uα)x) = m}. By Lemma 3.20, we can cover each Ak by

countably many Borel sets Eα,k such that uα is bi-Lipschitz on Aα ∩Eα,k. Then the map

vα,k := (uα|Aα∩Eα,k)−1 is Lipschitz and hence has a Lipschitz extension v̄α,k : Rn×Rm−n →
Rm. Clearly, v̄α,k(uα(x)) = x ∀x ∈ Aα ∩ Eα,k. Relabeling yields the lemma. �

We give a short sketch of the proof of (i) of the coarea formula. We only consider the

case that ϕ is differentiable at every x ∈ A and rank(dϕx) = n. Let Bk, uk, pk, vk be as

in Lemma 3.28. Fix k ≥ 1 and set B := Bk, u := uk, p := pk and v := vk. We will show

that A′ := A ∩B satisfies

(3.8)

∫
A′
Jn(dϕx)dLm(x) =

∫
Rn
Hm−n(A′ ∩ ϕ−1({y}))dLn(y).

For y ∈ Rn, define a Lipschitz map vy : Rm−n → Rm by vy(z) := v(y, z) and notice that

the restriction

vy : u(A′) ∩
(
{y} × Rm−n)→ A′ ∩ ϕ−1(y)

is bijective. Recall here that v ◦ u(x) = x for all x ∈ A′ and u(x) = (ϕ(x), p(x)). Hence,

we obtain by the area formula that

Hm−n(A′ ∩ ϕ−1(y)
)

=

∫
u(A′)∩

(
{y}×Rm−n

) Jm−n(d(vy)z)dHm−n(z)
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and by Fubini and change of variable formula, we obtain∫
Rn
Hm−n(A′ ∩ ϕ−1(y)

)
dLn(y) =

∫
Rn

∫
u(A′)∩

(
{y}×Rm−n

) Jm−n((dvy)z)dHm−n(z)dLn(y)

=

∫
u(A′)

Jm−n((dvy)z)dLm(y, z)

=

∫
A′
Jm−n(d(vϕ(x))p(x))| det(dux)|dLm(x).

It remains to show that

Jn(dϕx) = Jm−n(d(vϕ(x))p(x))| det(dux)|(3.9)

for a.e. x ∈ A′.
For a.e. x ∈ A′, we have dvu(x) ◦ dux = 1. Fix such x and set W := ker(dϕx). Since

dux = (dϕx, p), we have dux|W = (0, p|W ) and hence

d(vϕ(x))p(x) = dvu(x)(0, ·) = (p|W )−1

and thus

Jm−n(d(vϕ(x))p(x)) = Jm−n((p|W )−1).

Let W⊥ be the subspace orthogonal to W . Let I, I⊥ be unit cubes in W and W⊥,

respectively. Fubini implies

| det(dux)| = Lm
(
dux(I × I⊥)

)
= Ln

(
dϕx(I

⊥)
)
Lm−n(p(I)).

Since

Jn(dϕx) =

∫
Rn
Hm−n(I × I⊥ ∩ dϕ−1

x (y))dLn(y) = Ln(dϕx(I
⊥))

and

Jm−n((p|W )−1)Hm−n(p(I)) = Hm−n(I) = 1,

we get

| det(dux)| = Jn(dϕx) ·
1

Jm−n(d(vϕ(x))p(x))
,

proving (3.9).

3.4. Rectifiable sets. Rectifiable sets are generalized submanifolds.

Definition 3.29. A set E ⊂ Rn is called m-rectifiable if there exist Lipschitz maps

ϕk : Rm → Rn, k ∈ N, such that

Hm
(
E\

∞⋃
k=1

ϕk(Rm)
)

= 0.

Example 3.30. 1) Write Q2 = {q1, q2, · · · } ⊂ R2. Then the set

E =
∞⋃
k=1

∂B(qk, 2
−k) ⊂ R2
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is 1-rectifiable, H1-measurable, H1(E) <∞, and dense in R2.

2) We construct a compact subset C ⊂ [0, 1]2 as follows

• C0 = Q0
1 := [0, 1]2

• C1 =
⋃4
j=1 Q

1
j , where the Q1

j are the four squares of side-length 1
4

in the corners of

Q0
1

• Replace each Q1
j by the four square of side-length 1

42
in its corners to obtain

C2 =
42⋃
j=1

Q2
j

and set

C :=
∞⋃
k=1

Ck.

Then C is compact. Since Ck consists of 4k squares of diameter
√

24−k, it follows that

H1
δ(C) ≤ 2 · 4k ·

√
24−k

2
=
√

2

for all δ > 0, and thus H1(C) < ∞. We can show that H1(C) > 0. For this, let L ⊂ R2

be a line of slope -2 (as in the course). The orthogonal projection P (Ck) of Ck to L is

always the same interval. Thus

H1(C) ≥ H1(P (C)) > 0.

As we will see later, the set C is not 1-rectifiable even though ∂Ck is 1-rectifiable.

Theorem 3.31. Let E ⊂ Rn be m-rectifiable, Hm-measurable, with Hm(E) <∞. Then

for every λ > 1 there exist compact sets Ki ⊂ Rm, i ∈ N, and λ-bi-Lipschitz maps

ϕi : Ki → E

such that the images ϕi(Ki) are pairwise disjoint and satisfy

Hm
(
E\

∞⋃
i=1

ϕi(Ki)
)

= 0.

This is a bit like an atlas for a smooth submanifold.

Proof. Let ϕ : Rm → Rn be one of the countably many Lipschitz maps whose images cover

Hm-a.e. of E. By Lemma 3.20, there exist Borel sets E0, E1, · · · ⊂ Rm such that

Rm =
∞⋃
k=0

Ek

with Hm(ϕ(E0)) = 0 and for k ≥ 1 the restriction ϕ|Ek is injective and there exists an

injective linear map Lk : Rm → Rn such that

ϕ ◦ (Lk|Ek)−1 and Lk ◦ (ϕ|Ek)−1

are both λ-Lipschitz.
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Fix k ≥ 1 and identify the subspace Lk(Rm) with Rm via a linear isometric map

T : Rm → Lk(Rm). Set A := T−1(Lk(Ek)), which is Borel. Then the map ϕ̃k : A→ Rn,

ϕ̃k := ϕ ◦ L−1 ◦ T |A
is λ-bi-Lipschitz. Moreover, the subset Ak = ϕ̃−1

k (E) is Lm-measurable.

Doing this for all k ≥ 1 and every ϕ we obtain the existence of countably many

λ-bi-Lipschitz maps

ϕk : Ak ⊂ Rm → Rn

with ϕk(Ak) ⊂ E and Hm
(
E\
⋃
ϕk(Ak)

)
= 0. Now the proof of the theorem can be

completed using the inner regularity of the Lebesgue measure.

�

A source of examples is given by the following result.

Theorem 3.32. Let ϕ : Rm → Rn be a Lipschitz map with m > n. Then for almost

every y ∈ Rn the fiber ϕ−1({y}) is (m− n)-rectifiable.

Proof. Let Bk, uk, vk be as in Lemma 3.28. By the coarea formula,

0 =

∫
B0

Jn(dϕx)dx =

∫
Rn
Hm−n(B0 ∩ ϕ−1({y})

)
dy.

Thus, for almost every y ∈ Rn,

Hm−n(B0 ∩ ϕ−1({y})
)

= 0.

Fix such y. For k ≥ 1, the map

ψk : uk(Bk) ∩ {y} × Rm−n → Bk ∩ ϕ−1({y})

given by

ψk(z) = vk(y, z)

is Lipschitz and bijective since vk ◦ uk(x) = x for all x ∈ Bk and uk(x) = (ϕ(x), pk(x)).

By McShane’s lemma there exists a Lipschitz extension ψ̄k : Rm−n → Rn of ψk. Clearly,

ϕ−1({y}) = ϕ−1({y}) ∩
∞⋃
k=0

Bk

=
(
B0 ∪ ϕ−1({y})

)
∪
⋃
k≥1

ψ̄k(Rm−n).

Since B0 ∪ ϕ−1({y}) has Hm−n-measure zero, ϕ−1({y}) is (m− n)-rectifiable.

�

By combining the previous two theorems we obtain

Theorem 3.33. Let E ⊂ RN be n-rectifiable, Hn-measurable and with Hn(E) <∞. Let

ϕ : RN → Rm be Lipschitz with m < n. Then for almost every y ∈ Rm the set

E ∩ ϕ−1({y})

is (m− n)-rectifiable and Hm−n-measurable.
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We now show that m-rectifiable sets have approximate tangent planes almost every-

where. For 1 ≤ m < n, let G(n,m) denote the space of all m-dimensional linear subspace

of Rn. For V ∈ G(n,m) and x ∈ Rn and 0 < s < 1 we define a cone centered at x by

C(x, V, s) :=
{
y ∈ Rn : d(y − x, V ) < s · |y − x|

}
.

Definition 3.34. Let E ⊂ Rn and x ∈ Rn. An m-plane V ∈ G(n,m) is said to be an

approximate tangent m-plane of E at x if Θm(E, x) > 0 and

lim
r→0

1

rm
Hm
(
E ∩B(x, r)\C(x, V, s)

)
= 0

for every 0 < s < 1.

The set of all approximate tangent m-planes of E at x is denoted by apTanm(E, x).

If there is only one, then we write V = apTanm(E, x).

Theorem 3.35. Let E ⊂ Rn be Hm-measurable and Hm(E) < ∞. Then E is m-

rectifiable if and only if for Hm-a.e. x ∈ E there exists a unique approximate tangent

m-plane of E at x. In this case, Θm(E, x) = 1 for Hm-a.e. x ∈ E.

Proof. We only prove the implication ⇒ and the second statement. For the reverse im-

plication, we refer to Mattila’s book [7].

Let E ⊂ Rn be m-rectifiable, Hm-measurable and Hm(E) <∞. By Corollary 2.34,

Θm(E, z) ≤ 1

for Hm-a.e. z ∈ E.

Let λ > 1. By Theorem 3.31, there exist compact sets Ki ⊂ Rm, i ∈ N and λ-bi-

Lipschitz maps ϕi : Ki → E such that

Hm
(
E\

∞⋃
i=1

ϕi(Ki)
)

= 0.

Fix i and write ϕ = ϕi and K = Ki. Let x ∈ K be a Lebesgue density point of K and

such that (a Lipschitz extension of) ϕ is differentiable at x. Note that a.e. x ∈ K has

this property and that dϕx is injective.

Since ϕ is λ-bi-Lipschitz, it follows that

ϕ(K ∩B(x, r/λ)) ⊂ B(ϕ(x), r) ∩ E

for all r > 0 and hence

Hm
(
E ∩B(ϕ(x), r)

)
≥ Hm

(
ϕ(K ∩B(x, r/λ))

)
≥ λ−mLm(K ∩B(x, r/λ)).

Therefore,

Θm(E,ϕ(x)) ≥ λ−2m.

Now, let 0 < s < 1 and set V := dϕx(Rm). Then ∃r0 > 0 such that

|ϕ(y)− ϕ(x)− dϕx(y − x)| ≤ s

2λ
|y − x|
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for all y ∈ K ∩ B(x, λr0). Thus if w = ϕ(y) ∈ ϕ(K) ∩ B(ϕ(x), r), then y ∈ K ∩ B(x, λr)

and thus

|w − ϕ(x)− dϕx(y − x)| ≤ s

2
|w − ϕ(x)|,

which implies w ∈ C(ϕ(x), V, s) ∪ {ϕ(x)}. This shows that

ϕ(K) ∩B(ϕ(x), r) ⊂ C(ϕ(x), V, s) ∪ {ϕ(x)}

for r < r0. By Corollary 2.34, we have

Θm

(
E\ϕ(K), ϕ(x)

)
= 0

for a.e. x ∈ K and hence, since

E∩B(ϕ(x), r)\C(ϕ(x), V, s)

⊂
(
E\ϕ(K)

)
∩B(ϕ(x), r) ∪ ϕ(K) ∩B(ϕ(x), r)\C(ϕ(x), V, s)

⊂
(
E\ϕ(K)

)
∩B(ϕ(x), r) ∪ {ϕ(x)}

for 0 < r < r0, we obtain

lim
r→0

1

rm
Hm
(
E ∩B(ϕ(x), r)\C(ϕ(x), V, s)

)
= 0.

Since λ > 1 and i ∈ N were arbitrary, it follows that at Hm-a.e. z ∈ E, the set E has

an approximate tangent m-plane and Θm(E, z) = 1.

We leave it as an exercise to show that for a.e. x as above, the m-plane V is the

unique approximate tangent m-plane of E at ϕ(x).

�

It can be shown that the set C ⊂ R2 in Example 3.30 does not have an approximate

tangent 1-plane a.e.

4. Review of differential forms

4.1. m-vectors and m-covectors. Let V be an n-dimensional vector space over R. The

space of 0-vectors and of 1-vectors are defined by Λ0V := R and Λ1V := V .

For 2 ≤ m ≤ n, let Fm(V ) be the free vector space over the m-fold product V ×· · ·×V ,

thus Fm(V ) consists of formal linear combinations

Fm(V ) =
{∑

finite

λi(v
i
1, . . . , v

i
m)
}

with the obvious addition and scalar multiplication. Let Im(V ) be the subspace of Fm(V )

generated by elements of the form

• (v1, . . . , vi + v′i, . . . , vm)− (v1, . . . , vi, . . . , vm)− (v1, . . . , v
′
i, . . . , vm)

• (v1, . . . , λvi, . . . , vm)− λ(v1, . . . , vi, . . . , vm)

• (v1, . . . , vi, . . . , vi, . . . , vm)

for λ ∈ R and 1 ≤ i ≤ m.

The space of m-vectors in V is defined to be the quotient space

ΛmV := Fm(V )/Im(V )
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and the equivalence class of (v1, . . . , vm) is denoted by

v1 ∧ · · · ∧ vm.

Elements of this form are called simple m-vectors.

Example 4.1. 1) If 1 ≤ i < j ≤ m, then

v1 ∧ · · · ∧ vi · · · ∧ vj · · · ∧ vm = −v1 ∧ · · · ∧ vj · · · ∧ vi · · · ∧ vm.

2) v1, . . . , vm are linearly dependent if and only if

v1 ∧ · · · ∧ vm = 0

3) Let {e1, e2, e3, e4} ⊂ R4 be the standard basis. Then

e1 ∧ e2 + e3 ∧ e4

is not a simple 2-vector.

The space ΛmV has dimension

dim ΛmV =

(
n

m

)
.

If {e1, . . . , en} is a basis of V , then a basis of ΛmV is given by

{eα = eα(1) ∧ · · · ∧ eα(m) : α ∈ Λ(n,m)}.

Thus, every element in ΛmV can be written uniquely in the form∑
α∈Λ(n,m)

λαeα

with λα ∈ R and we can identify ΛmV with R(nm). If V carries an inner product and

{e1, . . . , en} is an orthonormal basis of V , then we define an inner product on ΛmV in

such a way that {eα : α ∈ Λ(n,m)} is an orthonormal basis.

If 1 ≤ m, l < n are such that m+ l ≤ n, then the wedge product is the bilinear map(
ΛmV

)
×
(
ΛlV

)
→ Λm+lV

given for simple m-vectors and l-vectors by

(v1 ∧ · · · ∧ vm, w1 ∧ · · · ∧ wl) = v1 ∧ · · · ∧ vm ∧ w1 ∧ · · · ∧ wl
and linear extension. If u ∈ ΛmV and w ∈ ΛlV , then

u ∧ w = (−1)mlw ∧ u.

Any linear map T : V → W , where W is a finite dimensional vector space, extends to a

linear map

ΛmT : ΛmV → ΛmW

by

ΛmT (v1 ∧ · · · ∧ vm) = T (v1) ∧ · · · ∧ T (vm)

and linear extension.
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We now define the space ΛmV of m-covectors in V . This space can be defined as the

dual space of ΛmV . However, we prefer to give an alternative but equivalent definition.

Let V be an n-dimensional vector space over R and let

V ∗ := {T : V → R linear }

be its dual space.

Let m ∈ N. A function T : V × · · · × V → R is called

i) multilinear (or m-linear) if T is linear in each argument:

T (v1, · · · , vi + λv′i, · · · , vm) = T (v1, · · · , vi, · · · , vm) + λT (v1, · · · , v′i, · · · , vm)

ii) alternating if

T (v1, · · · , vi, · · · , vj, · · · , vm) = −T (v1, · · · , vj, · · · , vi, · · · , vm)

for all 1 ≤ i < j ≤ m.

Definition 4.2. The space ΛmV of m-covectors in V is the vector space

ΛmV := {T : V × · · · × V → R m-linear, alternating}

The determinant is the prime example of an n-covector.

Example 4.3. The map Rn × · · · × Rn → R given by

(v1, · · · , vn) 7→ det(v1, · · · , vm)

is n-linear and alternating and this defines an element of ΛnRn.

Note. Λ1V = V ∗.

We now define the wedge product (or exterior product) of m-covectors: for k ≥ 2

denote by Sk the group of permutations of {1, . . . , k}. Thus, an element of Sk is just a

bijection {1, . . . , k} → {1, . . . , k}. A permuation σ ∈ Sk is called a transposition if there

exist 1 ≤ i < j ≤ k such that σ(i) = j, σ(j) = i and σ(l) = l for all other l. Every

permutation σ can be written as a finite number M of transpositions. The sign of σ is

defined by

Sign(σ) = (−1)M

and is well-defined.

Lemma 4.4. If T ∈ ΛmV and σ ∈ Sm, then for all v1, . . . , vm ∈ V ,

T (vσ(1), · · · , vσ(m)) = Sign(σ)T (v1, · · · , vm).

Proof. Exercise. �

Let m, l ≥ 1. A permutation σ ∈ Sm×l is called an (m, l)-shuffe if

σ(1) < σ(2) < · · · < σ(m) and σ(m+ 1) < · · · < σ(m+ l).

Definition 4.5. If α ∈ ΛmV and β ∈ ΛlV , then the wedge product (or exterior product)

of α and β is defined by

α ∧ β(v1, · · · , vm+l) :=
∑

σ (m,l)-shuffe

Sign(σ)α(vσ(1), · · · , vσ(m))β(vσ(m+1), · · · , vσ(m+l)).
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Example 4.6. ξ1, ξ2 ∈ V ∗ = Λ1V ⇒

ξ1 ∧ ξ2(v1, v2) = ξ1(v1)ξ2(v2)− ξ1(v2)ξ2(v1)

= det

(
ξ1(v1) ξ1(v2)

ξ2(v1) ξ2(v2)

)
.

The most important properties of the wedge product are

Proposition 4.7. Let α ∈ ΛmV , β ∈ ΛlV , and γ ∈ ΛkV . Then

i) α ∧ β ∈ Λm+lV and

α ∧ β = (−1)mlβ ∧ α
ii) The wedge product is bilinear

iii) The wedge product is associative:

(α ∧ β) ∧ γ = α ∧ (β ∧ α).

Proof. See e.g. [6]. �

Proposition 4.8. If ξ1, · · · , ξm ∈ V ∗, then for all v1, · · · , vm ∈ V

(ξ1 ∧ · · · ∧ ξm)(v1, · · · , vm) = det(ξi(vj)).

In particular, from the definition of the determinant we obtain

(ξ1 ∧ · · · ∧ ξm)(v1, · · · , vm) =
∑
σ∈Sm

Sign(σ)ξ1(vσ(1)) · · · ξm(vσ(m)).

Proof. By induction on m; see e.g. [6]. �

Let {e1, · · · , en} ⊂ V be a basis of V and let {e∗1, · · · , e∗n} ⊂ V ∗ be the dual basis,

thus

e∗i (ej) =

{
0, if i 6= j

1, otherwise

Proposition 4.9. The space ΛmV has dimension
(
n
m

)
and a basis is given by

{e∗α := e∗α(1) ∧ · · · ∧ e∗α(m) : α ∈ Λ(n,m)}.

Proof. See e.g. [6]. �

Remark 4.10. Any ω ∈ ΛmV can be written uniquely as

ω =
∑

α∈Λ(n,m)

ωαe
∗
α

and the ωα’s are given by

ωα = ω(eα(1), · · · , eα(m)).

If V contains an inner product and {e1, · · · , en} is an orthonormal basis, then we can

endow ΛmV with an inner product such that the e∗α are orthonormal.

There exists a natural isomorphism

ΛmV → (ΛmV )∗
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defined as follows. Given ω ∈ ΛmV define an element ω̂ of (ΛmV )∗ by

ω̂(v1 ∧ · · · ∧ vm) := ω(v1, · · · , vm)

and linear extension. It can easily be checked that ω̂ is well-defined and that the map

ω 7→ ω̂ is an isomorphism. We will write

〈ω, τ〉 := ω̂(τ)

for τ ∈ ΛmV .

Suppose now that V carries an inner product 〈·, ·〉. Then the map

R : V → V ∗

v 7→ 〈v, ·〉
is an isomorphism. If {e1, · · · , en} ⊂ V is an orthonormal basis of V and {e∗1, · · · , e∗n} ⊂ V ∗

is the dual basis, then

R(ei) = e∗i ∀i = 1, · · · , n.
The map R induces an isomorphism

Rm : ΛmV → ΛmV

by

Rm(
∑

α∈Λ(n,m)

vαeα) :=
∑

α∈Λ(n,m)

vαe
∗
α

which satisfies

Rm(v1 ∧ · · · ∧ vm) = R(v1) ∧ · · · ∧R(vm)

for all v1, · · · , vm ∈ V .

The inner product on ΛmV for which {eα : α ∈ Λ(n,m)} is an orthonormal basis

satisfies

(4.1) 〈v1 ∧ · · · ∧ vm, ω1 ∧ · · · ∧ ωm〉 = 〈Rm(v1 ∧ · · · ∧ vm), ω1 ∧ · · · ∧ ωm〉,

where on the right-hand side, 〈·, ·〉 denotes the dual pairing.

Exercise: prove (4.1).

Similarly, the inner product on ΛmV for which {e∗α : α ∈ Λ(n,m)} is an orthonormal

basis satisfies

〈ξ ∧ · · · ∧ ξm, η1 ∧ · · · ∧ ηm〉 = 〈ξ1 ∧ · · · ∧ ξm, R−1
m (η1 ∧ · · · ∧ ηm)〉.

We now specialize to V = Rn and let 〈·, ·〉 be the standard Euclidean inner product and

{e1, · · · , en} the standard basis. We denote by | · | the norms on ΛmRn and ΛmRn coming

from the inner products induced as above.

Lemma 4.11. If T : Rm → Rn is linear, then

|T (e1) ∧ · · · ∧ T (em)| = Jm(T ).

In particular, |T (e1) ∧ · · · ∧ T (em)| is just the Hausdorff m-measure of the parallelepiped

spanned by the vectors T (e1), · · · , T (em).
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Proof. By the formula (4.1) and Proposition 4.8, we have

|T (e1) ∧ · · · ∧ T (em)|2 = 〈T (e1) ∧ · · · ∧ T (em), T (e1) ∧ · · · ∧ T (em)〉
= 〈R

(
T (e1) ∧ · · · ∧ T (em)

)
, T (e1) ∧ · · · ∧ T (em)〉

= det
(
〈T (ei), T (ej)〉

)
= det(T TT ) = Jm(T )2.

�

4.2. Differential forms and Stokes’ theorem. Let U ⊂ Rn be open and m ≥ 0. The

space of smooth differential m-forms on U is denoted by

Em(U) := C∞(U,ΛmRn).

Every element ω ∈ Em(U) can be uniquely written as

ω =
∑

α∈Λ(n,m)

ωαdx
α

for some functions ωα ∈ C∞(U). Here, {dx1, · · · , dxn} denotes the dual basis of {e1, · · · , en}
and

dxα := dxα(1) ∧ · · · ∧ dxα(m).

Notice that

• E0(U) = C∞(U).

• E1(U) =
{∑n

i=1 fidx
i : fi ∈ C∞(U)

}
• En(U) =

{
fdx1 ∧ · · · ∧ dxn : f ∈ C∞(U)

}
.

The space of compactly supported smooth differential m-forms in U is denoted by

Dm(U) = C∞c (U,ΛmRn) ⊂ Em(U).

By definition, the support of ω ∈ Em(U) is

spt(ω) := {x ∈ U : ω(x) 6= 0} ∩ U.

Definition 4.12. The exterior derivative of ω ∈ Em(U) is the form dω ∈ Em+1(U) defined

by

dω :=
∑

α∈Λ(n,m)

n∑
i=1

∂ωα
∂xαi

dxi ∧ dxα,

where ω =
∑

α∈Λ(n,m) ωαdx
α.

For example, if f ∈ C∞(U) = E0(U), then

df =
n∑
i=1

∂f

∂xi
dxi.

The following properties are obtained by a direct calculation.

Proposition 4.13. If ω ∈ Em(U), ν ∈ Ek(U), and f ∈ E0(U), then

(i) d(dω) = 0

(ii) d(fω) = df ∧ ω + fdω
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(iii) d(ω ∧ ν) = (dω) ∧ ν + (−1)mω ∧ (dν)

Proof. Exercise. �

Notice that the wedge product ω ∧ ν is defined pointwise:

(ω ∧ ν)(x) := ω(x) ∧ ν(x).

Notice also that

spt(dω) ⊂ spt(ω)

and that the inclusion can be strict.

Definition 4.14. Let U ⊂ Rn and V ⊂ RN be open and ϕ : U → V smooth. The

pull-back of ω ∈ Em(V ) under ϕ is the differential form ϕ∗ω ∈ Em(U) defined by(
ϕ∗ω

)
(x)(v1, · · · , vm) := ω(ϕ(x))(dϕx(v1), · · · , dϕx(vm))

for all x ∈ U and v1, · · · , vm ∈ Rn.

If we denote

• {dx1, · · · , dxn} the dual basis of the standard basis in Rn

• {dy1, · · · , dyN} the dual basis of the standard basis in RN

• ϕ = (ϕ1, · · · , ϕN)

• ω =
∑

α∈Λ(N,m) ωαdy
α

then

ϕ∗ω =
∑

β∈Λ(n,m)

∑
α∈Λ(N,m)

ωα ◦ ϕ det
(∂ϕα(i)

∂xβ(j)

)
dxβ.

Indeed, for x ∈ U and β ∈ Λ(n,m), we have

(ϕ∗ω)(x)(eβ(1), · · · , eβ(m)) = ω(ϕ(x))
( ∂ϕ

∂xβ(1)

(x), · · · , ∂ϕ

∂xβ(m)

(x)
)

=
∑

α∈Λ(N,m)

ωα(ϕ(x))dxα
( ∂ϕ

∂xβ(1)

(x), · · · , ∂ϕ

∂xβ(m)

(x)
)

=
∑
α

∑
σ∈Sm

ωα(ϕ(x)) Sign(σ)
∂ϕα(σ(1))

∂xβ(1)

(x) · · ·
∂ϕα(σ(m))

∂xβ(m)

(x)

=
∑
α

ωα ◦ ϕ(x) det
(∂ϕα(i)

∂xβ(j)

(x)
)
.

Notice that ϕ∗ω need not have compactly supported, even if ω has compact support.

A direct calculation shows.

Proposition 4.15. If ω ∈ Em(V ) and ν ∈ Ek(V ), then

(i) ϕ∗(ω ∧ ν) = (ϕ∗ω) ∧ (ϕ∗ν)

(ii) d(ϕ∗ω) = ϕ∗(dω)

Proof. Exercise. �
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We briefly recall Stokes’ theorem. For this, let M ⊂ U ⊂ Rn be a smooth oriented

m-dimensional submanifold and {(Vλ, ψλ)} an oriented atlas, that is,

det
(
d(ϕλ′ ◦ ψ−1

λ )
)
> 0 ∀x, λ, λ′.

Lemma 4.16. If z ∈ Vλ ∩ Vλ′ , then with x := ψλ(z) and x′ := ψλ′(z), we have

∂ψ−1
λ

∂x1
(x) ∧ · · · ∧ ∂ψ−1

λ

∂xm
(x)∣∣∂ψ−1

λ

∂x1
(x) ∧ · · · ∧ ∂ψ−1

λ

∂xm
(x)
∣∣ =

∂ψ−1
λ′

∂x1
(x′) ∧ · · · ∧ ∂ψ−1

λ′
∂xm

(x′)∣∣∂ψ−1
λ′

∂x1
(x′) ∧ · · · ∧ ∂ψ−1

λ′
∂xm

(x′)
∣∣ .

Proof. Since ψ−1
λ = ψ−1

λ′ ◦ (ψλ′ ◦ ψ−1
λ ), we have, with ρ := ψλ′ ◦ ψ−1

λ ,

∂ψ−1
λ

∂xi
(x) =

m∑
j=1

∂ψ−1
λ′

∂xj
(x′)

∂ρj
∂xi

(x).

It follows that

∂ψ−1
λ

∂x1

(x) ∧ · · · ∧ ∂ψ
−1
λ

∂xm
(x) = det(dρx)

∂ψ−1
λ′

∂x1

(x′) ∧ · · · ∧ ∂ψ
−1
λ′

∂xm
(x′)

and hence the lemma. �

It follows from the lemma that the m-vector field

τM : M → ΛmRn

given by

τM(z) :=

∂ψ−1
λ

∂x1
(x) ∧ · · · ∧ ∂ψ−1

λ

∂xm
(x)∣∣∂ψ−1

λ

∂x1
(x) ∧ · · · ∧ ∂ψ−1

λ

∂xm
(x)
∣∣ ,

where x = ψλ(z) is well-defined. We call τM the orientation of M .

We can now rewrite the classically defined integral∫
M

ω

for ω ∈ Dm(U) as follows.

Proposition 4.17. For every ω ∈ Dm(U), we have∫
M

ω =

∫
M

〈ω(x), τM(x)〉dHm(x).

For the definition of
∫
M
ω, see [3, 6] or the proof below.
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Proof. If spt(ω)∩M ⊂ Vλ for some λ, then, by definition of
∫
M
ω, we have with ϕ := ψ−1

λ

and W := ψλ(Vλ),∫
M

ω =

∫
W

ϕ∗ω
definition

=

∫
W

(ϕ∗ω)(x)(e1, · · · , em)dx

=

∫
W

ω(ϕ(x))
( ∂ϕ
∂x1

(x), · · · , ∂ϕ
∂xm

(x)
)
dx

Lemma 4.16
=

∫
W

Jm(dϕx)〈ω(ϕ(x)), τM ◦ ϕ−1(x)〉dx

Theorem 3.17
=

∫
Vλ

〈ω(x), τM(x)〉dHm(x).

Now the proof follows with a partition of unity argument. �

IfM is a smoothm-dimensional submanifold with boundary ∂M , then ∂M is a smooth

(m− 1)-dimensional submanifold without boundary. An orientation on ∂M can be given.

Theorem 4.18 (Stokes’ theorem). If M ⊂ U is smooth oriented m-dimensional subman-

ifold with boundary and ω ∈ Dm−1(U), then∫
M

dω =

∫
∂M

ω.

We will need a topology on Dm(U). For this, we first define a topology on Em(U).

For each K ⊂ U compact and each i ≥ 0 define a semi-norm on Em(U) by

viK(ω) := sup
{∣∣ ∂jωα
∂xk1 · · · ∂xkj

(x)
∣∣ : x ∈ K,α ∈ Λ(n,m), 0 ≤ j ≤ i, k1, · · · , kj ∈ {1, · · · , n}

}
,

where we have written ω =
∑
ωαdx

α.

By definition, a subset of Em(U) is open if it is the union of finite intersections of sets

of the form

V (η,K, i, r) =
{
η + ω : ω ∈ Em(U), viK(ω) < r

}
for η ∈ Em(U) and K ⊂ U compact, i ≥ 0, r > 0. This defines a topology on Em(U).

Now we define a topology on Dm(U) as follows: a subset Γ ⊂ Dm(U) is called open if

for every K ⊂ U compact the set

Γ ∩
{
ω ∈ Em(U) : spt(ω) ⊂ K

}
is open in {ω ∈ Em(U) : spt(ω) ⊂ K} in the relative topology in Em(U).

Example 4.19. Recall that D0(R) = C∞c (R). The subset

Γ :=
{
f ∈ C∞c (R) : |f(x)| < 1

k
∀x ∈ [k, k + 1],∀k ∈ N

}
is open with respect to the topology on D0(R).

5. The theory of currents in Euclidean space

5.1. Definitions and examples. Let U ⊂ Rn be open and m ≥ 0.
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Definition 5.1. An m-current on U is a continuous linear functional on Dm(U). The

space of m-currents on U is denoted by Dm(U).

A 0-current is also called a distribution.

It follows from the definition of the topology on Dm(U) that a linear functional

T : Dm(U) → R is an m-current on U if and only if for every K ⊂ U compact there

exist M ≥ 0 and i ≥ 0 such that

|T (ω)| ≤MviK(ω)

for all ω ∈ Dm(U) ∩ {η : spt(η) ⊂ K}.
We first give some examples which will appear later again.

Example 5.2. (1) Let x ∈ Rn. Then the functional

[x](f) := f(x)

defines a 0-current on Rn.

(2) Let a, b ∈ R with a < b. Then the functional

[a, b](fdx) :=

∫ b

a

f(x)dx

defines a 1-current on R.

(3) Let M ⊂ Rn be a smooth, oriented m-dimensional submanifold. Then the func-

tional

[M ](ω) :=

∫
M

ω =

∫
M

〈ω(x), τM(x)〉dHm(x)

defines an m-current on Rn.

(4) The functional on D1(R2) given by

T (ω) :=

∫ 1

0

ω(s, 0)(e2)ds

defines a 1-current on R2.

(5) If Θ ∈ L1(U), then the functional

[Θ](fdx1 ∧ · · · ∧ dxn) :=

∫
U

fΘdLn

defines an n-current on U ⊂ Rn.

(6) If T ∈ Dm(U) and v ∈ Dk(U) with k ≤ m, then the functional on Dm−k(U) defined

by

(Txv)(ω) := T (v ∧ ω)

is an (m− k)-current on U , called the restriction on T to v.

Inspired by Stokes’ theorem, we define the boundary of a current as follows.

Definition 5.3. The boundary of a current T ∈ Dm(U) is the current ∂T ∈ Dm−1(U)

defined by

∂T (ω) := T (dω)

for ω ∈ Dm−1(U). If m = 0, then ∂T = 0 by definition.
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It follows from the characterization of continuity given after the definition of a current

and the fact that

vik(dω) ≤ vi+1
K (ω)

the functional ∂T is continuous and hence an (m− 1)-current. If m ≥ 1, then ∂(∂T ) = 0

because d(dω) = 0. We compute the boundary of some of the examples given above:

Example 5.4. (1) If a, b ∈ R with a < b, then

∂[a, b] = [b]− [a]

because

∂[a, b](f) = [a, b](f ′dx) =

∫ b

a

f ′(x)dx

= f(b)− f(a) = [b](f)− [a](f).

(2) If M ⊂ Rn is a smooth, oriented m-dimensional submanifold with (possibly empty)

boundary, then

∂[M ] = [∂M ].

Indeed, by Stokes’ theorem, we have for ω ∈ Dm−1(Rn),

∂[M ](ω) = [M ](dω) =

∫
M

dω =

∫
∂M

ω = [∂M ](ω).

(3) If T ∈ D1(R2) is the current given by

T (ω) =

∫ 1

0

ω(s, 0)(e2)ds,

then

∂T (f) = T
(∂f
∂x
dx+

∂f

∂y
dy
)

=

∫ 1

0

∂f

∂y
(s, 0)ds

for all f ∈ D0(R2).

Definition 5.5. The support of a current T ∈ Dm(U) is defined by

spt(T ) := U\
{
V ⊂ Rn : V open such that T (ω) = 0 ∀ω ∈ Dm(U) with spt(ω) ⊂ V

}
.

In particular, if ω ∈ Dm(U) satisfies spt(ω) ∩ spt(K) = ∅, then T (ω) = 0.

We now define the mass of a current, which can be thought of as its “volume”. We

first define a norm on Dm(U).

Definition 5.6. The comass of ω ∈ ΛmRn is defined by

‖ω‖ := sup
{
〈ω, τ〉 : τ ∈ ΛmRn simple , |τ | ≤ 1

}
and the comass of ω ∈ Dm(U) is defined by

‖ω‖ := sup
{
‖ω(x)‖ : x ∈ U

}
.

Notice that for ω ∈ ΛmRn we have

‖ω‖ = sup
{
ω(v1, · · · , vm) : |vi| ≤ 1

}
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and ‖ω‖ ≤ |ω|.
Definition 5.7. The mass of a linear functional T : Dm(U)→ R is

M(T ) := sup
{
T (ω) : ω ∈ Dm(U), ‖ω‖ ≤ 1

}
.

If a linear functional T : Dm(U)→ R satisfies M(T ) <∞, then we have

|T (ω)| ≤M(T )‖ω‖

for all ω ∈ Dm(U) and hence T ∈ Dm(U) by the characterization of continuity given after

the definition of a current.

Remark 5.8. A somewhat different mass is defined by

M(T ) := sup
{
T (ω) : ω ∈ Dm(U), |w| ≤ 1

}
,

where |ω| = sup{|ω(x)| : x ∈ U}. This is sometimes called the Euclidean mass of T . Since

‖ω‖ ≤ |ω|, we obtain

M(T ) ≤M(T ).

It is not difficult to see that there exists c = c(n) such that

cM(T ) ≤M(T ) ≤M(T ).

The space

Mm(U) =
{
T : Dm(U)→ R : T linear ,M(T ) <∞

}
is called the space of m-currents on U with finite mass.

Clearly, the mass defines a norm on Mm(U) and Mm(U) with this norm is exactly the

dual space of the normed space (Dm(U), ‖ · ‖). In particular, Mm(U) is a Banach space.

Example 5.9. If M ⊂ Rn is a smooth, compact, oriented m-dimensional submanifold,

then [M ] ∈Mm(Rn) and

M([M ]) = Vol(M) = Hm(M).

Indeed, let τM : M → ΛmRn be the orienting m-vector field of M and let ω ∈ Dm(Rn)

with ‖ω‖ ≤ 1. Then

|[M ](ω)| ≤
∫
M

|〈ω(x), τM(x)〉|dHm(x) ≤ Hm(M)‖ω‖ = Hm(M)

and so M([M ]) ≤ Hm(M). It is not difficult to see that equality holds and this will also

follow from the theorem below.

The following example shows that if T ∈ Mm(U), then, in general, we need not have

∂T ∈Mm−1(U).

Define T ∈M1(R2) by

T (ω) :=

∫ 1

0

ω(s, 0)(e2)ds

and notice that M(T ) = 1. However, since

∂T (f) =

∫ 1

0

∂f

∂y
(s, 0)ds,
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we clearly have M(∂T ) = ∞. Notice, however, that if in the definition of T above, the

vector e2 is replaced by e1, then

∂T = [(1, 0)]− [(0, 0)],

and so M(∂T ) = 2 in this case.

We call elements of the space

Nm(U) :=
{
T ∈Mm(U) : ∂T ∈Mm−1(U)

}
normal m-currents in U . We define N0(U) := M0(U). We have the inclusions

Nm(U) ⊂Mm(U) ⊂ Dm(U)

and these are strict by the example above if m > 0.

We now use the Riesz representation theorem to show that currents of finite mass can

be represented by integration. We first define a norm on ΛmRn by

‖τ‖ := sup{〈ω, τ〉 : ω ∈ ΛmRn, ‖ω‖ ≤ 1},

which is called the mass of τ . Notice that if τ ∈ ΛmRn, then

|τ | = sup{〈ω, τ〉 : ω ∈ ΛmRn, |ω| ≤ 1} ≤ ‖τ‖

and |τ | = ‖τ‖ if τ is simple.

Theorem 5.10 (Representation theorem). If T ∈ Mm(U), then there exist a unique

finite Radon measure ‖T‖ on U and a ‖T‖-measurable m-vector field
−→
T : U → ΛmRn

with ‖
−→
T (x)‖ = 1 for ‖T‖-almost every x ∈ U and such that

T (ω) =

∫
U

〈ω(x),
−→
T (x)〉d‖T‖(x)

for every ω ∈ Dm(U). Moreover, for every W ⊂ U open, we have

‖T‖(W ) = sup{T (ω) : ω ∈ Dm(U), spt(ω) ⊂ W, ‖ω‖ ≤ 1}

and, in particular, M(T ) = ‖T‖(U). Notice that

spt(T ) = U ∩ spt(‖T‖),

where the support of a measure µ is defined by

spt(µ) = {x ∈ Rn : µ(B(x, r)) > 0 ∀r > 0}.

Conversely, every finite Radon measure µ on U and every µ-measurable τ : U → ΛmRn

with ‖τ(x)‖ = 1 µ-a.e. x ∈ U give rise to an element T ∈Mm(U) by

T (ω) =

∫
U

〈ω(x), τ(x)〉dµ(x)

for all ω ∈ Dm(U). One often writes µ ∧ τ := T .

Proof. Since Dm(U) is dense in (Cc(U,Λ
m(Rn), ‖ · ‖)) and since T is continuous with

respect to ‖ · ‖, it follows that T has a unique extension to Cc(U,Λ
mRn) which satisfies

|T (ω)| ≤M(T )‖ω‖
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for all ω ∈ Cc(U,Λm(Rn)).

We now apply the Riesz representation theorem with X = U and H = (ΛmRn, 〈·, ·〉)
to find a Radon measure µT on U and τ : U → ΛmRn µT -measurable with |τ(x)| = 1

µT -a.e. x ∈ U such that

T (ω) =

∫
U

〈ω(x), τ(x)〉dµT (x)

for all ω ∈ Cc(U,ΛmRn). We define

−→
T (x) :=

1

|τ(x)|
R−1
m (τ(x))

and

d‖T‖ = ‖τ(·)‖dµT .
�

Using the representation theorem above, we can define the restriction of a current of

finite mass to a Borel set.

Definition 5.11. Let T ∈ Mm(U) and let f : U → R be a bounded Borel function. The

restriction of T to f is the current Txf defined by

(Txf)(ω) :=

∫
U

f(x)〈ω(x),
−→
T (x)〉d‖T‖(x)

for all ω ∈ Dm(U). We write TxB := TxχB whenever B ⊂ U is a Borel set.

A sequence (Tk) ⊂Mm(U) is said to converge in mass to T ∈Mm(U) ifM(T−Tk)→ 0.

This is just norm convergence, which is often too strong. For example, the sequence (Tk)

given by Tk := [[0, 1] × { 1
k
}] ∈ M1(R2) does not converge in mass, however, it converges

weakly to T = [[0, 1]× {0}] in the following sense.

Definition 5.12. A sequence (Tk) ⊂ Dm(U) is said to converge weakly to T ∈ Dm(U) if

Tk(ω)→ T (ω) for every ω ∈ Dm(U). We write Tm ⇀ T .

Notice that if T, Tk ∈ Mm(U), then this is just the weak-* convergence in the dual

space (Mm(U),M(·)). A simple but important property.

Theorem 5.13 (Lower semicontinuity of mass). If a sequence (Tk) ⊂ Dm(U) converges

weakly to T ∈ Dm(U), then

M(T ) ≤ lim inf
k→∞

M(Tk).

Proof. For every ω ∈ Dm(U) with ‖ω‖ ≤ 1 we have

T (ω) = lim
k→∞

Tk(ω) ≤ lim inf
k→∞

M(Tk)

and hence M(T ) ≤ lim infk→∞M(Tk). �

We can now solve Plateau’s problem in a very weak sense.

Theorem 5.14. Let S ∈ Nm(U). Then there exists T ∈ Nm(U) such that ∂T = ∂S and

M(T ) = inf{M(S ′) : S ′ ∈ Nm(U), ∂S ′ = ∂S}.
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Thus T is a mass minimizing normal current with boundary equal to ∂S. This theorem

is not satisfying because normal m-currents are in general very far from m-dimensional

submanifolds as the following example shows.

Example 5.15. The 1-current on R2 given by

T (ω) :=

∫
[0,1]2

ω(x)(e1)dL2(x)

is a normal current, that is, T ∈ N1(R2). Clearly, M(T ) = 1 and since

∂T (f) = T (
∂f

∂x
dx+

∂f

∂y
dy) =

∫ 1

0

∫ 1

0

∂f

∂x
(x, y)dxdy

=

∫ 1

0

f(1, y)− f(0, y)dy,

we have M(∂T ) = 2 <∞.

Proof. Let (Tk) ⊂ Nm(U) be a mass minimizing sequence with ∂Tk = ∂S for all k. Thus

M(Tk)→ L := inf
{
M(S ′) : S ′ ∈ Nm(U), ∂S ′ = ∂S

}
.

By the Banach-Alaoglu Theorem 2.51, there exists a subsequence (Tkj) and T ∈ Nm(U)

such that

Tkj ⇀ T.

Since Tkj ⇀ T , it follows that ∂Tkj ⇀ ∂T and hence ∂T = ∂S, in particular, T ∈ Nm(U).

By the lower semi-continuity of mass, we have

M(T ) ≤ lim inf
j→∞

M(Tkj) = L.

�

We will soon introduce so-called integral m-currents. These are special normal cur-

rents, which are much“closer” to oriented m-dimensional submanifolds. The aim will then

be to prove that Theorem 5.14 holds with normal currents replaced by integral currents.

The main difficulty will be to show that the weak limit of a bounded sequence of integral

currents is again an integral current.

As indicated before, the metric induced by the mass norm is often not suitable. A

norm which is of more geometric significance is the flat norm, defined for T ∈ Dm(U) by

F(T ) := inf
{
M(S) +M(R) : S ∈ Dm+1(U), R ∈ Dm(U), T = ∂S +R

}
.

We have F(T ) ≤M(T ) and for ω ∈ Dm(U)

|T (ω)| ≤ F(T ) max{‖ω‖, ‖dω‖}.

It follows that F is a norm on Mm(U) and that convergence with respect to the flat norm

implies weak convergence.

Illustration:

1). T2 − T1 = ∂S +R. T1 and T2 are “geometrically close”. Their flat distance

dF(T1, T2) = F(T2 − T1)
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is small but M(T2 − T1) is big.

2). T = ∂S +R. M(T ) = 4r + 2R and F(T ) ≤ 4r +R · ε.

5.2. Homotopy formula and push-forward. The product of the 1-current [[0, 1]] ∈
D1(R) with an m-current T ∈ Dm(U) is defined as follows: an element ω ∈ Dm+1(R×U)

can be written as

ω(t, x) =
∑

α∈Λ(n,m)

ωα(t, x)dx0 ∧ dxα +
∑

β∈Λ(n,m+1)

ω̂β(t, x)dxβ.

We use the notation {e0, e1, · · · , en} for the standard basis in R×Rn and {dx0, dx1, · · · , dxn}
for its dual basis. The linear functional [[0, 1]]× T : Dm+1(R× U)→ R given by

([[0, 1]]× T )(ω) =

∫ 1

0

∑
α∈Λ(n,m)

T (ωα(t, ·)dxα)dt

is called the product of [[0, 1]] with T and satisfies

Theorem 5.16. We have [[0, 1]]× T ∈ Dm+1(R× U) and

∂([[0, 1]]× T ) = [[1]]× T − [[0]]× T − [[0, 1]]× ∂T.

Moreover, if T ∈Mm(U), then

[[0, 1]]× T (ω) =

∫ 1

0

∫
U

〈ω(t, x), e0 ∧
−→
T (x)〉d‖T‖(x)dt.

We used the notation

[[t0]]× T (ω) := T (ω(t0, ·)) := T (
∑

β∈Λ(n,m)

ω̂(t0, ·)dxβ)

for ω ∈ Dm(R× U) given by

ω(t, x) =
∑

α∈Λ(n,m−1)

ωαdx
0 ∧ dxα +

∑
β∈Λ(n,m)

ω̂β(t, x)dxβ

and ∂T = 0 if m = 0.

Proof. Exercise. �

Let U ⊂ Rn and V ⊂ RN be open and T ∈ Dm(U). Let ϕ : U → V be a smooth map

such that the restriction ϕ|spt(T ) is proper, that is,(
ϕ|spt(T )

)−1

(K) = ϕ−1(K) ∩ spt(T )

is compact whenever K ⊂ V is compact. For ω ∈ Dm(V ) we define

(ϕ]T )(ω) = T (ρ · ϕ∗ω),

where ρ ∈ C∞c (U) is any function which equals 1 on a neighborhood of the compact set

spt(T )∩ϕ−1(spt(ω)). The definition of (ϕ]T )(ω) is independent of the choice of ρ. Notice

that ρ is needed because ϕ∗ω need not have compact support. One easily checks that

ϕ]T ∈ Dm(U), that

∂(ϕ]T ) = ϕ](∂T )
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and spt(ϕ]T ) ⊂ ϕ(spt(T )).

Lemma 5.17. Let T ∈Mm(U) and let ϕ be as above so that

λ := sup{‖dϕx‖ : x ∈ spt(T )} <∞.

Then ϕ]T ∈Mm(V ) and M(ϕ]T ) ≤ λmM(T ).

In the above lemma, ‖dϕx‖ stands the operator norm of dϕx.

Proof. If ω ∈ Dm(V ) satisfies ‖ω‖ ≤ 1, then ‖(ϕ∗ω)(x)‖ ≤ λm for every x ∈ spt(T ) and

hence by Theorem 5.10

|ϕ]T (ω)| ≤
∫
U

∣∣〈(ϕ∗ω)(x),
−→
T (x)〉

∣∣d‖T‖(x)

≤
∫
U

λm‖
−→
T (x)‖d‖T‖(x) = λmM(T ).

It follows that M(ϕ]T ) ≤ λmM(T ). �

Theorem 5.18 (Homotopy formula). Let U ⊂ Rn and V ⊂ RN be open sets and

ϕ, ψ : U → V smooth maps. Suppose h : [0, 1] × U → V is a smooth homotopy from

ϕ to ψ. If T ∈ Dm(U) and if h|[0,1]×spt(T ) is proper, then

ψ]T − ϕ]T = ∂h]([[0, 1]]× T ) + h]([[0, 1]]× ∂T ).

Proof. Since h|[0,1]×spt(T ) is proper, it follows that ϕ|spt(T ) and ψ|spt(T ) are proper. Hence,

ϕ]T and ψ]T are defined and elements of Dm(V ). Since

spt([[0, 1]]× T ) = [0, 1]× spt(T ),

it follows that h]([[0, 1]] × T ) and h]([[0, 1]] × ∂T ) are defined and elements of Dm+1(V )

and Dm(V ), respectively.

We now calculate

∂h]([[0, 1]]× T ) = h](∂([[0, 1]]× T ))

= h]
(
[[1]]× T − [[0]]× T − [[0, 1]]× ∂T

)
= h]

(
[[1]]× T

)
− h]

(
[[0]]× T

)
− h]

(
[[0, 1]]× ∂T

)
= ψ]T − ϕ]T − h]

(
[[0, 1]]× ∂T

)
,

where the last equality follows from a direct calculation. �

We now specialize to the straight-line homotopy from ϕ to ψ:

h(t, x) = (1− t)ϕ(x) + tψ(x)

for t ∈ [0, 1] and x ∈ U .

Lemma 5.19. Suppose h is the straight-line homotopy from ϕ to ψ and h|[0,1]×spt(T ) is

proper. Then

M(h]([[0, 1]]× T )) ≤ L · λm ·M(T ),

where we have set

L := sup
{
|ψ(x)− ϕ(x)| : x ∈ spt(T )

}
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and

λ := sup
{

max{‖dϕx‖, ‖dψx‖} : x ∈ spt(T )
}
.

Proof. We may assume that M(T ) <∞ and λ, L <∞. Let ω ∈ Dm+1(RN) be such that

‖ω‖ ≤ 1. We have

h]([[0, 1]]× T )(ω) =

∫ 1

0

∫
U

〈(h∗ω)(t, x), e0 ∧
−→
T (x)〉d‖T‖(x)dt

=

∫ 1

0

∫
U

〈ω(h(t, x)),Λm+1dh(t,x)(e0 ∧
−→
T (x))d‖T‖(x)dt.

We set ht(x) := h(t, x) and note that

Λm+1dh(t,x)(e0 ∧
−→
T (x)) = (ψ(x)− ϕ(x)) ∧ Λm(dht)x(

−→
T (x))

and thus

‖Λm+1dh(t,x)(e0 ∧
−→
T (x))‖ ≤ |ψ(x)− ϕ(x)| · ‖Λm(dht)x(

−→
T (x))‖

≤ L · λm · ‖
−→
T (x)‖

for every x ∈ spt(T ). From this it follows with the above that

|h]([[0, 1]]× T )(ω)| ≤ L · λm ·M(T ),

which concludes the proof. �

As a consequence of the homotopy formula, Lemma 5.19, and the definition of the flat

norm, we obtain

Corollary 5.20. If T ∈ Nm(U), then, with the notation above,

F(ψ]T − ϕ]T ) ≤ L · λm−1(1 + λ) · (M(T ) +M(∂T )).

We can specialize even more, namely, to the case that ϕ is a constant map and ψ the

identity map.

Let T ∈ Dm(U) with spt(T ) compact. Let z ∈ U and suppose U is star-like with

respect to z. We define the cone over T with vertex z by

z ×× T := h]([[0, 1]]× T ),

where we have set

h(t, x) := (1− t)z + tx = z + t(x− z).

If ∂T = 0 and m ≥ 1, then ∂(z ×× T ) = T . If M(T ) <∞ and z ∈ spt(T ), then

M(z ×× T ) ≤ 1

m+ 1
· diam

(
spt(T )

)
·M(T ).

This follows from the proof of Lemma 5.19 together with the observation that, since

ht(x) = z + t(x− z), we have ‖(dht)x‖ = t.

Consequence: If T ∈ Nm(Rn), m ≥ 1, with spt(T ) compact and ∂T = 0, then there

exists S ∈ Nm+1(Rn) such that ∂S = T .
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We now use the homotopy formula and approximation to define the push-forward of

an element T ∈ Nm(Rn) under a Lipschitz map ϕ : Rn → RN such that ϕ|spt(T ) is proper.

For this, we first approximate ϕ by smooth maps using standard mollifers. Thus, let

η ∈ C∞(Rn) be given by

η(x) =

{
c exp( 1

|x|2−1
) if |x| < 1

0 if |x| ≥ 1,

where c > 0 is such that
∫
Rn η(x)dx = 1. For ε > 0, define the standard mollifer

ηε(x) := ε−nη(ε−1x). We “smoothen” ϕ using ηε as follows:

ϕε(x) := (ηε ×× ϕ)(x) =

∫
Rn
ηε(x− y)ϕ(y)dy.

One can show, see e.g. [4] that

(i) ϕε ∈ C∞(Rn,RN)

(ii) ϕε → ϕ uniformly as ε→ 0

(iii) If ϕ is λ-Lipschitz, then ϕε is λ-Lipschitz for all ε > 0.

Let (εi) be a sequence of positive real numbers converging to 0 and set ϕi := ϕεi . Since

‖ϕi − ϕ‖∞ < ∞ and since ϕ|spt(T ) is proper, it follows that ϕi|spt(T ) is proper. Thus, by

Lemma 5.17, we have ϕi]T ∈Mm(RN) and

M(ϕi]T ) ≤ λmM(T )

for all i.

Similarly, for fixed i and j, the straight-line homotopy h from ϕi to ϕj is proper on

[0, 1]× spt(T ) and hence, by Corollary 5.20

F(ϕj]T − ϕi]T ) ≤ ‖ϕj − ϕi‖∞(λm + λm−1)(M(T ) +M(∂T )).

It follows that, for every ω ∈ Dm(RN), we have

|(ϕj]T )(ω)− (ϕi]T )(ω)| ≤ F(ϕj]T − ϕi]T ) ·max{‖ω‖, ‖dω‖}
→ 0

as i, j →∞. Hence,
(
(ϕj]T )(ω)

)
is a Cauchy sequence and

(ϕ]T )(ω) := lim
j→∞

(ϕj]T )(ω)

exists. It is clear that ϕ]T is linear. Moreover, by the lower semi-continuity of mass we

have

M(ϕ]T ) ≤ lim inf
j→∞

M(ϕj]T ) ≤ λmM(T ),

in particular, ϕ]T ∈Mm(RN).

Theorem 5.21. Let T and ϕ be as above. Then

(i) ϕ]T ∈ Nm(RN) and

M(ϕ]T ) ≤ λmM(T ).

(ii) ∂(ϕ]T ) = ϕ](∂T ).
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Proof. For ω ∈ Dm−1(RN), we have

∂(ϕ]T )(ω) = (ϕ]T )(dω) = lim
j→∞

(ϕj]T )(dω)

= lim
j→∞

∂(ϕj]T )(ω) = lim
j→∞

(
ϕj](∂T )

)
(ω)

=
(
ϕ](∂T )

)
(ω).

This proves (ii), from which it follows that

M(∂(ϕ]T )) = M(ϕ](∂T ))

≤ λm−1M(∂T ) <∞.

Hence ϕ]T ∈ Nm(RN). This proves the remaining statement in (i). �

In the proof that the limit

(ϕ]T )(ω) := lim
j→∞

(ϕj]T )(ω)

exists and defines an element of Mm(RN) the only properties of (ϕj) which we used were

that ϕj → ϕ uniformly and that the Lipschitz constant of ϕj is independent of j. Any

such sequence provides the same limit. In particular, if ϕ is moreover smooth, then ϕ]T

coincides with the previous definition.

The following example shows that the condition that T ∈ Nm(Rn) cannot be relaxed

to T ∈Mm(Rn) in general.

Example 5.22. Let T ∈M1(R2) be given by

T (ω) =

∫ 1

0

ω(s, 0)(e2)ds

and ϕ : R2 → R2 given by ϕ(s, t) = (s, |t|). One easily constructs sequences (ϕj), (ϕ̄j) ⊂
C∞(R2,R2) such that

• ϕj → ϕ and ϕ̄j → ϕ uniformly

• ϕj and ϕ̄j have uniformly bounded Lipschitz constants

• ∂ϕj
∂x2

(s, 0) = 0 and
∂ϕ̄j
∂x2

(s, 0) = e2 for all s ∈ R
It follows that

(ϕj]T )(ω) =

∫ 1

0

ω(ϕj(s, 0))
(∂ϕj
∂x2

(s, 0)
)
ds = 0

and

((ϕ̄j)]T )(ω) =

∫ 1

0

ω(ϕ̄j(s, 0))(e2)ds
j→∞→ T (ω).

As for the construction of ϕj and ϕ̄j, let ηε be the standard mollifier on R and define

ϕj(s, t) = (s, (η 1
j
×× ρ)(t)),

where ρ(t) = |t|. Then ϕj → ϕ uniformly and ϕj has uniformly bounded Lipschitz

constant. Moreover,
d

dt
(η 1

j
×× ρ)(0) = (η′1

j
×× ρ)(0) = 0
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by a direct calculation. We define ϕ̄j by ϕ̄j(s, t) = ϕj(s, t+ 2
j
) and one checks easily that

the desired properties hold.

In some sense, the reason for not being able to define the push-forward of T in the

example above is that the 1-vector field e2 is transversal to the set [0, 1]×{0} over which

we integrate. Had we chosen e1 instead of e2, then we could have defined the push-forward

un-ambiguously. More generally, Let Ω ⊂ Rm be open and bounded and Θ ∈ L1(Ω). Let

ϕ : Rm → Rn be a Lipschitz map. For ω ∈ Dm(Rn) define

ϕ][[Θ]](ω) :=

∫
Ω

Θ(x) · ω(ϕ(x))(dϕx(e1), · · · , dϕx(em))dx.

Then ϕ][[Θ]] is well-defined and is an element of Mm(Rn). We use the following lemma

to show that ϕ][[Θ]] can be viewed as a limit of push-forward as above.

Lemma 5.23. Let λ ≥ 0 and let ρ, ρj : Ω→ Rm be λ-Lipschitz maps. If ρj → ρ pointwise

on Ω, then ∫
Ω

Θ(x) det(d(ρj)x)dx→
∫

Ω

Θ(x) det(dρx)dx.

Proof. See e.g. [1, Theorem 2.16]. �

Writing ω =
∑

α ωαdx
α, we have

ϕ][[Θ]](ω) =
∑
α

∫
Ω

Θ(x)ωα(ϕ(x)) det
(∂ϕα(i)

∂xj
(x)
)
dx,

where we have written ϕ = (ϕ1, · · · , ϕn). From this and Lemma 5.23 it follows that if

ϕj : Rm → Rn are Lipschitz with uniformly bounded Lipschitz constants and ϕj → ϕ

pointwise, then

ϕj] [[Θ]](ω)→ ϕ][[Θ]](ω).

Clearly, if ϕj is smooth, then ϕj] [[Θ]] coincides with the previously defined push-forward

under smooth mappings.

5.3. Integer rectifiable and integral currents. As already observed, general currents

of finite mass have very little in common with oriented submanifolds. In this section, we

introduce a subclass of currents which are much closer to submanifolds while at the same

time being closed under taking limits.

Let U ⊂ Rn be open and m ≥ 0.

Definition 5.24. An element T ∈ Dm(U) is called integer rectifiable current if there exist

(i) an m-rectifiable and Hm-measurable set E ⊂ U with Hm(E) <∞,

(ii) an Hm-measurable map τ : E → ΛmRn such that τ(x) is simple and ‖τ(x)‖ = 1

and τ(x) spans the approximate tangent m-plane of E at x for Hm-almost every

x ∈ E,

(iii) a function Θ ∈ L1(E,Z,Hm) with Θ(x) > 0 such that

T (ω) =

∫
E

Θ(x)〈ω(x), τ(x)〉dHm(x)

for every ω ∈ Dm(U).
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The map τ is called an orientation of E, and Θ is called the multiplicity function.

Remark 5.25. The Condition (iii) in Definition 5.24 does not imply spt(T ) = E. Indeed,

let {xk}k∈N ⊂ R2 be dense and define

T =
∞∑
k=1

[[
∂B(xk, 2

−k)
]]
∈ I1(R2)

with spt(T ) = R2.

If T ∈ Dm(U) is integer rectifiable, then T ∈Mm(U) and

M(T ) =

∫
E

Θ(x)dHm(x)

and ‖T‖ = ΘHmxE.

We introduce the notation

Im(U) :=
{
T ∈ Dm(U) : T integer rectifiable

}
and

Im(U) := Im(U) ∩Nm(U).

We have

Im(U) ⊂ Im(U) ⊂Mm(U)

and

Im(U) ⊂ Nm(U) ⊂Mm(U).

Elements of Im(U) are called integral m-currents.

Example 5.26. 1). A function T : D0(U)→ R belongs to I0(U) if and only if there exist

finitely many points x1, · · · , xk ∈ U and Θ1, · · · ,Θk ∈ Z\{0} such that

T (f) =
k∑
i=1

Θif(xi)

for all f ∈ D0(U).

2). If M ⊂ U is a smooth, compact, oriented m-dimensional submanifold, then

[[M ]] ∈ Im(U).

3). If S, T ∈ Im(U) and a, b ∈ Z, then aS + bT ∈ Im(U).

4). Let M := [0, 1] × {0} ⊂ R2 and Mj := [0, 1] × {1/j} ⊂ R2. The sequence

(Tj) ⊂ I1(R2) given by Tj := [[M ]] + [[Mj]] converges weakly to 2[[M ]].

5). The current T ∈M1(R2) given by

T (fdx+ gdy) :=

∫ 1

0

g(s, 0)ds

is not integer rectifiable even thought ‖T‖ is concentrated on the 1-rectifiable set [0, 1]×
{0} =: E.

6). Im(U) is a closed subset of Mm(U) (exercise).
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7). If Θi ∈ L1(Rm,Z) and ψi : Rm → Rn are Lipschitz such that
∞∑
i=1

M
(
ψi][[Θi]]

)
<∞,

then T :=
∑∞

i=1 ψi][[Θi]] ∈ Im(Rn).

Conversely, we have

Theorem 5.27. Let U ⊂ Rn be open and T ∈ Mm(U). Then T ∈ Im(U) if and only

if there exist Ki ⊂ Rm compact, ψi : Ki → U bi-Lipschitz, and Θi ∈ L1(Ki,Z) such that

the images ψi(Ki) are pairwise disjoint and

T =
∞∑
i=1

ψi][[Θi]]

and

M(T ) =
∞∑
i=1

M
(
ψi][[Θi]]

)
.

Proof. “⇐”: From Example 5.26 7).

“⇒”: Since T ∈ Im(U), there exist E, τ , Θ such that

T (ω) =

∫
E

Θ(x)〈ω(x), τ(x)〉dHm(x)

for all ω ∈ Dm(U).

By Theorem 3.31, there exist Ki ⊂ Rm compact and ψi : Ki → E bi-Lipschitz such

that the images ψi(Ki) are pairwise disjoint and

Hm
(
E\

∞⋃
i=1

ψi(Ki)
)

= 0.

By the proof of Theorem 3.35, we know that d(ψi)x(Rm) is the approximate tangent plane

of E at ψi(x) for almost everywhere x ∈ Ki. Define for such x ∈ Ki,

Θi(x) = ±Θ
(
ψi(x)

)
with the sign depending on

∂ψi
∂x1

(x) ∧ · · · ∧ ∂ψi
∂xm

(x)∣∣∣∂ψi∂x1
(x) ∧ · · · ∧ ∂ψi

∂xm
(x)
∣∣∣ = ±τ

(
ψi(x)

)
.

We then have

ψi][[Θi]](ω) =

∫
Ki

Θi

〈
ω(ψi(x)),

∂ψi
∂x1

(x) ∧ · · · ∧ ∂ψi
∂xm

(x)
〉
dx

Theorem 3.17
=

∫
ψi(Ki)

±Θ(y)〈ω(y),±τ(y)〉dHm(y),

from which the claim easily follows. �
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Using the above parametrization result, we define the push-forward of an integer

rectifiable current under a Lipschitz map as follows. Let U ⊂ Rn be open and T ∈ Im(U).

Let ϕ : U → V ⊂ RN be Lipschitz such that ϕ|spt(T ) is proper. We define ϕ]T by

ϕ]T :=
∞∑
i=1

(ϕ ◦ ψi)][[Θi]],

where T =
∑∞

i=1 ψi][[Θi]] is the representation from Theorem 5.27.

By Example 5.26 7), we have ϕ]T ∈ Im(RN) and one can easily check that ϕ]T is

independent of the representation of T , and that ϕ]T agrees with the previously defined

push-forward in case ϕ is smooth or T ∈ Im(U). In the latter case, we have

∂
(
ϕ]T

)
= ϕ]

(
∂T
)
.

If T ∈ Im(Rn), then [[0, 1]]× T ∈ Im+1(Rn+1). Indeed, writing

T (ω) =

∫
E

Θ(x)〈ω(x), τ(x)〉dHm(x)

for ω ∈ Dm(Rn), we obtain

[[0, 1]]× T (ω) =

∫
[0,1]×E

Θ(x)〈ω(t, x), e0 ∧ τ(x)〉d
(
L1 ×Hm

)
(t, x)

=

∫
[0,1]×E

Θ(x)〈ω(t, x), e0 ∧ τ(x)〉dHm+1(t, x)

for all ω ∈ Dm+1(R × Rn). The second equality follows easily from the area formula

(e.g. Theorem 3.17) and the fact that one can write an m-rectifiable set as the union

of bi-Lipschitz pieces. Indeed, let ψ : K ⊂ Rm → E be a bi-Lipschitz map and set

ψ̂(t, x) := (t, ψ(x)). Then a direct calculation shows that Jm+1(dψ̂(t,x)) = Jm(dψx) and

thus, by the area formula,∫ 1

0

∫
ψ(K)

f(t, y)dtdHm(y) =

∫ 1

0

∫
K

f(t, ψ(x))Jm(dψx)dtdx

=

∫
[0,1]×K

f(ψ̂(t, x))Jm+1(dψ̂(t,x))dLm+1(t, x)

=

∫
ψ̂
(

[0,1]×K
) f(t, y)dHm+1(y)

for any integrable function f .

Remark 5.28. The m-rectifiability is essential. Indeed, Freilich [2] constructed a set

A ⊂ R2 such that H1(A) <∞ and

H2
(
[0, 1]× A

)
6= H1(A) =

(
L1 ×H1

)(
[0, 1]× A

)
.

From the above we obtain that if T ∈ Im(Rn) with spt(T ) compact and z ∈ Rn, then

z ×× T ∈ Im+1(Rn). In particular, if T ∈ Im(Rn) with ∂T = 0 and spt(T ) compact, then

there exists s ∈ Im+1(Rn) with ∂S = T .

We now come to two of the central theorems about integral currents.
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Theorem 5.29 (Closure theorem). Let (Tk) ⊂ Nm(Rn) be a sequence which converges

weakly to some T ∈ Nm(Rn) and such that

sup
k

[
M(Tk) +M(∂Tk)

]
<∞.

If Tk ∈ Im(Rn) for every k ∈ N, then also T ∈ Im(Rn).

The following examples illustrate what can go wrong when the boundedness condition

is not satisfied.

Example 5.30. 1). The sequence (Tk) ⊂ I1(R) given by Ik := k · [[0, 1/k]] converges

weakly to the current T ∈M1(R) given by

T (ω) := ω(0)(e1),

which is not an integer rectifiable 1-current.

2). The sequence (Tk) ⊂ I1(R2) given by

Tk :=
k−1∑
i=0

k−1∑
j=1

[[[ i
k
,
i

k
+

1

k2

]
×
{
j/k
}]]

converges weakly to the current T ∈ N1(R2) given by

T (ω) =

∫ 1

0

∫ 1

0

ω(x, y)(e1)dxdy,

but T is not an integer rectifiable 1-current.

3). The sequence (Tk) ⊂ I1(R2) given by

Tk =
k∑
i=1

[[{
i/k
}
×
[
0, 1/k

]]]
converges weakly to the current T ∈M1(R2) given by

T (ω) :=

∫ 1

0

ω(x, 0)(e2)dx =

∫
[0,1]×{0}

〈ω, e2〉dH1,

but T is not integer 1-rectifiable.

Theorem 5.31 (Boundary rectifiable theorem). If T ∈ Im(Rn) with m ≥ 1, then ∂T ∈
Im−1(Rn).

The content of the theorem is that if T ∈Mm(Rn) is integer rectifiable and M(∂T ) <

∞, then ∂T is also integer rectifiable.

For the proofs of the closure and boundary rectifiablility theorems, we will need new

tools which will be developed in the next sections. We thus postpone their proofs to later

sections and give here a first application to the existence of area-minimizing currents.

Generalized Plateau Problem: Given T ∈ Im(Rn) with m ≥ 1 and ∂T = 0, find

S ∈ Im+1(Rn) with ∂S = T and such that

M(S) ≤M(S ′)

for all S ′ ∈ Im+1(Rn) with ∂S ′ = T .
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Remark 5.32. The classical problem of Plateau is the analogous problem for m = 1

when T is replaced by a closed curve c : S1 → Rn and S by a “disc-type surface” with

boundary c, that is, a (smooth) map u : D → Rn with u|S1 = c.

The theorems above allow us to solve the generalized Plateau problem.

Theorem 5.33. Let T ∈ Im(Rn) with m ≥ 1 and ∂T = 0 and such that spt(T ) is

compact. Then there exists S ∈ Im+1(Rn) with ∂S = T and such that

M(S) ≤M(S ′)

for all S ′ ∈ Im+1(Rn) with ∂S ′ = T .

Thus, S is a mass-minimizing integral current with boundary T .

Proof. Since spt(T ) is compact and m ≥ 1, the cone S ′ := O ×× T satisfies S ′ ∈ Im+1(Rn)

and ∂S ′ = T and thus S ′ ∈ Im+1(Rn).

Let (Sk) ⊂ Im+1(Rn) be a mass-minimizing sequence with ∂Sk = T for all k ∈ N, thus

M(Sk)→ L := inf
{
M(S ′) : S ′ ∈ Im+1(Rn), ∂S ′ = T

}
<∞.

By the Banach-Alaoglu Theorem 2.51, there exist a subsequence (Skj) and S ∈Mm+1(Rn)

such that Skj ⇀ S. Thus also ∂Skj ⇀ ∂S and hence ∂S = T . In particular, we have

S ∈ Nm+1(Rn). By the lower semi-continuity of mass we have

M(S) ≤ lim inf
j→∞

M(Skj) ≤ L.

Finally, since

sup
j

[
M(Skj) +M(∂Skj)

]
<∞,

it follows from the Closure Theorem 5.29 that S ∈ Im+1(Rn) and hence also that M(S) =

L.

�

It is natural to ask whether it makes a difference if one minimizers over the mass

of all currents of finite mass with boundary T in the generalized Plateau problem. The

following theorem shows that it indeed makes a difference.

Theorem 5.34. There exists T ∈ I1(R4) with ∂T = 0 which is induced by a closed

embedded Lipschitz curve and such that

inf
{
M(S) : S ∈M2(R4), ∂S = T

}
< inf

{
M(S) : S ∈ I2(R4), ∂S = T

}
.

Thus, filling with currents of finite mass is, in general, more efficient than filling with

integral currents. For a proof, we refer to Youngs.

We sketch a related construction:

Let K ⊂ R4 be an embedded Klein bottle and let T ∈ I1(R4) be given by integration

over an odd number of sufficiently dense, equally spaced closed curves on K as in the

figure below:
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One can show that if the curves are sufficiently dense, then

inf
{
M(S) : S ∈ I2(R4), ∂S = T

}
≈ 1

2
Area(K) + Area(disc)

because T consists of an odd number of curves.

Now, let R ∈ I2(R4) be the current obtained by integration with changing orientation

on each strip as in the figure below:

Then ∂R = 2T and M(R) = Area(K). It follows that S0 := 1
2
R satisfies S0 ∈M2(R4)

and ∂S0 = T and M(S0) = 1
2
Area(K), which implies with above that

inf
{
M(S) : S ∈M2(R4), ∂S = T

}
≤ 1

2
Area(K)

<
1

2
Area(K) + Area(disc)

≈ inf
{
M(S) : S ∈ I2(R4), ∂S = T

}
.

We end this section with some results about the interior regularity of mass-minimizing

currents. We call an element S ∈ Im(Rn) a mass-minimizing m-current if

M(S) ≤M(S ′)

for all S ′ ∈ Im(Rn) with ∂S ′ = ∂S. Thus, the current S in theorem 5.33 is a mass-

minimizing (m+ 1)-current.

The regular/singular points of a current S ∈ Im(Rn) are defined as follows.

Definition 5.35. A point x ∈ spt(S)\ spt(∂S) is called an interior regular point of S if

there exist r > 0, Q ∈ N, and a smooth embedded m-dimensional submanifold M ⊂ Rn

such that

SxB(x, r) = Q · [[M ]]xB(x, r).

The set of interior regular points of S is denoted reg(S). The interior singular set of

S is

Sing(S) := spt(S)\
(

spt(∂S) ∪ reg(S)
)
.

The first theorem yields interior regularity for currents in codimension 1:

Theorem 5.36. Let S ∈ In−1(Rn) be a mass-minimizing (n− 1)-current. Then

(i). If n ≤ 7, then Sing(S) is empty.

(ii). If n = 8, then Sing(S) consists of isolated points.

(iii) If n ≥ 9, then Sing(S) has Hausdorff dimension at most n− 8.

Statement (i) is due to

• Fleming and De Giorgi for n = 3

• Almgren for n = 4

• Simons for 5 ≤ n ≤ 7

Statements (ii) and (iii) are due to Federer. Statement (i) shows in particular that if

T ∈ I2(R3) is mass-minimizing, then spt(T )\ spt(∂T ) is a smooth embedded submanifold

of R3. In contrast, area minimizing discs are only immersed. The following theorem shows

that singularities can occur, that is, Statement (ii) is optimal.
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Theorem 5.37. Let S ∈ I7(R8) be the cone over S3
(
0, 1/
√

2
)
×S3

(
0, 1/
√

2
)
⊂ R8, where

S3(0, r) is the sphere of radius r around 0 in R4. Then S is mass-minimizing and has an

interior singularity at 0.

This example is due to Bombien-De Giorgi-Giusi.

For mass-minimizing currents in codimension ≥ 2, we have the following important

result:

Theorem 5.38 (Almgren). Let S ∈ Im(Rn) be a mass-minimizing current. Then Sing(S)

has Hausdorff dimension at most m− 2.

The original proof is about 1000 pages long. A partially new approach has been

developed by De Lellis-Spadaro and has led to a shorter and simpler proof.

5.4. Slices. Recall that if M ⊂ Rn is a smooth m-dimensional submanifold and f : Rn →
R a smooth function, then for almost every s ∈ R intersection M ∩ {f = s} is a smooth

(m − 1)-dimensional submanifold, see e.g. [8]. There exists a similar construction for

normal currents and Lipschitz functions.

Let T ∈ Nm(Rn) with m ≥ 1 and f : Rn → R Lipschitz. For s ∈ R, we define an

(m− 1)-current 〈T, f, s〉 ∈ Dm−1(Rn), called the slice of T , by

〈T, f, s〉 := ∂
(
Tx{f ≤ s}

)
− (∂T )x{f ≤ s}.

Example 5.39. Consider the figure below.

If m ≥ 2, then clearly

∂〈T, f, s〉 = −〈∂T, f, s〉
for all s ∈ R. We can write 〈T, f, s〉 equivalently as

〈T, f, s〉 = (∂T )x{f > s} − ∂
(
Tx{f > s}

)
.(5.1)

Indeed, we write

T = Tx{f ≤ s}+ Tx{f > s}
and thus

∂
(
Tx{f ≤ s}

)
+ ∂
(
Tx{f > s}

)
= ∂T = (∂T )x{f ≤ s}+ (∂T )x{f > s},

from which (5.1) follows.

We have the following important properties of the slices.

Theorem 5.40. Let T ∈ Nm(Rn) with m ≥ 1 and let f : Rn → R be λ-Lipschitz. Then

(i) For almost every s ∈ R we have 〈T, f, s〉 ∈ Nm−1(Rn) with spt
(
〈T, f, s〉

)
⊂

spt(T ) ∩ {f = s} and

M
(
〈T, f, s〉

)
≤ λ

d

dr

∣∣∣
r=s
‖T‖

(
{f ≤ r}

)
.

(ii) The function s 7→M
(
〈T, f, s〉

)
is measurable and hence∫ s1

s0

M
(
〈T, f, s〉

)
ds ≤ λ · ‖T‖

(
{s0 < f ≤ s1}

)
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for all s0 < s1.

Proof. Fix s ∈ R and let, for h > 0 sufficiently small, gh : Rn → R be a smooth function

such that

• gh = 0 on {f ≤ s}
• gh = 1 on {f ≥ s+ h}
• gh is λ

h
· (1 + ε(h))-Lipschitz,

where ε(h) → 0 as h → 0. Such a function gh can for example be obtained as follows.

Define g := ρ◦f , where ρ : R→ R is the piece-wise affine function such that ρ|(−∞,s+h2]) =

0, ρ|[s+h−h2] = 1 and ρ is linear on [s + h2, s + h − h2]. Let gh := ηh2/λ ∗ g, where ηh2/λ
is the standard mollifier defined earlier. It is not difficult to check that gh satisfies the

properties listed above.

We define Th ∈ Dm−1(Rn) by

Th(ν) := T (dgh ∧ ν)

for all ν ∈ Dm−1(Rn). Since dgh ∧ ν = d(ghν)− ghdν, we obtain that

Th(ν) = (∂T )(ghν)− T (ghdν)

=

∫
Rn
gh〈ν, ∂

−→
T 〉d‖∂T‖ −

∫
Rn
gh〈dν,

−→
T 〉d‖T‖

h→0→
∫
{f>s}

〈ν, ∂
−→
T 〉d‖∂T‖ −

∫
{f>s}

〈dν,
−→
T 〉d‖T‖

=
((
∂T
)
x{f > s}

)
(ν)−

(
Tx{f > s}

)
(dν)

= 〈T, f, s〉(ν).

Thus, Th ⇀ 〈T, f, s〉. Now observe that spt(dgh) ⊂ {s ≤ f ≤ s+ h} and

‖dgh ∧ ν‖ ≤ ‖dgh‖ · ‖ν‖ ≤
λ

h
·
(
1 + ε(h)

)
‖ν‖.

From this, it follows that

spt(Th) ⊂ {s ≤ f ≤ s+ h} ∩ spt(T )

and for ν ∈ Dm−1(Rn) with ‖ν‖ = 1 that

|Th(ν)| = |T (dgh ∧ ν)| ≤
∫
Rn

∣∣〈dgh ∧ ν,−→T 〉∣∣d‖T‖
≤ λ · (1 + ε(h)) · 1

h
· ‖T‖

(
{s ≤ f ≤ s+ h}

)
.

Thus also

M(Th) ≤ λ · (1 + ε(h)) · 1

h
· ‖T‖

(
{s ≤ f ≤ s+ h}

)
.

Since Th ⇀ 〈T, f, s〉, it follows that

spt
(
〈T, f, s〉

)
⊂ spt(T ) ∩ {f = s}.
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Moreover, the lower semi-continuity of mass implies

M
(
〈T, f, s〉

)
≤ λ · lim inf

h→0

1

h
· ‖T‖

(
{s ≤ f ≤ s+ h}

)
.

Set F (s) := ‖T‖
(
{f ≤ s}

)
and notice that F is non-decreasing on R and hence differen-

tiable at almost every point and∫ s1

s0

F ′(s)ds ≤ F (s1)− F (s0)

for all s0 < s1. In particular, F ′(s) < ∞ for almost all s ∈ R. Since ‖T‖
(
{f = s}

)
= 0

for every point of continuity of F , we obtain

1

h
· ‖T‖

(
{s ≤ f ≤ s+ h}

)
=

1

h
· ‖T‖

(
{s < f ≤ s+ h}

)
=
F (s+ h)− F (s)

h
→ F ′(s) <∞

for almost every s ∈ R. This shows that

M
(
〈T, f, s〉

)
≤ λ · d

dr

∣∣∣
r=s
‖T‖

(
{f ≤ r}

)
<∞

for almost every s ∈ R. Since ∂〈T, f, s〉 = −〈∂T, f, s〉, it follows that 〈T, f, s〉 ∈ Nm−1(Rn)

for almost every s ∈ R. This shows (i).

We leave it as an exercise to check that the function

s 7→M
(
〈T, f, s〉

)
is measurable. It then follows that∫ s1

s0

M
(
〈T, f, s〉

)
ds ≤ λ

∫ s1

s0

F ′(s)ds

≤ λ
(
F (s1)− F (s0)

)
= λ · ‖T‖

(
{s0 < f ≤ s1}

)
.

�

Theorem 5.41. Let T ∈ Im(Rn) with m ≥ 1 and let f : Rn → R be Lipschitz. Then

〈T, f, s〉 ∈ Im−1(Rn) for almost every s ∈ R.

It follows, in particular, that ∂
(
TxB(x, s)

)
∈ Im−1(Rn) for every x ∈ Rn and almost

every 0 < s < dist(x, spt(∂T )). The proof of the theorem relies on the coarea formula.

We omit it here and refer to the book of Simon [9].

The method of slicing is often very useful. For example, (iterated) slices will play an

important role in the proof of the closure theorem. Here, we give two different applications

which use slices.

Theorem 5.42 (Monotonicity). Let S ∈ Im(Rn) be a mass-minimizing current with

m ≥ 1 and let x ∈ spt(S). Then the function

r 7→ ‖S‖(B(x, r))

ωmrm
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is non-decreasing on the interval
(
0, dist(x, spt(∂S))

)
.

As a consequence, we obtain

Corollary 5.43. Let S ∈ Im(Rn) be a mass-minimizing current with m ≥ 1. Then for

every x ∈ spt(S)\ spt(∂S), the density Θm(‖S‖, x) exists and satisfies Θm(‖S‖, x) ≥ 1.

Moreover,

‖S‖(B(x, r)) ≥ Θm(‖S‖, x)ωmr
m

for all 0 ≤ r ≤ dist(x, spt(∂S)).

Proof. The only statement which is not a direct consequence of the theorem is the fact

that

Θm(‖S‖, x) ≥ 1 for all x ∈ spt(S)\ spt(∂S).

Let E,Θ, τ be such that

S(ω) =

∫
E

Θ〈ω, τ〉dHm

for all ω ∈ Dm(Rn), hence ‖S‖ = Θ · HmxE. It follows that

Θm(‖S‖, x) = Θ(x) ·Θm(E, x) = Θ(x) ∈ N

for Hm-almost every x ∈ E. Since the set of all such x is dense in spt(S) and since,

by Theorem 5.42, the function x 7→ Θm(‖S‖, x) is upper semi-continuous on spt(S), it

follows that Θm(‖S‖, x) ≥ 1 for all x ∈ spt(S).

�

Proof of Theorem 5.42. We may assume that r0 := dist(x, spt(∂S)) > 0. Define a non-

decreasing function by F (r) := ‖S‖(B(x, r)). For almost every r ∈ (0, r0) we have that

Sr := ∂
(
SxB(x, r)

)
satisfies Sr ∈ Im−1(Rn) and

M(Sr) ≤ F ′(r).

For every such r we have x×× Sr ∈ Im(Rn) with

M(x×× Sr) ≤
r

m
·M(Sr) ≤

r

m
F ′(r).

Since ∂(x×× Sr) = Sr, it follows from the mass-minimizing property of S that

M(SxB(x, r)) ≤M(x×× Sr)

and hence

F (r) = M(SxB(x, r)) ≤M(x×× Sr) ≤
r

m
F ′(r)

for almost every r ∈ (0, r0). In other words,

d

dr
log ◦F (r) ≥ m

r

for almost every r ∈ (0, r0) and thus, by integration,

log
(F (t)

F (s)

)
≥ m log

( t
s

)
= log

( tm
sm

)
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and hence
F (t)

tm
≥ F (s)

sm

for all 0 < s < t < r0. �

As a second application of Theorem 5.41, we prove the following isoperimetric in-

equality.

Theorem 5.44. Given m ≥ 1 there exists Cm > 0 with the following property. For every

T ∈ Im(Rn) with ∂T = 0, there exists S ∈ Im+1(Rn) such that ∂S = T and

(5.2) M(S) ≤ CmM(T )
m+1
m .

The constant Cm which we will obtain does not depend on the ambient dimension n.

however, our constant Cm is not optimal. The optimal constant was obtained by Almgren

and is such that equality holds exactly when T is an m-sphere and S is an (m+ 1)-ball.

The proof of Theorem 5.44 will be by induction on m. The idea is as follows. If T is

“roundish” in the sense that

dim
(

spt(T )
)
≤ CM(T )

1
m ,

then the cone S := x×× T with x ∈ spt(T ) satisfies ∂S = T and

M(S) ≤ 1

m+ 1
· diam

(
spt(T )

)
·M(T )

≤ C

m+ 1
M(T )

m+1
m ,

thus S is the desired filling. In the general case, we will decompose T into a sum of

“roundish” cycles and a small rest. Each of the roundish cycles will be filled by a cone and

the result will again be decomposed into the sum of roundish cycles plus an even smaller

rest.

We first show

Proposition 5.45. Let m ≥ 1. If m ≥ 2, then assume that Theorem 5.44 holds with

m − 1. There exist constants E > 0, 0 < δ, λ < 1 depending only on m such that the

following holds. Every T ∈ Im(Rn) with ∂T = 0 can be written as a finite sum

T = T1 + · · ·+ TN +R,

where Ti, R ∈ Im(Rn) satisfy ∂Ti = 0 = ∂R and

(i) diam
(

spt(Ti)
)
≤ E ·M(Ti)

1
m

(ii) M(R) ≤ (1− δ)M(T )

(iii) M(T1) + · · ·+M(TN) ≤ (1 + λ)M(T ).

This means that after splitting off roundish cycles we obtain a new cycle R which

has essentially smaller mass. It is not difficult to see that Proposition 5.45 implies Theo-

rem 5.44.
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Proof of Theorem 5.44. Applying Proposition 5.45 repeatedly, we obtain sequences (Tk), (Rk) ⊂
Im(Rn) with ∂Tk = 0 = ∂Rk for all k and a strictly increasing sequence of integers

(Nk) ⊂ N such that for all k

(i) T = T1 + · · ·+ TNk +Rk

(ii) diam
(

spt(Tk)
)
≤ E ·M(Tk)

1
m

(iii)
∑∞

i=1M(Ti) ≤ (1 + λ) ·
(∑∞

i=0(1− δ)i
)
M(T ) = 1+λ

δ
M(T ).

We fill each Tk by a cone: let xk ∈ spt(Tk) and let Sk := xk ×× Tk. Then Sk ∈ Im+1(Rn)

with ∂Sk = Tk and

M(Sk) ≤
E

m+ 1
·M(Tk)

m+1
m .

Set Sk :=
∑Nk

i=1 Si and notice that Sk ∈ Im(Rn) ⊂ Im(Rn) and

M(Sl − Sk) ≤
l∑

i=k+1

M(Si) ≤
E

m+ 1
·

l∑
i=k+1

M(Ti)
m+1
m

≤ E

m+ 1

[ l∑
i=k+1

M(Ti)
]m+1

m

for all l > k ≥ 1. Since
∑∞

i=1M(Ti) <∞, it follows that (Sk) is a Cauchy sequence with

respect to the mass norm and there converges to some S ∈ Mm+1(Rn). Since Im+1(Rn)

is a closed subset of Mm+1(Rn) it follows that S ∈ Im+1(Rn). Moreover,

∂Sk = T1 + · · ·+ TNk = T −Rk → T

and hence ∂S = T and S ∈ Im+1(Rn). Finally,

M(S) ≤
∞∑
i=1

M(Si) ≤
E

m+ 1

∞∑
i=1

M(Ti)
m+1
m

≤ E

m+ 1

[ ∞∑
i=1

M(Ti)
]m+1

m ≤ E

m+ 1

(1 + δ

λ

)m+1
m
M(T )

m+1
m .

�

We now prove Proposition 5.45 and let T ∈ Im(Rn) with ∂T = 0. For y ∈ spt(T ), we

define

Fy(r) := ‖T‖(B(y, r))

and

r0(y) := max
{
r ≥ 0 : Fy(r) ≥ A · rm

}
,

where A > 0 is a small constant, precisely

A :=
1

2
·min

{
1, ωm,

1

2m2mmCm−1
m−1

}
.

Here, Cm−1 is the isoperimetric constant in dimension m − 1 if m ≥ 2 and C0 := 1 if

m = 1.

Notice that Fy(r0(y)) = A · r0(y)m and Fy(r) < Arm for all r > r0(y).
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Lemma 5.46. There exist y1, · · · , yN ∈ spt(T ) such that

(i) r0(yi) > 0

(ii) the balls B(yi, 2r0(yi)) are pairwise disjoint

(iii)
∑N

i=1 ‖T‖
(
B(yi, r0(yi))

)
≥ α ·M(T ), where α > 0 is a constant only depending on

m.

Proof. Define Y1 := spt(T ) and

r1 := sup
{
r0(y) : y ∈ Y1

}
> 0

and choose y1 ∈ Y1 with r0(y1) > 2
3
r1.

Suppose y1, · · · , yk have been chosen for some k ≥ 1. Define

Yk+1 := Y1\
k⋃
i=1

B(yi, 5r0(yi))

and

rk+1 := sup
{
r0(y) : y ∈ Yk+1

}
.

Notice that r1 ≥ r2 ≥ · · · ≥ 0 and for i < j

|yj − yi| > 5r0(yi) > 2r0(yi) + 2rj ≥ 2r0(yi) + 2r0(yj),

hence the balls B(yi, 2r0(yi)) are pairwise disjoint. We first assume that rk > 0 for all

k ≥ 1. Then rk → 0 and

‖T‖
(

spt(T )\ ∪B(yi, 5r0(yi))
)

= 0.

Hence

M(T ) ≤
∞∑
i=1

‖T‖
(
B(yi, 5r0(yi))

)
≤

∞∑
i=1

A ·
(
5r0(yi)

)m
= 5m

∞∑
i=1

‖T‖
(
B(yi, r0(yi))

)
.

Thus, if 0 < α < 5−m, then there exists N ≥ 1 such that

N∑
i=1

‖T‖
(
B(yi, r0(yi))

)
≥ αM(T ).

The case that rk = 0 for some k ≥ 1 is similar.

�

Let y1, · · · , yN ∈ spt(T ) be given as in Lemma 5.46 and fix i ∈ {1, · · · , N}.

Lemma 5.47. There exists a set of positive measure of r ∈ (r0(yi), 2r0(yi)) for which

F ′yi(r) ≤ A ·m · rm−1.

Proof. We argue by contradiction and assume that

F ′yi(r) > Amrm−1
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for almost every r ∈ (r0(yi), 2r0(yi)). Then

Fyi(2r0(yi)) ≥ Fyi(r0(yi)) +

∫ 2r0(yi)

r0(yi)

F ′yi(r)dr

> Ar0(yi)
m +

∫ 2r0(yi)

r0(yi)

Amrm−1dr = A ·
(
2r0(yi)

)m
,

which contradicts the definition of r0(yi). �

Proof of Proposition 5.45. By Lemma 5.47 and Theorem 5.41, there exists ri ∈ (r0(yi), 2r0(yi))

such that ∂
(
TxB(yi, ri)

)
∈ Im−1(Rn) and

M
(
∂
(
TxB(yi, ri)

))
≤ F ′yi(ri) ≤ Amrm−1

i .

We distinguish two cases.

Case 1: m = 1.

We have M
(
∂
(
TxB(yi, ri)

))
≤ A ≤ 1

2
. Since ∂

(
TxB(yi, ri)

)
∈ I0(Rn), it follows that

∂
(
TxB(yi, ri)

)
= 0.

Set Ti := TxB(yi, ri) for i = 1, · · · , N and R := T−T1−· · ·−TN . Then ∂Ti = 0 = ∂R

and so Ti, Ri ∈ I1(Rn) and

T = T1 + · · ·+ TN +R.

Moreover,

M(T1) + · · ·+M(TN) ≤M(T )

and M(R) ≤ (1− α) ·M(T ). Finally,

diam
(

spt(Ti)
)
≤ 2ri ≤ 4r0(yi) ≤

4

A
·M(Ti).

This proves the proposition in the case m = 1.

Case 2: m ≥ 2.

By assumption, Rn admits an isoperimetric inequality for (m− 1)-cycles. Thus there

exists Si ∈ Im(Rn) such that ∂Si = ∂
(
TxB(yi, ri)

)
and

M(Si) ≤ Cm−1M
(
∂
(
TxB(yi, ri)

)) m
m−1 ≤ Cm−1

(
Am

) m
m−1 rmi

< Cm−1m
m
m−1A

1
m−1 2m · Ar0(yi)

m <
1

2
Ar0(yi)

m.

After possibly projecting Si onto the ball B(yi, ri), we may assume that spt(Si) ⊂ B(yi, ri).

Set Ti := TxB(yi, ri)− Si for i = 1, · · · , N and notice that ∂Tk = 0 and Ti ∈ Im(Rn).

Since

M(Ti) ≥ ‖T‖
(
B(yi, ri)

)
−M(Si) >

1

2
Ar0(yi)

m.

It follows that

diam
(

spt(Ti)
)
≤ 2ri < 4r0(yi) <

4 · 21/m

A1/m
·M(Ti)

1/m.
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Finally,

N∑
i=1

M(Ti) <
N∑
i=1

(
‖T‖

(
B(yi, ri)

)
+

1

2
Ar0(yi)

m
)

≤ (1 +
1

2
)M(T )

and hence the cycles R := T − T1 − · · · − TN ∈ Im(Rn) satisfies

M(R) ≤ ‖T‖
(
Rn\

N⋃
i=1

B(yi, ri)
)

+
N∑
i=1

M(Si)

= M(T )−
N∑
i=1

‖T‖
(
B(yi, ri)

)
+

N∑
i=1

M(Si)

≤M(T )− 1

2

N∑
i=1

‖T‖
(
B(yi, r0(yi))

)
≤ (1− α

2
) ·M(T ).

This proves the proposition in the case m ≥ 2.

�

5.5. Proofs of Closure and Boundary Rectifiability Theorems. The aim of this

section is to prove the Closure and Boundary Rectifiability theorems. The proofs are by

induction on the dimension of the currents, and the main ingredient, which will be proved

in the next section, is a characterization of integral currents via iterated slices.

Proposition 5.48 (Closure theorem for 0-current). Let (Tk) ⊂ M0(Rn) be a sequence

such that supkM(Tk) < ∞ and Tk ⇀ T for some T ∈ M0(Rn). If Tk ∈ I0(Rn) for all k,

then T ∈ I0(Rn).

Proof. Setting Nk = M(Tk), we can write Tk as

Tk =

Nk∑
i=1

mi
k[[x

i
k]]

for some xik ∈ Rn and mi
k ∈ {−1, 1}. After possibly passing to a subsequence we may

assume that Nk = N and mi
k = mi for some N ∈ N and mi ∈ {−1, 1} for all k and that

there exists 0 ≤M ≤ N such that xik → xi for i ≤M and |xik| → ∞ for i > M . It follows

that for every f ∈ C∞c (Rn) we have

Ik(f) =
N∑
i=1

mif(xik)→
M∑
i=1

mif(xi)

as k →∞ and hence T =
∑N

i=1 m
i[[xi]]. This shows that T ∈ I0(Rn). �

Lemma 5.49. Let m ≥ 1 and let (Tk) ⊂ Nm(Rn) be a sequence such that

sup
k

(
M(Tk) +M(∂Tk)

)
<∞
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and such that Tk ⇀ T for some T ∈ Nm(Rn). Let f : Rn → R be a Lipschitz function.

Then for almost every s ∈ R there exists a subsequence (Tkj) such that

〈Tkj , f, s〉⇀ 〈T, f, s〉

and

sup
j

(
M
(
〈Tkj , f, s〉

)
+M

(
∂〈Tkj , f, s〉

))
<∞.

Proof. Set µk := ‖Tk‖ and νk := ‖∂Tk‖. There exists a subsequence (kj) and Radon

measures µ, ν such that (µkj) converges weakly to µ and (νkj) converges weakly to ν.

Let s ∈ R be such that

µ
(
{f = s}

)
+ ν
(
{f = s}

)
= 0

and notice that all but at most countably many s ∈ R have this property. We want to

show that

〈Tkj , f, s〉⇀ 〈T, f, s〉.
For this, it is enough to show that

Tkjx{f ≤ s}⇀ Tx{f ≤ s}

and

(∂Tkj)x{f ≤ s}⇀ (∂T )x{f ≤ s}.
Let ε > 0. There exists h > 0 such that µ

(
{s− h ≤ f ≤ s+ 2h}

)
< ε. Let ω ∈ Dm(Rn).

Then

(5.3) µkj
(
{s ≤ f ≤ s+ h} ∩ spt(ω)

)
< ε

for all j sufficiently large. Indeed, let η ∈ Cc(Rn) be such that

χ{s≤f≤s+h}∩spt(ω) ≤ η ≤ χ{s−h≤f≤s+2h}

and notice that

µkj
(
{s ≤ f ≤ s+ h} ∩ spt(ω)

)
≤
∫
Rn
ηdµkj

j→∞→
∫
Rn
ηdµ

≤ µ
(
{s− h ≤ f ≤ s+ 2h}

)
< ε,

proving (5.3).

Now, let g ∈ C∞(Rn) be such that

|g − χ{f≤s}| ≤ χ{s≤f≤s+h}.

Then

|Tkjx{f ≤ s}(ω)− Tx{f ≤ s}(ω)|
≤ |Tkjx{f ≤ s}(ω)− Tkj(gω)|+ |Tkj(gω)− T (gω)|+ |T (gω)− Tx{f ≤ s}(ω)|
≤ ‖ω‖ · µkj

(
{s ≤ f ≤ s+ h} ∩ spt(ω)

)
+ |Tkj(gω)− T (gω)|

+ ‖ω‖ · µ
(
{s ≤ f ≤ s+ h} ∩ spt(ω)

)
≤ ε ·

(
2‖ω‖+ 1

)
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for all sufficiently large j. This shows that Tkjx{f ≤ s} ⇀ Tx{f ≤ s} and one shows

analogously that (∂Tkj)x{f ≤ s}⇀ (∂T )x{f ≤ s}. This proves that

〈Tkj , f, s〉⇀ 〈T, f, s〉

for all but countably many s ∈ R.

As for the second statement, let λ denote the Lipschitz constant of f . By Theorem 5.40

and Fatou’s lemma, we have∫
R

lim inf
j→∞

M
(
〈Tkj , f, s〉

)
ds ≤ lim inf

j→∞

∫
R
M
(
〈Tkj , f, s〉

)
ds

≤ λ · lim inf
j→∞

M(Tkj) <∞.

Hence, for almost every s ∈ R, there exists a subsequence (Tkjl ) such that

sup
l
M
(
〈Tkjl , f, s〉

)
<∞.

Similarly for the boundary.

�

We now define iterated slices. Let T ∈ Nm(Rn) and let π = (π1, · · · , πk) : Rn → Rk

be a Lipschitz map for some 1 ≤ k ≤ m. For almost every x = (x1, · · · , xk) ∈ Rk, the

iterated slice

〈T, π, x〉 := 〈· · · 〈〈T, π1, x1〉, π2, x2〉, · · · , πk, xk〉
is well-defined and defines an element in Nm−k(Rn). If T ∈ Im(Rn), then 〈T, π, x〉 ∈
Im−k(Rn) for almost every x ∈ Rk.

The following theorem, whose proof will be given in the next section, is the main

ingredient in the proofs of the Closure and Boundary Rectifiability theorems.

Theorem 5.50 (Rectifiable slices). Let T ∈ Nm(Rn) with m ≥ 1. If 〈T, π, x〉 ∈ I0(Rn)

for every Lipschitz map π : Rn → Rm and almost every x ∈ Rm, then T ∈ Im(Rn).

The converse is also true by the above. We use Theorem 5.50 to prove the Closure

and Boundary Rectifiability theorems.

Proof of Theorem 5.29. We argue by induction on m. The case m = 0 follows from

Proposition 5.48. Assume therefore that m ≥ 1 and that Theorem 5.29 holds for m− 1.

Let π = (π1, · · · , πm) : Rn → Rm be a Lipschitz map. By Theorem 5.41 and Lemma 5.49,

we have for almost every s ∈ R that 〈Tk, π, s〉 ∈ Im−1(Rn) for all k ∈ N and there exists

a subsequence (Tkj) such that

〈Tkj , π1, s〉⇀ 〈T, π1, s〉

and

sup
j

(
M
(
〈Tkj , π1, s〉

)
+M

(
∂〈Tkj , π1, s〉

))
<∞.

Since Theorem 5.29 is assumed to hold for m− 1 it follows that 〈T, π1, s〉 ∈ Im−1(Rn) for

almost every s ∈ R and hence

〈T, π, x〉 = 〈〈T, π1, x1〉, (π2, · · · , πm), (x2, · · · , xm)〉 ∈ I0(Rn)
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for almost every x = (x1, · · · , xm) ∈ Rm. It follows from Theorem 5.50 that T ∈ Im(Rn).

This concludes the proof.

�

For the proof of the Boundary Rectifiability theorem, we will need the following char-

acterization of integral 0-currents.

Lemma 5.51. Let S ∈ M0(Rn). Then S ∈ I0(Rn) if and only if S(χK) ∈ Z for every

compact set K ⊂ Rn.

Recall that, by the Representation Theorem 5.10, S is of the form

S(f) =

∫
Rn
f ·
−→
S d‖S‖

for some finite Radon measure ‖S‖ on Rn and some ‖S‖-measurable function
−→
S : Rn → R

with |
−→
S (x)| = 1 for ‖S‖-almost every x ∈ Rn. Therefore, the quantity

S(χK) :=

∫
K

−→
S d‖S‖

makes sense.

Proof. “=⇒”: Clear.

“⇐=”: Define

A :=
{
x ∈ Rn : ‖S‖({x}) ≥ 1

}
and notice that A is a finite set. Let x ∈ Rn\A. Then, there exists r > 0 such that

‖S‖(B(x, r)) < 1. We claim that

‖S‖(B(x, r)) = 0.

For this, define

F± :=
{
y ∈ B(x, r) :

−→
S (y) = ±1

}
.

For every compact subset K ⊂ F+, we have S(χK) ∈ Z and

S(χK) = ‖S‖(K) ≤ ‖S‖(B(x, r)) < 1

and hence ‖S‖(K) = 0. Since

‖S‖(F+) = sup
{
‖S‖(K) : K ⊂ F+ compact

}
,

it follows that ‖S‖(F+) = 0. One shows analogously that ‖S‖(F−) = 0 and hence

‖S‖(B(x, r)) = 0. It follows that ‖S‖(Rn\A) = 0. Since

‖S‖({x}) = |S(χ{x})| ∈ Z,

we finally obtain that ‖S‖ is a finite sum of Dirac measure and thus S ∈ I0(Rn). �

Proof of Theorem 5.31. The proof is by induction on m. We first prove the case m = 1.

Let T ∈ I1(Rn) and let K ⊂ Rn be compact. By Lemma 5.51, it suffices to show that

∂T (χK) ∈ Z. For this, define a Lipschitz function f : Rn → R by

f(x) := dist(x,K).
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Fix R > 0 such that K ⊂ B(0, R) and let g ∈ C∞c (Rn) be such that g = 1 on B(0, 2R).

For every 0 < r < R, we have

(∂T )(χ{f≤r}) =
(
(∂T )x{f ≤ r}

)
(g)

= ∂
(
Tx{f ≤ r}

)
(g)− 〈T, f, r〉(g)

= T
(
χ{f≤r}dg

)
− 〈T, f, r〉

(
χB(0,2R)

)
= −〈T, f, r〉

(
χB(0,2R)

)
.

Since 〈T, f, r〉 ∈ I0(Rn), 〈T, f, r〉
(
χB(0,2R)

)
∈ Z for almost every 0 < r < R, and thus we

see that

(∂T )(χ{f≤r}) ∈ Z
for almost every 0 < r < R. Since χ{f≤r} → χK as r → 0, it follows that (∂T )(χ{f≤r}) ∈ Z.

Since K was arbitrary, it follows from Lemma 5.51 that ∂T ∈ I0(Rn). This proves the

case m = 1.

Suppose now that Theorem 5.31 holds for some m ≥ 1. Let T ∈ Im+1(Rn). Let

π = (π1, · · · , πm) : Rn → Rm be a Lipschitz map. Since

〈∂T, π, x1〉 = −〈T, π1, x1〉 ∈ Im−1(Rn)

for almost every x1 ∈ R, it follows that

〈∂T, π, x〉 = 〈〈∂T, π, x1〉, (π2, · · · , πm), (x2, · · · , xm)〉 ∈ I0(Rn)

for almost every x = (x1, · · · , xm) ∈ Rm. Theorem 5.50 implies that ∂T ∈ Im(Rn). This

completes the proof.

�

5.6. MBV functions and the proof of the Slice-rectifiability Theorem.
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