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1. MOTIVATION

Typical problem in Geometric measure Theory (GMT): “Given a k-dimensional sub-
manifold M C R" with boundary, does there exist a k-dimensional submanifold N of
minimal volume with ON = OM?” In other words: does there exist a k-dimensional
minimal surface with prescribed (k — 1)-dimensional boundary?

Date: December 26, 2018.



2 NOTES TAKEN BY CHANGYU GUO, UNIVERSITY OF FRIBOURG

Some history:

(1) Already formulated by Lagrange around 1760.

(2) Solution for 2-dimensional surface “of disc type” by Douglas and independently by
Radé around 1930. Here, surface of disc type means mappings from D = {z € C :
|z] <1} to R™. Thus, look for u: D — R™ continuous on D, piecewise C* on D
such that u|g: parametrizes I' and u has minimal area among all such maps.

(3) Federer-Fleming around 1960. Solution for surfaces of general genus and for higher
dimensional surfaces in R™.

Direct method in the calculus of variations:

a) Let (N,,) be “volume minimizing” sequence with ON,, = OM for all m.

b) Try to extract “convergent subsequence”, N,,, — N and show that ON = 0M and

VoI(N) < lim inf Vol(N,y,).

c¢) Show that N is smooth submanifold up to a small singularity set.
Principal idea of de Rham and Federer-Fleming: Every compact oriented k-dimensional
submanifold N C R" gives rise to a linear functional
[N]: D*(R™) — R
by

[N](w) = /N v,

where D*(R") is the space of compactly supported k-forms in R™. Convergence of func-
tionals T, : D*(R") — R, T,,,(w) — T(w) for all w € D¥(R").

Aim of course: Develop Federer-Fleming theory of currents and solve the generalized
Plateau’s problem.

2. MEASURE THEORETIC BACKGROUND
2.1. Outer measure. Let X be a set and
2% .= {A:AcC X}

Definition 2.1. A function p: 2% — [0, 00] is called measure on X if

i) () = 0
i) pu(A) <302, u(Ay) whenever A C U2, Ag.

In the literature, such p is usually called an outer measure but we will simply call it
a measure.

Remark 2.2. If y is a measure on X, then u(A) < u(B) for all A C B C X.

Definition 2.3. Let pu be a measure on X and B C X a subset. The restriction of u to
B is the measure u.B on X defined by

(lB)(A) == (BN A)
for each A € 2X.
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It follows directly from the definition of measure that u_B is a measure.

Definition 2.4. A subset A C X is p-measurable if for every set £ C X
p(E) = p(ENA) + p(E\A).

We will simply say “measurable” if there is no danger of ambiguity. Note that the
inequality “<” always holds.

Example 2.5. i) If 4(A) = 0, then A is measurable.
ii) A C X is measurable if and only if A° = X\ A is measurable.
iii) Let A, B C X be measurable sets. If A us y-measurable, then A is . B-measurable.

Important properties of measurable sets.
Theorem 2.6. Let 1 be a measure on X and { Ay }r—1 a countable collection of measurable

sets. Then

i) U, Ax and (,—; Aj are measurable.

ii) If the sets {Ay} are pairwise disjoint, then

nJ Ar) =D u(Ay).

111) IfA1CA2C"',then

M(kUl Ap) = lim p(Ay).

iv) If Ay D Ay D -+ and p(A4;) < oo, then

u([) Ax) = Jim pi(Ay).

k=1
As a special case we obtain: Let A, B C X be measurable. Then

i) AU B and AN B are measurable.
ii) If AN B =0, then
1(AU B) = u(A) + u(B).

Sketch of the proof. 1) It is straightforward to check that the previous comments hold and
thus 1) and ii) holds by induction for finite collections.
2) It thus follows, if {Ax} are pairwise disjoint, then

p(J A) > u((J Ar) =D n(Ar)
k=1 k=1 k=1
for any finite n and hence

n(J Ar) = (A
k=1 k=1

and the equality follows from the o-subadditivity of the measure.
3) Now iii) and iv) follow easily.
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4). Measurability of A := |J;—, Ay. Write B, := [J,_, Ax, then By C B, C --- and
A=U,", Bn.

Let E C X. Without loss of generality, we assume u(E) < oo. Then Ay and B,, are

p-measurable and hence (uLE)-measurable. It follows

p(ENA) + p(ENA) = (pE)(A) + (e E)(A°)

= (ueB)(\J Ba) + (uE)() BY)

n=1
= lim [(uE)(Bn) + (uE)(By)]
— (uE)(X) = u(E),
which implies that A is measurable.
5) Easy to see that (),—, Ay is measurable. O

Definition 2.7. A collection of subsets of A C 2% is called o-algebra if
)0, XeA
ii) A€ Aimplies A°€ A
iii) A, € A, k=1,2,... implies | J,-, A, € A

Theorem 2.6 implies that

Corollary 2.8. If y is a measure on X, then the collection A of p-measurable subsets of
X forms a og-algebra.

Definition 2.9. A measure p on X is called regular if for all A C X, there exists a
p-measurable set B with A C B and u(B) = u(A).

Exercise: If i is a regular measure, then iii) of Theorem 2.6 holds even when the sets
A, are not measurable.

2.2. Borel measures. Let (X, d) be a metric space.

Definition 2.10. A measure i on X is called Borel measure on X if every open set in X
is yu-measurable.

The smallest o-algebra containing all open sets in X is called Borel o-algebra of X
and is denoted by B(X). The elements in B(X) are called Borel sets.

Remark 2.11. If 4 is a Borel measure on X, then every Borel set in X is py-measurable.

Theorem 2.12. (Carathéodory’s criterion) Let u be a measure on X. Then p is a Borel
measure if and only if

(2.1) H(AU B) = ju(A) + u(B)
for all A, B C X with d(A, B) > 0.
Here, the distance between two sets A, B is defined by
d(A, B) :=inf{d(a,b) : a € A,b € B}.
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Remark 2.13. In specific examples, (2.1) is usually easy to verify, see below (Hausdorff
measure).

Proof. =: Suppose A, B C X satisfy d(A, B) > 0. Then there exists U C X open nbhd
of A such that U N B = (). Since U is measurable,

W(AU B) = u((AUB)NU) + p((AU B)\D)
— j(A) + u(B).

«: It suffices to show that closed sets are measurable. Let A C X be closed and
E C X with u(F) < co. We want to show that

w(E) = n(ENA) + p(E\A).
For k € N, define
Ap:={r e X :d(z,A) <1/k}.
Then d(EN A, E\Ai) > 0 and so
wE) = p((ENA)U(E\A))
> (BN A) + p(E\Ag).
It remains to show that pu(E\Ax) — u(E\A) as k — oc.
For this, set R,, :== A,,\A,,+1 and notice that
E\A = (E\Ay) U | J(ENR,,)
m=k

because A is closed. Then

WENA) < n(E\Ay) + > (B N Ryy).

m=k

In order to prove our claim, it is enough to show that

Z w(ENR,) < .
m=1

Since d(R,,, Rx) > 0 whenever |m — k| > 2 it follows that for all N € N,

> u(E N Ryna) = p(EN | Rame1) < u(E)

and similarly Zgzl w(E N Ryy,) < p(E) from which we deduce
2N
> wENR,) <2u(E) VNN
m=1

and so Y *_  W(ENR,,) < 2u(E) < . O

Theorem 2.14. Let p be a Borel measure on X and B C X a Borel set.
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i) If u(B) < oo, then
pu(B) = sup{u(C) : C C B and C'is closed}.
i) If 3U; C X open, i = 1,2, ..., such that x(U;) < oo and B C |J;=,(U;), then
pu(B) = inf{u(V): B CV and V is open}.

A special case is if u(X) < oo.

A sketch of proof. 1) ii) follows from i):
For given € > 0, by i), choose C; C U;\ B closed and such that

n((UAB\G;) < 25 Vi € N.

Then U := {J;2, U;\C; is open, contains B and satisfies

pU\B) <Y 5 =<

Therefore,
w(U) = w(U\B) + u(B) < u(B) +¢.
2) By considering pu B instead of u, we may assume that u(X) < co. We want to
show that for every Borel set A C X

(2.2) p(A) =sup{u(C) : C C A and C' is closed}.
Define
A:={AC X : A satisfies (2.2)}.

Then A contains all closed sets, in particular, ) and X. Verify that if A, € A, k € N,
then

GAkEA and ﬁAkE.A.

k=1 k=1
It follows that

A ={AecA: A% A}
is a o-algebra. Show that A contains all open sets, hence A’ contains all closed sets, so
B(X)cCA. OJ

Definition 2.15. A measure p on X is called Borel regular if p is a Borel measure and
for all A C X, there exists B € B(X) such that A C B and u(B) = u(A).

Lemma 2.16. If x4 is a Borel regular measure on X and A C X is p-measurable with
p(A) < oo, then LA is Borel regular.
Proof. Let U C X be open and E C X an arbitrary set. Since U is pu-measurable,
ULA(E) = w(ANE)=pu(ANENU)+ pu(ANE\U)
=wAENU)+ wA(E\U),
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which implies that U is uLA measurable. Consequently, uLA is Borel. Next, let £ C X
be arbitrary. Since p is Borel regular, there exists a Borel set B such that A C B and
w(B) = u(A). Since u(A) < oo and since A and B are p-measurable, it follows that
w(B\ A) = 0. There thus exists a Borel set C' such that B\ A C C and pu(C) = 0. There
exists furthermore a Borel set D such that AN E C D and u(D) = p(ANE).

Set G := BcUC UD. Then G is a Borel set and E C G. Since AN B¢ = () it follows
that

wANG) < p(ANB) + (AN C) + p(An D)
< u(C) + (D) = p(AN E).
This shows the Borel regularity of pu_A. 0J
2.3. Hausdorff measures. Let (X, d) be a metric space and s € [0,00). For A C X and
0 >0, we set

Hj(4) = in { iws(diar;Ai)s cAc A, diama; <3},
=1 %

where we use the conventions

e inf() =00
e (diamf)* =0 for all s >0
o 0V =1.

The number w, are normalizing constants given by ws = %2/3-1)’ where I" is the Gamma-
function: .

I(t) = / e "2t dw.

0

Note that w, is the Lebesgue measure of the unit ball in R".
Definition 2.17. The Hausdorff s-measure of A C X is

H(A) :=lim H;(A).

6—0
Note that 0 < § < ¢ = H;(A) > Hi (A).

Remark 2.18. In Definition 2.17, we may equivalently take the sets A; to be closed or
open.

Simple properties:

i) H° is the counting measure on X
ii) If X = R", then
— H(z+ A) =H(A) Yz € R" VA CR"”
— H¥(ANA) = X¥H(A) VA >0, VA CR"”
— For every bounded open set U C R", 0 < H™(U) < oc.
By Haar’s theorem, there exists a unique (up to a multiplicative constant) translation

invariant Borel measure on R™. The normalizing constants ws are chosen in such a way
that H" = L™ on R".
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We shall prove later that for an open set U of an m-dim submanifold M C R",
H™(U) = Vol (U).

Theorem 2.19. Let X be a metric space. Then

i) H* is a Borel regular measure on X for all s € [0, 00)
ii) For all 0 < s <t < oo and A C X we have

H(A) < oo = H'(A) =0
H'(A) > 0= H*(A) = o0.
Proof. 1) Straightforward to check H?® is a measure.
Borel measure: A, B C X with d(A, B) > 0. Then V0 < § < d(A, B),
H5(AU B) = H;(A) + H3(B)

and so
H (AU B) =H*(A) + H*(B).
By Theorem 2.12; H® is Borel.
Borel regular: A C X w.lo.g. H°(A) < oco. Then Vm € N,JA C X closed, k € N,
such that diam A7" < L A C |J, A7 and

= diam A} s s
Zws(%) < Him(A) +1/m.

k=1
Then B :=(,, U, A7 is Borel and satisfies A C B and for each m > 0

1m(B) < Hipp(A) +1/m <HY(A) +1/m.

Thus H*(B) = H*(A).
ii) This follows because for 0 < s < t and diam A < §

<dlaI;lAk>t S (5/2)t—s ) (dlaI;Ak;)s

Left as exercise. O

Definition 2.20. The Hausdorff dimension of a set ) # A C X is defined by
dimy(A) :=inf{s > 0: H*(A) =0} =sup{s > 0: H*(A) = oo}.

Examples 2.21. 1) As mentioned above, H" = L™ and X = R".

Claim: dimy(R") = n.

H'(R™) = L"(R") = co = dimy(R") > n. On the other hand, R" = |J, B(0,k)
and H"(B(0,k)) < oo which implies for s > n, H*(B(0,k)) = 0,Vk € N and thus
H*(R™) = 0,Vs > n. In particular, dimy (R™) < n.

2) Similarly, if M C R" is m-dim submanifold, then dimy (M) = m.

3) Standard Cantor set C' := (), C) C [0, 1], where Cy = [0, 1] and

1
Cp = g(ck—l U@+ Cy)) k>1
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Then C' = 1(CU (24 C)) and so
H(C)=3""H(CU2+C))=2-3"HO).

log 2 log 2
%2 QOne can show that for s = &
log 3 log 3’

1
3

If 0 < H*(C) < oo for some s > 0, then s =
H(C) = 5=
Remark 2.22. One can show that for any metric space X,
dimy (X) > dimy,,(X).

2.4. Covering theorems. Open and closed balls in a metric space (X, d) will be denoted
by

B(z,r) ={y€ X :d(y,x) <r} and B(z,r):={ye X :d(y,z) <r}.
When we say a ball B in X, we understand that a center x and a radius r > 0 were chosen

(note that center and radii are not unique in general). For a ball B = B(z,r) we write
rad(B) :=r. Given A > 0 we write AB for B(x, Ar).

Theorem 2.23. (5r-covering) Let X be a metric space and B a family of (open or closed)
balls such that
sup{rad(B) : B € B} < 0.
Then there exists a disjoint subfamily B’ C B such that
JBC 5B
BeB BeB'

Remark 2.24. In general, B’ can be uncountable. However, if for example X is proper
(i.e. bounded closed sets in X are compact), then B’ is a countable family.

Proof. Set R := sup{rad(B) : B € B} and define for k =0,1,2,...

B, ={BeB: % <rad(B) < 2—}2}
We choose inductively subfamilies 3 C Bj, as follows:
k =0 By Zorn’s lemma, there exists maximal disjoint subfamily B}, C By. Here maximal
means cannot add disjoint balls from Bj.
k ~~ k+ 1 Suppose By, ..., B} have been constructed for some k& > 0. Zorn’s lemma implies
there exists maximal disjoint subfamily B, ; of

k
{BeBu:BnB =0 vB c|JB}
=0

Set B := |J, B;,. Claim: For every B € B, there exists B’ € Uf:o B such that
BN B' # (. Since otherwise, Bj, is not maximal.
For such B, B/,

lrad(B)

rad(B’) > % > 5

and so B C 5B'.
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Exercise: Give a constructive proof of a maximal disjoint subfamily in the case the
metric space is proper.

Definition 2.25. A family G of subsets of X is said to be a fine covering of a subset A
if Ve € A, Ve > 0, 3C' € G such that x € C' and 0 < diam C < ¢.

Theorem 2.26 (Vitali covering theorem). Let X be a metric space, A C X and s > 0.
Let G be a fine covering of A by closed sets. Then there exists a (finite or) countable
disjoint subfamily {C%} C G such that one of the following holds:

i) >, (diam Cy)* = oo

i) H°(A\ Uy i) = 0.

Remark 2.27. In practice, one has to exclude option i). Often this is possible. For
example, one choose G such that every C' € G is contained in a fixed set U with H*(U) <
00.

Proof. We choose Cy € G inductively as follows:

= 0 Define
- Go={CegG:diamC <1}
— dp :=sup{diam C : C' € Gy}.
=—: 3C) € Gy such that diam C, > %do.
k ~~ k + 1 Suppose we have chosen disjoint Cy, ..., Cy € Gy for some k > 0. Define

Gri={C Gy OmCJCj —0}.
j=1

We consider two cases:

Case 1: Gpyp1 = 0.

AC U?ZO C; since C; closed and by definition of fine covering and thus (ii)
holds trivially.

Case 2: Gp1 # 0.

3Chs1 € Gry1 with diam Cyyq > Ldiyr, where diy = sup{diam C' : C' € Gy41}.

By above, we may assume the process does not stop. We assume that

(2.3) ) (diam Cy)* < oo.
k
We will show that for every 6 > 0, H3(A\ U, Cx) = 0.
For each k > 0. Fix x;, € C}.
Claim: For all n > 0, A\ U;_y Ck C Upspi1 B(@m, 3diam Cyp).
Let € A\ U;_, Ck. Let C € Gy such that 2 € C' and diam C' > 0 and C'NY;_, = 0.
By (2.3), we have d,,, — 0 as m — oo. Hence Im > n + 1 such that C N C,, # 0. Let m
be the smallest such number. Then diam C' < 2diam C,,, and so z € B(z,,, 3diam C,,).
Let § > 0. For all n large enough, diam C,,, < §/6, ¥m > n and hence
" > 6 diam Cp, \ * nosoo
S < I .
A Jow< Y w5< 5 ) il

k=0 m=n-+1
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Thus H*(A\Upey Ck) =0
0

Covering theorems are very useful. For example, Vitali’s covering thm can be used to
prove

Theorem 2.28 (Lebesgue differentation theorem). Let f € L'(R™). Then

1
0 B ) o, 1)~ T =0

for L"-a.e. x € R™. In particular,

1
hm—/ fly)dy = f(x
=0 ﬁn( (il?,’l“)) B(x,r) ( ) ( )
for L"-a.e. x € R™.

Exercise: Try to prove Theorem 2.28.

Proof. We first show that if g is a non-negative, integrable and constant outside a compact
set K, then the function

1
g(x) := limsup

r—0 ,Cn(B(ZL’, T)) /B(Q?ﬂ") g(y)dy

satisfies g(x) < g(x) for a.e. x. To this end, for each rational ¢, set B, = {z : g(z) < ¢ <
g(z)} and select a bounded open set A D B,. Consider the family

F = {B(:c,r) 2 € By, B(z,7) C A and m/B( )g(y)dy > q}.

Then F is a fine covering of B,. By the Vitali Covering Theorem 2.26, we know that
there is a countable subfamily {B(z;,r;)} that covers B, up to a set of measure zero. If
L™(B,) > 0, then

/ dy>2/( dy>2q£” (2i,77))

= qL"(B,).
Since A is arbitrary, [, ¢ B, y)dy > qL"(B,). However, this is a contradiction, since g < ¢
on B;. Thus g < g a.e.
Now for any rational ¢, we consider ¢,(y) := |f(y) — ¢| and apply our previous con-
clusion to infer for a.e. x
1
limsup—/ fly) — f(x)|dy
P LB ) Sy T I
1
< hmsup—/ 9¢(y) + la — f(@)|dy
r—0 ﬁn(B($’r)) B(z,r) !

< 9q(@) + ¢ — f(@)| = 2|g = f(2)].
The last inequality holds for a.e. x and so holds for a.e. x and all g. The claim follows
since ¢ can be made arbitrarily close to f(z). O
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Another application of Vitali’s covering theorem.

Theorem 2.29. Let f: (a,b) — R be an increasing function. Then f is differentiable
L'-a.e. on (a,b).

Exercise: Try to prove Theorem 2.29.

Proof. See http://people.math.sc.edu/schep/diffmonotone.pdf or http://www.math.
uiuc.edu/"mjunge/54004-diffmon.pdf for the complete proof. We give a sketch here.
Without loss of generality, we may assume that f is increasing. We need to show that

A= {x € (a,b) : f not differentiable at x}

= {x € (a,b) : liin iélf flx+ hi)z — /@) < limsup flot hf)L — f(a:)}
- h—0

has measure zero (we can write liminf,_,o as minimum of lim infj,_,o- and liminf;_,o+ and
similarly for limsup,,_,,). We only show that

A= {x € (a,b): F_(x) < F+(:1c)}

f(z+h)

h_f(x) and F, (z) = limsup,,_, s L&M=/

has measure zero, where F_(z) = liminf;,_,q+ -

We can write
A= 4= U {a: e (a,b): F(r)<s<t< F+(x)}
5<t,s,t€Q 5<t,s,t€Q
and so it is enough to show that £'(A,,) = 0 for fixed rationals s < .

Intuitively, A” = Ay, is the set on which f grows slower than s on certain scales and
strictly faster than ¢ on other scales. In order to apply the Vitali covering theorem, we

B) —
flz+ 2 flz) _ S}_
If £L1(A”) > 0, then we obtain by Vitali covering that for each € > 0, there exists [xy, 73, +

hi] € Z_ disjoint such that

o D he < (1+e)LH(A")

o [} (A” NUe_y [Tk, x5 + hk]) > LY A") — €

o iy (flaw+he) = flan) < sDy e < s(1+¢)LM(AY)
We apply the theorem again to

set

I = {[x,x+h]:xeA”,h>O,

A" = A" s i+
k=1
fo+r) — fz)
r
For ¢ > 0 sufficiently small and £!'(A”) > 0, Vitali covering implies 3[y;,y; + r1] € Zy

disjoint such that
o LY(A" N UL v,y + 1)) > LYA”) —¢
o S (flur+r) = flw) >t >

T, := {[y,y+r] cye A" r >0, > ¢, [y, y+r] contained in some [z, xk+hk]}


http://people.math.sc.edu/schep/diffmonotone.pdf
http://www.math.uiuc.edu/~mjunge/54004-diffmon.pdf
http://www.math.uiuc.edu/~mjunge/54004-diffmon.pdf
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Consequently,

Zh > LY A" N U[yhyl + 1))

=1 =1

> LYA") —e > LN (A”) — 26

Since f is increasing and each [y, y, + 1] is contained in some [z, T + hy], it follows that

NE

HLY(A") —2¢) < (fly+m) = fw)

=1

s |

IN

(f(CL’k + hk) — f(ZL'k)) < 8(1 + €)EI(A/,).

k=1

This is impossible if ¢ > 0 is small enough and so £!'(A”) = 0.

2.5. Densities. Often important to compare a given measure p to Hausdoff measures.

Definition 2.30. Let X be a metric space and p a Borel measure on X. For z € X and
s > 0, the upper and lower s-dim density of u at x is defined by

[5) B

O4(p, x) == limsup M
r—0 CUSTS

QS(M? .T) = lim inf M

r—0 wsfr-s

)

Note that the open balls B(z,r) can be replaced by closed balls B(x,r) without
changing value of ©, and O,.
Notation: Given a set A C X, we write

Os(A,x) := O4(H LA, x)
and similarly for ©,(A, z).

Lemma 2.31. Let p be a Borel measure on X. Fix s, > 0. Then the function

o) s HBET))

0<r<e WsT?®

is lower semincontinuous. In particular, the function @ — ©,(u,z) is a Borel function.
Analogously, = +— ©,(u, z) is Borel.

Recall that a map f: X — Y, where Y is a topological space, is Borel if f~1(U) is
Borel VU C Y open.

Proof. For each A > 0, we need to show that the level set
Fy:={zeX: f(z)> A}
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is open. Fix x € F), we shall show that B(z,d) C F) for some § > 0. Since x € F), there
exists a r, € (0,¢) such that
B(z,r,
p(Blers) |
wsT5

Since
1

lim pu(B(x,r, — E)) = (B(z, 7)),

k—o0
we know that for some kg, all k > kg,

wB, e = 1))
Wsrs

Note that for each y € B(z, 1), B(y,r.) D B(x, 7, — ), we thus get

p(Bly.r.)) _ p(Bla.r.— 1)

wsT5 wsTs

> A\

> A\,
which implies y € F) as desired. ([l

Theorem 2.32. Let X be a metric space, p a Borel measure on X, and B C X a Borel
set such that 3V; C X open, i € N, with u(V;) < oo and B C |J;2, V;. Let A\, s > 0.

i) If O4(p, z) > A for all z € B, then
u(B) > XH(B).
i) If ©,(p,x) < A for all € B, then
w(B) < 2°AH*(B).

Proof. ). Without loss of generality we assume p(B) < 0.
Let 0 < § < 1. Then 3U C X open such that B C U and pu(U) < u(B) + §. Define a
fine covering of B by

G:= {B(az,r) 2 € B,r <4/2,B(z,r) C U, u(B(z,7)) > (1 — (5))\w87"3}.

This is a fine covering of B since O4(u,z) > A for all x € B. Apply Vitali’s covering
theorem, 3 finite or countable disjoint subfamily {C;} C G such that one of the following
holds:

Z(diam C;)* =00

J

n(B\Jcy) =0

or

By definition of G, we have

: s 2
(diam C})* <

< mﬂ(cj)

and hence
: s 2°
E (diam C})* < A= u(| ]C;) < .

J
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Thus H*(B\JC;) = 0. It follows
MH3(B) < H;(B\| JC)) +H; Uc-

<Zws d1ar2nC’ ZM

< (1_15))\M(U) < (1_15))\(M(B)+5)-

Sending 0 — 0 and we obtain AH*(B) < u(B).
ii). Fix X' > A. For k € N define

wB) <y vr e 0.1/},

By = {:c ep:
wWer?
Note that By is Borel by lemma above and that

B, CByC--- and B:UBk.

Thus p(B) = limg_,o0 pt(By). It then suffices to show that for every k € N,
(2.4) u(Be) < 2N (H(B) + 1/k).
Fix k € N. Then 3A4; C X, ¢ € N such that By, C |J, A;, diam A; < 1/k and

S (M) < M) 1k

Without loss of generality, we assume A; N By # () for all ¢ € N. Choose z; € A; N By,.
Then

and so

w(By) < Z,u (x;,diam A;)) < Z)\'ws(diam A;)?

< 25/\'(7-[5( )+ 1/k),
from which (2.4) follows. O

Remark 2.33. Part ii) of Theorem 2.32 holds for arbitrary sets B C X. Indeed, define
B, ={x € X :...} then Bj, Borel and hence p B-measurable, which implies

p(B) = (pB) () By) = lim(puB)(By) = lim u(B N By) = lim p(By).

Corollary 2.34. Let X be a metric space, s > 0, and A C X such that H*(A) < oo.
Then

i) For H-ae. v € A, 275 < O,(A,7) <1
ii) If A is H*-measurable, then for H*-a.e. v € A¢, O,(A, x) = 0.
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Proof. i) a. ©,(A,r) < 1: Without loss of generality, suppose A is Borel by Borel regu-
larity of H*. For § > 0, apply Theorem 2.32 with u = H*LA and

B={xcA:0,(u,x)>1+6}
to obtain
oo > H*(B) =pu(B) > (1+0)H*(B).
Consequently, H*(B) = 0.
i) b. ©,(A,z) >27°. Apply Theorem 2.32 and Remark 2.33.

ii) 3A’ C X Borel such that A € A" and H*(A") = H*(A). Since A, A are H*-
measurable, H*(A"\A) = 0. Now apply Theorem 2.32 with © = H*_ A and for ¢ > 0,

B:={rec X\A" :0,(u,z) > ¢}

Details are left as exercises. O

Definition 2.35. Let p be a Borel measure on X and s > 0 and x € X. If

@S(/'L7 ZE) = Qs(,ua l‘),
then we write ©4(u, x) for this value and call it the s-density of u at .

Corollary 2.36 (Lebesgue density theorem). i). Let A C R"™ be an arbitrary set. Then
for L"-a.e. x € A,

On(A,z) = 1.
ii). Let A C R" be £"-measurable. Then for L™-a.e. x € A,
O,(A,z) =0.

Exercise: Let p be a measure on X and A C A’ C X such that
H(A) = p(A) < oo,
Then for every p-measurable set B C X we have
w(A'NB) = u(AN B).
By definition of pu-measurability,
1(A) = (AN B) + n(A\B)
< u(A'N B) + p(A\B)
— j(A) = p(A).

So we have equalitiy everywhere above. In particular, if A C A" C X with H*(A',z) =
H*(A) < oo, then

Os(A,x) =04(A,z) VreX
and the same for 6, O hold.

Proof of Corollary 2.36. Without loss of generality, we may assume L"(A) < oo. ii)
follows immediately from Corollary 2.34 ii).
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i) £L" is Borel regular = 3A" C R™ Borel such that A C A" and £L"(A") = L"(A). By
ii), ©,((A4)° x) =0 for L -a.e. z € A". Since
LA N B(z,1)) N LM((A) N B(z,7))

wpr™ Wy,

1=

LAY NB@n) ) for Lr-ae. x € A, it follows that

O,(A" z)=1 for L -ae. z€ A

and e
By the Exercise above,
O,(A,2) =0,(A,x)=1 for L™ae. z € A.
OJ

2.6. Riesz representation theorem. For the rest of this section, let (X, d) be a locally
compact and separable metric space.

Definition 2.37. A measure p on X is called Radon measure on X if u is Borel regular
and u(K) < oo for all K C X compact.

Exercise: There exists a countable family {By}, of open balls By = B(xy,ry) C X
such that B(xg,ry) is compact for each k and X = |, B.
Proposition 2.38. Let i be a Radon measure on X. Then
i) For every set A C X,

u(A) =inf{u(U): A C U,U open }.
ii) For every p-measurable A C X,
w(A) =sup{u(C) : C C A, C compact }.

Proof. 1) follows directly from Borel regularity, exercise above and Theorem 2.14.

ii) For n > 1, define K,, := |, B(zy, ), where B(zy, 7)) is given as in the exercise
above. Then K, is compact and u(A N K,,) — pu(A) as n — oo. Thus it suffices to prove
ii) for A C X p-measurable with u(A) < oo and A C K compact.

Define v := puc A. Then v is Borel regular by Lemma 2.16. Since v(A¢) = 0, there
exists A° C B Borel with v(B) = 0. By Theorem 2.14, Ve > 0, 3U C X open with B C U
and v(U) < e. Set C' := U° Then C is closed and C' C A C K, which implies C is
compact. Since A\C' = U N A, we have

p(A\C) = w(UNA)=vU) <k,
from which we infer that

p(C) = p(A) = (A\C) > p(A) —e.

Define
Ce(X,R) := {f: X — R: f is continuous with spt(f) being compact},
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the support of a function f is

spt(f) := {w € X : J(2) £ 0}.
Observation: Every Radon measure p on X gives rise to a linear functional

L: Co(X,R) >

/ fd,

f>0= L(f)>0.

The following theorem gives an important converse.

which is positive

Theorem 2.39 (Riesz representation theorem). Let X be a locally compact and separable
metric space. Let L: C.(X,R) — R be a positive linear functional. Then there exists a
Radon measure p on X such that

L(f):/deu Vf € C.(X,R).

Thus there is a 1-to-1 correspondence between Radon measures on X and positive
linear functionals on Cy(X,R). For the proof, we need the following.
Lemma 2.40. (Partition of unity) Let X be as in Theorem 2.39.

i). Let K C X be compact and let U C X be open such that K C U. Then there
exists f € C.(X,R) such that 0 < f <1 and spt(f) C U and f =1 on a nbhd of
K.

ii). Let K C X be compact and Uy, ...,U, C X be open with K C J;_; Uy. Then
A, ..., A € Co(X, R) such that Ay > 0, spt(A,) C Uy, Y p_y A < 1 and

> M(z)=1 forall z in a nbhd of K.

Proof. Exercise. 0

Proof of Theorem 2.39. For U C X open, we define
p(U) == sup{L(f) : f € Co(X,R),0 < f < 1,spt(f) C U}
and for A C X arbitrary,
wu(A) = inf{u(U): A C U,U open}.

We claim that @ is a Radon measure on X.
(a) p is a measure.
e u(®) =0
o A C U2, A, Without loss of generality, p(Ay) < oo for all k.
Let € > 0 and let U, C X be open such that A, C U, and
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Set U = Uy~ U Then U is open and A C U. Let f € C.(X,R) be such that
0 < f<Tlandspt(f)CU. Since K :=spt(f) is compact, there exists n € N such
that K C J_, Us.

Let Ay, ..., A\, be given as in Lemma 2.40 ii) and set f := \pf for k=1,...,n.
Then f € C.(X,R) with 0 < fi, < 1 and spt(fx) C Ug and so L(fx) < u(Ug).

Since . .
k=Y M=1
k=1 k=1

it follows that .

L(f) =Y _L(fx)
k=1

o0

— L(f) < ZM(Uk) <e+ ZN(Ak)-
k=1 k=1
Since f was arbitrary,

and thus p is a measure.

(b) u is a Borel measure.

If U,V C X open and UNV = (), then

pUNV) =p) + pV).
If A;B C X with d(A,B) > 0, then 3U,V C X open such that A C U, B C V and
UNV =0. Let W C X be open such that AU B C W. Then

pW) 2 p(WnUUV)) =puWnU)+uWnv)
> u(A) + u(B)

Since W was arbitrary,

#(AU B) > u(A) + u(B),
which implies p is Borel.

(C) p is Borel regular.

This follows from the definition of u(A).

(d) u(K) < oo for K C X compact.

Let K C X compact. Then 3f € C.(X) such that 0 < f < 1 and f = 1 on an
open set V with K C V. Since pu(K) < u(U) it is enough to show that u(U) < oo. Let
h € C.(X) with spt(h) C V and 0 < h < 1. Then

h<f=f—-h>0
s L(f) > L(h) = (V) < L(f) < 0.
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(e) For every f € C.(X), we have

L) = [ sdu

It suffices to show this for f > 0. Let ¢ > 0 and M :=sup{f(z) :x € X}. Let V C X
be open with spt(f) C V and u(V) < oo and let
O=yo<y<uyr < <yYp1 <M<y,

be such that y; — y;-1 < ¢ and p({f = y;}) = 0 for all i = 1,...,n. Note that u({f =
y}) > 0 only for countably many y € R.
Define
U ={f<wnunV
and, for ¢ > 2,
U ={yia < f<wy}CV.

Then U; is open and pairwise disjoint, with
V:U(Um{f:yi})
i=1

and thus 3K; C U; compact such that pu(U;) < pu(K;) + 57 By Lemma 2.40, 3h; € C.(X)
such that 0 < h; < 1 and spt(h;) C U; and h; = 1 on a neighborhood of K;. Then the
function g := f - (1 > hi) € C.(X) and satisfies 0 < g < M and

spt(g) C spt(f)\ U K; C U(U’L\KZ) U{f =ui}.
i=1 i=1
Thus, by approximating {f = y;} by open sets and using definition of p, we obtain

Lig) <MY n(U\K;) < e

i=1
and thus 0 < L(f) = > L(f - h;) <e.
Now observe that

o yi1-hi < f-hi <yl
as in (a)

Thus we calculate
ZL(f’hz‘) < ZL(%hz) < Z/ [ +edu
i=1 i=1 i=1 Y Ui

< /deujteu(U)
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and
Z (f - hy) >Zyl U;) —e/Mn) >Z/f—€d,u—6
({ffzyi})f / fdu—e —eu(U).
Therefore, )

—/ fdu| <e+eu(V).
X

Since € was arbitrary, L(f) = [, fdu.
(f) v is unique (exercise).
Let p, i/ be two Radon measures on X such that

/deuz/deu’ Vi€ C.(X).

Enough to show that for all U C X open, we have p/(U) = pu(U). Let U C X be open.
Case 1: u(U) < oo.
Let ¢ > 0. Then 3K C U compact such that u(U) < u(K) + e, which implies by
Lemma 2.40 that 3h € C.(X) such that 0 < h < 1 and spt(h) C U and h = 1 on K.
Thus

u(U) < )+€</hdu+5

u
/ hdp' +¢e < py/(U) + ¢.
u(U)

' (U).

Since € > 0 was arbitrary, we have
Case 2: p(U) = 0.
Almost the same argument = p/(U) = oc.
Switching the roles of p and p' gives u(U) = p/(U) for all U C X open.
0]

We now give a non-trivial generalization of the Riesz representation theorem: Let
(H,(-,-)) be a finite-dimensional Hilbert space. Define
Co(X,H)={f: X — H : f is continuous and spt(f) is compact}.

Let 1 be a Radon measure on X and 7 € L®(X, u, H). Then p and 7 give rise to a linear
functional

L: C.(X,H) > R
L(f) = /X (f (@), (@) du(z)

and L satisfies the finiteness property

(2.5) sup { L(f) : f € Cu(X, H), |f] < Lspt(f) € K } < o
for every compact K C X.
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Remark 2.41. The function z — (f(x), 7(x)) is p-integrable. (Exercise)
The following theorem gives a converse.

Theorem 2.42 (Riesz representation theorem II). Let X be a locally compact and sepa-
rable metric space and (-, -) a finite dimensional Hilbert space. Let L: C.(X, H) — R be
a linear functional satisfying the finiteness property (2.5) for all X' C X compact. Then
there exists a unique Radon measure ¢ on X and a unique py-measurable map 7: X — H
such that |7(z)| =1 for p-a.e. € X and

L(f) = /X (). 7(@))du(z) Vf € Cu(X. H).

Remark 2.43. If H = R and L: C.(X) — R is a positive linear functional, then L
satisfies (2.5) (exercise). Thus Riesez represenation theorem I, Theorem 2.39, is a special
case of Theorem 2.42 since 7 = +1 p-a.e. by positivity.

We do not prove this theorem here and refer e.g. [4] for a proof. We mention that the
Radon measure g is constructed as in the proof of Theorem 2.39: for each U C X open,

p(U) i=sup { L(f) : f € CulX H),|f] < Lspt(f) € U}
and for A C X arbitrary
p(A) = inf {,LL(U) : AC U,U open }
One shows actually as in the previous proof that p is a Radon measure.

2.7. Weak compactness of Radon measures and Banach-Alaoglu theorem. We
recall some elements from functional analysis that will play a role later.
Let V' be a vector space over R. A norm || - || on V' induces a metric on V' by

dv,w) = |lv —w| Yv,weV.

Proposition 2.44. Let V = (V.|| - ||) be a normed vector space and 7: V' — R linear.
Then TFAE

i) T is continuous at 0.

i1) 71" is continuous on V.

)
iii) 7" is Lipschitz continuous.
iv) There exists L > 0 such that

IT@Il < Lol
for allv e V.

Proof. Exercise. [l

The vector space of continuous linear functional on V' = (V|| - ||) is called the dual

space of V and denoted by V*. It is equipped with the operator norm
[T}y = sup{T'(v) : [[o]| <1},

which defines a norm on V*. We often write ||7'|| instead of ||77||y~.
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Proposition 2.45. The dual space (V*, || - ||y+) is a Banach space, i.e., the metric on V*
induced by || - ||y« is complete.
Proof. Exercise. O

Example 2.46. For a sequence {a,} C R define
(an)lh = _ lan|

[(@n)lloc := sup |an|.

Define
1= {(an) C R (an)]s < o0}
1 == {(an) CR: [[(an)]loc < o0}
Then (I',] - ||1) and (I, - ||«) are Banach spaces and

I 1) = (@ 11 Hloo)-

Let V = (V, ]| - ||) be a normed space. If dim(V') = oo, then the closed unit balls in V'
and in V* are not compact. In particular, there exists a sequence (T,,) C V* with

ITo]| <1 Vn
which does not have a converging subsequence in V*.
Example 2.47. The sequence (e,) C [ with
en=1(0,---,0,1,0,---)
does not have a convergent subsequence since
len — emllo =1 Vn # m.

Definition 2.48. A sequence (7,,) C V* is said to converge weakly-* to 7" € V* if
T, (v) = T(v) for all v € V.

Notation: 7,, = 7.

Proposition 2.49. Let T, T, € V*, n € N. Then
i) If T,, = T, then T, > T.
i) If 7, = T, then ||T|| < liminf, . ||T}]|-

Proof. Exercise. O
Example 2.50. Let (e,) be given as in Example 2.47. Then e, — 0.

Theorem 2.51. (Banach-Alaoglu) Let V' be a separable normed space and (7,,) C V* a
sequence satisfying
sup || T, || < oc.

Then there exists a subsequence (7,,,) and 7' € V* such that
T, > T.
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Proof. Set
M :=sup ||T,|| < oo.
Fix x € V| we have
Ta(@)] < Tl - [le] < M]jzl] ¥n e N
and so the sequence {7},(z)} C R is bounded.
Let A := {z,, : m € N} C V be a countable dense subset of V. Then for each m,
the sequence (T),(x,,)) has a convergent subsequence and so by the diagonal sequence

argument, there exist subsequence (75, ) such that (7}, (x,,)) converges for every m € N.
Define T: A — R by

T(xy,) = lim T, (x,,) Vm e N.
k—o0
Then T is M-Lipschitz since
T (2m) — T(21)| = kh—{go T () — Ty ()]
< M||zp — x| Vm, L.

Thus there exists a unique M-Lipschitz extension of T" to all of V', which we denote by T’
again.
Let z € V and let (x,,,) be a sequence such that x,,, — x. Then

S QMHx - xmz” + |T(‘rml) - Tnk(xml)’

Thus Ty, (v) — T(x) as k — oo, which implies T is linear and T,, = T O

Theorem 2.52. Let X be a compact metric space. Then the vector space C(X) =
{f: X = R: f continuous}, equipped with the sup-norm

[/l == sup{[f(2)] : 2 € X}

is a separable Banach space.

Note. (C.(R), | - |lz) is not complete.

Proof. 1t is straightforward to show that (C'(X),| - ||x) is Banach. We next verify the
separability. For each n € N choose finitely many points z7,--- , 2 such that

Mn . 1
X = B, =).
k=1

Let AT,---, A7 be a partition subordinate to the balls B(xy,1/n). Then the set

m

f::{qu')\’,;‘:nEN,qkEQ}CC(X)
k=1

is countable.
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We show that F is dense. Let f € C(X) and € > 0. Select n € N such that for all
x,y € X with d(z,y) < 1/n we have

F@) = fW)l < 5.

Choose ¢;Q such that |f(2}) —qi| < § for all k = 1,...,m,. Let h € F be the function

given by
h = Z Qi Ag-
k=1

Let z € X. If k is such that d(z,z}) > 1/n, then A}(z) = 0. If k is such that d(z,z}) <
1/n, then

[f(2) = qil < |f(2) = f)] + 1F(25) — el <e.
Since > ;" A% (z) = 1, we obtain

Mn

[f@) = h(@)] =) _(f(@) = a)Aq] < e

k=1
0J

Theorem 2.53. Let X be a compact metric space and (u,,) a sequence of Radon measures
on X such that
sup pn(X) < o0,

Then there exists a subsequence (u,, ) and a Radon measure x on X such that
| fdua = [ s

Note. We say that p,, converges weakly to p, we write

for every f € C(X).

iy, = pL-
Proof. For each n € N, define 7,,: C(X) — R by
Vi [ s vy et
X

Then T, € (C(X),| - ||x)* and ||T,] < pn(X). By the Banach-Alaoglu theorem, there
exists a subsequence (T},,) and T' € (C(X), | - |lx)* such that T,,, > T, i.e.,

T (f) = T(f)

for every f € C(X). Since T, is positive for all n € N, T is positive as well. By the Riesz
representation theorem, there exists a Radon measure o on X such that

- [ sin

Therefore, fi,,, — . O

3. LIPSCHITZ MAPS AND RECTIFIABLE SETS
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3.1. Lipschitz extensions.

Definition 3.1. A map ¢: X — Y between metric spaces (X, dx) and (Y, dy) is called
A-Lipschitz if
dy (p(x), o(2") < Mdx(x,2") Va2’ € X.

Theorem 3.2. (McShane) Let X be a metric space, A C X and ¢: A — R A-Lipschitz.
Then there exits a A-Lipschitz extension ¢: X — R of ¢, i.e., 9|4 = ¢.

Note. If such ¢ exists, then
o(x) < pla) + Ad(z,a) Ya e A.
Proof. For x € X, define
O(z) == inf{p(a) + Ad(z,a) : a € A}.
Then
o O(x) > —o0.
Fix ag € A. Then
p(a) + Ad(z,a) > p(ag) — Md(a, ag) + A(d(a, ag) — d(ag, z))
= ¢(ag) — Ad(ap, x),
from which we infer that ¢(x) > ¢(ag) — Ad(ao, ).
e  extends .
Let z € A. Then ¢(a) + Ad(z,a) > ¢(x) = p(x) + Ad(z, z) for all « € A. Thus
p(x) = p(x).
e ¢ is A-Lipschitz.
Let z,2" € X and without loss of generality we assume ¢(x) < ¢(2'). Fix e > 0.
Then there exists a € A such that p(a) + Ad(z,a) < ¢(x) 4+ €. It follows
p(2') = ¢(x) < @la) + Ad(2', a) — p(a) — Ad(z,a) + €
< \d(z,7') +e.
Since € is arbitrary, ¢ is A-Lipschitz.

O

Exercise: For A =[0,1] U [2,3], A =1 and ¢p(a) =1 for all a € A, draw the extension
given in the proof.

Corollary 3.3. Let X be a metric space, A C X and ¢: A — R™ A-Lipschitz. Then ¢
has \/nA-Lipschitz extension ¢: X — R™.

Here, R™ is equipped with the Euclidean norm

(CS Y -y

Proof. Write ¢ = (¢1, ..., ¢,) and apply McShane’s extension to each ;. 0



GMT 27

Exercise: Let X be the tripod with the length metric and let A := {vy, v, v3}. Find
a 1-Lipschitz map ¢: A — R? which does not extend to an L-Lipschitz map ¢: X — R?
for any L < v/2.
Question: What happens when the Euclidean norm in the corollary is replaced by
[*°-norm on R".
Remark 3.4. (a) Kirszbraun’s theorem: Every A-Lipschitz map ¢: A — R", A C R",
extends to a A-Lipschitz map ¢: R™ — R™.
(b) Federer: Every A-Lipschitz map ¢: A C R™ — E, where E is a Banach space
extends to an LA-Lipschitz map ¢: R™ — E| where L depends only on m.
(c¢) The result in (b) is not true when R™ is replaced by an arbitrary metric space.

Proposition 3.5. Let ¢: X — Y be a A-Lipschitz map between metric spaces X and Y.
If AC X and s > 0, then
H(p(A) < AH(A).
In particular,
diamy (p(A)) < dimy(A).

Proof. Exercise. O

3.2. Differentiability of Lipschitz functions. Recall U C R™ open and quasiconvex,
¢0: U — R" C'-smooth with ||dp]|| bounded — ¢ Lipschitz.
Let c: [a,b] = U be C'-smooth curve from z to y with [(¢) < L|z — y|. Then

o)~ ¢@)] = | [ doo (o)

b
< [ dewo I (0)de < MLy - s,

where M = sup{||dp.||: z € U}.
Question: ¢ Lipschitz — ¢ differentiable?
Answer: Not everywhere, but almost everywhere.
First, we have the following classical theorem for functions of one variable.

Theorem 3.6. Let f: [a,b] — R be an absolutely continuous function. Then f is differ-
entiable a.e. with f' € L'([a,b]) and

o) = () + | Py Vo e lab).

Recall that f is absolutely continuous on [a, b] if Ve > 0, 36 > 0 such that for every
finite collection {[a;, b;]}Y, of non-overlapping intervals [a;, bi] C [a, b] with SN |b;—a,| <
0 we have

Z |f(b;) = f(a;)] <e.

Exercise: If f is Lipschitz, then f is absolutely continuous.
We now come to the important differentiability theorem for Lipschitz maps in higher
dimensions.
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Theorem 3.7. (Rademacher’s theorem) Every Lipschitz map ¢: U — R™ is differentiable
L"-a.e. in U.

Here, differentiability means differentiable in the sense of Frechet: 4L: R" — R™
linear such that

ele o) () = L)
v—0 |U|
If it exists, L is unique and will be denoted by dyp,.
An (a priori) weaker notion of differentiability is differentiability in the sense of
Gateanx: Vv € R", the directional derivative
olz+1v) — p(a)
r

Dyp(x) = 1731_13
exists and the map v — D,p(x) is linear.

Remark 3.8. For a map ¢: U — R™ and = € U, we have Frechet differentiability at x
implies continuity at x and Gateanx differentiability at z. However, Gateaux differentia-
bility at  does not imply continuity at x.

However, we have

Proposition 3.9. Let p: U C R" — R™ be a Lipschitz map and x € U. If ¢ is Gateaux
differentiable at x, then ¢ is Frechet differentiable at = and

dp.(v) = Dyp(x) Vv € R™

Proof. Exercise. Use Gateaux diff. at z in finitely many directions {vy,...,v,} C S™*7!
that are sufficiently dense in S™~!. O

Proof of Theorem 3.7. Without loss of generality m =1 and U = R".

Claim 1: For a.e. x € R", the directional derivative D,p(z) exists for all v € R™.

Let {vx} C S™! be countable and dense. Fix k and let y € v;-. Then by Theorem 3.6,
the function t — ¢(y + tvy) is differentiable at a.e. ¢ € R. By Fubini’s theorem, for a.e.
z € R", the directional derivative D,, ¢(z) exists and so for a.e. « € R", the directional
derivative D,, p(z) exists for all k € N.

Let A\ be the Lipschitz constant of . Since

plr+tv) —p(r)  plr+iw) —p)) _ Ao — wl
t t - ’

we obtain
(3'1) |Dv90(x) - Dw@(x” S /\|U - w|

whenever D,p(z) and D,p(x) exist. Thus for a.e. 2 € R™ the directional derivative
D,p(z) exists for all v € S"~! and thus for all v € R" since Dy,(1) = sD,p(z).
Claim 2: For a.e. x,

(3.2) Dyp(x) = (Vp(x),v) YveR"

In particular, v — D,p(x) is linear.
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Due to (3.1), it is enough to show (3.2) for a fixed v € R"\{0}, we will show that

[ w@D)dr = | v(@)(Vole)v)ds

for every ¢» € C}(R™). From this it follows with the fundamental lemma of the calculus
of variations that

D,p(z) = (Ve(x),v) ae xeR™
Fix ¢ € C}(R™). Note that

op(x) = Pl ﬁj)k_ #() — Dyp(z) ae. zeR"

and |pg(x)] < Alv| for all z, thus

Dupla)b(a)de = lim | gu(a)i(a)dr.

We calculate

So
| Destarptaas =~ [ o) (vt vy

This holds in particular with v = e; and thus

/Rn g:( J¥(z)de = —/n @(x)gz (2)dz.

For arbitrary v € R", writing v = (v1,...,v,),
Dypw)i(a)de == i | p(x)5—(x)da
R i=1 " i

_ Zvl / e
_ / (Vi(a), 0)(w)de.

Claims 1 and 2 show that ¢ is Gateaux diff. a.e. on R™. The theorem follows from
Proposition 3.9.
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O

Remark 3.10. The notions of Gateaux and Frechet differentiability make sense for maps
p: U C R" — E, where F is a Banach space. However, if dim £ = oo, then Lipschitz
maps to E need not be differentiable anywhere.

Example 3.11. Let : (0,1) — L'((0,1)) be given by

gp(t) = X(0,t)-

Then ¢ is isometric embedding but nowhere differentiable.

Lipschitz maps are even more similar to C''-smooth maps than one would expect from
Rademacher’s theorem. Namely, we have

Theorem 3.12. Let ¢: R™ — R" be Lipschitz and € > 0. Then there exists a C'-smooth
map g: R™ — R"” such that

L',m({x e R™: p(z) # g(x)}) <e.

In other words: outside a set of arbitrarily small measure, ¢ agrees with a C'-smooth
map. The proof of the theorem relies on Radmarcher’s theorem and the so-called Whitney
extension theorem.

Theorem 3.13. Let ¢: R™ — R" be Lipschitz and
A :={x € R™: dp, exists and rank(dp,) < m}.
Then H™(¢(A)) = 0.

Notice that the theorem only gives a non-trivial statement when m < n. The state-
ment of the theorem is a kind of “Sard” type theorem. Recall that the classical theorem
of Morse-Sard asserts: If ¢: U C R™ — R" is C*-smooth for some

k> max{m —n+ 1,1},

then the image of the set {x € U : rank(dy,) < n} has Lebesgue n-measure zero. It is
important that ¢ is sufficiently regular. Indeed, there exists a C*-smooth map ¢: R3 — R?
which maps the unit cube [0, 1]? surjectively onto [0, 1]%.

Example 3.14. A Lipschitz version of Kaufman’s example: divide [0,1]* into cubes of
side-length 1/3 and let I 1; be the open cube of side-length 1/4 with same center. Divide
[0,1]2 =: Jy into 16 squares .J; ; of side-length 1/4. Define a map ¢: I\ U 5; — [0,1]?
by:

e o maps 011 ; to the center of [0,1]* Vj

e ¢ maps dl,; to the center of Jy; and I, ;\I;; “linearly” to the segment between

the two centers for j =1,...,16

e For j =17,...,27, ¢ maps [ ; to center of [0, 1]?
Repeat the procedure above to each fl,j and J; ; by scaling and to smaller and smaller
cubes. This implies ¢ Lip. map defined on I, minus Cantor set of measure zero. Since ¢
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is Lipschitz, it has Lip. extension to Iy and so ¢(ly) = Jy and rank(dy,) < 1 for almost
every x € Ij.

Proof of Theorem 3.15. By possibly replacing A by AN B(0, R) we may assume that A is
bounded. Thus there exists an open set U C R™ open such that A C U and L™(U) < .
Let 0 < e,6 < 1, we define a fine covering of A by closed sets as follows: Let z € A, then
there exists v € ker(dy,) with |v| = 1. Let W C R™ be the subspace orthogonal to v. Set
L = A+ /2, where X is the Lipschitz constant of ¢. For all sufficiently small r > 0 with
2Ler < 9§ the closed set

Cowi={z+w+tv:|t| <r,we W, |w| <er}
satisfies C;, C U and has the property: if z # y € C,,, then
lp(y) — () — dps(y — )|
ly — |
Let C be the family of all such closed sets C,, with x € A and note that C is a fine

covering of A in the sense of Vitali. By Vitali Covering, there exists a countable disjoint
subfamily {C;} of sets

<e.

Ci=0CypeC
such that £™(A\ |JC;) = 0. Note that diam C; < 2v/1 + £2r; < 24/2r; and thus
: m 27 n

A wm—l A
7 (2

Hence,
My (o(A) < 1 (e(A\ )+ Hy (e Co)).
In order to bound the second term, notice first that if y € C; = Cy, ,,, then

lo(y) — o(3)] < |dpa, oy — x3)| + ely — x4

=x;+w+tv
ST dig, (w)] + ely — il

S 8/\7’1‘ + \/587"1‘
and thus

©(Ci) C B(p(wy), Lery).
It follows that

1

= wy, L™
2wm—1

9 Z 2riwm_1 (&‘Ti)m_l
i

Wi L™

2wm71

<

eL™U).
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Thus HP (p(A)) < e2ml™ £m(U). Since € and § were arbitrary, H™(¢(A)) = 0.

2Wm—1

O

3.3. Area and coarea formula. Recall that the usual change of variable formula shows
that

/ f(y)dy = / £ 0 ()] det di,|dz
1% U

whenever ¢: U — V is a diffeomorphism with U,V C R™ open and f € C.(V). The area
formula (for Lipschitz maps) provides a generalization of this for maps between spaces of
different dimensions.

Definition 3.15. Let L: R™ — R" be a linear map with m < n and let A be the matrix
representing L in standard coordinates. The m-Jacobian of L is defined by

I (L) := /det(AT A).

Note. Notice that AT A is symmetric, positive semi-definite m x m-matrix and so
det(ATA) > 0.

Example 3.16. 1) L: R — R" defined by L(t) = tv for some v € R™. Then J;(v) = |v].
2) L: R™ — R" defined by L(z) = Az for some n x n-matrix A. Then

Jo(L) = \/det(ATA) = | det(A)).

Theorem 3.17 (Area formula). Let ¢: R™ — R™ be a Lipschitz map with m < n. Then
i) If A C R™ is £L™-measurable, then

(3.3) / Tl )dC™(@) = | N(olay)dH"(y).

Rn

where N(p|a,y) = HO(AN e ({y})).
ii) If g € L'(R™), then

[ s@naeiacm@ = [ (3 g@)annw)

zep~({y})

Note. Implicitly contained in the statement is the assertion that the functions in the
integrals are measurable, respectively, integrable.

Example 3.18. 1) If ¢: [a,b] — R is an injective Lipschitz curve, then

b
' (c([a, 1)) = / ¢ (8)]dt = 1(c).

2) If M C R™ is m-dim smooth submanifold and (U, ) a chart and V' C U open,
bounded with V' C U, then

Vol (V) & /w » T (dp71YdL™ ()

Area férmula %m(v>



GMT 33

Statement (ii) of the theorem follows by approximating ¢g by simple functions. We
therefore only prove statement (i). The following lemma shows that (3.3) holds when ¢
is a linear map.

Lemma 3.19. Let L: R™ — R" be linear with m < n. Then for every A C R™ L™-
measurable with £™(A) < oo, we have

(3.4) H"(L(A)) = Jm(L)L™(A).
Proof. If m = n, then
L7(L(A)) = [det(L)[L™(A)
by the usual transformation formula for Lebesgue measure and hence (3.4).
Suppose now m < n. Let T € O(n) be such that T o L has image in the subspace
R™ x {0}*~™ C R™. Notice that
det (T o L)' (T o L)) = det(L"T"TL) = det(L"L).

We write

C
TolL=|—
0
for some m x m-matrix C'. Then

(ToL)"(ToL)=C"C
= det(L" L) = det(CTC) = (det(C))?
= H™(L(A)) = H™(T(L(A))) = L™(C(A))
= | det(C)|L™(A) = Ju(L)L™(A).

For the general case of the area formula we will need:

Lemma 3.20. Let U C R™ be open and ¢: U — R" Lipschitz, where m < n. Then for
every t > 1, there exists a countable collection {Ej}r>o of Borel sets £ C U such that
i) U=Ul Bk
ii) If © € Ey, then either ¢ is not differentiable at x or J,,(dy,) =0
iii) For every k > 1, the restriction ¢|g, is injective

)

iv) For every k > 1, there exists Lj: R™ — R" linear such that
1
t—me(Lk) < Jn(dey) <t"Jn(Ly) Yz € Eg
and the maps ¢ o (Ly|g, )~ " and Ly o (¢|g,)~! are both ¢-Lipschitz.

Roughly speaking, this asserts that ¢ is close to a linear map on suitable sets. More-
over, the restriction ¢|g, is bi-Lipschitz for all £ > 1. This will also be important later.

Proof. Let Ey be the set of points x € U such that either ¢ is not differentiable at x or
Jm(dp,) = 0. It can be shown that Ej is a Borel set (hard exercise).
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Fix ¢ > 0 such that % +e<1<t—e, AC U countable and dense, G countable
and dense in the set of injective linear maps R™ — R". Let z € A, L € GG, 7 > 1. Let
E(z,L,j) be the set of points x € U N B(z,1/j) such that

1) ¢ differentiable at x and dg, injective
2) For every y € UN B(x,2/j) we have
(3:5) o(y) — p(x) — dpa(y — )| < elL(y — o)

3) The map dp, o L™! is (¢t — ¢)-Lipschitz
4) The map Lo (dp,)™ ' is %%-Lipschitz

Claim 1: F(z, L, j) satisfies properties (iii) and (iv) of the Lemma.
If x,y € E(z,L,j), then |z — y| < 2/j and thus, by our choice, we have

(3. Ll — )] < loly) — p(@)] < tly — a1,
Indeed,

oY) = p(@)| < ldpa(y —2)| + e[ Ly — )|
= ldps o L7 (L(y — @))| +e|L(y — )|
< (t=e)|Lly — )| + &l L(y — )]
= t|L(y — )]
and the other inequality follows similarly.

Since L is injective, it follows from (3.6) that ¢|g(. . ) is injective. By (3.6) again,
the maps ¢ o (L|E<Z’L7j))_1 and L o (¢|p(.,r,5))"" are t-Lipschitz, which implies (iii) and
the second part of (iv).

It remains to estimate J,,(dep,). We have

Im(dipr) = H™ (dipn([0,1]™)) < (& — )™ H™ (L([0, 1]™))
<t"Jn(L)
and similarly, J,,(dy,) > t~"J,,(L). This proves claim 1.

Claim 2: the set E(z, L, j) covers U\ Ej.

Let x € U\ Ey. Then ¢ is differentiable at = and dyp, is injective. Since G is dense in
the set of linear maps R™ — R" there exists L € G such that 3) and 4) hold. Since L is
injective, linear, there exists 6 > 0 such that

|L(v)| > dlv] Vv eR™
and 37 > 1 such that
o(y) — o(x) — dpa(y — )| < bly — |
< ¢e|L(y — )]
for all y € B(z,2/j) N U. Since A C U is dense, 3z € A such that z € B(z,1/j) and so

x € E(z,L,j). Finally, one can show that the sets E(z, L, j) are Borel sets (exercise).
]
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Proof of Theorem 3.17. Let A C R™ be L™-measurable. One can show that ¢(A) is H™-
measurable and that the function y — N(p|a,y) is H™-measurable (see Evans-Ganepy).
It is easy to see that the function z — J,,(dy,) is a Borel function. Let ¢t > 1 and let

{Ek }r>0 be a collection of Borel sets as in Lemma 3.20.
Define Ag := AN Ey and Ay, := (AN Ek)\U;:S E; for k > 1. Then Aj; measurable
and pairwise disjoint with A = |J;, Ax. For every y € R", we have

90’147 ZN SolAkay

and

N(90|A’ de Z N90|Ak7 )de(y)

Rn
By the definition of Ej,, Rademacher’s theorem and Theorem 3.13 we have J,,(dp,) =0
for a.e. x € Ay and H™(¢(Ap)) = 0, hence,

N(plag )aH" () = 0= [ Tu(do)ic" (2)
Rn Ao
Let k > 1. Since ¢|4, is injective, it follows that
A N(plag, y)dH™(y) = H™ (p(Ar))-
Moreover, by (iv) of Lemma 3.20, we have

tTH™ (L (Ar)) < H™ (p(Ag)) < t"H™ (Li(Ax))

and
" T (L) L™ (Ag) < I (dpz)dL™ () <t T (L) L™ (Ag).
Ak
Since
H™(Li(Ar)) = Jm (L) L™ (A)
by Lemma 3.20, we obtain
72" | J(dpe)dL™(2) < | N(plag, y)dH™(y) <" | Ju(dp,)dL™ (2).

Ay, Rn Ay,

Summing over k yields
rM/%wmmms NwwwmwQM/%wmmw
A Rn» A

and hence the theorem follows by letting t — 1. ([l

We next come to the coarea formula. Unlike the area formula it is concerned with
Lipschitz maps from a higher to a lower dimensional space. We first define the Jacobian
in this situation.

Definition 3.21. Let L: R™ — R" be a linear map with m > n and let A be the matrix
representing L in standard coordinates. The n-Jacobian of L is defined by

Jo(L) = \/det(AAT),
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Note. AAT is an n X n-matrix.

Example 3.22. Let L: R™ — R given by L(v) = (w,v) for some w € R". Then
Ji(L) = |wl.

Theorem 3.23 (Coarea formula). Let f: R™ — R™ be a Lipschitz map with m > n.
i) If A C R™ is L™-measurable, then

[ dtgacn@) = [ wran e (nie o),

ii) If g € L*(R™), then

[ sentagaacr@ = [ ([ owanr)ic)

Remark 3.24. Implicitly contained in the statement is the assertion that the functions
in the integrals on the right are measurable resp. integrable.

The coarea formula is a kind of curvelinear version of Fubini’s theorem.

Corollary 3.25. Let f: R™ — R be a Lipschitz function. Then

[ vnaer = | T Hn (= )dci (o).

o0

Proof. From the coarea formula since J;(df,) = |V f(z)]. O

Corollary 3.26 (Polar coordinates). Let g € L'(R™). Then

/ gdLm = / ( / gaH" )L (r).
m 0 aB(0,r)

In particular, for a.e. » > 0 we have

d
gaH™ ™t = — / gdLm
/8B(0,r) d7"< B(0,r) )

by Lebesgue differentiation theorem.

Proof. The Lipschitz function ¢: R™ — R given by ¢(x) = |z| is differentiable everywhere
on R™M\{0} with Vp(z) = a7 and thus Ji(de,) = 1. Now the result follows from the coarea
formula. O

We give two other applications of the coarea formula: Let ¢: R™ — R" be a Lipschitz
map with m > n.
1). If AC R™ has L™(A) =0, then

H™ M (ANe™ ({y}) =0

for L"-a.e. y € R".
2). For L"-a.e. y € R" we have

H"“"({x € R™ : rank(di,) < n} N @*1({,1,})) —0.



GMT 37

This follows from the coarea formula and the fact that for a linear map L: R™ — R" we

have
rank(L) <n = J,(L) =0.

Notice that if ¢ is C*-smooth with & > m — n + 1, then the Morse-Sard theorem shows
that even
{x € R™ : rank(dy,) <n} N '({y}) =0
for L™-a.e. y € R™.
We now turn to the proof of the coarea formula. The proof uses an approximation
which is somewhat similar to that used in the proof of the area formula. We do not
provide the whole proof but only sketch it.

Lemma 3.27. Let L: R™ — R"™ be linear and A C R™ £™-measurable. Then
TLEMA) = [ AN L)) v)

Proof. We may assume m > n. There exists an orthogonal transformation P: R™ — R™
such that

(3.7) {0} x R™" C P(ker(L)).
Write T := L o P and notice that
Jo(T) = \/det(TTT) = \/det(LPPTLT) = J,(L).

Now by (3.7), the linear map 7" can be written as
T=(B|0)

for some n x n-matrix B. Clearly, we have TT7 = BB” and hence J,(T) = |det(B)|.
Since the Lemma clear holds if det(B) = 0 and thus we may assume det(B) # 0. Observe
that

L™ ({y}) = P(T" ({y}))

and hence
PHANL ({y}) = PHA) N T ({yh) = P7H(A) N ({B7 ()} x R™ )
for all y € R™. It follows therefore from Fubini’s theorem that the function
gy H (AL ({yh) = Hm (P AN LT ({w))

is L™-measurable and together with the transformation formula

[ (a0 n)iere) = [ lamme (A0 L7 (B )i )

= (L) [ W (P A () < B )
= J(D)LT(P(A) = T )L™ (A).
0
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The next lemma is an analog of the linear approximation lemma 3.20. It will be used
in the (sketch of) proof of the coarea formula that will also be important later.

Lemma 3.28. Let U C R™ be open and ¢: U — R" Lipschitz, where m > n. Then
there exists a countable collection { By }r>o of Borel sets By, € U such that
i) U= Uil B
ii) If © € By, then either ¢ is not differentiable at x or rank(dy,) < n
iii) For every k > 1 there exists a projection py: R™ — R™ ™ and Lipschitz maps
up: R™ — R™ x R™™ and vy,: R" x R™™™ — R™ such that ug(x) = (¢(z), pr(z))
and v (ug(z)) = x for all z € By.

For 1 <[] < m we write
A(m, 1) = {a AL = {1, .., m} strictly increasing}
and for o € A(m, 1) we denote by p,: R™ — R! the projection

pa(xb o 7xm) = (xa(1)7 v 7Ia(l))-
The projections in the lemma are of the form py = p,, for some oy € A(m, m —n).

Proof. We define By as the set of x € U such that either ¢ is not differentiable at x or
rank(dy,) < n. Observe that if V' C R™ is a linear subspace of dimension m—n, then there
exists some o € A(m, m —n) such that p, (V) = R™~". Thus for every = € U\ By, there is
a € A(m,m —n) such that the map u,: R™ — R™ x R™™" given by u.(y) = (¢(v), pa(y))
satisfies rank(d(u,),) = m. Thus we have

NBo=  |J A
a€A(m,m—n)
where A, = {x € U\By : rank(d(u,).) = m}. By Lemma 3.20, we can cover each Ay by
countably many Borel sets E, j such that u, is bi-Lipschitz on A, N E, . Then the map
Vak = (Uala.n Ea,k)_l is Lipschitz and hence has a Lipschitz extension 9, ,: R x R™™" —
R™. Clearly, U x(ua(z)) = x Vo € Ay N E, . Relabeling yields the lemma. O

We give a short sketch of the proof of (i) of the coarea formula. We only consider the
case that ¢ is differentiable at every z € A and rank(dy,) = n. Let By, ux, px, vx be as
in Lemma 3.28. Fix £ > 1 and set B := By, u := u, p := pr and v := v,. We will show
that A’ := AN B satisfies
35) [ @) = [ wmnan g (e ),

For y € R", define a Lipschitz map v,: R™™" — R™ by v,(2) := v(y, z) and notice that
the restriction

wA)n ({y} xR™") = A'ne(y)
is bijective. Recall here that v o u(xz) = x for all z € A" and u(z) = (p(z), p(x)). Hence,
we obtain by the area formula that

H™ (AN (y) = Tn—a(d(v,):)dH™ " (2)

/u(A’)ﬂ({y}me”)



GMT 39

and by Fubini and change of variable formula, we obtain

- H" (A/ N 9071(y>)d£n(y) - /Rn /(A')ﬁ ({ } Rm*") I () )AL
_ / nnn((dvy).)AL™ (y. 2)
u(A’)

_ / (00 )pio) | det(du ) |4L™ ().
It remains to show that

(39) Jn(dﬁom> = Jm—n(d(vcp(ac)>p(a:)>| det(dur)’

for a.e. v € A'.
For a.e. x € A’, we have dvy(,) o du, = 1. Fix such  and set W := ker(dy,). Since
du, = (d%c,p)a we have du:c|W = (0,p|w) and hence

(V) )p(a) = d0u(a) (0, ) = (plw) ™
and thus
Jm—n(d(vw(x))p(x)> = Jm—n((p|W)_1)-

Let W+ be the subspace orthogonal to W. Let I,I*+ be unit cubes in W and W+,
respectively. Fubini implies

| det(duy)| = L™ (duy (I x I))
= L (d, (I)) L™ (p(1)).

Since
Do) = [ WX T 0 g ()L ) = £(dp(1)
and
Tn—n((plw) TH™ " (p(1)) = H" (1) =1,
we get

1
Iin-n(d(Vp(z))p(z))’

| det(duy)| = Jn(dps) -

proving (3.9).

3.4. Rectifiable sets. Rectifiable sets are generalized submanifolds.

Definition 3.29. A set £ C R" is called m-rectifiable if there exist Lipschitz maps
vr: R™ — R" k € N, such that

1™ (E\ | en(®™)) = 0.
k=1
Example 3.30. 1) Write Q* = {q1, ¢z, - - } C R?. Then the set

E=|]JoB(g 27" cR

k=1



40 NOTES TAKEN BY CHANGYU GUO, UNIVERSITY OF FRIBOURG

is 1-rectifiable, H!'-measurable, H!(E) < oo, and dense in R2.
2) We construct a compact subset C' C [0,1]? as follows

— 0 ._ 2
L CO - Ql T [07 1]
e () = U?Zl Jl-, where the Q} are the four squares of side-length }1 in the corners of
Q

e Replace each Q]l by the four square of side-length 4% in its corners to obtain
42
_ 2
Cy=J @
j=1
and set

k=1

Then C is compact. Since Cj, consists of 4% squares of diameter v/24~* it follows that

—k
H§(0)§2-4k-ﬂ74=\/§

for all § > 0, and thus H'(C') < co. We can show that H'(C') > 0. For this, let L C R?
be a line of slope -2 (as in the course). The orthogonal projection P(Cy) of Cy to L is
always the same interval. Thus

HY(C) > HY(P(C)) > 0.
As we will see later, the set C' is not 1-rectifiable even though 0Cj} is 1-rectifiable.

Theorem 3.31. Let £ C R™ be m-rectifiable, H™-measurable, with H™(FE) < oco. Then
for every A > 1 there exist compact sets K; C R™, i € N, and A-bi-Lipschitz maps

such that the images ¢;(K;) are pairwise disjoint and satisfy
i=1
This is a bit like an atlas for a smooth submanifold.

Proof. Let ¢: R™ — R" be one of the countably many Lipschitz maps whose images cover
H™-a.e. of E. By Lemma 3.20, there exist Borel sets Ey, Eq,--- C R™ such that

R™ = | ] B
k=0
with H™(¢(Ep)) = 0 and for & > 1 the restriction ¢|g, is injective and there exists an

injective linear map Lj: R™ — R" such that

QPO(LHEI@)_I and Lko(@‘Ek)_l
are both A-Lipschitz.
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Fix £ > 1 and identify the subspace L;(R™) with R™ via a linear isometric map
T:R™ — Ly(R™). Set A :=T"1(Ly(E})), which is Borel. Then the map ¢p: A — R™,
Gri=poL 1 oT|y

is \-bi-Lipschitz. Moreover, the subset Ay = @, *(E) is £L™-measurable.
Doing this for all £ > 1 and every ¢ we obtain the existence of countably many
A-bi-Lipschitz maps
Pk - A, CR™ - R"”

with ¢ (4x) € E and H™(E\U¢r(Ar)) = 0. Now the proof of the theorem can be
completed using the inner regularity of the Lebesgue measure.
O

A source of examples is given by the following result.

Theorem 3.32. Let ¢: R™ — R" be a Lipschitz map with m > n. Then for almost
every y € R" the fiber ¢ ' ({y}) is (m — n)-rectifiable.

Proof. Let By, ui, v, be as in Lemma 3.28. By the coarea formula,

0 :/ Jn(d,)d =/ H™ " (BoNe ™ ({y}))dy.
Bg n
Thus, for almost every y € R"™,

H"(By N o™ ({y})) = 0.
Fix such y. For k > 1, the map
Ui u(By) N{y} x R™™" = By g™ ({y})
given by
Yr(2) = vk(y, 2)

is Lipschitz and bijective since vy o ug(x) = z for all x € By and ug(x) = (p(x), pr(x)).
By McShane’s lemma there exists a Lipschitz extension ¢y, : R™™" — R™ of 1. Clearly,

e {yh) = 'y n | Bs
= (Boue™ () Ul du®™™).

k>1

Since By U ¢ ' ({y}) has H™ "-measure zero, ¢~ ({y}) is (m — n)-rectifiable.

By combining the previous two theorems we obtain

Theorem 3.33. Let E C RY be n-rectifiable, H"-measurable and with H"(E) < oco. Let
©: RV — R™ be Lipschitz with m < n. Then for almost every y € R™ the set

Ene™ ({y})

is (m — n)-rectifiable and H™ "-measurable.
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We now show that m-rectifiable sets have approximate tangent planes almost every-
where. For 1 < m < n, let G(n, m) denote the space of all m-dimensional linear subspace
of R". For V€ G(n,m) and x € R" and 0 < s < 1 we define a cone centered at = by

C(z,V,s) = {yER":d(y—x,V)<s~|y—x|}.

Definition 3.34. Let £ C R and z € R". An m-plane V' € G(n,m) is said to be an
approximate tangent m-plane of E at z if ©,,(F,z) > 0 and
1
lim —H™(E N B(z,r)\C(z,V,s)) =0
r—0 rm

for every 0 < s < 1.

The set of all approximate tangent m-planes of E at x is denoted by apTan™(F, x).
If there is only one, then we write V = apTan™(FE, z).

Theorem 3.35. Let F C R™ be H™-measurable and H™(E) < oo. Then E is m-
rectifiable if and only if for H™-a.e. x € E there exists a unique approximate tangent
m-plane of E at x. In this case, ©,,(E,z) =1 for H™-a.e. x € F.

Proof. We only prove the implication = and the second statement. For the reverse im-
plication, we refer to Mattila’s book [7].
Let E C R" be m-rectifiable, H™-measurable and H™(E) < co. By Corollary 2.34,

On(E,2) <1

for H™-a.e. z € E.
Let A > 1. By Theorem 3.31, there exist compact sets K; C R™, i € N and A-bi-
Lipschitz maps ¢;: K; — E such that

H™ (E\ U %(Ki)) = 0.

Fix ¢ and write ¢ = ¢; and K = K;. Let x € K be a Lebesgue density point of K and
such that (a Lipschitz extension of) ¢ is differentiable at x. Note that a.e. # € K has
this property and that dy, is injective.
Since ¢ is A-bi-Lipschitz, it follows that
p(KNB(x,r/A) C Blp(x),r)NE
for all » > 0 and hence
H™ (E N B(p(x),7)) > H" (p(K N B(z,r/))))

> ALK N B(x,r/N)).

Therefore,
On(E, p(x)) = A7,

Now, let 0 < s < 1 and set V := dyp,(R™). Then 3ry > 0 such that

lo(y) — (@) — dpa(y — 7)| < 5|y —
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for all y € K N B(x, Arg). Thus if w = ¢(y) € ¢(K) N B(p(x),r), then y € K N B(z, Ar)
and thus

= (@) = dpuly — 2)] < Slw - p(a)],
which implies w € C(p(z),V,s) U {p(z)}. This shows that
e(K) N B(p(z),7) C Cle(z),V,s) U{p(z)}
for r < rg. By Corollary 2.34, we have
B (B\p(K), o(x) = 0
for a.e. x € K and hence, since
ENB(p(x), r)\C(e(z),V, s)
C (B\@(K)) N B(p(x), ) Up(K) N B(p(x),r)\C(p(x), V. )
C (B\g(X)) N B(p(x), ) U {p(x)}

for 0 < r < ry, we obtain

X

hm—’H,m(EﬂB( (z),")\C(p(z),V,s)) = 0.

r—0 rm
Since A > 1 and ¢ € N were arbitrary, it follows that at H™-a.e. z € F, the set E has
an approximate tangent m-plane and 0,,(E, z) = 1.
We leave it as an exercise to show that for a.e. x as above, the m-plane V is the

unique approximate tangent m-plane of E at ¢(x).
0

It can be shown that the set C' C R? in Example 3.30 does not have an approximate
tangent 1-plane a.e.

4. REVIEW OF DIFFERENTIAL FORMS

4.1. m-vectors and m-covectors. Let VV be an n-dimensional vector space over R. The
space of 0-vectors and of 1-vectors are defined by AgV := R and A4V :=V.

For 2 < m < n,let F,,(V) be the free vector space over the m-fold product V' x---x V|
thus F,,,(V') consists of formal linear combinations

Fu(V) = { D Nilet, k) |

with the obvious addition and scalar multiplication. Let I,,,(V') be the subspace of F,, (V)
generated by elements of the form

o (U, .., VUL ) — (V1 Uy U) — (Ve U U)
o (U1, ., AV, U) — AU, U )
® (U1, . Uiy, Uiy, Upy)

for Ae Rand 1 <17 <m.
The space of m-vectors in V' is defined to be the quotient space

AV o= Fo(V)/1,(V)
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and the equivalence class of (vy,...,v,,) is denoted by
ViAo AU

Elements of this form are called simple m-vectors.

Example 4.1. 1) If 1 <i < j < m, then
VP A AV AV AUy = —UL Ao s AU A A Uy
2) vy, ..., v, are linearly dependent if and only if
A AV, =0
3) Let {ey, €9, €3, 64} C R* be the standard basis. Then
e1Ney+e3 /ey

is not a simple 2-vector.

The space A,V has dimension

dim A,V = (n)
m

If {e1,...,e,} is a basis of V| then a basis of A,V is given by
{ea =€aq) N+ ANeam) : a € A(n,m)}.

Thus, every element in A,V can be written uniquely in the form

with A\, € R and we can identify A,V with R(w). If V carries an inner product and
{e1,...,e,} is an orthonormal basis of V| then we define an inner product on A,V in
such a way that {e, : @ € A(n,m)} is an orthonormal basis.

If 1 <m,l < n are such that m + [ < n, then the wedge product is the bilinear map

(AmV) X (AZV) — NtV
given for simple m-vectors and [-vectors by
(VA AU, wy Ao Awp) =01 A Avg Awyg A+ A
and linear extension. If u € A,,,V and w € A}V, then
uAw=(—1)"w A u.

Any linear map T: V — W, where W is a finite dimensional vector space, extends to a
linear map
AT AV — AW
by
ATy A= Avg) =T (v1) A= AT (o)

and linear extension.
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We now define the space A"V of m-covectors in V. This space can be defined as the
dual space of A,,V. However, we prefer to give an alternative but equivalent definition.
Let V be an n-dimensional vector space over R and let

V*:={T:V — R linecar }

be its dual space.
Let m € N. A function T: V x --- x V — R is called

i) multilinear (or m-linear) if 7" is linear in each argument:
T(vr, - 04 N ) =T (01, 05+ om) + N1, 0, o)
ii) alternating if
T(vr, -+ v 05, Um) = —T(01, -+, 0j, V5 V)
forall1 <i<j<m.
Definition 4.2. The space A™V of m-covectors in V is the vector space
A"V :={T:V x--- xV — R m-linear, alternating}
The determinant is the prime example of an n-covector.
Example 4.3. The map R” x --- x R" — R given by
(1, ,vp) > det(vy, -+ V)
is n-linear and alternating and this defines an element of A”R".

Note. A'V = V*,

We now define the wedge product (or exterior product) of m-covectors: for k > 2
denote by S the group of permutations of {1,...,k}. Thus, an element of S}, is just a
bijection {1,...,k} — {1,...,k}. A permuation o € S is called a transposition if there
exist 1 < i < j < k such that (i) = j, 0(j) = @ and o(l) = [ for all other [. Every
permutation ¢ can be written as a finite number M of transpositions. The sign of ¢ is
defined by

Sign(o) = (—1)M

and is well-defined.
Lemma 4.4. If T € AV and o € S,,, then for all vy,...,v,, € V,
T(Vo(1),*** » Vo(m)) = Sign(o)T (vi, - -+, Um).
Proof. Exercise. 0
Let m,l > 1. A permutation o € S, is called an (m,[)-shuffe if
ol)<o(2)<---<o(m) and o(m+1)<---<alm+1).

Definition 4.5. If o € A™V and 8 € A'V, then the wedge product (or exterior product)
of a and f is defined by

a A 6(,017 e ;Um—i-l) = Z Sign(a)oz(va(l), e avU(m))ﬁ(va(erl)y U 7vo'(m+l))-
o (m,l)-shuffe
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Example 4.6. £,& € V=AWV =
§1 A o (v, v2) = &1(v1)&a(v2) — &1 (v2)Ea(vr)

- (Gl )

The most important properties of the wedge product are

Proposition 4.7. Let o € A™V, 3 € A'V, and v € A*V. Then
i) aABeA"V and
aAfB=(-1)"BAa
ii) The wedge product is bilinear
iii) The wedge product is associative:

(@AB)Ay=aA(BAa).
Proof. See e.g. [6]. O
Proposition 4.8. If &,--- ,&,, € V*, then for all vy,--- ,v,, € V
(Ee A A&n) (v, om) = det(&(vy)-

In particular, from the definition of the determinant we obtain

(G A A& (1 om) = > Sign(0)&1 () - - Em(Vo(m))-

UESHL

Proof. By induction on m; see e.g. [6]. O
Let {e1, -+ ,e,} C V be a basis of V' and let {e},---,e5} C V* be the dual basis,

thus
. 0, ifi#j
e; (e;) = :
1, otherwise
Proposition 4.9. The space A"V has dimension (Z) and a basis is given by
{ea =eqay N Aegpmy 1 @ € A(n,m) }.

Proof. See e.g. [6]. O

Remark 4.10. Any w € A™V can be written uniquely as

w= g Wal

a€A(n,m)
and the w,’s are given by
Wa = W(€a(1), " »Ca(m))-
If V contains an inner product and {ej,--- ,e,} is an orthonormal basis, then we can

endow A™V with an inner product such that the e}, are orthonormal.
There exists a natural isomorphism

AV = (A V)
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defined as follows. Given w € AV define an element @ of (A,,,V)* by
Oy A= Av) == w(vg, -+, Up)

and linear extension. It can easily be checked that w is well-defined and that the map
w +— w is an isomorphism. We will write

(W, T) :=w(r)

for 7 € A,V
Suppose now that V' carries an inner product (-,-). Then the map
R:V =V”
v = (v, )
is an isomorphism. If {ey, -+ ,e,} C V isan orthonormal basis of V and {e},--- e} C V*

is the dual basis, then
R(e;)) =€ Yi=1,--- n.

The map R induces an isomorphism

R, AV — A"V

R ( Z Va€o) 1= Z Vel

acA(n,m) acA(n,m)

by

which satisfies
Roy(vy A+ Avy) = R(vp) A+ A R(vp,)
for all v,--- ,v,, € V.
The inner product on A,V for which {e, : & € A(n,m)} is an orthonormal basis
satisfies

(4.1) (VI A AU, Wi Ao Awp) = (Rp(01 A Avg)y w1 A - Awp),

where on the right-hand side, (-,-) denotes the dual pairing.

Exercise: prove (4.1).

Similarly, the inner product on A™V for which {e’ : & € A(n,m)} is an orthonormal
basis satisfies

<£/\"‘/\§m7771/\"'/\77m>:<fl/\"‘/\fm,R,;l(??l/\"'/\nm»'

We now specialize to V' = R™ and let (-,-) be the standard Euclidean inner product and
{e1,- -+ ,en} the standard basis. We denote by | -| the norms on A,,R™ and A™R" coming
from the inner products induced as above.

Lemma 4.11. If T: R™ — R” is linear, then
T (er) N+ ANT(en)| = Jn(T).

In particular, |T'(e;) A --- A T(ey,)| is just the Hausdorff m-measure of the parallelepiped
spanned by the vectors T'(eq), -+, T(ep).
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Proof. By the formula (4.1) and Proposition 4.8, we have
I T(er) A AT(en)> = (T(er) A= AT(ey), T(er) A=+ AT(em))
= (R(T(ex) A= ANT(ew)), T(er) A+ ANT(e))
= det ((T(e;),T(e;))) = det(T"T) = J,n(T)>.
0

4.2. Differential forms and Stokes’ theorem. Let U C R" be open and m > 0. The
space of smooth differential m-forms on U is denoted by

EMU) = C>™(U,A"R").
Every element w € £™(U) can be uniquely written as
w = Z wadz®
ac€A(n,m)
for some functions w, € C*(U). Here, {dx',--- , dz"} denotes the dual basis of {ey,--- ,€,}
and
dz® = dz® D A - A da ™,
Notice that
o E0(U) = C>=(U).
o EYU) = { XL, fida' s fi € C2(U)
o &(U) = {fda:l Ao Ada": f € COO(U)}.
The space of compactly supported smooth differential m-forms in U is denoted by
D™U) = CX(U,A"R™) C E™(U).
By definition, the support of w € E™(U) is
spt(w) :=={z € U :w(x) A0} NU.

Definition 4.12. The exterior derivative of w € £™(U) is the form dw € E™(U) defined
by

dw = Z g:; dz' A dx®,

aceA(n,m) i=1

where w = 74 (. m) Wadz®.

For example, if f € C®(U) = £°(U), then

df = ——dz'
=2t
The following properties are obtained by a direct calculation.

Proposition 4.13. If w € E™(U), v € E¥(U), and f € E°(U), then
(i) d(dw) =0
(i) d(fw) =df Nw+ fdw
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(ili) dw Av) = (dw) Av+ (—=1)"w A (dv)

Proof. Exercise.

Notice that the wedge product w A v is defined pointwise:

Notice also that

(wAV)(z) =w()Av(x).

spt(dw) C spt(w)

and that the inclusion can be strict.
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Definition 4.14. Let U C R” and V C RY be open and ¢: U — V smooth. The
pull-back of w € £™(V') under ¢ is the differential form p*w € £™(U) defined by

(o"w) (@) (o1, - -

for all z € U and vy, --- , v, € R™.

If we denote

e {dz',---  dx™} the dual basis of the standard basis in R"
o {dyt,--- ,dy"™} the dual basis of the standard basis in RY

e p=(p1,,pN)

o (W = ZaGA(N,m) wadya

then

*

pw=

7vm) = w(QD(x))(d@m(vl)? T 7d90$(vm))

Z Z Wo © @ det (%)dmﬂ.

BEA(n,m) a€A(N,m)

Indeed, for z € U and € A(n,m), we have

(e w) (@) (esay, - -+ »epum)) = wlp(x))(

Dy
Oxp(1)

acA(N,m)

=3 S walple)) Sign() 2220w ()

a o€Sm

= Zwa o @(z)det (

© T O0xpm)

= Y wale(x))dz®(

aSpoz(i)
Oz p(j)

LB(j)

dp

()

Dy
dxp(1)

Oz p1)

().

dp x)

© T 0xpm)

O (m)

.. %a(o(m)

()

Notice that ¢*w need not have compactly supported, even if w has compact support.
A direct calculation shows.

Proposition 4.15. If w € £E™(V) and v € E¥(V), then

(i) p*(wAV) = (p'w) A

(ii) d(p*w) = p*(dw)

Proof. Exercise.

(¢*v)
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We briefly recall Stokes’ theorem. For this, let M C U C R™ be a smooth oriented
m-dimensional submanifold and {(V), )} an oriented atlas, that is,

det (d(QOX o 1/};1)) >0 \V/LU, )\, )\/.

Lemma 4.16. If z € V), N V), then with z := ¢,(z) and 2’ := ¥ (z), we have

—1 -1 -1 -1
9y (x) Ao A oy (x) My (;17/) A A My (:U')

ox1 OTm 0 OTm
e oyt BN N '
89?1 (I)/\.‘./\_Mxm (:c)| a_;l(x/)/\'”/\ﬁ(x/)’

Proof. Since ;' = y,! o (a0 "), we have, with p := by o9},

877[)_1 o " 6¢71 ’ 8p]
o0 = Y G5 @)

‘77

It follows that

N oyt oy, oy,
. () A=A B () = det(dp,) . (YA A . (")
and hence the lemma. O

It follows from the lemma that the m-vector field

v M — AR

given by ) 1
oy oy
R OINSTS
M . BTZJ,\_l 87/1;1 )
ol CORARRRRAN rl €

where x = 1, (2) is well-defined. We call 7, the orientation of M.
We can now rewrite the classically defined integral

/

for w € D™ (U) as follows.

Proposition 4.17. For every w € D™(U), we have

o

For the definition of [, w, see [3, 6] or the proof below.
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Proof. 1f spt(w) N M C V), for some A, then, by definition of wa, we have with ¢ := w;l
and W = 1/1)\(‘/)\),

/w:/ (p*wdeﬁgtion/ (go*w)(x)(el,--- ,€m>dl’
M w w

Op Op
- /W (@) (5 @) (o))

Lemma 4.16 / T (dipg ) (w(p(2)), Tar 0 o~ Ha))da
W

Theorem 3.17/V<w(x)7TM(m))de(x).

Now the proof follows with a partition of unity argument. ([l

If M is a smooth m-dimensional submanifold with boundary 0M, then 0M is a smooth
(m — 1)-dimensional submanifold without boundary. An orientation on M can be given.

Theorem 4.18 (Stokes’ theorem). If M C U is smooth oriented m-dimensional subman-
ifold with boundary and w € D™~ (U), then

)
dw:/ w.
M oM

We will need a topology on D™(U). For this, we first define a topology on £™(U).
For each K C U compact and each i > 0 define a semi-norm on £™(U) by

M w,

837k1"'a$kj CB)‘ S K,O{ GA(n’m)70 ~J _Zakla 7k] € {17 7”}})

vl (w) := sup {}

where we have written w = > w,dz®.
By definition, a subset of £™(U) is open if it is the union of finite intersections of sets
of the form
V(n, K,i,r) = {n+w rw € EM™U), v (w) < r}

for n € E™(U) and K C U compact, i > 0, r > 0. This defines a topology on £™(U).
Now we define a topology on D™ (U) as follows: a subset I' C D™(U) is called open if
for every K C U compact the set

rn {w e EM(U) : spt(w) C K}
is open in {w € E™(U) : spt(w) C K} in the relative topology in £™(U).
Example 4.19. Recall that D°(R) = C2°(R). The subset
= {/eCx®): |f@)] < % Ve € [k k4 1],k € N}

is open with respect to the topology on D°(R).

5. THE THEORY OF CURRENTS IN EUCLIDEAN SPACE

5.1. Definitions and examples. Let U C R" be open and m > 0.
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Definition 5.1. An m-current on U is a continuous linear functional on D™ (U). The
space of m-currents on U is denoted by D,,(U).

A O-current is also called a distribution.

It follows from the definition of the topology on D™(U) that a linear functional
T:D™U) — R is an m-current on U if and only if for every K C U compact there
exist M > 0 and ¢ > 0 such that

for all w € D™(U) N {n :spt(n) C K}.
We first give some examples which will appear later again.

Example 5.2. (1) Let € R™ Then the functional
[z](f) == f(=)

defines a O-current on R".
(2) Let a,b € R with a < b. Then the functional

la,b](fda) = / f(z)dz

defines a 1-current on R.
(3) Let M C R™ be a smooth, oriented m-dimensional submanifold. Then the func-
tional

M) = [ o= [ (wla) @) @)

defines an m-current on R".
(4) The functional on D'(R?) given by

defines a 1-current on R2.
(5) If © € L*(U), then the functional

[O](fdx' A--- Ada™) := / foedc"
U

defines an n-current on U C R"™.
(6) f T € D,,(U) and v € D*(U) with k < m, then the functional on D™~*(U) defined
by
(Two)(w) :==T(v Aw)
is an (m — k)-current on U, called the restriction on 7" to v.

Inspired by Stokes’ theorem, we define the boundary of a current as follows.

Definition 5.3. The boundary of a current 7 € D™(U) is the current 91" € D,,_1(U)
defined by

OT (w) :=T(dw)
for w € D™ 1(U). If m = 0, then T = 0 by definition.
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It follows from the characterization of continuity given after the definition of a current
and the fact that
vi(dw) < vt (w)
the functional 07" is continuous and hence an (m — 1)-current. If m > 1, then 9(0T") = 0
because d(dw) = 0. We compute the boundary of some of the examples given above:

Example 5.4. (1) If a,b € R with a < b, then
9la,b] = [b] — [a]

because

Ola,b)(f) = [a,b](f'dz) = /f
— F(b) — f(a — [al(f).

(2) If M C R™is a smooth, oriented m-dimensional submanifold with (possibly empty)
boundary, then
O[M| = [oM].
Indeed, by Stokes’ theorem, we have for w € D™ }(R"),

OIM](w) = [M](dw) = /M duo = / w= M)
(3) If T € Dy (R?) is the current given by

then of of of
aT T de + ——dy) = 0)ds
=1+ 5wy = [0
for all f € D°(R?).
Definition 5.5. The support of a current T' € D,,(U) is defined by
spt(7T) := U\{V C R"™ : V open such that T'(w) = 0 Yw € D™(U) with spt(w) C V}.

In particular, if w € D™(U) satisfies spt(w) Nspt(K) = 0, then T'(w) = 0.
We now define the mass of a current, which can be thought of as its “volume”. We
first define a norm on D™(U).

Definition 5.6. The comass of w € A™R" is defined by
||w]| := sup {(w,r) : 7 € Ay R™ simple | |7| < 1}
and the comass of w € D™(U) is defined by
ool += sup { () | : = € U'}.
Notice that for w € A™R"™ we have

|w]| = sup {w(v1,~~ JUm) = v < 1}
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and [jw]| < [l
Definition 5.7. The mass of a linear functional 7': D"(U) — R is
M(T) := sup {T(w) cw e DU, |w| < 1}.
If a linear functional 7': D™(U) — R satisfies M (T') < oo, then we have
T (w)] < M(T)]|w]]

for all w € D™(U) and hence T' € D,,(U) by the characterization of continuity given after
the definition of a current.

Remark 5.8. A somewhat different mass is defined by
M(T) := sup {T(w): we DU, |w| < 1},

where |w| = sup{|w(z)| : € U}. This is sometimes called the Euclidean mass of T". Since
|lw|| < |w|, we obtain
M(T) < M(T).
It is not difficult to see that there exists ¢ = ¢(n) such that
eM(T) < M(T) < M(T).
The space
M, (U) = {T: D"(U) — R : T linear , M(T) < oo}

is called the space of m-currents on U with finite mass.
Clearly, the mass defines a norm on M,,(U) and M,,(U) with this norm is exactly the
dual space of the normed space (D™(U), || - ||). In particular, M,,(U) is a Banach space.

Example 5.9. If M C R" is a smooth, compact, oriented m-dimensional submanifold,
then [M] € M,,(R™) and

M ([M]) = Vol(M) =H™(M).
Indeed, let 7p;: M — A,,R"™ be the orienting m-vector field of M and let w € D™(R")
with ||w|| < 1. Then

|</! e)dH™ (x) < H™(M)|w]| = H™ (M)
and so M ([M]) < H™(M). It is not difficult to see that equality holds and this will also
follow from the theorem below.

The following example shows that if 7' € M, (U), then, in general, we need not have
T € M,,_1(U).
Define T € M;(R?) by

T(w) ::/0 w(s,0)(ez)ds

and notice that M(T) = 1. However, since

IT(f) =
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we clearly have M (9T') = oo. Notice, however, that if in the definition of T above, the
vector e, is replaced by e;, then

oT = [(17 0)] - [(070)]7

and so M (0T') = 2 in this case.
We call elements of the space

N (U) = {T e M, (U): 0T € Mm_l(U)}
normal m-currents in U. We define No(U) := My(U). We have the inclusions
N (U) C My (U) C Dy (U)

and these are strict by the example above if m > 0.
We now use the Riesz representation theorem to show that currents of finite mass can
be represented by integration. We first define a norm on A,,R" by

|7 := sup{{w, 7) : w € A"R", ||w]|| < 1},
which is called the mass of 7. Notice that if 7 € A,,,R", then
|7] = sup{{w, 7) : w € A"R", |w| < 1} < |7
and |7| = ||7|| if 7 is simple.

Theorem 5.10 (Representation theorem). If T € M,,(U), then there exist a unique
finite Radon measure ||T']| on U and a ||T'||-measurable m-vector field T U > A, R™
with ||?(x)|| =1 for ||T'||-almost every x € U and such that

7w) = [ (wla). T @) Tl @)
for every w € D™(U). Moreover, for every W C U open, we have
IT|(W) = sup{T (w) : w € D" (U),spt(w) C W, |lw|| <1}
and, in particular, M (T) = ||T||(U). Notice that
spt(T) = U nspt(||T)),
where the support of a measure p is defined by
spt(u) = {x € R" : u(B(z,r)) >0 Vr>0}.

Conversely, every finite Radon measure p on U and every p-measurable 7: U — A, R"™
with ||7(z)]| = 1 p-a.e. x € U give rise to an element 7' € M,,(U) by

1) = [ (le). @)dnto)
for all w € D™(U). One often writes u A7 :=T.

Proof. Since D™(U) is dense in (C.(U,A™(R™),|| - ||)) and since T is continuous with
respect to || - ||, it follows that 7" has a unique extension to C.(U, AR™) which satisfies

T(w)] < M(T)||w]]
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for all w € C.(U, A™(R™)).

We now apply the Riesz representation theorem with X = U and H = (A"R", (-, +))
to find a Radon measure pur on U and 7: U — A™R"™ pp-measurable with |7(z)| = 1
pr-a.e. x € U such that

T(w) = / (w(), 7(z))dpir (z)
for all w € C.(U, A™R"™). We define

and
dl|T]| = ||7(-) |dpr-
O

Using the representation theorem above, we can define the restriction of a current of
finite mass to a Borel set.

Definition 5.11. Let T € M,,(U) and let f: U — R be a bounded Borel function. The
restriction of 7" to f is the current 7' f defined by

(Tef)(w / f(@) (@), T (@)d| T ()

for all w € D™(U). We write T B := T'_xp whenever B C U is a Borel set.

A sequence (T;) C M, (U) is said to converge in mass to T" € M,,,(U) if M(T'—1T},) — 0.
This is just norm convergence, which is often too strong. For example, the sequence (T})
given by T} = [[0,1] x {£}] € M;(R?) does not converge in mass, however, it converges
weakly to T'= [[0, 1] x {0}] in the following sense.

Definition 5.12. A sequence (T;) C D,,(U) is said to converge weakly to T' € D,,(U) if
Ti(w) = T(w) for every w € D™(U). We write T, — T.

Notice that if T, T}, € M,,(U), then this is just the weak-* convergence in the dual
space (M,,(U), M(-)). A simple but important property.

Theorem 5.13 (Lower semicontinuity of mass). If a sequence (7)) C D,,(U) converges
weakly to T € D,,(U), then
M(T) < liminf M(Ty).

k—o0

Proof. For every w € D™(U) with [|w|| < 1 we have
T(w) = lim Ty(w) < liminf M (T},)
k—oo k—o0
and hence M(T') < liminfy_,o, M(T}). O
We can now solve Plateau’s problem in a very weak sense.

Theorem 5.14. Let S € N,,(U). Then there exists T € N,,(U) such that 0T = 9S and
M(T) =inf{M(S"): §" € N,,(U),05 = dS}.
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Thus 7' is a mass minimizing normal current with boundary equal to 9S. This theorem
is not satisfying because normal m-currents are in general very far from m-dimensional
submanifolds as the following example shows.

Example 5.15. The 1-current on R? given by
T(w) ::/ w(z)(e1)dL? (z)
[0,1]?

is a normal current, that is, 7' € N; (]RQ) Clearly, M(T) =1 and since
0
T (f) = T(afd + == / / (x,y)dzdy

= [ 0 - 50000
we have M(0T) =2 < 0.
Proof. Let (Ty) C N,,(U) be a mass minimizing sequence with 07} = 95 for all k. Thus
M(Ty) = L:=inf {M(S") : ' € N,,(U), 05" = 0S}.

By the Banach-Alaoglu Theorem 2.51, there exists a subsequence (T};) and T' € N,,(U)
such that
Tk]. —T.
Since Ty, — T, it follows that 0T}, — 9T and hence 0T = 95, in particular, T' € N,,(U).
By the lower semi-continuity of mass, we have
M(T) < h]nlg)lfM(Tk )= L.

O

We will soon introduce so-called integral m-currents. These are special normal cur-
rents, which are much “closer” to oriented m-dimensional submanifolds. The aim will then
be to prove that Theorem 5.14 holds with normal currents replaced by integral currents.
The main difficulty will be to show that the weak limit of a bounded sequence of integral
currents is again an integral current.

As indicated before, the metric induced by the mass norm is often not suitable. A
norm which is of more geometric significance is the flat norm, defined for 7" € D,,(U) by

F(T) := inf {M(S) +M(R): S € Dpsi(U), R € Do(U), T = DS + R}.
We have F(T') < M(T) and for w € D™(U)
T (w)| < F(T) max{||wl[, [[dw|]}.

It follows that IF is a norm on M,,(U) and that convergence with respect to the flat norm
implies weak convergence.

Hlustration:

1). Ty, — Ty = S + R. Ty and T are “geometrically close”. Their flat distance

d]F(Tl,TQ) == F(TQ - Tl)
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is small but M (T, — T}) is big.
2). T =05+ R. M(T)=4r +2R and F(T) < 4r + R - e.

5.2. Homotopy formula and push-forward. The product of the 1-current [[0,1]] €
D;(R) with an m-current T' € D,,,(U) is defined as follows: an element w € D™ (R x U)
can be written as

wit,r)= Y walt,)da’ Ada®+ Y @p(t,x)da’
aceA(n,m) BeA(n,m+1)

We use the notation {eg, ey, - - , ¢, } for the standard basis in RxR" and {dz°, dx!,--- , dz"}
for its dual basis. The linear functional [[0,1]] x T": D™ (R x U) — R given by

(10, 1] x T)(w) = /0 S Tlwalt, )t

acA(n,m)
is called the product of [[0,1]] with 7" and satisfies
Theorem 5.16. We have [[0,1]] x T € D,,11(R x U) and
A([[0,1]] < T) = [[1] x T" = [[o]} x T = [[0, 1]] x OT.
Moreover, if T' € M,,(U), then

Hamxﬂmzzi/wwm%A?mmwwmw
We used the notation

[[to]] X T(w) := T(w(to,")) :=T( > &to,)dz”)

for w € D™(R x U) given by

and 0T =0 if m = 0.
Proof. Exercise. ([l

Let U C R™ and V C RY be open and T' € D,,(U). Let ¢: U — V be a smooth map
such that the restriction ¢|sy(r) is proper, that is,

-1
(lepecry) () = 71 (K) O spt(T)
is compact whenever K C V' is compact. For w € D™ (V') we define

(eT)(w) =T(p- ¢'w),
where p € C2°(U) is any function which equals 1 on a neighborhood of the compact set
spt(T) N~ (spt(w)). The definition of (¢4T)(w) is independent of the choice of p. Notice
that p is needed because ¢*w need not have compact support. One easily checks that
o1 € D, (U), that
(i) = ¢4(9T)
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and spt(¢yT") C p(spt(T)).
Lemma 5.17. Let 7' € M,,(U) and let ¢ be as above so that
A = sup{||dip,|| - 2 € spt(T)} < oo.
Then ¢TI € M,,(V) and M(pT) < X" M(T).
In the above lemma, ||dy,|| stands the operator norm of dy,.

Proof. If w € D™(V) satisfies ||w]|| < 1, then |[(¢*w)(z)|| < A™ for every x € spt(T) and
hence by Theorem 5.10

o T(w)] < / (") (@), T (@)]dI T ()
/WW d|T(z) = A" M(T).

It follows that M (1) < X"M(T). O

Theorem 5.18 (Homotopy formula). Let U C R™ and V' C RY be open sets and
o, U — V smooth maps. Suppose h: [0,1] x U — V is a smooth homotopy from
o to. If T € Dy (U) and if hljg1)xspt(r) is proper, then

YT — T = Ohy([[0,1]] x T') + hy([[0, 1]] x OT).

Proof. Since hlj1]xspt(r) is proper, it follows that ¢|sper) and )]sy are proper. Hence,
w1 and ;T are defined and elements of D,, (V). Since

spt([[0, 1]] x T') = [0, 1] x spt(T),

it follows that hy([[0,1]] x T') and hy([[0, 1]] x OT") are defined and elements of D,,1(V)
and D,,(V), respectively.
We now calculate

Ohy([0, 1]] x T') = hy(([[0, 1]] 7))
= hy([[1]] x T = [[0]] x T —[[0,1]] x OT)
= hy([[1]] x T) — hy([[0] x T') — hy([[0,1]] x OT)
=T — T — 1y ([0, 1]] x 9T),
where the last equality follows from a direct calculation. [
We now specialize to the straight-line homotopy from ¢ to :
h(t,z) = (1 = t)e(x) + 1y (x)
for t € [0,1] and z € U.

Lemma 5.19. Suppose h is the straight-line homotopy from ¢ to ¥ and h|g1)xspt(r) is
proper. Then
where we have set

L= sup {[t:(x) — p(z)| : 2 € spt(T) }
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and
A 1= sup { masc{ | dp, | [} : = € spt(T) }.

Proof. We may assume that M(T) < oo and \, L < oo. Let w € D™(RY) be such that
|lw|| < 1. We have

h([[0, 1]] x // () (t2),e0 A T (2))dI|T| (
// Apeidhgea(co A T (@)d| T (2)dt

We set hi(x) := h(t, ) and note that
Anirdhiayeo A T (@) = (6(x) = 9(@) A Ann(dho)o(T (2)
and thus
[Ams1dhiea(eo A T @) < [¥(x) = (@)] - [An(dho)o(T (@)
<L-N"-|T ()

for every x € spt(T'). From this it follows with the above that

A ([[0, 1]} x T)(w)| < L - A™ - M(T),
which concludes the proof. 0

As a consequence of the homotopy formula, Lemma 5.19, and the definition of the flat
norm, we obtain

Corollary 5.20. If ' € N,,,(U), then, with the notation above,
F(pT — oT) < L-A""Y 1+ X) - (M(T) + M(9T)).

We can specialize even more, namely, to the case that ¢ is a constant map and v the
identity map.

Let T € D,,(U) with spt(T) compact. Let z € U and suppose U is star-like with
respect to z. We define the cone over T with vertex z by

zx T = hy([[0,1]] x T),
where we have set
h(t,z) = (1—t)z+te =z +t(x — 2).
If 0T =0and m > 1, then 0(z x T) =T. If M(T) < oo and z € spt(T), then

M(zxT) < (spt(T)) - M(T).

m +
This follows from the proof of Lemma 5.19 together with the observation that, since
hi(x) = z 4+ t(xz — z), we have ||(dh:).|| = t.

Consequence: If T' € N,,,(R™), m > 1, with spt(T") compact and 9T = 0, then there
exists S € Nyy1(R™) such that 0S5 =T.
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We now use the homotopy formula and approximation to define the push-forward of
an element 7' € N,,(R") under a Lipschitz map ¢: R" — RY such that ¢|sr) is proper.

For this, we first approximate ¢ by smooth maps using standard mollifers. Thus, let
n € C*°(R™) be given by

cexp(w;_l) if |z| <1
n(e) = .
0 if |z| > 1,

where ¢ > 0 is such that [, n(z)de = 1. For ¢ > 0, define the standard mollifer
Ne(x) :=e~ !

"n(e~tx). We “smoothen” ¢ using 7. as follows:

%@%ZU%X¢W®=/m%@—yM@My

n

One can show, see e.g. [4] that

(i) p. € C=(R",RY)
(ii) ¢ — ¢ uniformly as e — 0
(iii) If ¢ is A-Lipschitz, then ¢ is A-Lipschitz for all € > 0.

Let (g;) be a sequence of positive real numbers converging to 0 and set ¢; := ¢.,. Since
i — ¢lloc < 00 and since @|pe(r) is proper, it follows that ;| is proper. Thus, by
Lemma 5.17, we have ;T € M, (R") and

M(%‘ﬁT) < A"M(T)

for all i.
Similarly, for fixed ¢ and j, the straight-line homotopy h from ¢; to ¢; is proper on
[0,1] x spt(T") and hence, by Corollary 5.20

F(3,T = @isT) < lloj — @illoo(X™ + A" ) (M(T) + M(9T)).
It follows that, for every w € D™(RY), we have
(05, T)(w) = (i, T)(w)| < Flepj, T — @iy T) - max{ ]|, [[d]| }
— 0
as 1,j — 0o. Hence, ((gpjﬁT) (w)) is a Cauchy sequence and

(¢ T)(w) = lim (95, T)(w)

exists. It is clear that @47 is linear. Moreover, by the lower semi-continuity of mass we
have
M(gyT) < liminf M(;,T) < N"M(T),
Jj—00

in particular, 4T € M,,(RY).

Theorem 5.21. Let T" and ¢ be as above. Then

(i) 4T € N,y (RY) and
M(pyT) < A" M(T).

(ii) O(psT) = @4(OT).
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Proof. For w € D™ L(RY), we have
AeeT)(w) = (T () = lim ;T (de)
= lim D1, T)(w) = I (5,(07)) ()
= (:(07)) ()
This proves (ii), from which it follows that
M(0(psT)) = M(p4(0T))
< AN"TM(OT) < oo.
Hence ;T € N,,(RY). This proves the remaining statement in (i). O
In the proof that the limit
(pyT)(w) = lim (;,T)(w)
j—00

exists and defines an element of M,,(R") the only properties of (¢;) which we used were
that ¢; — ¢ uniformly and that the Lipschitz constant of ¢, is independent of j. Any
such sequence provides the same limit. In particular, if ¢ is moreover smooth, then ;T
coincides with the previous definition.

The following example shows that the condition that 7" € N,,(R"™) cannot be relaxed
to T € M,,(R") in general.

Example 5.22. Let T' € M;(R?) be given by

1
T(w) = / w(s,0)(eq)ds
0
and ¢: R? — R? given by ¢(s,t) = (s, [¢]). One easily constructs sequences (p;), (¢;) C
C>(R? R?) such that
e p; — ¢ and ¢; — ¢ uniformly
e ; and ¢; have uniformly bounded Lipschitz constants

o %(570) — 0 and %(3,0) = e, for all s € R

It follows that . 5
©;
(03D)w) = [ li(s,0) (52 (5,0))ds =0
0 8I2
and .
(@) = [ w(@s(5,0) ea)ds ™5 Tlw)
As for the construction of ¢; and @;, let 7. be the standard mollifier on R and define
wi(s,t) = (s, (m x p)(t)),

where p(t) = |t|. Then ¢; — ¢ uniformly and ¢; has uniformly bounded Lipschitz
constant. Moreover,

1 X P0) = ) x 0)(0) =0
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by a direct calculation. We define @; by @;(s,t) = ¢,(s,t + %) and one checks easily that
the desired properties hold.

In some sense, the reason for not being able to define the push-forward of 7" in the
example above is that the 1-vector field e, is transversal to the set [0, 1] x {0} over which
we integrate. Had we chosen e; instead of e, then we could have defined the push-forward
un-ambiguously. More generally, Let Q@ C R™ be open and bounded and © € L'(Q). Let
¢: R™ — R™ be a Lipschitz map. For w € D™(R") define

i[O (w) == / O(x) - wlp(@))(dpu(er), -  dpu(en))de.

Then ¢4[[©]] is well-defined and is an element of M,,(R™). We use the following lemma
to show that (4[[O]] can be viewed as a limit of push-forward as above.

Lemma 5.23. Let A > 0 and let p, p;: £ — R™ be A-Lipschitz maps. If p; — p pointwise
on €2, then

/ O(x) det(d(p;),)dx — / O(z) det(dp,)dx.

Q 0

Proof. See e.g. [1, Theorem 2.16]. O
Writing w = ), wadz®, we have

cll0l) = 3 [ Ol (o)) det (S50 0)) i,

where we have written ¢ = (¢1,--+ , ). From this and Lemma 5.23 it follows that if
@ R™ — R"™ are Lipschitz with uniformly bounded Lipschitz constants and ¢/ — ¢
pointwise, then

w3 [O])(w) = @:[[O]](w).
Clearly, if 7 is smooth, then gpﬁ[[@]] coincides with the previously defined push-forward
under smooth mappings.

5.3. Integer rectifiable and integral currents. As already observed, general currents
of finite mass have very little in common with oriented submanifolds. In this section, we
introduce a subclass of currents which are much closer to submanifolds while at the same
time being closed under taking limits.

Let U C R™ be open and m > 0.

Definition 5.24. An element 7' € D,,(U) is called integer rectifiable current if there exist
(i) an m-rectifiable and H™-measurable set £ C U with H™(E) < oo,

(ii) an H™-measurable map 7: £ — A,,R" such that 7(z) is simple and ||7(z)| = 1
and 7(x) spans the approximate tangent m-plane of E at x for H™-almost every
r € F,

(iii) a function © € L'(E,Z,H™) with ©(z) > 0 such that

T(w) = /E O(a){w(x), 7(x))dH™ (x)

for every w € D™(U).
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The map 7 is called an orientation of E, and © is called the multiplicity function.

Remark 5.25. The Condition (iii) in Definition 5.24 does not imply spt(7') = E. Indeed,
let {2 }ren C R? be dense and define
T = H@B(mk,T’“)H e I,(R?)
k=1

with spt(T) = R2.

If T € D,,(U) is integer rectifiable, then T € M,,(U) and

M(T) = [E O(z)dH™ (x)

and ||T]| = OH™LE.
We introduce the notation

T (U) = {T € D, (U) : T integer rectiﬁable}

and

I,(U) :=7Z,(U)N N, (U).
We have

I,(U)CZ,U) cC M,U)
and

I,(U) C N, (U) C M, (U).

Elements of I,,,(U) are called integral m-currents.

Example 5.26. 1). A function 7": D°(U) — R belongs to Zy(U) if and only if there exist
finitely many points 1, --- , 2 € U and ©4,--- , 0, € Z\{0} such that
k
T(f) =) 6if(w)
i=1
for all f € D°(U).
2). If M C U is a smooth, compact, oriented m-dimensional submanifold, then
(M]] € 1,(U).
3). If S, T €Z,(U) and a,b € Z, then aS + 0T € Z,,(U).
4). Let M := [0,1] x {0} € R* and M; := [0,1] x {1/j} C R?. The sequence
(T;) C I,(R?) given by T} := [[M]] + [[M,]] converges weakly to 2[[M]].
5). The current T € M;(R?) given by

1
T(fdx + gdy) ::/0 g(s,0)ds

is not integer rectifiable even thought ||7'|| is concentrated on the 1-rectifiable set [0, 1] x
{0} = E.
6). Z,,(U) is a closed subset of M,,(U) (exercise).
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7). If ©; € L'(R™,Z) and v;: R™ — R" are Lipschitz such that
i M(%u[[@z“) < 00,
i=1
then T i= 7, 63,[101] € T, ().
Conversely, we have

Theorem 5.27. Let U C R" be open and 7" € M,,(U). Then T € Z,,(U) if and only
if there exist K; C R™ compact, v;: K; — U bi-Lipschitz, and ©; € L'(Kj;,Z) such that
the images 1;(K;) are pairwise disjoint and

=Y valel]
and

M(T) = ZM(¢iu[[®i]])‘

Proof. “<": From Example 5.26 7).
“=" Since T' € Z,,(U), there exist E, 7, © such that
7w) = [ @) wla). r)dH" (@)

for all w € D™(U).
By Theorem 3.31, there exist K; C R™ compact and v;: K; — E bi-Lipschitz such
that the images ;(K;) are pairwise disjoint and

H™ (E\ U %(Ki)) = 0.

By the proof of Theorem 3.35, we know that d(v;),(R™) is the approximate tangent plane
of E at v;(x) for almost everywhere x € K;. Define for such = € K,

0,(2) = £0 (1 (x))
with the sign depending on

0x1 - . wz |
B () A A B2 ()] ™ (vi(a)

We then have

I

Viy[[Oi]](w) = /K @i<w(¢i($)), o, ()N A O

0T,

(:v)>dx

Theorem 3.17 / +0(y)(w(y), £7(y))dH™(y),
i (Ki)

from which the claim easily follows. 0
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Using the above parametrization result, we define the push-forward of an integer
rectifiable current under a Lipschitz map as follows. Let U C R" be open and T' € Z,,(U).
Let ¢: U — V C RY be Lipschitz such that ¢|s 1) is proper. We define ¢, T by

[e.e]

o T =Y (poti)l[6]],

i=1
where T'= 7, 13,[[6;]] is the representation from Theorem 5.27.

By Example 5.26 7), we have ¢, € Z,,(R"Y) and one can easily check that ;T is
independent of the representation of 7', and that 47" agrees with the previously defined
push-forward in case ¢ is smooth or T" € [,,(U). In the latter case, we have

9(psT) = 4(0T).
If T € Z,,(R"), then [[0,1]] X T € Z,,,,1(R"™). Indeed, writing
T(w) = [E O(a){w(z), 7(x))dH" (z)

for w € D™(R™), we obtain

[[0,1]] x T'(w) = / O(z)(w(t, x), e0 AT(x))d (L x H™)(¢,z)

[0,1]xE
- / O()(w(t,x), 0 A 7(x))dH™ (¢, )
0,1]xE

for all w € DR x R™). The second equality follows easily from the area formula
(e.g. Theorem 3.17) and the fact that one can write an m-rectifiable set as the union
of bi-Lipschitz pieces. Indeed, let »: K C R™ — E be a bi-Lipschitz map and set

~

Y(t,x) := (t,¢(x)). Then a direct calculation shows that Jm+1(d@@(t7x)) = Jp(dip,) and
thus, by the area formula,

Ly)dtdH™ (y) = () I (dipy ) dtd
/O/d)(K)f(ty)t = [ [ fev) )
- /[01] K f(@(t, x))Jerl(dlﬁ(t,w))d‘CmH(t’ x)

[ i)
B(10.1)xK
for any integrable function f.

Remark 5.28. The m-rectifiability is essential. Indeed, Freilich [2] constructed a set
A C R? such that H'(A) < co and

H2([0,1] x A) #H'(A) = (L' x H")([0,1] x A).

From the above we obtain that if T € Z,,(R™) with spt(7") compact and z € R", then
2% T € L1 (R™). In particular, if T € I,,,(R™) with 07 = 0 and spt(7") compact, then
there exists s € I,,11(R") with 05 =T.

We now come to two of the central theorems about integral currents.
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Theorem 5.29 (Closure theorem). Let (7)) C N,,,(R™) be a sequence which converges
weakly to some T' € N,,(R") and such that

sip [M(T) + M(9Ty)] < oo

If T}, € 1,,(R™) for every k € N, then also T" € I,,,(R").

The following examples illustrate what can go wrong when the boundedness condition
is not satisfied.

Example 5.30. 1). The sequence (7}) C I;(R) given by I := k - [[0,1/k]] converges
weakly to the current 7" € M;(R) given by
T(w) :=w(0)(en),
which is not an integer rectifiable 1-current.
2). The sequence (T}) C I;(R?) given by
k-1

E‘

-1

[+ ) < Gm]]

1

=0 j

converges weakly to the current T' € N;(IR?) given by

/ / w(z,y)(ey)dxdy,

but T is not an integer rectifiable 1-current.
3). The sequence (T},) C I(R?) given by

Tk_i [{i/k} x [0,1/k])]

i=1

converges weakly to the current 7' € M;(R?) given by

1) = [ (o 0er)r = [ e

but T is not integer 1-rectifiable.
Theorem 5.31 (Boundary rectifiable theorem). If 7' € I,,,(R") with m > 1, then 0T €
I, (R™).

The content of the theorem is that if T' € M,,(R") is integer rectifiable and M (9T) <
00, then 0T is also integer rectifiable.

For the proofs of the closure and boundary rectifiablility theorems, we will need new
tools which will be developed in the next sections. We thus postpone their proofs to later
sections and give here a first application to the existence of area-minimizing currents.

Generalized Plateau Problem: Given T' € [,,(R") with m > 1 and 97 = 0, find
S € I (R") with 0S = T and such that

M(S) < M(S")
for all S € I,,11(R") with 05" =T
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Remark 5.32. The classical problem of Plateau is the analogous problem for m = 1
when T is replaced by a closed curve c¢: S — R” and S by a “disc-type surface” with
boundary ¢, that is, a (smooth) map u: D — R™ with u|s1 = c.

The theorems above allow us to solve the generalized Plateau problem.

Theorem 5.33. Let T' € [,,,(R") with m > 1 and 0T = 0 and such that spt(7) is
compact. Then there exists S € I,,,41(R"™) with 0S = T and such that

M(S) < M(S')
for all S” € I, 11(R™) with 05" =T.

Thus, S is a mass-minimizing integral current with boundary 7.

Proof. Since spt(T) is compact and m > 1, the cone S’ := O x T satisfies S” € I,,,,1(R")
and 05" =T and thus S" € I,,,,1(R").
Let (Sk) C In+1(R™) be a mass-minimizing sequence with 05, = T for all k € N, thus

M(Sy) = L= 1inf {M(S") : §' € L,;11(R"),05' = T} < .

By the Banach-Alaoglu Theorem 2.51, there exist a subsequence (Sk,) and S € M,,1(R")
such that S, — S. Thus also 95, — 0S5 and hence 95 = T. In particular, we have
S € Nyy1(R™). By the lower semi-continuity of mass we have

M(S) <liminf M(Sy,) < L.
j—o0

Finally, since

sup | M(Sy,) + M(05,)| < oo,
j
it follows from the Closure Theorem 5.29 that S € I,,,+1(R") and hence also that M (S) =
L.

0

It is natural to ask whether it makes a difference if one minimizers over the mass
of all currents of finite mass with boundary 7' in the generalized Plateau problem. The
following theorem shows that it indeed makes a difference.

Theorem 5.34. There exists T € I;(R*) with 9T = 0 which is induced by a closed
embedded Lipschitz curve and such that

inf {M(S): S € My(R"),08 =T} <inf {M(S): S € L(R"),05 =T}.

Thus, filling with currents of finite mass is, in general, more efficient than filling with
integral currents. For a proof, we refer to Youngs.

We sketch a related construction:

Let K C R?* be an embedded Klein bottle and let T € I;(R?*) be given by integration
over an odd number of sufficiently dense, equally spaced closed curves on K as in the
figure below:
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One can show that if the curves are sufficiently dense, then
1
inf {M(S): S € L(R"),05=T} ~ §Area(K) + Area(disc)

because T' consists of an odd number of curves.

Now, let R € I5(R?*) be the current obtained by integration with changing orientation
on each strip as in the figure below:

Then R = 2T and M(R) = Area(K). It follows that Sy := 3 R satisfies Sy € My(R*)
and 05y =T and M (Sy) = %Area(K ), which implies with above that

inf {M(9) : S eM(R"),0S =T} < %Area(K)

< %Area(K) + Area(disc)
~inf {M(5): S € L(R"),0S =T}.

We end this section with some results about the interior regularity of mass-minimizing
currents. We call an element S € I,,(R") a mass-minimizing m-current if

M(S) < M(S')

for all 8" € [,,(R™) with 05" = 0S. Thus, the current S in theorem 5.33 is a mass-
minimizing (m + 1)-current.
The regular/singular points of a current S € I,,,(R™) are defined as follows.

Definition 5.35. A point x € spt(S5)\ spt(9S) is called an interior regular point of S if
there exist » > 0, ) € N, and a smooth embedded m-dimensional submanifold M C R"”
such that

S B(z,r) =Q - [[M]].B(x,r).

The set of interior regular points of S is denoted reg(.S). The interior singular set of
S is
Sing(S) := spt(S)\ (spt(9S) Ureg(S)).

The first theorem yields interior regularity for currents in codimension 1:

Theorem 5.36. Let S € I,,_1(R"™) be a mass-minimizing (n — 1)-current. Then
(i). If n <7, then Sing(S) is empty.
(ii). If n = 8, then Sing(.S) consists of isolated points.
(iii) If n > 9, then Sing(S) has Hausdorff dimension at most n — 8.

Statement (i) is due to

e Fleming and De Giorgi for n = 3

e Almgren for n =4

e Simonsfor 5 < n<7
Statements (i) and (iii) are due to Federer. Statement (i) shows in particular that if
T € I,(R?) is mass-minimizing, then spt(7')\ spt(07T) is a smooth embedded submanifold
of R®. In contrast, area minimizing discs are only immersed. The following theorem shows
that singularities can occur, that is, Statement (ii) is optimal.
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Theorem 5.37. Let S € I;(R®) be the cone over S*(0,1/v/2) x 53(0,1/v/2) C R®, where
S3(0,7) is the sphere of radius r around 0 in R*. Then S is mass-minimizing and has an
interior singularity at 0.

This example is due to Bombien-De Giorgi-Giusi.
For mass-minimizing currents in codimension > 2, we have the following important
result:

Theorem 5.38 (Almgren). Let S € I,,,(R") be a mass-minimizing current. Then Sing(.S)
has Hausdorff dimension at most m — 2.

The original proof is about 1000 pages long. A partially new approach has been
developed by De Lellis-Spadaro and has led to a shorter and simpler proof.

5.4. Slices. Recall that if M C R" is a smooth m-dimensional submanifold and f: R" —
R a smooth function, then for almost every s € R intersection M N {f = s} is a smooth
(m — 1)-dimensional submanifold, see e.g. [8]. There exists a similar construction for
normal currents and Lipschitz functions.

Let T € N,,,(R") with m > 1 and f: R® — R Lipschitz. For s € R, we define an
(m — 1)-current (T, f,s) € Dp,—1(R"), called the slice of T', by

(T, f,s) = 8(Tl_{f < s}) — (0T A{f < s}.
Example 5.39. Consider the figure below.

If m > 2, then clearly
NT, f,s) =—(0T, [, s)
for all s € R. We can write (T, f, s) equivalently as
(5.1) (T, f,s) = (0T ) Af > s} — 3(T|_{f > 3})
Indeed, we write
T=TAf<s}+T.A{f>s}
and thus
ITASf <s})+0(TAf >s}) =0T = (0T Af < s} + (OT)A{f > s},

from which (5.1) follows.

We have the following important properties of the slices.
Theorem 5.40. Let T' € N,,,(R") with m > 1 and let f: R® — R be A-Lipschitz. Then

(i) For almost every s € R we have (T f,s) € N,_1(R") with spt ((T, f 3>) C

spt(T) N {f = s} and

M((T, f,s)) <X

IS <7}).

d
dr lr=s
(i) The function s — M ((T\ f,s)) is measurable and hence

/ UM, f5))ds < 3 [T ({50 < £ < 1))

S0
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for all sg < s7.

Proof. Fix s € R and let, for h > 0 sufficiently small, g,: R” — R be a smooth function
such that

e g,=0o0n {f <s}
egy,=1on{f>s+h}
e gy is 3 - (1 + &(h))-Lipschitz,

where ¢(h) — 0 as h — 0. Such a function g, can for example be obtained as follows.
Define g := po f, where p: R — R is the piece-wise affine function such that p|(_c s4s2)) =
0, plistr—nzy = 1 and p is linear on [s + h% s+ h — h?|. Let g := nu2/y * g, where 1,2/,
is the standard mollifier defined earlier. It is not difficult to check that g, satisfies the

properties listed above.
We define T}, € D,,,—1(R") by

Th(v) :=T(dgn N\ v)
for all v € D™ (R"). Since dgy A v = d(gnv) — gndv, we obtain that
Ty (v) = (0T )(gnv) — T (gndv)

- / v, V| 0T — / gnldv, T)d| T
3 /{f>s}<u,a?>d||a:r||—/{f>8}<dv,7>dllTH

= ((OT)As > )W) — (Tl > s}) (dv)
= (T, f,s)(v).
Thus, T), — (T, f, s). Now observe that spt(dg,) C {s < f < s+ h} and
ldgn A I < [ldgnll - lIvIl < % (14 e(h) vl
From this, it follows that
spt(Th) C {s < f < s+ h}Nspt(T)
and for v € D™ 1(R") with ||v|| = 1 that

1)l = [T(dgi Av) < | |idgn nw, T aIT)

<A-(A+eh) -+ ITN{s < f < s+h}).

SRS

Thus also

M(T,) <X -(1+4¢e(h))-
Since T}, — (T, f, s), it follows that
spt ((T, f,s)) C spt(T) N{f = s}.

TN ({s < f < s+ h}).
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Moreover, the lower semi-continuity of mass implies
|
M((T, f,s)) < A~111}P;glfﬁ NT|({s < f <s+h}).

Set F(s) :=||T||({f < s}) and notice that F' is non-decreasing on R and hence differen-
tiable at almost every point and
/ F/(s)ds < F(s1) — F(so)
S0
for all sy < s1. In particular, F'(s) < oo for almost all s € R. Since ||T]|({f = s}) =0
for every point of continuity of F', we obtain

LTI < F<s+m)) =3 ITI({s < 7 <5+ 1))

_ F(s+h)—F(s) ,
= . — F'(s) < o0

for almost every s € R. This shows that

M(T, f,) <A S| TI({f <)) < o0

for almost every s € R. Since (T, f,s) = — (97, f, s), it follows that (T, f, s) € Np,_1(R")
for almost every s € R. This shows (i).
We leave it as an exercise to check that the function

5 M((T, f s))

is measurable. It then follows that

/81 M((T, f,5))ds < )\/

S0 S0

< A(F(sl) - F(so)>
= X170 ({s0 < £ < 1)),

S

F'(s)ds

O

Theorem 5.41. Let T' € [,,(R™) with m > 1 and let f: R® — R be Lipschitz. Then
(T, f,s) € I,,_1(R") for almost every s € R.

It follows, in particular, that 0(TL§(93, 3)) € I,,_1(R") for every x € R" and almost
every 0 < s < dist(z,spt(97")). The proof of the theorem relies on the coarea formula.
We omit it here and refer to the book of Simon [9].

The method of slicing is often very useful. For example, (iterated) slices will play an
important role in the proof of the closure theorem. Here, we give two different applications
which use slices.

Theorem 5.42 (Monotonicity). Let S € I,,,(R") be a mass-minimizing current with
m > 1 and let x € spt(S). Then the function
(B(z,1))

]
Wy, ™
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is non-decreasing on the interval (0, dist(z, spt(995))).
As a consequence, we obtain

Corollary 5.43. Let S € I,(R™) be a mass-minimizing current with m > 1. Then for
every = € spt(S)\ spt(095), the density ©,,(||S||,z) exists and satisfies ©,,(||S||,z) > 1.
Moreover,

ISI1(B(z,7)) = Om (S]], 2)wmr™
for all 0 < r < dist(z, spt(99)).

Proof. The only statement which is not a direct consequence of the theorem is the fact
that
On(|S]],x) > 1 for all z € spt(S)\ spt(IS).

Let E,©, 7 be such that
S(w) = / O({w, T)dH™
for all w € D™(R"), hence ||S|| =© - ’Hng. It follows that
OIS, x) =O(z) - ©,,(FE,x) =O(z) € N

for H™-almost every z € E. Since the set of all such = is dense in spt(S) and since,
by Theorem 5.42, the function x — ©,,(||.S]||,z) is upper semi-continuous on spt(.5), it
follows that ©,,(]|S]|,z) > 1 for all x € spt(95).

U

Proof of Theorem 5.42. We may assume that ro := dist(z,spt(9S)) > 0. Define a non-
decreasing function by F(r) := ||S||(B(x,r)). For almost every r € (0,79) we have that
Sy := 0(SLB(z,r)) satisfies S, € I,,_1(R") and

M(S,) < F'(r).

For every such r we have z x S, € I,,,(R") with
r r
M S,) < —-M(S,) < —F'(r).
(e % S) < = M) < ZR(r)
Since d(z x S,) = S,, it follows from the mass-minimizing property of S that
M(S_B(z,7)) < M(z x S,)

and hence

F(r) = M(SLB(x,r)) < M(z x S,) < —F'(r)

r

m
for almost every r € (0,7). In other words,

d m

—logoF(r) > —

dr ogoF(r) 2 r

for almost every r € (0,79) and thus, by integration,

o (54 2 i (1) - e ()
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and hence
— >

m Sm

F(t) _ F(s)
t
forall 0 < s <t <. O

As a second application of Theorem 5.41, we prove the following isoperimetric in-
equality:.

Theorem 5.44. Given m > 1 there exists C,,, > 0 with the following property. For every
T € I,(R™) with 9T = 0, there exists S € I,,,41(R™) such that 0S =T and

m+1

(5.2) M(S) < Cp M(T)™.

The constant C,,, which we will obtain does not depend on the ambient dimension n.
however, our constant C,, is not optimal. The optimal constant was obtained by Almgren
and is such that equality holds exactly when 7" is an m-sphere and S is an (m + 1)-ball.

The proof of Theorem 5.44 will be by induction on m. The idea is as follows. If T is
“roundish” in the sense that

dim (spt(T)) < CM(T)m,
then the cone S :=z x T with z € spt(T) satisfies S =T and

M(S) < ;1 - diam (spt(T)) - M(T)

m +
C 1
< ——M(T)",
m—+1

thus S is the desired filling. In the general case, we will decompose T into a sum of
“roundish” cycles and a small rest. Each of the roundish cycles will be filled by a cone and
the result will again be decomposed into the sum of roundish cycles plus an even smaller
rest.

We first show

Proposition 5.45. Let m > 1. If m > 2, then assume that Theorem 5.44 holds with
m — 1. There exist constants £ > 0, 0 < J,\ < 1 depending only on m such that the
following holds. Every T € I,,,(R") with 0T = 0 can be written as a finite sum

T=T +-+Ty+R,
where T;, R € I,,(R") satisfy 07T; = 0 = OR and
(i) diam (spt(T})) < E - M(T;)w

(i) M(R) < (1—0)M(T)
(iii) M(T}) + -+ M(Ty) < (1+ \)M(T).

This means that after splitting off roundish cycles we obtain a new cycle R which
has essentially smaller mass. It is not difficult to see that Proposition 5.45 implies Theo-
rem 5.44.
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Proof of Theorem 5.44. Applying Proposition 5.45 repeatedly, we obtain sequences (T%), (Ry) C
I,(R") with 0T, = 0 = ORy for all k and a strictly increasing sequence of integers
(Ng) C N such that for all &

i) T=T+--+Tn, + R

(ii) diam (spt(7})) < E - M(T},)m

(i) 3205 M(T) < (14 A) - (52(1 = 0)') M(T) = H2M(T).
We fill each T}, by a cone: let x € spt(Ty) and let Sy := zy X Ty. Then Sy € IL,.1(R")
with 05, = T}, and

E m—+1
M(5y) € —— CM(Ty) "
Set S* := 3" S; and notice that S* € I,,(R") C Z,,(R") and
’ E < s
M(S' =5 < S M(S) < N M)
(8- 8 < 30 M(s) < —t Y M(T)
i=k+1 i=k+1
E m+1

Sm—i—l[zl: M(Tl)] h

i=k+1

for all I > k > 1. Since Y o2, M(T;) < oo, it follows that (S*) is a Cauchy sequence with
respect to the mass norm and there converges to some S € M,,1(R"). Since Z,,1(R")
is a closed subset of M, 1(R") it follows that S € Z,,, 1 (R"™). Moreover,

OS =Ty +-- +Tn, =T — Ry — T
and hence 05 =T and S € [,,+1(R"). Finally,

M(S) S Y M(S) < —— 3 M(T)

m—+1

[omm) ™ <« B () gy

<

F
m—+1
O

We now prove Proposition 5.45 and let 7" € I,,,(R") with 0T = 0. For y € spt(T), we
define
Fy(r) = [IT(B(y,7))
and
ro(y) := max {r >0:Fy(r)>A- rm},

where A > 0 is a small constant, precisely

1 1
A::—-min{l, Wm s 2—71}
2 2mmm Ol
Here, C,,_1 is the isoperimetric constant in dimension m — 1 if m > 2 and Cy := 1 if

m=1.
Notice that Fy,(ro(y)) = A-ro(y)™ and F,(r) < Ar™ for all r > ry(y).
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Lemma 5.46. There exist y,- -+ ,yn € spt(T') such that

(i) ro(y:) >0
(i) the balls B(y;, 2ro(y;)) are pairwise disjoint
(iii) Zfil IT1(B(yi,70(y:))) = - M(T), where a > 0 is a constant only depending on
m.

Proof. Define Y; := spt(T') and

r1 = sup {To(y) RS Yl} >0

and choose y; € Y] with ro(y1) > %rl.
Suppose ¥y, -+, yr have been chosen for some k > 1. Define

Yii1 = Y1\ UE(% 5ro(yi))

i=1
and

Tk41 = SUp {To(y) "y e Yk+1}.
Notice that ry > ry > --- >0 and for ¢ < j

ly; — vil > dro(yi) > 2ro(y;) + 2r; > 2ro(yi) + 2r0(y;),

hence the balls B(y;, 2ro(y;)) are pairwise disjoint. We first assume that 7, > 0 for all
k> 1. Then r, — 0 and

17 (spt(T)\ U B (i, 7o) ) = 0.

Hence

T) S Z ||T||( yza 57“0 yz ZA 5760 yz

- 5mZ 170 (B rolw:))-

Thus, if 0 < oo < 57™, then there exists N > 1 such that

Z IT1(B(yi, roy:))) > aM(T).

The case that r, = 0 for some k£ > 1 is similar.

Let y1, -+ ,yn € spt(T') be given as in Lemma 5.46 and fix i € {1,--- , N}.

Lemma 5.47. There exists a set of positive measure of r € (ro(y;), 2ro(y;)) for which
E(r)<A-m-rm 1

Proof. We argue by contradiction and assume that

m—1
E, (r) > Amr
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for almost every r € (ro(y;), 2r0(y;)). Then

2ro(y;)

Fyy(2ro(y)) = Fy(ro(y)) + / G
r0(Yq
270 (y;)

> Aro(y)™ +/ Amr™tdr = A - <2T0(yi)>m,

ro(y:)
which contradicts the definition of ro(y;). O

Proof of Proposition 5.45. By Lemma 5.47 and Theorem 5.41, there exists r; € (ro(vi), 2r0(y:))
such that (T B(y;,r;)) € LIn—1(R™) and

M(&(TLE(yi,ri)D < F (r;) < Amr 1.
We distinguish two cases.
Case 1: m = 1.
We have M(@(TLF(yi, 7“1))> <A<
8(TL§(yi>Ti)) =0.

Set T; := T_B(y;,r;) fori=1,--- ,Nand R:=T—T,—---—Ty. Then 9T; = 0 = OR
and so T;, R; € I;(R"™) and

5. Since (T B(y;, 1)) € Io(R™), it follows that

T'=T+---+Ty+R.
Moreover,
M(Ty) + -+ M(Tn) < M(T)
and M(R) < (1 —«)-M(T). Finally,

diam (spt(T})) < 2r; < dro(y) < — - M(T).

| e

This proves the proposition in the case m = 1.
Case 2: m > 2.

By assumption, R" admits an isoperimetric inequality for (m — 1)-cycles. Thus there
exists S; € I,,(R") such that 95; = 8(T|_§(yi, n)) and

m

M(S;) < OmlM(a(TLE(yhm))n& < G (Am)

m 1 1
< Om_lmmAQO . Aro(yz)m < §ATO(yz)m

After possibly projecting S; onto the ball B(y;, ;), we may assume that spt(S;) C B(y;, ;).
Set T; := T B(y;,r;) — S; for i = 1,--- , N and notice that 9T}, = 0 and T; € I,,,(R").

Since
M(T) > T (Blyi,r) — M(S) > 5 Aro()™

It follows that
4 - 21 /m

diam (Spt(ﬂ)) <2r; < 47”0(1%) < W

- M(T)Y™,



78 NOTES TAKEN BY CHANGYU GUO, UNIVERSITY OF FRIBOURG

Finally,
N N 1
> M@ < 3 (ITI(Blys ) + 3Ano(y:)" )
i=1 i=1
1
< (14 HM(T)
and hence the cycles R:=T — Ty —--- — Ty € I,,(R") satisfies

M(R) < |IT| <R"\O§(yi7n)) - ij(S
- ZNj 11 (Blyi ) + iM(S
= Z 1711 (B, o)) )

«

< (1-3) M(T).

This proves the proposition in the case m > 2.
O

5.5. Proofs of Closure and Boundary Rectifiability Theorems. The aim of this
section is to prove the Closure and Boundary Rectifiability theorems. The proofs are by
induction on the dimension of the currents, and the main ingredient, which will be proved
in the next section, is a characterization of integral currents via iterated slices.

Proposition 5.48 (Closure theorem for O-current). Let (T;) C My(R™) be a sequence
such that sup, M(T;) < oo and T}, — T for some T" € My(R"). If T}, € Io(R") for all k,
then T" € IH(R™).

Proof. Setting Ny = M(Ty), we can write T}, as

7= > milei]

for some % € R™ and m} € {—1,1}. After possibly passing to a subsequence we may
assume that N, = N and mi = m' for some N € N and m’ € {—1,1} for all k and that
there exists 0 < M < N such that zi — 2 for i < M and |z}| — oo for i > M. It follows
that for every f € C°(R™) we have

N
=Ygt > 3l
1

=

as k — oo and hence T = Y m[[z]]. This shows that T € Io(R"). O
Lemma 5.49. Let m > 1 and let (T}) C N,,,(R™) be a sequence such that

Sllip <M(Tk) + M(E)Tk)> < 0
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and such that T, — T for some T' € N,,(R"). Let f: R — R be a Lipschitz function.
Then for almost every s € R there exists a subsequence (7%,) such that
<Tk]'7f78> - <T7 f78>

and
sup <M((Tkj,f,s>) + M(@(Tkj,f,s>)) < 0.

J

Proof. Set py = ||T}|| and vy := ||01}||. There exists a subsequence (k;) and Radon
measures /i, v such that (p,;) converges weakly to 4 and (v4;) converges weakly to v.
Let s € R be such that

W({f =) +v({f = s}) =0
and notice that all but at most countably many s € R have this property. We want to
show that

<Tkj7f> S> - <T7 f7 S>'
For this, it is enough to show that
T, {f < s} = T{f < 5)
and
(OT1, ) {f < s} = OT){f < s).
Let ¢ > 0. There exists h > 0 such that p({s —h < f < s+2h}) <e. Let w € D™(R").
Then

(5.3) gy ({s < f < s+h}nspt(w)) <e
for all j sufficiently large. Indeed, let n € C.(R™) be such that

X{s<f<sth}nspt(w) =7 < X{s—h<f<s+2h}

and notice that

p; ({5 < f < s+ h}Nspt(w)) < / ndpix, e ndu

Rn

<p(fs—h<f<s+2h}) <e,
proving (5.3).
Now, let g € C*°(R™) be such that
|9 = Xir<spl S Xgosssiny-
Then
T, {f < sHw) = TAS < s}w)]
< Ty {f < s}Hw) = Tiy (gw)| + [Tk, (gw) — T(gw)| + [T(gw) = T{f < s}Hw)]
< wll - g, ({s < f < s+ b} Nspt(w)) + [T, (gw) — T(gw)|
+ flwll - n({s < f < s+ h} Nspt(w))
<e- (2w +1)
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for all sufficiently large j. This shows that T, {f < s} — TL{f < s} and one shows
analogously that (0Ty,;).{f < s} — (9T){f < s}. This proves that

<Tk;].,f,8> - <T7 f,S>
for all but countably many s € R.

As for the second statement, let A denote the Lipschitz constant of f. By Theorem 5.40
and Fatou’s lemma, we have
/hmme((Tk [y s) ds < hmmf/ M Tk],f,
R

J—00 J]—00

< A-liminf M(Ty,) <

j—o0

Hence, for almost every s € R, there exists a subsequence (T’%) such that

sup M((Tkjl,f, s)) < .
!

Similarly for the boundary.
O

We now define iterated slices. Let T € N,,(R") and let 7 = (7,-- ,m): R® — R*
be a Lipschitz map for some 1 < k < m. For almost every x = (x1,---,2;) € R, the
iterated slice

(T)ym,x) == (- ((T,m1,21), Mo, T}, + , Tk, Tg)
is well-defined and defines an element in N, (R"). If T € I,(R™), then (T, 7, x) €
I, 1(R™) for almost every x € R*.

The following theorem, whose proof will be given in the next section, is the main

ingredient in the proofs of the Closure and Boundary Rectifiability theorems.

Theorem 5.50 (Rectifiable slices). Let T' € N,,,(R") with m > 1. If (T, 7, z) € I,(R")
for every Lipschitz map m: R” — R™ and almost every x € R™, then T' € I,,(R").

The converse is also true by the above. We use Theorem 5.50 to prove the Closure
and Boundary Rectifiability theorems.

Proof of Theorem 5.29. We argue by induction on m. The case m = 0 follows from
Proposition 5.48. Assume therefore that m > 1 and that Theorem 5.29 holds for m — 1.

Let m = (my, -+ ,7n): R™ — R™ be a Lipschitz map. By Theorem 5.41 and Lemma 5.49,
we have for almost every s € R that (T, m,s) € I,,,_1(R") for all & € N and there exists
a subsequence (7%,) such that

(Tkj,W173> — (T, m1,5)
and
sup <M((Tkj,7rl,s>) - M(8<Tkj,7T1,8>)> < 0.
j
Since Theorem 5.29 is assumed to hold for m — 1 it follows that (T, 7y, s) € I,,,_1(R™) for

almost every s € R and hence

(T,ym,x) = ((T,m1,21), (T2, -+, ), (T2, -+ ,xm)) € Ip(R™)
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for almost every = (21, -+ ,x,,) € R™. It follows from Theorem 5.50 that 7" € I,,,(R").
This concludes the proof.
[

For the proof of the Boundary Rectifiability theorem, we will need the following char-
acterization of integral O-currents.

Lemma 5.51. Let S € My(R"). Then S € I4(R") if and only if S(xx) € Z for every
compact set K C R™.

Recall that, by the Representation Theorem 5.10, .S is of the form
s()= [ -Bdls)

for some finite Radon measure ||S]| on R™ and some ||S||-measurable function S R" SR
with |§(m)| =1 for ||S||-almost every x € R". Therefore, the quantity

S(xx) = /K Sd)s

makes sense.

Proof. “=": Clear.
“<=": Define

A= {x e R": ||8]|({z}) > 1}
and notice that A is a finite set. Let # € R™\ A. Then, there exists » > 0 such that
1S|(B(x,r)) < 1. We claim that

1S]1(B(z,r)) = 0.
For this, define

Fy = {y € B(z,r): ?(y) = ﬂ:l}.
For every compact subset K C F';, we have S(xx) € Z and
Sixx) = ISII(K) < [|SN(B(z,r)) <1
and hence [|S||(K) = 0. Since
IS11(£2) = sup {ISII(K) : & € Fy compact |,

it follows that ||S|[(F.) = 0. One shows analogously that ||S||(F-) = 0 and hence
1S|(B(x,r)) = 0. It follows that ||.S||(R™\A) = 0. Since

IS1({2}) = 1S(xay)| € Z,
we finally obtain that ||.S] is a finite sum of Dirac measure and thus S € I4(R™). O

Proof of Theorem 5.31. The proof is by induction on m. We first prove the case m = 1.
Let T € I;(R") and let K C R™ be compact. By Lemma 5.51, it suffices to show that
0T (xk) € Z. For this, define a Lipschitz function f: R" — R by

f(z) = dist(z, K).
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Fix R > 0 such that K C B(0, R) and let g € C>°(R") be such that g = 1 on B(0,2R).
For every 0 < r < R, we have

(OT) (x(r<ry) = ((OT)Af <7})(9)

o(T{f <r})(g) = (T, f.r)(9)

T(X{f<7‘}dg) — (T, f,r) (X§(0,2R))
—(T, f,r) (X§(0,2R)) :

Since (T, f,r) € Io(R™), (T, f,r) (X§(0,2R)) € Z for almost every 0 < r < R, and thus we
see that

(OT)(X(<r}) EZ

for almost every 0 < r < R. Since x{f<,} — xx asr — 0, it follows that (0T (x{s<r}) € Z.
Since K was arbitrary, it follows from Lemma 5.51 that 0T € I4(R™). This proves the
case m = 1.

Suppose now that Theorem 5.31 holds for some m > 1. Let T" € I,,;1(R™). Let
m=(m, - ,Tm): R" — R™ be a Lipschitz map. Since

<8T, v, l’1> = —<T, 1, [lﬁ'1> S Im_l(Rn)
for almost every z; € R, it follows that
<8T7 T, x> = <<aT77T7 xl)a (7T27 o 77rm)a (33'2, T 7xm)> S [O(Rn)

for almost every = (21, -+ ,z,,) € R™. Theorem 5.50 implies that 0T € I,,(R™). This

completes the proof.
O

5.6. MBYV functions and the proof of the Slice-rectifiability Theorem.
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