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Abstract

The main goal of this thesis is the study of percolation on iscadial graphs,
and, more precisely, to show criticality and universality of arm exponents for
these models.

An isoradial graph G is a planar graph embedded in the plane in such a way
that every face is inscribed in a circle of radius 1. To each gk e we attach
a parameter p(e) 2 [0; 1], which is an explicit function of the length of e. We
associate toG a canonical percolation model, under which each edgeis taken
open with probability p(e) and closed with probability 1 p(e), independently
of other edges. Thus, isoradial graphs provide a large classf planar perco-
lation models expected to be critical and to belong to the sam universality
class. These models include the critical homogeneous boneeolation on the
square, triangular and hexagonal lattices. More generally isoradial graphs
have proved to be a particularly convenient setting for the sudy of various
statistical mechanics models.

We will focus on two features of critical percolation models The box crossing
property (or RSW property) states that the probability of crossing rectangular
domains of given aspect ratio is bounded away from 0 and 1, uformly in

the size of the domain. Thearm exponents are constants that describe the
asymptotic behaviour of certain unlikely events, such as tkat the cluster of a
given vertex has large radius.

Using the star{triangle transformation, and its particular a nity with per-
colation on isoradial graphs, we manage to convert one isoddal graph into
another, while preserving certain features of the percolaon model. These fea-
tures are related to existence of open connections; in pactular we prove the
universality of the box-crossing property and of the arm exmnents across a
large class of graphs. The box-crossing property is known thold for certain
isoradial graphs, such as the homogeneous square latticeeihce it extends to
the studied models. Arm exponents however are not known to @gt for any
planar bond percolation model, and we make no progress on thipoint.

We also give a detailed account of how the box-crossing propty implies crit-

icality, as well as a certain form of isotropy of the critical phase. This is then
used to prove scaling relations that relate the arm exponert to other critical

exponents.
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Chapter 1

Introduction

1.1 Overview

The idea that statistical physics models should, at large sale, be characterized by only few
parameters appeared in the physics literature in the 1960'sinder the name universality.

Consider a large system of interacting particles, each takig a random state, with the
states of di erent particles being correlated following a cetain correlation structure. The
intensity of the correlation is given by a parameter, usualy the temperature. In very
vague terms, therenormalization group rescales the above model, and yields an equivalent
model with modi ed parameters. In the new model, each partide represents a group
of particles of the initial model. When performing repeatedy this renormalization, the
parameters degenerate, unless at certain speci c points dlad critical points. In the latter
case, most observables of the system become irrelevant afteepeated rescaling, and only
few are relevant for the large scale behaviour. In particula systems that are di erent
at microscopic scale may, if their di erences become irreleant, have the same large scale
behaviour.

In the following decades the concept of universality becamenore and more widespread,
also penetrating through to mathematics. Although indications of universality appear in
various elds, we rarely have a good understanding of the pheomenon. From a mathe-
matician's point of view, physics provides predictions, am arguments in favour of these
predictions, but not rigorous proofs. Despite the important mathematical e orts of the
last years in understanding scaling limits, only few modelshave been fully solved, and
many await.

The rst instance of universality that comes to mind to a prob abilist is surely the
central limit theorem. If ( X;);2n are i.i.d random variables of mean 0 and variance 1, then
Sh = pl—ﬁ "_, Xj converges to a normal variable, regardless of the law of ;. Let us take a
further step, and consider the convergence of random walk tBrownian motion. Regardless
of the law of the step (provided it's centered and has nite variance), the trajectory of the
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Introduction

random walk converges to a Brownian path. As the limit of a rerormalization process, the
Brownian path is scale invariant. In this case the only parameter relevant for the limit is
the dimension.

In two dimensions, in addition to universality and scale invariance, statistical physics
models should, at large scale, exhibitonformal invariance. Oded Schramm has observed
that, if a scaling limit abides to this prediction, then its i nterfaces have to converge to
one of the random curves called SLE (Schramm-Loewner evolign). For > 0, SLE is
a family of random curves indexed by a simply connected domai and two points on its
boundary; it is conformally invariant and has the domain Markov property. Since these
curves should describe the limits of all critical planar stdistical physics models, all such
models may be indexed using only the parameter .

From a probabilist's point of view, the simplest interactin g particle system should be
percolation, precisely because it lacks interaction. In is most common form, it is a one-
parameter system which exhibits a phase transition similarto that of most systems in
statistical physics. The fact that di erent regions of space have independent behaviour
is particularly convenient when studying percolation. But the partition function, which
usually allows a simple understanding of the system, is, inhis case, trivially equal to
1, thus rendering its study futile. For planar percolation mathematicians have developed
geometrical arguments that provide remarkable results wihout reference to the partition
functions.

Two dimensional percolation is fully understood only in the case of site percolation on
the triangular lattice, where Smirnov proved the convergerce of the exploration process
to SLEg [SmiO1]. Understanding critical percolation on other lattices, and con rming the
universality prediction, is probably the greatest challenge in two-dimensional percolation
today.

In the present dissertation, we discuss the problem of uniuesality for the canonical
percolation on so-called isoradial graphs. These graphs pvide a large class of planar
bond percolation models, which include standard percolatn on the three most studied
lattices (square, triangular and hexagonal).

Isoradial graphs have been noticed to constitute a particuhrly convenient setting for
the study of statistical physics models, as illustrated by te recent analysis of the criti-
cal Ising model by Chelkak and Smirnov [CS10, CS12]. On the anhand, such isoradial
graphs are especially harmonious in a theory of discrete homorphic functions (introduced
by Du n, see [CS11, Duf68, Mer01]), and on the other they are well adapted to trans-
formations of star{triangle type (explained by Kenyon [Ken04]). These two properties
resonate with the intertwined concepts of conformality and universality.

Isoradial graphs appear, therefore, as the \right" embedding, that allows percolation
to converge to its scaling limit. Nevertheless this remainsa conjecture.

Our much more modest goals are proving criticality for isoralial percolation, and a
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weaker form of universality, that of critical exponents. We achieve this by means of the
star{triangle transformation, which we use to transform one isoradial graph into another,
while preserving certain properties related to connectedass. The spirit of our approach
is very close to the idea of universality, since it shows thatdi erent models are essentially
the same. In addition to the concrete results it provides, it constitutes a link between
models, which could be used to also transfer other propertie

In a recent lecture in Cambridge, while talking about universality for random matrices,
Terence Tao mentioned a way of proving the central limit theaem, which | nd illustrative
of the methods in this thesis. The idea is to take two independnt sets of i.i.d variables,
(Xi) and (Y;) , each of mean 0 and variance 1, and assume the sun$, for the (X;)
converge indeed to the normal distribution. Then we may swith one by one the variables
Y; instead of X;, and show that S, changes by an amount that disappears in the limit.
This would then prove that the sums for (Y;) converge to the same limit as those for X;).
We may take (X;) to be normal variables, so that the initial convergence is mmediate.

In the same spirit, we consider an isoradial graph, which we ransform locally but
repeatedly by the star{triangle transformation, until we o btain a completely di erent
graph. We show that certain large scale features are not alted by this procedure. Sadly,
only some of these features are known to hold in at least one ahe models involved.
For such features we obtain unconditional universality, whle for others we have to limit
ourselves to conditional results.

1.2 Basic model and notation

1.2.1 General notation

Let G = (V;E) be a countable connected graph. There are two types of pertation, site
and bond, and we will focus on the second. A (bond) percolatio measureP on G is a
product measure on the sample space =f0;1g%. A con guration is an element ! 2 .
An edgee is called open (or ! -open) if ! () = 1, and closed otherwise. A path of G is a
chain of adjacent edges oE (see Section 3.2.2 for a more precise de nition). It is calld
open if all its edges are open. Foru;v 2 V, we sayu is connected tov (in !), written
u$ v (oru e v), if G contains an open path fromu to v; if they are not connected, we
write u!' € v. An open clusterof | is a maximal set of pairwise-connected vertices. Let
Cy=fu2V:u$ vgdenote the open cluster containing the vertexv, and write v$ 1

if jiCyj=1.

The intensities of the measureP are the probabilities p = (pe)eze given by pe =
P(e is open). Conversely, any family of weightsp 2 [0; 1]F gives rise to a bond percolation
measure denotedP,. If the intensities are all equal to somep 2 [0;1], we sayP is
homogeneouswith intensity p. Otherwise we say it isinhomogeneous

Site percolation is very similar, the only di erence being that sites are declared open
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Figure 1.2.1: The graphG in solid lines, and its dual graph G in dashed.

or closed instead of edges. Thus site percolation measuresd on f0; 1g¥. The notation
introduced above applies to both models.

1.2.2 Planar graphs, duality

In this work we focus on percolation on planar graphs. A graphG is called planar if it may
be embedded in the plane in such a way that edges intersect gnht their endpoints. Such
an embedding is called aproper embedding. Throughout the document, when talking
about a planar graph, we consider the graph, along with a propr embedding in the plane.
The embedding is important for our arguments, due to their gemetric nature. Thus we
generally di erentiate between two embeddings of the same @ph.

Let G be a planar graph embedded properly in the plandR?. A face of G is a connected
component of R n G, where G is identi ed with the union of its edges and vertices. Two
faces are adjacent if they share an edge.

The graph G has adual graph G =(V ;E ), obtained as follows. The vertices ofG
are the faces ofG. Two such vertices are connected if they correspond to adjamnt faces
of G. More precisely, they are connected inG by a number of edges oE equal to the
number of edges ofE shared by the corresponding faces 0. Thus, to each edgee 2 E,
there corresponds a unique edge 2 E. See also Figure 1.2.1.

The graph G is also planar, and is embedded by placing each vertex &f inside the
corresponding face ofG. An edgee of G only intersects its corresponding edge ofG.
Thus G also admits a dual, andG is one. See, for example, [Gri99, Sect. 11.2] for an
account of graphical duality.

The great advantage of bond percolation on planar graphs ishat we can associate to it
a bond percolation on the dual graph as follows. Fot 2 and e2 Elet! (e)=1 ! (e),
so that e is open in the dual con guration ! (written open) if and only if e is closed
in the primal con guration. The notation de ned for the prim al is inherited by the dual.
In particular, we write ul! G v for the event that the vertices u;v 2 V are connected in
I . If | is taken according to a percolation measure?,, then the con guration ! thus
obtained also follows a percolation measure, with intensiespe =1 pe. We denote this
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dual measureP,,.

If C is a nite open cluster in a con guration ! on G, then it is surrounded by an
open circuit. This makes it possible to study planar bond percolaion through geometric
arguments, such as those of Section 1.5.

A similar construction exists for site percolation on plana graphs. The role of the dual
graph is played by the matching graph, de ned as follows. The vertices of the matching
graph are the vertices of the original graph, and two vertice are united by an edge in the
matching graph if they belong to the same face in the originagraph. A vertex is considered
open in the matching graph if it is closed in the original one. Thus it is common to interpret
site percolation con gurations as bichromatic colorings d the vertices. One colour, say
red, is associated to sites open in the original graph, and th other, say blue, to those open
in the matching graph.

The disadvantage of this construction is that generally thematching graph of a planar
graph is not itself planar. Nevertheless, if all the faces othe original graph are triangles
(we call such a graph atriangulation ), then the matching graph is identical to the original
one. This is one of the reasons why site percolation on the taingular lattice is so well
understood (see Section 1.7).

1.2.3 Stochastic ordering and the FKG and BK inequalities

The following standard material is essential to the study ofpercolation. For proofs see for
instance [Gril0, Sect. 4] and the references therein.
We start with a brief overview of stochastic ordering. Let E be a nite set, and

= f0;1gF. The set has a natural partial order given by

g 1o iflq(e) !o(e)forall e2 E:

A set A is called increasing if
Iy loand!;12A) 1,2 A:

It is called decreasingif

1 !2and!22A) !12AZ
For two probability measures 1 and , on , we have the following stochastic ordering.

1 st 2 If 1(A) 2(A) for all increasing setsA  E:

The following result, known as Strassen's theorem, is very seful when dealing with
stochastic ordering. A much more general statement than th& presented next may be
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found in [Lin02a].

Theorem 1.2.1 ([Str65]). Let ; and » be probability measures on . The two following
statements are equivalent.

M 1 st 2

(ii) there exists a probability measure on 2, with marginals 1 and », such that
(f(ast2):ile 'ag=1:
A probability measure on is said to be positively associatedif
(A\ B) (A) (B) for all increasing eventsA;B  E:
For two con gurations ! 1;! >, 2 we denote !; !, (respectively! 1~ ! ) the pointwise

maximum (respectively minimum) of ! ; and! ».

Theorem 1.2.2 (FKG inequality, [FKG71]) . Let be a strictly positive probability mea-
sure on  such that

(ta_t2) (tant2)  (Ya) (P2 !al22 (1.2.1)

Then s positively associated.

Usually (1.2.1) is called the FKG lattice condition. See [Gii06, Sect. 2.2] and the
references therein for a proof and a discussion on the FKG imgiality. As a consequence,
product measures are positively associated. We sometimegfer to this fact as the FKG,
or Harris{FKG, inequality instead of positive association.

A second useful inequality in the study of percolation is theBK inequality, named after
its authors, van den Berg and Kesten. Before stating the inegality, we need to introduce
the notion of disjoint occurrence. For! 2 and F E let! g be the element of de ned

by 8
<1(e) fore2F;

le(e) = . (1.2.2)
-0 fore 2 F:

For A;B increasing, de ne the set
A B=fl 2 : thereexists F E suchthat!r 2 Aand! g 2 Bg:

With this notation we have the following result.

Theorem 1.2.3 (BK inequality, [BK85]) . For a product measure on and A;B

16



1.3. Concrete models

increasing,
(A B) (A) (B): (1.2.3)

Stochastic ordering and positive association may be extergtl to countably in nite sets
E as discussed in [Gri06, Sect. 4.1]. In this case, the FKG and BB inequalities may be
used for events that depend only on the states of nitely many coordinates of! . This
extension is particularly simple in the case of product measres; no further details are
given here.

1.3 Concrete models

1.3.1 General conditions

Even though the ultimate goal of the present work is to study isoradial graphs, some results
will be stated in greater generality. Nevertheless we reque some minimal conditions on
the graphs we work with.

We say a planar graph covers the plane if all its faces have rie diameter. If not
otherwise stated, we will always consider that our planar gaphs cover the plane.

Let G be a planar graph. In all our illustrations we will consider both G and its
dual, G , to be embedded with edges as straight line segments. This isot an essential
requirement in what follows. Here are two conditions that wewill assume to hold for all
graphs in this work.

Bounded edge lengths . There exists a constantLe > 0, such that all edges ofG
and G have length at mostLe.

Bounded vertex density . There exist constantsL 4; K 4 such that, for any (x;y) 2
R?, the number of both primal and dual vertices inside the squae x;x + Lg] [y;y+
Lq4] is at least 1 and at mostK 4.

Let G be a planar graph such that bothG and G satisfy the conditions above. It follows
that G islocally nite , in that, for any bounded domain in the plane, there are only nitely
many elements (i.e. vertices and edges) db intersecting it.

Sometimes we will work with graphs exhibiting various formsof symmetry. We give a
list of terms which will be used throughout the paper.

We say G periodic (or translation invariant) if there exist independent non- zero vectors

1, 2 2 R?, such that G is invariant under shifts by either ;. A percolation measureP

on G is said to be periodic if G is periodic and if the measure is also invariant under the
shifts described above. We say is vertex transitive if for any two vertices u and v there
exists an automorphism ofG sendingu onto v.
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____Q____?____.
____Q____?____.
____(P____?____.

Figure 1.3.1: The square lattice and its dual square lattice The triangular lattice and its
dual hexagonal lattice.

A model (G; P) is called rotation invariant , if it is invariant under rotation by some
angle 2 (0; ) around some pointu.

It is called re ection invariant if it is invariant under re ection with respect to some
line d. We say it is invariant under re ection with respect to the ax es, if it is invariant
under re ection with respect to two perpendicular lines. We will usually assume these
lines to be the axes ofR?.

1.3.2 Lattices

In Chapter 4 we present a rst approach to the problem of universality. There we do not
use isoradial graphs, but rather a wide class of percolatiomodels on three lattices which
we de ne next. We do not attempt to give a general de nition of lattices here, instead we
will present the three lattices we will work with.

The square, triangular, and hexagonal (or honeycomb) lattces of Figure 1.3.1, are
denoted respectivelyZ?, T, and H. Homogeneous percolation on these lattices is a one
parameter model, and we denoteP, , Pl‘o1 and, respectively, PZ the measures with intensity
p 2 [0; 1].

The dual of (Z%P,) is (Z2+(3;3); Py ), Where Z2 + ( 3; 3) is the shift of Z? by the
vector (%;2). The dual of (T;P§ ) is (H;P{ ,).

We now turn to inhomogeneouspercolation on the above three lattices. The edges
of the square lattice are partitioned into two classes (horzontal and vertical) of parallel
edges, while those of the triangular and hexagonal latticesnay be split into three such
classes. We allow the product measure on to have di erent intensities on di erent edges,
while requiring that any two parallel edges have the same inénsity. Thus, inhomogeneous
percolation on the square lattice has two parameterspg for horizontal edges andp; for
vertical edges, and we denote the corresponding measuifé, where p = (po;p1). On
the triangular and hexagonal lattices, the measure is de né by a triplet of parameters
p = (po; pP1; p2), and we denote these measureBé and PZ, respectively.

The inhomogeneous models possess translation-invarianteit not rotation-invariance.
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Figure 1.3.2: Left: The triangular lattice with the highly inhomogeneous product measure
Pg;q;qo. The probability for each edge to be open is described in theipture: all horizontal
edges have probabilityp of being open, while the other edges have probabilityg, (right
edges of upwards pointing triangles) o (left edges of upwards pointing triangles) of being
open, with n being their height. Right: The square lattice with a highly inhomogeneous
product measurqu;qo, rotated by =4. Edges inclined at angle =4 have probability g,
of being open, while edges inclined at angle 8 4 have probability ¢® of being open, with
n being their height.

Full translation-invariance is in fact inessential to the arguments of Chapter 4. To illustrate
this we introduce the so-called “highly inhomogeneous mod®. They also serve as a
connection between the approach of Chapter 4 and the isoradl graphs of Chapter 5.

Let p2 (0;1), and letq = (¢n, :n 2 Z) 2 [0;1F and q°= (€ : n 2 Z) 2 [O;1F.
These are the parameters of our highly inhomogeneous modets the square, triangular
and hexagonal lattices.

Consider rst the triangular lattice, and write Pg;q;qo for the product measure on
under which: any horizontal edge is open with probability p; any right (respectively, left)
edge of an upwards pointing triangle is open with probability ¢, (respectively, o©). Here,
n 2 Z denotes the height of the edge as drawn in the Figure 1.3.2. ILePZ p1 q:1 qo Pe
the measure on the hexagonal lattice that is dual toPg;q;qo.

Consider next the square lattice. The measurqu;qo is de ned similarly to the above,
as in Figure 1.3.2. We refer to the three probability measurs thus de ned as highly
inhomogeneous

Note that the square, triangular and hexagonal lattices, enbedded as in Figure 1.3.1,
do indeed satisfy the conditions of Section 1.3.1.

1.3.3 Isoradial graphs

Let G be a planar graph embedded in the plandR?, with edges embedded as straight-line
segments. It is calledisoradial if there exists r > 0 such that, for every bounded faceF
of G, the vertices of F lie on a circle of (circum)radius r with centre in the interior of
F. Note that isoradiality is a property of the planar embedding of G rather than of the
graph itself. By rescaling the embedding ofG, we may assume = 1. In the absence of
a contrary assumption, we shall assume that isoradial grapf are in nite with all faces
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Figure 1.3.3: Part of an isoradial graph. Each face is insched in a circle of radius 1.
With the edge e, we associate the anglee.

bounded.

It was noted by Du n [Duf68] that isoradial graphs are in two{ one correspondence
with rhombic tilings of the plane (i.e. there exists an explicit pairing of isoradial graphs
indexed by rhombic tilings). The name “isoradial' was coind later by Kenyon. While
details of this correspondence are deferred to Section 3.We highlight one fact here. Let
G = (V;E) be isoradial. An edgee 2 E lies in two faces, and therefore two circumcircles.
As illustrated in Figure 1.3.3, e subtends the same angle¢ 2 (0; ) at the centres of these
circumcircles, and we de nepe 2 (0;1) by

pe _ sinGl ).

T = e g (1.3.1)

We consider bond percolation onG with edge-probabilities p = (pe : € 2 E). This
percolation measure is the canonical percolation o5, and is written Pg.

De nition 1.3.1. Let > 0. The isoradial graph G is said to have thebounded-angles
property BAP( ) if
e2[; I e2 E: (1.3.2)

It is said to have, simply, the bounded-angles propertyif it satises BAP( ) for some
> 0.

All isoradial graphs of this paper will be assumed to have thébounded-angles property.
Under this assumption, it is easy to see that the conditions & Section 1.3.1 hold.

In Section 3.1 we will introduce a second condition on isorai@l graphs, called the
square-grid property. Loosely speaking, the square-grid qoperty states that there exists
a square lattice structure embedded in some suitable sensa ithe graph. Details and
examples will be given in due course. We denot& the family of isoradial graphs satisfying
the bounded-angles property and the square-grid property.

20
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1.4 Phase transition

1.4.1 Homogeneous square lattice: an example

The object of percolation is the study of the geometry of conected components. A rst
question is whether there exist in nite components.

Let us consider bond percolation on the square latticez? = (V;E). We present a
standard argument that allows us to couple the measure®, for p 2 [0;1]. Let (Ue)eze
be a family of independent uniform variables in [01]. For p 2 [0;1] and e 2 E, let
I P(e) = lty.<pg:» Where 14 is the indicator function of the event A. With this de nition

P has law P,, and ! P 19 for p g Hence the family of measures R,)p2(0,1) is

p i)
increasing inp.

Let O denote a particular vertex of the square lattice called the aigin, and de ne
(p)= P, (O$1 )
By the above is an increasing function, and we set

pe(Z%) =supfp: (p)=0g:

By Kolmogorov's zero-one law, ifp < pc(Z?), there exists P,-a.s. no in nite open cluster
and, if p > p¢(Z?), there exists P,-a.s. at least one in nite open cluster.

The parameter p(Z?) is called the critical point of (bond percolation on) the square
lattice, and P is called a critical percolation measure orZ2. Similarly we de ne pe(T)
and pc(H).

We say the model undergoes ghase transition at the critical value of p. As we will

pc(Z22)

later see, it is particularly interesting to study this phase transition; more precisely to
study the geometry of the model forp equal or close to the critical value.

1.4.2 General graphs

While de ning criticality is straightforward for homogene ous percolation, it is not obvious
how to do this for inhomogeneous models. We will attempt to relicate the de nition of
the previous section.

Let G = (V;E) be an in nite, connected graph, and let P be a product measure on
f0; 1gF with intensities (pe : €2 E). For 2 R, we write P for the percolation measure
with intensities p, := (0 _(pe+ ))”™ 1. [Asusual,x_y =maxfx;ygandx"y =minfx;yg.]

We say that P is critical if, forany > 0, there existsP -a.s. no in nite open cluster,
and there existsP -a.s. at least one in nite open cluster. In the same vein, we all P
(strictly) supercritical if there exists > 0 such that there existsP -a.s. at least one
in nite open cluster. Conversely, P is (strictly) subcritical if there exists > 0 such that

21



Introduction

there existsP -a.s. no in nite open cluster. These de nitions are not standard, and we do
not claim that they are the \right" ones. They merely provide the concerned reader with
a clear understanding of terms that will be used frequently n what follows.

One may de ne subcriticality and supercriticality alterna tively, purely in terms of the
non-existence and, respectively, existence of an in nite amponent. The former de nitions
are stronger than the latter, hence the quali cation \stric tly".

An alternative de nition of supercriticality, which will b e used later, is to callP uni-
formly supercritical if there exists > 0 such thatP(v$1 ) for every vertex v.

For two vectors p = (pe)eze and p°= (pe2e, we sayp plif pe pdforall e2 E.
We sayp < plifp p®andp 6 p° The disadvantage of the above de nition of criticality
is that we may have two critical measures,Pp and Ppo, with p < p® Nevertheless, for
most periodic models, the above can not occur.

Take G a periodic graph. Assume that each edge o5 is part of a doubly in nite,
non-intersecting chain of edges. LetP, and Pyo be two periodic percolation measures on
G, with p;p°2 (0;1)E. AssumePy, is critical, then

(@) if p < p° then Ppo is supercritical,
(b) if p > p% then Pyo is subcritical.

We will not give a proof of the above, we only note that it uses te technique of enhance-
ment; see [Gri99, Section 3.3].

In most models, it is expected that the three phases (critic sub- and supercritical)
have very di erent behaviour (see Theorem 5.1.2). While the &rge-scale behaviour of the
sub- and supercritical phases is somewhat trivial, the criical phase is expected to exhibit
interesting features, such as scale invariance, and, whe@ is planar, conformal invariance.
This statement is of course vague and may be interpreted in seeral ways. In the following
three sections we will present some of the features expectdtbm critical models.

1.4.3 Inhomogeneous, highly inhomogeneous and isoradial m odels

One of the main objectives of this work is to prove criticality for some of the models of
Section 1.3.2, as well as for the isoradial graphs of Sectich3.3. For the former, it will be
convenient to use the following notation.

P=m+tp L for p = (pn;pv); (1.4.1)
4(P)= Po+ pr+ P2 popip2 L for p = (po; P1; P2); (1.4.2)
7MP)= 4@ pul pul p2); for p = (Po; p1; P2): (1.4.3)

With this notation we can state the following criticality cr iteria.

Theorem 1.4.1. The critical surfaces of inhomogeneous percolation modelsnothe square,
triangular, and hexagonal lattice, as presented in Sectiori.3.2, are given as follows.

22



1.4. Phase transition

(a) Square lattice:  (p)=0.
(b) Triangular lattice: 4 (p) =0.
(c) Hexagonal lattice: 7(p)=0.

The above theorem was predicted in [SE64], and discussed iK§s82, Sect. 3.4], where
part (a) was proved and examples presented in support of pad (b) and (c). The complete
proof of the theorem may be found in [Gri99, Sect. 11.9]. Thigroof is notably di erent
from the proof we give in Chapter 4, and we will not refer to it.

We call a triplet p = (po;p1;p2) 2 [0;1)? self-dual if it satises 4 (p) = 0. Let M
denote the set of critical inhomogeneous bond percolation wdels on the square, triangular,
and hexagonal lattices, as given in the theorem.

We now move on to the highly inhomogeneous models on the squartriangular, and
hexagonal lattice, also presented in Section 1.3.2.

Theorem 1.4.2. Let p2 (0;1) and g;q°2 [0; 1)%.

(a) If there exists > 0 such that for alln 2 Z,
() =0 and if2(;1 ) (1.4.4)

then P is critical.

:q°
(b) If, forall n22Z, 4(p;th;q%) =0, then Pg;q;qo is critical.

(c) If,forall n22Z, 7(p;th;q%) =0, then Pz;q;qo is critical.

Let M | denote the set of critical highly inhomogeneous models as\n in the theorem
above. Also, we writeM | () for the models of M | satisfying

(i) for the square lattice, g,; 22 (;1 ) forall n2 Z;

(ii) for the triangular and hexagonal lattices, p2 (;1 ).

We haveM | =[ oM ()and M M .
Finally, for isoradial graphs, we will prove the following.

Theorem 1.4.3. For G 2 G, Pg is critical.

The three theorems above are largely overlapping. The rst heorem is a particular
case of the second. Most of the models iM | may be interpreted as isoradial graphs that
fall under the incidence of Theorem 1.4.3. More details on tls point will be provided in
Section 3.1.4. More precise statements of the above theoremare given in Sections 4.1
and 5.1. The di erent statements of Theorems 1.4.1 and 1.4.2& ect the structure of the
proof.

The proofs of all three theorem go through geometrical constctions based on the
box-crossing property, which we introduce next.

23



Introduction

1.5 The box-crossing property

Let G = (V;E) be a planar graph, and := f0;1gF. As usual we considerG embedded
in a xed, proper way in the plane R?. The “box-crossing property' is concerned with
the probabilities of open crossings of domains irR?. This has proved to be a very useful
property indeed for the study of in nite open clusters in G; see, for example, [Gril0, Kes82].
A (planar) domain D is an open, simply connected subset dR? which, for simplicity,

we assume to be bounded by a Jordan curv@. Most domains of this paper are the
interiors of polygons. Let D be a domain, and letA, B, C, D be distinct points on its
boundary in anticlockwise order. Let! 2 . We say that D has an open crossing from
AD to BC if there exists an open path onG containing an arc ( ¢ : t 2 [0; 1]) such that: (i)

©0:1) D (i) oand ;are on@, betweenA and D and betweenB and C respectively.
Note that ¢ and ; need not be vertices ofG. We will sometimes abuse notation by
considering closed domains of the fornrD [ @. The de nition of crossing is still valid in
this case, and (g,1) is allowed to contain points of @.

A rectangular domain is a setB = f ((0;x) (0;y)) R?, wherex;y > 0 and f :

R? | R? comprises a rotation and a translation. The aspect-ratio of this rectangle is
maxf x=y;y=xg. We say B has open crossingsin a con guration ! 2 if it has open
crossings both fromf (fOg [0;y]) to f (fxg [0;y]) and from f ([0;x] f Og) to f ([0;x] f yQ).
Also de ne the rectangular domains B(m;n) =[0;m] [0;n]. A horizontal (respectively,
vertical) crossing of B(m;n) is a crossing ofB(m;n), from fOg [O;n] to fmg [O;n]
(respectively, [Gm] f Og to [O;m] f ng]). Denote G,(B) and G,(B) the events that
B(m;n) has an open horizontal (respectively, vertical) crossing

De nition 1.5.1. A measure P on is said to have thebox-crossing property if, for
any > O, there existlg = lp( ) > Oand = () > 0 such that, for all | > 1 and all
rectangular domains B with side-lengthsl| and |,

P(B has open crossings (1.5.1)

When working with the box-crossing property, a particularly convenient assumption is
that the measure under study is positively associated, suclas, for instance, the random
cluster (or FK percolation) measures withq 1. FK percolation is a family of models,
similar to percolation, indexed by a cluster-weightq > 0. The regular percolation studied
in this document is obtained for g = 1. For details see [Gri06]. In a standard application
of the FKG inequality for positively associated measures,ti su ces for the box-crossing
property to consider boxes with aspect-ratio 2, and moreoveonly such boxes with hori-
zontal/vertical orientation (see also Proposition 4.3.2). If (1.5.1) holds for this restricted
class of boxes with =2 and = (2), we say that G satis es BXP(lg; ).

It was proved by Russo [Rus78] and Seymour{Welsh [SW78] thathe homogeneous
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1.6. Critical exponents

percolation P, on the square lattice with parameter p % satis es the box-crossing

property. It follows that, for p = % both the primal and dual percolation on the square
lattice have the box-crossing property. This is an essentiaingredient in Kesten's proof of
the fact that the critical point of bond percolation on the square lattice is %

With the present tools, it is standard that the box-crossing property for a percolation
measure and its dual implies criticality; a proof may be fourd in Section 2.1. The converse
is not generally true, but it is expected to hold for most 'reasonable’ models.

The result of Russo and Seymour{Welsh is commonly referredd as the RSW lemma.
Strictly speaking, the RSW lemma does not solely imply the ba-crossing property; it
requires an input, which usually is some form of self-dualy. Percolation on the square
lattice with parameter p = % is self-dual, and the box-crossing property follows. Other
models are in the range of the RSW lemma, but do not exhibit sétduality, nor the box-
crossing property. A more detailed discussion about the reltionship between criticality,

the box-crossing property, and the RSW lemma may be found in 8ction 2.2.

1.6 Ciritical exponents

The percolation singularity is expected to be of power-law ype, and to be described
by a number of so-called “critical exponents'. These may beidided into two groups of
exponents: at criticality , and near criticality . We present next the asymptotic relations
de ning these exponents, then discuss their existence.

First some notation. We write f(t) g(t) ast! tg 2 [0;1 ] if there exist strictly
positive constants A, B such that

Ag(t) f(t) Bg(t) (1.6.1)

in some neighborhood ofty (or for all large t in the casetp = 1 ). For functions f !(t),
g“(t) indexed by u 2 U, we say thatfY g“ uniformly in u (sometimes written f4
g") if (1.6.1) holds with constants A, B not depending onu. We write f (t)  g(t) if
logf (t)=logg(t)! 1,andf" g" uniformly in u if the convergence is uniform inu.

Let G = (V;E) be a graph embedded in the plane and leP, be a (critical) measure
on G with intensities p 2 [0; 1]F.

The exponents at criticality are those denoted convention#ly as , , , and the arm ex-
ponents . We begin by de ning the so-calledarm-events Let | denote the box [ n;n]?
of R?, with boundary @ ,,. For N <n, let A(N;n) be the annulus [ n;n}?n( N;N)?
with inner radius N and outer radius n. The inner (respectively, outer) boundary of
the annulus is @ n (respectively, @ ). For u 2 R?, write AY(N;n) for the translate
A(N;n)+ u. A primal (respectively, dual) crossing of A(N;n) is an open (respectively,
open ) path whose intersection with A(N;n) is an arc with an endpoint in each boundary
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of the annulus. Primal crossings are said to have colour 1, ahdual crossings colour O.

Let k 2 N. A sequence 2 fO0;1g¥ is called acolour sequenceof length k. For
such , the arm-event A (N;n) is the event that there exist k vertex-disjoint crossings

1,000 iriiny k of A(N;n) with colours  taken in anticlockwise order. The corre-
sponding event on the translated annulusAY(N;n) is denoted AY(N;n) and is said to be
‘centred atu'. The value of N is largely immaterial to what follows, but N = N( ) is
taken su ciently large that the events A (N;n) are non-empty forn N.

A colour sequence is calledmonochromatic if either = (1;1;:::;1)or =(0;0;:::;0),
and bichromatic otherwise. It is called alternating if it has even length and either =
(1;0,4,0;:::)or =(0;20;1;:::). When =(1), A (N;n) is called the one-arm-event
and denotedA1(N;n). When s alternating with length k = 2j, the corresponding event
is denoted A (N;n).

The following asymptotic relations, with limits that are un iform in the choice ofv 2 V,
de ne the exponents at criticality.

(@) volume exponent: P,(jCyj=n) n ! ¥ asnt1 ,

(b) connectivity exponent: Po(v$ w) jw vj asjw vj!ll

(c) one-arm exponent: P,[AY(N;n)] n *asn!l

(d) more generally, for a colour sequence, the -arm exponent: Po[AY(N;n)] n

asn!l ,forN Ng( ) (with No( ) not depending onv).

It is believed, but generally not proved, that the above uniformly asymptotic relations
hold for suitable exponent-values, and indeed with replaced by the stronger relation
The conventional one-arm exponent is given by = 1= 4, as in [Gri99, Sect. 9.1].
When is alternating with length 2j, is denoted »j, and is called the 7 -alternating-
arms exponent.
We turn now to the near-critical exponents. By subcritical exponential-decay (see
Proposition 2.1.1), for > 0, there exists = (p ) 2 [0;1 ) such that

%IogPIO (v$ @n)! 1= asn!l ;

wherev is an arbitrary vertex. The function is termed the correlation length.
Here are the exponents near criticality, where asymptotic elations are uniform in the
choice ofv 2 V:
(a) percolation probability: (p+ ):= Pp(v$1 ) as #0,
(b) correlation length: (p ) as #0,

(c) mean cluster-size:Ep+ (jJCyj;jCvj< 1) j j as ! 0,
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1.6. Critical exponents

(d) gap exponent: fork 1,as ! O,

Ep+ (ICj***;iCvi< 1)
Ep+ (ICvi*;jCvi< 1)

We have written E(X ) for the mean of X under the probability measureP, and E(X ; A) =
E(X1a). In writing p , we have assumed thatp 2 ( ;1 o), for some o> 0. The
de nition of near critical exponents may be adapted to include more general intensities,
but for the present work this is irrelevant.

A critical exponent is said to exist for the model (G; Py) if the appropriate asymptotic
relation holds uniformly in the vertex v. For a family of modelsF, is calledF -invariant
if it exists for all (G;P) 2 F, and its value is independent of the choice of G; P).

Critical exponents may be de ned similarly for percolation models on non-planar
graphs; consider for illustration d-dimensional lattices. They are believed to exist for
a large class of critical percolation models, with values deending only on the dimension.
Moreover, they are expected to satisfy certain relations cled scaling relations

We give here a more concrete conjecture concerning the exetce of the critical expo-
nents and their scaling relations.

Conjecture 1.6.1. The critical exponents are invariant across the family of iswadial
graphs endowed with the canonical percolation measure. Meover,

=2; 2 = +1; (1.6.2)

> 4' +1; +1; +1: (1.6.3)

One of the main goals of this work is to prove parts of the aboveconjecture. In
Section 5.4 (and 4.5) we prove universality results for somexponents. More precisely, we
prove that if certain arm exponents exist in one model, then hey exist and are invariant
across the family G of isoradial graphs (see Theorem 1.6.2). In a series of papein the
late 80's [Kes86, Kes87a, Kes87b] Kesten proved the scalinglations (1.6.2) and (1.6.3)
for homogeneous percolation on lattices exhibiting su cient symmetry. In Section 2 we
present his proofs in greater generality, so as to apply thento our models. All our results
are conditional upon the existence of the exponents.

Essentially the only two-dimensional percolation procesdor which critical exponents
are proved to exist (and, furthermore, many of their values known explicitly) is site per-
colation on the triangular lattice (see [BN11, Smi0l, SWO01}. In accordance with the
principle of universality, the values of the exponents for soradial graphs are expected to
be equal to those for site percolation on the triangular latice. Here are the values of the
exponents in this special case (which unfortunately does ridbelong to the class of models
considered in this document).
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Figure 1.6.1: The site percolation on the triangular lattice in the left diagram is represented
on the right as a face percolation con guration on the hexagoal lattice.

Exponents at criticality:

Exponents near criticality:

Arm exponents for bichromatic with length j j > 1:

The matching graph of the triangular lattice T, is the same triangular lattice. Thus,
site percolation on the triangular lattice may be seen as a douring with two colours (say
red and blue) of the sites of the triangular lattice, or equivalently of the faces (cells) of
the hexagonal lattice. See Figure 1.6.1. Whemp = % each site has equal probability
of being red or blue. Due to this special property, we may appl a technique known
as colour switching to prove that the arm exponents are constant for all bichromatic
colour sequences of given length (see [ADA99]). The monoabmatic arm exponents have
been studied in [BN11]. They have been proved to exist and thiathe k-monochromatic
arm exponent is strictly between the k- and k + 1-bichromatic arm exponents. The exact
value of the monochromatic arm exponents is not known, evenni the special context of
site percolation on the triangular lattice.

Our main universality result for critical exponents is the following.

Theorem 1.6.2. Let 2f g[f 2 :j 1g. If exists for one model inM | [G, then
itis M [ G -invariant.

A more detailed version, along with several consequences given in Theorem 5.1.3.
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(A)
(D)

( D)
B C (B)* *(C)

Figure 1.7.1: The Cardy-Smirnov formula. The limit of the probability that an open
path in D joins (AB) and (CD), is the same as in the equilateral triangle (D) with arcs
(( A)( B))and (( C)( D)), where is the only conformal transformation sending A,

B and C to the vertices of ( D). The formula for the limit is given by: § /3))§ g))

1.7 Cardy's formula, conformal invariance

Let G be a planar graph with a percolation measureP on it. For > 0 let G be the
graph G rescaled by and let P be the percolation measureP on G .

Consider a domainD in the plane C, and four points A, B, C, D distributed anti-
clockwise on its boundary. We are interested in the asymptdts, as ! 0, of the P -
probability that D contains an open crossing fromAB) to (CD). In the perspective of
scale-invariance, we expect this probability to convergeas goes to 0, to a non-trivial
limit. Let us, for now, consider homogeneous percolation ora periodic graph.

Cardy, in [Car92], conjectured the existence of the limit, axd even gave a formula for
it in terms of a hypergeometric function. His conjecture wasproved in 2001 by Smirnov
for critical site percolation on the triangular lattice (see [SmiO1]).

Following a remark by Lennart Carleson, the formula, now knavn as the Cardy-
Smirnov formula, is usually stated for an equilateral triangular domain D, with vertices
A, B, C, and with D an arbitrary point on AC. See Figure 1.7.1. In this case the limit of
the probability that there exists a crossing from (AB) to (CD) is %.

The formula for general domainsD, is obtained by a conformal transformation of the
triangular case. If A;B;C; D are distinct points on @, by the Riemann mapping theorem,
there exists a unique conformal map that transforms D in an equilateral triangle with
vertices (A) = €3, (B)=0and ( C)=1. The limit of the crossing probability is
then given by j ( D) ( C)j. This conformal invariance feature, expected to appear in
most scaling limits of critical models, is a key ingredient n the proof of convergence of
the percolation interface to SLEg. See [WerQ7, Section 3] for details on the proof of this
convergence.

The percolation model (G; P) is said to satisfy Cardy's formula if, for all domains D
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with A;B;C;D 2 @,

in D

P AB! CD !j (D) (C); as ! 0 (1.7.1)

where is given as above and the convergence is uniform in theplacement and orientation
of D.

Note that, unlike arm exponents, Cardy's formula is highly sensitive to the embed-
ding of G. Is is expected that the isoradial embedding is harmonious w#h the canonical
percolation measure it generates. We give next a conjecturthat materializes this belief.

Conjecture 1.7.1. Let G be an isoradial graph (satisfying the bounded-angles projg),
with canonical percolation measurePg. Then (G; Pg) satis es Cardy's formula.

If G is taken to be the square lattice, embedded as in Figure 1.3,1we obtain the
famous problem of proving Cardy's formula for critical homogeneous bond percolation on
the square lattice. This is one of the main challenges in presit percolation theory.

A weaker conjecture, in the spirit of Theorem 1.6.2, is the fdowing.

Conjecture 1.7.2. If Cardy's formula holds for some G 2 G, then it holds for all G 2 G.

The above is a stronger version of universality than Theoreml1.6.2. The essential
di erence is that critical exponents depend very little on the embedding of the graph,
while Cardy's formula is very sensitive to it. For instance, it would not be reasonable to
expect Cardy's formula to hold for all models in M , while Theorem 1.6.2 does apply to
them.

The method used in proving Theorem 1.6.2 o ers a perspectivedr Conjecture 1.7.2.
Nevertheless, in the proof of Theorem 1.6.2 we have expregskarm exponents, and the box-
crossing property, in terms of graph-theoretical quantities. In order to prove universality
of Cardy's formula, we need to use the isoradial embedding,rad our present tools are not
ne enough to achieve this.

Let us get back to the box-crossing property, and see how it dates to crossings of a
domain D. Suppose bothP and its dual, P , satisfy the box-crossing property. Then, by
combining box-crossings as in Figure 1.7.2, we nd that the pobability that there exists
an open crossing inD, from (AB) to (CD), is contained in some interval [; 1 ], with

> 0 only depending onD and on A, B, C, and D, not on scaling factor or on the
positioning of D. Thus, subsequential limits (as ! 0) of the crossing-probabilities of
(1.7.1) exist and are non-trivial, i.e. not 0 or 1. The problem of identifying these limits
is, nevertheless, very di cult and, in most cases, still unsolved.

In light of the above observation, it is not surprising that t he box-crossing property
plays an important role in the proof of the Cardy-Smirnov formula. Indeed, in the proof of
the formula for site percolation on the square lattice, one poves the uniform convergence
of a triplet of discretely harmonic functions to a limiting t riplet of harmonic functions.
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1.7. Cardy's formula, conformal invariance

Figure 1.7.2: Combining crossings of rectangles to obtainrossings of general domains.

This is done in two steps; rst one proves compactness for thdamily of functions, then
the limit is identi ed via holomorphicity and boundary cond itions. Using the box-crossing
property, one shows that the discrete harmonic functions ae Helder continuous, with
parameters that do not depend upon . This allows us to apply the Arzela-Ascoli criterion
for compactness inL! to obtain the rst step of the proof.

The procedure of nding a discreetly preholomorphic (or even holomorphic) observable,
showing precompactness for this observable, and proving ugueness of the holomorphic
limit using boundary conditions is the standard route for proving existence of scaling limits
of critical statistical physics models. A full proof of the Cardy-Smirnov formula may be
found in [WerQ7, Section 2] or in [Gril0, Section 5.7].
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Chapter 2

Applications of the box-crossing
property

The purpose of this chapter is to present di erent consequenes of the box-crossing prop-
erty, such as criticality (Section 2.1), the separation theorem (Section 2.3) and scaling
relations (Sections 2.4 and 2.5). In Section 2.2 we discusse relation between the RSW
lemma and the box-crossing property.

Throughout the chapter G will denote a planar graph, with dual G . We will assume
G satis es the conditions of Section 1.3.1, and all constantswill depend implicitly on L,
Lq4 and K 4. For simplicity suppose G is rescaled such thatl ¢ %, so that each face has
diameter at most 1 and that Ly 1. Also, in order to avoid trivialities, we will suppose
our percolation measures to have intensities in (01). In certain sections we will ask the
intensities to be bounded away from 0 and 1 uniformly. This wil be explicitly stated.

We want to emphasize the importance of geometric arguments tich do not depend on
the local details of the graph. We will construct structures based on crossings of domains
(usually rectangles), and will assume that the existence o$uch crossings is independent in
disjoint domains. This is not entirely true, since the existence of crossings depends on the
states of the edges entirely inside the domain, as well as obsie of the edges intersecting
the boundary.

Nevertheless, since all edges, primal and dual, are of bourd length, we may eliminate
this dependency by imposing the existence of \bu er zones" be&veen domains. Another
way of handling this problem is to de ne more precisely the eents we consider. Sometimes
we will ask for the existence of an open crossing of a domain,hen we actually mean the
existence of a path crossing the domain, open on all edges ¢amed entirely in the domain.
Keeping track of these construction would overburden the poofs, so from now on we will
suppose that the existence of crossings of disjoint domaingre independent events.

Finally let us note that, although these constructions may £em complicated, upon
careful readings of the proofs, it will be obvious how they cme into play. Also note
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that we mostly consider the existence of open/open circuits in annuli. These events
only depend on the edges entirely contained in the annuli, hece are truly independent in
disjoint annuli.

2.1 Criticality via the box-crossing property

In this section we summarise the steps needed to prove critidity for percolation measures
P, with P and P having the box-crossing property.

Fix a graph G = (V;E), and consider a percolation measurd® on it, with parameters
p = (pe) 2 (0; 1)F. We remind the notation P for the measure with shifted parameters.

For simplicity we will assume that there exists o> O suchthatp 2 ( o;1 o)E. The
results presented next remain valid (with a slight modi cation) even when removing this
condition. The condition is particularly convenient when using Russo's formula (Theorem
2.1.3). It will be obvious from the proofs that the condition may be weakened by only
asking for positive density of edges with intensity boundedaway from 0, and likewise for
intensity bounded away from 1. This second condition is ensted by the box-crossing
property.

Due to the above, if (G;P) has the box-crossing property BXP(p; ) for somelg and

> 0, then it also satises BXP(1; 9 for an adjusted °> 0. Henceforth, we write

BXP( 9 instead of BXP(1; 9.

For v 2 V, we recall the notation C, for the open cluster containingv, and de ne the
radius of the cluster as

rad(Cy) =inffr 0:C, r + VG

The following two propositions are the main results of this fction.
Proposition 2.1.1. SupposeP has the box-crossing propertyBXP( ).

(@) There exista;b > 0 such that, for everyv 2 V,

Prad(C,) k) ak % k o (2.1.1)

(b) There exists, P-a.s., no in nite open cluster.

(c) For < 0, there existc;d > 0 such that, for everyv 2 V,

P(Cj k) ce® k o (2.1.2)

Proposition 2.1.2.  SupposeP has the box-crossing propertyBXP( ).
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2.1. Criticality via the box-crossing property

(&) There exista;b > 0 such that for everyv 2 V,

P(rad(Cy) k) ak ® k O

(b) For > O there exist > 0 such that for everyv 2 V,

P(v$l )>:

(c) There exists, P -a.s., a unigue in nite open cluster.

Moreover, the constants in the above statements depend onlgpn , not otherwise on
G orP.

These two results are well known in the case of homogeneousmgelation. Our proofs
are adaptations of known techniques; here we follow the prdoof [Gril0, Section 5.8]. We
use two important tools, Russo's formula and an in uence therem. Both of them are
frequently used in percolation theory, as well as in relatednodels. Nevertheless they are
usually stated only for homogeneous measures. We next giveeksions adapted to our
inhomogeneous models.

2.1.1 Preliminaries

The following result is the inhomogeneous version of the weknown Russo formula. For an
account on Russo's formula see [Gri99, Section 2.4]; the v&pon for inhomogeneous product
measures is obtained through exactly the same computationas the one for homogeneous
measures.

Let A be an increasing event in . For an edgee 2 E and a con guration ! 2
we saye is pivotal for Aif 1 ¢2 A and!¢ 2 A. Here! € and ! . are the con gurations
equal to! for all edges dierent of e and with ! € =1, ! . = 0 respectively. The quantity
P(e is pivotal for A) is called the in uence of the edgee on A, and is written 1 (€). When
working with P instead of P, we write | , (€) for the in uence of e.

Theorem 2.1.3 (Russo's formula). Let A be an increasing event de ned in terms of the
states of only nitely many edges ofG. Then, for e2 E,

@(A) -
——= = P(eis pivotal for A): 2.1.3
@p - Feisp ) (2.1.3)
By summing (2.1.3) over the edges of5, we obtain, forj j< o,
X X
@A) _ P (eis pivotal for A) = INGE (2.1.4)
@ e2E e2E

. . ] =]
It will therefore be useful to have an estimate of the total inuence, ¢ ,(€).
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Applications of the box-crossing property

This takes us to our second important tool in the poof of criticality, in uence theo-
rems and their usage in proving sharp{threshold properties The rst important in uence
theorem appeared in the seminal paper known as KKL, [KKL88];many generalisations
of this result followed, among them are the paper known as BKKL, [BKK *92], and the
revision of the rst two by Friedgut, [Fri04]. The initial pa per was limited to the study
of product measures on discrete space®; 1gN, the subsequent papers generalised the re-
sult to product measures on more general spaces. Versions foon-product measure later
appeared in [GGO6].

For our study we need an in uence theorem for inhomogeneousrpduct measures. To
our knowledge such a result has not yet been stated in the litature, but one may easily
be derived from known theorems. Let us rst state the desiredresult, then discuss its
proof.

Proposition 2.1.4.  There exists a constantc 2 (0;1 ) such that the following holds. Let
A be an increasing subset of the spackD; 1gN endowed with an inhomogeneous product
measure P, such that P (A) 2 (0;1). Then:

IA() cP(AYL P(A)log oo
i2f 1::Ng

wherem = max; I a(i), and the in uences are computed under the measuré®.

In order to prove this result we will use continuous in uencetheorems. Such a theorem
works with the cube [0, 1]V instead of the spacef 0; 1N, and the reference measure is, in
this case, the Lebesgue measure This kind of theorem was rst formulated in [BKK *92],
though, as observed in [Fri04], that version contained a mitake. Friedgut gave another,
slightly modi ed version of the same result [Fri04, Theorem 1.5]; yet another version may
be found in [Gril0, Theorems 4.33 and 4.38].

We rst need to explain what we mean by in uence in the continuous case. For an
increasing eventA 2 [0; 1]V, de ne the in uence of the i coordinate onA as

Ia(i)= (1A 1a():

Here ! ' and !; are the elements of [01]N identical to ! on all coordinates except on
the i, where they are equal to 1 and 0, respectively. We are now regdto state the
continuous in uence theorem that we will use to prove Proposgtion 2.1.4. This version is
taken from [Gril0, Theorem 4.33].

Theorem 2.1.5. There exists an absolute constant 2 (0;1 ) such that the following
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2.1. Criticality via the box-crossing property

holds. Let A be an increasing subset of the cubf®; 1[N with (A) 2 (0;1). Then

. 1
I _ .
) cA@ (A)log 5o
i=1
wherem = max; I a(i) and the in uences are computed under the measure.
Moreover there existsi 2 f 1::: N g such that

logN

A() (AL (A)<y

Proof of Proposition 2.1.4 from Theorem 2.1.5. Throughout this proof ! stands for an
element of the cube [01]Y, denotes the Lebesgue measure on;[N, and P is an
inhomogeneous product measure ofi0; g, with intensities (pi)izf 1::ng- For ! 2 [0; 1]V,
de ne + as the element off 0; 1gN with:

Bi)= L) 1 ps  T=L0iN

With this de nition, if ! is chosen according to , then ~ follows the law P. Thus, for an
increasing eventA f 0;1gY, we may dene A = f! 2 [0;1]Nj~ 2 Ag, and observe that

(A) = P(A). Moreover A is also increasing, and the in uences under on A are equal
to the ones onA under P:

(1a(h)  1a(19)
(1) 1))
P i is pivotal for A" :

Ia(i)

Hence
X X
INOE Ia(i) ¢ (A)Q  (A))log[1=(2m)];
i2f 1::Ng i2f 1::Ng
wherem = max; I a(i) = max; | 4(i). O

2.1.2 Proof of Propositions 2.1.1 and 2.1.2

Proof of Proposition 2.1.1, (a) and (b). Obviously (2.1.1) implies the non-existence of in-
nite components, let us therefore prove (2.1.1). Fix P as in Proposition 2.1.1 and choose
avertex v 2 V. For simplicity we supposev is placed at the origin of R2. For n 1 de ne
A, = A(2";2"*1) as the square annulus centered aw, with inner radius 2" and outer
radius 2"*1. Let H, be the event that there exists a dual open circuit inA,, surrounding
e
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Figure 2.1.1: The annuli aroundv. If A, contains an open circuit, then the open cluster
of v has radius at most 2*1. To construct such a circuit we may use the box-crossing
property for the dual in the four rectangles that form A,.

The events Hy)n o are independent since the annuliA,, are disjoint and H, only
depends on the edges entirely contained ik ,. Moreover, using the box-crossing property
for P and the FKG inequality, we deduce that there exists a constah cg = cg( ) > 0 such
that P(H,) c¢coforn O (see Figure 2.1.1).

If Hy occurs, thenC, is contained in s+, Since it can not cross the open circuit in
An. Thus

" \ "
Plrad(C,) 2"] P He (1 o)t

k<n
and (2.1.1) follows. O
Before proving Proposition 2.1.1 (c), we prove Proposition2.1.2.

Proof of Proposition 2.1.2. Take P as in Proposition 2.1.2. Point (a) is obtained by a
standard construction involving crossings of #  2k*1 rectangles, withk = 1;:::;logN.
For more details see the proof of (2.5.19).

We turn to point (b). First we use sharp-threshold to show that, for > 0, the P -
probabilities of crossings of boxes of xed aspect ratio ted to 1 as the size of the box
tends to in nity.

Fix an aspect ratio 1,and 2 (0; o), and consider horizontal crossings of the box
B(N;N ) for N 2. Denote Hy the event that such a crossing exists and, let  (e) be
the in uence of the edgee on the eventHy, under the measureP .

Since P satis es BXP( ), by Proposition 2.1.1 (a), there exist constantsa;b > 0 such
that, for any dual vertex v,

Plrad(C,) >n] an ®

This also holds forP by monotonicity.

38



2.1. Criticality via the box-crossing property

Figure 2.1.2: For the edgee to be pivotal for H,, it needs to be connected by open paths
to the lateral sides of B( N;N ) and by open paths to the top and bottom of the box.

For an edgee to be pivotal, open paths must join it to the lateral sides of B( N;N ),
and open paths must join it to the top and to the bottom of the box, as in Figure 2.1.2.
Let (u;v) = e, then

Iy(® P radC,) Y 1+P radc,) % 1 aN %

wherea® b’> 0 are constants obtained froma and b, and which do not depend one. Using
Proposition 2.1.4, we obtain

dP (Hn)

g P (Hv)(@ P (Hn))logN; (2.1.5)

for somecy > 0. SinceP satis es BXP( ), there exists ¢; > 0 (independent of N) such
that P(Hy) ¢ For 2 (0; o], by integrating (2.1.5) between 0 and , we obtain

P(Hy) 1 N @1 L (2.1.6)

The above computation did not depend on the positioning and oientation of the box,
hence the bound (2.1.6) holds for all rectangular boxes of a®ct ratio

In addition to the convergence of crossing probabilities tol, (2.1.6) oers a bound
on the speed of convergence. We may then conclude by an arguntesimilar to that of
(2.5.19). For illustration we choose an alternative route,via a block argument that only
uses the convergence.

Fix 2 (0; o), and consider someN > 0. A block is one of the N N rectangles of
the right diagram of Figure 2.1.3. The blocks form a network $milar to the square lattice.
Call a block good if it contains an open crossing in the long direction, along vith two open
crossings in the short direction contained in the squares atts ends (see the left diagram
of Figure 2.1.3). The states of di erent blocks are not generly independent since blocks
may overlap. The system of blocks thus created correspond®ta nite-range dependent
bond percolation on the square lattice.

Standard arguments (for instance a counting argument) showthat the critical point
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Applications of the box-crossing property

It

Figure 2.1.3: Left: for a block to be good, it needs to have an open crossing in thehg
direction, and two open crossings in the short direction cotained in the squares at its
ends. Right: a con guration of good blocks with the underlying open paths

of this block percolation model is strictly less than 1. In other words, there exists some
pc(block) < 1 such that, if the probability for any block to be good is higher than p(block),
then there exists almost surely an in nite connected compoent of good blocks. Moreover,
the probability for a given block to be contained in such an innite component is bounded
away from 0O, uniformly in the choice of the block.

By (2.1.6), when N tends to in nity, the probability for the blocks to be good te nds
uniformly to 1. Thus, for N is large enough, there exists a.s. an in nite connected
component of good blocks. By the de nition of good block, this implies the existence of
an in nite path of open edges in the graphG. Moreover, forv 2 V, there exists a uniform
lower bound (uniform in the choice ofv) for the probability that there exists an in nite
open path within distance 4N of v. Since every edge has probability at leastg +  of
being open,v is connected to this in nite path with uniformly positive pr obability. This
concludes the proof of the existence of an in nite componenunder P .

The uniqueness of the in nite component follows by the fact that, under P , there
are a.s. in nitely many annuli A(2";2"*1) containing open circuits. Note that we do not
require the machinery of the classical uniqueness result gBK89]. O

Finally we prove Proposition 2.1.1 (c). The arguments we useare a combination of
the sharp{threshold technique of the previous proof and thefollowing lemma taken from
[Kes81, Thm 1].

As in the previous proof we will only use the convergence in (2.6), with P instead
of P. If we allowed ourselves to use the speed of convergence, théhe result would
immediately follow. We choose this longer proof for future eference.

Lemma 2.1.6. Let G be a planar graph endowed with a percolation measurB, with
intensities bounded away from0 and 1 by 1 > 0. There exists an absolute constanty
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2.1. Criticality via the box-crossing property

1& A
7 NrN

Figure 2.1.4: If the rectangle B(4N; 2N) is crossed vertically by , then contains two
disjoint crossing of 2N N rectangles in the short direction.

G\/

such that

PIoBEN; 2N))] P supP [O(f (B(2N; N ))]; (2.1.7)
1 f

where C(B) is the event thatB contains an open crossing in the \short" direction, and the
supremum is taken over all functionf composed of a translation and;-rotation.

The proof of this lemma is deferred until the end of the sectio. The graph and the
measure in the lemma are not necessarily those of Propositio2.1.1.

Proof of Proposition 2.1.1 (c). Take P as in Proposition 2.1.1, and x 2 ( -;0). By
the box-crossing property for P and the theory of inuence (same as in the proof of
Proposition 2.1.2), for N large enough,

P [f (B(2N;N)) has an open crossing in the long direction] 1 4—80;
for any function f composed of a translation and a rotation. But if such a crossig exists,
then there exists no open crossing in the short direction. Usg Lemma 2.1.6 repeatedly,
we obtain
h k+1 k ! k_O
+ . _ 0.

P CB 2°°N;2°N 2 200 (2.1.8)
This also holds for any rotation and translation of B(2*2 N: 2N ). The conclusion, (2.1.2),
follows easily. O

Proof of Lemma 2.1.6. Consider the rectangle B(4N; 2N). Split B(4N;2N) into eight
N N squares as in Figure 2.1.4, and call a tiling rectangle the uon of any two adjacent
squares. There are ten tiling rectangles altogether, four ertical ones and six horizontal
ones.

Suppose there exists an open crossing of B(4N; 2N ), from [0;4N] f Og to [0; 4N ]
f2Ng. Orient from the bottom to the top of B(4N;2N). Then contains two disjoint
crossings (in the short direction) of tiling rectangles, ore before its rst intersection with
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Applications of the box-crossing property

[0;4N] f Ng, and one after its last. The tiling rectangles containing the two crossings
need not be di erent.

Consider two tiling rectangles B1, B,. By the BK inequality, the probability that
there exists an open path containing disjoint crossings oB; and B, is bounded above by
1P[C(B1)]P[C(B2)], where the factor ; comes from the possible edge common to the two
crossings (see Figure 2.1.4). By considering all combinatns of two tiling rectangles, we
obtain (2.1.7). O

2.2 The the RSW lemma and the box-crossing property

2.2.1 Discussion

Let G be a planar graph embedded in the plane, and® be a percolation measure orG.
Heuristically, the RSW lemma states that the probability of crossinga 2 N rectangle
in the long direction may be bounded below by a positive funcion, , of the probability
of crossing aN N square. Moreover, it is sometimes useful to have(p) ! 1 asp! 1.

Later in this section we give precise RSW statements for mods that are periodic
and invariant under rotation and re ection with respect to t he axes. Before doing so, we
would like to discuss the relation between the RSW lemma, sélduality, criticality and the
box-crossing property.

Consider homogeneous bond percolation on the square latécwith intensity p. Russo,
and Seymour and Welsh proved in [Rus78, SW78] a RSW lemma forhts model (see
Lemma 2.2.1). Whenp = % the model is self-dual, hence the probability of crossing a
N N square is (roughly)%. Using the RSW lemma, we deduce the box-crossing property
for P, ,. Criticality follows as in Section 2.1.

Mzo’?e generally, if a model satis es some form of the RSW lemmgaand is self dual, then
the box-crossing property and criticality follow as above. The RSW property by itself is
not su cient to imply criticality, it requires an input, whi  ch usually comes in the form of
self-duality.

While the RSW lemma presented later does not use self-duaiit other than as an
input, there are variations on the RSW result which are basedon self-duality. Some
require considerably less symmetry than the one presenteddne (see [BR10]). Note that
our models are generally not self-dual, hence the methods 8R10] do not apply to them.

Let us now address the di erent question of when does criticaty imply the box-crossing
property. We claim that for a model (G; P), which is periodic and invariant under rotation
and re ection with respect to the axes, criticality implies the box-crossing property for
both the primal and the dual measures. This may be shown as f@ws.

For simplicity suppose (G; P) is invariant under rotation by =2 around 0, and under
translation by (1;0) and (0;1). The same reasoning works in the general setting, with
adaptations as in Lemma 2.2.2.

42



2.2. The the RSW lemma and the box-crossing property

First we show that, for n large enough, there existsco > 0 such that
PIG(B(2n;n))]  co: (2.2.1)

Suppose the converse. For> 0, using an argument similar to Lemma 2.1.6, we nd that,
if P [G/(B(2n;n))] is less than some universal constant; > 0, then the cluster size has
exponential decay, as in Proposition 2.1.1 (c). By our assumtion, we may nd n such
that P[G,(B(2n;n))] < %. Then, for > 0 small enough,P [G,(B(2n;n))] < c1. Hence
there exists P -a.s. no in nite cluster. This contradicts the criticality of P, and (2.2.1) is
proved.

To conclude, we use the RSW lemma (see Lemmas 2.2.1 and 2.2y the dual and
primal model to obtain the box-crossing property for P. The same argument may be used
to obtain the box-crossing property for P .

2.2.2 Statements of the RSW lemmas

We now give two RSW lemmas for models exhibiting su cient symmetry. Although
identical in spirit, the two di er due to the characteristics of the model.

Let G be a planar graph andP be a percolation measure on it. SupposeQ;P) is
periodic, invariant under rotation and under re ection wit h respect to two perpendicular
lines. We remind the reader that G is locally nite, and we will use this implicitly in the
geometrical considerations that follow.

Take 2 (0; ) to be the minimal angle such that G is invariant under rotation by
angle . Then = ZT for somek 3. First we claim that, due to periodicity,

2
2 —, 2.2.2
3 1 ( )

2'3

This is obtained as follows. Letx 2 R? be a point such that (G;P) is invariant under
rotation by angle around x, and let  denote this rotation. For u 2 R?, let , be the
translation by u. Take u such that G is invariant under  and

juj =inf fjvj : G is invariant under ,g: (2.2.3)

By rotation invariance, G is also invariant under translation by j(u) for j 2 Z, and by
J(u) u. By choice ofu we havej '(u) uj | uj. This implies k 2 f 3;4;6g, whence
(2.2.2).

We distinguish two cases.

i =3,
(i) 2f4 %50
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The square lattice is representative of the rst, whereas the triangular and hexagonal
lattices are examples of the second. These are not the only gphs exhibiting such sym-
metries, non vertex-transitive examples may be constructd.

In the rst case we may suppose that G; P) is invariant under re ection with respect
to the line R f Og. It is also invariant under rotation by - around a point x. It is not
always the case thatx is on the line R f 0g, but by periodicity we may always choose
x 2 R f 0Og. By translation and rescaling we may takex = ( %; %). It is then easy to check
that ( G; P) is invariant under translation by (2 ;0) and (0; 2), and that it is also invariant
under re ection with respectto fkg RandR f kgfork 2 Z.

The RSW lemma in this case may be written as follows.

Lemma 2.2.1 (RSW). For > 1 there exists a function :(0;1]! (0;1] such that, for
n 4,

P[G(B(2n; 2n))] (P[G(B(2n; 2n))]) : (2.2.4)

Moreover (p)! lasp! L

We now move on to the second case. Suppos&(P) is invariant under rotation by %
and re ection with respect to two perpendicular lines, I1;l,, parallel to the axesR f 0g
andfOg R, respectively. By rotation invariance, it is also invariant under re ection with
respect to a linels, that makes an angle5 with I;. Translate the plane such that 0 = I\ I3.
The lines |, and I3 intersect in O at an angle 5. Moreover they are both axes of symmetry
for (G; P). It follows, by repeated re ections, that ( G; P) is invariant under rotation by =
around 0 and under re ection with respect to all lines forming an anglek with R f 0Og
(k 2 Z). Finally, (G;P) is also invariant under translation by a vector u, which may be
taken on R f 0Og. By rescaling we takeu = (1;0).

The RSW lemma for this case is very similar to the one for = -, the only di erence
is that we have to work with parallelograms instead of rectamgles. Letuyx be the rotation
of u by k5 around 0. De ne B# (m;n) to be the parallelogram with sidesmug, nu;. The
events G,(B*), G,(B*) are de ned as for B.

Lemma 2.2.2 (RSW). For > 1 there exists a function :(0;1]! (0O;1] such that, for
n 1
h [ h [
P G B*(4n; 4n) P G, B*(4n;4n) (2.2.5)

Moreover (p)! lasp! 1

2.2.3 Proofs of Lemmas 2.2.1 and 2.2.2

The two lemmas, as well as their proofs, di er only slightly due to the di erent symmetries.
We give a complete proof of Lemma 2.2.1 and only sketch that okemma 2.2.2.
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2.2. The the RSW lemma and the box-crossing property

Proof of Lemma 2.2.1. We follow the standard proof of [Gri99, Thm. 11.70], which inturn
follows that of [Rus81]. The minor di erences with [Gri99] come from the more general
setting.

Fix n 2 and consider the following rectangles:

Bi=[ n+2;n+1] [0;2n];
Bo=[1;2n+1] [0;2n];
Bz =[1;2n] [O;2n]:

We remind the reader that (G; P) is invariant under

i i — 1.1
(i) rotation by =2 around 515

(i) translation by (2 ;0) and (0; 2),
(iii) re ection with respect to the lines R f kgandfkg R fork2 Z.

Thus we have

P[G(B1]: P[G(B2)];P[Gi(B3)]  P[G(B(2n;2n))]: (2.2.6)

Let H; (respectively H?) be the event that there exists a horizontal crossing o 1, which,
when oriented from left to right, has its last intersection with the line f1g R below or
at (respectively above or at) heightn. By re ection invariance P(H1) = P(HY). Also H;
and H? are increasing events. By the FKG inequality

1 P[G(B)I=P H{\ (HD® (1 P(Hy)?:
Hence
P(H) 1 I01 P[G(B1)]: (2.2.7)

The argument used to obtain (2.2.7) is sometimes called thecgiare root trick.
Let be a path on G (not assumed open) crossind; horizontally, and let x; be the
last intersection point of with the line flg R. Supposex; is below or at heightn. Let
be the set of edges which intersecB 1, and are below or part of . SupposeH; occurs
and let 1 be the lowest open path crossind 1 horizontally. By choice of 1, the measure
P(:j 1 = ) is identical to P outside
Let | be the sub-path of between x; and its endpoint onfn+1g R, and de ne
¢ as the re ection of | with respect to the line fn+1g R. Let H, be the event that
there exists an open path , in By, above |[ |, with one endpointon [1;2n+1] f 2ng
and one on |, By an argument similar to the square root trick used above, ad involving
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2n

X1

G0~  *

Figure 2.2.1. The eventsf 1 = g, Ho and H3. Either » intersects 3, or 3 intersects
the line f2ng [0;2n]. In both cases there exists an open horizontal crossing of p +
2;2n] [0; 2n].

the re ection invariance with respectto fn+1g R,

PHj 1=) 1 "1 PGB (2.2.8)

Let Hi» be the event that there exists a open path as in the de nition of H1, with the

additional requirement that | ! B2 [1;2n+1] f 2ng, where | isdenedas . If ;=

and H, occurs, thenH 12 also occurs, with, for instance, = 1 and the connection to the

top of B, provided by . By summing (2.2.8), for ranging over the possible values &
1, We obtain

PHp) 1 pl P[G(B2)] 1 I01 P[G\(B1)] : (2.2.9)

Finally let H3 be the event that there exists a open horizontal crossing, 3, of B3, with
its left endpointon fn+1g [n; 2n]. We have

P(Hs) 1 pl P[G\(B3)]: (2.2.10)

If both H1> and H3 occur, then there exists an open horizontal crossing of [n +2;2n]
[0;2n]. See also Figure 2.2.1. Moreover both events are increaginhence, by the FKG
inequality and (2.2.6), (2.2.9) and (2.2.10),

PG( n+2:2n] [0:2n]) 1 P PGB 20))] - (2.2.11)

The right hand side of the above is strictly positive if P[G,(B (2n; 2n))] > 0. It also tends
to1asP[G(B(2n;2n))] ! 1.
Note that[ n+2;2n] [0;2n]is a rectangle with height 2n and length 3n 2 %(Zn).
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A, B, A B1

Ay As

Figure 2.2.2: Left: A horizontal crossing of G,(B# (4n; 4n)) contains a crossing ofHq from
(As;Ap) to (A2;As). Right: 1 is a crossing as inC(Hg), which last intersect (B»; B4)
below B3. The open path ; links (B1;B>) to |, inside H;. Its existence is obtained by
a square root trick using the re ection invariance with respect to A1As. Finally 3 is a
crossing ofH 1, between Bs;B;) and (B»; B3). Together, 1, 2 and j3induce a horizontal
crossing ofHg [ Hj.

Using (2.2.11) and the periodicity of G, we further combine horizontal crossing of translates
of [ n+2;2n] with vertical crossings of translates ofB, to obtain Lemma 2.2.1. O

Proof of Lemma 2.2.2. The proof is very similar to the previous one. We sketch it vey

(As; A1) to (A2;As). Note that, due to translation invariance and to the considerations
of Figure 2.2.2,
h [
P[C(Ho)] P Gy(B* (4n;4n)) : (2.2.12)

Let H; be the translate of Hg by (n; 0), with vertices By;:::;Bs. Using the square
root trick, the FKG inequality and rotation and translation invariance, we may also show
that

h o i P
P (B1;B2)!" " (B4;Bs) 1 1 P[CHo] (2.2.13)

By the same argument as in the previous proof, we show that

h i
P ('°~2;'°~4)!H0[Hl (Bs;B1) |

p 2 r h Ho I
1 1 P[C(Ho)] 1 1 P (B1;B2)! " (Bs;Bs)

See Figure 2.2.2 for the geometric construction we use. We mgon that for this proof we
require re ection invariance with respect to both the horizontal and the vertical axes. We
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Applications of the box-crossing property

give no further details of the proof. O

2.3 Separation theorem

In this section we present and discuss a general result conteng arm events, usually called
the separation theorem. It basically says that, conditiondly on A (N;n), the endpoints
of the arms are far away from each other, in such a way that theycan be extended via
box crossings.

The result rst appeared in [Kes87b], then was rewritten seweral times. We will adapt
Nolin's version from his review [Nol08] of Kesten's work. Inboth papers the result is
presented in the context of homogeneous site percolation,avertheless it is actually valid
in a much more general context, in particular in the context of bond percolation on graphs
satisfying the conditions of Section 1.3.1. The theorem réks heavily on the box-crossing
property, thus illustrating its importance.

2.3.1 Notation

In order to state the theorem we need to rstintroduce some naation. In the whole section
we will work with an arm event of the type A (N;n) for some xed colour sequence of
length k (not necessarily alternating). All constants in the following statements depend
implicitly on k and

Consider a boxBy :=[0;N] [0;4N] and a constant 2 (0;1). The notions de ned
here refer to crossings oBy and more particularly to their properties near their endpoints.
We will focus on horizontal crossings and their endpoints orthe right side of By, i.e. on
fNg [0;4N].

A primal (respectively dual) -fenceis a set of connected open (respectively, open)
paths comprising the union of:

(i) a horizontal crossing of By, with endpoint z = (N;y) on the right side of By,
(ii) a vertical crossing of the box [N; (1 + P IN] [y Ny + NJ,

(iii) a connection between the above two crossings, contaied in P4 + z.

A -well-separatedsequence of fences is a sequenceg){21.--x such that:

(i) each ;is a -fence (primal or dual),
(ii) the ; are pairwise disjoint,

(iii) if we call z the right extremity of the crossing of By associated to j, the points

(zi)iz21::mk are at distance at Ieastp N from each-another and from the corners of
Bn.
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Figure 2.3.1: Left: two -fences inBy. Right: the event A?;'(N;n) with = (1;1;0).
Each arm ; is a fence with landing point z; in nl;.

A sequence of -well-separated fences may contain fences of both colourgd. primal and
dual fences). For illustrations of both de nitions see Figure 2.3.1.

The de nitions of fence and of well-separateness may be adagd in the obvious way
to crossings of annuli, on both their interior and exterior boundary (the factor N will
then refer to the interior, respectively exterior, radius of the annulus). See Figure 2.3.1.
Note that we may ask to be simultaneously a -interior-fence and a %exterior-fence of
A(N;n). In this case, we ask that the crossing ofA (N; n) contained in , have additional
paths near both its interior and exterior endpoints, with factors , N and © n respectively.

We say that a set of disjoint crossings (;); of By can be made into -well-separated
fences if there exists a set of -well-separated fences Tj);i, such that each 5 has the same
left-most extremity and the same colour as ;. We say that By is -separableif any
sequence of disjoint crossings dBy can be made into -well-separated fences.

An -landing-sequenceis a sequence of closed sub-intervals= (1; :i =1;2;:::;k) of
@ 1, taken in anticlockwise order, such that eachl; has length , and the minimal distance
between any two intervals, and between any interval and a camer of 1, is greater than
P = We shall assume that

o<k( +2P)<s (2.3.1)

so that -landing-sequences exist.

Let ; Osatisfy (2.3.1), and let| (respectively, J) be an -landing-sequence (respec-
tively, “landing-sequence). Write A'™ (N;n) for the event that there exists a sequence
of -interior-, exterior-fences (; :i =1;2;:::;k) in the annulus A(N;n), with colours
prescribed by , such that, for all i, the interior (respectively, exterior) endpoint of ; lies
in NI; (respectively, nJ;). Let A';?(N; n) (respectively, A7 (N;n)) be given similarly in
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Applications of the box-crossing property

terms of -interior-fences (respectively, %exterior-fences). Note that
A (N;n)  ATI(N;n); AR (N;n) A (N;n): (2.3.2)
These de nitions are illustrated in Figure 2.3.1.

2.3.2 Statement of theorem

Now that the notation is in place, we are ready to state the man result of this section.

Theorem 2.3.1 (Separation theorem) Let k 2 N, and 2 f0; 1gk. For ;1o > 0, and
o > 0, there exist constantsc > 0 and n; 0 such that: for all (G;P), with P and
P satisfying the box-crossing propertyBXP(lg; ), all ; °> ¢ satisfying (2.3.1), all
-landing-sequenced and %landing-sequences), and all N niandn 2N, we have

P AW (N:n) cP[A (N;n)]:

Amongst the consequences of Theorem 2.3.1 is the following.

Corollary 2.3.2. Let G be a planar graph andP be a percolation measure. Suppose and
P satisfy the box-crossing propertyBXP(lo; ). For k 2 N and 2 f 0;1g¥, there exists
c=c¢(; )>0andng=ng(lp) Osuchthat, foralN ngandn 2N,

P[A (N;2n)] cP[A (N;n)]:
PA Xin cP[A (N;n)]:

Proof. We prove the rst inequality, the second is similar.
Let = (k) be such that there exists an -landing sequence of lengthk, entirely

be given by the separation theorem applied to G; P) for this value of . For N n;_ g
andn 2N, let H, be the event that, for eachi 2 f 1;:::;kg, the rectangle |h;2n] I;
contains a horizontal crossing of colour ;.

By the box-crossing property BXP(lg; ), there existscg = ¢p( ) > 0 such that P(Hp)
Co. By the upcoming Lemma 2.3.3

PIA (N;2n)]  PIA"'(N;n)\ Hn]  coctP[A (N;n)];
wherec; = ¢i(;k) > 0 is given by the separation theorem. O

2.3.3 Proof of the separation theorem

In the proof of Theorem 2.3.1 the typical events consist of tle existence of certain open
and open paths. The usual FKG inequality is not enough to control the probabilities
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2.3. Separation theorem

of intersections of such events. Before the actual proof wetae an enhanced version of
the FKG inequality, adapted to our setting. The following le mma is taken from [Nol08,
Lemma 12], and we direct the reader to the original work for the proof.

Lemma 2.3.3. Consider A*, A* two increasing events andA , A two decreasing events
on = f0;1g%. Assume that there exist three disjoint nite sets of edges\ , A* and A
such thatA* ,A , A* and A depend only on the edges in, respectivelA[A *, A[A
A* and A . Then we have

PIA*\ A jJA*\ A ] P& IPIA I;

for any product measureP on

The proof of Theorem 2.3.1 is long and intricate and we would ike to focus on the
structure. Hence we have split it into a sequence of lemmas.

Fix a planar graph G with a percolation measureP, and assumeP satis es BXP(lg; )
for somelp; > 0. All constants in the following statements depend implicitly on , and
lo, but not otherwise on (G; P).

For the sake of clarity we will limit ourselves to the case of he exterior boundary; the
same may be adapted to the interior boundary. For > 0, denoteA (N;n) the event that
there exists a sequence of-well-separated fences (j)iof 1.:kg iIN A(N;n), with colours
given by

We skip the explanation of why we may restrain ourselves to tle case wher@ and N are
integer powers of 2. We remind the reader thatBy denotes the rectangle [ON] [0;4N].

Lemma 2.3.4. For > Othere exist °= 4 ) > 0and Ny = Ng( ) 2 N such that for
all N No

P[By is “separablé> 1 2

It will be obvious from the proof that ©can be chosen to be increasing in. This
lemma is the engine room of the proof of Theorem 2.3.1; we wilhdmit it for now and
prove it in the next subsection. Here is a consequence.

Lemma 2.3.5. Take > Oand °= { ) given by Lemma 2.3.4. Then, forn > N
No( ),
PIA (2Y;2)] PIA Q@Y 2N+ PIA (V2" 1);

and
X . . .
P[A (2V:2M)] IplA @@V 2"
0 j<n N
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Applications of the box-crossing property

In the preceding lemma, as well as in the following ones, we osider P[A O(n; n) =1;
this proves to be a coherent convention.

Proof. For the rst equation note that, under the event A (2N;2") nA 0(2N ;2"), one of
the four 2" 1 2"*1 _rectangles formingA(2" 1;2") is not Zseparable (on its outward
facing side). The latter is an event that, by Lemma 2.3.4, is & probability at most
Moreover, the fact that one of these boxes is not Lseparable is independent of the states
of the edges inA(2N;2" 1). Thus
h [
PA @2V:2")nA °(2V;2"
P fone of the rectangles is not “separablg\ A (2V;2" 1)
PA@N:2" Y :

This proves the rst inequality.
The second inequality is obtained by repeatedly applying tle rst, until we reach the
event A '(2N;2V), which has probability 1. O

Lemma 2.3.6. For ©> 0 satisfying (2.3.1), there existsCqo = Co( 9 > 0 such that for
j N Othere exists a “landing sequencd ° with

PIA °(2V;2)]  CoP[AT! (2N 2)):

Proof. First supposej >N . For given %we may nd a nite family of ~ %landing sequences
such that any set of k 2well separated fences ofA (2N ;2") lands in at least one of the
landing sequences of the family. TherCy is given by the inverse of the number of sequences
in the family.

If j = N both probabilities are, by convention, 1. O

Lemma 2.3.7. For %> 0 there exist constantsC; = C1( 9 > 0and Ny = Ny( 9 2 N
such that for allN 2 Nandj Ni( 9, for any %landing sequence ©, for any 0
and any -landing sequencd ,

PIAT12N ;2] P (N2
Proof. This is done through an explicit construction using crossimgs of boxes as illustrated

in Figure 2.3.2. By the box-crossing property and Lemma 2.3 we obtain

h | !
P AT (2024 A2 2y Cy( 9:
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LINX
T |0
NI I | 0
/]
N
2] +1 2j

Figure 2.3.2: The extension of a fence fromA (2V;2) to A(2N ;2 *1). All rectangles have
aspect ratio controlled by ° Since °may be small and we may need to tk disjoint
such construction in A(2/; 2*1) we need a lower bound orj. Thus we imposej N in
lemmas 2.3.7 and 2.3.8.

The following lemma is a particular case of Lemma 2.3.7; we ate it separately only
to emphasize the steps of the proof.

Lemma 2.3.8. For ¢ > O there exist constantsC, = Co( ) > Oand N2 = No( ) 2 N
such that for all 0o N2N,j N2(), and any -landing sequencd ,

P A7 @2Y;2)  CoP ATV 27
Let us now see how to use the above lemmas to conclude.

Proof of Theorem 2.3.1. Fix > 0. Consider the quantitiesC»( o) > 0 and N, given by
Lemma 2.3.8 applied to g.
Let = %; Lemma 2.3.4, applied with this value of , yields quantities °> 0 and Ny.
Since Ois increasing in , we may choose °< .
Lemma 2.3.6 applied to °yields a constantCq > 0.
Lemma 2.3.7 applied to %yields a constantC; > 0 and a rank N.

We have written this so as to stress the fact that all constans in the computation
depend only on o. Consider now some 0, N N maxfNg;N1;Nog and a -
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landing sequencd . By the above lemmas we have

P A (@Y;2)

P A (2“‘;2”)h ,
X . |
ip AN 2" Iy by Lemma 2.3.5
0 an N h i
ICoP A?1°@2N ;20 1) by Lemma 2.3.6 ( °depends onj)
0 j,n N

JCoCiP AT (2N ;20 T+ by Lemma 2.3.7

0 j,n N
X _ ,
JCoCiCLP A7 (2N 20 by Lemma 2.3.8 for >
0j n N
: , 1
2CoC1P A7 (2N ; 20+ since Co 3.
The above string of inequalities yields the desired result. O

2.3.4 Proof of Lemma 2.3.4

There are two parts in the proof of this lemma. First we show that, with high probability,
the crossings can be made to land far from the corners dBy, then we transform the
crossings into fences. Both parts are based on constructisnusing circuits in concentric
annuli. We will use constants C; > 0 which arise from box crossing constructions and
depend solely on . Fix > 0, and work in the box By = [0;N] [0;4N], where N is
large, we will see later how large.
Crossings land far from corners. Denote Z* (respectively Z ) the upper right (re-
spectively lower right) corner of the box By . Consider some small > 0 (we will see later
how small), and sayZ™* is protected (or -protected) if there exist two paths, one open
and one open, both at distance at least PN from Z*, that separate Z* from the left
side of By (in By ). See Figure 2.3.3, right diagram. By the box-crossing proprty, there
exists Co = Cg( ) > 0 such that
h p k. P k+1 ; ; ; | .
P Az N 257N 2 contains an open/open circuit Co;

for any k as long as® N 2% 1.

Supposep N I and considerk 2 N such that P N 2¢*1 <N . If one of the annuli
Az (IO N 2% P N 2k*1) 'with1 k K, contains an open circuit, and another an open
circuit, then the corner Z* is protected. Hence

P[Z* is protected] 1 2(1 Co)X:
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2.3. Separation theorem

By taking K as large as possible in the above expression, we obtain

2+

P[Z* is not protected] 2(1 Co) #nz:

The right hand side is smaller than if

2In51In2

P ha

1():

In the above computation we have used thatN g = N1( ).
To conclude, forany < 1and N  Nj,

P[Z" is not -protected]

The same holds forZ , with the same values of ; and Nj.
Z+
I P N

N
- =~ I TZi+

Bn

Figure 2.3.3: Left: The corner Z* is protected. Right: The point z is protected. The
innermost path guarantees the fact that ; is a fence; the two outer paths guarantee that
jZi+1 Zij N .

Crossings may be made into fences.  Let | be the total number of disjoint crossings of
Bn, both open and open. First we bound |. For T 1landN |g, by the box-crossing
property and the BK inequality,

P T1 PO 1" (1 CyT;

with C; = Cy( ) > 0 coming from the box-crossing property forP and P . Choose
T mar<y such that the above probability is smaller than

Let 0= +- We will now show that, provided is small enough, the probability that
each crossing oBy may be made into a -fence is greater than 1 ©
Let ( )1 i | denote the disjoint crossings ofBy, both open and open, in increasing
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order (choose 1 to be the lowest crossing oBy, 2 the lowest crossing ofBy which lies
strictly above 1, etc.). Let (z); denote their endpoints on the right side ofBy . For some
K 2 N (we will se later how to choose it), we sayz; is -protected if:

(i) one of the annuli fA , (N 2¢; N 2¢*1) : 0k < K g contains path of the same
colour as i, above j, and connecting if to a vertical crossing along the right sie
of the annulus. See the innermost annulus around; in the right diagram of Figure
2.3.3;

(i) there are two annuli in fA , PN 22PN 2%y 0 k<K g containing an open,
respectively open, path, connecting to the line fNg R (as in the right diagram
Figure 2.3.3).

Assume and K are such thatp_< 2 K. Then, if z is -protected, ; may be made
into a -fence andjzi«1  zj PN . Moreover, the two events de ning a protected point
depend on disjoint regions of the plane, hence are independe For any path  crossing
By (in Gor G )andanyi 2 N, the event ; = only depends on the states of the edges
in By below . Thus, above and outside By, the measure conditioned on { = is
equal to the regular percolation measureP; in particular the box-crossing property holds
in this region. Using this, and constructions of partial circuits in annuli as in Figure 2.3.3,
we deduce that

Plz is not -protected] 3(1 Co)¥;

where Co > 0 does not depend on, K or N, and N is large enough for the box-crossing
property to hold in all rectangles involved. More preciselyN o = N2( ).
Finally choose

K=k(9= " .
In1 Co) '
and »= »( 9> 0, such thatp_z 2 K: Then, for 2and N Ny( ),
Plz is not -protected] ¢
Conclusion.  Using the above facts we deduce that, for minf 1; »g and N

maxfN1( );N2( );log,

P[Bn is not -separable] P Z* is not -protected +

P Z isnot -protected +

PQ T+
P[i | and z is not -protected]
1 i<T
3 +T %=4:
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This is the required result, with 4 instead of 7

2.4 Scaling relations at criticality

In this section we prove the scaling relations (1.6.2), withminimal assumptions on the
model.

Let G be a planar graph embedded in the plane, andP be a bond percolation measure
on it. We assume that G satis es the conditions of Section 1.3.1, but no symmetry is
required.

SupposeG is such that 02 R? is a vertex of G. For n 0, denote the probabilities of
the one-arm event centered at 0 by

1(n)= PO$ @ ,);

with the convention 1(0) =1. For v2 V, write }(n) for the probabilities of the similar
one-arm events centered avv. We will assume in this section that there exists a constant
¢ > Osuchthat, forn Oandv2YV,

cl¥m) 1n) c Y(n): (2.4.1)

The above is immediate for periodic models, but is a signi cat assumption in other
situations.

Theorem 2.4.1. Suppose bothP and P satisfy the box-crossing property. If or exist
for (G;P), then , and exist for (G;P), and

=2 and 2 = +1: (2.4.2)

The theorem also holds for site percolation with only minor dhvanges in the proof. The
proof which is presented next follows Kesten's arguments dm [Kes86, Kes87a], with small
changes due to the more general context.

We assumeP has the box-crossing property BXP(3, o) for some ¢ > 0. All constants
in the rest of the section implicitly depend onc , ¢ and on the constant K4 of Section
1.3.1, but, unless explicitly stated, not otherwise on G;P). The constants ¢ in di erent
statements are generally unrelated. We will use the phrase large enough to meam ng
with ng only depending onc , o and K4. Before the actual proof we give a helpful bound
for 1.

Lemma 2.4.2. There exists a constantc > 0 such that, forn landv2V,
C
1(n) P—ﬁi
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As a consequence, if exists, then 2.
It will also be useful to note that, due to the box-crossing poperty, there exists a
constant ¢ > O such that, forn 1,

1(2n) ¢ 1(n): (2.4.3)

Proof of Lemma 2.4.2. Fix n 1 and consider the rectangular domainB(2n + 1;2n) =
[0;2n + 1] [O;n]. By the box-crossing property there exists a constantc; > 0, not
depending onn, such that

PIG(B(2n +1;2n))] ci:

Let S denote the strip [n;n+1] [0;2n]. If G [B(2n + 1;2n)] occurs, then there exists at
least one vertexv in S, with two disjoint open paths linking it to the left (respect ively,
right) side of the box B(2n + 1;2n). Call such a vertex alinked vertex. Then

X
P(v is linked)  P(there existsv 2 S linked)

v2S
P[G(B(2n+1;2n))] ci:

By the conditions in Section 1.3.1, the strip S contains at most K 4n vertices. Also, by
the BK inequality, for any v 2 S,

P(vis linked) ( ¥(n))? 2 ( 1(n))?:

In conclusion

Kan (2?5

which concludes the proof of the lemma. O

The proof of Theorem 2.4.1 is based on the following propodiins taken from [Kes87a].
Henceforth v will denote a vertex of G, and jvj will be the euclidian distance between 0
and v.

Proposition 2.4.3.  If one of the following two limits exists

| M = |im w, (2.4.4)
ni logn jvill logjvj

then they both exist and = <.
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R

o/-\ v 01

<

N
<

Figure 2.4.1; Left: The existence of a path from 0 tov implies the existence of disjoint
arm events centered at O andv. Right: The horizontal paths form R and L. Together
with the vertical crossing of H they form a path from 0 to v.

Proposition 2.4.4. (a) For any > O, there exists > 0 such that, forv2 V,
iCvj : :
nZ J(m) rad(Cy) n < ; forn 1L (2.4.5)

(b) For > 1andt 1, there existsc(t) depending only ont such that, forv2 V,

ICyj

nZ () n rad(C,) 2n <c(t) ' forn 1 (2.4.6)

Corollary 2.4.5. If the limits of Proposition 2.4.3 exist, then

1 . logP(Cyj>n)
= m e ———
ni1 logn

exists uniformly in v, and =2 1.
Theorem 2.4.1 follows directly from Proposition 2.4.3 and @rollary 2.4.5.

Proof of Proposition 2.4.3. Fix v 2 V. By rotating G we may supposev 2 R f 0g. This
rotation may a ect 1(n), but only by a bounded multiplicative factor (see (2.4.3)).

First suppose 0% v. Then there exist arms from 0 andv, respectively, to distancejvj=2
away. Moreover these are contained in disjoint parts of the fane. See the left diagram of
Figure 2.4.1. By (2.4.1) and (2.4.3),

POS$ v) P rad(Co) % P rad(C,) % c1 1 (Vi) (2.4.7)
with ¢; not depending onv.

Conversely, letn = jvj and de ne the events

n ) n . 0
L= 0!f" ng [ n;n] and R= v!f""" og [ nmn] :
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Then, by the box-crossing property and (2.4.1), there exis$ c; > 0 such that
P(L) ¢ a(n); P(R) ¢ 1(n):

Let H be the event that the rectangle [Qn] [ n;n] contains a vertical open crossing. By
the box-crossing property, P(H) c¢3 for somecz > 0, independent ofn. Finally, by the
FKG inequality and the geometrical consideration of Figure2.4.1,

PO$ v) P(L\R\H) cc 1(n)? (2.4.8)

Inequalities (2.4.7) and (2.4.8) imply the proposition. O

Let us assume Proposition 2.4.4 for now, and prove Corollary2.4.5. The proof of
Proposition 2.4.4 is presented in the next section.

Proof of Corollary 2.4.5. Fix 2 (0;1) and as in Proposition 2.4.4 (a). Then, forn 1
andv 2V,

h [
PjiCyj n?(n) P jCyj n?y(n)rad(Cy) n Plrad(C,) n]

L et an):

Using the above and (2.4.4), we obtain

iCyi logP jCyj n? 4(n
nil logn n'1 log n 2 1(n)

1
= - - 2.4.9
1 3 (2.4.9)

We turn to the converse inequality. Fix > 0 and, forn 1, set
& 1
logn

ko= (1 _— 2.4.10
°= & gz T (2419

By our assumption, 1(n)= n o) hence
2%0 (ko) = pl *ol). (2.4.11)
For n large enough, we use Proposition 2.4.4 (b), witht =2 and = W > 1, for the
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following computation.

PCvj n] « h i
1(20)+ 129P jCyj n2¢ rad(Cy) < 2!
kéko 3
X 2k 22k 2k 2
c ! @)41+ ¢ 1((2k0)) ;( ) 5 by (2.4.6)
2 ko 3
22ko (oko) 2 X ok ko (oky 3
=c ! 2 41+¢c, 7;( ) 2k ko 4(2;() ) (2.4.12)
k<k o 1

Since 1(n) = n H+o() and 2 (see Lemma 2.4.2), the sum in (2.4.12) is bounded
above by a constantcs, uniformly in kg. Thus

" #
2ko koy 2
PCyj n] c ' 1(2%) 1+ cocg %1(2)
Using (2.4.10), the above implies
, logP[jCyj n] 1 .
Ilmlsup logn 1 5 (2.4.13)
Finally, since > 0 is arbitrary, (2.4.9) and (2.4.13) imply the corollary. O

2.4.1 Proof of Proposition 2.4.4

This section is an adaptation of the arguments of [Kes86]. Tk proof of Proposition
2.4.4 is based on certain moments estimates fgCj, such as those given in Lemma 2.4.6.
This lemma is interesting not only for its results, but also for its proof, which illustrates
arguments that will be used to obtain various similar estimaes.

Lemma 2.4.6. Fort 1, there exist constantsC(t); CXt) > 0, such that, for alln 2 N,
E jCj'jn rad(Cy,) 2n  C()[n? ()] (2.4.14)
E jCj'in rad(C,) 2n  CYt)[n? 1(n)% (2.4.15)

In the proof of Lemma 2.4.6, we will use the following inequaty.

Lemma 2.4.7. There exists a constantc > 0 such that, for alln 2 N,

X
n 1(n) 1(k) cn 1(n): (2.4.16)

k=0
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Proof of Lemma 2.4.7. The rst inequality is trivial since  is decreasing. We turn to the
second.

Fix n 2 N, and let S denote the strip [0;1] [0;2n]. For v 2 V de ne R(v) as the
event that v is linked by an open path to the half space;1) R. Forv 2 S, we have
P[R(v)] ¢ 1(n) for somec; > 0, not depending onv or n. Hence, if we denoteS, the
number of verticesv 2 S such that R(v) occurs, then

E(Sh) aKg 1(n): (2.4.17)

We recall the notation G,(B(n;n)) for the event that there exists an open horizontal
crossing ofB(n;n) = [0;n] [O;n]. If Gy(B(n;n)) occurs, let denote the lowest open
horizontal crossing ofB(n; n). Let be a path crossing B(n; n) horizontally and z = ( z3; z»)
be the highest point of in S. Denote the set of edges ofG which intersect B(n; n)
and which are below or contained in . By choice of , the measureP(;j = )is equal to
P outside

Forv=(x;y)2V andk 1, let Hc(v) be the event that there exists an open circuit
in AV(k +1;2k + 1), which is connected to v by an open path contained in kK k;x + K]
ly k;y+2k+1]. By the box-crossing property there existsc, > 0, such that, forv 2 V
andk 1, P[Hg(V)] ¢ 1(k): Let

Ho(v)=1f1'2 9 2Hg(v)with !e= cfore2En g
With the above de nition, we have
PH (W] =1  PHk(V] 2 a(k): (2.4.18)

For k=1;:::;n, let vy be a vertex in the square [01] [z>+ Kk;zo+ k+1] S . Such
a vertex exists by the conditions of Section 1.3.1. If = and H, (v) occurs, thenvy is
linked to , henceto ph;1) R, by an open path. Thus R(vi) also occurs. See Figure
2.4.2. By (2.4.18),

X
PIR(vi)] PHe (vl = 1P =1]

¢z 1(K)P[G(B(n;n))]

cc3 1(k);

wherecs > 0 is given by the box-crossing property, and does not dependon or k. Hence,

xXo
E(Sn) ©c3 1(k):
k=1
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2.4. Scaling relations at criticality

I
JARE

N\

0 (n; 0)

Figure 2.4.2: The intersection of the events = and H, (vk) ensures thatv is connected
to[n;1) R.

Together with (2.4.17), the above implies (2.4.16), with the sum starting at k = 1. The
term 1(0) may be incorporated by increasing the constant (see alsbemma 2.4.2). O

Proof of Lemma 2.4.6. First we prove (2.4.14), and, for simplicity, we take v = 0. The
constants in the following proof do not depend on this choice

Fix n 2 and let H, be the event that A(n; %n) contains an open circuit and that
A(%n; 2n) contains an open circuit. By the box-crossing property for P and P , there
exists ¢; > 0, not depending onn, such that P(H,) c;.

Forv2 , let R(v) be the event that there exist an open path linkingv to @ Sp- By
the box-crossing property for P, there existsc, > 0, not depending onn or v, such that

PIR(V)] ¢z 1(n):

Note that H,, is increasing in the edges of Shs and that R(v) only depends on the states
of these edges. Hence, for 2 |,

PIR(v)\ R(0)\ Hn] c15( 1(n)*:
Butif R(v)\ R(0)\ H, occurs, thenv2 Copandn rad(Cp) 2n. In conclusion

X
E[iCoj;n rad(Co) 2n] P[R(v)\ R(0)\ H,] &n?( 1(n)%  (2.4.19)

V2
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Note that P[n  rad(Co) 2n] 1(n). By dividing (2.4.19) by 1(n), we obtain
E jCojn rad(Co) 2n  cic3n? 1(n): (2.4.20)

This is (2.4.14) with t = 1 and n 2. The casen = 1 is obtained by adjusting the
constants. We may extend the result tot 1 using Jensen's inequality for positive
random variablesZ:

EZ") [E@)"

We now turn to (2.4.15). As before we takev = 0. The constants in the following do
not depend on this choice. The vertex 0 will sometimes also bdenoted vyp.

By Jensen's inequality, it su ces to prove (2.4.15) for t 2 N. Fix such at. In the
following, ¢;i 2 N will denote constants that may depend ont but not on n. We have

1
. .t . .t.
E jCoj' n rad(Cp) 2n Pl rad)gCo) 2n]EUCoJ ;n rad(Cp) 2n]

Plvi; ;v 2 Co;rad(Co)  nJ:

1(n) V1;n5ve2 2n
The sum above is over allt-uplets of vertices (/1;:::;vt) 2 ( 2n)!. To these we add the
vertex vo = 0. For such a set of vertices {p;:::;w), let r; = bminf%lkvi viki :j 6igc,
wherek:k; denotes theL! norm in the R?, and bxc is the greatest integer belowx. We
claim that there exist ¢, such that, for all choices ofvy;:::; v,
Yt
Plvi;iii;ve 2 Co;rad(Cp) n] ¢ 1(n) 12(ri): (2.4.21)
i=1
Let us prove this claim. Fix the vertices vq;:::;v;, and let H be the event that, for each

depending ont, not on vy;:::;vp or n. If vq;:::; v 2 Co, rad(Co) n and H occurs,
then there exist disjoint open paths ; such that  connectsvp to @ ,, and, fori 1, ;
connectsv; to @ r, + v;. See also Figure 2.4.3. By the BK and FKG inequalities,

Yt
1(n) T(ri) Plfvi;iii;ve 2 Cog\f rad(Co) ng\ HJ
i=1
CcsP[fvi;:ii; v 2 Cog\f rad(Cy) ng):

In conjunction with (2.4.1), the above implies (2.4.21).
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V3

Figure 2.4.3: Ifvy;:::; v 2 Co, rad(Cg) n and H occurs, then there exist open paths ;
connectingv; to @ ,, and ¢ connecting 0 and@ . Moreover these paths are disjoint.

Finally, this leads to

X Y
E jCoi'n rad(Co) 2n ¢4 1(ri):

In order to prove (2.4.15), it su ces show the existence of a onstant ¢ = c(t), such that

X Y
1(ri)  cn® 1(n): (2.4.22)
V1;vi2 on 1=l
For that purpose, we group the terms of the sum by thet + 1-uplet (rg;:::;r¢)

Let us rst consider the caset = 1. For vi 2 54, we haverg = rq n, and
vi 2 A (4rg; 4rp+4). Hence, for an imposed value of g, there are at most 3K 4(ro+1) csn
choices forvy. By (2.4.16),

X X0 )
1(r1) ¢ nog(r1) cen® 1(n):
V12 on r1=0
Let us also sketch the proof fort = 2. For any two vertices, vi, Vo, two of the three
quantities ro, r1, ro are equal, and smaller than the third. Let (ro;r1;r2) be such a triplet.
By analysing separately the casesg=r; rpandrg r1=rp, we nd that there are at
most ¢c;n? vertices vi;Vo 2 o5 Which yield this particular triplet, where c7 is a constant

65



Applications of the box-crossing property

that only depends onK 4. In conclusion

0 1
2 X X 2
1(r1) 1(r2) ¢n?@2 1(ry) a(r2)+ 1(ro)?A
V1;V22 2n 0 rp raon 0ry rgn
!
X 2 X0
2c;n? i(r)  +cn® 1(r)
r=0 r=0
cen® 1(n)?:

This concludes the proof in the casd = 2. Inequality (2.4.15) is only used in the proof of
Proposition 2.4.4 with t = 1;2. We do not prove (2.4.22) fort 3 here, we only mention
that the combinatorial argument used to estimate the sum in 2.4.22) is similar, but more
complex, as it needs to take into account more situations. O

We are nally ready to prove Proposition 2.4.4.

Proof of Proposition 2.4.4. Part (b) is a simple application of Markov's inequality. For
> 0, by (2.4.15), we have

h i :
R B

c()

Part (a) requires more work. For simplicity we shall prove (2.4.5) for v = 0. It will be
apparent that the constant used in the proof do not depend on his choice.

We wish to prove that

PjCoj n?i(n)rad(C) n! 1

uniformly in n. Let K = blog,nc and split the ball , in disjoint concentric annuli
A2k, 21y with0 k<K .

Fork 2f0;:::;K 1g, let Y, be the number of vertices inA (2K; 2¢*1), connected by
an open path insideA(2K; 2K*1) to an open circuit of A(2K; 2K*1). We claim that there
exists constantscy; ¢, > 0, independent ofk, such that, for0 k<K,

E(Ye) 2125 and E(Y2) o2 1(24)% (2.4.23)

The second inequality is proved by a combinatorial argumentsimilar to the one used for
(2.4.15). For the rst inequality, let Hy be the event that there exists an open circuit in
A2k %;2‘(*1). By the box-crossing property, P(Hy) is bounded away from 0, uniformly
in k 3. As in the proof of (2.4.14), if H, occurs, then each vertex inA (2K* 5; 2k* 5)
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A (2k; 2k+1 )

/0

Figure 2.4.4: The ball , is split into concentric annuli. The red circuit forms the event
Hy and the verticesvy, vo contribute to Y.

has probability at least c; 1(2) to be connected to an open circuit inA (2K* %;2"’“1). See
Figure 2.4.4.
We now use the (2.4.23) in a one-sided Chebyshev inequalitysafollows. Fors 5 we
have
h [
P Yo %2¢,2% PYe 21EMW)
h

|
P (Y SEM))? s 1 ZE(Y)?

Var(Ye) + (s 1)%E(Yk)?.
s 1B

Var( Yg)
E(Yk)?

In order to minimize the right-hand side above, we takes = 2 + 1, and obtain

h i
4Var(Yy)
P Y, 92¢ (2" :
k2212 aVar(Yy) + E(Yy)2

By (2.4.23) and the above, there existscz > 0 such that, for 0 k<K,

h i
P Yo $2¢,2% (2.4.24)

Note that Y, only depends on the con guration inside A (2K; 2€*1), hence the variables
(Yk :k=0;:::;K 1) are independent. By (2.4.24), we have
mn }x 1 #

P Y n21(n)!I 0;
k=0 10
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uniformly in n. P
Finally, note that both EzolYk and rad(Cy) are increasing functions of the con gu-
ration. Hence

|||x 1 #
P Y« n?in)rad(Cy) n'! O
k=0 '

uniformly in n. But, if rad( Cp) n, then each vertex contributing to Y is connected to
0, and jCoj K_o! Yk. This concludes the proof of Proposition 2.4.4 (a). O

2.5 Scaling relations near criticality

In this section we sketch the proof of the scaling relations 1.6.3) for models with su cient
symmetry. We follow Kesten's method from [Kes87b], also relewed in [Nol0O8]. The
purpose of this section is to present the main ideas in the prof and to highlight the points
where symmetry is required.

Let G be a planar graph embedded in the plane, and be a percolation measure on
it. Suppose G;P) is periodic, rotation invariant by an angle 2 (0; ), and invariant
under re ection with respect to two perpendicular axes. Letp be the intensities of P. By
periodicity, there exists ¢> Osuchthatp 2 (o0;1 0o)E.

Theorem 2.5.1. SupposeP and P satisfy the box-crossing property. If and 4 exist for
(G;P),then , , and exist for (G;P), and
1 1 . _ 21 ). 2

— 1.
5 5 S T (2.5.1)

The above, along with the scaling relations at criticality of Theorem 2.4.1, imply
(1.6.3).

In the sketch of the proof we will sometimes make implicit asesmptions about the local
structure of the graph, namely about the behaviour of arm evats at low scale. These
assumptions are necessary only to avoid overly complicatedtatements. The following
arguments concern essentially the behaviour at large scalekeeping track of the local
details of the graph would overburden the proof.

As in Section 2.2, we distinguish two cases, = 5 and = 5. For simplicity assume we
are in the former, and that (G; P) is invariant under translation by (1 ;0) and (0; 1), and
under re ection with respect to the axes of R?. The case = 3 Is similar. Also assume
that P and P satisfy the box-crossing property BXP(L, ) for some > O.

The following notation will be useful. For avertexuandn 0, let A{(n) = frad(Cy)
ng. For an edgee = (u; V), with dual edgee = (u ;v ), let Aj(n) be the event that there
exits 4 arms of alternating colours, originating from u;u ;v and v , respectively, and
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2.5. Scaling relations near criticality

landing on @ , + e\ e . We write simply Ai(n) for the event AY(n) with u being the
vertex closest to 0, andA4(n) for the event AZ°(n), where ey is some arbitrary xed edge.
One may imagine for simplicity that O is a vertex, although this is not necessarily the case.
For k 2 f 1;4g, we write

k(n) = P[Ak(n)]:

These are the probabilities of arm events centered at O andp respectively. By periodicity,
they are comparable to the probabilities of the correspondig events centered at any other
point, as in (2.4.1). Since we assume the existence of and 4,

W(n)=n koW k2f14g (2.5.2)

The proof of Theorem 2.5.1 occupies the rest of the section ahnis split into several steps.
Throughout the proof  will be taken in ( %;-%), and P will denote the measure with
intensities (pe + )e2E-

Correlation length L. For small, P may be viewed as a perturbation ofP. Thus,
at small scale, P is similar to a critical measure. At large scale it behaves sb- or su-
percritically, depending on whether < 0 or > 0. In loose terms, the scale at which
the measure stops behaving critically is called thecorrelation length associated to . The
de nition of the correlation length given in Section 1.6 is one of several possible de nitions.
A more convenient one for our proof is in terms of crossing proabilities. Here is a precise
de nition.

Fix a constant &2 (0; 5), which should be considered small, we will see later how sntla
Forjj< 2, let

8

< . . . .
Le( ) = inffn2 N: P [G(B(n;n))] &g; for < O (2.5.3)

~inffn2 N:P [G(B(n;n))] 1 &; for O

Thus Lg( ) is the smallest scale at which the probabilities of crossigs of squares degen-
erate, and &is a threshold for this degeneracy. By the box-crossing progrty and the
sharp-threshold theory,

Lg()<1l for 60 and L&()!Iol:

Next we will study P at scales smaller (respectively, larger) thanLg( ), and show that
it behaves indeed critically (respectively, sub- or supergtically). We will also link Lg( )
to the correlation length  introduced in Section 1.6. We will generally assume that is
small, so that L is large enough to allow us to use box crossing arguments.
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Applications of the box-crossing property

Henceforthc;i 2 N denote strictly positive constants that may depend on and & but,
unless otherwise stated, not on G; P) in any other way. For functions f;g : R! (0;1),
we recall the notation f ¢ g for the fact that there exist constants c;;c; > 0 depending
only on & such that

@ 2 (c1;¢); forall x2 R:
9(x)

When no ambiguity is possible, we writeL for Lg( ).

Box crossings below the correlation length. At scales smaller thanL, P behaves
like a critical percolation measure, in particular it satis es the box-crossing property. A
more precise statement follows.

Fix . There existsc; = ¢1(& > 0, not depending on , such that, for1 n<L g ),
and all boxesB of size 21 n, aligned with the axes,

P (B has an open crossing in the long direction) c;

P (B has an open crossing in the long direction) c;: (2.5.4)

As a consequence, the results of Sections 2.3 and 2.4, in patilar the separation theorem,
are also valid for P , at scales smaller thanL.

Let us sketch the proof of (2.5.4). Consider the case< 0, the case > 0 is identical
by passing to the dual. The probabilities of open crossings inP are greater than in P,
whence the second inequality of (2.5.4). We move on to the rs By de nition of L, for
1 n<L,

P [G(B(nn))] &
Also, (G; P) has su cient symmetry for the RSW lemma to hold; see Lemma 22.1. Hence
P [G(B(@2n;n))] c; (2.5.5)

with ¢; > 0 depending only on& Inequality (2.5.5) may be extended to crossing of general
boxes by the rotation and translation invariance of (G; P).

Arm events below the correlation length. The arm events at scales lower thanL
also behave similarly inP and P . More precisely, forn <L g ) and k 2 f 1; 4g,

P [Ak(n)] & «(n): (2.5.6)

We focus on the cas&k =1 and > 0. Thecasek =1and < O is identical by considering
the dual. The casek = 4 is slightly more complex since A4(n) is not increasing, and we
require an improved version of Russo's formula to compute tl derivative of probabilities
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2.5. Scaling relations near criticality

Figure 2.5.1: Left: The edgee 2 n is pivotal for Ai(n). This implies the existence

of a four arm event in the gray ball around e, and of one arm events in the gray ball

around 0 and in the outer annulus. Right: If eis close to@ , and pivotal for A;(n), then
J(dist(e; @ n)) occurs.

of such events. Nevertheless, the additional di culties in this case are purely technical.
No further details are given here, see [Kes87b, Nol08] for #full proof.

The main idea is to use Russo's formula and the separation trrem to relate the
logarithmic derivative of P [A1(n)] to the derivative of the probability of crossing a square
box of sizen. For n <L, the latter probability does not increase too much when goirgy
from P to P . This allows us to bound the logarithmic derivative of P [A1(n)], and (2.5.6)
follows.

The actual proof is quite intricate; it requires several tednical tricks, but also a re-
markable estimate on the ve-arm exponent (see Lemma 2.5.2) We will try to give a
heuristic explanation, and only sketch the actual proof.

For an edgee and A R?, let dist(e; A) denote the L! -distance frometo A. Let jgj
denote the distance frome to 0.

Fix 2 [0, ]Jand n < L g ). We will use repeatedly the box-crossing property at
scales smaller thanLg( ), i.e. (2.5.4), and its consequences, the separation theem and
Corollary 2.3.2.

We start o by computing the derivative of the P -probability of the one-arm event.
Fore?2 n, by the considerations of Figure 2.5.1 and the BK inequality we have

P [eis pivotal for Ai(n)] P A§ ijef P A; 3je P A 3jein
2P [A4(je)] P [A1(n)];

where the second inequality is obtained using the separatiotheorem to connect the arm
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inside ¢ to the arm in A(%jej; n). Similarly, for e2 A (5;n), we have
2

P [eis pivotal for Aj(n)] c3P As(dist(e; @) P [A1(N)]:

By Russo's formula,

@ogP [Ay(m] X

@ P As(jg" dist(e;@n)) : (2.5.7)

eZn

We turn to the derivative of crossing probabilities. Let G,( ) be the event that |
contains a horizontal open crossing. 1fA§(%) occurs for some edge 2 n, then, through
the separation theorem and the box-crossing property, we ma with positive probability,
extend the arms to makee pivotal for G,( ). Hence

@ (G o).

o (2.5.8)

NP [As(n)] s

So, in order to bound the increase of log® [A1(n)], we would like to bound the right-hand
side of (2.5.7) byn?P [A4(n)]. For e far from 0 and @ ,,, P [A4(jej " dist(e; @ n))] is
comparable toP [A4(n)]. Butfor eclose to the center or to the boundary of ,, the former
is signi cantly higher than the latter. Dealing with this pr oblem is the main di culty in
the proof of (2.5.6).

The contribution to W of the edges close t@ ,, is overestimated in (2.5.7).
A quite simple trick will allow us to correct this. On the othe r hand, the contribution
of the edges close to the center is indeed greater thalR [A4(n)], and we will need a ne
analysis to deal with them. First we eliminate the terms with e close to@ .

For 2 [0; ]let P be the measure with intensitiespe + inside n, and pe outside.
ThenP P 4 P, henceP also satis es (2.5.4). In particular,

h nl _h ni B
P [A1(n)] &P Az > =P A3 &P [A1(n)]:

So in order to prove (2.5.6), it su ces to show

P A _“ @ogP [As(n)]

lo = - c; 2.5.9
P T o @ (2:59)
for some constantc that only depends on& not on n or .
As for (2.5.7), we have
@ogP Ax(n)] P [AS(E): (2.5.10)

@

e2 n
Vi
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Using an inequality similar to (2.5.7), we nd that

Z
P [A§(n)]d o (2.5.11)

e2 n
Vi

In order to go back to the periodic measureP , we split (2.5.10) as follows:
Z X — e - . Z X — e . - Z X — e . -
P [A4(je)ld P [Az(ig)ld + P [As(ig)ld:

0 0 0 n.n
2 g e2 g e2A (73%

By (2.5.11) the second term is bounded by a constant. In the st term the events only
depend on the con guration inside n, where P is identical to P . It therefore remains
bound

Z Z i
X x&

P [AL(ie)]ld & kP [A4(K)]d (2.5.12)
0 e 2 0 k=1

by a constant. In light of (2.5.8), this comes down to showingthat the terms with large

k contribute signi cantly to the sum above. Suppose we could @proximate P [AJ(k)] by

k ,forsome > 0. Then we would be able to bound E:l kP [A$(K)] by n?P [A§(n)],

provided < 2. So, loosely speaking, we need to show that the four-arm expent is

strictly smaller than 2. We do this by considering the following ve-arm event. Let
=(1;1,0;1;0), and write As for A .

Lemma 2.5.2. Let H be a planar graph andP be a percolation measure on it. Suppose
(H;P) is periodic and that P and P satisfy the box-crossing propertyBXP( 9. Then
there exist constantsc; > 0, depending only on © such that, for1 N n,

n 2 o N

c N P[As5(N;n)] c N

In other words, using only the box-crossing property, we dedce that the ve-arm ex-
ponent is 2. Of course this does not imply thatP [A§(K)] k with < 2. Nevertheless
we manage to use Lemma 2.5.2, and bound (2.5.12), through s@rtechnical manipula-
tions, which are brie y presented next. The proof of Lemma 25.2 may be found at the
end of this section.

Fork % ande2 n, We may use the separation theorem to nd

P [e pivotal for Gi( n)] csP [AS(K)]P [Aa(k;n)]: (2.5.13)
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By Reimer's inequality (an enhanced version of the BK inequiity, see [Rei00]),
P [As(k;n)] P [As(k;n)] P [As(k;n)]:
Also, by the box-crossing property, there exists = (& > 0 such that,

P Akim] o

Hence we nd that

n 2+
P [A4(k; n)] C10 R
This plays the role of the bound on the four-arm exponent. Whe putting this together

with (2.5.13), we obtain

P [epivotal for Go( n)]  cuP [AS(K)] E
Finally, by integrating the above and using Russo's formula we nd
Z
P [As(k)]d cion k Z* (2.5.14)
0

We now input (2.5.14) in (2.5.12), and deduce that

Z % X
kP [A4k)]d c2 n k ! ca
0 k=1 k=1

This concludes the proof of (2.5.6).

Asymptotics for the correlation length. Using (2.5.6) and Russo's formula, we are
able to obtain an asymptotic equivalent for Lg( ) as ! 0. As before, we may restrict
ourselves to the case > 0.

Suppose we could prove that, fom Lg( ) and 2 (0; ),

@ [G(B(n;n)] _ X

@ P [eis pivotal for G,(B(n;n))] &n? 4(n): (2.5.15)

e2B (n;n)

Then, by integrating the above, we would obtain

1 &P [G(B(L:iL)] PIG(B(LL)] & L? 4(L)
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Finally, using (2.5.2), this implies

1
Le() oy as ! O (2.5.16)

But (2.5.15) is not entirely true. We have seen before that tre contribution to the
derivative of P [G,(B(n;n))] of the edges in the bulk (i.e. far from @(n;n)) is indeed
of order 4(n), but the edges close to the boundary could, in principle, hae signi cantly
higher impact. We deal with this problem as in the proof of (25.6). The following lemma
will be useful.

Lemma 2.5.3. Let P be a measure onG, and assumeP and P satisfy the box-crossing
property BXP( 9. Then, for any ¢ > 0, there exists > 0 depending only onc and ©
such that, for n;m large enough,

JPIGBMmM)] PIGHBEA Imm)l c
JPIG(B(Mm)] P[GBMA )m)j c

The second inequality is a consequence of the rst when ap@d to P . Lemma 2.5.3
may be viewed as a simpli ed version of Lemma 2.3.4. Indeedf the horizontal crossings
of B((1 )n;m) may be made into a fences andB((1 )n;m) has a horizontal open
crossing, then the slightly longer boxB(n; m) is also crossed horizontally by an open path.

Let = (& > 0 be such that the lemma holds for any measure betweeR and P with
c= %&and m;n L. Denote P the measure with intensitiespe+ for edgese 2 B(n;n),
with dist( e; @(n;n)) n, and pe for all other edges. Using Lemma 2.5.3 foP and P,
we have

1 &P [G(B(LL)] PIG(B(L L))
&E [G(B(L;L)]  PIG(B(L;L))]

X
& P [eis pivotal for G,(B(L;L))] d
0 e2B(LiL)
& L2 4(L):

This allows us to deduce (2.5.16) as described above.
Above the correlation length. For scales larger thanL, P behaves subcritically for

< 0 and supercritically for > 0.
First we analyse the case < 0. By the RSW lemma (Lemma 2.2.1) for the dual model

PIG(BELL)  (&;
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Applications of the box-crossing property

where (x)! o 0. In particular, for &small enough, we have (& ;55 henceforth we
will assume this is the case. We may then use Lemma 2.1.6 to ang that, for k 0,

h i
P G(B@E*IL;2¢L) 2k (2.5.17)

This step requires rotation and translation invariance. Usng (2.5.17) we show through
standard geometrical arguments that there existsc; > 0 such that, forn L,

P [rad(Co) n] e ®CP [rad(Co) LJ: (2.5.18)

We turn to the case > 0. Using the same arguments as above, but applied to the
dual model, we have
h i
P G(B@*'L;2L) 1 2k

For k 0 de ne the events H as follows:

He = G(B@*L; 2L)); for k even
He = G(B@2XL; 2*L)); for k odd:
SinceP(H,) 1 2 X,
0 1

\
P@ HA >cy;
k O

where ¢, > 0 is a universal constant. If allHi;k 0 occur simultaneously, then there
exists an in nite cluster intersecting . By the above and the box-crossing property in
P , we deduce that

PO$1 ) c3P [rad(Cp) LJ: (2.5.19)
Also, by the same type of argument, there existxc, such that, for k 0,
h i
P 0E rad(Co) 2L 2k (2.5.20)

Near-critical exponents. Now that we have understood the behaviour ofLg( ) and
that of P with respect to Lg( ), we are ready to study the near-critical exponents of
(2.5.1). For simplicity we do this for v = 0.
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Correlation length . For < 0Oandn L, by (2.5.18),

logP [rad(Co)  n] clg +log P [rad(Co)  nl:
Conversely, by (2.5.4),
P G B L;iL %
From the above, by combining box crossings, we obtain

logP [rad(Co)  n] C3E +log P [rad(Co) L]:

Hence
1 . 1 1
0 II1|!r1n ﬁIogP [rad(Cp) n] =« La().
In conclusion
1
= : 25.21
> . ( )
Percolation probability. For

> 0, by (2.5.6), (2.5.16) and (2.5.19),

PO$1 ) & 1(Le() 2 1

as ! 0. Hence

Moments for the cluster size. For t 2 N, we claim

E jCoj';jiCoi< 1  ale()® 1(Le( )™**: (2.5.22)

Once (2.5.22) is proved, using (2.5.6) and (2.5.16), we dede

_ 20 ). _ 2 1
2 4 2 4

Fix . The idea behind (2.5.22) is to split the space into squaresfasize comparable to

the correlation length, Lg( ), and to use the estimates of Section 2.4.1 in each such squar
For m;n 2 Z, let

Smn =[@2m  1)L; 2m+1)L) [2n 1)L;(2n+1)L);
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P
and Ym;n = JCO\S m;nj. Then JCOJ =
on the moments of Yy .

mn Ym:n . Next we prove upper and lower bounds

The squaresSy,:n have size comparable to the correlation length, and the boxrossing
property holds inside each of them. Hence we may use argumensimilar to those in the
proof of Lemma 2.4.6, to show that, fort 1,

E YoiCoj< 1  gL? (L)
For (m;n) 6 (0;0), we have
E YmniiCoj< 1 E jfv2Smn:V$ @mng' P[0$ @mn;jCoj< 11:
As in the proof of (2.4.15), may show that
E fv2Smn:v$ @mngl cl? (L)%
Finally, using (2.5.18) for < 0, and (2.5.20) for > 0, we nd
P[0$ @Bmn;jCoj< 1] 1(L)e es(m-n:

In the above, ¢4 and cs are strictly positive constants that only depend on &and t, not on
or (m;n). We are now ready to conclude. First we have

E jCoi';jCoj< 1 E YipiCai<1l L% y(L)*:

For the converse we use the following convexity inequality

20 1, 3
X
E jCOjt;jCOj <1 =E4@ Ym;nA JCoj < 1 5
mn2Z
0 1,
X 1
@ E VYi.:iCi<1 TA
mn2Z
0 1,
X 2 t+1 m_n
cs @ L2 (L) te S TA
mn2Z

C7L2t l(L)t+1:
This concludes the proof of (2.5.22), and that of Theorem 2.3..

Conclusions  We have mentioned at the beginning of the section that we conider the
case where G;P) is invariant under rotation by = . For the case = 5 it is more
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2.5. Scaling relations near criticality

convenient to de ne the correlation length L in terms of crossing probabilities of the
parallelogramsB# , as in Lemma 2.2.2. The rest of the proof is identical.

We would like to emphasize the importance of the symmetries o(G; P). We have seen
in Section 2.2 how these symmetries come into play in the prdof the RSW lemma. The
RSW lemma was used in our proofs to link the crossing probahiies of general domains
to those of squares, below and above the correlation lengthwe have also used translation
and rotation invariance in proving exponential decay abovethe correlation length for < 0
(see (2.5.17)). Finally, periodicity also comes into play b show that the probabilities of
the one- and four arm events of radius centered at di erent points are comparable. This
will also be used for the ve-arm event in the upcoming proof d Lemma 2.5.2.

The box-crossing property tells us that the critical measue is somewhat isotropic.
When we move away from criticality this isotopy may be lost. Hence, the probabilities of
crossing domains at certain scales may degenerate di erentldepending on the positioning
and shape of the domain. If the model has su cient symmetry, this problem disappears.
This allows us to de ne a correlation length that truly separates the critical scale from the
sub/supercritical scale. To our knowledge, there is no way ® span this gap in the absence
of symmetry.

Proof of Lemma 2.5.2 This proof is independent from the rest of the arguments
presented in this section. The idea of the proof is that, ingile |, there is at most
one point with 5 arms originating from it. Conversely, such apoint exists with positive
probability. Details are given next.

Let H and P be as in Lemma 2.5.2. Fom 0, ande=(u;v) 2 ,, with dual edge
e =(u;v), let As(e;@np) be the event that e is open, and that there exists vertex-
disjoint paths 1;:::; s, taken in anticlockwise order, with colours 1, 1;0; 1; 0, originating
from u, u, u , vandv , respectively, and landing on@ ,,. We assume thatH is such that
AE(n) is non-empty.

with the additional requirement that each ; lands in nlj. The separation theorem may
be adapted to As, and, since H;P) is periodic, we deduce that, forn large enough and
e2

N|S

P As(e;@n) oP[As(e;@n)] oP[As(L;n): (2.5.23)

Also, for N n large enough,

P [As(1;n)] .

P[As(N;n)] o PIAS(LN)
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Applications of the box-crossing property

Figure 2.5.2: Left: The event AL(e; @ ). For any other edgee®2 , AL(e>@ ) can
not occur. If e’is between ; and .1, then there exists no path of colour ;.3 joining €°
to li+3 (we use mod 5 convention for the indices).Right: If H; and H, both occur, then
there exists an edges on for which As(e; @ ) occurs.

Hence it su ces to prove
P[As(1;n)] on 2

First we prove an upper bound. Lete be an edge in 1 such that AL(e; @) occurs.
Then, by a careful inspection of the di erent possibilities, we conclude that there exists
no other edgee®2 1, such that AL(e, @ n) occurs. See the left diagram of Figure 2.5.2,

We turn to the lower bound. We show that, with positive probability, there exists
e?2 n, such that As(e; @) occurs. Let Hi be the event that there exists an open
horizontal crossing of [ n;n] [ 35;0] and an open horizontal crossing of [n;n] [0; 3].
Let , be the lowest crossing of the rsttype, and be the lowest open horizontal crossing
above ;.

By the box-crossing property forP and P , P(H1) o 1. We now condition on H;
and on the path . As in previous arguments, we use the fact that, above , P is not
a ected by this conditioning. Let H, be the event that there exists an open and an open
path, inside [ 5;0] [ N;N],and[0; 53] [ N;N]respectively, that connect to the top
of 4. Again, by the box-crossing property, P(H2jH1; ) o1.

AssumeH; and H, both occur, and let , be a open crossing as in the de nition
of Hy. Orient  from left to right, and let u be the last vertex on before , that is
connected by an open path to the top of ,. Let v be the next vertex on after u, and
e=(u;v). Thene?2 n, and As(e; @) occurs. See also the right diagram of Figure
2.5.2.
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2.5. Scaling relations near criticality

In conclusion

X
P[As(e;@n)] i

e2 n
Vi

with ¢; > 0 only depending on © not on n. Together with (2.5.23), this provides the
necessary lower bound. This concludes the proof of Lemma 25
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Chapter 3

Isoradial graphs and the
star{triangle transformation

In this chapter we give a detailed description of isoradial gaphs and their relation to the
star{triangle transformation. The star{triangle transfo rmation, presented in Section 3.2,
is the key tool in the proofs of Chapters 4 and 5.

3.1 Isoradial graphs and rhombic tilings

3.1.1 Isoradial graphs

We begin by restating in more detail the de nitions of Section 1.3.3.

Let G = (V;E) be a planar graph embedded in the planeR?, with edges embedded as
straight-line segments with intersections only at vertices. It is called isoradial if, for every
bounded faceF of G, the vertices of F lie on a circle of (circum)radius 1 with centre in
the interior of F. In the absence of a contrary statement, we shall assume thasoradial
graphs are in nite with all faces bounded. The term isoradid graph may be misleading,
as it does not only refer to a graph, it refers to a graph with a xed embedding.

Let G = (V;E) be isoradial. Each edgee = hA;Bi of G lies in two faces, with
circumcentresO; and O,. Since the two circles have equal radii, the quadrilateralAO1BO>
is a rhombus. Therefore, the anglesAO;B and BO»A are equal, and we write ¢ 2 (0; )
for their common value. See Figure 1.3.3.

De nition 3.1.1. Let > 0. The isoradial graph G is said to have thebounded-angles
property BAP( ) if
e2[; I; e2 E: (3.1.1)

It is said to have, simply, the bounded-angles propertyif it satises BAP( ) for some
> 0.
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Isoradial graphs and the star{triangle transformation

All isoradial graphs of this paper will be assumed to have thebounded-angles property.
The area of the rhombusAO1BO, equals sin ¢ and, under BAP( ),

sin j AO1BO, 1: (3.1.2)

When G is isoradial, there is a canonical product measure, denote®s, associated
with its embedding, namely that with pe = p ., and

e’

p _ sin(3[ D).
T 5= sn@) (3.1.3)

Note that p + p =1, and that G has the bounded-angles property BAP() if and only
if
p Pe P; e2 E: (3.1.4)

3.1.2 Rhombic tilings

A rhombic tiling is a planar graph embedded inR? such that every face is a rhombus of
side-length 1. Rhombic tilings have featured prominently n the theory of planar tilings,
both periodic and aperiodic. A famous example is the aperioid rhombic tiling of Penrose
[Pen78], and the generalizations of de Bruijn [Bru8la, Bru&b] and others. The reader is
referred to [GS87, Sen95] for general accounts of the theowf tiling.

There is a two{one correspondence between isoradial grapted rhombic tilings of the
plane, which we review next. LetG = (V;E) be an isoradial graph. Thediamond graph
G2 is de ned as follows. The vertex-set ofG® is V2 := V [ C, where C is the set of
circumcentres of faces ofG; elements ofV shall be calledprimal vertices, and elements
of C dual vertices. Edges are placed between pairg 2 V, c 2 C if and only if cis the
centre of a circumcircle of a face containingv. Thus G2 is bipartite. Since G is isoradial,
the diamond graph G2 is a rhombic tiling, and is illustrated in Figure 3.1.1.

From the diamond graph G3 we may nd both G and its planar dual G . Write V;
and V,, for the two sets of vertices in the bipartite G3. For i = 1;2, let G; be the graph
with vertex-set Vi, two points of which are joined by an edge if and only if they le in the
same face ofG3. One of the graphsG1, G, is G and the other is its dual G . It follows
in particular that G is isoradial. Lete2 E and let e denote its dual edge. The paire,
e are diagonals of the same rhombus o2 and are thus perpendicular.

Let e 2 E be the dual edge (in the embedding described above) crossirige primal
edgee2 E. Then ¢ = e, SO that pe+ pe =1 by (3.1.3). In conclusion, the canonical
measurePg is dual to the primal measurePg. By (3.1.4),

G satis es BAP( ) if and only if G satis es BAP( ). (3.1.5)
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3.1. Isoradial graphs and rhombic tilings

Figure 3.1.1: The isoradial graphG is drawn in red, and the associated diamond graph
G2 in black. The primal vertices of G® are those ofG; the dual vertices are centres of
faces of G. A track is a doubly in nite sequence of adjacent rhombi shaing a common
vector, and may be represented by a path, drawn in blue. Two tacks meet in an edge of
G lying in some face ofG3.

The above construction may be applied to any rhombic tiling T to obtain a primal/dual
pair of isoradial graphs.

3.1.3 Track systems

Rhombic tilings have attracted much interest, especially snce the discovery by Penrose
[Pen74, Pen78] of his celebrated aperiodic tiling. Penro&rhombic tiling was elaborated

by de Bruijn [Bru8la, Bru81lb], who developed the following epresentation in terms of
‘ribbons' or “(train) tracks'. Let G = (V;E) be isoradial. An edgeey of G® belongs to
two rhombi ro, r1 of G3. Write e 1 (respectively, ;) for the edge ofrq (respectively, r1)

opposite ey, so that e 1;ep; e; are parallel unit-line-segments. The edges 1 (respectively,

€;) belongs to a further rhombusr ; (respectively, r,) that is distinct from rq (respectively,

r1). By iteration of this procedure, we obtain a doubly-in nit e sequence of rhombir : i 2

Z) such that the intersections (rj \ rij+1 : i 2 Z) are distinct, parallel unit-line-segments.

We call such a sequence #rain) track . We write T (G) for the set of tracks of G, and

note that T(G) = T(G ). The track construction is illustrated in Figure 3.1.1.

A track (r; i 2 Z) is sometimes illustrated as an arc joining the midpoints ofthe
line-segmentsr; \ ri+1 in sequence. The sel may therefore be represented as a family of
doubly-in nite arcs which, taken together with the interse ctions of arcs, de nes a graph.
We shall denote this graph by T also. A vertex v of G2 is said to beadjacent to a track
(ri ;12 Z)if it is a vertex of one of the rhombi r;.

It was pointed out by de Bruijn, and is easily checked, that the rhombi in a track
are distinct. Furthermore, two distinct tracks may have no more than one rhombus in
common. Since each rhombus belongs to exactly two tracks, is the unique intersection
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of these two tracks.

Kenyon and Schlenker [KS05] have showed a converse theorerhet Q be an in nite
planar graph embedded in the plane with the property that evay face has four sides.
One may de ne the tracks of Q by an adaptation of the above de nition: a track exits a
face across the edge opposite to its entry. Thel® may be deformed continuously into a
rhombic tiling if and only if (i) no track intersects itself, and (ii) no two tracks intersect
more than once.

A track t is said to beoriented if it is endowed with a direction. As an oriented track
t is followed in its given direction, it crosses sides of rhombwhich are parallel. Viewed
as vectors from right to left, these sides constitute a unit \ector (t) of R? called the
transverse vector of t. The transverse vector makes an angle with thex-axis called the
transverse angleof t, with value in the interval [0;2 ).

De nition 3.1.2. Let | 2 N. We say that an isoradial graph G has the square-grid
property SGP(l) if its track-set T may be partitioned into three setsT = S[ T1[ T2
satisfying the following.

(@ For k=1;2, Tk is a set (t}( i 2 Z) of distinct non-intersecting tracks indexed byZ.
(b) For k=1;2ands2T nT, the tracks of Ty intersect s in their lexicographic order.

(c) Fork=1;2,i2 Z,and s 2 T3 g, the number of track-intersections ons between its
intersections with t} and t"* is strictly less than | .

An isoradial graph G is said to have the square-grid property (SGP) if it satis es
SGP(l) for somel 2 N. As before, G denotes the set of all isoradial graphs with the
bounded-angles property and the square-grid property. Moe speci cally, we write G( ;1)
for the set of G satisfying BAP( ) and SGP(l).

Two tracks belonging to the sameT are said to beparallel. Thus, G has the square-grid
property if one may patrtition its tracks into three families : two doubly in nite families of
parallel tracks, and a third family of \additional" tracks, S. Tracks from di erent families
must intersect. Condition (c) requires that two tracks belonging to a family Ty remain, in
some sense, close to each other. See also Figure 3.1.2.

We refer to Ty [ T, as asquare grid of G, assumed implicitly to satisfy (c) above. A
square grid is a subset of tracks with the topology of the squee lattice (and satisfying
(©)).

Since the square-grid property pertains to the diamond grap G° rather than to G
itself,

G satis es SGP(l) if and only if G satis es SGP(l). (3.1.6)

Let G 2 G have square gridT, [ T.. It may be seen by the bounded-angles property
that, for k = 1;2, every x 2 R? lies either in some track of T or in the region of R?
“between' two consecutive elements ofy.
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3.1. Isoradial graphs and rhombic tilings

Figure 3.1.2: A track system with the square-grid property. The blue and red tracks form
T, and Ty, respectively. The tracks in S are gray. The number of intersections onsg
betweent 1 and tg is bounded byl .

3.1.4 Examples

Here are four families of isoradial graphs with the square-gd property, and one without.

Highly inhomogeneous models as isoradial graphs

The models ofM | may be viewed as isoradial graphs. The square, triangular,rad hexag-
onal lattices, embedded as in Figure 1.3.1, are indeed isad@l graphs, and the measure
associated by (1.3.1) is the critical homogeneous measureMore generally we may em-
bed the three lattices isoradially in such a way as to obtain he measures oM |. Thus,
each model inM | corresponds to an isoradial embedding of one of the three lates.
Nevertheless, a model inV | di ers from its isoradial version, but only by its embedding.

Take for instance the triangular lattice T and a measurePg;q;qO of M, on it. There
exists an isoradial embeddingG of the triangular lattice, with associated percolation
measurePg, such that, for any edgee,

Po.q:qo(€ i open) = Pg(e is openy

Examples of isoradial embeddings corresponding to modelsiM and M | are given in
Figure 3.1.3.

It may be shown that the box-crossing property and the univeisality of arm exponents
are equivalent in the two embeddings. See Propositions 3.3.and 3.1.4 for more precise
statements. In the context of the previous example, the folbwing holds:

(0 (T; Pg;q;qo) has the box-crossing property if and only if G; Pg) does,

(ii) the euclidian metric is equivalent to the graph distance on both T and G.
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Figure 3.1.3: Isoradial embeddings corresponding to inhowgeneous (top) and highly in-
homogeneous (bottom) measures on the square and trianguldattices. The lattices are
drawn in red and the diamond graphs in black. These model di erfrom the ones presented
in Section 1.3.2 only by their embedding.

It is easy to check that track systems of the square, trianguhr and hexagonal lattices
satisfy the square-grid property SGP(2). For > 0, the models inM () correspond to
isoradial graphs in G( ¢2), with °> 0 depending only on . So do the models on the
square lattice in M | (). For Pg;q;qo 2M ()it may be thatinf fg, : g, > 0g=0. Such a
measure does not correspond to a graph d&.

In conclusion, the results of Chapter 5 (Theorems 5.1.1 and .%.3) imply those of
Chapter 4 (Theorems 4.1.1 and 4.1.4), except for some of thdgihly inhomogeneous models
on the triangular and hexagonal lattices.

Isoradial square lattices

An isoradial embedding of the square lattice is called ansoradial square lattice The track-
system of such a graph is simply a square grid, anglice versa

Periodic graphs

Let G be an isoradial embedding of a periodic connected grapH (the embedding itself
need not be periodic). The track systemT of G (viewed as a set of arcs) is determined
by the structure of H. SinceH is periodic, so isT (viewed as a graph). Therefore, T
may be embedded homeomorphically intoR? in a periodic manner. After re-scaling, we
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3.1. Isoradial graphs and rhombic tilings

may assume thatT is invariant under any unit shift of R? in the direction of a coordinate
vector. In fact, T may be thought of as the lifting to the universal cover of a track-system
on a torus.

As observed in [KS05, Sect. 5.2], any oriented track has an asymptotic angle (t) 2 St,
and in addition the reversed track has direction + (t). Let t 2 T, viewed as a subset
of R?. There exists (a;b) 2 Z2, (a;b) 6 (0;0), such that t is invariant under the shift

ab .z 7! z+(a;b. We have that tan (t) = b=a By periodicity, the set of all angles
(modulo ) of T is nite, and we write itas f 1; 2;:::; mgwith m 1.

Let Ty be the set of tracks with asymptotic angle (modulo ) . By periodicity, each
Tk is a set of tracks indexed byZ, and may be ordered according to their crossings of the
line with polar coordinates = o with o6 | for all k. Since tracksty 2 Ty, tj 2 T,
(with k & |) have di erent asymptotic angles, they must intersect.

It remains to show that any t;t°2 T, do not intersect (whence, in particular, m  2).
Suppose the converse, that there exisk 2 f1;2;:::;mg and t;t°2 T, such that t and
t% intersect at some pointJ 2 R2. Sincet and t° have the same angle i, there exists
(a;b) 2 Z? such that t and t°are invariant under ,p. Therefore, they intersect atJ + n(a; b)
for all n 2 Z, in contradiction of the fact that they may have at most one intersection.

For any distinct pair Ty, T;, part (c) of the square-grid property holds by periodicity.

We have proved not only that G has the square-grid property, but the stronger fact
that its track-set may be partitioned into m classes of parallel tracks.

Rhombic tilings via multigrids

The following "multigrid' construction was introduced and studied by de Bruijn [Bru81la,
Bru8ilb, Brug6]. A grid is a set of parallel lines inR? with some common perpendicular
unit-vector v. A multigrid is a family of grids with pairwise non-parallel perpendicukrs.
Suppose there aren 2 grids, with perpendicularsvy;vo;:::;vm. The kth grid is given
in terms of a setCy = ch . i 2 Zg of reals, specically as the set of allz 2 R? with
ZV = c{< asi ranges overZ. It is assumed that the q'( are strictly increasing in i, with
g=i! lasi!1

With the lines of the kth grid, duly oriented, we associate a unit vector wy. It is
explained in [Bru86] how, under certain conditions on theCy, v, wg, one may “dualize'
the multigrid to obtain a rhombic tiling of R2. The track-set of the ensuing tiling is
a homeomorphism of the multigrid with transverse vectorswy. Under the additional
assumption that the di erences jc"k"1 c{(j are uniformly bounded away from 0 and1 ,
all such tilings have both the bounded-angles property and he square-grid property. The
results of this paper apply to the associated isoradial grabs.

Penrose's rhombic tiling may be obtained thus withm = 5, the v being vectors forming
a regular pentagon, withwy = vy, and C¢ = fi +  :i 2 Zg with an appropriate vector
( k). Other choices of the parameters yield a broader class of a&piodic rhombic tilings of
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Figure 3.1.4: Part of a rhombic tiling without the square-grid property, and one of the
two corresponding isoradial graphs. The square-grid propsy fails since no two of the
three families of non-intersecting tracks are doubly in nite.

the plane. See [Bru8la, Bru81lb]. Percolation on Penrose tilgs has been considered in
[Hof98].

A track-system with no square grid

Figure 3.1.4 is an illustration of a track-system without the square-grid property.

3.1.5 Equivalence of metrics

Let G be an isoradial graph. It will be convenient to use both the Ewclidean metric j |
and the graph-metric d®> on G®. For n 2 N and u 2 G3 we write 3 (n) for the ball of
d?-radius n centred at u:

3im=fv2Gd:d®(u;v) ng

Proposition 3.1.3. Let > 0. There existscy = ¢q( ) > 0 such that, for any isoradial
graph G = (V; E) satisfying BAP( ),

glive v Bwvivd v Vo v;v02 G3: (3.1.7)

Proof. Let u, v be distinct vertices of G3. Since each edge o&3 has length 1,d3 (u; V)

ju vj. Conversely, let Sy, be the set of all faces ofG® (viewed as closed sets oR?)
that intersect the straight-line segment uv of R? joining u to v. Since the diameter of
any such face is less than 2, every point of the union o8, is within Euclidean distance
2 of uv. By BAP( ) and (3.1.2), every face has area at least sin and therefore jSyyj
4(ju vj+4)=sin . Similarly, there exists = () > Osuchthatju vj . The edge-set
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of elements ofSy, contains a path of edges of3® from u to v, whence

8 . . 8( +4) . .
3/ .
d*(uv) g Gu vit4) sn U Vi

as required. O

3.1.6 The box-crossing property for graphs in G

This section begins with a de nition of the rectangular domains of an isoradial graph
G 2 G, using the topology of its square grid.

Let (t;t9 be an ordered pair of non-intersecting tracks ofG. A point x 2 R? is said
to be “strictly between' t and t°if, with these tracks viewed as arcs ofR?, there exists
an unbounded path of R? from x that intersects t but not t% and vice versa A face F
of G is said to be betweent and t°if: either F is a rhombus oft, or every point of F
is strictly between t and t® Note that this usage of between' is not re exive: there are
faces betweert and t°that are not betweent®and t. A vertex or edge of G3 is said to be
“between't and t°if it belongs to some face between and t® The domain betweent and
t%is the union of the (closed) faces between and t® It is useful to think of a domain as
either a subgraph of G®, or as a closed region oR?.

SupposeG 2 G has a square gridS[ T, with S=(s; :j 2Z)and T =(t;j:i 2 Z). We
call tracks in S (respectively, T) horizontal (respectively, vertical). For i1;iz;j1;j2 2 Z
we de ne D = D(ti,;ti,;Sj,;Sj,) to be the intersection of the domains betweert;, and t;,
and betweens;j, and sj,.

We say that D is crossed horizontally ifG contains an open path such that: (i) every
edge of lies in D, and (ii) the rst edge crossest;, and the last vertex is adjacent to
ti,. Write G,(D) = Gy(ti,;ti,;Sj::Sj,) for the event that D is crossed horizontally, with a
similar de nition of the vertical-crossing event G,(D). See Figure 3.1.5 for an illustration
of the above notions.

The purpose of the following proposition is to restate the ba-crossing property in
terms of the geometry of the square grid. Considering the sticture of isoradial graphs
in G, if (G;Pg) has the box-crossing property, then it satis es BXP(3; ) for some > O.
Henceforth, for isoradial graphs, we will write BXP( ) for BXP(3; ).

Proposition 3.1.4. Let > 0,1 2 N, and let G 2 G(;I). The graph G has the box-
crossing property if and only if there exists > 0 such that, for N 2 N and i;j 2 Z,
Pc Gi(tisti+an:SjiSj+n) sPc G(titisn;Sj;Sj+2n) X (3.1.8)

Moreover, if (3.1.8) holds, thenG satis es BXP( 9 with °depending on , , | and not
further on G.
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Figure 3.1.5: The shaded domairD = D(t;,;ti,;Sj,;Sj,) iS crossed horizontally.

Proof. We prove only the nal sentence of the proposition. The convese (that the box-
crossing property implies (3.1.8) for some > 0) holds by similar arguments, and will not
be used this document. LetG 2 G( ;1 ), and assume (3.1.8) with > O.

Let N 2 N. For i;j 2 Z, the cell Cj; is the domain D(tin ;t(+1yn s SiN S+ n)- The
cells have disjoint interiors and cover the plane. Two distict cellsC = Cj;, C°= Cy, are
said to be adjacent if (i;j ) and (k;|) are adjacent vertices of the square lattice, in which
case we writeC ~ C% More speci cally, we write C 1, CO (respectively, C , C9 if
ji  kj =1 (respectively, jj 1j =1). With the adjacency relation , the graph having the
set of cells as vertex-set is isomorphic to the square latte

Each cell has perimeter at most 4N , and therefore diameter not exceeding IN . A
cell contains at leastN 2 faces ofG?®, and thus (by (3.1.2)) has total area at leastN  sin .

For 2 N with 20, letu=( N; 0)andv =( N; 0) viewed as points in the plane.
Let UY, be the union of the setSl\, of cells that intersect the straight-line segmentuv with
endpointsu, v. Let R be the tubeuv+[ 2IN; 2IN J?. Thus R has area 8N (N +2IN),
and UY, R. Since each cell has area at least 2sin , the cardinality of S}, satis es

BIN (N +2IN) _ 8I( +2lI).

Iouv N 2 sin sin

(3.1.9)

There exists a chain of cell€Cq;:::;Ck 2 Sl'}'\, suchthatu2 C;,v2 Ck andCy  Cy+1
fork=1;2;:::;K 1;seeFigure 3.1.6. Lek 2f1;2;:::;K 1g, and assumeCx p Ck+1 -
Let Hx be the event that Cx and Cy+1 are crossed vertically, andCy [ Ck+1 is crossed
horizontally. A similar de nition holds when Cy  Cy+1, with vertical and horizontal
interchanged. By (3.1.8) and the Harris{FKG inequality, Pc(Hg) s,
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3.1. Isoradial graphs and rhombic tilings

Figure 3.1.6: The regionU}), is outlined in bold, and contains a chain of cells joiningu to
v. The eventsHy are drawn explicitly for the rst two contiguous pairs of cells.

By the Harris{FKG inequality, the fact that K | Sl’}‘;vj, and (3.1.9),
|
K1
Pg Hk 3K 241 ( +21)=sin . (3110)
k=1

If the event on the left side occurs, the rectangle
Sn = ( 2)N;(  20)N [ 2IN; 2IN]

of R? is crossed horizontally.
Let R =[ kik] [ 3k;3k] wherek 8I. Pick N such that 4IN  k 8IN, so
that Ry is “higher' and “shorter' than Syg.n . By (3.1.10) with =101,

Pg (R is crossed horizontally) (3.1.11)

where 0= 288%=sin  gmgjler values ofk are handled by adjusting °accordingly.
The same argument is valid for translates and rotations of tte line-segmentuv, and
the proof is complete. O

3.1.7 Isoradial square lattices

An isoradial square lattice is an isoradial embedding of the square latticeZ?. Isoradial
square lattices, and only these graphs, have a square grid asack-system.

Let G be an isoradial square lattice. The diamond graphG® possesses two families of
parallel tracks, namely the horizontal tracks (sj : j 2 Z) and the vertical tracks (t; :i 2 Z).
The graph G2, and hence the pair G;G ) also, may be characterized in terms of two

93



Isoradial graphs and the star{triangle transformation

Figure 3.1.7: An isoradial square lattice (in red) with the associated diamond graph. The
diamond graph is isomorphic toZ?, and its embedding is characterized by two sequences
, of angles.

vectors of angles linked to the transverse vectors. First, w orient Sp in an arbitrary
way (interpreted as ‘rightwards'). As we proceed in the give direction along sp, the
crossing trackst; are numbered in increasing sequence, and are oriented fronght to left
(interpreted as "upwards’). Similarly, as we proceed alond,, the crossing trackss; are
numbered in increasing sequence and oriented from left to ght. Let (sj) (respectively,

(ti)) be the transverse vector ofs; (respectively, tj) with transverse angle j (respectively,

i). Rather than working with the ;, we work instead with ; := as illustrated in

Figure 3.1.7. Wiite =( j:i2Z)and =( j:j2Z),andnotethat ;2[ ; ),
i 20,2 ). We will generally assume that G is rotated in such a way that ¢ = 0, so
that ; 2[0; Jand | i j fori;j 2 2.

The vertex of G® adjacent to the four tracks t; 1, tj, Sj 1, Sj is denotedv;; . If not
otherwise stated, we shall assume that the tracks are labedd in such a way that the vertex
Vo0 iS a primal vertex of G3.

Tracks tj, sj intersect in a rhombus of G® with sides (t;), (sj), (ti), (sj) in
clockwise order, and thus its internal angles are i and ( i). Thus, G satis es
the bounded-angles property BAP() if and only if

i i 21; 1; ] 2 Z: (3.1.12)

Conversely, for two vectors , satisfying (3.1.12), we may construct the diamond graph
denoted G3; as in Figure 3.1.7. This gives rise to an isoradial square l&te denoted
G . (and its dual) satisfying BAP( ). We write P . for the canonical measure olG . .

We introduce now some notation to be used later. For a setV of vertices of G3, we
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de ne the height of W by
h(W)=sup | :9i with vij 2 W :

This de nition extends in an obvious way to sets of edges.

In Section 5.2.2 is described an operation of so-called ‘tc&-exchange' on isoradial
square lattices. This introduces a potential for confusionbetween thelabel and the level
of a track. Inthe G ; above, we say thats; is (initially) at level j. The level of s; may
change under track-exchange, but;; shall always refer to the vertex between level§ 1
andj in the new graph.

Due to this potential confusion, it will be convenient to use a di erent notation for
domains in square lattices than for general graphs. FOM1;M2;N1;N2 2 Zwith M1 Mo,
N1 Ny, let B(M1;M2;N1;N>) be the subgraph of G induced by the subset of vertices
fvij : Mg Mo; N1 ] N.g. For M;N 2 N, we use the abbreviated notation
B(M;N)=B( M;M;0;N). A horizontal crossingof B = B(M1;M>;N1;N>) is an open
path of B linking some vertex vy ,:n, to some vertexvyu,:n,; a vertical crossing links some
Vm,:N, 10 somevpy,.n,. We write G,[B] (respectively, G,[B]) for the event that a box B
contains a horizontal (respectively, vertical) crossing. For a vertex vi; of G, we write
B + vj; for the translate fvrs 1 vy s j 2 Bg.

When applied to G, we have that

B(M1;M2;N1;N2) = D(tm,;tm,i SNy SNL);

sincesy, and sy, are the tracks at levelsN1 and N respectively. As mentioned before,
the latter will not always be the case. Use of the notationB emphasizes that domains are
de ned in terms of tracks at speci c levels, rather than of tracks with speci c labels.

The following lemma will be used in Section 5.2.

Lemma 3.1.5. Let G =(V;E) be an isoradial square lattice satisfying the bounded-areg
property BAP( ) and the following.

(a) For 1, there exists ( ) > O such that

Pc Gi[B(bN ¢;N) + V] () N2N;v2V:

(b) There exist ¢; o> 0 such that

Pe G[B(N;b gNc)+ V] 0l N hvawv

Then there exists = ( o; o; (1); (2 01); ) > 0 such that G has the box-crossing
property BXP( ).
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A A
1
P2 P1 Po
(0]
1 P1 1 P2
B Po C B

Figure 3.2.1: The star{triangle transformation

Outline proof. Assume (a) and (b) hold. Just as in the proof of Proposition 43.2, the
crossing probabilities of boxes ofs with aspect-ratio 2 and horizontal/vertical orientations

are bounded away from 0 by a constant that depends only on the spect-ratios of the
boxes illustrated in Figure 4.3.1. (Here, the boxes in quesbn are those ofG viewed as
an isoradial square lattice, that is, boxes of the formB( ; ) de ned before the lemma.)
Therefore, the hypothesis of Proposition 3.1.4 holds with gitable constants, and the claim
follows from its conclusion. O

3.2 The star{triangle transformation

In Section 3.2.1 we review the basic action of the star{triargle transformation, then, in
Section 3.2.3 we show its harmony with isoradial embeddingsThe star{triangle transfor-
mation is a central tool in the proofs of Chapters 4 and 5. To plysicists, the star{triangle
transformation is better known as the Yang-Baxter equation

3.2.1 Star{triangle transformation

The star{triangle transformation was discovered rst in th e context of electrical networks,
and adapted by Onsager and Kramers{Wannier to the Ising modé In its base form, it is
a graph-theoretic transformation between the hexagonal I&tice and the triangular lattice.
Its importance stems from the fact that a variety of probabilistic models are conserved
under this transformation, including the critical percolation, Potts, and random-cluster
models. The methods of this paper extend to all such systemdyut we concentrate here
on percolation, for which we summarize its manner of operatin as in [Gri99, Sect. 11.9].
Consider the triangle = ( V;E) and the star %= (V%EY of Figure 3.2.1. Let
p = (po;p1;p2) 2 [0;1)2 be a triplet of parameters. Write = f0; 1gF with associated
product probability measure Pé with intensities p; (as in the left diagram of Figure 3.2.1),
and 9= fO; 1gEO with associated measurePZ p» With intensities 1 p; (as in the right
diagram of Figure 3.2.1). Let! 2 and !°%2 O For each graph we may consider open
connections between its vertices, and we abuse notation by nting, for example, x! ! y
for the indicator function of the event that x and y are connected in by an open path
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of I . Thus connections in are described by the family (x! ! y:X;y 2 V) of random

variables, and similarly for ©

Proposition 3.2.1 (Star{triangle transformation) . Let p 2 [0;1)% be such that

4 (PosP1;P2) = Po+ Pr+ P2 Pop1p2 = 1: (3.2.1)

The families

1l 010

X " y:xy=AB;C ; x " yixgy=AB;C ;

have the same law.

The proof is an elementary computation, and may be found in [@i99, Sect. 11.9].
Next we explore couplings of the two measures. Lep 2 [0;1)3 satisfy (3.2.1), and let
(respectively, 9 have associated measur@é (respectively, PZ p) as above. There exist
random mappingsT : ! %andS: 91 suchthat T(!) has law P/ 0, and (! 9
has law Pﬁ . Such mappings are given in Figure 3.2.2, and we shall not sp#y them
more formally here. Note from the gure that T(! ) is deterministic for seven of the eight
elements of ; only in the eighth case doesT(! ) involve further randomness. Similarly,
S(! 9 is deterministic except for one special! © Each probability in the gure is well

denedsinceP :=(1 po)(1 p1)(1 p2) > 0.

Proposition 3.2.2  (Star{triangle coupling) . Let p be self-dual and letS and T be given
as in Figure 3.2.2. With ! and! ®sampled as above,

(@ T(!) has the same law as °

(b) S(!' 9 has the same law a$ ,

. 0.
(c) for x;y 2fA;B;Cg, x! e y if and only if x ¢ T Y,

(d) for x;y 2fA;B;Cg, x! e y if and only if x !G;S(! ) y

The maps S and T act on con gurations on stars and triangles. They act simultane-
ously on the duals of these graph elements, illustrated in Fjure 3.2.3. Let! 2 , and
dene! (e)=1 ! (e) for each primal/dual pair e e of the left side of the gure. The
action of T on induces an action on the dual space , and it is easily checked that
this action preserves! -connections. The mapS behaves similarly. This property of the
star{triangle transformation has been generalized and stdied in [BR10] and the references
therein.

3.2.2 The star{triangle transformation and open paths

Since the star{triangle transformations S and T preserve connections, they also preserve
open paths, as described below. Let us rst give a precise daition of paths.
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/N T | | | |
L/,\,\ > //‘\\ PR /\\ //‘\
PoP1P2 (1 po)pipz Po(1  p1)p2 Pop1(1  p2)
P P P P
A\ ! N
2N - and similarly for all single edges

AN i

>
P
>

| | J I S N
AN e RN
J > /.

NN > /s and similarly for all pairs of edges
P /\ /\ /- A

> \ /
Pop1P2 (I po)pipz Po(1  p1)pe Pop1(1  p2)
P P P P

Figure 3.2.2: The random mapsT and S and their transition probabilities, with P :=
(1 po)d p)(@ p2). Since 4 (p) =0, the probabilities in the rst and last rows sum
to 1.

A path = ( ) in R?is a continuous function :[a;! R? for some real interval
[a;. Note that a path may in general have self-intersections, and there may be sub-
intervals of [a; ] on which is constant. Let :[c;d! [a;h be continuous and strictly
increasing with (c) = aand (d)= b. We term the path  =( () a reparametrization
of over [c;d].

Let j j denote the Euclidean norm onR2. The space of paths may be metrized by

( )

dpath( ;) =inf sup to to
t2[0;1]

where the in mum is over all reparametrizations (respectively, 9 of (respectively, )
over [G 1]. Note that dpan is Not a metric sincedpath ( 9=0if Cis areparametrization
of , and thus the corresponding metric acts on a space of equialence classes of paths
(see [AB99, eqgn (2.1)]). We shall use the fact that, if two pahs (parametrized over [Q1])
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Figure 3.2.3: The star{triangle transformation acts simultaneously on primal and dual
graph elements.

satisfy dpatn ( ;) < ,then

where

A =fx+y:x2Ajyj o:

Let G = (E;V) be a planar graph. A path :[a;b! R?is called a path onG if
its image in R? only uses edges and vertices db. Moreover, is such that [a; b may be
split into a nite family of intervals fl[ax;ax+1]: 0 k Kg, with every interval being
mapped by onto either an edge or a vertex ofG. In other words may be represented
as a chain of edges, with possible stationary points at verties. Henceforth all paths will
be paths on graphs (we allow loops and repeated edges). Suctpath is called open (in a
given con guration) if it traverses only open edges.

Let P be a percolation measure ornc. SupposeG = (V;E) contains a triangle =
ABC , and that P has intensitiesp = ( po; p1; p2) on the edges of , as in Figure 3.2.1. Let
T(G) be the graph obtained from G by replacing with the star Owith center O. For
a conguration ! 2 = f0;1g5, T(!) is a random con guration on T(G), identical to
I outside Cand given by the coupling described in Figure 3.2.2 on ° By Proposition
3.2.2 the operation described above preserves open conniecis.

Let ! 2 be a conguration of open edges of G and be an! -open path. We will
describe how we associate to a T(! )-open path on T (G), which we call T( ). Suppose for
simplicity that  has no stationary points, and parametrize it such that it passes through
the sequence o; 1;:::; k Of vertices ofG, in order. Hence each (; :k t k+1)isan
open edge ofG. The path T( ) is also parametrized by [QK ] and is obtained as follows.
If kissuchthat ({ :k t k+1)is notan edge of ,then T( ) is identical to on
[k;k +1]. Ifitis an edge of , say BC, we setT( )x = B, T( )k+% =0, T( )ks1 = C,
and interpolate linearly between these points. By the coupihg of ! and T(!), T( ) is
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A
L 0
B_"_C
\/‘\‘S\//—\\‘\A‘
—
s
—
B/ \cC

Figure 3.2.4: The action of T and S on the red open path.

indeed aT (! ) open path, with same endpoints as .

Suppose now thatG contains a star © and that |, are as above. As forT, we
de ne S( )to be equalto outside © For the sections of that intersect °we proceed
as follows. Letk be such that x = O. If k =0, then ;1 2fA;B;Cg, and let S( ) be
stationary on [0; 1], equal to ;. Similarly, when k=K, S( )= k 1fort2[K 1K].
Finally, if 0 <k <K , then we have two cases, eithery 1= 41 Or x 16 k+1. Inthe
rst case, S( )isequalto ¢ ;on[k 1;k+1]. Inthe second case, supposex 1 = B
and g+ = C. If the edge BC is S(! )-open, then setS( )x 1 = B, S( )k+1 = C and
interpolate linearly. If BC is S(! )-closed, by the coupling of Figure 3.2.2, both edgesB
and AC are S(! )-open. We then setS( )i 14 = BA and S( )k+1y = AC. This de nes
S( ) as aS(! )-open path on S(G).

The action of S and T on open paths is described in Figure 3.2.4.

3.2.3 The star{triangle transformation for isoradial grap hs

Let G = (V;E) be an isoradial graph, and let be a triangle of G with vertices A, B, C.
Seen as a transformation between graphs, the star{triangléransformation changes into
a star 9with a new central vertex O 2 R?. It turns out that O may be chosen in such a
way that the new graph, denoted G°, also is isoradial. The right way of seeing this is via
the diamond graph G2, as illustrated in Figure 3.2.5. This construction has its roots in
the Z-invariant Ising model of Baxter [Bax82, Bax86], studied in the context of isoradial
graphs by Mercat [Mer01], Kenyon [Ken04], and Costa-Santo$CS06] (see also [BAT10]).
The triangle comprises the diagonals of three rhombi of G3. These rhombi form
the interior of a hexagonwith primary vertices A, B, C and three further dual vertices.
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Figure 3.2.5: The triangle on the left is replaced by the staron the right. The new vertex
O is the circumcentre of the three dual vertices of the surrouding hexagon ofG3 .

Let O be the circumcentre of these dual vertices. Three new rhombare formed from
the hexagon augmented byO (as shown). The star ?has edgesAO, BO, CO, and the
ensuing graph is isoradial (since it stems from a rhombic tihg).

By an examination of the angles in the gure, the intensities associated to by (1.3.1)
satisfy (3.2.1), and the star{triangle transformation may be applied to . Moreover, this
transformation yields the canonical measure on ° That is, the star{triangle transforma-
tion maps Pg to Pgo. Furthermore, for > 0,

G satis es BAP( ) if and only if G°satis es BAP( ). (3.2.2)

The same holds when applying the star{triangle transformaion to a star contained in an
isoradial graph.

We shall sometimes view the star{triangle transformation a acting on the rhombic
tiling G2 rather than on G, and thereby it acts simultaneously onG and its dual G .

The star{triangle transformation of Figure 3.2.5 is said to act on the track-triangle
formed by the tracks on the left side, and toslide one of the tracks illustrated there over
the intersection of the other two, thus forming the track-triangle on the right side.

A natural question when dealing with percolation on isoradal graphs is why do we
associate parameters to edges via (1.3.1), and not anotheotimula. In light of the above,
we may give a explanation.

Suppose we wish to associate to every isoradial grap® a canonical critical percolation
measurePg with parameters pe = ( ¢), Where ¢ is given as in Figure 1.3.3. Equivalently
we could askpe to be a function of the length of e; the expression in terms of is more
harmonious with the computations.

Since we wantPg to be critical, it is reasonable to expect that the canonicalmeasure
associated to the dual graphG is the dual measure ofPg. Hence we want to satisfy

( )y=1 (); for 2[0; I (3.2.3)
It is also reasonable to ask that the star{triangle transformation may be applied to triangles
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in (G;Pg). Thus we expect
()+ (2+ (3 (1) (2) (3)=1; for 1+ 2+ 3=2: (3.2.4)

If, in addition, we assume that is continuous on [Q ], then is uniquely determined by
(3.2.3) and (3.2.4), and is such that

() _sinGL D).
1 () sin(3 )
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Chapter 4

Universality for inhomogeneous
lattices: a rst approach

4.1 Results

This chapter summarizes the proofs of Theorems 1.4.1, 1.4.2nd 1.6.2 for the inhomoge-
neous and highly inhomogeneous models on the square, trianlgr and hexagonal lattices.

The approach described here is that of [GMa, GMb]. Although te di erent methods
of Chapter 5 yield more general results, we include the follwing material as an illustration
of another possible approach. Both methods rely on the starffiangle transformation, but
use it in di erent ways.

Recall the notation M and M | for the inhomogeneous and highly inhomogeneous
models which satisfy the hypothesis of Theorems 1.4.1 and 4.2, respectively. Since
M M |, we will state the following theorems forM ;.

Theorem 4.1.1. For > O there exists ;| > 0 such that all models inM | () satisfy the
box-crossing propertyBXP(lo; ).

For models in M |, due to the geometry of the lattices, |lp may always be taken to
be twice the length of the edges. In the rest of the chapter we vite BXP( ) instead of
BXP(lo; ).

Theorem 4.1.1 implies criticality for the models in M| (Theorems 1.4.1 and 1.4.2)
via Propositions 2.1.1 and 2.1.2. In Section 4.6 prove the flmwing slightly more general
results.

Theorem 4.1.2. Let p2 (0;1) and g;q°2 [0; 1)%.

@) If

8n2z; s (P ) O (4.1.1)
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then there exists,Pg.q.qo-a.s., no in nite open cluster.

(b) If there exists > 0 such that
8n2 Z; 4 (P;oh; ) : (4.1.2)
then there existc;d > 0 such that, for every vertexv,
Pg;q;qo(jcvj kY ced: Kk o
(c) If there exists > 0 such that

8n2 Z; s (P ) (4.1.3)
then Pg;q;qo is uniformly supercritical.
The same holds forPIZ;q;qo with 7 in place of 4.

Theorem 4.1.3. Let g;9°2 (0; 1).

(a) If there exists > 0 such that
8n2 Z; (G;%) 0 and gl 1 (4.1.4)

then there exists,Pq.qo-a.s., no in nite open cluster.

(b) If there exists > 0 such that
8n2Z; hid)
then there existc;d > 0 such that, for every vertexv,
PyqoiCvi k) ce®; k o
(c) If there exists > 0 such that, for all n,

(h;d)

then Pa:qo is uniformly supercritical.
Finally, we have a universality result for arm exponents acossM .

Theorem 4.1.4. Forevery 2f g[f 2 :] 1g,if exists for some modeM 2 M ,,
then it is M | -invariant.
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The above may be used in conjunction with Theorems 2.4.1, 2.5, and 4.1.1 to obtain
universality results for other critical exponents as in Theorem 5.1.3.

The rest of the chapter is structured as follows. Section 4.Zontains the proof of The-
orem 4.1.1 for the inhomogeneous modelsl ; the extension to the highly inhomogeneous
models ofM ;| is sketched in Section 4.4. Sections 4.5 and 4.6 contain thergofs of The-
orem 4.1.4 and Theorems 4.1.2, 4.1.3, respectively. The poés in Sections 4.3 - 4.5 are
based on the lattice transformations presented in Section 2.

4.2 Lattice transformations via the star{triangle transfo r-
mation

We show next how to use the star{triangle transformation to convert the triangular lattice
into the square lattice and vice-versa. The transformationwill transport self-dual measures
on the rst lattice to measures on the second lattice. This pemits the transportation of the
box-crossing property from one lattice to the other. This general approach was introduced
by Baxter and Enting [BE78] in a study of the Ising model, and has since been developed
under the name Yang{Baxter equation, [McC10, PAY06].

Henceforth it is convenient to work with so-called mixed lattices that combine the
square lattice with either the triangular or hexagonal lattice. We shall be precise about
the manner in which a mixed lattice is embedded inR2. Leti 2 R, and let| = R
fig be the horizontal line of R? with height i, called the interface; above | consider
the triangular lattice and below | the square lattice. Our triangular lattice comprises
equilateral triangles with side length ™ 3, and our square lattice comprises rectangles whose
horizontal (respectively, vertical) edges have length’ 3 (respectively, 1), as illustrated
in the leftmost diagram of Figure 4.2.1. The embedding is sp& ed up to horizontal
translation and, in order to precise, we assume that the poih (0;i) is a vertex of the
lattice. We call the ensuing graph the mixed triangular lattice L with interface | = 1.

The mixed hexagonal latticeL with interface | = | is similarly composed of a regular
hexagonal lattice (of side length 1) abovd and a square lattice belowl (with edge-lengths
as above), as drawn in the central diagram of Figure 4.2.1.

We de ne the height h(A) of a subsetA  R? as the supremum of they-coordinates
of elements ofA. A mixed lattice L may be identi ed with the subset of R? belonging to
its edge-set. Thus, for a mixed latticeL, h(I) is the height of its interface.

We next de ne two transformations; TM and T© acting on a mixed triangular lattice

(@) TM transforms all upwards pointing triangles of L into stars, with centres at the
circumcentres of the equilateral triangles.

(b) TO transforms all downwards pointing triangles into stars.
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AN P\ /P2

Figure 4.2.1: TransformationsS , S , TM, and T© of mixed lattices. The transformations
map the zones with dashes to the bold triangles/stars. The iterface-height decreases by
1 from the leftmost to the rightmost graph.

It is easily checked (and illustrated in Figure 4.2.1) that each transformation maps a mixed
triangular lattice to a mixed hexagonal lattice.

We de ne similarly the transformations S and S on a mixed hexagonal lattice;
these transform all upwards (respectively, downwards) paiting stars into triangles. They
transform a mixed hexagonal lattice to a mixed triangular lattice.

The concatenated operatorsS T andS TM map the mixed triangular lattice L
to another mixed triangular lattice, but with a di erent inte rface height:

h(ls toL)= h(l)+1;
h(ls w )= h(l,) &L

Loosely speaking, repeated application o6  TO transforms L into the square lattice,
while repeated application of S TM transforms it into the triangular lattice.

We now extend the domains of the above maps to include con guations. Let L =
(V;E) be a mixed triangular lattice with ¢ = f0;1gF, and let! 2 g. The image ofL
under T is written TML = (TMV; TME) and we write twg = f0;1g" E. Let p 2 [0;1)3
be self-dual. LetTM(! ) be chosen (randomly) from twg by independent applications of
the kernel T within every upwards pointing triangle of L. Note that the random map T
depends on the choice op.

By Proposition 3.2.2, for any two vertices A, B on L, we have:

L;! (T

ATTB A (4.2.1)

The corresponding statements forT®, S , and S are valid also, with one point of note.
In applying the transformations S , S to a mixed hexagonal lattice, the points A and
B in the corresponding versions of (4.2.1) must not be centresf transformed stars, since
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these points disappear during the transformations.

Let p = (po; p1;P2) 2 [0;1)2 be self-dual, and letS , S , TM, TO be given accordingly.
We identify next the probability measures on the mixed lattices that are preserved by the
operation of these transformations.

Let L = (V;E) be a mixed (triangular or hexagonal) lattice. The probability measure
denoted P, on g is product measure whose intensityp(e) at edge e is given as follows.

(@) p(e) = po if eis horizontal,

(b) p(e) =1 poif eis vertical,

(c) p(e) = pp if eis the right edge of an upwards pointing triangle,
(d) p(e) = p if eis the left edge of an upwards pointing triangle,
(e) p(e)=1 poif eis the right edge of an upwards pointing star,

(f) p(e)=1 p;if eis the left edge of an upwards pointing star.
When it becomes necessary to emphasize the lattick in question, we shall write Pb.

Proposition 4.2.1. If p 2 [0;1)® is self-dual in that 4 (p) =0, then Pp is preserved by
the transformations S , S , TM, and TC. That is, if U is any of these four transformations
acting on the mixed latticeL = (V;E), then

! 2 g has lawP; U(!) has lawPy":

As in Section 3.2.3, the transformationsTM, T°, S and S may be extended to open
paths. We view these transformations as dynamical modi catons of open paths, hence
we say a pathdrifts under the transformations.

Let ! be an edge-con guration on a mixed triangular lattice L. Let be an! -
open path on L, and consider the action of the mapTM (illustrated in Figure 4.2.2).
The image lattice TML is endowed with the edge-con guration TM(1 ). The star{triangle
transformations contributing to TM act on disjoint parts of L, hence we may de ne as
the path obtained by the procedure described in Section 3.3. applied separately in each
triangle a ected by TM. We obtain thus a TM(! )-open path, which we denoteTM( ). Note
that TM( ) is equal to in the square part of L (excluding the interface) and has the same
endpoints as . The same holds forT©.

We turn now to a mixed hexagonal lattice H under the transformation S (the same
argument holds for S ). Let ! be an edge-con guration onH, and an open path. As
before, through the construction of Section 3.2.3, we de ne& S (! )-open pathS ( ). The
part of lying below the interface is not a ected by S , but if its endpoints are in the
hexagonal part of H, then they may drift under the action of S .

An illustration of the transformations is given in Figure 4.2.2.
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S

=

(o\
[
©

11 11

Figure 4.2.2: Transformations of lattice-paths. The tranformation TM acts deterministi-
cally on open paths, each edge of a triangle being transforndeinto two segments of an
upwards pointing star. When applying S , the segment labelled from 0 to 1 contracts to
one point, as does that labelled from 5 to 7.

The following proposition acts as a (basic) control on the dift of open paths under
the transformations TM, T, S and S .

Proposition 4.2.2. Let be an open path on a mixed lattice. We have that
@ doan (GTM( ) 3 anddpan (T O()) 3,
(b) dpan(;S (1)) landdpan(;S () 1,
(© dpan(; (S TO)( ) landdpan(: (S TY)()) 1,

whenever the transformations are matched to the mixed latte.

Proof. This follows by examination of the di erent cases in the transformations, and is
illustrated in Figures 3.2.4 and 4.2.2. O

4.3 Proof of Theorem 4.1.1 for M

4.3.1 Outline of the proof

Theorem 4.1.1 for the inhomogeneous models iM is an immediate consequence of the
following theorem. Recall that a triplet p 2 [0; 1)° is self-dual if 4 (p) =0, with 4 given
in (1.4.2).

Theorem 4.3.1. Let p = (po;p1;p2) 2 [0;1)3 be self-dual.

@ If P has the box-crossing property, then so doeF?,?,1 .

(Po;1 po)

(b) If po> 0, and if Pfo1 has the box-crossing property, then so doeI%(pO;1 0o)"

(c) Pl‘o1 has the box-crossing property if and only iPZ p has it.
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) 4
S|ncep(%;%) (%;pl;pz)

has the box-crossing property for all self-dual triplets (%;pl;pz). As (%;pl;pz) ranges
within the set of self-dual triplets, p; ranges over the interval [Q %]. By Theorem 4.3.1(b),
for all p; 2 (0; %), P(pl;l o1) has the box-crossing property. We then use Theorem 4.3.1(a)
again to deduce that Pé has the box-crossing property for all self-dual tripletsp. Finally,
the conclusion may be extended to the hexagonal lattice by Thorem 4.3.1(c).

has the box-crossing property, we have by Theorem 4.3.1(aj@at P

Theorem 4.3.1(a, b) is proved in the remainder of this sectin. Part (c) is an immediate
consequence of a single application of the star{triangle @nsformation, and no more will
be said about this. We assume henceforth that all lattices a@ embedded inR? in the style
of Figure 4.2.1.

4.3.2 Specic notation

Before the proof of Theorem 4.3.1 it will be useful to introduce some notation speci c to
this chapter.

Let G = (E;V)beaplanar graphandlet! 2 g = f0;1gF. Let G,(m;n) (respectively,
G/(m; n)) be the event that there is an open horizontal (respectivey, vertical) crossing of
the box Bm:y :=[ m;m] [0;n] of R2. Suppose now thatG is invariant under translation
by the non-zero real vectors &;0) and (0; b) for some least positivea and b. A probability
measureP on g is calledtranslation-invariant if it is invariant under the actions of these
translations.

Lemma 4.3.2. A translation{invariant, positively associated probability measure P on
g has the box-crossing property if and only if the following Hd for some Ng:

(a) For 1, there exists ( ) > 0 such that, for all N Ny,
PIG(N:N)] (- (4.3.1)
(b) There exist o; o> O such that, for allN Ny,
P[G(N; oN)I> o (4.3.2)
Moreover there exists = ( o; o; (1); (2 o)) > 0and N; 0 such that P has the

box-crossing propertyBXP(Ny; ).

Remark 4.3.3 If the measure P of Proposition 4.3.2 is not translation{invariant, the
proposition remains valid with (4.3.1){(4.3.2) replaced by the same inequalitiesuniformly
for all translates of the relevant rectangles.

Proof. This is sketched. It is trivial that the box-crossing property implies (4.3.1) and
(4.3.2). Conversely, suppose (4.3.1) and (4.3.2) hold. Theositive association permits
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2N

oN

Figure 4.3.1: Left: Vertical crossings of copies oBy: ,n and horizontal crossings of copies
of By.n o may be combined to obtain vertical crossings of boxes with ditrary aspect

ratio. Right: Crossings of the typeG,(n;n ) and G,(n; n ) may be combined to obtain
crossings of boxes with general inclination.

the combination of box-crossings to obtain crossings of layer boxes. The claim is now
obtained as illustrated in Figure 4.3.1. O

4.3.3 Proof of Theorem 4.3.1(a)

It su ces to assume pg > 0, since the hypothesis does not hold whepg = 0. By Propo-
sition 4.3.2, it su ces to prove the following two propositi ons.

Proposition 4.3.4. Let p = (po; p1;p2) 2 [0; 1)° be self-dual withpy > 0. For > 1 and
N 2 N,

PolG(( DN;2N) Ppg p[GONN L

Proposition 4.3.5. Let p = (po;p1;p2) 2 [0;1)° be self-dual withpy > 0. There exist
= (po)>0,and N = n( )>Osatisfying y! lasN !1 |, such that

Po[G@N; NI NPy plG(NINL N 2N:

The constant is given by

P
1 1 po(1 po).

4.3.3
1 po ( )

and n = n( ) may be calculated explicitly by the nal argument of this su bsection.

Proof of Proposition 4.3.4. Let p 2 [0;1)% be self-dual with pp > 0, and let > 1 and
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2( 1N
<t
2N
interface REr
N /-\-/\/\-/\ S T MN
- > interface

2N

Figure 4.3.2: Transformation of a horizontal crossing ofB nn by (S TWWN. The
interface moves downN steps. The path drifts by at most distance N and cannot go
below the interface of the image lattice.

N 2 N. Let L =(V;E) be a mixed triangular lattice with interface-height h(I.) = N, and
write Pp for the associated product measure oh.. SinceBnn =[ N; N ] [O;N]is
beneath the interface,

Piooi1 poy [G(N;N )= P5[G(N;N )]

Let! 2 Gy(N;N ). We claim that there exists a horizontal open crossing 0B 1yn:on
in (S  TMN(1), as illustrated in Figure 4.3.2.

Let be an open path ofL, parametrized by [G 1], that crossesB y.ny horizontally.
By Proposition 4.2.2, dpain (; (N)) N where (N):=(S TMN( ), whence,

jo (N)j N; (4.3.4)
b1 (N) N; (4.3.5)
Ny N BRN: (4.3.6)

Since contains no vertex with strictly negative y-coordinate, and the transformations do
not act in this region, neither does (N). Hence,

(N) NVR [01) R [O;2N]:

Taken with (4.3.4){(4.3.5), we deduce that (N) contains an open path ©that crosses
B( 1n;2n inthe horizontal direction.

SinceB( qyn:on lies entirely in the triangular part of (S TM)YNL, we have by Propo-
sition 4.2.1 that

PSIGNSN )T P TOMH[GH(( N 2N)]
= Py [G(( DN;2N)J;
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and the proposition is proved. O

Proof of Proposition 4.3.5. Consider the boxBy:n in the mixed triangular lattice L with
interface-heighth(l.) = N. We follow the strategy of the previous proof by consideringhe
action of S TMon a vertical open crossing of the box. In N applications of S TM, the
lattice within the box is transformed from square to triangular. By Proposition 4.2.2(c),
the image of may drift by distance 1 or less at each step. Drift of in the horizontal
direction can be accommodated within a box that is wider in that direction. Vertical
drift is however more troublesome. Whereas the lower endpat of is unchanged byN
applications of S TM, its upper endpoint may be reduced in height by 1 at each such
application. If this were to occur at every application, both endpoints of the nal path
would be on the x-axis. This possibility will be controlled by proving that t he downward
velocity of the upper endpoint is strictly less than 1.

Let p 2 [0;1)2 be self-dual with pg > 0, and write LK = (S TMXL for0 k N.
The lattice LK has edge-seE and con guration space k = f0;1gE". Let Ps denote the
probability measure on X given before Proposition 4.2.1. Recall from that propositon
that S TM acts as arandom mapping from ¥ to ¥*1 via the “kernel' given in Figure
3.2.2. We shall assume that sequential applications of thikernel are independent of one
another and of the choice of initial con guration. More sped cally, let ( ! K : k  0) satisfy:

(a) ! ¥ is a random con guration from K,

(b) the sequence [k :k 0) has the Markov property,

0 ic PO
(d) the law of ! * is Py.

Let P denote the joint law of the sequence I(°;! 1;:::). By Proposition 4.2.1, the law of
I K is PK.

Let DK = Bysk1 =[ N k;N + k] [0;1) viewed as a subgraph ofL¥, and call
the line R f Og the baseof R2. We shall work with the sequence bX : 1k N) of
random variables given by

K . Dk k
h* :=sup h:9x1;x2 2 R with (x1;0)! (X2;h)

Note that hk acts on K.

SinceLN is entirely triangular in the upper half-plane, it su ces to show the existence
of y= Nn()>O0Osuchthat y! 1and

PN N)  nP(h® N); (4.3.7)

with  as in (4.3.3). The remainder of this subsection is devoted tgroving this.
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Lemma 4.3.6. For 0 k<N, the following two statements hold:

Bl pk 1 (4.3.8)
P(hk+l h + %J hk - h) : h 0: (439)

Proof. We may assume thath < 1 for0 k N, since the converse has zero prob-
ability. Let k <N, and let K = X(1 k) be the leftmost path in DX that reaches some
point at height h¥. By Proposition 4.2.2(c), Lk*1 possesses an open vertical crossing of
Bn+ks1nk 1, SO that hk*1  hk 1. Inequality (4.3.8) is proved, and we turn to (4.3.9).

Let0 k<N, and let G be the set of all paths of L¥ such that there existsh > 0
with:

(a) all vertices of lie in By+kh,
(b) has one endpoint (denoted ) in R f Og,
(c) its other endpoint (denoted 1) liesin R f hg.

For 2 G, there is a unique suchh, denoted h().

Let 2 G, andletL() be the closed sub-regionof[ N k;N+k] [0;h()] R? lying
‘to the left' of . Let G() be the subset of G containing all paths °with h( 9 = h()
and © L(). Wewrite %< if O L()and ©96&.

Suppose thatp;  p2. The endpoint 1 is the lower left corner of some upwards
pointing triangle denoted ABC = ABC (), where A= 1 and O is its centre. If pp > p1,
we work instead with the similar triangle of which 3 is the lower right corner, and the
ensuing argument is exactly similar. See Figure 4.3.3.

We claim that

P(BC is! X-closedj =) 1 p;; 2G: (4.3.10)
Since the marginal ofP on ¥ is P, it su ces to show that
PS(BC closedj *=) 1 p; 2G: (4.3.11)

This is proved as follows. Let 2G. Thenf X= g= F\ G\f opengwhereF is the
event that there exists no °< such that every edge of °n is open, and G is the event
that there exists no %92 G with h( % > h() and every edge of °n is open. Since
F\ G is a decreasing event that is independent of the states of edg in , we have by the
positive association ofP that

P5( K= jBC closed) = PS( open) P5(F\ GjBC closed)
Pk( open) PS(F\ G)= P5( *=) :
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Figure 4.3.3: An illustration of the action of S TMwhen K = . The top endpoint A of
is preserved under TM. If 1 ¥(BC) = 0, there is a strictly positive probability that AO
is open in TM(! ¥), in which caseh*?  hk+ 1.

Therefore,

_ _ PK(BC closed)
PS(BC closedj *=)= Pi(*= jBC Closed)F;DE(k—z)

Pk(BC closed) =1 py;

and (4.3.10) is proved.
Consider the state of the edgeAO in the con guration TM(! X). By Figure 3.2.2, for
any! 2 Kwith 1 (BC)=0,

PoP2 )
(1 po)d p2)°

Pk AO openinTM(1) 1K=

It follows that

} " K _ PoP2 .
P hK*t hf+ k= (1 po)(2 pz)lf!(BC):Og’ e

Recall that BC = BC( K(1)). Therefore, for 2 G,

PhT pkel ks D _p(kBC)=0] k=
: @ @ py o POTOE)
(1 p1)pop2

(1 po)@ p2)’

by (4.3.10).
Now pg is xed, p1 p2, and 4 (p) = 0. Hence, the last ratio is a minimum when

p1 = p2, whence p
(I ppopz 1 1 pol po) _ .
(1 po)(  p2) 1 po ’

and the claim of the lemma follows. O

There are at least two ways to complete the proof of Propositbn 4.3.5, of which one
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involves controlling the mean of h*1  hX. We take a second route here, via a small
standard lemma. For a real-valued discrete random variableX, we write L(X) for its
law, and S(X) := fx 2 R: P(X = x) > 0Og for its support The inequality ¢ denotes
stochastic domination.

Lemma 4.3.7. Let (Xo;X1) and (Yp; Y1) be pairs of real-valued discrete random variables
such that:
(a) XO st Y01
(b) for x 2 S(Xo), Yy 2 S(Yp) with x vy, the conditional laws of X; and Y; satisfy
L(X1jXo=X) stL(Y1]Yo=Y).
Then X1 st Y1.

Proof. We include a proof for completeness. By Strassen's Theorensée [Lin02b, Sect.
IV.1]), there exists a probability space and two random varibles X9, YJ, distributed
respectively asX o and Yo, such that P(X§ Y® =1. Now,

X
P(X1>u)=  PX1>ujXe=x)PXJ=xY0=y)
X,y
X
P(Y1>u jYo=y)P(X{=xY5=Y)
Xy
= P(Y1>u);
where the summations are restricted tox 2 S(Xg) and y 2 S(Yp). O

Let (HX : k 0) be a Markov process withH® = h® and transition probabilities
8
< . .
if
P(H . = j jH =)= ’
-1 if j

1
+
|

2! (4.3.12)

with  as above. By Lemma 4.3.6 and an iterative application of Lemra 4.3.7,
PN N) PMHN  N):

Sinceh® and H° have the same distribution,
PN N) PMHN N)
PN N) P(H° N)
PHN N jHO N)= n():

Now, (H) is a random walk with mean step-size 1+3 =2. By the law of large numbers,
n! lasN!1 . Inaddition, N > 0, and (4.3.7) follows. O
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4.3.4 Proof of Theorem 4.3.1(b)
By Proposition 4.3.2, it su ces to prove the following two pr opositions.

Proposition 4.3.8. Let p = (po;p1;P2) 2 [0;1)% be self-dual withpyg > 0. There exists
= (po) 2 N and Ng = No(po) 2 N such that, for 2" 3N with > ,andN No,

Pio po) G IN;N) (@ e M)PFIG(N;N ) (4.3.13)
Proposition 4.3.9. Let p = (po; p1;p2) 2 [0;1)% be self-dual. For > 0and N 2 2N,
Pt poy G(C + N 3N)  PRIG (NN )I: (4.3.14)

Proof of Proposition 4.3.8. Let p satisfy the hypothesis of the proposition. The idea is to
consider repeated applications of the transformationS T© to an open horizontal crossing
of a box in the triangular part of a mixed lattice. The interfa ce moves upwards, and the
crossing may “drift' upwards at each step. A new technique isequired to control the rate
of this drift. This will be achieved by bounding the vertical displacement of the path by
a certain growth process.

We partition the plane into vertical columns

G = np§;(n+1)p§ R; n22Z;

of width P 3. Let L = (V;E) be a mixed lattice, and! 2 g. The G, correspond to the
columns of the square sublattice ofL, as illustrated in Figure 4.3.4.
For any (parametrized) open path =( (:a t bonlL,let

Hn()=sup h( {):tsuchthat 2C,

be its height in G,. (The supremum of the empty set is taken to be 1 .) Note that
h() = sup ,Hn(). The growth of the Hu() may be bounded as follows under the
action of the random mapS  T©.

For future use, we dene :(0;1)! (0;1) by

p— 2
x)= 1+x 1 x+x2 ; (4.3.15)

and note that is increasing.

Lemma 4.3.10. Let L be a mixed triangular lattice, and let! , be as above. There exists
a family of independent Bernoulli random variables(Y, : n 2 Z) with parameter 1 (po),
such that, for alln 2 Z,

Hn (S TO)() max Hp 1() ;Hn()+ Yn;Hn+1 ()
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We delay the proof of this lemma until later in this subsection.

Let L? = (V;E) be the mixed triangular lattice with interface-height h(l o) = O,
andlet 192 . Let 2 3N, and let © be an open path ofL? in the box B yn .
We shall use the notation introduced at the start of the proof of Proposition 4.3.5, with
the di erence that the transformation S TM there is replaced here byS  TO. Thus,
Lk=(S TOKL, and! ¥ is the edge-con guration on LK given by ! k= S TO( k 1
for k 1. Recall that ! ¥ is a random function of ! kK 1 generated via the kernel of Figure
3.2.2, and we assume as before that sequential applicatiord this kernel are independent.
We shall study the heights of the image paths K= (S  TO)k( 9).

As before, if! % is chosen according toP], then the law of ! ¥ is PK. The law of the
sequence (K : k  0) is written P, although for the moment we take! © to be xed and
write P( j ! 0) for the corresponding conditional measure.

We shall show that the speed of growth of the maximal height of ¥ is strictly less
than 1. This will be proved by constructing a certain growth process that dominates
(stochastically) the family (Hn( ¥):n2 Z; k 0).

Let 2 (0;1). Let(YX:n2 Z;k 0) be a family of independent Bernoulli random
variables with parameter 1 . The Markov processXk := (XX : n 2 Z) is given as
follows.

(a) The initial value X is given by

8

o, N forn2] =p§;N:p§];

Xn=. p_ p_
1 forn2[ N= 3; N= 3

(b) For k 0, conditional on XX, the vector X**1 is given by

XK =maxfXK XK+ Y XK 9 n2z:

Lemma 4.3.11. Let 2 (0;1). There exist ;N ¢ 2 N depending on only (independent
of , N)suchthat,for 2 3NandN Npo,

P mrgxan N 1 e N:

We postpone the proof of this lemma, rst completing that of Proposition 4.3.8. Let

= (po), and let and Ng be given as in Lemma 4.3.11. Sincél,( °) X2 for all n,

we have by Lemma 4.3.10 that, given! °, h( ¥) is dominated stochastically by max, X .
By Lemma 4.3.11,

Ph(N) N 1 1 e N N Ng (4.3.16)
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G G G G G G G G G

Figure 4.3.4: The evolution of the heights of a crossing witin columns, when applying
TO and S . The heights in each column are the same in the rst and secondattice. In
the third: H1 increases by 1H, increases by 2H3 does not change.

Sinceh(l 0)=0and h(l n)= N,

Py [G(N;N )] = P 192 Cy(N;N ) ;
Pot plG(( ININDI= PN 2G(C NI N )

Hence,

Ploir_py[H(C NI N )]

PI1 N 2¢, N:N) '92C,(N;N ) : (4.3.17
P (G (NN )] « ) ) n( ) o ( )

Let 1 92 Co(N;N ) and let ° be an'! %-open crossing ofB y.y . By Proposition
4.2.2, the leftmost point of N lies to the left of B( )n;n » and the rightmost point to
the right of that box. Moreover N is contained in the upper half-plane, since the lower
half-plane is in the square-lattice part of everyLX. If, in addition, h( N ) N , then

N contains a! N -open horizontal crossing ofB(  yn;n - In conclusion,

P! N2C(  IN;N) 192G(N;N)
Ph(N) N 192C(N;N)
1 e N; N  No;

by (4.3.16). The claim follows by (4.3.17). O

Proof of Lemma 4.3.10. We recall two properties of the transformationsS and T© when
applied to an ! -open path . In constructing T©(), we apply T© to downwards pointing
triangles of L containing either one or two edges of . As illustrated in Figure 3.2.2, T©
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acts deterministically on such triangles, and henceT ©() is speci ed by knowledge of .
By inspection of Figure 4.3.4 or otherwise,

Ha(TO() = Ha(); n2z: (4.3.18)

The situation is less simple when applyingS to TO(). Let S be the set of upwards
pointing stars of TOL, and let (Zp;Z7 - s 2 S) be independent Bernoulli random variables
with parameter

p_—— p1P2
=1 where =1 :
0 ° 1 p)@ p2)

For s2 S, let Z° =minfZ#;Z?g, noting that
P(z°=1)= %=1 ¢ (4.3.19)

We call s2 S a horizontal star (for ) if TO() includes the two non-vertical edges of s.
By (4.3.18), any changes in theH,, occur only when applyingS . The height H ()
may grow under the application of S T© for either of two reasons: (i) the highest part
of within G, may move upwards, or (ii) part of in a neighbouring column may drift
into G, (in which case, we say it ‘invades'G,). These two possibilities will be considered
separately.
Let n 2 Z. Assume rst that

Hn()  max Hp 1() ;Hn+a () L (4.3.20)

By Proposition 4.2.2, the part of within G, cannot drift upwards by more than 1. By

considering the ways in which parts of may invade G,, we nd that such invasions may

occur only horizontally, and not diagonally upwards (see Fgure 4.3.4). Combining these
two observations, we deduce under (4.3.20) that

Ha(S  T9())  max Hy 1() sHnea () (4.3.21)

Suppose next that
Hn() max Hn 1() ;Hnsa () (4.3.22)

By Proposition 4.2.2, (4.3.18), and the above remark concering invasion,
Ho(S  T°0)  Ha( 9+1= Ha()+1 ;

where %= TO(). Assume that H,(S ( 9) = Hn( 9+ 1. Then there must exist a star
s 2 S such that:
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Universality for inhomogeneous lattices: a rst approach

Figure 4.3.5: Three examples of growth of path-height withn a column under the action
of S , under the assumptionHn( 9 maxfH, 1( 9;Hp+1 ( 90. Left: The base of the
marked triangle is present in the image, and the height does ot increase. Middle: The
base of the rightmost marked triangle is absent. The heightsin the central and right
columns increase. There is a strictly positive probability that both marked bases are
present, and that the height in the central column does not ircrease. Right: The base of
the marked triangle is absent, and the height increases by 1.

(&) sis a horizontal star for
(b) s intersects G,,
(€) Hn(T®()) = h(O) where O is the centre of s,
(d) the base ofS (s)is closed inS  TO(!).
(See the middle and rightmost cases of Figure 4.3.5 for illusations.)
Let s satisfy (a), (b), and (c), and write A for the highest vertex of s, so that T°()
includes the edgesBO and CO. The edgeBC is open inS  TO(!) with (conditional)

probability 8
<1 if AO is closed inTO(!);

o if AO is openinTO(!):

See also Figure 3.2.2. This conditional probability is acheved by declaringBC to be open
if and only if: either AO is closed inTO(! ), or AO is open inTO(! ) and ZS = 0. With
this coupling,

if (d) above holds, thenZ® =1, and henceZ? = Z7 =1:

We return to (4.3.22). If the highest part of in G, comprises a single horizontal star
s, as on the right of Figure 4.3.5,

Ho(S TO) Hn() maxfZSZg=: Yu: (4.3.23)
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4.3. Proof of Theorem 4.1.1 for M

Figure 4.3.6: The black squares represent the bricks at steg in the growth process. The
blue and red squares are the additions at timek + 1. The lateral extensions (blue) occur
with probability 1, and the vertical extensions (red) with p robability 1

If, on the other hand, the highest part of in G, corresponds to two stars,s; and Sy,
that also intersect G, 1 and G,+1 respectively (as in the rst and second diagrams of the
gure),

Hn(S TO()) Ha() maxfzi;z2g= Ya: (4.3.24)

Recalling the properties of theZ?, Z7, we have that the Y, are independent Bernoulli
variables with parameter 1~ °where

r 2
P—2 p1P2
O:= 1 1 - 1 . 4.3.25
° 1 p)@ p2) ( )
The proof is completed by the elementary exercise of showinthat °  (pp). O

Proof of Lemma 4.3.11. The processX = (XX :k 0) may be represented physically as
follows. Above each integer is a pile of bricks, illustratedin Figure 4.3.6. At each epoch
of time, each column gains a random number of bricks. If a colonn is as least as high as
its two nearest neighbouring columns, a brick is added with pobability 1 . Otherwise,
bricks are added to the column to match the height of its highe neighbour.

We study the process via the times at which bricks are placed tavertices. For each
pair A, B of neighbours in the upper half-planeZ Zj of the square lattice with the usual
embedding, we place a directed edge denoteflB from A to B, and similarly a directed
edgeBA from B to A. Let E be the set of all such directed edges. The random variables
( as : AB 2 E) are assumed independent with distributions as follows.

8

_ <1 if AB is horizontal;
AB = .
- 0 if AB is directed downwards

and ag has the geometric distribution with parameter 1 if AB is directed upwards,
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Universality for inhomogeneous lattices: a rst approach

that is,
P(ag=r)= "1 ) r &

Thinking about ag as the time for the process to pass along the edgéB , we de ne the
passage-timefrom C to D by

8 9
< X =
(C;D)=inf = (7= e: " 2Pcp. ;

e~

where Pc.p is the set of all directed paths fromC to D.

Let 2 P 3NandL;:=[ N= P 3; N= P 3] f ig. The initial state Gg of this growth
process is the sef i, Li. It is easily seen that the state Gy at time k comprises exactly
the set of all verticesD such that there existsC 2 Ly with (C;D) k.

Let > 3 be an integer, to be chosen later. By the above,

X
Ph(Gn) N) P( (C;D) N): (4.3.26)
C,D:
C2Ly;h(D)= N
Now, (C;D) N ifand only if there exists a directed path™ 2 P¢.p with passage-time
not exceeding N , so that

X
P(h(Gn) N) P( () N ); (4.3.27)

2PN

where Py is the set of directed paths whose endpoint€, D are as in (4.3.26). Consider
such a path~ and let u, d, h be the numbers of its upward, downward, and horizontal
edges, respectively. Since upward and horizontal edges hapassage-times at least 1,
we must haveu + h N . By considering the heights of the rst and last vertices,
u d=¢( 1)N. Therefore, “has no more than ( +1)N edges in total, of which at
least ( 1)N are upward.

There arejLyj 2N possible choices foC, so that

Py 2N 2N ;Nl)N ; (4.3.28)

For = 2 Py, (7 is no smaller than the sum of the passage-times of its upwad edges.
Therefore,

P(C(O N) P(S N); (4.3.29)

where S is the sum of ( 1)N independent random variables with the Geom(1 )
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4.3. Proof of Theorem 4.1.1 for M

distribution. It is elementary that
P(S N)=PT ( 1N ;

where T has the binomial distribution bin( N; 1 ). By Markov's inequality (as in the
proof of Cramer's Theorem),

imsupP T (1N @ ) ;
N1 1

(4.3.30)

when (1 ) < 1, thatis, > 1=.
By (4.3.27){(4.3.30), there existsNg = Ng( ; ) such that, for N Ny,
) N

( +DN (2 @ )

2N
P(h(Gn) N) 2N 4 ON 1

By Stirling's formula, there exists c= ¢( ) and N; = Ni(; ) such that, for N Ny,

( ) N
3 (@ )
Ph(Gn) N) C 1 (4.3.31)
Choose = () suciently large that the last term is smaller than e N, and the proof
is complete. O

This concludes the proof of Lemma 4.3.11 and thus of Proposin 4.3.8.

Proof of Proposition 4.3.9. Let N 2 2N. Let L = (V;E) be the mixed triangular lattice
with interface-height 0, so that

P; G(N;N ) =P5 G(N;N ) :

Let! 2 g, andlet be an! -open vertical crossing ofB n:n . In %N applications of
S TO, the images of the lower endpoint of remain in the square part of the lattice,
and thus are immobile. By Proposition 4.2.2, &  TO9)N=?( ) contains a vertical crossing
of B( 4 1)nn=2 that is open in (S TON=2(1). SinceB, 1)n;n=2 lies entirely within the

square part of S T9)N=2L, we deduce that

Poot oy G + HNEN) = P T g+ HN;N)
P [G/(N;N );

and the claim is proved. O
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0 0
® ®
* * 1 L1 :
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\|/
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Figure 4.4.1: A mixed triangular lattice (left) with the hig hly inhomogeneous measure
above the interface. The transformationS  TM moves the interface down by one unit.
Every triangle is parametrized by a self-dual triplet.

4.4 Proof of Theorem 4.1.1 for M

We will only sketch how to adapt the proofs of Section 4.3 to irtorporate the highly
inhomogeneous models.

The proof of Theorem 4.1.1 for the highly inhomogeneous mode on T and H follows
exactly that of Section 4.3.3 on noting that: each triangle d the mixed triangular lattice of
Figure 4.4.1 has three edges with parameters forming a seffual triplet, and the constants
of Propositions 4.3.4 to 4.3.9 depend only (in the current siing) on the value of p and
not otherwise on g and q° The hexagonal-lattice case follows by a single applicatio of
the star{triangle transformation.

We now focus on highly inhomogeneous models on the square fiae. Let =1 q°
satisfy (1.4.4) with > 0, andletp=1 p°= % . We may pick ry 2 (0;1) such that

4 (P;th;rn) =0forall n,and we writer@ =1 r,. By the above the measurePé;q;r has
the box-crossing property, and we propose to transport thisproperty to the square-lattice
measurePy.qo via the star-triangle transformation.

Let L = (V;E) be the mixed triangular lattice on the left of Figure 4.4.2, and denote
by Pq:r;p the product measure given there. UnderPq;.p, all triangles in L have self-dual
triplets. Thus, T© acts on g endowed with P, in the manner of Section 4.2 (with
parameters varying between triangles), and the ensuing mesure is given in the middle
gure. Then S acts on edge-con gurations of TOL (with parameters varying between
stars). The ensuing lattice (S TO)L is illustrated on the right, and it may be noted that
the corresponding measure is precisely that of shifted upwards and rightwards.

In the triangular part of L, Pg;r., corresponds to the measur@é;q;r, while in the square
part it corresponds to Pq;qo. By Theorem 4.1.1 for the highly inhomogeneous models om,
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&
o]
[

Figure 4.4.2: Left: The measurePq;;, on L. In the triangular part the measure is Pé;q;r on
a rotated lattice, and in the square part it is P, 4:q° Middle, right: Application of S  T©
transforms L to a copy of itself shifted upwards and sideways.

Pﬁ;q;r has the box-crossing property, and thus it remains to adapt he proofs of Propositions
4.3.8 and 4.3.9.

Proposition 4.3.9 holds because of its non-probabilistic bund for the drift of a path
under S  TO. Its proof is easily adapted to give, as there, that, for > 0 andN 2 2N,

Pg:qo G(( + 3N 3N) Pg;r;P[G/( NIN T

The proof of Proposition 4.3.8 requires the probabilistic stimate of Lemma 4.3.10.
This hinges on the application of S to con gurations on upwards pointing stars. The
key fact is that (pg) > 0, with as in (4.3.15) andpy the parameter associated with
a horizontal edge in the triangular lattice. In the present Stuation, such edges have
parametersg,. Since g , we have that (q,) () > 0. This results in an altered
version of Lemma 4.3.10 with (po) replaced by ( ). The proof continues as before, and a
version of (4.3.13) results. Theorem 4.1.1 for highly inhorageneous models on the square
lattice is proved.

4.5 Universality of arm exponents

4.5.1 Outline of proof

The main goal of this section is to prove the following propogion.

Proposition 4.5.1. Letk2f1;2;4;:::gand > 0. There exist constantsc; = ¢j(k; ) > 0
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and No = No(k; ) such that for any model(L;P) 2M () and anyn 2N 2Ny,

C1P1.1[Ak(N;n)]  P[AK(N;n)] P11 [Ak(N;N)I: (4.5.1)

1.1 1.1
22 22

Theorem 4.1.4 follows directly from the above, and the rest bthe Section is dedicated
to Proposition 4.5.1. Its proof is structured as follows. Weuse transformations similar to
those in the proof of Theorem 4.1.1 to transport arm events fom one model to another.
To do that we introduce in Section 4.5.2 a modi ed version of the mixed lattices used in
Section 4.3, and the corresponding transformations. In Seion 4.5.3 we give an alternative
de nition of arm events, adapted to our context, and relate it to the regular de nition. In
Section 4.5.4 we use the modi ed arm events to prove Proposiin 4.5.1.

For the remainder of this section > 0 is xed and, unless otherwise stated, all
constants ¢ > 0, Ng 2 N depend only on and on the number k of arms in the event
under study. We use the expression fon > N large enough' to mean: forn ¢yN and
N >N o.

45.2 Mixed lattices: a second version

Whereas the mixed lattices of Section 4.2 were suited for prang the box-crossing property,
a slightly altered hybrid is useful for studying arm exponerts.

Let m 0, and consider the mixed latticeL™ = (V™; E™) drawn on the left of Figure
4.5.1, formed of a horizontal strip of the square lattice cetred on the x axis of height
2m, with the triangular lattice above and beneath it. The embedding of each lattice
is otherwis% as in Section 4.2: the triangular lattice compises equilateral triangles of
side length 3, and the square lattice comprises rectangles with horizdal (respectively,
vertical) dimension = 3 (respectively, 1). We require also that the origin ofR? be a vertex
of the mixed lattice.

Let p 2 [0;1)3, and let P? be the product measure on ™ = f0;1gF" for which edge
e is open with probability p(e) given by:

(@) p(e) = po if eis horizontal,

(b) p(e) =1 poif eis vertical,

(c) p(e) = pp if eis the right edge of an upwards pointing triangle,
(d) p(e) = p2 if eis the left edge of an upwards pointing triangle.

Suppose further that p is self-dual, in that 4 (p)=0,andlet ! ™ 2 ™. We denote
by TM (respectively, T°) the transformation T of Figure 3.2.2 applied to an upwards (re-
spectively, downwards) pointing triangle. Write T* for the transformation of ! ™ obtained
by applying TM to every upwards pointing triangle in the upper half plane, and T° sim-
ilarly in the lower half plane; sequential applications of gar{triangle transformations are
required to be independent of one another.
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Figure 4.5.1: The transformation S* T7* (respectively, S T ) transforms L1 into L?
(respectively, L2 into L). They map the dashed graphs to the bold graphs.

Similarly, we denote by S (respectively, S ) the transformation S of Figure 3.2.2
applied to an upwards (respectively, downwards) pointing $¢ar. Write S* for the trans-
formation of (T*L™;T* (! ™)) obtained by applying S to all upwards pointing stars in
the upper half-plane and similarly S in the lower half-plane. It may be checked that
pm+l = g* T*(1™)liesin ™! and has lawPy'*!. That s, viewed as a transformation
acting on measures, we have§* T*)P[' = Pg”l.

The transformations T and S are de ned similarly, and illustrated in Figure 4.5.1.
As in that gure, for m 0,

(S* THLM=L™; (st TH)PY = PR
m+l _ | m. m+l _ pm.
(S THL™r=L™ (S T )Pyt =P

We turn to the operation of these two transformations on openpaths, and will con-
centrate on S* T*; similar statements are valid forS T . Let!™ 2 ™ and let
be an! M-open path of L™. As in Section 4.2, the image of under S* T* contains
some! ™*1_open path © Furthermore, Clies within the 1-neighborhood of viewed as a
subset ofR?, and has endpoints within unit Euclidean distance of those & . Any vertex
of in the square part of L™ is unchanged by the transformation. The corresponding
statements hold also for open paths of the dual of L™. These facts will be useful in
observing the e ect of S*  T* on the arm events.

Let L = (V;E) be a mixed lattice duly embedded inR?, and write Vq for the subset
of V lying on the x-axis. Let! 2 = fO0; 1gE. For R R2 and A;B R\ Vo, we
write A1 T B (with negation written A! s B) if there exists an! -open path joining
somea 2 A and someb 2 B using only edges that intersectR. We remind the notation
Rl=fr+d:r2R;jd 1g

Proposition 45.2. Letm 0,! 2 ™ R R? andu;v2 R\ Vp. For 2fS*
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TS T g,
(@) if u! R v, then u !Rl; ®) v,
(b) if u !R;;! v, then u! R V.
Proof. (a) Let = S* T*;thecase =S T is similar (we assumem 1 where

necessary). Ifu! R v, there exists an! -open path of L from u to v using edges that
intersect R. Sinceu, v are not moved by , the image ( ) contains a (! )-open path of

L from u to v. Itis elementary that transports paths through a distance not exceeding
1 (see Proposition 4.2.2). Therefore, every edge of( ) intersects R

R, (1)

(b) Supposeu! v. By considering the star{triangle transformations that constitute

the mapping (as in part (a)), we have that u !Rl;I V. O

As in Section 4.4, we may also de ne highly inhomogeneous meares on the mixed
lattices L". The transformations T*, T , S and S are de ned similarly, with star{
triangle transformations depending on the local parametes of the lattices. We extend
M | () to accommodate the highly inhomogeneous models on the mixklattices.

45.3 Modied arm-events

Let L be one of the square, triangular, and hexagonal lattices, oa hybrid thereof as in
Section 4.5.2. Letx; = (i 3;0),i 0, denote the vertices common to these lattices to
the right of the origin, and y; = ((i + 3)° 3;3), i 0, the vertices of the dual lattice L
corresponding to the faces olL lying immediately above the edgex;xij+1. We recall the
notation , =[ n;n]* RZ with boundary @ n, and that Cy (respectively, C,) denotes
the open cluster of L containing x (respectively, the open cluster of L containing y).
For n 1 and any connected subgraptC of either L or L , we write C\ @, 6 ? if C
contains vertices in both , and R?n( r;r)?. Note that we may haveC\ @, 6 ? even
when there are no vertices ofC belonging to @ ;.

For ;n 2 Nwith j 2, let

Agi(n) = Cx,\ @n6 ?; and x;! f ! X0;X1;:0X 10

0 igj

We write AL (n) when the role ofL is to be stressed. Note the condition of disconnection
in the de nition of Ay (n): it is required that the X; are not connected by open paths of
edges all of which intersect .

A proof of the following elementary lemma is sketched at the ed of this subsection.
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Proposition 4.5.3. Let (L;P) 2 M () and k 2 f1;2;4,6;:::9. There exists Ng =
No(k) 2 Nand ¢ = ¢ (;N;k) > 0 such that

P[Ak(n)]  P[AK(N;n)]  coP[Ak(n)]; (4.5.2)
P[Ak(n)] ciP[Ak(2n)]: (4.5.3)

forn N No.

Proof. First, a note concerning the eventAy (n) with j 2. If I 2 Ay (n), the vertices x;,
0 i<j,areconnected to@ ,, by open paths. We claim that ] such open paths may be
found that are vertex-disjoint and interspersed byj open paths joining the y; to @ . This

to @ ,,, such that the open primal paths are vertex-disjoint, and the open dual paths
are vertex-disjoint except at the y;. The claim may be seen as follows (see also the left
diagram of Figure 4.5.2). The dual edgee with endpoints yp is necessarily open By
exploring the boundary of Cy, at e, one may nd two open paths denoted o, §, joining
Vo to @ n, and vertex-disjoint except atyo. Let0 r | 2. SinceX;;Xr+1! ! @ n
and x,! o Xr+1, we may similarly explore the boundary of Cy, to nd an open path

r of , thatjoins y; to @ ,, and is vertex-disjoint from either ¢ or 8, and in addition

inequality in (4.5.2) follows immediately.

For the second inequality in (4.5.2), as well as for (4.5.3),we will need to use the
box-crossing property and the separation theorem.

First we note that both P and P have the box-crossing property BXP(), with a
constant = () > O that depends only on , not otherwise onL and P. If L is one of
the square, triangular, or hexagonal lattices, then the abwe is proved in Theorem 4.1.1.
For a mixed lattice L™, the box-crossing property holds in both the square and triamgular
sections of the lattice, in order to deduce it in the whole of he plane we need a short
argument which we detail in the next two paragraphs.

Suppose for simplicity that we work with an inhomogeneous masure P' with po 2
(;1 ). Recall the notation By =[ M;M] [0;N], and denote by G,(Bm:n ) (re-
spectively, G,(Bwm:n )) the event that there exists a horizontal (respectively, vertical) open
crossing ofByu:n (with a similar notation G,, G, for dual crossings). For every translation
f, f(Bwm:3an) contains a rectangle with dimensions 81 N lying in either the square or
triangular part of L™. Thus

Py Gi(f (Bmian))  min Py Gyi(M;N) 5Py oy Gi(MiN) o (4.5.4)

with an adjusted value of 9= 4 ) > 0, given by the box-crossing property. The dual
model lives on a mixed square/hexagonal lattice and the saméequality holds with G,
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@ n ) )@ n

Yo V1 \\M kYO @ n
Xo® /X

X0 L/ g

Figure 4.5.2: Left: The event Ay (n) implies the existence ofj primal arms (red) and j
dual arms (blue) extending to @ ,,. Right: Combining A' (N) and A'*? (2N;n) to form
A(n). The primal fences of A'(N) and A'*?(2N;n) are the thick red paths. The dual
ones are the thick blue paths. They are connected insidé\ (N; 2N) by the thin paths
forming Hy . These may be constructed via crossings of boxes of deternad aspect ratio,
as shown for the primal arm originating at x1.

replaced by G,.
For vertical crossings we may adapt the proof of Proposition4.3.9 to obtain

PG (f (Bann )] Pp[G(Bnan)l % (4.5.5)

wheref is any translation and %= 9¢ ) > 0 is given by the box-crossing property for
Pﬁ . The same inequality holds with G, replaced by G,. Inequalities (4.5.4), (4.5.4), along
with Proposition 4.3.2, imply the box-crossing property for P. The same is valid for the
dual measureP .

We now come back to the proof of (4.5.2). Sincd® and P satisfy the box-crossing
property, we may use the separation theorem. Fix = (k) > 0, so that (2.3.1) holds,
and let I be a -landing sequence of lengthk. It will be convenient to introduce the
notation A'(n) for the event A(n) with the additional requirement that the k arms are
fences with landing points inl. The de nition is similar to that of AE;' (N;n), and by a
straightforward adaption of the separation theorem, thereexist ¢c; > 0 such that, for N
large enough,

PIAK(N)]  ciP[AL(N)]: (4.5.6)
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Moreover, by the separation theorem, forn N large enough,
PIAL 7 (2N:n)]  c2P[AK(2N; n)]: (4.5.7)

Fix N = N (;k) such that both (4.5.6) and (4.5.7) hold. Let Hy be the event described in
the right diagram of Figure 4.5.2 by the thin paths. It only depends on the con guration
inside A(N; 2N ). For n large enough, we have

AL(N)\ AL@N;n)\ Hy  Ag(n)

Finally, by the box-crossing property for P and P , we bound the probability of Hy by a
constant c3( ;k) > 0, and by Lemma 2.3.3

P Ag(n) P AL(N) P AL(2N;n) P[HN] ciccP Ag(N) P[AK(2N;n)]:

A careful inspection of the local properties of the lattice fiows that there exists ¢, =
c4( ; k) such that
P AK(N) ca

This concludes the proof of (4.5.2).

The proof of (4.5.3) is exactly similar to that of Corollary 2.3.2 and uses inequality
(4.5.6) along with a construction using box-crossings. We d not give further details
here. O

4.5.4 Proof of Proposition 4.5.4

The proof of the universality of the box-crossing property was based on a technique that
transforms one of these lattices into the other while presesing primal and dual connec-
tions. The same technique will be used here to prove the folleing results.

Proposition 4.5.4. Fix k2f1;2;4;6;:::gand > 0. There exist constantsc; c;; ng > 0
such that, for p 2 [0; 1)3, self-dual, withpp2 (; 1 ), andn no,

Py Ak() Pt py Ak(n) Py Ak(n)

The above is enough to prove Theorem 4.1.4 foM . In order to extend the theorem
to M | we need a similar statement for highly inhomogeneous models

Proposition 4.5.5. Letp2 (;1 ) andq;q°2 [0;1} be such that
4 (P;0h; Q) =0; forn2 Z: (4.5.8)

For any k 2 f1;2;4;6;:::9 and there existc;n; > 0, depending only on and k, such
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that, for all n  ny,

Pl Ak Pa ) A(n)  CaPl o Ak(n) (4.5.9)
Pl Ak Pga g Ak(n)  cPly 0 Ak(n) (4.5.10)

At the end of the Section we will give the proof of Proposition 4.5.4. The similar
proof Proposition 4.5.5 is omitted. Before we do this, let usprove Proposition 4.5.1 using
Propositions 4.5.4 and 4.5.5.

Proof of Proposition 4.5.1. This is done in several steps.
We say a measureP satis es (4.5.11) if there exist constantscs; cy;ng > 0 such that,
forn ng

P11 Ak(n) P Ak(n)  CPry Ax(n) : (4.5.11)
Fix > 0. By Proposition 4.5.4 P?l-pl-pz) satis es (4.5.11) for all p1;p2 2 [0; 1] such
3P1;
that 4 (3;p1;p2) = 0. By Proposition 4.5.3, so doesP?pl,pz,l)
F2a2

Through another application of Proposition 4.5.4, P(p1;1 p1) satis es (4.5.11) for all
p1 2 (; %). By (4.5.2), we have proved (4.5.1) for the models ofM ( ) on the square
lattice. A third application of Proposition 4.5.4, together with (4.5.2), extend (4.5.1) to
all models inM ().

We use (4.5.9), along with (4.5.2), to deduce (4.5.1) for moéls inM | ( ) on the square
lattice, and, via (4.5.10) and (4.5.2), we extend (4.5.1) toall models inM | ().

Note that all constants in the comparison inequalities aboe come from Propositions
4.5.3, 4.5.4 and 4.5.5, and only depend on. O

The proof of Proposition 4.5.4 relies on the following lemma in which the measure
Pp is utilized within the star{triangle transformations comp rising the map . Let k 2
f1,2;4;6;:::0.

Lemma 4.5.6. LetL =(V;E) be a mixed Iagice as de ned in Section 4.5.2, and lePy
be a self-dual measure on= f0;1gf. For n= 3>k +2 and 2fS* T*;S T g,

Ag(n)  Al(n 1)

The proof of the lemma is deferred to the end of this section. et p be self-dual, with
Po2 (;1 ). Let cand N1 be as in Proposition 4.5.3. By makingn applications of
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= S* T* to LY we deduce that "AL°(2n)  AL"(n). Therefore, forn Ny,

Pioot poy[AK(M] = P[Ak(n)]

Po[Ak(2n)] by Lemma 4.5.6
Pp [Ak(2n)]

cPy [Ak(n)] by (4.5.3) :

This proves the rst inequality of Proposition 4.5.4.

Fix n maxfk 3;Nig, and consider the eventAy(n) on the lattice L". If we apply n
times the transformation S T to L", we obtain via Lemma 4.5.6 applied to the event
Ak (2n) that:

Pipo:1 poy[Ak(M] = PplAk(n)]
¢ 'Pj[Ak(2n)] by (4.5.3)
¢ 'Po[Ak(n)] by Lemma 4.5.6
= ¢ Py [Ak(n)]:

Proposition 4.5.4 is proved.

Proof of Lemma 4.5.6. Let k 2 f 1;4;6;:::9, we shall consider the cas& = 2 separately.
Let 2fS* T*;S T gand! 2 AL(n). Note that the points x,, r = 0;1;:::, are
invariant under
It is explained in Section 4.2 (see also Section 3.2.2) thathe image ( ) of an! -
open path contains a (! )-open path of L lying within distance 1 of . Therefore, for
n= 3> 2r+2,if C,,(!)\ @, 6 ?,thenCy,( (!)\ @n 1 6 ?. The proof when
k = 1 is complete, and we assume now thak 4. Letj = k=2 andn= 3>k +2. By
Proposition 4.5.2,x,! " & ®) xsforo r<s j 1,whence (!)2 Al (n 1)
Finally, let k =2. Let 2fS* T*;S T gand! 2 A5(n). Let (respectively,
) be an open primal (respectively open dual) path starting at xo (respectively yo), that
intersects @ ,. Sincexg and yg are unchanged under , they are contained, respectively,
in ()and ( ). By the remarks in Section 3.2 concerning the operation of on open
dual paths, we conclude thatCy,\ @, 16 ? in L, and similarly Cyo\ @, 16 ?in
L . The proof is complete. O

4.6 Proofs of Theorems 4.1.2 and 4.1.3

SincePg;q;qo is increasing ing and g% and since the non-existence of an in nite component
is a decreasing event, Theorem 4.1.2(a) follows from Propd®n 2.1.1(b).

Turning to part (b) of Theorem 4.1.2, assume (4.1.2) holds wih > 0. Let = %1
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and note from (4.1.2) that p;ch; o0 < 1 for n 2 Z. Therefore,p+ ;qn+ ;0%+ < 1
for all n, and
4P+ 500+ 500+ ) O n2Z:

By Theorem 4.1.1 and the monotonicity of measures, the measa of the dual process,
PZ b 1q :1q° has the box-crossing property. The claim follows by Propoion
2.1.1(c) with =

Assume nally that (4.1.3) holds with > 0. Let = %minf ;pg and write

x* =maxfx;0g; 0= xly g
Then
4 (e ) )@ )T 0 n2z:

By Theorem 4.1.1 and the monotonicity of measures, the ass@ated product measure on
the triangular lattice has the box-crossing property. By Proposition 2.1.2(b) with =
we have that Pyy.q0 is supercritical. By monotonicity of measures,Pp.q:q0 is supercritical
as claimed.

The same arguments are valid for the hexagonal lattice.

Finally, consider Theorem 4.1.3, and assume (4.1.4). Let, = (1 ¢, of)=2, and apply
Theorem 4.1.1 to the self-dual measurePq+ Qo+ Part (a) then follows by Proposition
2.1.1(b). The proofs of (b, c) hold as for the triangular lattice.
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Chapter 5

Universality for isoradial graphs

5.1 Results

We recall the notation G( ;1) for the class of isoradial graphs with the bounded-angles
property BAP( ) and the square-grid property SGP( ) (Section 3.1). The main technical
result of this chapter is the following. Criticality and uni versality will follow.

We recall from Section 3.1.6 the fact that, for isoradial grgphs, we write BXP( ) for
BXP(3; ).

Theorem 5.1.1. For > Oandl 2 N, there exists = ( ;1) > 0 such that if G satis es
BAP( ) and SGP(l), Pg satis es BXP( )

Note that, if G2 G(;1),then G 2 G( ;I ) also. The following criticality result follows
by Propositions 2.1.1 and 2.1.2.

Theorem 5.1.2 (Criticality) . Let G = (V;E) 2 G(;1), and let > 0. All constants in
the following depend only on, | and , not otherwise onG.

(&) There exista;b;c;d >0 such that, forv2 V,

ak ® Pgrad(C,) k ck ¢ k 1

(b) There exists, Pg-a.s., no in nite open cluster.

(c) There existf;g > 0 such that, forv 2 V,

Pe (iICvi k) fe 9 k O

(d) There existsh > 0 such that, forv 2 V,

Ps(v$1l )>h:
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(e) There exists, P5-a.s., exactly one in nite open cluster.
Our universality theorem is presented next.

Theorem 5.1.3 (Universality) .

(@ Let 2f g[f 5 :j 1g. If exists for someG 2 G, then it is G-invariant.

(b) If either or exists for someG 2 G, then , , are Ginvariant and satisfy
(1.6.2).

(c) If and 4 exist for someG 2 G, then , , and are invariant in the set of

graphs of G which are periodic and invariant under rotation and re ecti on. Also the
exponents satisfy(1.6.3).

Point (a) will be proved in Section 5.4. Points (b) and (c) of the above are direct
consequences of (a) and of Theorems 2.4.1 and 2.5.1.

Finally, we make some comments on the proofs. There are two prcipal steps in the
proof of Theorem 5.1.1. Firstly, using a technique involvirg star{triangle transforma-
tions, the box-crossing property is transported from the hanogeneous square lattice to an
arbitrary isoradial embedding of the square lattice (with the bounded-angles property).
Secondly, the square-grid property is used to transport thebox-crossing property to gen-
eral isoradial graphs. This method may be used also to show #invariance of certain
arm exponents across the class of such isoradial graphs, as Theorem 5.1.3 (a). The
basic approach is similar to that of Chapter 4, but the geometical constructions used
here di er in substantial regards from the previous. The following use of the star{triangle
transformation is inspired by work of Kenyon [Ken04].

5.2 Proof of Theorem 5.1.1: Isoradial square lattices

5.2.1 Outline of proof

The proof for isoradial square lattices is based on Propositn 5.2.1 below. We recall from
Section 3.1.7 the notationG . for the isoradial square lattice generated by the sequences
of angles , . For 2[0;2 ), we write G . for the isoradial square lattice generated by
the angle-sequence and the constant sequence ().

Proposition 5.2.1. Let ; > 0. There exists °= {; ) > 0 such that the following
holds. LetG . be an isoradial square lattice satisfyingBAP( ), and let 2 [0;2 ) be such
that and the constant sequenc¢ ) satisfy BAP( ), (3.1.12). If G . satises BXP( ),
then G . satis es BXP( 9.

Corollary 5.2.2. Let > 0. There exists = () > 0 such that every isoradial square
lattice satisfying BAP( ) has the box-crossing propertyBXP( ).
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Since G( ; 1) is the set of isoradial square lattices satisfying BAP(), the corollary is
equivalent to Theorem 5.1.1 with | = 1.

By Lemma 3.1.5, Proposition 5.2.1 follows from the forthconing Propositions 5.2.4 and
5.2.8, dealing respectively with horizontal and vertical ¢ossings. Both these propositions
rely on a technique called track-exchange, which we presernh Section 5.2.2.

Remark 5.2.3 The material in Section 5.2.4, and speci cally Proposition 5.2.8, may be
circumvented by use of Theorem 4.1.1, where the box-crossyproperty is proved for highly
inhomogeneous square lattices. We do not take this route hersince it would reduce the
integrity of the current proof, and would require the reader to be familiar with the method
of Chapter 4.

Here is an outline of the alternative approach. An isoradialsquare lattice G . satis-
fying BAP( ) has the measure of a highly inhomogeneous square lattice & | (p ). By
Theorem 4.1.1, such a lattice has the box-crossing propertyMoreover, the box-crossing
property is equivalent in the isoradial and the Z? embedding (with  di ering by a factor
bounded uniformly in , see Propositions 3.1.4 and 4.3.2). By Proposition 5.2.4,drizontal
box-crossings may be transported fromG . to the more general isoradial square lattice
G . . Similarly, by interchanging the roles of the horizontal and vertical tracks of G . ,
we obtain the existence of vertical box-crossings in that I&tice. Such crossing probabilities
are now combined, using Proposition 3.1.4, to obtain Theors 5.1.1 for G( ; 1).

Proof of Corollary 5.2.2. Let > 0 and letG . satisfy BAP( ).

First, assume that one of the two sequences, is constant. Without loss of generality
we may take to be constant, and by rotation of the graph, we shall assume 0. There
exists > 0 such that the homogeneous square latticés, - , satis es BXP( ) (see, for
example, [Gri99, Sect. 1.7]). By Proposition 5.2.1 with = 3 , G . satis es BXP( 9 for
some °= q: )> 0.

Consider now the case of general , . By the above, G . , satises BXP( 9. By
Proposition 5.2.1 with = (, G . satis es BXP( % for some = 99 ¢ )> 0, O

The following is xed for the rest of this section. Let > 0, andlet , be sequences of
angles satisfying BAP(), (3.1.12). Let be an angle such that and ( ) satisfy BAP( ),
(3.1.12). All constants in this section may depend on, but not furtheron , , unless
otherwise stated.

5.2.2 Track-exchange in an isoradial square lattice

Let G be an isoradial square lattice. The tracks ofG are to be viewed as doubly-in nite
sequences of rhombi with a common vector. In this section, welescribe a procedure for
interchanging two consecutive parallel tracks.

Consider a vertical strip G = G . of the square lattice, where =( ;: M i N)
and =( j :]j 2 Z) are vectors of angles satisfying BAP(), (3.1.12). Thus every nite
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B g o

Figure 5.2.1: A new rhombus is introduced on the left (markedin green). This is then “slid’
along the pair of tracks by a sequence of star{triangle trangormations, until it reaches the
right side where it is removed.

face of G has circumradius 1. There are two types of tracks inG, the nite horizontal
tracks (sj), and the in nite vertical tracks ( tj). We explain next how to exchange two
adjacent horizontal tracks by a sequence of star{triangle tansformations, employing a
process that is implicit in [Ken04]. Track s; has transverse angle j, as illustrated in
Figure 3.1.7, and the “exchange' of two tracks may be interpgted as the interchange of
their transverse angles.

We write j for the operation that exchanges the tracks at level§g 1 andj. When
applied to G, | exchangess; 1 and s;, and we describe j by reference toG3. If

i = j 1, there is nothing to do, and ; interchanges the labels of the tracks without
changing the transverse angles. Assumej > 1. We insert a new rhombus on the left
side of the strip formed ofs; ; and sj, marked in green in Figure 5.2.1. This creates a
hexagon inG2, containing either a triangle or a star of G. The star{triangle transformation
is applied within this hexagon, thereby moving the new rhomhus to the right. By repeated
star{triangle transformations, we ‘slide' the new rhombusalong the two tracks from left
to right. When it reaches the right side, it is removed. In the new graph, the original
tracks s; 1 and s; have been exchanged (or, more precisely, the transverse dag of the
tracks at levelsj 1 andj have been interchanged). Let ; be the transformation thus
described, and say that ; "goes from left to right' when ;| > ; 1. If j < 1, we
construct j “from right to left'.

Viewed as an operation on graphs, j replaces an isoradial graphG by another isoradial
graph j(G). It operates also on con gurations, as follows. Let! be an edge-con guration
of G, and assign a random state to the new “green' edge with the digbution appropriate
to the isoradial embedding. The star{triangle transformations used in ; are independent
applications of the kernelsT and S of Figure 3.2.2. The ensuing con guration on ;(G)
is written (! ). Thus ; is a random operator on! , with randomness stemming from
the extra edge and the star{triangle transformations. Note that ; is not a local trans-
formation, in that the state of an edge in ;(G) depends on the states of certain distant
edges.

Let ; denote the permutation that exchanges thej 1 andjth terms of a sequence.
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Initial Principal Secondary Probability
con guration outcome outcome of secondary

o OLL

EAVAN
77 EOL L 5
/U\” %@Upiiﬁ

2p2 1

///M/%@A
//[\///\/ //\M\/ 2* 1

1p2 1

Figure 5.2.2: The six possible ways in which may intersect the strip in two edges
between heightj 1 andj + 1, and the corresponding actions of . In ve cases, the
resulting con guration can be non-deterministic. If the dotted edge is closed, the resulting
con guration is in the second column. If it is open, the resuting con guration is that of
the third column with the given probability (recall from (3. 1.3) that p =1 p). The
movement of black vertices can cause the height increases mkad in blue. The tracks sy
are drawn as horizontal for simplicity, and 1= ¢ ., 2= m, Wherevp,; denotes
the black vertex, and Y is the transverse angle of the lower/upper track.
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Initial Resulting % Resulting
Figure 5.2.3: If an endpoint of lies between the two tracks, the corresponding edge is
sometimes contracted to a single point.

We may write
(G, P, )=(G

When applying the ; in sequence, we distinguish between théabel s; of a track and its
level Thus, ; interchanges the tracks currently at levelsj 1 andj.

We consider next the transportation of open paths. Let! be a con gurationon G . ,
and let bean! -open path. The action of a star{triangle transformation on is discussed
in detail in Section 3.2.2. The transformation ; comprises three steps: the addition of
an edge toG . , a series of star{triangle transformations, and the remové of an edge.
The rst step does not change , and the e ect of the second step is discussed in Section
3.2.2 and the following paragraphs. If the removed edge is ithe image of the path at
the moment of removal, we say that ; breaks . Thus, j( ) is an open path of ;(G)
whenever j does not break . In applying the j, we shall choose the strip-widthM + N
su ciently large that open paths of the requisite type do not reach the boundary, and
therefore are not broken.

Finally, we summarise in Figures 5.2.2{5.2.3 the action of ; on the path , with M
and N chosen su ciently large. Consider two tracks s°, s at respective levelsj 1 andj,
with transverse angles %and . Edges of lying outside levelsj 1 andj are unchanged
by . The intersection of with these two tracks forms a set of open sub-paths of length
either 1 or 2; there are four possible types of length 1, and siof length 2. We do not
describe this in detail, but refer the reader to the gures, which are drawn for the case

> 0 The path may cross the tracks in more than one of the diagrams on the lefof
Figure 5.2.2, and the image path contains an appropriate suget of the edges in the listed
outcomes. Note that, if the intersections of with s and s?are at distance at least 2 from
the lateral boundaries, then ; does not break

In the special case when = © | interchanges the labels ofs® and s but alters
neither embedding nor con guration. In this degenerate cas, we set j( )= , and note
that Figure 5.2.2 remains accurate.
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5.2.3 Horizontal crossings

We recall from Section 3.1.7 the notationB (M; N ) for the subgraph of an isoradial square
lattice induced by the verticesfvi;j : M i M;0 j Nag.

Proposition 5.2.4. There exist ;N o 2 N, depending on only, such that, for 2 N and
N No,

P, GIB({ DN;N)I
@ e NP GB(N;N)
P, GIB( Ny ( IN;0N)]
P, GB{ 1N; N OGN):

Proof. We shall make repeated track-exchanges to transfornG . into G . , while main-
taining the existence of an open path of requisite type.
Fix 2 Nwith > 1,and ;N g2 N to be chosen later, and letN  Ng. Let
8
< if j <N;
i N ifj  N:

We refer to the part of G = G . above heightN as the irregular block, and that with
height between 0 andN as the r’egular block. The regular block may be viewed as part
of G ., and the irregular block as part of G . . We will only be interested in the graph
above height 0.

We work on a vertical strip fvij : M i Mg of G with width 2 M, where
M=( +2 +1)N; (5.2.1)
and we truncate toa nitesequence(ij: M I M 1)

We will work with graphs obtained from G by a sequential application of the transfor-
mations ; of Section 5.2.2, and to this end we let

U= «  k+1 N+k 1) k 1 (5.2.2)

Note that Uy moves the track at levelN + k 1 to level k 1, while raising the tracks

regular block.

Let ENy be the event that there exists an open path ofG within B( N;N ), with
endpoints vy,.o and vy,.0 for somexg 2 [ N; ( 1)N] and x1 2 [( 1)N; N ]. By
the de nition of €, B(N;N ) is entirely contained in the regular block of G. By the
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VN;N+kl‘ I. I.. .BNJ'kl

N+k 2

. k+1
k

Vo N0 Vi 0 Vx1:0

Figure 5.2.4: The transformation Uy raises the (shaded) regular block by one unit, and
moves the track above byN units downwards.

Harris{FKG inequality,

P e(En) P GIB(N;N) (5.2.3)
P. G[B( N; ( 1)N;0N)
P. G[B( DLN;N;;ON) :

Let ! 9 be a con guration on G, chosen according toPg. For k 2 N, let G° = G and
GK = Uy U(G); K= Uy U1(! 9):

The family (! ¥ : k  0) is a sequence of con gurations on theGK with associated law
denoted P. Note that P is given in terms of the law of! ©, and of the randomizations
contributing to the U;. The marginal law of ! X under P is Pgx.

For! 92 Ey, andlet ©be apathinB(N;N ) with endpoints vy,.o and vy, o for some
xo2 [ N; ( 1N] and x1 2 [( 1N; N ]. Let kK= Uy Ui( 9. The path
evolves as we apply théJx sequentially, and most of this proof is directed at studyingthe
sequence 9; 1;:::; N

First we show that the path is not broken by the track-exchanges. For0 k N,
set

DK= vy 2(G% :jxj ( +1)N+2k y; 0 y N+k:

The proof of the following elementary lemma is summarised athe end of this section.
Lemma 5.25. ForO k N, Xisan open path contained inDK.
The setfvy.o : X 2 Zg of vertices of G2 is invariant under the Uy, whence the endpoints

of the X are constant for all k. It follows that the horizontal span of N is at least
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2( 1)N.

If N has maximal height not exceedingN , then it contains a! N -open horizontal
crossing of B (( 1)N; N ). The graph GN agrees withG . within B (( 1N; N ),
so

P, GB( ODN;N) Ph("™) N Ey PEn):

By (5.2.3), it su ces to show the existence of ;N o 2 N such that,
Ph(N)y N 10 1 e N; N No; ! %2 Eyp; (5.2.4)

and the rest of the proof is devoted to this. The basic idea isigilar to the corresponding
step of Chapter 4 (Proposition 4.3.8), but the calculationsare more elaborate.

Let 1 92 Ey and let © be as above. We observe the evolution of the heights of the
images of © within each column. Forn2Zand0 k N, set

8

Sh( ¥\C,) if X\C,6 ?;
G =fvny :y22Zg hE= ( ") "
-1 otherwise

Thus, h( N )=supfhN :n2 Zzg.

The process bK : n 2 Z), k =0;1;:::; N, has some lateral drift depending on the
directions of the track-exchanges ;. We will modify it in order to relate it to the growth
process of Proposition 4.3.8. The track above the regular bick is transported by Uy

through the regular block, and thus all ; contributing to Uy are in the same direction.
Let (dx : kK 0) be given bydy =0 and
8
Sdc+1 it (>
di+1 = (o if «= ;
cde 1 if <

and setHk = hk,, . The rest of the proof is devoted to the processi® = (Hk : n 2 2),
k=0;1:::; N .

We introduce some notation to be used in the proof. A sequenc® = (R, :n2 Z) 2
(Z[flg )% is termed arange. The height in column n of R is the value R, and the
height of the range is supR, : n 2 Zg. For two rangesR?', R?, we write Rl R? if
RY R2 for n 2 Z. The maximum of a family of ranges is the pointwise supremum
sequence. The rang® is called regular if

jRns1 Rnj L n2z: (5.2.5)

The mountain at a point (n;r) 2 Z? is de ned to be the rangeM (n;r) = (M (n;r); :
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[e] [e]
o [ J o o [ ] o o o o
o o [ J o o o [ ] [ ] [ ] [ ] [ ] [ ] o
[e] o o [ J o o o o [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] o

Figure 5.2.5: Left: One step in the evolution of H. The initial range H® has only one
occupied column (black). The blue/black squares form the mantain of the black column.
The red square is added at random.Right: One step in the evolution of the XX (or HX
when regular). The black squares are the con guration at st k, the blue squares are the
additions at time k+1 due to the covering, and the red squares are the random adtibns.

| 2 Z) given by
8
<
M(n;r) =,
T for |l = n;:

rin Ilj+1 forl6 n;

Note that mountains have at tops of width 3 centred at ( n;r), and sides with gradient
1. The covering of a rangeR is the range C(R) formed as the union of the mountains
of each of its elements:
C(R)=max fM(n;R,):n2 Zg:

We note that R  C(R) with sometimes strict inclusion, and also that R and C(R) have
the same height. IfR is regular, the heights ofR and C(R) in any given column di er by
at most 1. See Figure 5.2.5 for an illustration of these de niions. We return to the study
of (HX).

Lemma 5.2.6. There exists = () 2 (0;1), and a family of independent Bernoulli
random variables(YX :n2 Z; 0 k< N ) with common parameter such that

HK'Y maxfC(HX),;HE+ YKkg, n2Zz;0 k<N: (5.2.6)

The (YX) are random variables used in the star{triangle transformaions, and the
probability space may be enlarged to accommodate these vables.

The proof of the lemma is deferred until later in the section. Meanwhile, we continue
the proof of (5.2.4) by following that of Proposition 4.3.8. Let (YX) be as in Lemma 5.2.6,
and let Xk :=(XX:n22),k=0;1:::; N, be the Markov chain given as follows.
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(a) The initial value X° is the regular range given by

8
_ SN forn2[ N; N ];

X 0
n=— .
"N+ N jn forn2[ N;N ]:

(b) For k 0, conditionally on XX, the range X ¥*1 is given by

n (o}
XK =max XK xkK+vkxk, ;1 n2z (5.2.7)

We show rst, by induction, that Xk  HX for all k. Itis immediate that X is regular,
and that X° HPO. Suppose thatX* HK. By (5.2.7), each rangeX ¥ is regular and

XK1 c(xky  cH"): (5.2.8)
By (5.2.6), HX*1 > C (HK), only if YK =1. Since XX HEK, we have in this case that
XL xK+1 HE+1= HE: (5.2.9)

By (5.2.8){(5.2.9), X¥*1  HKk*1 and the induction step is complete.
The X ¥ are controlled via the following lemma.

Lemma 5.2.7. There exist ;N ¢ 2 N, depending on only, such that
P mnaxxnN N 1 e N; 2N; N Ng

Sketch proof. It is very similar to that of Lemma 4.3.11. A small di erence arises through
the minor change of the initial value X °, but this is covered by the inclusion of smaller-
order terms in (4.3.31). O

Let and Ng be given thus. ForN  Ngand!?2 Ey,
Ph(N) N 10 p mrgxan N
1 e N:
This concludes the proof of Proposition 5.2.4. O

Proof of Lemma 5.2.6. Let k 0 and let! be a con guration on GK. Let be an open
path on GK that visits no vertex within distance 2 of the sides ofGK and with h( ) N +k.
We abuse notation slightly by de ning H¥ and HX*1 as in the proof of Proposition 5.2.4
with  and U1 () instead of X and k*1, respectively. That is,

HX=h( \Cnsg); HEY = h(Ukia ( )\Chra, ) n2z:
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We will prove that there exists a family of independent Bernaulli random variables (Y :
n 2 Z), independent of ! , with some common parameter = () > 0 to be specied
later, such that

HXY maxtC(H¥)nHK+ Yag,  n2Z: (5.2.10)

Once this is proved, the i.i.d. family (YK :n2 Z; 0 k< N ) may be constructed
step by step, by applying the above to the pair! X, Kfor0 k< N . By Lemma 5.2.5,
the assumptions on are indeed satis ed by each . By the independence of ¥, : n 2 Z)
and ! above, the family (YX : n; k) satis es the conditions of the lemma.

It remains to prove (5.2.10) for xed k. If , = , no track-exchange takes place,
henceHk*! = HK and (5.2.10) holds. Suppose x 6 . Without loss of generality we
may suppose i > , so that dq+1 = d¢ + 1 and the track-exchanges in the application of
U := U+ are all from left to right. To simplify notation we shall assume dx = 0.

Equation (5.2.10) is proved in two steps. First, we will showthat

HXY maxfHK |, jij+1:i2 Zg: (5.2.11)

This equation is a weaker version of (5.2.10) in which eacly, is replaced by 1.

We prove (5.2.11) by analysing the individual track-excharges of whichU is composed.

Fork j N+Kk/let j= j+u1 N+k- Thus, N+k IS theidentity, = U, and
i 1= ij- Recall that the diamond graph is bipartite, with the primal and dual
vertices as vertex-sets. A vertexvy, is said to be contained in arangeR if r Rj. A set
of vertices is contained inR if every member is thus contained.

Let the sequence I :j = N + k;N + k 1;::::k) of ranges be de ned recursively
as follows. First, LN*kK = Hk, We obtain LI ®from L} by increasing its height in certain
columns: for each primal vertexv,; contained in LI, the heights in columnsn + 1 and
n+2 increase toj +1 and j, if not already at that height or greater.

We claim that () is contained in LI for N+ k | k, which is to say that

h( j()\Cn) LL; n2z: (5.2.12)

The above holds forj = N + k by the de nition of LN*k, and we proceed by (decreasing)
induction on j as follows. The path ; 1( ) is obtained by applying j to (), as
illustrated in Figure 5.2.2. Possible increases in column éights are marked in blue. Since
the black vertices in Figure 5.2.2 are contained irL!, the blue ones are contained irL/ 1.
This concludes the induction.

Therefore,U( )= ( ) is contained in L¥, and hence inequality (5.2.11) follows once
we have proved that

LK,y  maxfHK ; jij+1:i 1g: (5.2.13)
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° ° °
S| e e|o| e e |o| e e | o | e
o o|e]| o o|le|o| e o|le|o| e
—> —> B —
° e|o| e e |o|e|oO e|o|e|o| e
o o| e o o|le|o| e o|le|o|e|o| e
0 0 1 2 01 2 3 01 2 3 4 5

Figure 5.2.6: An illustration of the sequence€(0;s)l beginning with the initial column
B0;s)N*k = (0 ;s). This column is unchanged up to and includingj = s, and then it
evolves as illustrated.

This we shall do by observing that the sequencel()) is, in a certain sense, additive with
respect to its initial state. We think of LN*X as a union of columns, each of whose
evolutions may be followed individually.

Let ;s 2 Z be such that s N + k and r + s is even, so thatv,s is a primal
vertex. Let ( r;s) be the range comprising a single column of heights at position r.
Consider the sequenceg(r;s)!) with the same dynamics as (}) but with initial state
E(r:s)N*K = ( r;s). The evolution of E(r;s)! is illustrated in Figure 5.2.6. We have that
B(r;s)) = ( rps)forN+k | sand fors>j Kk,

B(r;s)h, =

8

31 fm<r orm>r +s j+1;
S ifm=r;

2

s (m r)+2 ifr<m r+s j+1:

The rangeL! is obtained by combining the contributions of the columns ofHK, in that

Ll =max B(rHNX)) :r2Z ; N+k j k (5.2.14)

A rearrangement of the above withj = k implies (5.2.13); (5.2.11) follows by extending
the maximum in (5.2.13) overi 2 Z.
Let n 2 Z be such that

HX+1 max HK, jij+1:i22znf0g : (5.2.15)

Then (5.2.11) impliesHk*1  C(HK),, whence (5.2.10) holds for this particular value of
n.

It remains to prove (5.2.10) when (5.2.15) fails. Assumen does not satisfy (5.2.15), so
that (5.2.11) implies HX*1  HK + 1. We shall prove that

HE HE+ Y (5.2.16)
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)
o °
) o ° °

| o ° o ° o °
) o ° o ) o

G G+

Figure 5.2.7: The environment aroundv,,. By (5.2.18), the black blocks contain HX.
The range L', and hence the path |( ), is contained in the aggregate range shown. The
height in G,+1 increases only if the red block appears when applying ;.

where the Y, are independent Bernoulli random variables with respectie parameters

— p + o P kKt .
k(n):= ; (5.2.17)
p n p k
(with p given in (3.1.3)), and which are independent of! .
Let | = Hr‘f. We rst analyse the action of | = |4 N +k, and then that of .
The vertex vy is necessarily primal. Since (5.2.15) fails,

HX . 1+jij 1, i22Znfog
Since eachv,, j;+jij 1is a dual vertex, we have the strengthened inequality
HX . 1+jij 2 i22zZnfog (5.2.18)

See Figure 5.2.7 for an illustration of the environment around vy, .
By (5.2.12), and (5.2.18) substituted into (5.2.14),

h( (()\Cn i) L, 1+i i 1: (5.2.19)

Note that | is the nal track-exchange with the potential to add vertice s to the path at
height | +1. Hence, HX*1 = |+ 1 only if Vj+1+1 is contained in | 1( ), or, equivalently,
only if the height in G,4+1 increases tol + 1 when applying | to ().

By (5.2.19) with i = 0; 1, the only cases in which this may happen are those of the that
and sixth lines of Figure 5.2.2 (with vy, the black vertex). (See Figure 5.2.8 for a more
detailed illustration of the third case.) Moreover, the height in G,+1 increases only if the
secondary outcome occurs. In both cases, the secondary ootoe occurs with probability

k(n) if the edgee = hvp;Vvh+1:+11 IS Open, and does not occur ik is closed. We therefore
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l+1

Figure 5.2.8: The third case of Figure 5.2.2. If the dashed gk in the initial con guration
(left) is open then, with probability ¢ (n), the resulting con guration is that on the right
side.

provide ourselves with a Bernoulli random variableY,,, with parameter (n), for use in
the former situation. We have that HK** = HX + 1 only if Y, =1, and (5.2.16) follows.

Let A = hnand B = . By (5.2.17),
(n) = P AP B _ sin(3A)sin(31B)
T Tpape  sinB[ ADsin(d[ B
_ C?S%[A BJ) ccis%[A + B]) — G(AB):
cosG[A B]) cosz[2 A B]
By assumption, B > 0, and so by (3.1.12),
A A+B ; (5.2.20)

There existsc( ) > 0 such that, subject to (5.2.20),
cosG[A B]) cosG[A+ B]) cosGl2 A B+ c():

Therefore,
=sup 9(A;B): A A+B

satises < 1, and this concludes the proof of the lemma. O

Proof of Lemma 5.2.5. We sketch this. SinceB(N;N ) DP° we have that © DO It
su ces to show that, for0 k< N and an open path inDK, Uy, does not break and

Uk( ) Dk+l .
By considering the individual track-exchanges of whichUy is composed, it may be seen
that () is an open path contained inDK*L for all j (with i= j+1 as in the

last proof). In considering how ( ) is obtained from .1 ( ), it is useful to inspect
the di erent cases of Figure 5.2.2, and in particular those irvolving blue points. The path
may be displaced laterally and, during the sequential appitation of track-exchanges, the
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(1) N k+2

Figure 5.2.9: The transformation V¢ movessy k upwards by N units.

drift may be extended laterally as it is propagated downwards. The shapes of theD' have
been chosen in such a way that j( ) is contained in DK*1 for all j. The argument is
valid regardless of the direction of ;. O

5.2.4 Vertical crossings

Proposition 5.2.8. Let = 3p* 2 (0;3). There existscy = oy () > O satisfying
cy! 1lasN !1 such that

P. G[BM@AN; N) oP; G[B(N;N); N 2 N:

Proof. The notation of Section 5.2.3 will be used. We work on the graph G e of the proof
of Proposition 5.2.4, and use transformations j to transport a vertical crossing from the
regular block to the irregular section.

Let N 2 N, and recall that G .. is a vertical strip of the original graph G of width
2M . For this proof we take M =5N. Fork2f0;1;:::;N 1g, set

Vk = 2N k N k+l: (5.2.21)

The map Vi exchanges the track at levelN  k with the N tracks immediately above it.

see Figure 5.2.9.
Let ! 9 be a con guration on G° := G .. chosen according to its canonical measure
P ¢, and let

G = Vi 1 Vo(G e);
K= Vi Vo(! ©);
DK= vy 2 (G3 :jxj N+2k+y;0 y 2N ;

k . Dk k
h® =sup h N :9xq1;X2 2 Z with vy, 0! Vy,oh -
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That is, h¥ is the greatest height of an open path ofGK starting in fvy. : x 2 Zg and
lying in the trapezium DK. The law P of the sequence (¥ : k 2 Np) is a combination of
the law of ! © with those of the star{triangle transformations comprising the V.

The box B(N;N) is contained in D, and lies entirely in the regular block of G°.
The box B(4N; N ) contains the part of DN between heights 0 and N , and lies in the
irregular section of GN ( < % is given in the proposition). Therefore, it su ces to prove
the existence ofcy = ¢y () > Osuchthatcy ! 1 and

PN N) oyP(h® N): (5.2.22)

The remainder of this section is devoted to the proof of (5.22).
Let ( i :i2 N) be independent random variables with common distribution

The ; are independent of all random variables used in the construmon of the percolation
processes of this section. We set

X
HK=HO+ . (5.2.24)
i=1
where H? is an independent copy ofh?, independent of the ;. The inequalities &, s
refer to stochastic ordering.
Lemma 5.2.9. Let0 Kk<N.If h gHX, thenhk*l g HK,

Inequality (5.2.22) is deduced as follows. Evidently,h® ¢ H? and, by Lemma 5.2.9,
hN & HN. In particular,

PN N) PHY  N):

Sinceh? and H? have the same distribution,
PN N) PHN N)
PO N) P(HO N)
PHY N jH? N)= o ():

Now, (H¥) is a random walk with mean step-size 2 1. By the law of large numbers,
cy! lasN !1 . Inaddition, ¢y > 0, and (5.2.22) follows. O

Proof of Lemma 5.2.9. Let 0 k <N . We apply Vi to GK, and study the e ects of the
track-exchanges inVx. For Nk j 2N Kk, let ;= N k+1, and let Djk
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be the subgraph of J-(G")3 induced by verticesvy,y with 0 'y 2N and

8
EN+2k+y+2 ify j

iXj N+2k+y+1 ify=j+1; (5.2.25)
" N+2k+y ify>j +1:

The D increase withj, and D¥  Df , D%, , D,

Let! k= (1% and
Dk;1 kK
hjk =sup h N :9xy;%x22 Zwith vy0! ' Ve 5
noting that

h* h¥ o h Ry (5.2.26)

First, we prove that, for N k j< 2N Kk,
hyy  heo 1 (5.2.27)
h; hf  ifh<ej+1; (5.2.28)
P(hf,;, hjhf=h) 2 ifh=j+1: (5.2.29)

Fix j suchthat Nk j< 2N k. Let be an!f-open path of ;(G¥), lying in
DK, with one endpoint at height 0 and the other at height h¥.

By consideration of Figure 5.2.2, j+1( )isa! jk+1 -open path contained in Dj"+1. The
lower endpoint of is not aected by j.1. The upper endpoint is a ected only if it is
at height j + 1, in which case its height decreases by at most 1 (see Figurg.2.3). This
proves (5.2.27) and (5.2.28), and we turn to (5.2.29).

Let P; be the set of paths of ,-(G"), contained in Dj", such that there existsh > 0
with:

(@) has one endpoint infvy.g : X 2 Zg,
(b) its other endpoint lies in fvy, : x 2 Zg, and
(c) with the exception of its endpoints, all vertices of have heights between 1 andh 1.
For 2 Pj, there is a unique suchh, which equals its heighth( ).
We perform a preliminary computation. Let ; °2 Pj. We write °< if %6

h( 9= h( ), and ©contains no edge strictly to the right of ~ within fvyy, :x 2 Z; 0
y h( )g. Note that

hk=sup h(): 2P;; is! K -open;

152



5.2. Proof of Theorem 5.1.1: Isoradial square lattices

and denote by = ( ! jk) the ! jk-open path of P; that is the minimal element of f 2 P :
h( )= h¥ is! f-openg with respect to the order <.
We have that

f(1)= g=f is!f-opeg\ N ; 2Pj; (5.2.30)

where N is the decreasing event that:

(@) there isno °2 Pj with h( 9 > h( ), all of whose edges not belonging to are
| K-open,

(b) there is no °<  with h( 9 = h( ), all of whose edges not belonging to are
I K-open.

Note that N is independent of the eventf is! jk—operg.

Let F be a set of edges of ; (GX), disjoint from , and let C¢ be the event that every
edge inF is ! f-closed. LetP¥ denote the marginal law of! ¥, and pe the edge-probability
of the edgee of j(GX). By (5.2.30) and the Harris{FKG inequality,

PCCkj = )= PX(Ck) (5.2.31)

where we have extended the domain oP to include the intermediate subsequence of

1k =1k ke 1 k — | k+1
. — N Kk'*N Kk+l'-""1"2N Kk — - .

Let 2Pj with h( )= j +1 and suppose (! jk) = . Without loss of generality, we
may suppose that .1, applied to ,-(G"), goes from left to right; a similar argument
holds otherwise.

Let z = vy +1 denote the upper endpoint of and let z% denote the other endpoint of
the unique edge of leading to z. Either z°= vy j or 9= vy 1 - In the second case, it
is automatic as in Figure 5.2.3 thath( j+1( ) | +1.

Assume that z° = vy41 i, as illustrated in Figure 5.2.10, and letF = fe;;ep; €3;€49
where

€1 = Myj+1:Vx 1j+2i; €= MWe 1542, Vx 2j+11;

€= MWy 2j+1;Vx 151, €= MWy 1j;Vyj+1i;

are the edges of the face of | (GX) to the left of z. By de nition of P;j, F is disjoint from
. By studying the three relevant star{triangle transformat ions contributing to  j+; as
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(7EE SNV AR

Figure 5.2.10: Three star{triangle transformations contributing to  j+1, from left to right.
The dashed edges are closed, the bold edges are open. The mtd last passages occur
with probability 1, and the second with probability pe Pe,=(1 Pe;)(1  Pe,)-

illustrated in Figure 5.2.10, we nd as in Figure 3.2.2 that

. ; - Pe; Pe, —
Ph( j«a()) J+1 = T pe)d pe4)P(CFJ = )
pelpe4 P(CF),

(1 pe)  Ppey)
by (5.2.31).

In summary, we have that

Y
P(hk,, h<j = PeyPe,
R N [ B

1 pr) (5.2.32)

= pel pe4 (l pez)(l pe3)
pt =2

by (3.1.4). The proof of (5.2.29) is complete.
It remains to show that (5.2.27){(5.2.29) imply the lemma. Supposeh® ¢ HX.
We shall bound (stochastically) the hjk by a Markov chain, as follows. Let Xj : ] =

probabilities given by

Xj+1 = Xj ifx8j 6] +1;
. _ <2 ifx=j+1;
P(Xj+1 = xjXj=j+1)= |
1 2 if x =]
One may construct a random variable Eﬂ with law given by (5.2.23), independent of
XN k,suchthat Xon k XN K

By (5.2.27){(5.2.29), for all j ,

0
k+1 -

Py, xjhf=vy) P(Xjs xjXj=2); xy;z2No z y:

Let Xy k = HK. By the induction hypothesis, HX & h*  h¥ |, whenceXoy « st
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hsy « by Lemma 4.3.7 iterated. Therefore,
hk+l hl;N K st XZN K XN K + E+1 =gt H k+1;

as claimed. O

5.3 Proof of Theorem 5.1.1: The general case

Let G2 G(;!). By SGP(l), there exist two families (s; :j 2 Z) and (t; :i 2 Z) of tracks
forming a square grid of G. A star{triangle transformation is said to act “between s, and
so' if the three faces of G3 on which it acts are betweens, and so. (Recall from Section
3.1.6 that such faces may belong t®x but not to sg). A path is said to be betweensy and
sk if it comprises only edges betweersy and sk (that is, edges belonging to faces between
Sp and si). A vertex of G2 is said to be just belowsy if it is adjacent to so and between
s 1 and sg.
Let EN = En (G) be the event that there exists an open path on G such that:

(@) is betweensy and sy,
(b) the endpoints of are just below sg,

(c) one endpoint is betweent o,y andt n and the other betweenty and toy .

We claim that there exists = ( ;1) > 0, independent of G and N, such that
Pc(En) N L (5.3.1)

Since such a path contains a horizontal crossing of the domainD = D(t n;tn;So;Sn),
(5.3.1) implies
Pc Gi(t nitn;Sossn)

Since depends only on and I, the corresponding inequality holds for crossings of
translations of D, and also with the roles of the §;) and (tj) reversed. By Proposition
3.1.4, the claim of the theorem follows from (5.3.1), and weurn to its proof.

The method is as follows. Consider the graphG between sy and sy. By making a
nite sequence of star{triangle transformations betweensy and sp, we shall move thes;
downwards in such a way that the section of the resulting grap, lying both betweent
and toy and between the images okg and sy, forms a box of an isoradial square lattice.
By Corollary 5.2.2, this box is crossed horizontally with probability bounded away from 0.
The above star{triangle transformations are then reversedto obtain a horizontal crossing
of D in the original graph G.

Since a nite sequence of star{triangle transformations ctanges G at only nitely
many places, we may retain the track-notations;, t; throughout their application. We say
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lemma is deferred until later in this section.

Lemma 5.3.1. There exists a nite sequence(Tx : 1 k K) of star{triangle transfor-
mations, each acting betweersy and sp, such that, in Tk T1(G), the tracks sp;::: ;SN
are adjacent betweert ,y and toy .

Let (Tx:1 k K) be given thus, and write G° = G and GK = T, T1(GO). Let
Sk be the inverse transformation of Ty, as in Section 3.2.1, so thatS,(GX) = G* 1. Since
the track notation is retained for each G¥, the event Ey is de ned on each such graph. By
a careful analysis of its action, we may see thaBy preserveskEy for k = K;K  1;:::; 1.
The details are provided in the next paragraph.

Let1 k K andlet be an open path ofG¥ satisfying (a){(c) above. Since Ty
does not movesy, Sk( ) has the same endpoints as . Furthermore, Ty acts betweensy
and sp. Thus the three faces of GK)2 on which Sy acts are either all strictly below sy, or
two of them are part of sy and the third is above. In the rst case Si( ) may di er from

but is still contained between sy and sy ; in the second caseS, does not in uence . In
conclusion, Si( ) is an open path onGK 1 that satis es (a){(c).

Since the canonical measure is conserved under a star{triahe transformation, the

remark above implies
Pc(En) Pgk (En): (5.3.2)

It remains to prove a lower bound for Pgk (En).

Write (rj .1 2 Z) for the sequence of all tracks other than thes;, indexed and oriented
according to their intersections with sg, with ro = tg, and including the t; in increasing
order. Let ; be the transverse angle ofj, and + ; that of rj. Since eachr; intersects
eachsj,thevectors =( ;:i2Z), =( j:j2Z)satisfy(3.1.12), and henceG . isan
isoradial square lattice satisfying BAP( ). By Corollary 5.2.2, there exists °= 4 )> 0
such that G . satis es the box-crossing property BXP( 9.

The track-system of GX inside D(t 2n;tan;So;Sn) is isomorphic to a rectangle ofZ2,

(and including) t oy andtoy . Thus, GK agrees withG . inside this domain.
Consider the following boxes of GX )3

Vi=D(t on:t N;So;SN);
Vo = D(tn;tan; So;SN);
H = D(t on;ton;So;Sn):
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t o ton
y | || I l | y*

S1
y

Y1 1

Y2

|l A N

| N |

Figure 5.3.1: The black points are indicated. The path from y, to y; is drawn in red.
The points y and y; are maximal, and are not comparable. The regiorR is shaded.

By the Harris{FKG inequality,

Perk (En)  Pgr G(V1)\Cy(V2)\Ch(H) (5.3.3)
Pok [G(V)]Pgk [G/(V2)]Pek [Gi(H)I:

The boxes Vi, Vo in (GK)3 may be regarded as boxes irG3; , and have heightN and
width at least N . Similarly, the box H has heightN and width at most 4IN . By BXP( 9
and (5.3.3), there exists = (;1) > 0 such that Pgk (En) , and (5.3.2) is proved.

Proof of Lemma 5.3.1. We shall prove the existence of a nite sequenceTy :1 k K)
of star{triangle transformations, each acting betweens; and sp, such that, in Tk

T1(G), the tracks sp; s; are adjacent betweent ,y and tyy. The general claim follows by
iteration.

In this proof we work with the graph G only through its track-set T. Tracks will be
viewed as arcs inR?. A point of T is the intersection of two tracks, and we write P for
the set of points.

Let N be the set of tracks that are not parallel to sp. Any r 2 N intersects both sy
and s; exactly once, and we orient suchr in the direction from its intersection with sg to
that with s;.

An oriented path on the track-set T is called increasing if it uses only tracks in N
and it conforms to their orientations. For points yi1;y> 2 P, we write y;  y» if there
exists an increasing path from y, to y;. By the properties of T given in Section 3.1.3,
the relation is re exive, antisymmetric, and transitive, and is thus a partial order on P.

Let Ry be the closed region ofR? delimited by t |, t, So, S1, illustrated in Figure
5.3.1. A pointy 2 P is colouredblack if it is strictly between sy and s;, and in addition
y y°for somey®in R := R,y or on its boundary. In particular, any point in the interior
of R or of its left/right boundaries is black. We shall see that the black points are precisely
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A A 1 Y A A S1
L\ t on t on
z
M+1 V4
"
r _L M+1
So So

Figure 5.3.2: Left: The oriented track r|+; crosses from right to left, in contradiction of
the choice of as highest. Right: The track rj4+; crosses from left to right.

those to be ‘'moved' aboves; by the star{triangle transformations Ty.

We prove rst that the number B of black points is nite. By BAP( ), the number
of tracks intersecting R is nite. Let y* (respectively,y ) be the rightmost (respectively,
leftmost) point on s; that is the intersection of s; with a track r that intersects R. We
claim that

if r 2T has a black point, then it intersects s; betweeny andy*. (5.3.4)

Assume (5.3.4) for the moment. Since a black point is the unige intersection of two
tracks, and since (5.3.4) implies that there are only nitely many tracks with black points,
we have thatB < 1 .

We prove (5.3.4) next. Lety be a black point. If y 2 R, (5.3.4) follows immediately.
Thus we may suppose, without loss of generality, thaty is strictly to the left of R. There
exists an increasing path , starting at a point on the left boundary of R and ending at

y. Take to be the "highest' such path. Let f; : 1 | L) be the tracks used by in
order, whereL < 1 . We will prove by induction that, for | 1,
ry intersects s; betweeny andy”*. (5.3.5)

Clearly (5.3.5) holds with | =1 since r; intersectsR.

Suppose 1 I <L and (5.3.5) holds forr|, and let z = ry\ rj41. If rj41 intersects R
(before or after z), (5.3.5) follows trivially. Suppose ri+; does not intersectR. There are
two possibilities: either rj4+; crossesr; from right to left, or from left to right. The rst
case is easily seen to be impossible, since it contradictséhchoice of as highest. Hence,
ri+1 crossesr; from left to right (see Figure 5.3.2). The part of the oriented track r.;
after z is therefore above the corresponding part of,. Sincer ., intersects s; after z,
and does not intersectR, the intersection of rj+; and s; lies betweeny andy*, and the
induction step is complete.

In conclusionr intersectss; betweeny* andy . Let r denote the other track contain-
ing y. By the same reasoning intersectsr_ from left to right, whence it also intersects
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s; betweeny® andy . This concludes the proof of (5.3.4), and we deduce thaB < 1 .

If B =0, there is no point in the interior of either R or its left/right sides, whence sg,
s; are adjacent betweent .y and toy .

SupposeB 1. We will show that B may be reduced by one by a star{triangle
transformation acting between sg and s;, and the claim of the lemma will follow by
iteration.

SinceB < 1 , there exists a black point that is maximal in the partial order , and
we pick such a pointy = r1\ rp. By the maximality of y, the tracks rq, rp, s; form a
track-triangle. By applying the star{triangle transforma tion to this track-triangle as in
Figure 3.2.5, the pointy is moved aboves;, and the number of black points is decreased.
This concludes the proof of Lemma 5.3.1. O

5.4 Universality for arm exponents

5.4.1 Outline of proof

We recall the isoradial embeddingGy. - , of the homogeneous square lattice, with associ-
ated measure denotedP. - ».

Proposition 5.4.1. Let k 2 f1;2;4;:::9, > 0, and |l 2 N. There exist constants
G = G(k; ;1)> 0andNg= Ng(k; ;1) 2 Nsuchthat,forN Ng,n ¢cgNg, G2G(;l),
and any vertexu of G2,

C1Po; = o[A(N; )] Pe[AK(N;n)]  GoPg, = o[Ak(N; n)]:

Part (a) of Theorem 5.1.3 is an immediate consequence. Seotis 5.4.2{5.4.5 are de-
voted to the proof of Proposition 5.4.1. In Section 5.4.2 is pesented a modi ed de nition
of the arm-events, adapted to the context of an isoradial grah. This is followed by Propo-
sition 5.4.2, which asserts in particular the equivalence tthe two types of arm-events. The
proof of Proposition 5.4.1 follows, using the techniques othe proof of Theorem 5.1.1; the
proof for isoradial square lattices is in Section 5.4.3, andor general graphs in Section
5.4.4. Section 5.4.5 contains the proof of Proposition 5.2.

For the remainder of this section, > 0 and!| 2 N shall remain xed. Unless otherwise
stated, constants¢ > 0, Ng 2 N depend only on , |, and on the numberk of arms in the
event under study. We use the expression ‘fon > N large enough' to mean: forn ¢N
and N >N q.

5.4.2 Modied arm-events

Let G2G(;l1), k2f1;24;:::g, and let s be a track and u be a vertex of G3, adjacent
tos. Forn N, we de ne the ‘'modi ed arm-event' &,;°(N;n) as follows. For simplicity
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of notation, we omit explicit reference to u and s when no ambiguity results, but in such a
case we say that&,(N;n) is “centred at u'. Recall the notation 3 (n) from Section 3.1.5,
and the constant cq of (3.1.7). A vertex u 2 G2 is said to satisfy (5.4.1) if it is primal and
its open cluster C, satis es

Cu  (3chn); (5.4.1)

and to satisfy (5.4.1) if it is dual and (5.4.1) holds with C, replaced byC,,.
The modi ed arm-events &(N;n) = &.;°(N;n) are de ned thus:

(i) For k =1, &1(N;n)is the event that there exist verticesx; 2 3(N)andy; 2 3(n),
both adjacent to s, on the same side ofs as u and satisfying (5.4.1), such that
X4 Y.

(i) For k = 2, &5(N;n) is the event that there exist vertices x1;x; 2 3(N) and
y1;y; £ 3(n), all adjacent to s and on the same side o asu, such that:

(a) x1 andy; satisfy (5.4.1), andx, and y; satisfy (5.4.1) ,
(b) x4  y1 and x{ Y-

(a) eachx; andy; satis es (5.4.1),
(b) xi yiandxil = xjofori6 i°

The technical assumption (5.4.1) will be useful in Section 5.3, when applying star{
triangle transformations to isoradial square lattices.

The following proposition contains three statements, the hird of which relates the
modi ed arm-events to those of Section 1.6. All arm-eventsA, and &y considered here
are centred at the same vertexu 2 G3. The event £ (N;n) is to be interpreted in terms
of any of the tracks to which u is adjacent.

Proposition 5.4.2.  There exist constantsc > 0 such that, for n > N large enough,

Pc[Ak(N; 2n)]  Pg[Ak(N;n)]  c1Pc[Ak(N; 2n)]; (5.4.2)
Pc[Ak(N;n)]  Pg[Ak(2N;n)]  c2Ps[Ak(N;n)]; (5.4.3)
c3Pg[Ak(N;n)]  Pg[&(N;n)]  caPg[Ak(N;n)]: (5.4.4)

By (5.4.4), for n > N large enough, there exist constantss; cs > 0 such that, if u is
adjacent to the tracks s and t,

P& (N;n)] P& (N;n)]  coPa[&°(N;n)I:

160



5.4. Universality for arm exponents

The proof of Proposition 5.4.2 is deferred to Section 5.4.5.1t relies on the separation
theorem of Section 2.3.

5.4.3 Proof of Proposition 5.4.1: Isoradial square lattice S

Let G be an isoradial square lattice satisfying the bounded-angis property BAP( ), and
let u be a vertex of G3. As usual, the horizontal tracks are labelled § :] 2 Z) and the
vertical tracks (tj @i 2 Z).

As explained in Section 3.1.7,G = G . for angle-sequences =( ;:i 2 Z), =
(j:] 2 Z)satisfying (3.1.12). We label and in such a way that u = vo,0, whenceu
Is adjacent to to and sp (here we do not requirevg to be primal). The latter track may
change its label through track-exchanges. Let be such that and the constant sequence
() satisfy BAP( ), (3.1.12). All arm-events in the following are centred atu = vo,o.

Lemma 5.4.3. There exist constantsc; > 0 such that, forn >N large enough,
ciP . [Ak(N;n)]  Pl[Ak(N;n)] P . [Ak(N;n)l:

Proof. Let N;n 2 N be picked (later) such that N and n=N are large, and write M =
d30§ne. For0O m M, let G™ be the isoradial square lattice with angle-sequences
e=( i: 4 i 4M)and©", with

(5.4.5)

8
% if m j<m;
j+m if (m+ M) j< m;
gim ifm j<m + M;

ifj< (m+M)orj m+ M:

Thus G™ is obtained from G by taking the horizontal tracks sj;, (m+ M) j<m + M,
splitting them with a band of height 2m, and lling the rest of space with horizontal tracks
having transverse angle . By the choice of , eachG™ satis es BAP( ). Moreover, inside
3(M), GYis identical to G, and GM is identical to G . .
ForO m<M,let

Un=( m+1 m+m) (m+1) (m+M));

where the ; are given in Section 5.2.2. UndelUy,, the track at level m + M is moved to
the position directly above that at level m 1, and the level (m+ M + 1) track below
the level m track. We have that

Un(G™) = G™**:
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Let ! © be a con guration on G such that &,°°(N;n) occurs. Setj =1 when k = 1,
andj = k=2 whenk 2. There exist verticesxy;:::;Xj, y1;:::,y; and, whenk =2, x,,
y;, all lying in the set fvy.0 : m 2 Zg of vertices of G2, such that:

(@) X G yi and x; 6% ° Xjo for i 6 i°,

(b) x;! e Y1, Whenk = 2,

(©) d*(voo;xi) N, d*(vo0;yi) >n,

(d) d®(voo;xy) N, d®(voo;y;) >n, whenk =2,
(e) Cy, 3(M) and, whenk =2, Cy, 3(M).

As we apply Uy 1 Ug to (G919, the images of paths from each ok;, y;, and
Xy;Y; retain their starting points.

Each 3(r) has a diamond shape. By an argument similar to that of Lemma 3.5,
for0O m M,

Cu(t™ iM+2m); C (t™)  F(M +2m):

Moreover, sinceCy, (! ™) and Cxl(! M) do not extend to the left/right boundaries of G™,
these clusters neither break nor merge with one another. Thefore,

M. M MgM
@ xi €' yiandx 1° 2 xpofori6if

GM -! M
(b) x, " 7 Y., whenk = 2,

so that ' M 2 Ay (cN; Cq n). This step is similar to that of Section 4.5.3. In conclusia,
there existscz > 0 such that

Pc[AK(N;n)]  csPgo[Ak(N;n)] by (5.4.4)
c3Pgm [Ak(caN; ¢y tn)]:

Since the intersection of anyG™ with A(cgN; ¢y n) is contained in 3(M), we have
by the discussion after (5.4.5) that there existscs > 0 with

Pa[A(N;n)]  csP . [Ac(caN;cy'n)]
C3C4P ; [Ak(N;N)];

by (5.4.2) and (5.4.3), iterated. The second inequality of lemma 5.4.3 is proved.
Turning to the rst inequality, let ! M be a con guration on GM such that &(N;n)

occurs (the arm event is de ned in terms ofvg,o and the horizontal track at level 0). It

may be seen as above that ° = Uy 1 Uo(! M) is a con guration on G° contained
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in Ax(caN;cy 1n). Furthermore,
P [Ak(N;n)]  csPgm [A«(N;n)]  cacsPg[Ak(N;n)I:

The proof is complete. O

Corollary 5.4.4. There exist constantsc > 0 such that, forn > N large enough and any
isoradial square latticeG . 2 G(;I),

C1Po; = 2[A(N; )] P [Ak(N; )] CoPo; = o[Ak(N; n)]: (5.4.6)

Proof. If is a constant vector ( o), (5.4.6) follows by Lemma 5.4.3 with = o+ =2.
For non-constant, we apply Lemma 5.4.3 with = ¢, thus bounding the arm-event

probabilities for G . by those forG . ;. Now, G . , is of the type analysed above, and

the conclusion follows. O

5.4.4 Proof of Proposition 5.4.1: The general case

Let G2G(;l), andlet(s; :j 2 Z)and (tj : i 2 Z) be two families of tracks forming
a square grid of G, duly oriented. Write (r; : i 2 Z) for the sequence of all tracks other
than the s;j, indexed and oriented according to their intersections wih sg, with ro = to,

and including the tj in increasing order. Let j be the transverse angle of;, and +

that of r;. Since eachr; intersects eachs;, the vectors =( ;:i122Z), =(j:j22Z)

satisfy (3.1.12), and henceG . is an isoradial square lattice satisfying BAP(). As in

Lemma 5.3.1, we may retain the labelling of tracks throughou the proof. Let u be the
vertex adjacent to sp and tgp, below and respectively left of these tracks. All arm-evens in

the following are centred at the vertex u and expressed in terms of the tracksy.

Lemma 5.4.5. There exist constantscy; c, > 0 such that, forn >N large enough,
ciP . [Ak(N; )] Po[Ak(N;n)] P . [Ak(N;n)l:

This lemma, together with Corollary 5.4.4, implies Propostion 5.4.1 for arm events
centred at u. By the square-grid property, any vertex is within bounded distance of one
of the tracks (sj :j 2 Z). This allows us to extend the conclusion to arm events cented
at any vertex.

Proof. Let n 2 N and M = dcgne. By Lemma 5.3.1, applied in two stages above and
below sp, there exists a nite sequenceR* of star{triangle transformations such that, in

star{triangle transformation in R* involves a rhombus lying in sg. The sequenceR* has
an inverse sequence denote® . Note that GM agrees withG . inside ,+ u 3(M).
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Let ! be a con guration on G belonging to &, (N;n), and let vertices x;, y; be given
accordingly. Consider the image con guration! M = R* (! %) on GM . By considering the
action of the transformation R*, we may see that

M. M MM
@ xi €' yiandx 1° 2 xpofori6i®

GM | M
(b) x; 7 7 Y1, whenk = 2.

Taken together with (3.1.7), this implies that ! M 2 A, (cgN; Cq n). Therefore, there exist
¢ > 0 such that

Pc[AK(N;n)]  csPc[&«(N;n)] by (5.4.4)
CsPm [Ak(GaN; ¢y tn)]
= e3P, [Ak(caN;cyn)]
c3C4P . [Ak(N;n)] by (5.4.2) and (5.4.3);

and the second inequality of the lemma is proved.
Conversely, let! M be a con guration on GM belonging to & (N;n). By applying the
inverse transformation, we obtain the con guration ! = R (! M) on G. As above,

P [AK(N;n)] = Pgu [Ak(N;n)]

C3PGM [&k(N; n)] by (5.4.4)
csPa[Ak(CaN; ¢y )]
C3C4PG[AK(N;Nn)] by (5.4.2) and (5.4.3):
This concludes the proof of the rst inequality of the lemma. O

5.4.5 Proof of Proposition 5.4.2

This section is devoted to the proof of Proposition 5.4.2, ad is not otherwise relevant to
the rest of the paper. The two main ingredients of the proof ae the separation theorem
(Theorem 2.3.1) and the equivalence of metrics, (3.1.7).

Proof of Proposition 5.4.2. Inequalities (5.4.2) and (5.4.3) follow from Corollary 2.32 and
the box-crossing property forG (Theorem 5.1.1).

Consider the rst inequality of (5.4.4) (the second is easie to prove). The idea is
as follows. Suppose thatAg(N;n) occurs (together with some additional assumptions).
One may construct a bounded number of open or openbox-crossings in order to obtain
A (N;n). These two arm-events are given in terms of annuli de ned va di erent metrics
| the Euclidean metric and d®, respectively | but the radii of these annuli are comparable
by (3.1.7).
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Assumen=N 2, and let
M =c;N; m=gn; (5.4.7)

with ¢q as in (3.1.7). Letk 2 f1;2,4;:::9, =(1;0;1,0;:::), and consider the corre-
sponding arm-event Ax(M; m). All constants in the following proof may depend on k,
, and | but, unless otherwise speci ed, on nothing else. All arm-egnts that follow are
assumed centred at the vertexu adjacent to a track s. By translation, we may assume
that u is the origin of R2. In order to gain some control over the geometry ofs, we may
assume, without loss of generality, that its transverse antp satises 2 [3; 3 ].

Let = (k) > 0 satisfy (2.3.1), and letJ be an -landing sequence of lengthk,
entirely contained in f1g [0; 1], with J; being the lowest interval. Henceforth assume
M Ng, whereN1 is given in Theorem 2.3.1 with ¢ = . By that theorem, there exists

Co > 0 such that
Pc[A)” (M;m)]  coPs [Ak(M;m)]: (5.4.8)

Let (M;v;) be the lower endpoint of MJ;, and (M;w;) the upper. Let Hy be the
event that, for i 2f 1;2;:::; kg, the following crossings of colour ; exist:
(&) a horizontal crossing of [ wi; M1 [vi; wi],
(b) a vertical crossing of [ wi; vi] [ wi;wi],
(c) for i odd, a horizontal crossing of [ wi;wi] [ wi; Vil
(d) for i even, a horizontal crossing of [ wi;wx] [ wi; V]
If kK 4, we require also an openvertical crossing of v;wx] [ Wk;0]. The eventHy
depends only on the con guration inside y, and is illustrated in Figure 5.4.1.
Let (m;v;) be the lower endpoint of mJ;, and (m; w;) the upper. Let K, be the event
that, for i 2f1;2;:::;kg, the following crossings of colour ; exist:
(a) a horizontal crossing of n; (m + w;)]  [vi;wi],
(b) a vertical crossing of [(m+ v;);m+ w;] [ (Mm+ w;);wi],
(c) a horizontal crossing of [ (m+ w;);m+ w;] [ (m+ w;); (Mm+ vj)],
(d) if i is odd, a vertical crossing of [ (m+ w;); (m+ v;)] [ (Mm+ wj);m+ w],

(e) if i is even, a vertical crossing of [(m + w;); (M+ vi)] [ (Mm+ w);m+ w].
We require in addition the following:

(f) when k =1, an open circuit in A(2m; 3m),

(9) when k =2, an open circuit in A(2m; 3m),
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Y1

o/~

Figure 5.4.1: Left: The event Hy, for k = 4. The red paths are open, the blue paths are
open . The thin coloured paths are parts of the interior fences ofAﬂ;J (M;m). Right: The
event K, for k = 2, together with parts of the exterior fences of the arm-event. The track
s intersects the open/open crossings just above the points labelledk; and y;.

(h) when k 2, an open circuit in A(m + vi; m + wy).

The event K, depends only on the con guration inside A(m; 3m), and is illustrated in
Figure 5.4.1.
Setj =1whenk =1, and j = k=2 whenk 2. We claim that, on Hy \ K\

to s and on the same side o6 asu, such that:

@ xi2 m,YiZ mand,whenk=2,x;2 wm,¥12 wm,
(b) x{ yjandx} = xjofori 6 i°
(c) x{ y; whenk =2,

(d) Cy, am and, whenk = 2, CX1 3m-

This claim holds as follows. The crossings in the de nition ¢ Hy (respectively, K )
may be regarded as extensions of the arms @fﬂ” (M;m) inside \ (respectively, outside

m). Let be the straight line with inclination 2 [%1 ; % ], passing throughu. Since
s corresponds to a chain of rhombi with common sides paralleld , it intersects only
in the edge of G® crossings and containing u. Therefore, the part of s to the left of
necessarily intersects all the above extensions. These #sections provide thex;, y; and,
whenk =2, x4, y;. The remaining statements above are implied by the de nitions of the
relevant events.

By (3.1.7), (5.4.1), and (5.4.7),

Hu \ Km\ AP (M;m) & (cgM;cytm):
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By Lemma 2.3.3,
h _ i h i
Pe Hu\ Km\ AJ?(M;m)  Pg(Hm)Ps(Km)Ps A}’ (M;m) :

The eventsHy and K, are given in terms of crossings of boxes with aspect-ratioside-
pendent of M and m. Therefore, there existsc; > 0 such that, for m and M large enough,
Ps(Huw) ¢ andPg(Kn) ¢ Inconclusion, by (5.4.7), there existscs > 0 such that,
forn=N 2,

Pc[&«(N;n)]  Pg(Hwm)Ps(Km)Pc[AY” (M;m)]

FeoPa[AK(M; m)] by (5.4.8)
foCsPalAk(caM; ¢y tm))]
= ZcotsP[AK(N;N)] by (5.4.7)

where the third inequality holds by iteration of (5.4.2){(5 .4.3). The rst inequality of
(5.4.4) follows.

The second inequality is simpler. SetM = ¢gN and m = ¢ In. By the equivalence
of the euclidian and graph distance (3.1.7) & (c, IM;cgm)  Ax(M;m). By iteration of
(5.4.2){(5.4.3), there exists cg > 0 such that, for m > M large enough,

P[&«(cy 'M;cqam)]  Pg[Ak(M;m)]
coPa[Ak(cy 'M; cgm)]:

This concludes the proof of Proposition 5.4.2. O
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List of Notation

Against each entry is the page at which the notation was intraluced.

Set notation :

i’ 98 Euclidian norm on R?
k:kq 64 L1 norm on R?
A 99 Fattening of a set: fa+ X : jxj g
A+v 25 Translate of a set:fa+ v:a2 Ag
A(N;n); AY(N;n) 25 Annulus of inner k:k; -radius N and outer k:k; -radius n
(centered at u)
Bmn 109 [ m;m] [0;n]; planar domains used in Chapter 4
B(m;n) 24 [;m] [O; n]; rectangular planar domain
dpath 98 Distance between paths
D 24 Planar domain
@ 24 Boundary of the domainD
h(:) 105 Height
. 25 Ball of radius r in (R?; kiky )

Graph notation :

; 94 Sequences of transverse angles
B(m;n) 95 Domains de ned in terms of tracks in isoradial square lat
tices
BAP( ) 20 Bounded angles condition with bound
Cd 90 Constant in the equivalence betweerd® and j;j
d? 90 Graph distance onG3
D(t1;t2;51;52) 91 Domain between trackst; and t; and betweens; and s,
e e 14 Pair of primal, dual edges ofG, G
G=(V;E) 13 Graph, usually planar
G =(V ;E) 14 Dual graph of G
G3 84 Diamond graph of the isoradial graphG
G . 94 Isoradial square lattice
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; 98 Paths on graphs

H 18 Hexagonal lattice
Le 17 Bound on the length of edges of graphs
Lqg; Kg 17 Bounds on the density of vertices of graphs
L 105 Mixed lattice
3 90 d® -ball of radius r, centered atu
SGP(l) 86 Square grid property with bound |
T 18 Triangular lattice
T(G) 85 Track system of the isoradial graphG
e 20 Angle associated to the edge of an isoradial graph
z? 18 Square lattice

Percolation notation :

$ ;! e 13 Open connection in!
@ 13 Negation of e
14 Open connection (in the dual graph)
AY(N;n); Ac(N;n) 26 Arm-events
A" (N:n) 49 Arm-event with imposed landing sequences
AkL(n) 128 Arm-event adapted to mixed lattices
&°(N;n) 160 Arm-event adapted to isoradial graphs
BXP(lo; ) 24 Box-crossing property with constants and lg
Do 26 Exponents near criticality
G.(B); G/(B) 24 Existence of horizontal,respectively vertical, open mssings
of B
G(m;n); G(m;n) 109 G(Bm:n) and G,(Bm:n) respectively
Gi(t1;t2;51;S2); 91 Existence of horizontal, respectively vertical, open arssings
G (ty;t2;81;52) of D(ts;t2;1;52)
Cy 13 Open cluster containingv
D 26 Exponents at criticality
G G(;l) 20 Family of isoradial graphs with the bounded-angles proerty
and the square-grid property
voa 7 22 Functions de ning criticality for the square, triangula r and
hexagonal lattices
M 23 Family of critical inhomogeneous models
Mi; M () 23 Family of critical highly inhomogeneous models
= f0;1gF 13 Set of percolation con gurations onG

I 14 Primal (respectively dual) con guration



p 13 Percolation intensity

p 13 Family of percolation intensities

p 20 Parameter associated to an edgeof an isoradial graph, with
0=

P 13 Percolation measure

Pp 13 Percolation measure with intensitiesp

P 21 Percolation measure with shifted parameters

Po; Pﬁ; PZ 18 Homogeneous percolation on the square, triangular and

hexagonal lattices, with parameterp 2 [0; 1]

Py Pﬁ; PZ 18 Inhomogeneous percolation on the square, triangular and
hexagonal lattices, with parametersp 2 [0;1]?, and p 2
[0; 1 respectively

Pa:qo Pg;q;qoi P[Z;q;qo 19 Highly inhomogeneous percolation on the square, triandar
and hexagonal lattices
Ps 20 Canonical percolation measure on the isoradial graple
P . 94 Percolation measure associated t& -
rad(Cy) 34 Radius of C, in the k:k; norm
Dk 26 Arm exponents
ST 97 Star{triangle transformations
i 138 Track exchange in isoradial square lattices

1a 21 Indicator function of the event A
N 16, 21 Maximum, respectively minimum
bxc 64 Greatest integer not greater thanx
dxe 56 Least integer not less thanx
st 15 Stochastic ordering
f g 25 f=g is bounded away from 0 andl
f ¢cg 25 f=g is bounded away from 0 andl uniformly in c
f g 25 logf (t)=logg(t) ! 1

Assumed notation :

JA] - Cardinality of the set A

C - The complex plane

E - Expectation

N - The set of strictly positive integers
No - The set of non-negative integers

R - The set of real numbers



The set of integers
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