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1 Bernoulli percolation: the basics

1.1 Definitions

Fix G = (V,E) a graph. In this document, G will be the hypercubic lattice Zd or subgraphs
of it, but for now we can consider the model on general graphs.

Definition 1.1. For p ∈ [0, 1], let (ω(e))e∈E be i.i.d. Bernoulli random variables of parameter
p. Write Pp for the law of ω, it is a measure on Ω = {0, 1}E .

We identify the configuration ω with the sub-graph of G with vertices V and edges {e ∈
E : ω(e) = 1}.

We call an edge e with ω(e) = 1 open (in the configuration ω), or closed if ω(e) = 0. We
will also identify ω with the subset of E formed of the open edges.

Connections in ω will be denoted by ↔, or ω←→ when ω needs to be specified.

Question of interest When studying percolation, the questions of interest revolve around
the geometry of the connected components (or clusters) of ω, specifically the large ones. As
such, when G = Zd, the most basic question is whether ω contains an infinite cluster.

Fix henceforth G = Zd for some d ≥ 1. It is immediate that Pp is translation invariant
and ergodic for all p. We conclude that

Pp[there exists an infinite cluster] ∈ {0, 1} for all p ∈ [0, 1].

Furthermore, the existence of an infinite cluster under Pp is equivalent to the positivity of

θ(p) := Pp[0 is in an infinite cluster] = Pp[0↔∞].

Monotonicity in p, definition of pc Notice that the measures Pp may be coupled in an
increasing fashion. More precisely, if P is the probability measure on [0, 1]E produced by
sampling i.i.d. uniforms (Ue)e∈E on [0, 1], and if we set

ωp(e) =

{
0 if Ue ≤ 1− p
1 if Ue > 1− p,

for all e ∈ E and p ∈ [0, 1]

then ωp has law Pp for all p and

ωp(e) ≤ ωp′(e) for all e ∈ E and p ≤ p′, P -a.s..

Due to these properties, we call P an increasing coupling of the measures Pp.
The events {there exists an infinite cluster} and {0↔∞} are increasing, in that they are

stable by the addition of open edges. Due to the increasing coupling above, the probabilities
of increasing events are increasing functions of p. In particular p 7→ θ(p) is an increasing
function.

Definition 1.2. The critical point (or point of phase transition) of Bernoulli percolation is
pc = pc(Zd) ∈ [0, 1] be defined by

pc = sup{p ∈ [0, 1] : θ(p) = 0} = inf{p ∈ [0, 1] : θ(p) > 0}.

The equality of the two expression defining pc is due to the monotonicity of θ(p). More-
over, as discussed above, we immediately conclude that

Pp[there exists an infinite cluster] =

{
0 if p < pc

1 if p > pc.

The questions that come to mind next are
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• Is the phase transition non-trivial, i.e. do we have 0 < pc < 1?

• How do clusters behave away from pc?

In the sub-critical phase p < pc, all clusters are finite; we expect them to have an
exponential decay of radii:

Pp[0↔ ∂Λn] ≤ e−c(p)n for all n and p < pc, (1)

where c(p) > 0 is a constant depending on p and Λn := {−n, . . . , n}d.
In the super-critical phase p > pc, there exists at least one infinite cluster; we expect it
to be unique and all other clusters to have an exponential decay of radii:

Pp[0↔ ∂Λn but 0 /←→∞] ≤ e−c(p)n for all n and p > pc, (2)

where c(p) > 0 is a constant depending on p and Λn := {−n, . . . , n}d.

• Is there percolation at pc, that is do we have θ(pc) > 0, or not? The same question may
be rephrased as whether the phase transition is continuous (θ(pc) = 0) or discontinuous
(θ(pc) > 0). For d = 3, this remains one of the main open question in the field.

• If the phase transition is continuous, and all clusters are finite at pc, what is the decay
of Ppc [0↔ ∂Λn] as n→∞? Furthermore, what is the geometry of the large, but finite
clusters?

For now, we will answer only the first question.

1.2 Non-triviality of pc

For the whole of this section, we will work on Zd with d ≥ 2 (in the case of d = 1 we trivially
have pc = 1 – see exercises). The goal of this section is to prove the following.

Theorem 1.3. For all d ≥ 2 we have 0 < pc < 1.

Both bounds use the celebrated Peierls argument, named after the German-British physi-
cist Rudolf Peierls. This argument, most clearly illustrated in the proof of Proposition 1.4,
is a generic way of identifying trivial behaviour for models in perturbative regimes (that is
when the parameters are close to their extremes). It studies the competition between energy
and entropy using corse estimates.

Proof. The proof follows directly from Propositions 1.4, which shows that pc ≥ 1
2d−1 and

Proposition 1.6.

1.2.1 Lower bound on pc

Proposition 1.4. For all d ≥ 2 and p < 1
2d−1 , there exists c(p) > 0 such that

Pp[0↔ ∂Λn] ≤ e−c(p)n for all n ≥ 1.

Proof. Let An be the set of simple paths on Zd of length n (i.e. containing n edges) starting
from 0. Observe that, for all n,

Pp[0↔ ∂Λn] ≤ Pp[∃γ ∈ An formed only of open edges]
≤ Ep[#{γ ∈ An formed only of open edges}]

=
∑
γ∈An

Pp[γ is formed only of open edges}]

= |An| · pn.
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Finally, it is immediate to check that |An| ≤ 2d · (2d− 1)n−1. Inserting this estimate in the
above, we obtain the desired conclusion.

1.2.2 Duality of percolation

For the upper bound on pc we will work with the model in two dimensions. The advantage
of the two dimensional setting is the dual model, which we define here.

The dual of Z2 is the lattice (Z2)∗ = Z2 + (1
2 ,

1
2). Each face of Z2 contains a vertex of

(Z2)∗ at is center, and each edge e of Z2 has a dual edge e∗ intersecting it and jointing the
two faces separated by e. This relation allows to define the dual for any planar graph; we
only focus here on Z2 for convenience.

If ω ∈ {0, 1}E denotes a percolation configuration on Z2, we define its dual configuration
ω∗ by

ω∗(e∗) = 1− ω(e) for all e ∈ E.

The following observations are immediate but essential.

Fact 1.5. If ω is sampled according to Pp, then ω∗ has law P1−p.

Moreover, the clusters of ω are surrounded by paths of ω∗, and vice-versa. We will
generally call everything that has to do with the percolation ω∗ or the lattice (Z2)∗ dual,
while those related to ω and Z2 are called primal.

1.2.3 Upper bound for pc

Proposition 1.6. For all d ≥ 2 and p > 2/3,

Pp[0↔∞] > 0.

Proof. Since pc(Zd) ≤ pc(Z2) for all d ≥ 2, is suffices to treat the case d = 2. We focus on
Z2 for the rest of the proof.

Fix some r ≥ 0. For Λr not to be connected to infinity, there needs to exist a dual circuit
in ω∗ surrounding 0. This circuit intersect the axis N × {0} at some point (k + 1

2 ,
1
2) with

k ≥ r and needs to have length at least k. We conclude that

Pp[Λr /←→∞] ≤
∑
k≥r

Pp[cluster of (k + 1
2 ,

1
2) in ω∗ has radius at least k}]

≤
∑
k≥r

∑
γ∈Ak

P1−p[γ is formed only of open edges}]

=
∑
k≥r

4 · 3k−1 · (1− p)k.

The series above is convergent when 1 − p < 1
3 , which is to say p > 2

3 . It follows that one
may choose r = r(p) such that

Pp[Λr ↔∞] ≥ 1
2 .

Finally, the event above is independent of the configuration inside Λr. As the probability
that all edges of Λr are open is positive, we conclude that

Pp[0↔∞] ≥ Pp[Λr ↔∞ and all edges of Λr open] ≥ 1
2Pp[all edges of Λr open] > 0.

As a byproduct of the proof, we also find that, for d = 2 and p > 2
3 , there exists c(p) > 0

such that

Pp[0↔ ∂Λn but 0 /←→∞] ≤ e−c(p)n for all n ≥ 1.
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1.3 Sharpness of phase transition

Theorem 1.7. Fix d ≥ 2. For all p < pc there exists c(p) > 0 such that

Pp[0↔ ∂Λn] ≤ e−c(p)n for all n ≥ 1. (3)

The proof given below is beautiful and surprisingly simple; it is taken from [?].

1.3.1 Derivatives of increasing events

Let A be an increasing event. We say that an edge e is pivotal for A (in a configuration ω)
if ω ∪ {e} ∈ A but ω \ {e} /∈ A.

Proposition 1.8. Suppose that A depends only on finitely many edges. Then p 7→ Pp[A] is
a C∞ function and

dPp[A]

dp
=
∑
e∈E

Pp[e is pivotal for A] = Ep[# pivotal edges for A]. (4)

Proof. Suppose that A depends only on what happens inside Λn. Consider then percolation
limited to Λn and write |ω| for the number of open edges and |ωc| for the number of closed
edges of a configuration ω. Then

Pp[A] =
∑
ω

p|ω|(1− p)|ωc|1{ω∈A}.

Differentiating this we find,

dPp[A]

dp
=
∑
ω

(
|ω|p|ω|−1(1− p)|ωc| − |ωc|p|ω|(1− p)|ωc|−1

ä
1{ω∈A}

=
∑
e

∑
ω

(
1
p1{ω(e)=1} − 1

1−p1{ω(e)=0}

)
Pp[ω]1{ω∈A}

For ω such that ω∪{e}, ω \{e} ∈ A, the contribution of these two configuration to the above
sum is 0. The same is true when ω ∪ {e}, ω \ {e} /∈ A. When ω ∪ {e} ∈ A, but ω \ {e} /∈ A,
the contribution of the two configurations to the above is

1
pPp[ω ∪ {e}] = Pp[ω ∪ {e}] + Pp[ω \ {e}].

This concludes the proof.

1.3.2 The crucial quantity ϕp(S)

For S a finite connected set of edges containing 0, write

∂S = {u ∈ V : u is adjacent to edges in and outside S}.

It is also authorised to take S = ∅, in which case ∂S = {0}. Let

ϕp(S) = Ep
î
#{u ∈ ∂S : 0

S←→ u}
ó
.

Above, S←→ refers to connections using only edges of S. See Fig. 1 for an illustration.
The following two lemmas will imply Theorem 1.7 directly.
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0

Figure 1: Left: The white region containing 0 is the set of edges S. Here 0 is connected to
four vertices on ∂S. When proving Lemma 1.10, S denotes the connected component of 0 in
the complement of the cluster of ∂Λn. Right: An illustration of the argument in the proof of
Lemma 1.9.

Lemma 1.9. For any p ∈ [0, 1] and S a finite connected set of edges containing 0,

Pp[0↔ ∂Λn] ≤ ϕp(S)bn/diam(S)c (5)

Lemma 1.10. For any p ∈ [0, 1] and n ≥ 1.

dPp[0↔ ∂Λn]

dp
≥ inf

S
ϕp(S) · (1− θ(p)) (6)

where the infimum is over all finite connected sets of edges S containing 0.

The above should be understood as
dθ(p)

dp
≥ inf

S
ϕp(S) · (1− θ(p)),

even though the differential is not well defined.

Proof of Theorem 1.7. Set

p̃c = inf{p : inf
S
ϕp(S) ≥ 1/2}.

Then, for p < p̃c, there exists S such that ϕp(S) < 1/2. Applying Lemma 1.9, we conclude
that

Pp[0↔ ∂Λn] ≤ 2−bn/diam(S)c ≤ e−c(p)n,

with S one of realisations such that ϕp(S) < 1/2.
Conversely, for p > p̃c, we claim the existence of an infinite cluster. First, notice that

infS ϕp(S) is increasing in p, and therefore infS ϕp(S) ≥ 1/2 for all p > p̃c. Moreover, either
θ(p) > 1/2 or, for any u ∈ (p̃c, p] (6) implies that

dPu[0↔ ∂Λn]

du
≥ inf

S
φu(S) · (1− θ(u)) ≥ 1

4
.

Integrating the above and taking n to infinity, we conclude that

θ(p) ≥ 1
4(p− p̃c) > 0.

The two cases above allow us to conclude that pc = p̃c and therefore that (3) holds for
all p < pc.
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1.3.3 The sub-critical regime via ϕp(S): proof of Lemma 1.9

Fix S. The lemma is only meaningful when ϕ(S) < 1, so when S contains all edges adjacent
to 0. We suppose this henceforth.

We will explore the cluster of 0 and compare its growth to that of a Galton Watson tree
with offspring law

ν(i) = Pp
î
#{u ∈ ∂S : 0

S←→ u} = i
ó

for i ≥ 0.

We describe the exploration step by step; each step corresponding to revealing the number
of offspring of one individual in the Galton-Watson tree. Fig. 1 (right side) illustrates this
process. Fix a configuration ω.
Step 0: Let C0 be the connected component of 0 in the configuration ω ∩ S (we view this
both as a set of open edges and also as the set of endpoints of these edges). Call the points
of ∂S ∩ C0 the offspring of 0; they are the points of generation 1.

At this stage, Active0 = ∂S ∩ C0 are the active vertices, and Exp0 = C0 are the set of
explored edges.
Step j: Pick some vertex u ∈ Activej−1 of minimal generation (according to some pre-defined
order), and let Cu be the connected component of u in the configuration ω∩ (S+u)\Expj−1.
Let

Activej = Activej−1 ∪ (∂(S + u) ∩ Cu) \ {u}.

The points in Activej \ Activej−1 are called offspring of u and their generation is that of u
plus 1. Finally, set Expj = Expj−1 ∪ Cu.
The process stops when no more active vertices exist.

Notice that the number of new active vertices Activej\Activej−1, conditionally on (Activei,Expi)i<j
is bounded by a variable of law ν. Indeed, when sapling Cu, we only use edges which were
not previously explored or which were previously revealed to be closed. Thus, Cu has the law
of the cluster of 0 in S \B, where B is a set of edges that depends on (Activei,Expi)i<j . This
cluster is clearly smaller than the cluster of 0 in S, which produces offspring of law ν.

As such, the variables Xk defined as the number of vertices of generation k are indeed
bounded from above by a Galton Watson tree of offspring law ν, whose expectation is ϕ. We
conclude that

Pp[Xk ≥ 1] ≤ Ep[Xk] = ϕ(S)k.

Finally, we claim that this procedure explores the whole cluster of 0. Indeed, at every
stage j of the process, any vertex adjacent to at least one edge in Expj is either active, or
is surrounded by explored or closed edges – this may easily be proved by induction on j.
Thus, if at any stage Activej = ∅, it follows that all edges adjacent to Expj are closed, and
the cluster of 0 is Expj .

As a consequence of this observation, and of the fact that the vertices at generation k are
within graph-distance k · diam(S) of 0, we conclude that

Pp[0↔ ∂Λn] ≤ Pp[Xbn/diam(S)c ≥ 1] ≤ ϕp(S)bn/diam(S)c,

as claimed �

Remark 1.11. A much easier proof of the above may written using the BK-inequality [?, Thm
2.12].

Remark 1.12. Applying the above to the minimal admissible S, that is the 2d edges adjacent
to 0, we retrieve (almost) Peierls’ argument of Proposition 1.4.
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1.3.4 The super-critical regime via ϕp(S): proof of Lemma 1.10

Fix n ≥ 1. Recall from (4) that dPp[0↔∂Λn]
dp is equal to the expected number of pivotals for

the event {0↔ ∂Λn}. Pivotals may be open or closed; we will lower bound here the number
of closed pivotals. We will work exclusively on Λn, and therefore restrict ourselves to the
edges in this graph.

Write C for the set of edges connected to ∂Λn and ∂extC for all edges of Λn adjacent, but
not contained in C. If C contains 0 (that is, contains an edge adjacent to 0) then 0 ↔ ∂Λn,
and there are no closed pivotals. When C does not contain 0, let S denote the connected
component of 0 in Λn \ (C ∪ ∂extC) – see Fig. 1 (left side). Notice that any vertex u of ∂S
is separated from C by a closed edge, which is part of ∂extC). Moreover, when u ↔ 0 (a
connection which necessarily occurs in S), the edge separating u from C is a closed pivotal
for {0↔ ∂Λn}. Thus

dPp[0↔ ∂Λn]

dp
≥
∑
C

Ep[#{u ∈ ∂S : 0
S←→ u}|C = C] · Pp[C = C]

=
∑
C

ϕp(S) · Pp[C = C]

≥ inf
S
ϕp(S) · Pp[0 /←→ ∂Λn],

where the sum is over all possible realisations C of C with C not containing 0 and where S is
determined by C. In the equality we used the fact that the conditioning on C = C only gives
information on the edges of C and ∂extC, but not on those in S. The spatial independence
of Bernoulli percolation is essential here.

Finally, conclude with the simple observation that Pp[0 /←→ ∂Λn] ≥ 1− θ(p). �

Exercises: Bernoulli percolation

Observe that pc may be defined on any vertex-transitive graph in the same way as on Zd.

Exercise 1.1. Show that pc(Z) = 1.

Exercise 1.2. Show that for the “ladder” graph Z× {0, 1}, pc = 1.

Exercise 1.3. Let Td denote the d + 1-regular tree (with the root having degree d rather
than d+ 1). Prove that pc(Td) = 1

d and observe that the Peierls argument works all the way
up to pc.

Prove that Ppc(Td) = 0. Show that Ppc [0 is connected to distance n] = n−α1+o(1) for an
exponent α1 > 0 to be determined.

Exercise 1.4. Show that pc(Zd) is decreasing in d. Show that it is strictly decreasing. Show
that pc(Zd)→ 0 as d→∞.

Exercise 1.5. For d = 2, use the self-duality of percolation to prove that, for all n ≥ 1,

P 1
2

î
{0} × [0, n] connected to {n+ 1} × [0, n] inside [0, n+ 1]× [0, n]

ó
= 1

2 .

Using the sharpness of the phase transition to conclude that pc(Z2) ≥ 1
2 .
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Exercise 1.6. Show that p 7→ θ(p) is right-continuous.
Indication: θ(p) is the decreasing limit of the continuous and increasing functions p 7→ Pp[0↔
∂Λn].

9



2 FK-percolation

2.1 FK-percolation on finite graphs & monotonicity

We start by defining the FK-percolation measure on finite graphs. Fix G = (V,E) some
finite subgraph of Z2. Define its boundary by

∂G = {v ∈ V (G) : with neighbour outside of G}.

A boundary condition ξ on G is a partition of ∂G. Vertices in the same set of the partition
are said to be wired together.

Two specific boundary conditions play a special role, these are the free boundary condi-
tions, written ξ = 0, where no vertices are wired together, and the wired boundary conditions,
written ξ = 1, where all vertices are wired together.

Definition 2.1. For G as above, q ≥ 1, p ∈ [0, 1] and ξ a boundary condition on G, define
the FK-percolation measure φξG,p,q as the probability measure on {0, 1}E with

φξG,p,q[ω] =
1

ZξG,p,q
p|ω|(1− p)|E\ω|qk(ωξ),

where k(ωξ) is the number of connected components of ω where all vertices of each component
of ξ are considered connected. The constant ZξG,p,q =

∑
ω p
|ω|(1 − p)|E\ω|qk(ωξ) is chosen to

that φξG,p,q is a probability measure; it is called the partition function of the model.

Observe that Bernoulli percolation is a particular case of the above, obtained when q = 1.
For q 6= 1, edges are not independent under φξG,p,q; we call this a dependent percolation model.
The questions of interest remain the same as in the Bernoulli case.

The first and most basic property of FK-percolation is the Spatial Markov property.

Proposition 2.2 (Spatial Markov property). For H a subgraph of G,

φξG,p,q[ω on H |ω on G \H] = φζH,p,q[ω on H]

where ζ are the boundary conditions induced by ωξ on G \H, that is the wiring produced by
ωξ \H between the vertices of ∂H.

The proof is a direct computation which we omit.
We now turn to the question of monotonicity. Let us make a brief aside on the general

topic of monotonicity of measures.

Ordering of measures: generalities There are two ways to view stochastic ordering.
Consider two probability measures µ, ν on {0, 1}E , where E denotes some finite set. We say
that µ ≤st ν (ν stochastically dominates µ) if the two following equivalent conditions are
satisfied

(a) there exists probability measure P producing two configurations ω, ω′ such that ω has
law µ, ω′ has law ν, and ω(e) ≤ ω′(e) for all e ∈ E P -a.s. We call P an increasing
coupling of µ and ν;

(b) µ[A] ≤ ν[A] for all increasing events A.
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That (a) and (b) are equivalent is the content of Strassen’s theorem [].
A second, related notion is that of positive association. We say that µ is positively

associated if µ[A ∩B] ≥ µ[A]µ[B] for all A,B increasing events. This may be understood as

µ[. |A] ≥st µ,

for all increasing events A.
The following criteria are particularly convenient for proving stochastic monotonicity and

positive association.

Theorem 2.3 (Holley & FKG). For positive measures µ, ν on {0, 1}E,

(i) if µ(ω ∩ ω′)ν(ω ∪ ω′) ≥ µ(ω)ν(ω′) for all ω, ω′ ∈ {0, 1}E, then µ ≤st ν;

(ii) if µ(ω∩ω′)µ(ω∪ω′) ≥ µ(ω)µ(ω′) for all ω, ω′ ∈ {0, 1}E, then µ is positively associated.

Moreover, it suffices to check conditions for ω and ω′ differing only for two edges.

The proof of the above is very beautiful and we direct the reader to [?] for details. It is
worth mentioning that the conditions in (ii) (which is called the FKG lattice condition) is
stronger that positive association; measures satisfying it are sometimes called monotonic and
have additional convenient properties.

Monotonicity properties of FK-percolation

Proposition 2.4. For G a finite subgraph of Zd, q ≥ 1, p ∈ [0, 1] and ξ a boundary condition
on G

(i) φξG,p,q is positively associated;

(ii) for p′ ≥ p and ζ ≥ ξ (in the sense that any vertices wired in ξ are also wired in ζ),

φξG,p,q ≤st φ
ζ
G,p′,q. (7)

In other words, φξG,p,q increasing in p and ξ.

For the above it is crucial that q ≥ 1. This is the main reason why the regime 0 < q < 1
is much less studied.

This proposition, together with the Spatial Markov property will be used very often,
sometimes in implicit ways; the novice reader will need some time to discover the full strength
of these tools combined.

A immediate consequence is that the free and wired boundary conditions produce the
minimal and maximal measures, respectively:

φ0
G,p,q ≤st φ

ξ
G,p,q ≤st φ

1
G,p,q, for any b.c. ξ.

To illustrate Proposition 2.4 let us compute the probabilities for an edge to be open in
the simplest setting: when G is formed of a single edge e:

φξ{e},p,q[e open] =

p if ξ = 1
p

p+(1−p)q if ξ = 0.

Notice that the probabilities are indeed increasing in p and the boundary conditions. From
the above, we deduce the following domination of and by Bernoulli percolation.
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Corollary 2.5. For G, q, p and ξ as above,

P p
p+(1−p)q

≤st φ
ξ
G,p,q ≤st Pp, (8)

where P. denotes the Bernoulli percolation on G.

Proof. We do not give a full proof, but limit ourselves to mentioning that φξG,p,q may be
obtained by sequentially sampling edges, using coin tosses with probabilities that depend on
the edge and the previously sampled edges. Throughout the process, all coin tosses have
parameters between p

p+(1−p)q and p.
Alternatively, one may use the Holley criterion.

2.2 Infinite-volume measures

Another consequence of Proposition 2.4 is the monotonicity the measures in G. Specifically,
if H denotes a subgraph of G, then

φ0
H,p,q ≤st φ

0
G,p,q

∣∣∣
H

and φ1
H,p,q ≥st φ

1
G,p,q

∣∣∣
H
,

where |H indicates the restriction to H. Indeed, if we focus on the first inequality, φ0
G,p,q

∣∣∣
H

is a mixture of measures φξH,p,q, with ξ potential boundary conditions induced on H by the
configuration on G \H, and all these measures dominate φ0

H,p,q.
This monotonicity properties allow us to construct infinite volume measures via thermo-

dynamical limits.

Fact 2.6. For all p and q ≥ 1, the following limits exist for the weak convergence1

φ0
p,q = lim

n→∞
φ0

Λn,p,q and φ1
p,q = lim

n→∞
φ1

Λn,p,q. (9)

The same limits are obtained for general graphs Gn that increase to Zd. Furthermore, both
limits above are translation invariant and ergodic probability measures on {0, 1}E(Z2).

These infinite volume measures satisfy the so-called DLR condition, which essentially
states that the Spatial Markov property also holds in infinite volume. The DLR formalism
allows one to define the general notion of infinite volume measures, but we will not go further
in that direction in these notes.

Note that it is not generally clear whether φ0
p,q and φ1

p,q are equal or not. In other words,
while sending the boundary conditions to infinity, do they still manage to influence what
happens locally?

It is a direct consequence of Proposition 2.4 that

φ0
p,q ≤st φ

1
p,q and φip,q ≤st φ

i
p′,q for all p < p′ and i ∈ {0, 1}. (10)

Also, any limits (or infinite volume measures) of φξnΛn,p,q for sequences of boundary conditions
ξn are always sandwiched between φ0

p,q and φ1
p,q.

Observe that we have not yet managed to compare φ1
p,q and φ0

p′,q. The following result
allows us to do this.

Proposition 2.7. Fix q ≥ 1. There exist at most countably many values of p ∈ [0, 1] such
that φ0

p,q 6= φ1
p,q. As a consequence, for all p < p′

φ0
p,q ≤st φ

1
p,q ≤st φ

0
p′,q. (11)

1We say that µn → ν if for any event A depending on a finite set of edges µn(A) → ν(A).
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Essentially the proposition states that the influence of decreasing the boundary conditions
can not compensate that of increasing the parameter.

Proof. We only sketch the proof here as it is a very general approach. Define the free energy
of FK-percolation with parameters p and q as

f(p, q) = lim
n
f ξnn (p, q) = lim

n

1
nd

logZξnΛn,p,q
, (12)

where the limit may be taken for any sequence of boundary conditions (ξn) and will not
depend on this sequence.

Explicit computation show that

d

dp
f ξnn (p, q) =

∑
e∈E(Λn)

φξnΛn,p,q[e open], (13)

which is increasing in p. We conclude that the functions p 7→ f ξnn (p, q) are all convex, and
therefore so is f(., q).

As a convex function, f(., q) has left- and right-derivatives at all points, and is differen-
tiable at all except at most countably many points. Furthermore, taking the limit as n→∞
in (13), we conclude that for all p for which f(., q) is differentiable,

d

dp
f(p, q) = φ0

p,q[e open] = φ1
p,q[e open] for any edge e.

The above, together with the stochastic ordering between φ0
p,q and φ1

p,q implies that φ0
p,q =

φ1
p,q. Then (11) follows directly from the above and (10).

2.3 Phase transition

We are now ready to define the phase transition of FK-percolation, as we did for Bernoulli
percolation.

Definition 2.8. Fix d ≥ 2 and q ≥ 1. Set

pc = pc(q) = sup{p : φ0
p,q[0↔∞] = 0}.

As for Bernoulli percolation, for p < pc φ
1
p,q[0 ↔ ∞] = 0 and φ1

p,q-a.s. there exists no
infinite cluster; for p > pc φ

0
p,q[0 ↔ ∞] > 0 and φ0

p,q-a.s. there exists at least one infinite
cluster.

In addition, the domination (8) by Bernoulli percolation allow us to deduce that

0 < pc(q) < 1 for all q ≥ 1 and d ≥ 2.

We close this part with a application of the properties described above.

Proposition 2.9. If p is such that φ1
p,q[0↔∞] = 0, then φ0

p,q = φ1
p,q.

Proof. This is a very instructive exercise, see Exercise 2.6

2.4 Some known facts not discussed here

We wish to mention some important known results which we do not discuss here. These are
valid also for the particular case of Bernoulli percolation (q = 1); some only apply to this
case.
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Uniqueness of the infinite cluster A general approach based on the ergodicity of the
measure and on the amenability of Zd allows one to prove that if an infinite cluster exists, it
is unique.

Theorem 2.10 (Burton-Keane []). Fix d ≥ 1, q ≥ 1. Then, for all p ∈ [0, 1] and i ∈ {0, 1},
either φip,q[there exists an infinite cluster] = 0 or

φip,q[there exists exactly one infinite cluster] = 1.

That the number of infinite clusters is a.s. constant under φip,q is a simple matter of
ergodicity. It follows then that this number may only be 0, 1 or infinity. The main difficulty
in the proof of Theorem 2.10 is to exclude the latter.

Sharpness of the phase transition for FK-percolation in all dimensions The sharp-
ness result of Theorem 1.7 was extended to general FK-percolation in [] via a revolutionary
use of the OSSS inequality.

Theorem 2.11. Fix d ≥ 2 and q ≥ 1. For all p < pc(q) there exists c(p) > 0 such that

φ1
p,q[0↔ ∂Λn] ≤ e−c(p)n for all n ≥ 1.

We will not prove this result in these notes.

Supercritical sharpness of the phase transition for Bernoulli percolation Up to
now, we only discussed the subcritical sharpness, that is the exponential decay of connection
probabilities in the subcritical regime. Recall that in the supercritical regime, we also expect
trivial large-scale behaviour, in that connection probabilities converge exponentially to their
limits (see also Exercise 2.3).

Theorem 2.12. Fix d ≥ 2 consider Bernoulli percolation on Zd. Then, for all p > pc, there
exists c(p) > 0 such that

Pp[0↔ ∂Λn but 0 /←→∞] ≤ e−c(p)n for all n ≥ 1.

In two dimensions, this theorem is easily deduced from the subcritical sharpness of the
dual model. For dimensions d ≥ 3, the key ingredient in this proof is the celebrated Grimmett-
Marstrand theorem [] which states that the critical point of Bernoulli percolation on a slab
Sk = Z2 × {0, . . . , k}d−2 tends to that of Zd when k → ∞. At the time of writing, the
equivalent result is not available for FK-percolation with q > 1.

Exercises: Bernoulli and FK-percolation

Exercise 2.1. Consider Bernoulli percolation on Z2. Assuming that θ(p) > 0, use the FKG
inequality to prove that

Pp[{n} × [−n, n]
Λcn←→∞]→ 1 as n→∞.

Using the uniqueness of the infinite cluster and the self-duality of P1/2 prove that

θ(1/2) = 0.

Combine this with the lower bound on pc ≥ 1/2 (Exercise 1.5) to conclude that pc = 1/2 for
Bernoulli percolation on Z2, and that the phase transition is continuous.
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Exercise 2.2. Consider Bernoulli percolation on Zd. The goal of this exercice is to prove
continuity of p 7→ θ(p) for all p 6= pc. Recall from Exercise 1.6 that this function is right-
continuous. Thus, we only need to prove left-continuity for p 6= pc.

Fix p is such that θ(p) > limu↗p θ(u). In particular θ(p) > 0 and p ≥ pc.

(a) Consider the increasing coupling P of Bernoulli percolation using uniforms (Ue)e∈E .
Argue that

P [0
ωp←→∞ but 0 /

ωu←→∞ for all u < p] > 0.

(b) Argue that, conditionally on ωp, (Ue)e∈ωp are i.i.d. uniforms on [0, 1− p]. Conclude
that a.s. for any n there exists u < p such that ωu = ωp on Λn.

(c) Call a vertex v fragile (for some configuration (Ue)e) if v
ωp←→ ∞ but v /

ωu←→ ∞ for
all u < p. Prove that if 0 is fragile, then a.s. all vertices of the infinite cluster are
fragile.

(d) Deduce that, for any u < p, Pp[there exists no infinite cluster] > 0. Show that this
implies p ≤ pc and conclude.

Exercise 2.3. Consider Bernoulli percolation on Zd and p > pc(Zd). Using the supercritical
sharpness and the uniqueness of the infinite cluster, prove that

θ(p)2 ≤ Pp[x↔ y] ≤ θ(p)2 + e−c(p)‖x−y‖ for all x, y ∈ V ,

for some c(p) > 0.

Exercise 2.4. Fix d ≥ 2 and q ≥ 1. Prove that, for all p,

lim
u↗p

φ0
u,q = lim

u↗p
φ1
u,q = φ0

p,q and lim
u↘p

φ0
u,q = lim

u↘p
φ1
u,q = φ1

p,q,

in the sense that, for all A depending on finitely many edges limu↗p φ
0
u,q[A] = φ0

p,q[A].

Exercise 2.5. Fix d ≥ 2, q ≥ 1 and p ∈ (0, 1).

(a) Show that for any sequence of boundary conditions (ξn)n, the following limit exists and
does not depend on the sequence

f(p, q) = lim
N→∞

f ξN (p, q) = lim
N

1
N2 logZξNΛN ,p,q

.

(b) Show that p 7→ f ξN (p, q) is convex, and conclude that p 7→ f(p, q) is also a convex
function.
Indication: compute the differential of f ξN (p, q).

(c) Prove that ∂−p f(p, q) = φ0
p,q[e open] and ∂+

p f(p, q) = φ1
p,q[e open].

(d) Conclude that, when p 7→ f(p, q) is differentiable, φ0
p,q[e open] = φ1

p,q[e open]. Using
φ0
p,q ≤st φ

1
p,q, deduce that φ0

p,q = φ1
p,q.
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Exercise 2.6. Consider FK-percolation on Zd with q > 1 and some p. Prove that for any
n < N and A an increasing event depending only on the edges in Λn,

0 ≤ φ1
ΛN

[A]− φ0
ΛN

[A] ≤ φ1
ΛN

[Λn ↔ ∂ΛN ],

Indication: explore the cluster of ∂ΛN under φ1
ΛN

. If it does not reach Λn, prove that the
probability of A is then smaller φ0

ΛN
[A].

Deduce that if p is such that φ1[0↔∞] = 0, then φ0 = φ1.

Exercise 2.7. Consider FK-percolation on Z2 with q > 1. Use duality to show that

φξΛn [Λn crossed from left to right by open path] = c,

for all n, where ξ is the b.c. where the left and right sides are wired, while the top and
bottom are free. Why is c 6= 1/2?

Assuming the sharpness of the phase transition and the uniqueness of the infinite cluster,
proceed as in Exercise 2.1 to prove that pc(d) =

√
q

1+
√
q .

Why can’t we conclude that the phase transition is continuous?
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3 Dichotomy / quadrichotomy

3.1 Statement of quadrichotomy theorem

Write Hn for the event that there exists a open circuit in Λ2n \ Λn that surrounds Λn; also
denote by H∗n the same event for the dual model.

Theorem 3.1 (Duminil-Copin, Tassion 2019). Fix q > 1 and p ∈ [0, 1]. Then exactly one of
the four following cases occurs (for constants c > 0 depending on p, q)

(a) for all n ≥ 1, φ1
Λn

[0↔ ∂Λn] ≤ e−cn;

(b) for all n ≥ 1, φ0
Λ2n\Λn [Hn] ≥ c and φ1

Λ2n\Λn [H∗n] ≥ c;

(c) for all n ≥ 1, φ0[0←→ ∂Λn] ≤ e−cn and φ1[0
∗←→ ∂Λn] ≤ e−cn;

(d) for all n ≥ 1, φ0
Λn

[0
∗←→ ∂Λn] ≤ e−cn.

The above generally implies that FK-percolation has a sharp phase transition, for which
either (b) or (c) occurs. Indeed, these regimes correspond to

(a) the subcritical phase;
(b) a point of continuous phase transition;
(c) a point of discontinuous phase transition;
(d) the supercritical phase.

The theorem above was proved on general two dimensional lattices with certain symme-
tries. The proof is slightly more complicated than on the square lattice Z2. In the case of
Z2, the self-duality allows us to determine the point of phase transition for Z2.

Corollary 3.2. For each q ≥ 1, we have

pc = psd(Z2) =

√
q

1 +
√
q
.

Moreover, for p < pc(q) case (a) occurs, while for p > pc(q), (d) occurs. For p = pc(q) either
(b) or (c) occur, depending on q.

Section 3.2 discusses how Theorem 3.1 implies Corollary 3.2, and more generally, the
behaviour of the model in each of the four regimes.

3.2 Consequences for phase transition

Here are a few observations and consequences of Theorem 3.1. In particular, these elements
are enough to prove Corollary 3.2.

• The infinite-volume measure is unique (φ0 = φ1) in all cases except (c).

• Point (a) is equivalent to the apparently weaker condition

φ1[0↔ ∂Λn] ≤ e−cn for all n and some c > 0. (14)

Indeed, if we assume the above, we may fix n and N so that

φ1
ΛN

[H∗n] ≥ e−c/20,

with c being the constant given by (14). Then for R ≥ 4N , we claim that

φ1
Λ2R\ΛR [H∗R | 0↔ ΛR] ≥ φ1

ΛN
[H∗n]10R/n ≥ e−cR/2. (15)

17



Λn

≥ N

≥ N

Figure 2: Combining events H∗n to create H∗R for the proof of (15).

Indeed, the event H∗R may be constructed by the intersection of 10N/n translations
of H∗n, centred at points inside the annulus Λ2R \ ΛR, at a distance at least N from
its boundary, as illustrated in Fig 2. Then, for any R ≥ 2N , by the comparison of
boundary conditions,

φ1
Λ2R

[0↔ Λ2R] ≤ φ1
Λ2R

[0↔ ΛR |H∗R]
¿
φ1

Λ2R
[H∗R | 0↔ ΛR]

≤ φ0
Λ2R

[0↔ ΛR]
¿
φ1

Λ2R\ΛR [H∗R]

≤ e−cR/2.

The second inequality uses the Spatial Markov property, while the last is a consequence
of (14) and (15).

• Point (b) has several equivalent formulations such as

inf
n
φ0

[−2n(1+ε),2n(1+ε)]×[−n(1+ε),n(1+ε)]

î
[−2n, 2n]× [−n, n] has horizontal crossing

ó
> 0,

for any ε > 0, and the same for the dual. This is illustrated by

φ0[ [

> c φ1[ [

> c2n2n

for some c > 0 and all n ≥ 1.

• If (b) holds for some p, q, then there exist constants c, C > 0 such that

n−C ≤ φ1
Λn,p,q[0↔ ∂Λn] ≤ n−c for all n ≥ 1. (16)

In particular φ1
p,q = φ0

p,q and under this measure, there exists a.s. no infinite cluster

This is a standard, but informative use of the RSW theory, which we leave as an exercice
to the reader.

• If (c) holds at some p, then u 7→ θ(u) = φ0[0↔∞] is discontinuous at this value of p.
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• If (d) holds, then, under the infinite volume measure φ, there exists a.s. an infinite
cluster. Moreover there exists c > 0 such that

0 < φ[0↔∞] ≤ φ[0↔ ∂Λn] ≤ φ[0↔∞] + e−cn for all n ≥ 1. (17)

• For each q, exactly one of (b) or (c) occurs, and exactly for one value of p which we call
pc. As a consequence, we say that the phase transition is sharp. We sketch this next.

We already mentioned that (a) occurs for p close enough to 0 and (d) occurs for p close
to 1; the two are mutually exclusive. Moreover, by monotonicity (a) and (d) each occur
for intervals of p. Since the values of p for which (a) and (d) respectively occur are
open sub-sets of [0, 1], (a) and (d) both fail on the interval [sup{p : (a)}, inf{p : (d)}],
which contains at least one point.

We will now argue that the interval is actually reduced to a single point. Fix pc =
inf{p : (d)}.
If (c) occurs at pc, monotonicity implies that φ1

p,q[Hn] → 0 for all p < pc (recall that
φ1 = φ0 for all but countably may edge-intensities). We already explained that this is
equivalent to (a) occurring for all p < pc.

If (b) occurs at pc, a more involved argument is necessary: it requires the use of some
form of sharp threshold technique. One easy way do to this is to observe that (16)
applies to all p ≤ pc, and bounds the influence of any individual edge on the event Hn.
More precisely, we have

φ0
Λ2n,p,q[Hn |ωe = 1]− φ0

Λ2n,p,q[Hn] ≤ φ0
Λ4n,p,q[0↔ ∂Λn] ≤ n−c

with c > 0 given by (16).

The BKKKL inequality then states that p 7→ φ0
Λ2n,p,q

[Hn] satisfies a sharp-threshold
principle below pc, and thus that

φ0
Λ2n,p,q[Hn] −−−→

n→∞
0 for all p < pc. (18)

Finally observe that

φ1
Λ4n,p,q[Hn] ≤

φ1
Λ4n,p,q

[Hn |H∗2n]

φ1
Λ4n,p,q

[H∗2n |Hn]
≤ 1

c′φ
0
Λ2n,p,q[Hn ∩H∗2n], (19)

with c′ = inf
p≤pc;n≥1

φ1
Λ4n,p,q[H

∗
2n |Hn] ≥ inf

n≥1
φ1

Λ4n\Λ2n,p,q
[H∗2n] > 0 due to our assumption

that (b) occurs at pc.

The two above displays combine to prove that φ1
Λ4n,p,q

[Hn]→ 0 as n→∞ for all p < pc.
The finite size criterion of Proposition 3.3 below allows us to conclude that (a) occurs
below pc.

• On Z2 the sharpness of the phase transition combined with the duality imply that
pc = psd.

• The phase transition is called continuous if (b) occurs at pc (indeed, observables such
as φ0

p,q[e open] are continuous in p at pc) and discontinuous if (c) occurs at pc. The
latter is also called a first order phase transition as p 7→ f(p, q) is not differentiable at
pc; the former is a second- or higher order phase transition corresponding to the order
of derivative of p 7→ f(p, q) that diverges at pc.
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Λ2n \ Λn Λ2n \ Λn

∂ΛN

Λ2n

Figure 3: Left: The events Hn and H∗n, respectively. Right: If 0 is connected to ∂ΛN , then
there exists a path of at least bN/4nc disjoint but neighbouring translates of Λ2n \ Λn by
points of (nZ)2 for which H∗n fails.

3.3 Finite size criterion for (a) and (d)

We will focus here on point (a). Point (d) is obtained in exactly the same way for the dual
model.

Proposition 3.3. There exists δ > 0 such that,

sup{φ1
Λ2n

[H∗n] : n ≥ 1} > 1− δ ⇔
Ä
∃c > 0 s.t. φ1

Λn [0↔ ∂Λn] ≤ e−cn ∀n ≥ 1
ä
. (20)

The same hold for the dual model.

Notice that the proposition above immediately implies the openness of the sets of p for
which regimes (a) and (d), respectively, occur. Indeed, if we assume that (a) occurs at some
p, then there exists n such that φ1

Λ2n,p,q
[H∗n] > 1− δ. As n is fixed, the probability above is

continuous in p, hence the inequality is also valid in a neighbourhood of p. This implies (a)
in said neighbourhood.

Proof of Proposition 3.3. The implication from right to left is obvious; we will focus on the
opposite one. The idea of the proof is described in Fig. 3.

Fix some n. For N = 4kn, the occurence of 0↔ ∂ΛN implies the existence of a family of
k points x1, . . . , xk ∈ (nZ)2 so that the translate Λn(xi)↔ Λ2n(xi)

c of (H∗n)c occurs for each
i = 1, . . . , k and so that xi is at a L∞-distance 4n from xi−1. The number of such families of
points may be bounded above by Ck for some fixed constant C, while

φ1
ΛN

î k⋂
i=1

{Λn(xi)↔ Λ2n(xi)
c}
]
≤ (1− φ1

Λ2n
[H∗n])k.

Combining the two estimates, we obtain exponential decay for φ1
ΛN

[0 ↔ ∂ΛN ] as soon as
1− φ1

Λ2n
[H∗n] < 1

2C =: δ.

3.4 RSW in strips

The following is a crucial technical result called the Russo-Seymour-Welsh (RSW) theorem.
Generally RSW theorems lower-bound probabilities to cross rectangles in the long direction
by functions of probabilities to cross rectangles in the short (easy) direction. Crucially, these
bounds are independent of the scale of the rectangles.

RSW results combine well with a-priori estimates of crossing probabilities for rectangles in
the easy direction. The most basic situation is for Bernoulli percolation on Z2 with p = 1/2,
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for which it is known that the probability of crossing a square of any size is 1/2. The original
RSW theory developed in [?, ?] allows one to deduce the existence of c > 0

P1/2

î
[0, 2n]× [0, n] contains horizontal open crossing

ó
≥ c for all n ≥ 1.

The original RSW theory of [?, ?] takes advantage of the spatial independence of per-
colation and the many symmetries of the lattice and of the model (translation, reflection,
rotation by π/2). This theory proved to be extremely useful in studying percolation models
in two dimensions, and was therefore generalised in many directions.

The version below was proved in [?]. Set Stripn = Z× [−n, n].

Theorem 3.4 (RSW in strips). There exist constants c, C > 0 such that, for any ρ ≥ 1 and
m ≥ n,

φξStripm
[[−ρn, ρn]× [−n, n] crossed horizontally]

≥ c(φξStripm
[[−ρn, ρn]× [−n, n] crossed vertically])Cρ, (21)

where ξ are any boundary conditions invariant under horizontal shift (in particular wired on
the top and free on the bottom).

Notice that, by taking m → ∞, (21) also applies in infinite volume. We will not prove
the above, as the proof is quite technical. The interested reader may consult the proofs of
[?], or its more more streamlined and general proof [?].

We will be particularly interested in the following corollary of Theorem 3.4.

Corollary 3.5. Suppose p ≤ psd(q) =
√
q

1+
√
q . There exists c > 0 such that, for any ρ ≥ 1

φ
1/0
Strip2n

[[−ρn, ρn]× [−n, n] crossed horizontally in ω∗] ≥ cρ, (22)

where 1/0 are the boundary conditions wired on the top and free on the bottom of Strip2n.

Proof. By duality, either φ1/0
Strip2n

[[−ρn, ρn] × [−n, n] crossed horizontally in ω∗] ≥ 1/2 or

φ
1/0
Strip2n

[[−ρn, ρn] × [−n, n] crossed vertically in ω] ≥ 1/2. If the former occurs, the proof
is complete. If the second occurs, since p < psd and the dual of the boundary conditions 1/0
are simply the vertical reflection of themselves,

φ
1/0
Strip2n

[[−ρn, ρn]× [−n, n] crossed vertically in ω∗] ≥ 1/2.

Then (21) allows us to conclude.

3.5 Distinguishing between (b) and (c)

In the whole section we work at a fix set of parameters p, q such that

(a) and (d) both fail for (p, q). (23)

This assumption will ensures that, under favorable boundary conditions, we may create
circuits in the primal/dual with positive probability. Indeed, by Proposition 3.3 and Theo-
rem 3.4, we conclude that

φ1[Hn] ≥ c and φ0[H∗n] ≥ c (24)

for all n and c > 0 some constant.
However, when the boundary conditions are adverse, the events Hn and H∗n may have

much smaller probabilities. Write, for n ≥ 1,

un = φ0
Λ20n

[Hn] and u∗n = φ0
Λ20n

[H∗n].
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Proposition 3.6. There exists δ > 0 such that, if min{un0 , u
∗
n0
} < δ, then

u10kn0 ≤ 2−k and u10kn0 ≤ 2−k for all k ≥ 1. (25)

This proposition, together with the finite size criterion of Proposition 3.3 suffices to imply
the quadrichotomy theorem, as we will see in the next subsection. Indeed, the above proves
that the sequences (un) and (u∗n) are either both bounded away from 0 uniformly, or both
decrease exponentially fast.

The proof of Proposition 3.6 is based on the following two lemmas. The first is not
particularly difficult. It ultimately states that the behaviours of the sequences (un) and (u∗n)
are the same.

Lemma 3.7. There exists a constant C ≥ 1 such that, for all n ≥ 1,

un ≥ 1
C (u∗n/4)C and u∗n ≥ 1

C (un/4)C for all k ≥ 1.

Proof. We focus on the first inequality; the second is the same applied to the dual model.
By standard arguments of exploration and comparison of boundary conditions,

φ0
Λ10n

[Hn] ≥ φ1
Λ10n

[Hn|Λn /←→ ∂Λ10n] ≥ φ1
Λ10n

[Hn]φ1
Λ10n

[Λ2n /←→ ∂Λ10n|Hn] (26)

From (24) and the comparison of boundary conditions we conclude that φ1
Λ20n

[Hn] ≥ c.
Using a strategy similar to that of Fig. 2 and the FKG inequality for the dual model, we may
prove that

φ1
Λ10n

[Λ2n /←→ ∂Λ10n|Hn] ≥ φ1
Λ10n\Λ2n

[Λ2n /←→ ∂Λ10n] ≥ (u∗n/4)C

for some C ≥ 1 (C = 1000 should suffice). Note that it is important in the above that the
instances of H∗n/4 used to create a dual circuit around Λ2n should be at distance 10n/4 from
the wired boundary conditions, namely from ∂Λ10n and ∂Λ2n.

These last two observations, inserted in (26) allow us to conclude.

The second lemma is the key.

Lemma 3.8. Assume p ≤ psd. There exists c > 0 such that, for every n ≥ 1,

u10kn ≤ (c un)k for all k ≥ 1.

Proof. The constants c. below are positive and independent of n and k. Figure 4 may be
useful in understanding the proof.

Fix k, n ≥ 1 and define the event C as the intersection of the translates of Hn by the
(20jn, 0) with j = −k, . . . , k. Due to our assumption (23) – or more precisely its consequence
(24)

φ0
Λ200kn

[C] ≥ ckC φ0
Λ200kn

[Hkn] = ckC u20kn,

for some cC > 0.
Write E for the event that there exists a dual horizontal crossing of [−200kn, 200kn] ×

[2n, 4n] and Ẽ for the vertical reflection of this event. Then, repeated applications (22) at
scales N = 2jn with ` = 200 k · 2−j yield

φ0
Λ200kn

[E ∩ Ẽ | C] ≥
log k∏
j=1

c
k/2j

E ≤ c2k
E .
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Ckn
4n

E

Ẽ

G

C

Ckn
4n

Figure 4: Left: The event C ∩ E ∩ Ẽ ∩ G. Its probability may be bounded from above by
the probability of the primal circuits of C occurring, conditionally on the dual paths. This
produces an upper bound of ukn.
Conversely, its probability is bounded from below in several steps. Conditionally on C, the
dual paths forming E ∩Ẽ and G appear with probability at least (cG cE)

k. Right: Constructing
C by first requiring that Hkn occurs; conditionally on this event C occurs with probability at
least ckC . As such, C has probability at least ckC u20kn.

Finally, when E ∩ Ec occurs, write G for the event that there exist dual crossing between
the top-most dual path realising E and the bottom-most path realising Ec, in each of the
squares [20jn − 10n, 20jn − 2n] × [−4n, 4n] and [20jn + 2n, 20jn + 10n] × [−4n, 4n] with
j = −k, . . . , k. By pushing of boundary conditions and FKG,

φ0
Λ200kn

[G | E ∩ Ẽ ∩ C] ≥ ckG ,

where

cG = inf
m
φalt

Λ4m

[ xy4m
]
> 0, (27)

where the boundary conditions of the measure are alternating as described by the picture:
wired on the left- and right sides, free on the top and bottom. The positivity of cG is due to
duality and the assumption that p ≤ psd.

Combing the three displays above to deduce that

φ0
Λ200kn

[C | E ∩ Ẽ ∩ G]φ0
Λ200kn

[C ∩ E ∩ Ẽ ∩ G] ≥ ckGckEckC u20kn.

Now, the dual paths forming E ∩ Ẽ ∩ G shield each of the events Hn from each other.
Thus, we conclude

φ0
Λ200kn

[C | E ∩ Ẽ ∩ G] ≤ ukn.

The last two displays combine to prove the desired inequality.

3.6 Concluding: proof of Theorem 3.1

It is immediate to see that cases (a)-(d) are mutually exclusive.
By Proposition 3.3, the sets of parameters where (a) and (d) are indeed open, as they are

characterised by a finite size criterion, which is stable under perturbation of parameters.
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Assume now that p, q are such that (a) and (d) fail. Then Proposition 3.6 implies that the
sequences (un) and (u∗n) are either both uniformly bounded away from 0, or both converge
exponentially fast to 0.

Basic applications of FKG such as in Figure 2 show that the former case implies (b). The
comparison of boundary conditions (7) may be used to deduce that the latter case implies
(c). �

Exercises: FK-percolation on Z2, fine properties

Exercise 3.1. Consider FK-percolation on Z2 with some q ≥ 1 and p ∈ [0, 1]. Assume that
we are in the case (b) of Theorem 3.1, that is the RSW regime. Show that there exists c > 0
such that

c n−1 ≤ φξΛn [0↔ ∂Λn] ≤ n−c for all n ≥ 1.

Deduce that φ[|C0|] = ∞, where C0 is the cluster of 0, and φ is the unique infinite volume
measure with this set of parameters (here it is used as an expectation).

Exercise 3.2. Consider FK-percolation on Z2 with some q ≥ 1 and p ∈ [0, 1]. Assume that
we are in the case (c) of Theorem 3.1, that is the discontinuous phase transition regime,
where φ0 6= φ1.

(a) Using φ0 = (φ1)∗, show that, for any fixed edge e, φ0[e open] < 1/2.

(b) Write φper
Λn

for the FK-percolation measure on the square torus of side-length 2n. Prove
that, for any fixed edge e, φper

Λn
[e open] = 1/2.

(c) Assume that the only Gibbs measures2 of FK-percolation on Z2 which are invariant
under translations and rotations by π/2 are the linear combinations of φ0 and φ1 (this
may be proved using relatively soft tools). Prove that

φper
Λn
−→ 1

2φ
0 + 1

2φ
1 as n→∞,

in the sense that the probabilities of any event depending on finitely many edges con-
verges.

(d) Is limn φ
per
Λn

ergodic?

Exercise 3.3. Fix q ≥ 1 and p ∈ [0, 1]. Let φ be an ergodic Gibbs measure for FK-
percolation on Z2 which is invariant under translations and rotations by π/2. Use the same
construction as in Exercise 2.1 to prove that a.s. there exists no infinite primal cluster or a.s.
there exists no infinite dual cluster.

Deduce that the only Gibbs measures of FK-percolation on Z2 which are invariant under
translations and rotations by π/2 are the linear combinations of φ0 and φ1.

2For the purpose of this exercise, Gibbs measures should be understood as the potential limits of finite
volume mesures
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Exercise 3.4. Fix q ≥ 1 and p ∈ [0, 1]. Let φ be a Gibbs measure for FK-percolation on Z2

which is invariant under translations and rotations by π/2. Assume that there exists c > 0
such that

φ
î
ω contains a horizontal crossing of [0, 2n]× [0, n]

ó
≥ c and

φ
î
ω∗ contains a horizontal crossing of [0, 2n]× [0, n]

ó
≥ c for all n ≥ 1.

Prove (without using the quadrichotomy theorem) that

φ
î
ω contains a horizontal crossing of [0, kn]× [0, n]

ó
≥ c2k and

δ < φ[Hn] < 1− δ for all n ≥ 1,

and the same for the dual, for some δ > 0.
Does this imply that φ

î
0↔ ∂Λn

ó
→ 0?
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a a b b c c

Figure 5: The six possible vertex configurations obeying the ice rule. The weights are chosen
to be invariant under total arrow reversal.

4 Continuous/discontinuous phase transition

The goal of this section is to show the following theorem.

Theorem 4.1. The phase transition of FK-percolation on Z2 is continuous if 1 ≤ q ≤ 4, and
discontinuous if q > 4.

The theorem above was proved in a series of papers. Originally, the continuity was proved
in [?] and the discontinuity in [?]. Alternative proofs of these two regimes were obtained in
[?] and [?].

We will present here a proof of both the continuity and discontinuity regimes inspired by
the method of [?]. It consist in the explicit computation of the rate of decay of a certain
event, that allows us to distinguish cases (b) and (c). The computation is done by relating
critical FK-percolation to the six-vertex model, which we define below. The free energy of
the six-vertex model is then estimated by applying the Bethe ansatz to its transfer matrix
and computing its leading eigenvalues.

This section is meant to highlight the links between FK-percolation and the six-vertex
model, and the very different techniques that may be used to analyse these. A more spe-
cific take-home message is that the continuity/discontinuity of the phase transition of FK-
percolation corresponds to the delocalisation/localisation of the height function of the corre-
sponding six-vertex model, which in turn corresponds to the differentiability/non-differentiability
of the free energy of the six-vertex model in terms of the “slope”, at slope 0.

4.1 Six vertex model on torus

For L,M ∈ 2N, write TL,M = (Z/LZ)× (Z/MZ) for the torus of width L and height M . A
six vertex configuration on TL,M is an assignment of directions (or arrows) to each edge of
TL,M with the restriction that any vertex has exactly two incoming and two outgoing edges;
we call this restriction the ice rule. As a result, there are only six possible configurations at
each vertex, whence the name of the model.

The six configuration each carry a weight (see Figure 5); we will consider always a, b, c > 0.
Then, the weight of a configuration ~ω is

w6V (~ω) = a#vertices type a · b#vertices type b · c#vertices type c .

It is standard to parametrise the model via

∆ =
a2 + b2 − c2

2ab
, (28)

as models with constant ∆ behave similarly. In this section we will focus exclusively on the
case a = b = 1, when ∆ = 1− c2/2 ∈ (−∞, 1).

26



Preservation of arrows. We will partition the torus into horizontal rows of vertical edges.
It is a direct but crucial consequence of the ice rule that in any six-vertex configuration, the
number of up-arrows is the same for each row. We call this the preservation of up-arrows.

Define the partition functions

~Z
(k)
L,M =

∑
~ω with L/2 + k

up-arrows per row

w6V (ω) and ~ZL,M =

L/2∑
k=−L/2

~Z
(k)
L,M .

Finally, for α ∈ [−1/2, 1/2], define the free energy of the (sloped) model as

f6V = lim
L→∞

lim
M→∞

1
LM logZ6V(T×L,M ) and f6V (α) = lim

L→∞
lim
M→∞

1
LM logZ

(αL)
6V (T×L,M ).

Simple combinatorial tricks (see for instance [?, proof of Cor 1.4]) show that the limits exists
no matter the order in which L and M are send to infinity. Moreover, they show that

f6V = f6V (0) = lim
L→∞

lim
M→∞

1
LM logZ

(0)
6V (T×L,M ).

4.2 Relation to FK-percolation: BKW correspondence

We next present a correspondence between critical FK-percolation on (a π/4-rotated version)
of the torus and the six vertex model described above. It is sometimes called the Baxter-
Kelland-Wu (or BKL) correspondence — 1979. We start by describing several the FK-
percolation related to the six vertex model on TL,M .

FK-percolation setting. Notice that TL,M is a bipartite graph; consider a bi-partite
colouring in black and white of its vertices. Let T×L,M be the graph containing only the
black vertices of TL,M , with edges between vertices at distance

√
2. Write ΩFK for the set of

FK-percolation configurations on T×L,M .

We will work here with q ≥ 1 fixed and p = pc(q) =
√
q

1+
√
q . Thus

wFK(ω) = p|ω|(1− p)|E(TL,M )|−|ω|q# clusters = (1− p)|E(TL,M )| · √q|ω|q# clusters.

Write Ek for the event that ω contains at least k vertically crossing clusters, where clusters
are counted on the cylinder obtained by cutting TL,M horizontally at height 0.

Proposition 4.2 (BKW correspondence). We have

fFK = f6V + 1
4 log q + log(1 +

√
q) and (29)

φT×L,M
[EαL]1/LM = exp

Ä
f6V (α)− f6V (0) + o(1)

ä
for any α > 0 (30)

The rest of the section is dedicated to proving this result.

Parameters of the correspondence First let us define a useful series of parameters. For
q ≥ 1, let λ be such that

eλ + e−λ =
√
q. (31)

Notice that λ is real for q ≥ 4 and purely imaginary for 1 ≤ q < 4. In both cases there are
two possible choices for λ (up to multiplication by ±1); we do not impose a canonical choice.

When attempting to relate to six-vertex model to FK-percolation, c and q need to be
related. We choose c so that

c = e
λ
2 + e−

λ
2 =

»
2 +
√
q. (32)
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Figure 6: The different steps in the correspondence between the random-cluster and six-
vertex models on a torus. From left to right: A random-cluster configuration and its dual,
the corresponding loop configuration, an orientation of the loop configuration, the resulting
six-vertex configuration. Note that in the first picture, there exist both a primal and dual
cluster winding vertically around the torus; this leads to two loops that wind vertically (see
second picture); if these loops are oriented in the same direction (as in the third picture),
then the number of up arrows on every row of the six-vertex configuration is equal to N

2 ± 1.

Loop configurations We define two more types of configurations needed in describing the
BKW correspondence. An oriented loop on TL,M is a cycle on TL,M which is edge-disjoint and
non-self-intersecting. We may view oriented loops as ordered collections of edges of E(TL,M ),
quotiented by cyclic permutations of the indices. Un-oriented loops (or simply loops) are
oriented loops considered up to reversal of the indices. A (oriented) loop configuration on
TL,M is a partition of E(TL,M ) into (oriented) loops. Write ΩLoop and ΩLoop for the set of
configurations of un-oriented and oriented loops, respectively.

Associate the following weight to un-oriented and oriented loop configurations. For an
un-oriented loop configuration ω◦, write `(ω◦) for the number of different loops of ω◦ and
`0(ω) the number of such loops that are not retractable (on the torus) to a point. For an
oriented loop configuration ω , set `−(ω ) and `+(ω ) for the number of retractable loops of
ω which are oriented clockwise and counterclockwise, respectively.

Set

w◦(ω
◦) =

√
q`(ω

◦) ·
Ä

2√
q

ä`0(ω◦)
for all ω◦ ∈ Ω◦Loop;

w (ω ) = eλ(`+(ω )−`−(ω )) for all ω ∈ ΩLoop.

Correspondence between configurations. The correspondence between configurations
is best descried in Figure 6.

Un-oriented loop configurations are in bijection to FK-percolation configurations: as-
sociate to any FK-percolation configuration ω the unique loop configuration whose loops
intersect no not intersect any primal or dual edges of ω.

An oriented loop configuration ω is said to be coherent with a the un-oriented loop
configuration containing the same loops. It is also said to be coherent with the six-vertex
configuration whose edge-orientations are given by the orientations of the loops.

Notice that for any un-oriented loop configuration ω◦, there are several oriented loop
configurations coherent with it; namely 2`(ω

◦). Also, for any six vertex configuration ~ω, there
are 2#vertices type c oriented loop configurations coherent with ~ω.

Correspondence for weights. The following lemmas related the weights of the differ-
ent configurations. Both results are obtained via fairly direct computations, full proofs are
available in [?].
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Lemma 4.3. For any ω ∈ ΩFK,

wFK(ω) = C
√
q`(ω

◦)qs(ω) = C
Ä√

q
2

ä`0(ω)
qs(ω)

∑
ω

w (ω ), (33)

where ω◦ is the loop configuration corresponding to ω and the sum is over the 2`(ω) oriented
loop configurations coherent with ω◦. The term s(ω◦) ∈ {0, 1} is the indicator that ω contains
a cluster that winds around TL,M in both the vertical and horizontal directions. Finally

C =
√
qLM/2

(1+
√
q)LM

.

The first equality is proved by induction on the number of open edges of ω. The second
is obtained by observing that in the sum on the right-hand side, every retractible loop of
ω◦ appears with its two possible orientations, thus with a total weight of eλ + e−λ =

√
q;

non-retractible loops appear with a weight of 2, compensated by the term
Ä√

q
2

ä`0(ω)
.

Lemma 4.4. For any six vertex configuration ~ω

w6V (~ω) =
∑

ω coherent w. ~ω

w (ω ). (34)

The key here is to see w (ω ) as eλwind(ω )/2π, where wind(ω ) is the total winding of all
loops of ω . This winding may be computed locally: vertices of type a and b produce a total
winding of 0, while vertices of type c produce a total winding of ±π, depending on how the
loops are split at the vertex. See also Figure 7.

1 2 3 4 5A 5B 6A 6B

Figure 7: The 8 different types of vertices encountered in an oriented loop configuration.

Consequences for the partition functions: proof of Proposition 4.2 Summing (33)
and (34) over all configurations, we easily find that

ZFK φT×L,N

îÄ
2√
q

ä`0
q−s
ó

=
∑

ω∈ΩFK

Ä
2√
q

ä`0(ω)
q−s(ω) · wFK(ω) = C Z6V . (35)

This is not exactly an equality between the two partition function, due to the term φT×L,N

îÄ
2√
q

ä`0
q−s
ó
.

Note however that this term is of no significance for the free energy. Indeed, `0 is bounded
by L+M , so

fFK := lim
L→∞

lim
M→∞

1

LM
logZFK(T×L,M ) = f6V + 1

4 log q − log(1 +
√
q). (36)

This proves (29).

We can even do better. Fix k ≥ 0. For a six-vertex configuration ~ω, write K(~ω) for the
excess of up-arrows on each row, that is the number of up-arrows on any one row minus L/2.
Use the same notation for oriented loop configuration ω .

When ~ω and ω are coherent K(~ω) = K(ω ). In particular, the oriented loop configura-
tions coherent with {~ω : K(~ω) = k} are exactly those with K(ω ) = k.
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For an un-oriented loop configuration ω◦, write Jk(ω) for the number of ways in which
its vertically-winding loops may be oriented to produce ω with K(ω ) = k. For most
ω◦ we have Jk(ω◦) = 0. Indeed, to have Jk(ω◦) > 0, ω◦ needs to have at least 2k loops
winding vertically around the torus (where a loop winding vertically more than once is counted
with multiplicity). Finally, these loops are all counted in `0(ω ). Indeed, any retractible or
horizontally winding loop contributes the same number of up- and down-arrows to each row;
unbalances come only from loops winding vertically around TL,M .

For an un-oriented loop configuration ω◦, write `h(ω◦) for the number of non-retractible
loops of ω that do not wind vertically around the torus (in particular they do wind horizon-
tally). Observe that re-orienting the retractible loops of ω , or those contributing to `h, does
not change K(ω ). Thus, applying (34), then (33), we find

Z
(k)
6V =

∑
ω :K(ω )=k

w (ω ) =
∑
ω◦
Jk(ω)

2`h(ω◦)

√
q`0(ω◦)

√
q`(ω)

= 1
C

∑
ω

Jk(ω)
2`h(ω◦)

√
q`0(ω◦)

q−s(ω)wFK(ω) =
ZFK

C
φT×L,N

[
Jk(ω

◦) 2`h(ω
◦)

√
q`0(ω

◦) q
−s(ω)

ó
.

All terms in the probability on the right-hand side, except Jk(ω◦), are ultimately unim-
portant. Moreover, most of the probability will come from configurations with Jk(ω◦) = 1.
The important observation is that Jk(ω◦) 6= 0 only if there are at least k primal clusters
crossing T×L,M vertically (where clusters are actually counted on the cylinder obtained by
cutting T×L,M horizontal at height 0).

Recall that we are interested in f6V (α) which corresponds to the partition function over
configurations with an excess K(~ω) = αL. Crude upper and lower bounds on the terms
appearing in the probability above suffice to prove that

f6V (α) = fFK + lim
L→∞

lim
M→∞

1
LM log φT×L,M

[EαL]− 1
4 log q − log(1 +

√
q)

Together with (29), this proves (30) (also recall that f6V = f6V (0)).

4.3 Solving six vetex via transfer matrix

Theorem 4.5. Recall that f6V (α) denotes the free energy of the six vertex model “with a
density α of excess up-arrows”. Then

f6V (α) =

{
Cα+ o(α) if c > 2, with C = C(c),

Cα2 + o(α2) if 0 < c ≤ 2, with C = C(c),
as α→ 0. (37)

The theorem above is obtained via the estimation of the leading eigenvalues of blocks of
the transfer matrix of the six vertex model via the Bethe ansatz. We describe these objects
next.

Transfer matrix formalism We identify the possible configurations of vertical arrows on
one row by {±}L. Consider the matrix V = VL defined by

V (ψ,ψ′) =
∑

possible completions
c#type c vertices ∀ψ,ψ′ ∈ {±}L. (38)

where the completions refer to the possible assignments of horizontal arrows between ψ and
ψ′ that obey the ice rule. See Figure 8 for an example.
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Figure 8: The unique possible completion between ψ (bottom config) and φ′ (top config) that
obeys the ice rule. The weight here is c4.

The transfer matrix is split into blocks corresponding to the number of up-arrows on each
row (recall that this number is conserved). Write V (k) for the block with N/2 + k up-arrow.
Then, it is immediate to check that

Z
(k)
6V (T(L,M)) = Tr(V (k))M . (39)

Furthermore, each such block has non-negative entries and may be shown to be irreducible.
It follows by the Perron-Frobenius theorem that each V (k) has a single eigenvector of maximal
eigenvalue (with all other eigenvalues being of strictly smaller modulus). We call these the
Perron-Frobenius eigenvector and eigenvalue, and write Λ(k) = Λ(k)(L) for the latter.

Then (39) implies

Z
(k)
6V (T(L,M)) = (Λ(k)(L))M (1 + e−εM ), (40)

for some ε = ε(L) > 0. Since Z(k)
6V (T(L,M)) is used to determine the free energy with slope

α, we find

f6V (α) = lim
L

1
L log Λ(k)(L). (41)

Statement of the Bethe Ansatz for the six-vertex model. The Bethe Ansatz is a
method for producing eigenvectors and eigenvalues of the transfer matrix. We state it below.

Recall that ∆ = (2− c2)/2 and set

µ :=

{
arccos(−∆) if c ≤ 2

= 0 if c > 2
and D := (−π + µ, π − µ).

Let Θ : D2 → R to be the unique continuous function which satisfies Θ(0, 0) = 0 and

exp(−iΘ(x, y)) = ei(x−y) · e
−ix + eiy − 2∆

e−iy + eix − 2∆
.

For z 6= 1, we set

L(z) := 1 +
c2z

1− z
, M(z) := 1− c2

1− z
.

Theorem 4.6 (Bethe Ansatz for V ). Fix n = N/2− k. Let (p1, p2, . . . , pn) ∈ Dn be distinct
and satisfy the equations

Npj = 2πIj −
n∑
k=1

Θ(pj , pk), ∀j ∈ {1, . . . , n}. (BE)
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Then, ψ =
∑
|~x|=n ψ(~x) Ψ~x , where ψ(~x) is given by

ψ(~x) :=
∑
σ∈Sn

Aσ

n∏
k=1

exp
Ä
ipσ(k)xk

ä
, where Aσ := ε(σ)

∏
1≤k<`≤n

eipσ(k) (e−ipσ(k)+eipσ(`)−2∆),

(for σ an element of the symmetry group Sn) satisfies the equation V ψ = Λψ, where

Λ =



n∏
j=1

L(eipj ) +
n∏
j=1

M(eipj ) if p1, . . . , pn are non zero,

[
2 + c2(N − 1) + c2

∑
j 6=`

∂1Θ(0, pj)
]
·
∏
j 6=`

M(eipj ) if p` = 0 for some `.

It is expected that there exists exactly one solution to (BE), which produces the Perron-
Frobenius eigenvector and eigenvalue of V (k).

Let us assume that one may find solutions p1, . . . , pn to (BE), and that their distribution
inD (ρN = 1

N

∑n
i=1 δpi) converges to a measure ρ(x)dx admitting a density – this is sometimes

called condensation of the Bethe roots. Then (BE) may be re-written as

2πρ(x) = 1 +

∫
D
∂1Θ(x, y)ρ(y)dy ∀x ∈ D (42)

and
lim
N→∞

1

N
log Λ =

∫
D

log
∣∣∣M Äeixä∣∣∣ ρ(x)dx. (43)

The condition (42) allows one to determine ρ, which may then be injected in (43) to
obtain asymptotics for Λ.

We will not prove Theorem 4.6, nor how it is applies to our six vertex model. We limit
ourselves to mentioning that

• The difficulties in applying this method are: prove that (BE) has solutions and that
these solutions do condensate as L→∞. Show that the resulting vector is not null, and
therefore that the resulting Λ is an eigenvalue. Prove that Λ is the Perron-Frobenius
eigenvalue of the corresponding block of V . Finally, when this is done, one needs to
compute sufficiently precise estimates on the resulting eigenvalue, using the continuous
version of the Bethe equations (42) and (43).

• The Bethe ansatz changes form at ∆ = −1, corresponding to c = 2. Outside of this
value, it appears to depend smoothly on ∆.

• These difficulties were overcome in [?] and [?]. The general technique to prove that Λ
is indeed the Perron-Frobenius eigenvalue was done by considering the model (for finite
L) at the “trivial” cases ∆ = 0 and ∆ = −∞, where the computations are explicit,
then proving that ∆ 7→ ψ,Λ is an analytic function, hence preserving the positivity of
ψ. The condensation is also proved using this type of evolution in ∆: it is proved that
ψ(∆) can not “escape” continuously a region of condensation.

• The estimates obtained Λ(k)/Λ(0) are not sufficiently fine to apply them to k = 1 (or
small values of k). For our purpose k = αL, where the estimates are more robust.

• The ultimate computation of Λ(k)/Λ(0) proves (37).
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4.4 Deducing the type of phase transition

A direct consequence of Proposition 4.2 and Theorem 4.6 is the following estimate on φT×L,M [EαL].

Corollary 4.7. We have

lim
L→∞

lim
M→∞

1
LM log φT×L,M

[EαL] =

{
Cα+ o(α) if c > 2, with C = C(c),

Cα2 + o(α2) if 0 < c ≤ 2, with C = C(c).
(44)

This corollary implies directly that (b) of Theorem 3.1 occurs for 0 < c ≤ 2 and point (c)
occurs for c > 2. Indeed, one way to see this is to see that the correlation length

ξ−1 = ξ−1(pc, q) = lim
n

1

n
log φ0[0↔ ∂Λn], (45)

may be related to φT×L,M [Ek] by

e−kM/ξ ≤ φT×L,M [Ek] ≤ e−(k−1)M/ξ. (46)

When combining this with (44) we conclude that ξ(pc, q) = ∞ if an only if 1 ≤ q ≤ 4.
Theorem 3.1 allows us to conclude.
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