Delocalization of the endpoint of self-avoiding walk

Ioan Manolescu Joint work with Hugo Duminil-Copin, Alexander Glazman, Alan Hammond

University of Geneva

27 June 2013

Ioan Manolescu (University of Geneva) Delocalization of the endpoint of self-avoiding walk

The model

What is SAW?

Lattice: $\mathbb{Z}^d = (V, E)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The model

What is SAW?

Lattice: $\mathbb{Z}^d = (V, E)$.

Self-avoiding walk of length n (SAW_n): an injective map $\gamma : \{0, \ldots, n\} \to V$ with $(\gamma_k, \gamma_{k+1}) \in E$ and $\gamma_0 = 0$.

The model

What is SAW?

Lattice: $\mathbb{Z}^d = (V, E)$.

Self-avoiding walk of length n (SAW_n): an injective map $\gamma : \{0, \ldots, n\} \to V$ with $(\gamma_k, \gamma_{k+1}) \in E$ and $\gamma_0 = 0$.

 $c_n = |SAW_n|$ \mathbb{P}_n - uniform measure on SAW_n.

イロン イヨン イヨン イヨン

Sub-multiplicativity: $c_{m+n} \leq c_n c_m$.

Sub-multiplicativity: $c_{m+n} \leq c_n c_m$.

Sub-multiplicativity: $c_{m+n} \leq c_n c_m$.

It follows that: $(c_n)^{1/n} o \mu_c$ and $c_n \geq \mu_c^n$.

The connective constant, μ_c , depends on the lattice.

<ロ> (日) (日) (日) (日) (日)

Sub-multiplicativity: $c_{m+n} \leq c_n c_m$.

It follows that: $(c_n)^{1/n} o \mu_c$ and $c_n \geq \mu_c^n$.

The connective constant, μ_c , depends on the lattice.

For the hexagonal lattice $\mu_c(\mathbb{H}) = \sqrt{2 + \sqrt{2}}$ (Duminil-Copin, Smirnov '11)

We expect the existence of γ such that

$$c_n \approx A n^{\gamma - 1} \mu_c^n.$$

 γ only depends on the dimension:

$$\gamma = \begin{cases} 1 & \text{for } d = 1, \\ \frac{43}{32} & \text{for } d = 2, \\ 1.16 \dots & \text{for } d = 3, \\ 1 & \text{for } d = 4, \\ 1 & \text{for } d \ge 5. \end{cases}$$

We expect the existence of γ such that

$$c_n \approx A n^{\gamma - 1} \mu_c^n.$$

 γ only depends on the dimension:

$$\gamma = \begin{cases} 1 & \text{for } d = 1, \quad \checkmark \\ \frac{43}{32} & \text{for } d = 2, \quad \text{SLE scaling limit?} \\ 1.16 \dots & \text{for } d = 3, \\ 1 & \text{for } d = 4, \\ 1 & \text{for } d \ge 5. \quad \checkmark \end{cases}$$

We expect the existence of γ such that

$$c_n \approx A n^{\gamma - 1} \mu_c^n.$$

 γ only depends on the dimension:

$$\gamma = \begin{cases} 1 & \text{for } d = 1, \quad \checkmark \\ \frac{43}{32} & \text{for } d = 2, \quad \text{SLE scaling limit?} \\ 1.16 \dots & \text{for } d = 3, \\ 1 & \text{for } d = 4, \\ 1 & \text{for } d \ge 5. \quad \checkmark \end{cases}$$

Geometric interpretation: $\mathbb{P}(\text{two independent walks don't intersect}) \approx An^{1-\gamma}$.

<ロ> (日) (日) (日) (日) (日)

We expect the existence of γ such that

$$c_n \approx A n^{\gamma - 1} \mu_c^n.$$

 γ only depends on the dimension:

$$\gamma = \begin{cases} 1 & \text{for } d = 1, \quad \checkmark \\ \frac{43}{32} & \text{for } d = 2, \quad \text{SLE scaling limit?} \\ 1.16 \dots & \text{for } d = 3, \\ 1 & \text{for } d = 4, \\ 1 & \text{for } d \ge 5. \quad \checkmark \end{cases}$$

 $\begin{array}{ll} \mbox{Geometric interpretation:} & \mathbb{P}(\mbox{two independent walks don't intersect}) \approx An^{1-\gamma}. \\ \mbox{For general dimension:} & \mu^n_c \leq c_n \leq e^{c\sqrt{n}}\mu^n_c. \end{array}$

<ロ> (日) (日) (日) (日) (日)

Critical exponent for the mean-square displacement

We expect the existence of ν such that

$$\mathbb{E}_n[||\gamma_n||^2] = n^{2\nu + o(1)}$$

 ν only depends on the dimension:

$$\nu = \begin{cases} 1 & \text{for } d = 1, \\ \frac{3}{4} & \text{for } d = 2, \\ 0.59 \dots & \text{for } d = 3, \\ 1/2 & \text{for } d \ge 4, \end{cases}$$

Compare to simple random walk (for which the corresponding quantity is 1/2).

Critical exponent for the mean-square displacement

We expect the existence of ν such that

$$\mathbb{E}_n[||\gamma_n||^2] = n^{2\nu + o(1)}$$

 ν only depends on the dimension:

$$\nu = \begin{cases} 1 & \text{for } d = 1, \\ \frac{3}{4} & \text{for } d = 2, \\ 0.59 \dots & \text{for } d = 3, \\ 1/2 & \text{for } d \ge 4, \end{cases}$$

Compare to simple random walk (for which the corresponding quantity is 1/2).

Known (in general dimension $d \ge 2$):

- Sub-balisticity: $\mathbb{P}_n(||\gamma_n|| \ge vn) \le e^{-c_v n}$
- Madras lower bound: $\nu \geq \frac{2}{3d}$

<ロ> (日) (日) (日) (日) (日)

Results

Theorem (Duminil-Copin, Glazman, Hammond, M.) For any $x \in \mathbb{Z}^d$ and $\epsilon > 0$, for n large enough,

$$\mathbb{P}_n(\gamma_n=x)\leq n^{-\frac{1}{4}+\epsilon}.$$

Results

Theorem (Duminil-Copin, Glazman, Hammond, M.) For any $x \in \mathbb{Z}^d$ and $\epsilon > 0$, for n large enough,

$$\mathbb{P}_n(\gamma_n=x)\leq n^{-rac{1}{4}+\epsilon}.$$

Theorem (Duminil-Copin, Glazman, Hammond, M.)

$$\sup_{x\in\mathbb{Z}^d}\mathbb{P}_n(\gamma_n=x)\to 0.$$

Theorem (Kesten '63)

Let P be a pattern. There exist $\delta, c > 0$ such that

 $\mathbb{P}_n(\gamma \text{ has less than } \delta n \text{ occurences of } P) \leq e^{-cn}.$

Theorem (Kesten '63)

Let P be a pattern. There exist $\delta, c > 0$ such that

 $\mathbb{P}_n(\gamma \text{ has less than } \delta n \text{ occurences of } P) \leq e^{-cn}.$

- E - N

A D > A B > A B > A

Theorem (Kesten '63)

Let P be a pattern. There exist $\delta, c > 0$ such that

 $\mathbb{P}_n(\gamma \text{ has less than } \delta n \text{ occurences of } P) \leq e^{-cn}.$

Theorem

 $c_{n+2}/c_n \rightarrow \mu_c^2$.

Ioan Manolescu (University of Geneva)

Theorem (Kesten '63)

Let P be a pattern. There exist $\delta, c > 0$ such that

 $\mathbb{P}_n(\gamma \text{ has less than } \delta n \text{ occurences of } P) \leq e^{-cn}.$

Shell: walk with obstructed patterns.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Theorem (Kesten '63)

Let P be a pattern. There exist $\delta, c > 0$ such that

 $\mathbb{P}_n(\gamma \text{ has less than } \delta n \text{ occurences of } P) \leq e^{-cn}.$

Shell: walk with obstructed patterns.

Patterns are distributed uniformly in a shell (for fixed length of the walk)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Theorem (Kesten '63)

Let P be a pattern. There exist $\delta, c > 0$ such that

 $\mathbb{P}_n(\gamma \text{ has less than } \delta n \text{ occurences of } P) \leq e^{-cn}.$

Shell: walk with obstructed patterns.

Patterns are distributed uniformly in a shell (for fixed length of the walk)

Bridge: $\gamma \in SAW_n$ such that

 $\langle \gamma_0 | e_1 \rangle < \langle \gamma_k | e_1 \rangle \le \langle \gamma_n | e_1 \rangle, \quad \text{ for } 0 < k \le n.$

 SAB_n is the set of bridges of length n.

A D > A B > A B > A

Bridge: $\gamma \in SAW_n$ such that

 $\langle \gamma_0 | e_1 \rangle < \langle \gamma_k | e_1 \rangle \le \langle \gamma_n | e_1 \rangle, \quad \text{ for } 0 < k \le n.$

 SAB_n is the set of bridges of length n.

By super-multiplicativity $(|SAB_{m+n}| \ge |SAB_m||SAB_n|)$

 $|SAB_n| \leq \mu_c^n$.

Bridge: $\gamma \in SAW_n$ such that

 $\langle \gamma_0 | e_1 \rangle < \langle \gamma_k | e_1 \rangle \le \langle \gamma_n | e_1 \rangle, \quad \text{ for } 0 < k \le n.$

 SAB_n is the set of bridges of length n.

By super-multiplicativity $(|SAB_{m+n}| \ge |SAB_m||SAB_n|)$

 $|SAB_n| \leq \mu_c^n$.

Bridge: $\gamma \in SAW_n$ such that

 $\langle \gamma_0 | e_1 \rangle < \langle \gamma_k | e_1 \rangle \le \langle \gamma_n | e_1 \rangle, \quad \text{ for } 0 < k \le n.$

 SAB_n is the set of bridges of length n.

By super-multiplicativity $(|SAB_{m+n}| \ge |SAB_m||SAB_n|)$ $|SAB_n| \le \mu_c^n$.

・ロト ・回ト ・ヨト ・

Theorem (Hammersley-Welsh '62)

There exists a constant c_{HW} such that

$$c_n \leq e^{c_{HW}\sqrt{n}}|SAB_n| \leq e^{c_{HW}\sqrt{n}}\mu_c^n$$

 $\Phi: \mathrm{SAW}_n \to \mathrm{SAB}_n.$

 Φ : SAW_n \rightarrow SAB_n.

 $\Phi : \mathrm{SAW}_n \to \mathrm{SAB}_n.$

 Φ : SAW_n \rightarrow SAB_n.

 $\Phi : \mathrm{SAW}_n \to \mathrm{SAB}_n.$

 $\Phi : \mathrm{SAW}_n \to \mathrm{SAB}_n.$

Closing walk

We say a walk closes if $||\gamma_n|| = 1$

Theorem (Duminil-Copin, Glazman, Hammond, M.)

For any $\epsilon > 0$ and n large enough,

 $\mathbb{P}_n(\gamma \text{ closes}) \leq n^{-\frac{1}{4}+\epsilon}.$

Closing walk

We say a walk closes if $||\gamma_n|| = 1$

Theorem (Duminil-Copin, Glazman, Hammond, M.) For any $\epsilon > 0$ and n large enough,

 $\mathbb{P}_n(\gamma \text{ closes}) \leq n^{-\frac{1}{4}+\epsilon}.$

Expected: For d = 2, $\mathbb{P}_{2n+1}(\gamma \text{ closes}) \leq n^{-\frac{59}{32}+o(1)}$.

Closing walk

We say a walk closes if $||\gamma_n|| = 1$

Theorem (Duminil-Copin, Glazman, Hammond, M.) For any $\epsilon > 0$ and n large enough,

 $\mathbb{P}_n(\gamma \text{ closes}) \leq n^{-\frac{1}{4}+\epsilon}.$

Expected: For d = 2, $\mathbb{P}_{2n+1}(\gamma \text{ closes}) \leq n^{-\frac{59}{32}+o(1)}$.

The proof is done by contradiction. Assume n is large and

 $\mathbb{P}_n(\gamma \text{ closes}) > n^{-\frac{1}{4}+\epsilon}.$

The hanging point

 γ_{hang} is the lexicographically maximal point of $\{\gamma_k : k = 0, \dots, n\}$.

$$\gamma^1 = \gamma[0, hang], \qquad \gamma^2 = \gamma[hang, n].$$

The hanging point

 γ_{hang} is the lexicographically maximal point of $\{\gamma_k : k = 0, \dots, n\}$.

$$\gamma^1 = \gamma [0, \mathsf{hang}], \qquad \gamma^2 = \gamma [\mathsf{hang}, n].$$

Polygonal invariance: The hanging index is uniform in a closing walk.

The hanging point

 γ_{hang} is the lexicographically maximal point of $\{\gamma_k : k = 0, \dots, n\}$.

$$\gamma^1 = \gamma [0, \mathsf{hang}], \qquad \gamma^2 = \gamma [\mathsf{hang}, n].$$

Polygonal invariance: The hanging index is uniform in a closing walk.

 $\mathbb{P}_{n-\ell_0+|\chi|}(\gamma \text{ closes } | \gamma^1 = \chi) \ge n^{-\frac{1}{4}+\epsilon}.$

 $\mathbb{P}_{n-\ell_0+|\chi|}(\gamma \text{ closes } | \gamma^1 = \chi) \ge n^{-\frac{1}{4}+\epsilon}.$

Then

$$\mathbb{P}_{n-\ell_0}(\gamma^1 ext{ is good } | \gamma ext{ closes; } |\gamma^1| = \ell_0) \geq n^{-rac{1}{4}+\epsilon}.$$

 $\mathbb{P}_{n-\ell_0+|\chi|}(\gamma \text{ closes } | \gamma^1 = \chi) \ge n^{-\frac{1}{4}+\epsilon}.$

Then

$$\mathbb{P}_{n-\ell_0}(\gamma^1 ext{ is good } | \gamma ext{ closes; } |\gamma^1| = \ell_0) \geq n^{-rac{1}{4}+\epsilon}.$$

 $\mathbb{P}_{n-\ell_0+|\chi|}(\gamma \text{ closes } | \gamma^1 = \chi) \ge n^{-\frac{1}{4}+\epsilon}.$

Then

$$\mathbb{P}_{n-\ell_0}(\gamma^1 ext{ is good } | \gamma ext{ closes; } |\gamma^1| = \ell_0) \geq n^{-rac{1}{4}+\epsilon}.$$

By mixing patterns, for $0 \le k \le \sqrt{n}$,

$$\mathbb{P}_{n-\ell_0}(\gamma^1 ext{ is good } | \, \gamma ext{ closes; } |\gamma^1| = \ell_0 - 2k) \geq n^{-rac{1}{4} + \epsilon}$$

A ►

 $\mathbb{P}_{n-\ell_0+|\chi|}(\gamma \text{ closes } | \gamma^1 = \chi) \ge n^{-\frac{1}{4}+\epsilon}.$

Then

$$\mathbb{P}_{n-\ell_0}(\gamma^1 ext{ is good } | \gamma ext{ closes; } |\gamma^1| = \ell_0) \geq n^{-rac{1}{4}+\epsilon}.$$

By mixing patterns, for $0 \le k \le \sqrt{n}$,

$$\mathbb{P}_{n-\ell_0}(\gamma^1 ext{ is good } | \, \gamma ext{ closes; } |\gamma^1| = \ell_0 - 2k) \geq n^{-rac{1}{4}+\epsilon}$$

<ロト <回ト < 回ト

 $\mathbb{P}_{n-\ell_0+|\chi|}(\gamma \text{ closes } | \gamma^1 = \chi) \ge n^{-\frac{1}{4}+\epsilon}.$

Then

$$\mathbb{P}_{n-\ell_0}(\gamma^1 ext{ is good } | \, \gamma ext{ closes; } |\gamma^1| = \ell_0) \geq n^{-rac{1}{4}+\epsilon}.$$

By mixing patterns, for $0 \le k \le \sqrt{n}$,

$$\mathbb{P}_{n-\ell_0}(\gamma^1 ext{ is good } | \, \gamma ext{ closes; } |\gamma^1| = \ell_0 - 2k) \geq n^{-rac{1}{4} + \epsilon}$$

・ロト ・ 日 ・ ・ 回 ト

Let Γ be a uniform $n - \ell_0$ walk started at the end of χ^i and with hanging point χ_i . Conditionally on avoiding χ^i , Γ closes χ^i with prob $n^{-\frac{1}{4}+\epsilon}$.

- The events { Γ closes χ^i } are mutually exclusive
- The events { Γ avoids χ^i } are decreasing in *i*.

Conclusion: with $\mathbb{P}_n(.\,|\,|\gamma^1|=\ell_0;\gamma$ closes) - probability at least $n^{-rac{1}{4}+\epsilon}$

$$\mathbb{P}\left(\mathsf{\Gamma} \text{ avoids } \gamma^1\right) \leq e^{-n^\epsilon}$$

A D > A B > A B > A B

Let Γ be a uniform $n - \ell_0$ walk started at the end of χ^i and with hanging point χ_i . Conditionally on avoiding χ^i , Γ closes χ^i with prob $n^{-\frac{1}{4}+\epsilon}$.

- The events { Γ closes χ^i } are mutually exclusive
- The events { Γ avoids χ^i } are decreasing in *i*.

Conclusion: with $\mathbb{P}_n(.\,|\,|\gamma^1|=\ell_0;\gamma$ closes) - probability at least $n^{-rac{1}{4}+\epsilon}$

$$\mathbb{P}\left(\mathsf{\Gamma} \text{ avoids } \gamma^1\right) \leq e^{-n^\epsilon}$$

< ロト < 同ト < ヨト < ヨ

Let Γ be a uniform $n - \ell_0$ walk started at the end of χ^i and with hanging point χ_i . Conditionally on avoiding χ^i , Γ closes χ^i with prob $n^{-\frac{1}{4}+\epsilon}$.

- The events { Γ closes χ^i } are mutually exclusive
- The events { Γ avoids χ^i } are decreasing in *i*.

Conclusion: with $\mathbb{P}_n(.\,|\,|\gamma^1|=\ell_0;\gamma$ closes) - probability at least $n^{-rac{1}{4}+\epsilon}$

$$\mathbb{P}\left(\mathsf{\Gamma} \text{ avoids } \gamma^1\right) \leq e^{-n^\epsilon}$$

A D > A B > A B > A B

Let Γ be a uniform $n - \ell_0$ walk started at the end of χ^i and with hanging point χ_i . Conditionally on avoiding χ^i , Γ closes χ^i with prob $n^{-\frac{1}{4}+\epsilon}$.

- The events { Γ closes χ^i } are mutually exclusive
- The events { Γ avoids χ^i } are decreasing in *i*.

Conclusion: with $\mathbb{P}_n(. | |\gamma^1| = \ell_0; \gamma \text{ closes})$ - probability at least $n^{-\frac{1}{4} + \epsilon}$

$$\mathbb{P}\left(\mathsf{\Gamma} \text{ avoids } \gamma^1\right) \leq e^{-n^\epsilon}$$

Let Γ be a uniform $n - \ell_0$ walk started at the end of χ^i and with hanging point χ_i . Conditionally on avoiding χ^i , Γ closes χ^i with prob $n^{-\frac{1}{4}+\epsilon}$.

- The events { Γ closes χ^i } are mutually exclusive
- The events { Γ avoids χ^i } are decreasing in *i*.

Conclusion: with $\mathbb{P}_n(. | |\gamma^1| = \ell_0; \gamma \text{ closes})$ - probability at least $n^{-\frac{1}{4} + \epsilon}$

$$\mathbb{P}\left(\mathsf{\Gamma} \text{ avoids } \gamma^1\right) \leq e^{-n^\epsilon}$$

Let Γ be a uniform $n - \ell_0$ walk started at the end of χ^i and with hanging point χ_i . Conditionally on avoiding χ^i , Γ closes χ^i with prob $n^{-\frac{1}{4}+\epsilon}$.

- The events { Γ closes χ^i } are mutually exclusive
- The events { Γ avoids χ^i } are decreasing in *i*.

Conclusion: with $\mathbb{P}_n(. | |\gamma^1| = \ell_0; \gamma \text{ closes})$ - probability at least $n^{-\frac{1}{4} + \epsilon}$

$$\mathbb{P}\left(\mathsf{\Gamma} \text{ avoids } \gamma^1\right) \leq e^{-n^\epsilon}$$

If χ , with $|\chi| = \ell_0$, is such that

 $\mathbb{P}\left(\mathsf{\Gamma} \text{ avoids } \chi\right) \leq e^{-n^{\epsilon}},$

call χ untouchable. For such χ , using unfoldings,

$$\mathbb{P}_n(\operatorname{hang}(\gamma) = \ell_0 \,|\, \gamma[0, \ell_0] = \chi) \leq e^{-n^{\epsilon}}.$$

If χ , with $|\chi| = \ell_0$, is such that $\mathbb{P}\left(\Gamma \text{ avoids } \chi\right) \leq e^{-n^\epsilon},$

call χ untouchable. For such χ , using unfoldings,

$$\mathbb{P}_n(\operatorname{hang}(\gamma) = \ell_0 | \gamma[0, \ell_0] = \chi) \le e^{-n^{\epsilon}}.$$

・ロト ・回ト ・ヨト ・

Conclusion:

$$n^{-5/2} \leq \mathbb{P}_n\left(\gamma[0,\ell_0] \text{ untouchable; hang}(\gamma) = \ell_0\right) \leq e^{-n^\epsilon}.$$

CONTRADICTION!!!

Thank you!

イロン 不聞と 不同と 不同と