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Abstract In an investigation of percolation on isoradial graphs, wevp the criti-
cality of canonical bond percolation on isoradial embeddiaf planar graphs, thus
extending celebrated earlier results for homogeneousdrmogeneous square, tri-
angular, and other lattices. This is achieved via the siangle transformation, by
transporting the box-crossing property across the familisaradial graphs. As a
consequence, we obtain the universality of these maatdlse critical point, in the
sense that the one-arm angt&@ternating-arm critical exponents (and therefore also
the connectivity and volume exponents) are constant atnesfamily of such perco-
lation processes. The isoradial graphs in question are tihad satisfy certain weak
conditions on their embedding and on their track systems Thass of graphs in-
cludes, for example, isoradial embeddings of periodic lggapnd graphs derived
from rhombic Penrose tilings.

Keywords Bond percolation isoradial graph rhombic tiling - Penrose tiling
inhomogeneous percolatiemniversality- critical exponent arm exponentscaling
relations: box-crossing star—triangle transformationyang—Baxter equation

Mathematics Subject Classification (200060K35- 82B43

1 Introduction

Two-dimensional disordered systems, when critical, aesymed to have proper-
ties of conformality and universality. Rigorous evidenoe this classic paradigm
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from conformal field theory includes the recent analysishef ¢ritical Ising model
by Chelkak and SmirnovlR,42] on a family of graphs known as ‘isoradial’. On
the one hand, such isoradial graphs are especially harm®iria theory of discrete
holomorphic functions (introduced by Duffin, sekl][14,32]), and on the other they
are well adapted to transformations of star—triangle tgpelgined by KenyonZ4]).
These two properties resonate with the intertwined cosagjatonformality and uni-
versality.

It is shown here that, for a broad clag<of isoradial graphs, the associated bond
percolation model is critical, and furthermore certaintefiitical exponents are con-
stant acros¥. The clas¥/ includes many specific models studied earlier, but is much
more extensive than this restricted class. In earlier edlatork of Kesten26,27],
Wierman @6] and others, it has been assumed that the graph under stadgiain
invariances under, for example, translation, rotation'@nekflection. Such assump-
tions of regularity play no role in the current work, where ey assumptions are that
the graph under study is isoradial, and satisfies two weadtitons on its embedding
and on its so-called track system, namely the so-called dedrangles property and
the square-grid property. The first of these is a conditionaf-degeneracy, and the
second requires the graph to contain a square grid withitnaitk system. (Formal
definitions are deferred to Sectiohd and4.2)

In advance of the formalities of Secti@we explain the term ‘isoradial’. L&b
be a planar graph embedded in the pl&3elt is calledisoradialif there exists > 0
such that, for every fade of G, the vertices oF lie on a circle of radius with centre
in the interior ofF. Note that isoradiality is a property of the planar embeddihG
rather than ofG itself. By rescaling the embedding &f we may assume= 1.

It was noted by Duffin 14] that isoradial graphs are in two—one correspondence
with rhombic tilings of the plane (the name ‘isoradial’ wasreed later by Kenyon).
While details of this correspondence are deferred to Seétiove highlight one fact
here. LetG = (V,E) be isoradial. An edge € E lies in two faces, and therefore two
circumcircles. As illustrated in Figure.1, e subtends the same andlee< (0, 1) at
the centres of these circumcircles, and we define (0,1) by

Pe _ sin(%[n— Ge])
1-pe sin(36)

(1.1)

We consider bond percolation @with edge-probabilitiep = (pe : €€ E). Formula
(1.2) appeared for the first time in this explicit form in the workkenyon [24].

Our main results are that (subject to two assumption&pithese percolation
models are critical, and their critical exponenras the critical point) are universal
across the class of such models. More precisely, the expopen, é and the 3-
alternating arm exponenis; are constant across the class (assuming they exist). See
[15] for an account of the general theory of percolation.

Our methods work onlat the critical point, and we are unable to extend such
universality to exponentsear the critical point, such ag and 3. Neither have we
any progress to report on tlegistencef critical exponents for these models. Essen-
tially the only model for which existence has been provedtes gercolation on the
triangular lattice (seedf3]), and our numerical knowledge of the exponents is based
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Fig. 1.1 Part of an isoradial graph. Each face is inscribed in a ciofleadius 1. With the edge, we
associate the anglg. This and later figures are best viewed in colour.

in this case on the proof by Smirno¢1] of the convergence in the scaling limit to
SLEs (see also the more recent work9[45)]).

The principal tool in the current work is the star—triangkenisformation, other-
wise known amongst physicists as the Yang—Baxter equatita was discovered by
Kennelly [23] in 1899 in the context of electrical networks, and was aedjot 1944
by Onsager 34] to the Ising model in conjunction with Kramers—Wannier litya
It is a key element in the work of BaxteB][on exactly solvable models in statisti-
cal mechanics (sed1,37] for scientific and historical accounts). Sykes and Essam
[44] used the star—triangle transformation to predict theoalitsurfaces of inhomo-
geneous bond percolation on triangular and hexagonaiéattand it is also a tool in
the study of the random-cluster mod&#g], and of the dimer modeP].

The star—triangle transformation is especially well mattio isoradiality. The
exchange of a star with a triangle is equivalent to a local eniovthe associated
rhombic tiling. In the case of percolation, this move repgone triple of edge-
parameters by another triple given according al), and these are precisely the
triples that satisfy the star—triangle transformationisigeneral observation is valid
for several models of statistical physics, including thedsand Potts models and the
random-cluster model (se24]). Note, however, that the star—triangle transformation
contributes also to the analysis of models on non-isoradégdhs (seed]).

The overall approach of this paper is to use the star—treatrghsformation to
move between models, in a manner closely related to thatafsee@earlier by Baxter,
Kenyon, and others. Using a coupling of probability measane different isoradial
graphs, one may show as ih9 20| that the star—triangle transformation preserves
open connections in the percolation model, and may therdferused to transport
the so-called ‘box-crossing property’ from one model tothra Thebox-crossing
propertyis the statement that any rectangleRif of given aspect-ratio is crossed by
an open path, with probability bounded away from 0 uniforinlyhe size, position,
and rotation of the box. This property has played an impaorale in the theory of
criticality and scaling in two-dimensional percolatios,@escribed in Kesten’s book
[27], and more recently in45)].

This is a continuation and extension of the work begunli® Z0]. The main
idea is to use the star—triangle transformation to trarigherbox-crossing property
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between graphs. By the Russo—Seymour—Welsh (RSW) lemn®8@fJ, homoge-
neous percolation on the square lattice (with %) has the box-crossing property,
and this property may be transported, by repeated apmitatf star—triangle trans-
formations, to the isoradial graphs considered here. Orcknaw that an isoradial
graph and its (isoradial) dual graph have the box-crosgiogenty, criticality follows
asin [L9, Props 4.1-4.2]. The above universality follows by relaieglments.

We return briefly to the star—triangle transformation anel fing model. The
Ising model differs from percolation and the random-clustedel in the following
significant regard. Whereas the Ising model may be trangfdrius for any triple
of edge-interactions, the percolation and random-clustatels may be transformed
only when the interaction-triple satisfies a certain equmationnected to the critical
surface in the translation-invariant lattice model (sSE2 Thm 1.1]). For this reason,
the star—triangle transformation enables a deeper uraelisiy of the Ising model
than of its cousins. Its application to the Ising model haanbegeveloped in a series
of papers by Baxter and others under the tieinvariant Ising model’ beginning
with [4] and continued in later works. We do not attempt a full biptaphy here,
but mention the papef] by Au-Yang and Perk, the recent papers of Chelkak and
Smirnov [12,42], as well as the dimer analysi6][of Boutillier and de Tiliere.

This paper is organized as follows. Isoradial graphs anddecrossing property
are summarised in Sectid)and our main results concerning criticality and univer-
sality are stated in Sectio® Section4 contains a fuller description of isoradiality
and its connections to rhombic tilings. The star—triangd@sformation is described
in Section5. The box-crossing property, Theoredrl, is then proved in two steps:
first in Section6 for the special case of isoradial square lattices, and th&wction
7 where it is explained how this case may be extended to gersaraldial graphs
satisfying the given conditions. Theore®, concerning universality, is proved in
Section8.

The set of integers is denoted By of natural numbers b), and of non-negative
integers byNp.

2 Isoradiality and the box-crossing property
2.1 Isoradial graphs

Let G = (V,E) be a planar graph embedded in the pl&fe(it is assumed that the
edges are embedded as straight-line segments, with iotierse only at vertices).
It is calledisoradial if, for every bounded fac& of G, the vertices of lie on a
circle of (circum)radius 1 with centre in the interior®f In the absence of a contrary
assumption, we shall assume that isoradial graphs aret@finih bounded faces.
While isoradiality is a property of the planar embeddingzafather than ofG itself,
we shall sometimes speak of an isoradial graph.

Let G = (V,E) be isoradial. Each edge= (A B) of G lies in two faces, with
circumcentre$); andO;. Since the two circles have equal radii, the quadrilateral
AO;BO, is arhombus. Therefore, the angh®;B andBO,A are equal, and we write
6e € (0, 1) for their common value. See Figutel
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Definition 2.1. Lete > 0. The isoradial graph G is said to have theunded-angles
property BAR¢) if
B € [g,T— €], ecE. (2.1)

It is said to have, simply, theounded-angles properifyit satisfiesBAP(&) for some
£>0.

All isoradial graphs of this paper will be assumed to havelibended-angles
property. The area of the rhomba®;BO, equals sif: and, under BAF),

sine < Area AO;BO,) < 1. (2.2)

We shall study isoradial graphs satisfying a further prgpealled the ‘square-
grid property’. We defer a discussion of the square-gricoprty until Sectiord.2,
since it necessitates a fuller account of isoradial grapddtzeir relationship to rhom-
bic tilings of the plane and the associated ‘track systemsdduced by de Bruijn7,
8]. Although one may construct isoradial graphs that do nekehhe square-grid
property, the property is satisfied by many graphs arisinghfthe rhombic tilings
that we have encountered in the literature on plane tilings.

From the many examples of isoradial graphs with the squadepgoperty, we
select for illustration the set of isoradial embeddingshef square lattice, and more
generally isoradial embeddings of any connected periodiply It is not the auto-
morphism group of the graph that is relevant here, but ralleegeometry of its track
system. For example, isoradial graphs arising from rhorRkitrose tilings have the
square-grid property. For definitions and further disausssee SectioA.

2.2 Percolation on isoradial graphs

Bond percolation on a grapgh = (V,E) has sample spad@ := {0, 1}F, to which is
assigned a product measiigwith p = (pe: e € E) € [0,1]E. WhenG is isoradial,
there is a canonical product measure, dendtgdassociated with its embedding,
namely that withpe = pg, Where 8 is given in the last section and illustrated in
Figurel.1, and
po_ sin(3(m—6))

1-pe sin(16)
Note thatpg + pr_g = 1, and thats has the bounded-angles property B&Pif and
only if

(2.3)

Pre<pe<ps eckE. (2.4)

The graphG has a dual graple* = (V*,E*). SinceG is isoradial, so isG*.
This fact is discussed in greater depth in Sectloibut it is clear from Figurel.1
that G* may be embedded iR? with vertices at the centres of circumcircles, and
edges between circumcentres of abutting faceselLetE* be the dual edge (in this
embedding) crossing the primal edge E. ThenBe = m— 6, SO thatpe + per = 1
by (2.3). In conclusion, the canonical meastig is dual to the primal measui&s.

By (2.4,
G* satisfies BAR¢) if and only if G satisfies BARe). (2.5)
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See, for example b, Sect. 11.2] for an account of graphical duality.

Here is some basic notation. L&t= (V,E) be a graph, not necessarily isoradial
or even planar, and leb € Q := {0,1}E. An edgee is calledopen(or w-open) if
w(e) = 1, andclosedotherwise. A path o is calledopenif all its edges are open.

For u,v € V, we sayu is connected to {in w), written u < v (or u SOy i G

contains an open path fromandy; if they are not connected, we wrimeu—?’—a v. An

open clusteof w is a maximal set of pairwise-connected vertices.Cet {ueV :

u < v} denote the open cluster containing the vekteand writev « o if |Cy| = co.
Forw e Q ande€ E, letw*(€*) = 1— w(e), so thate* is open in the dual graph

G* (writtenopen) if eis closed in the primal grapB.

2.3 The box-crossing property

Let G = (V,E) be a countably infinite, connected graph embedded in thespéard
let P be a probability measure a@ := {0,1}E. The ‘box-crossing property’ is con-
cerned with the probabilities of open crossings of domairi®4. This has proved to
be a very useful property indeed for the study of infinite opkisters inG; see, for
example, 17,20,27].

A (planar) domainZ is an open, simply connected subseR3fwhich, for sim-
plicity, we assume to be bounded by a Jordan cdr%e Most domains of this paper
are the interiors of polygons. L&t be a domain, and &4, B, C, D be distinct points
on its boundary in anticlockwise order. Letc Q. We say that? has an open cross-
ing fromDAto BCif G contains an open path using only edges intersectingich,
when viewed as an arc IR?, intersectsd 2 exactly twice, once betweed and A
(including the endpoints) and once betw@&andC.

A rectangular domairis a set% = ((0,x) x (0,y)) C R?, wherex,y > 0 and
f : R?2 — R? comprises a rotation and a translation. Hspect-ratioof this rectangle
is maxx/y,y/x}. We say# has open crossings a configuratiorw € Q if it has
open crossings both frof({0} x [0,y]) to f({x} x [0,y]) and fromf ([0,x] x {0}) to

F([0,x] > {y}).

Definition 2.2. A probability measur® on Q is said to have théox-crossing prop-
ertyif, for p > 0, there existd = lo(p) > 0andd = d(p) > 0 such that, for all I> I
and all rectangular domaingg with side-lengths | angl,

P(# has open crossings> 0. (2.6)

An isoradial graph G is said to possess the box-crossinggmypf Pg possesses it.

In a standard application of the Harris—FKG inequality ($e% Sect. 2.2]), it suf-
fices for the box-crossing property to consider boxes witleasratio 2, and more-
over only such boxes with horizontal/vertical orientat{seee, for example 118, Prop.
3.2]and [L9, Prop. 3.1)). If .6) holds for this restricted class of boxes wjih= 2 and
0 = 9(2), we say thaG satisfies BXFlg, d). All graphs considered here are isoradial
with circumradius 1, and for such graphs one may take 3. We thus abbreviate
BXP(3,5) to BXP(J).
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It was proved by Russ@pB] and Seymour—Welsh[)] that the isotropic embed-
ding of the square lattice (with = %) has the box-crossing property, and more gen-
erally in [19] that certain inhomogeneous embeddings of the squaragtriar, and
hexagonal lattices have the property.

3 Main results

Let ¢ be the class of isoradial graphs with the bounded-anglesepty and the
square-grid property (we recall that the square-grid prtype formulated in Sec-
tion 4.2). The main technical result of this paper is the followingitiCality and

universality will follow.

Theorem 3.1. For G € ¢4, P possesses the box-crossing property.

A more precise statement holds. In discussing the squédgigperty in Section
4.2, we will introduce a more specific property denoted $IGFor | € N. We shall
show that, fore > 0 andl € N, there exist® = d(¢&,1) > 0 such that:

if G satisfies BARg) and SGRI), P satisfies BXP9). (3.1)

LetG = (V,E) be a graph, and I& be a product measure ¢6, 1}F with intensi-
ties(pe: € € E). Ford € R, we writeP? for the percolation measure with intensities
pS := (0V (pe+8)) A L. [As usualxVy = max{x,y} andxAy = min{x,y}.] If Gis
embedded ifR?, theradiusrad(C,) of the open cluster at<c V is the supremum of
k > 0 such thaC, contains a vertex outside the bex (—k, k)% C R?.

The proofs of the following Theoren3s2and3.4rely heavily on the box-crossing
property of Theorem3.1

Theorem 3.2(Criticality). Let G= (V,E) € ¢4, and letv > 0.
(a) There exist &, c,d > 0 such that, for e V,
ak® <Pg(radC,) > k) <ckd,  k>1

(b) There existsPs-a.s., no infinite open cluster.
(c) There exist fg > 0 such that, for e V,

Pe'(ICv >k < fe ¥ k>0
(d) There exists b 0 such that, for e V,
P&(V <« o) > h.
(e) There existsP¢-a.s., exactly one infinite open cluster.

More precisely, ifG € ¥ satisfies BXPe) and SGRI ), the claims of the theorem
hold with constants that depend only enl, and not further or. The proof of
Theorem3.2is summarised at the end of this section.

Turning to critical exponents and universality, we wrftg) < g(t) ast —tp €
[0, 0] if there exist strictly positive constanés B such that

Ag(t) < f(t) <Bg(t) (3.2)
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in some neighbourhood df (or for all larget in the casey = ). For functions
fu(t), g¥(t) indexed byu € U, we say that" =< g“ uniformly in uif (3.2) holds with
constant#\, B not depending on. We write f (t) ~ g(t) if log f(t)/logg(t) — 1, and
fU = g" uniformly in uif the convergence is uniform in

The critical exponents of interest here are those denotedecionally as, 17,
0, and the alternating arm-exponetg. We begin by defining the so-calleam-
events Let B, denote the boX—n,nj? of R?, with boundarydB,. For N < n, let
7 (N,n) be theannulus[—n,n]?\ (—N,N)? with inner radiusN and outer radius.
Theinner (respectivelyputer) boundaryof the annulus i®By (respectivelygBp).
For u € R?, write «!(N,n) for the translates(N,n) 4 u. A primal (respectively,
dual) crossingof 7 (N, n) is an open (respectively, opgrpath whose intersection
with 7 (N,n) is an arc with an endpoint in each boundary of the annulusaa®ri
crossings are said to have colour 1, and dual crossingsrddlou

Letk € N. A sequencar € {0,1}¥is called acolour sequencef lengthk. For
sucho, the arm-evenfs (N, n) is the event that there existertex-disjoint crossings
Vi, ¥, ¥k Of &7 (N,n) with coloursg; taken in anticlockwise order. The corre-
sponding event on the translated annud%(N, n) is denotedAy (N, n) and is said
to be ‘centred at'. As in [20], the value ofN is largely immaterial to what follows,
butN = N(0o) is taken sufficiently large that the everts(N,n) are non-empty for
n> N.

A colour sequence is calledmonochromatidf eithero = (1,1,...,1) oro =
(0,0,...,0), andbichromaticotherwise. It is calledlternatingif it has even length
and eitheio = (1,0,1,0,...) oro=(0,1,0,1,...). Wheno = (1), A;(N,n) is called
the one-arm evenand denoted\; (N, n). Whenao is alternating with lengthk = 2j,
the corresponding event is denoigg (N, n).

Let G € ¢ be an isoradial graph with vertex-8&tand letC, be the open cluster
of the vertexv € V, under the canonical measuPg. We concentrate here on the
following exponents given in terms &g, with limits that are uniform in the choice
of v.

(@) volume exponenBg(|Cy| =n) ~n~*1/° asn — o,

(b) connectivity exponenPg(v < w) ~ |w— V|~ as|jw—v| — oo,

(c) one-arm exponenkg[AY(N,n)] ~n~Pt asn — oo,

(d) 2j-alternating-arms exponent&g[AY (N,n)] ~ n~P2i asn — o, for each al-
ternating colour sequeneeof length 2, with j > 1.

Itis believed that the above uniformly asymptotic relasiold for suitable exponent-
values, and indeed witk replaced by the stronger relatien

The conventional one-arm expongnis given byp = 1/ps, as in [L5, Sect. 9.1].
Parts (c) and (d) above are parts of the following more extert®njecture.

Conjecture 3.3. Let G be an isoradial graph with the bounded-angles propentyl
letke Nando € {0,1}.

(a) There existp(o,G) > 0 such that
Po[AS(N,m)] ~n P asn— o,

uniformly in ue R2.
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(b) The exponent(o,G) does not depend on the choice oE® .

Essentially the only two-dimensional percolation proctsswhich the above
arm-exponentp, are proved to exist (and, furthermore, many of their valuessn
explicitly) is site percolation on the triangular latticeeé p,41,43)). In this spe-
cial case (not belonging to the class of models considerdtisnpaper), theos
are constant for all bichromatic colour sequences of gieagth (seel]), and the
monochromatic arm-exponents have been studiedlin [

A critical exponentris said toexistfor a graphG € ¢ if the appropriate asymp-
totic relation holds. It is calle@-invariantif it exists for all G € ¢ and its value is
independent of the choice &.

Our universality theorem is presented next. Part (a) ansotond verification of
Conjecture3.3(b) for isoradial graph$& € ¢, and for colour sequences which are
either of length one or alternating.

Theorem 3.4(Universality)

(@) Letrre {p}U{po;: j > 1}. If mexists for some @ ¥, then it is¥-invariant.
(b) If eitherp or n exists for some @ ¢, thenp, 1, 0 are¥-invariant and satisfy
the scaling relationg)p =2and2p =+ 1.

Kesten showed ind0] (see also33]) that certain properties oferitical percola-
tion process imply properties of tiear-critical process, when the underlying graph
has a sufficiently rich automorphism group. In particulampwledge of certain crit-
ical exponentst criticality implies knowledge of exponentsvay from criticality
Only certain special isoradial graphs have sufficient hoenedy for such arguments
to hold without new ideas of substance. Therefore, furtismus$sion is omitted, and
the reader is referred instead &9 Sect. 1.4].

Finally, we make some comments on the proofs. There are timgipal steps
in the proof of Theoren3.1 Firstly, using a technique involving star—triangle trans
formations, the box-crossing property is transported ftbenhomogeneous square
lattice to an arbitrary isoradial embedding of the squatticka (with the bounded-
angles property). Secondly, the square-grid property élue transport the box-
crossing property to general isoradial graphs. This methayl be used also to show
the invariance of certain arm exponents across the clasgbfisoradial graphs, as in
TheorenB.4. The basic approach is that df,20], but the geometrical constructions
used here differ in substantial regards from those papers.

Proof of Theoren3.2 By (2.5, (4.1), and Theoren3.1, bothPg andPg- have the
box-crossing property. The claims then follow asif,[Props 4.1, 4.2] (see alsq
Remark 4.3]), and the details are omitted. It suffices to kltleat the conditions of
the Remark hold under the bounded-angles property. Theaamtssn the theorem
may be tracked through the proofs, and are found to deperydoorihe values o€
andl. O
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4 Isoradial graphs and rhombic tilings
4.1 Rhombic tilings

A rhombic tilingis a planar graph embedded®? such that every face is a rhombus
of side-length 1. Rhombic tilings have featured promineitlthe theory of planar
tilings, both periodic and aperiodic. A famous example é&sdperiodic rhombic tiling
of Penrose36], and the generalizations of de Bruiji, 8] and others. The reader is
referred to P1,39 for general accounts of the theory of tiling.

There is a two—one correspondence between isoradial gasyghdiombic tilings
of the plane, which we review next. L& = (V,E) be an isoradial graph. Ttdia-
mond graph G is defined as follows. The vertex-set®f isV® :=V UC whereC is
the set of circumcentres of faces®f elements o¥/ shall be callegrimal vertices,
and elements of dualvertices. Edges are placed between pairsV, ¢ € C if and
only if ¢ is the centre of a circumcircle of a face containindhusG?® is bipartite.
SinceG is isoradial, the diamond gragd® is a rhombic tiling, and is illustrated in
Figure4.1

Fig. 4.1 The isoradial grapks is drawn in red, and the associated diamond g@plin black. The primal
vertices ofG® are those of5; the dual vertices are centres of faces®fA track is a doubly infinite
sequence of adjacent rhombi sharing a common vector, andmegpresented by a path, drawn in blue.
Two tracks meet in an edge Gflying in some face 06°.

From the diamond grapB® may be found botiG and its planar duab*. Write
V1 andV; for the two sets of vertices in the biparti®’. Fori = 1,2, letG; be the
graph with vertex-saf;, two points of which are joined by an edge if and only if they
lie in the same face d&®. One of the graph61, G, is G and the other is its du&*.
It follows in particular thatG* is isoradial. Lek € E and lete* denote its dual edge.
The paire, e* are diagonals of the same rhombus3f and are thus perpendicular.

The above construction may be applied to any rhombic tiling obtain a pri-
mal/dual pair of isoradial graphs.
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4.2 Track systems

Rhombic tilings have attracted much interest, especiallyesthe discovery by Pen-
rose B5,36] of his celebrated aperiodic tiling. Penrose’s rhombimgjlwas elab-
orated by de BruijnT,8], who developed the following representation in terms of
‘ribbons’ or ‘(train) tracks’. LetG = (V, E) be isoradial. An edgey of G belongs to
two rhombirg, r; of G®. Write e_; (respectivelyg;) for the edge of (respectively,
ri) oppositeey, so thate 1,ey,e; are parallel unit-line-segments. The edge (re-
spectivelyge;) belongs to a further rhombus; (respectivelyr,) that is distinct from
ro (respectivelyri). By iteration of this procedure, we obtain a doubly-infnse-
quence of rhomhir; : i € Z) such that the intersectiofis Nri1 : i € Z) are distinct,
parallel unit-line-segments. We call such a sequentem) track We write 7 (G)
for the set of tracks o6, and note that7 (G) = .7 (G*). The track construction is
illustrated in Figuret. 1

A track (rj : i € Z) is sometimes illustrated as an arc joining the midpoints of
the line-segments Nr;.1 in sequence. The sef’ may therefore be represented as
a family of doubly-infinite arcs which, taken together wittetintersections of arcs,
defines a graph. We shall denote this graphbylso. A vertex of G is said to be
adjacentto a track(r; : i € Z) if it is a vertex of one of the rhomlyj.

It was pointed out by de Bruijn, and is easily checked, thatrtiombi in a track
are distinct. Furthermore, two distinct tracks may have wwoenthan one rhombus in
common. Since each rhombus belongs to exactly two traclksghie unique intersec-
tion of these two tracks.

Kenyon and Schlenke2p] have showed a converse theorem. Qdie an infinite
planar graph embedded in the plane with the property thaydaee has four sides.
One may define the tracks @fby an adaptation of the above definition: a track exits
a face across the edge opposite to its entry. TQenay be deformed continuously
into a rhombic tiling if and only if (i) no track intersectsélf, and (ii) no two tracks
intersect more than once.

A trackt is said to beorientedif it is endowed with a direction. As an oriented
trackt is followed in its given direction, it crosses sides of rhomvhich are parallel.
Viewed as vectors from right to left, these sides constigutenit vectort(t) of R?
called thetransverse vectaooft. The transverse vector makes an angle withxthagis
called thetransverse anglef t, with value in the intervalo, 2m).

Letl € N. We say that an isoradial grahas thesquare-grid property5GR]1)
if its track-set.7 may be partitioned into three sef§ = SUT; U T, satisfying the
following.

(@) Fork=1,2,Txisa set(tf( . i € Z) of distinct non-intersecting tracks indexed
by Z.

(b) Fork=1,2 andsec 7 \ Ty, every track ofTy intersectss, and these intersec-
tions occur in their lexicographic order.

(c) Fork=1,2,i € Z, ands € T3 i, the number of track-intersections sibe-
tween its intersections witt) andt, " is strictly less than.
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Two tracks belonging to the sarig are said to bg@arallel. We refer toT; UT, as a
square gridof G, assumed implicitly to satisfy (c) above. A square grid isilbset of
tracks with the topology of the square lattice (and satmfy(ic)).
Since the square-grid property pertains to the diamondgB&iprather than t@
itself,
G satisfies SGR) if and only if G* satisfies SGR). (4.1)

An isoradial graplG is said to have the square-grid property (SGP) if it satisfies
SGRI) for somel € N. As before& denotes the set of all isoradial graphs with the
bounded-angles property and the square-grid propertyeMpecifically, we write
9 (&,1) for the set ofG satisfying BAR€) and SGRI ).

LetG € ¢ have square grith UT,. It may be seen by the bounded-angles property
that, fork = 1,2, everyx € R? lies either in some track df or in the region ofR?
‘between’ two consecutive elementsTf

4.3 Examples

Here are three families of isoradial graphs with the squagigtproperty, and one
without.

4.3.1 Isoradial square lattices

An isoradial embedding of the square lattice is calledsaradial square latticéThe
track-system of such a graph is simply a square grid vécelversa

4.3.2 Periodic graphs

A planar graptH, embedded ifR?, is said to beperiodicif there exist distinct non-
zero vectorsy, > € R? such thatH is invariant under shifts by eithay. Let G be

an isoradial embedding of a periodic connected gitdpithe embedding itself need
not be periodic). The track systef of G (viewed as a set of arcs) is determined by
the structure ofH. SinceH is periodic, so is7 (viewed as a graph). Thereforg,
may be embedded homeomorphically ifitdin a periodic manner. After re-scaling,
we may assume thaf is invariant under any unit shift dk? in the direction of a
coordinate vector. In factZ may be thought of as the lifting to the universal cover
of a track-system on a torus.

As observed inZ5, Sect. 5.2], any oriented tratkas an asymptotic angég(t) €
S, and in addition the reversed track has direction a(t). Lett € .7, viewed as
a subset oR?. There existga,b) € Z?, (a,b) # (0,0), such that is invariant under
the shifttap : z— z+ (a,b). We have that taa(t) = b/a. By periodicity, the set of
all angles (modular) of .7 is finite, and we write it agay, a2, ..., am} with m> 1.

Let Tk be the set of tracks with asymptotic angle (moda)aag. By periodicity,
eachTy is a set of tracks indexed K%, and may be ordered according to their cross-
ings of the line with polar coordinate® = 6y with 8y # ay for all k. Since tracks
tk € T, t € Ty (with k # 1) have different asymptotic angles, they must intersect.



Bond percolation on isoradial graphs 13

It remains to show that artyt’ € Ty do not intersect (whence, in particulary 2).
Suppose the converse, that there ekist{1,2,...,m} andt,t’ € T, such that and
t’ intersect at some poidte R2. Sincet andt’ have the same angta,, there exists
(a,b) € Z? such thatt andt’ are invariant under, . Therefore, they intersect at
J+n(a,b) for all n € Z, in contradiction of the fact that they may have at most one
intersection.

For any distinct paiffy, T, part (c) of the square-grid property holds by periodic-
ity.

We have proved not only th& has the square-grid property, but the stronger fact
that its track-set may be partitioned intoclasses of parallel tracks.

4.3.3 Rhombic tilings via multigrids

The following ‘multigrid’ construction was introduced astlidied by de BruijnT,8,

9]. A grid is a set of parallel lines iR? with some common perpendicular unit-vector
v. A multigrid is a family of grids with pairwise non-parallel perpendid. Suppose
there aran> 2 grids, with perpendicularg, vy, ... ,vi. Thekth grid is given in terms
of a setCy = {CL :i € Z} of reals, specifically as the set of alE R2 with z- vy = cL
asi ranges over. It is assumed that thg are strictly increasing in, with ¢ /i — 1
asi — +oo.

With the lines of thekth grid, duly oriented, we associate a unit veatgr It is
explained in §] how, under certain conditions on ti@&, vk, Wy, one may ‘dualize’
the multigrid to obtain a rhombic tiling dk?. The track-set of the ensuing tiling is
a homeomorphism of the multigrid with transverse vectarsUnder the additional
assumption that the differenc@+1 — cL| are uniformly bounded away from 0 arxl
all such tilings have both the bounded-angles property badgquare-grid property.
The results of this paper apply to the associated isoradigls.

Penrose’s rhombic tiling may be obtained thus witk= 5, thev, being vectors
forming a regular pentagon, witly, = vy, andCy = {i + % : i € Z} with an appro-
priate vector( k). Other choices of the parameters yield a broader class oioaie
rhombic tilings of the plane. Se&,B]. Percolation on Penrose tilings has been con-
sidered in 2].

4.3.4 A track-system with no square grid

Figure4.2is an illustration of a track-system without the squaretgrioperty.

4.4 Equivalence of metrics

Let G be an isoradial graph. It will be convenient to use both thelil@an metrid - |
and the graph-metrid® on G°®. Forn € N andu € G® we write A (n) for the ball
of d°-radiusn centred at;

AL (n) ={ve G®:d°(u,v) <n}.
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Fig. 4.2 Part of a rhombic tiling without the square-grid propertydaone of the two corresponding
isoradial graphs.

Proposition 4.1. Lete > 0. There exists £= c4(€) > 0 such that, for any isoradial
graph G= (V,E) satisfyingBAP(¢),

civ—V|<d®(vV) <cgv—V|, vV eGE. (4.2)

Proof. Let u, v be distinct vertices ofG°. Since each edge @&° has length 1,
d®(u,v) > |u—v|. Conversely, le§,, be the set of all faces @ (viewed as closed
sets ofR?) that intersect the straight-line segmemtof R? joining u to v. Since the
diameter of any such face is less than 2, every point of theruaf S,y is within
Euclidean distance 2 afv. By BAP(¢) and @.2), every face has area at leastsin
and thereforéS,y| < 4(Ju—v| +4)/sine. Similarly, there exist® = d(¢) > 0 such
that|u—v| > 8. The edge-set of elements&f, contains a path of edges 6f from
utov, whence

8 8(5+4
8 v+ <8Oy

<&
d™(uv) sine dsine

as required. O

4.5 The box-crossing property for graphségn

This section begins with a definition of the rectangular dim®af an isoradial graph
G € ¢, using the topology of its square grid.

Let (t,t') be an ordered pair of non-intersecting track&oA pointx € R? is said
to be ‘strictly betweent andt’ if, with these tracks viewed as arcs®f, there exists
an unbounded path &? from x that intersects$ but nott’, andvice versaA faceF
of G° is said to bebetween tandt’ if: either F is a rhombus of, or every point ofF
is strictly betweert andt’. Note that this usage of ‘between’ is not symmetric: there
are faces betweenandt’ that are not betweett andt. A vertex or edge of3° is
said to be ‘betweert’ andt’ if it belongs to some face betweemandt’. Thedomain
betweert andt’ is the union of the (closed) faces betwéemdt’. It is useful to think
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of a domain as either a subgraph@f, or (unlike the domains of Sectic¢h3) as a
closed region oR?.

SupposeG € ¢ has a square gri@UT, with S= (sj: j € Z) andT = (t :
i € Z). We call tracks inS (respectively,T) horizontal (respectivelyyertical). For
i1,i2, j1,j2 € Z we define? = 2(ti,.1i,; S, Sj,) to be the intersection of the domains
betweert;, andt;, and betweess;, ands;,.

We say that? is crossed horizontally iG contains an open pathr such that:
(i) every edge ofrt lies in &, and (i) the first edge crossés and the last vertex
is adjacent tdj,. Write Cy(2) = Cq(ti;,ti,;Sj;,Sj,) for the event thatZ is crossed
horizontally, with a similar definition of the vertical-cssing event, (2). See Figure
4.3for an illustration of the above notions.

Fig. 4.3 The shaded domaif# = Z(t;,,ti,;S;j, ,Sj,) iS crossed horizontally.

The purpose of the following proposition is to restate the-bmssing property
in terms of the geometry of the square grid.

Proposition 4.2. Lete > 0, | € N, and let Ge ¢ (¢,l). The graph G has the box-
crossing property if and only if there exisis> 0 such that, for Ne Nand i, j € Z,

P [Ch(ti,tizon;Sj, Si+n)] . Pa [Cu(ti tien; Sj, Sjan) | > 0. (4.3)

Moreover, if (4.3) holds, then G satisfieBXP(d') with &’ depending o, ¢, | and
not further on G.

Proof. We prove only the final sentence of the proposition. The ca®/é&hat the
box-crossing property impliegl (3) for somed > 0) holds by similar arguments, and
will not be used this paper. L& € 4 (¢,1), and assume(3) with & > 0.

Let N € N. For i,j € Z, the cell G is defined to be the domain
P(tin, v NSNS S(j+1n)- The cells have disjoint interiors and cover the plane. Two
distinct cellsC = C; j, C' = Cy are said to bedjacentf (i, j) and(k,|) are adjacent
vertices of the square lattice, in which case we w@te C'. More specifically, we
write C ~, C’ (respectivelyC ~, C') if |i —k| =1 (respectively}j —I| = 1). With the
adjacency relation-, the graph having the set of cells as vertex-set is isomorphi
the square lattice.
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Each cell has perimeter at mo3t\ and therefore diameter not exceedinfy 2
A cell contains at leasi? faces ofG®, and thus (by Z.2)) has total area at least
N?sine.

Foru € Nwith yu > 2I, letu= (—uN,0) andv = (1N, 0) viewed as points in the
plane. LetS), be the set of cells that intersect the straight-line segmewnith end-
pointsu, v, and letJ ), be the union of such cells. LBtbe the tubeiv+[—2IN, 2IN]?,
ThusR has area BN(uN + 2IN), andU, C R. Since each cell has area at least
N?sing, the cardinality ofg), satisfies

ISmg8|N(;u\|+2|N):8|(u+2|)_ 4.4)

N2sine sine

Fig. 4.4 The regionU\, is outlined in bold, and contains a chain of cells joinintp v. The eventdy are
drawn explicitly for the first two contiguous pairs of cells.

There exists a chain of cel, ...,Cx € ), such thau € C;, v e Cc andCy ~
Cirp fork=1,2,...,K—1; see Figurel.4 Letk € {1,2,...,K —1}, and assume
Ck ~n Cx.1. LetHg be the event thai, andCy . 1 are crossed vertically, argf UC;. 1
is crossed horizontally. A similar definition holds whep~, Cy_ 1, with vertical and
horizontal interchanged. By}(3) and the Harris—FKG inequalitfig(Hk) > &°.

By the Harris—FKG inequality, the fact thiit< |5, |, and @.4),

K—1
Pg <m Hk) > 63K > 5244(u+2l)/sin£. (45)
k=1

If the event on the left side occurs, the rectangle

Sun = [~ (= 21)N, (1t — 21)N] x [~2IN, 2IN]

of R? is crossed horizontally.
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Let R = [—k, k] x [~ 2k, k] wherek > 8I. PickN such that N < k < 8IN, so
thatRy is ‘higher’ and ‘shorter’ thar$ g n. By (4.5 with 4 = 101,

Pg (R is crossed horizontaljy> 8", (4.6)

whered” = §288°/sine_Smaller values ok are handled by adjustingf’ accordingly.
The same argument is valid for translates and rotationsefitie-segmentiv,
and the proof is complete. O

4.6 Isoradial square lattices

An isoradial square latticés an isoradial embedding of the square latfie Isora-
dial square lattices, and only these graphs, have a squdrasrack-system.

Let G be an isoradial square lattice. The diamond gr@fhpossesses two fami-
lies of parallel tracks, namely the horizontal tra¢ks: j € Z) and the vertical tracks
(t :i € Z). The graphG®, and hence the paiG,G*) also, may be characterized in
terms of two vectors of angles linked to the transverse veckirst, we oriengy in an
arbitrary way (interpreted as ‘rightwards’). As we procéethe given direction along
S, the crossing trackis are numbered in increasing sequence, and are oriented from
right to left (interpreted as ‘upwards’). Similarly, as wepeed along, the crossing
trackss; are numbered in increasing sequence and oriented fronol&fifit. Using
the notation of Sectiod.2, the transverse vectals;) has some transverse an@ig
and similarlyt(t;) has some transverse angieRather than working with thg, we
work instead witho; := y — mmas illustrated in Figuré.5 Writea = (a; :i € Z) and
B = (Bj:]€Z), and note that € [—11, 1), Bj € [0,2m). We will generally assume
thatG is rotated in such a way thaty = 0, so thaiBj € [0, 1] and3j — T < a; < f3;
fori,j € Z.

The vertex oiG® adjacent to the four tracks. 1, t;, Sj_1, Sj is denoted j. If not
otherwise stated, we shall assume that the tracks areddlalsuch a way that the
vertexvg g is aprimal vertex ofG°.

Trackst;, sj intersect in a rhombus @& with sidest(t), 7(sj), —1(t), —1(sj)
in clockwise order, and thus its internal angles@yre- o andri— (fj — ai). Thus,G
satisfies the bounded-angles property B&Af and only if

Bj—aicle,m—g], i,j €7Z. 4.7

Conversely, for two vectors, 3 satisfying ¢.7), we may construct the diamond
graph denotedsgﬁ as in Figured.5. This gives rise to an isoradial square lattice de-
notedG, g (and its dual) satisfying BAR). We writeP;, g for the canonical measure
of GG;B .

We introduce now some notation to be used later. For sVset vertices ofG®,
we define théneightof W by

h(W) = sup{j : Ji with v j € W}.

This definition extends in an obvious way to sets of edges.
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=b
Sj—-1

Fig. 4.5 An isoradial square lattice (in red) with the associatedndiad graph. The diamond graph is
isomorphic toZ?, and its embedding is characterized by two sequenggsof angles.

In Section5.2is described an operation of so-called ‘track-exchangé&oradial
square lattices. This introduces a potential for confusietween thdabel and the
levelof a track. In theG, g above, we say tha is (initially) at level j. The level of
sj may change under track-exchange,Wytshall always refer to the vertex between
levelsj — 1 andj in the new graph.

Due to this potential confusion, we may use a different notafor domains
in square lattices than for general graphs. FarMj, N1, N, € Z with My < My,
N1 < Ny, letB(M1,Mz; N1, N2) be the subgraph @ induced by the subset of vertices
lying in {vij : My <i <My, N < j<No}. ForM,N € N, we use the abbreviated
notationB(M,N) = B(—M,M;0,N). A horizontal crossingf B = B(M1,M2; N1, Ny)
is an open path oB linking some vertex/, n, to some vertex, n,; a vertical
crossinglinks somevm, n, to somevm, n,. We write Cq[B] (respectivelyCy[BJ) for
the event that a boB contains a horizontal (respectively, vertical) crossifgr a
vertexv =V j of G, we writeBY for the translatgv;s: vi_js_j € B}.

When applied td5, we have that

B(M1,M2;N1,N2) = 2(tm,, tm, SNy, SN, ),

sincesy, andsy, are the tracks at leveld; andN, respectively. As mentioned before,
the latter will not always be the case. Use of the notaBi@mphasizes that domains
are defined in terms of tracks at specific levels, rather tHamaoks with specific
labels.

The following lemma will be used in Sectidh

Lemma 4.3. Let G= (V,E) be an isoradial square lattice satisfying the bounded-
angles propertyBAP(¢) and the following.

(a) For p > 1, there exist3)(p) > O such that

PG(Ch[BV(LpNJaN)]) ZU(P)v NeN,veV.
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(b) There exispg, No > 0 such that
Pg(Cu[BY(N,[poN])]) > 1o,  N=>py, veV.

Then there exist8 = &(po, 10,11 (1),1(2p5 1), €) > 0such that G has the box-crossing
propertyBXP(9d).

Outline proof. Assume (a) and (b) hold. Just as in the proof18,[Prop. 3.1] (see
also [19, Remark 3.2]), the crossing probabilities of boxes®fvith aspect-ratio

2 and horizontal/vertical orientations are bounded awaynfO by a constant that
depends only on the aspect-ratios of the boxes illustratgtd Fig. 3.1]. (Here, the
boxes in question are those®fviewed as an isoradial square lattice, that is, boxes of
the formB(-;-) defined before the lemma.) Therefore, the hypothesis ofdzitpn

4.2 holds with suitable constants, and the claim follows frogrcidbnclusion. O

5 The star—triangle transformation

We review the basic action of the star—triangle transfoimnatnd show its harmony
with isoradial embeddings. It is shown in Sect®B how a sequence of star—triangle
transformations may be used to exchange two tracks of aad&disquare lattice.

5.1 Star-triangle transformation

The following material is standard but is included for coatphess. For proofs and
details see, for examplel ).

Consider the trianglé = (V,E) and the star\’ = (V',E’) of Figure5.1 Let
p = (Po, P1, P2) € [0,1)3 be atriplet of parameters. Write = {0, 1}F with associated
product probability measuﬂEpA with intensitiesp; (as in the left diagram of Figure
5.1), andQ’ = {0, 1}E’ with associated measulP@p, with intensities 1- p; (asin the
right diagram of Figur&.1). Letw € Q andw’ € Q’. For each graph we may consider
open connections between its vertices, and we abuse nolgtioriting, for example,

x & y for theindicator functionof the event thax andy are connected idd by an

open path ofv. Thus connectionsiA are described by the fami[)xﬂ y:XyeV)
of random variables, and similarly fa'.

Proposition 5.1 (Star—triangle transformation) etp < [0,1)3 be such that

Po+ P1+ P2— Pop1p2 = 1. (5.1)

The families
(xﬂy:x,yzA,Bvc) : (Xﬂy: X’y:A’B’C) ’

have the same law.
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A A
1-po
P2
p1 o
1-pg 1—py
B Po C B C

Fig. 5.1 The star—triangle transformation

/‘\ T | 1 | |
LN T Al PRSEN PN PEON
PopiP2  (1—po)p1p2 Po(1—p1)P2 pop1(1l— p2)
P P P P
, T
n ,\ = J\ and similarly for all single edges

\J

NN LA : PN

/ N\

S
) N > Z\A and similarly for all pairs of edges

S
L — A /\ /o A\
PopiPz  (1—po)paP2 Po(1—p1)p2 PoP1(l—p2)
P P P P

Fig. 5.2 The random map$ andS. Note thatP := (1— po)(1— p1)(1— p2).

Next we explore couplings of the two measures. jret [0, 1)2 satisfy 6.1), and
let Q (respectivelyQ’) have associated meas&?é (respectiverJng) as above.
There exist random mappings: Q — Q" andS: Q' — Q such thafl (w) has law
]Pﬁp, andS(«w') has IaWIP’ﬁ. Such mappings are given in Figuse2, and we shall
not specify them more formally here. Note from the figure thab) is deterministic
for seven of the eight elements @F; only in the eighth case doéB(w) involve
further randomness. Similarl§(«') is deterministic except for one special. Each
probability in the figure is well defined siné®&:= (1 — po)(1— p1)(1— p2) > 0.

Proposition 5.2(Star-triangle coupling)Letp € [0,1)3 satisfy(5.1) and let Sand T
be as in Figures.2. With w and w’ sampled as above,
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(@) T(w) has the same law ag/,
(b) S(') has the same law as,

(c) forx,y € {A.B,C}, x 22 y if and only if x 2@, Y,

(d) for x,y € {A,B,C}, x A, y if and only if XM y.

5.2 The star—triangle transformation for isoradial graphs

Let G = (V,E) be an isoradial graph, and lAtbe a triangle of5 with verticesA, B,

C. Seen as a transformation between graphs, the star—gigagkformation changes
A into a starA’ with a new central verte® € R?. It turns out tha® may be chosen in
such a way that the new graph, deno@dis isoradial also. The right way of seeing
this is via the diamond grap®®, as illustrated in Figur.3. This construction has its
roots in theZ-invariant Ising model of Baxte®] 4], studied in the context of isoradial
graphs by Mercat3Z], Kenyon [24], and Costa-Santo4 §] (see also]).

Fig. 5.3 The triangle on the left is replaced by the star on the right fiew verte)O is the circumcentre
of the three dual vertices of the surrounding hexago® of

The triangleA comprises the diagonals of three rhombi@f. These rhombi
form the interior of ahexagorwith primary verticesA, B, C and three further dual
vertices. LetO be the circumcentre of these dual vertices. Three new rhamebi
formed from the hexagon augmented ®y(as shown). The stat’ has edge#\O,
BO, CO, and the ensuing graph is isoradial (since it stems from mbiotiling).

By an examination of the angles in the figure, the canonicasue ond’ is
that obtained from\ by the star—triangle transformation of Sectri. That is, the
star—triangle transformation mapg to P . Furthermore, foe > 0,

G satisfies BARe) if and only if G’ satisfies BARe). (5.2)

We shall sometimes view the star—triangle transformataciing on the rhom-
bic tiling G rather than orG, and thereby it acts simultaneously Grand its dual
G*.

The star—triangle transformation of Figuse3is said to act on th&ack-triangle
formed by the tracks on the left side, andsl@e one of the tracks illustrated there
over the intersectiof the other two, thus forming the track-triangle on the tigh
side.
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A star-triangle transformation maps an open pat6 ¢ an open path o&’. We
shall not spell this out in detail, but recall the ideas frdr®]] Let 7T be an open path
of G that intersects some hexagdnof G°, and consider the star—triangle transfor-
mation o acting inH. Sinceo preserves open connections withih it mapsrt to
someo (1) containing an open path. A minor complication arisdd ifontains a star
of G andmrends at the centre of this star. In this case, the endpom(mf is a vertex
of the resulting triangle.

5.3 Track-exchange in an isoradial square lattice

Let G be an isoradial square lattice. The tracks®#are to be viewed as doubly-
infinite sequences of rhombi with a common vector. In thidieac we describe a
procedure for interchanging two consecutive parallelksac

Consider a vertical stris = G, g of the square lattice, wheie = (a; : —M <
i <N)andB = (B;: j € Z) are vectors of angles satisfying BAF, (4.7). Thus every
finiteface ofG has circumradius 1. (There are aisfinitefaces to the left and right of
the strip.) There are two types of tracksGnthe finite horizontal trackés;), and the
infinite vertical track<t;). We explain next how to exchange two adjacent horizontal
tracks by a sequence of star-triangle transformations)agfimg a process that is
implicit in [24]. Tracks; has transverse angfg, as illustrated in Figuré.5, and the
‘exchange’ of two tracks may be interpreted as the interghasf their transverse
angles.

We write 2 for the operation that exchanges the tracks at leyeld andj.
When applied tdG, > exchanges;_; ands;j, and we describg;j by reference to
G®. If Bj = Bj_1, there is nothing to do, angj interchanges the labels of the tracks
without changing the transverse angles. Assfje ;1. We insert a new rhombus
on the left side of the strip formed ef_; andsj, marked in green in Figur&4. This
creates a hexagon 8%, containing either a triangle or a star®f The star—triangle
transformation is applied within this hexagon, thereby mguwhe new rhombus to
the right. By repeated star—triangle transformations shidé’ the new rhombus along
the two tracks from left to right. When it reaches the rigllesiit is removed. In the
new graph, the original tracks_; ands; have been exchanged (or, more precisely,
the transverse angles of the tracks at leyelsl andj have been interchanged). Let
Zj be the transformation thus described, and sayIhajoes from left to right’ when
Bj > Bj—1. If Bj < Bj—1, we construcg; ‘from right to left’.

B o o

Fig. 5.4 A new rhombus is introduced on the left (marked in green)sTéithen ‘slid’ along the pair of
tracks by a sequence of star-triangle transformationd,itrgaches the right side where it is removed.
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Viewed as an operation on graplis, replaces an isoradial gragih by another
isoradial graph>;(G). It operates on configurations also, as follows. tebe an
edge-configuration 0B, and assign a random state to the new ‘green’ edge with the
distribution appropriate to the isoradial embedding. Ttae-griangle transformations
used inZj are independent applications of the kernklandS of Figure5.2. The
ensuing configuration oh;j(G) is written>j(w). ThusZj is a random operator oo,
with randomness stemming from the extra edge and the stargte transformations.
Note that>; is not a local transformation, in that the state of an edgg () depends
on the states of certain distant edges.

Initial Principal Secondary Probability
configuration outcome outcome of secondary

Y / / / outcome

VAN

VE‘“‘ - ’ Pr—6, Po,
Ko oL L L
/ / / / / Pr—6,Pr-6,+6,
ZA‘. AVASSN Pe, P, 6,

Pe, Prr—6,+6,
Pr—6,P6,—6,

p92 prf 92+91
Pr—6,P6,—6,

Pr— 6, Pr— 6,+0;
Pe, Pe,—6;

Fig. 5.5 The six possible ways in which may intersect the strip in two edges between heightl
and j + 1, and the corresponding actions Bf. In five cases, the resulting configuration can be non-
deterministic. If the dotted edge is closed, the resultimgfiguration is in the second column. If it is open,
the resulting configuration is that of the third column witte tgiven probability (recall from2(3) that
pPr—a = 1— pa). The movement of black vertices can cause the height iseseenarked in blue. The
trackssy are drawn as horizontal for simplicity, afd = 8’ — am, 62 = B — am, wherevy, j; denotes the
black vertex, ang8’ (respectively3) is the transverse angle of the lower (respectively, upipack.
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Let g; denote the transposition of thi¢— 1)th andjth terms of a sequence. We
may write

2] (Ga,ﬁvpa,ﬁ) = (Ga,ajB ) Pa,ojﬁ)-

When applying theZ; in sequence, we distinguish betweenldigel 5 of a track and
its level Thus,Z; interchanges the tracks currently at levils1 andj.

Initial Resulting % Resulting

Fig. 5.6 If an endpoint ofy lies between the two tracks, the corresponding edge is soegtontracted
to a single point.

N

We consider next the transportation of open paths.cidie a configuration on
Gq g, and lety be anw-open path. The action of a star-triangle transformatioy on
is discussed in detail inlp, Sect. 2.3]. The transformatidf) comprises three steps:
the addition of an edge tG, g, a series of star-triangle transformations, and the
removal of an edge. The first step does not chgngad the effect of the second step
is discussed in Sectioh.2 and the following paragraphs. If the removed edge is in
the image of the patly at the moment of removal, we say th&t breaksy. Thus,
Zi(y) is an open path afj(G) whenever>; does not break. In applying theZ;, we
shall choose the strip-widtkl + N sufficiently large that open paths of the requisite
type do not reach the boundary, and are therefore not broken.

Finally, we summarise in Figurés5-5.6the action ofZ; on the pathy, with M
andN chosen sufficiently large. Consider two trackss at respective level$ — 1
and j, with transverse anglg®’ andB. Edges ofy lying outside levelg — 1 andj
are unchanged b¥;. The intersection of with these two tracks forms a set of open
sub-paths of length either 1 or 2; there are four possiblegyy length 1, and six of
length 2. We do not describe this in detail, but refer the eeaad the figures, which
are drawn for the cas® > B’. The pathy may cross the tracks in more than one of
the diagrams on the left of Figute5, and the image path contains an appropriate
subset of the edges in the listed outcomes. Note that, ifnteesections of with s
ands' are at distance at least 2 from the lateral boundaries,Iheloes not break,

In the special case whgh= f’, X interchanges the labels sfands but alters
neither embedding nor configuration. In this degenerate, cas set>j(y) = y, and
note that Figur&.5remains accurate.
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6 Proof of Theorem3.1 Isoradial square lattices
6.1 Outline of proof

The proof for isoradial square lattices is based on Projposi.1, following. For
& € [0,2m), we write G, ¢ for the isoradial square lattice generated by the angle-
sequencer and the constant sequen@e.

Proposition 6.1. Letd, & > 0. There exist®’ = &'(9, &) > 0 such that the following
holds. Let G g be an isoradial square lattice satisfyiRAP(¢), and leté € [0,2m)
be such thatr and the constant sequen(g) satisfyBAP(¢), (4.7). If G, ¢ satisfies
BXP(9), then G, s satisfiesBXP(&').

Corollary 6.2. Lete > 0. There exist® = d(¢&) > 0 such that every isoradial square
lattice satisfyingBAP(¢&) has the box-crossing properBXP(9).

Since¥(g,1) is the set of isoradial square lattices satisfying B&Rthe corol-
lary is equivalent tod.1) with | = 1.

Proof of Corollary6.2. Lete > 0 and letG, g satisfy BARe).

First, assume that one of the two sequenze$ is constant. Without loss of
generality we may take to be constant, and by rotation of the graph, we shall assume
a = 0. There exist® > 0 such that the homogeneous square latBgg,, satisfies
BXP(d) (see, for example 15, Sect. 1.7]). By Propositiof.1 with & = %rr, Ga
satisfies BXPd') for somed’ = &'(9,¢) > 0.

Consider now the case of general 3. By the aboveG, g, satisfies BXPJ').

By Proposition6.1with & = Bo, G, p satisfies BXPS") for somed” = 6" (9, €) >
0. O

By Lemma4.3 Proposition6.1 follows from the forthcoming Propositiorg 4
and6.8, dealing respectively with horizontal and vertical crogsi.

The proofs are outlined in the remainder of this section. Basic idea is that
pieces ofG, g and G, , may be glued together along a horizontal track. Track-
exchanges may then be performed repeatedly in order to sesp @f G, ; and
Gq g While maintaining the existence of certain open paths.

Leta, 3, andé be as in Propositiofi. 1. Fix N, to be chosen separately in the two

proofs, and define
~ 3 if j <N,
Bi=1, o
Bi-n if j>N.

We refer to the part o = GaE above heighN as therregular block and that with
height between 0 and as th’eregular block. The regular block may be viewed as
part ofG, ¢, and the irregular block as part 6, g. We will only be interested in the
graph above height 0.

In Section6.2, we explain how to transpotiorizontal box-crossingffom the
regular block to the irregular block. Consider an open tamial crossing of a wide
rectangle in the regular block @&. A sequence of track-exchanges is made from the
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top to the bottom of the regular block in such a way that theulargblock moves
upwards. See Figut@ L

The evolution of the open crossing is observed throughautrdmsformations.
Its endpoints are pinned to the lowest track, and thereforead change. The open
path may itself drift upwards, and the core of the proof offféisition6.4 lies in a
probabilistic control of its rate of drift.

Vertical box-crossingare studied in Sectio@.3. This time, the tracks of the reg-
ular block are moved upwards by a process of track-exchasghstrated in Figure
6.6. Consider an open vertical crossing of some rectangle agtipndar block. During
the exchanges of tracks, the highest point of the path mdtlydinvnwards, and as
before one needs some control on its rate of drift. It is key, thfter all tracks of the
regular block have been moved upwards, the irregular blookains an open vertical
crossing of some (wider and lower) rectangle. This is adddw showing that the
height of the upper endpoint of the crossing decreases byst ome at each step,
and does not decrease with some uniformly positive proitabil

The arguments and illustrations of Sectibr3 will be central to the proofs of
Proposition$.4and6.8,

Separate considerations of horizontal and vertical ongssare required sinae
and 3 do not play equal roles. Consider the proof of Corollér. When passing
from Gg /> to G4 g with one of the sequences, 3 constant, both and horizontal
and vertical box-crossings need be transported. On the btred, Propositiors.4
suffices in the second part of the proof, as explained in thedng remark.

Remark 6.3. The material in SectioB.3 and specifically Propositio6.8 may be
circumvented by use ofLl, Thm 1.5], where the box-crossing property is proved
for so-called ‘highly inhomogeneous’ square lattices. Wendt take this route here
since it would reduce the integrity of the current proof, amalild require the reader
to be familiar with a different method of applying the staiasigle transformation to
square (and triangular) lattices.

Here is an outline of the alternative approach. In the langeaf [19], an isora-
dial square lattice G ; satisfyingBAP(¢) is a highly inhomogeneous square lattice
satisfying [L9, eqn (1.5)] (with an adjusted value ef. By [19, Thm 1.5], such a lat-
tice has the box-crossing property. By Propositid, horizontal box-crossings may
be transported from G to the more general isoradial square latticg, . Similarly,
by interchanging the roles of the horizontal and verticaldks of G g, we obtain the
existence of vertical box-crossings in that lattice. Suolssing probabilities are now
combined, using LemmA2, to obtain Theoren3. 1

The following is fixed for the rest of this section. Let> 0, and leta, 3 be
sequences of angles satisfying BAP, (4.7). Let £ be an angle such thatand(&)
satisfy BAR¢), (4.7). All constants in this section may depend@rbut not further
ona, B, £ unless otherwise stated.
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6.2 Horizontal crossings

Proposition 6.4. There exisA,Np € N, depending org only, such that, fop € N
and N> No,

P (Ch[B((P—1)N,AN)])

> (1—pe M)Pg ¢ (C[B(PN,N)])

X Py g (

X Py g (

Proof. Fix p € Nwith p > 1, andA, Ny € N to be chosen later, and It> Ny. Recall

the graphG = Ga,'ﬁ given in Sectior6.1. We work on a vertical strigvi j : —M <
i <M} of G with width 2M, where

é
[B(—pN,—(p — 1)N;O,N)])
[

C
C.[B((p— 1N, pN; O,N)]). (6.1)

M= (p+2A+1)N, (6.2)

and we truncater to a finite sequencgr; : —M <i <M —1).
We will work with graphs obtained fron® by a sequential application of the
transformationst; of Section5.3 and to this end we let

Uk = 2k0 Zk10- -0 INyk-1, k>1 (6.3)

Note thatUy moves the track at lev® +k — 1 to levelk— 1, while raising the tracks
atlevelsk—1,...,N+k—2 by one level each (see Figusel). We propose to apply
Up,Usp, ..., U, N to G in turn, thereby moving part of the irregular block benedit t
regular block.

V_pN,N+k—1

V_pN,k

V_pN,0

Fig. 6.1 The transformatiotJy raises the (shaded) regular block by one unit, and movesahk above
by N units downwards.

Let En be the event that there exists an open patl®afithin B(pN,N), with
endpointsyy, o andvy, o for somexg € [—pN, —(p — 1)N] andx; € [(p — 1)N, pN].
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By the definition of[~3, B(pN,N) is entirely contained in the regular block Gf By
the Harris—FKG inequality,

P, 5(En) = Pa ¢ (ChlB(PN,N)])
x Pg ¢ (Cu[B(—pN, —(p — L)N;O,N)])
x Py g (Cu[B((p — 1N, pN; O,N)]). (6.4)

Let wP be a configuration ofs, chosen according tBg. Fork e N, let G° = G
and

Gk:UKO---OUl(G), wk:UkO---OUl(wO).

The family(w*: k > 0) is a sequence of configurations on @lewith associated law
denotedP. Note thatP is given in terms of the law a&®, and of the randomizations
contributing to theJ;. The marginal law otvX underP is Pg.

Let w® € En, and lety? be a path irB(pN,N) with endpointsy, o andvy, o for
somexg € [—pN,—(p — 1)N] andx; € [(p — 1)N, pN]. Let y¥ = Uxo--- o Uz (yP).
The path evolves as we apply tbg sequentially, and most of this proof is directed
at studying the sequeng®, y*, ..., y*N.

First we show that the path is not broken by the track-excasufgor 0K k < AN,
set

D= {wy € (G X < (p+1N+2k—y, 0<y<N+k}.
The proof of the following elementary lemma is summarisét@end of this section.

Lemma 6.5. For 0 < k < AN, y¥ is an open path contained in"D

The set{vp : x € Z} of vertices ofG® is invariant under théJy, whence the
endpoints of thgX are constant for aK. It follows that the horizontal span ¢fN is
at least 2p — 1)N.

If YN has maximal height not exceediAd\, then it contains a*N-open hori-
zontal crossing oB((p — 1)N,AN). The grapiG*N agrees withGy g within B((p —
1)N,AN), so that

P g (Ca[B((p — 1N, AN)]) > P(h(y*N) < AN|En)P(En).
By (6.4), it suffices to show the existence dfNy € N such that,
P(h(y*N) <AN|a”) >1-pe™,  N=>No, € Ep, (6.5)

and the rest of the proof is devoted to this. The basic ideani¢as to the correspond-
ing step of [L9], but the calculation is more elaborate.

Let w® € Ey and lety? be as above. We observe the evolution of the heights of
the images of/° within each column. Fon € Z and 0< k < AN, set

h(Y*n%n) if y*nén # 2,

Gn={Vny:yeZ}, h§= {oo otherwise
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Thus,h(y"N) = sup(mN:ne Z}.

The procesghf : ne Z), k=0,1,...,AN, has some lateral drift depending on
the directions of the track-exchangEs We will modify it in order to relate it to
the growth process oflP]. The track above the regular block is transportedy
through the regular block, and thus ajl contributing toUy are in the same direction
(either all move from right to left, or from left to right). Lédy : k > 0) be given by
do=0and

de+1  if B> ¢,
Oxr1 = 4 di if Be=¢,
de—1 if B <,

and seH,'.f = h‘ﬁl+dk. The termd is included to compensate for the asymmetric lateral

drift induced by the directions of the track-exchanges [Egare5.5). ThusHK has
a roughly symmetric evolution asincreases. The rest of the proof is devoted to the
procesH = (HX:neZ),k=0,1,...,AN.

We introduce some notation to be used in the proof. A sequBnegR,: n e
7) € (ZU{—w})” is termed aange Theheight in column of R is the valueR,, and
theheightof the range is sufR, : n € Z}. For two range®?, R?, we writeR! < R?
if RY < RZ for n € Z. Themaximunof a family of ranges is the pointwise supremum
sequence. The ranggris calledregular if

|Rip1— Rl <1, nez. (6.6)

Themountainat a point(n,r) € Z? is defined to be the randé(n,r) = (M(n,r); :
| € Z) given by

M(n,r); = r—in—I+1 forl#n,
r forl =n.
Note that mountains have flat tops of width 3 centreghat), and sides with gradient
+1. Thecoveringof arangeR is the rang€(R) formed as the union of the mountains
of each of its elements:

C(R) =max{M(n,R,) :ne Z}.

We note thaR < C(R) with sometimes strict inclusion, and also tfaandC(R)
have the same height.l is regular, the heights &@ andC(R) in any given column
differ by at most 1. See Figu@2for an illustration of these notions and their role in
the evolution oH. We return to the study gH¥).

Lemma 6.6. There exist$) = n(¢) € (0,1), and a family of independent Bernoulli
random variablegYX : n € Z, 0 < k < AN) with common parametey such that

H < max{C(H¥)n, HE+YX}, neZ, 0<k<AN. (6.7)
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o o
o ° [e] [e] ° o [¢] [e] (e]
o (e} [ ] [e] o o [ ] L] [ ] [ ] L] [ ] o
o [e] o ° [e] o o o L] [ ] L] [ ] ° L] [ ] [ ] [e]

Fig. 6.2 Left One step in the evolution ¢1. The initial rangeH® has only one occupied column (black).
The blue/black squares form the mountain of the black colufhe red square is added at randdight

One step in the evolution of thék (or HX when regular). The black squares are the configuration @t ste
k, the blue squares are the additions at thnel due to the covering, and the red squares are the random
additions.

The (YX) are random variables used in the star-triangle transféomstand the
probability space may be enlarged to accommodate thesblesi

The proof of the lemma is deferred until later in the sectibteanwhile, we
continue the proof of&.5) by following that of [L9, Prop. 3.7]. Let(YX) be as in
Lemma6.6, and letX* := (XX :ne Z),k=0,1,...,AN, be the Markov chain given
as follows.

(a) The initial valuex? is the regular range given by

X0 — N forne [-pN, pN],
N-+pN—|n| forn¢ [—pN,pN].
(b) Fork > 0, conditional orX¥, the rangeX¥*1 is given by
Xrl1(+l = maX{Xr|:717Xr|.|( +lel(7xf|‘l(+l}7 nez. (68)

We show first, by induction, thaxk > H¥ for all k. It is immediate thaX©® is
regular, and thax® > HO. Suppose thaxk > HX. By (6.9), each rang&K is regular
and

XK > c(x4) > c(HY). (6.9)
By (6.7), HK* > C(H¥), only if Y = 1. SinceXX > HKX, we have in this case that
Xt > XK 1> HE 1= HEL (6.10)

By (6.9-(6.10, X**1 > H*1 and the induction step is complete.
TheXX are controlled via the following lemma.

Lemma 6.7([19]). There exisft,Np € N, depending om only, such that
]P(mr.]alxxfﬂ”\‘ < )\N) >1-peN,  peN, N> No

Sketch proof.This follows that of L9, Lemma 3.11]. A small difference arises through
the minor change of the initial valug®, but this is covered by the inclusion of
smaller-order terms inlp, eqn (3.31)]. O
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Let A andNg be given thus. FoN > Np andw? € Ey,

P(h(y™N) <AN| o) = P(max™ <AN)
>1—pe N
This concludes the proof of Propositiér. O

Proof of Lemma5.6. Let k > 0 and letw be a configuration oiG¥. Let y be an
open path orG¥ that visits no vertex within distance 2 of the sidesGffand with
h(y) < N+ k. We abuse notation slightly by definitt) andH**1 as in the proof of
Proposition6.4with y andUy, 1 (y) instead of/* andy¥*1, respectively. That is,

Hrl‘f = h(yﬁ %I'H»dk)v HrI‘TJrl = h(Uk+l(V) m%n+dk+l)’ nez.

We will prove that there exists a family of independent Bedlisandom variables
(Ya: n € Z), independent ofv, with some common parametgr=n(¢) > 0 to be
specified later, such that

H <max{C(HX)n,HE+Yn),  neZ. (6.11)

Once this is proved, the i.i.d. famil)tX : n € Z, 0 < k < AN) may be constructed
step by step, by applying the above to the malff ¥ for 0 < k < AN. By Lemma
6.5 the assumptions op are indeed satisfied by eagh. By the independence of
(Ya:n€ Z) andw above, the familyYX : n, k) satisfies the conditions of the lemma.

It remains to prove@.1]) for fixed k. If Bx = &, no track-exchange takes place,
henceH*™! = HX and 6.11) holds. Suppos@ # &. Without loss of generality we
may supposgy > &, so thatdy, 1 = dg + 1 and the track-exchanges in the application
of U := Uy, are all from left to right. To simplify notation we shall assady = 0.

Equation 6.11) is proved in two steps. First, we will show that

HH < max{HX , — |i|+1:i e Z}. (6.12)

This equation is a weaker version @f.{1) in which eachy, is replaced by 1.

We prove 6.12 by analysing the individual track-exchanges of wHitls com-
posed. Folk < j < N+K, let ¥ = 5 10--- 0 Inyk. Thus, ¥y« is the identity,
W =U, and¥,_1 = Zj o ¥. Recall that the diamond graph is bipartite, with the pri-
mal and dual vertices as vertex-sets. A vergxis said to be contained in a ranBe
if r <Ry. A set of vertices is contained R if every member is thus contained.

Letthe sequenc@ ) : j = N-+k,N+k—1,...,k) of ranges be defined recursively
as follows. First LNtk = HK. We obtainL =1 from L! by increasing its height in
certain columns: for each primal vertex; contained irL1, the heights in columns
n-+ 1 andn+ 2 increase tg + 1 andj, if not already at that height or greater.

We claim that¥(y) is contained irLJ for N-+k > j > k, which is to say that

h(W(y)ngn) <L,  nez. (6.13)

The above holds fof = N+ k by the definition oL.NK and we proceed by (decreas-
ing) induction onj as follows. The pat,_1(y) is obtained by applying;j to % (y),
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as illustrated in Figuré.5. Possible increases in column heights are marked in blue.
Since the black vertices in Figufe5are contained i}, the blue ones are contained
in LI~1. This concludes the induction.

ThereforelU (y) = Y (y) is contained irL¥, and hence inequalitys(12 follows
once we have proved that

LK, s <max{H —Ji| +1:i> 1} (6.14)

This we shall do by observing that the sequeficH is, in a certain sense, additive
with respect to its initial state. We think bf¥tX as a union of columns, each of whose
evolutions may be followed individually.

L] o ° L] o L] o [ ] o [ ] (o} L]

° o o L] o ° o [ ] o [ ] o [ ]

01 2 0 1 2 3 0 1 2 3 4 5

ofofele]]
'
!
|

Fig. 6.3 An illustration of the sequende(0,s)! beginning with the initial columm_ (0,s)N"* = A(0,s).
This column is unchanged up to and includipg: s, and then it evolves as illustrated.

Letr,se Z be such thas < N+ k andr + sis even, so that; s is a primal vertex.
Let A(r,s) be the range comprising a single column of height positionr. Con-
sider the sequencg (r,s)!) with the same dynamics d&!) but with initial state

L(r,9Ntk = A(r,s). The evolution ofL(r,s)! is illustrated in Figure5.3. We have
thatL (r,s)! = A(r,s) for N+ k> j > sand, fors> j >k,

—00 fm<rorm>r+s—j+1,
S ifm=r,
s—(m-r)+2 ifr<m<r+4+s—j+1.

Lrsh=

The rangeL! is obtained by combining the contributions of the columni&f in
that
Ll =max{L(rH :rez}, N+k>j>k (6.15)

A rearrangement of the above with= kimplies 6.14); (6.12) follows by extending
the maximum in §.14) overi € Z.
Letn € Z be such that

HE+ 1 <max{HX  —[i|+1:i € Z\ {0} }. (6.16)

Then 6.12 impliesHX*! < C(HX),, whence ¢.11) holds for this particular value of
n.
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It remains to prove.11) when @.16 fails. Assumen does not satisfyd.16), so
that (6.12) impliesH X < HX+ 1. We shall prove that

HIFL < HE Y, (6.17)
where they,, are independent Bernoulli random variables with respegarameters

_ Pr—&+an pnfﬁwé (6.18)

nk(n) :
Pe—anPp—¢

(with pg given in 2.3)), and which are independent af

Letl = H,'f. We first analyse the action & = >, 10---0 2Nk, and then that of
2.

The vertexvy is necessarily primal. Sincé (L6 fails,

HE  <l+i|-1, iez\{0}.
Since eachv,_j . i—1 is a dual vertex, we have the strengthened inequality
HX  <I+li|—2, iez\{0}. (6.19)

See Figuré.4for an illustration of the environment aroumg), .

L] [e] [ ] [ ]

|]|o|e|o|e]|]o]e

[ o [ ] o L [e]

cgn anJrl

Fig. 6.4 The environment aroung, . By (6.19), the black blocks contaidk. The range.!, and hence the
path%¥{(y), is contained in the aggregate range shown. The heighi.in increases only if the red block
appears when applying; .

By (6.13, and 6.19 substituted into§.15),
hH(yY)NGri) <Lp i <I+i, i>-1 (6.20)

Note that>; is the final track-exchange with the potential to add vesticethe path
at heightl + 1. Hence,H,'.fJrl =1+1 only if Vyy141 is contained inH_4(y), or,
equivalently, only if the height ifé,,, 1 increases td+ 1 when applying to ¥(y).

By (6.20 with i = 0,1, the only cases in which this may happen are those of the
third and sixth lines of Figuré.5 (with v, the black vertex). (See FiguteSfor a
more detailed illustration of the third case.) Moreovee treight in',.1 increases
only if the secondary outcome occurs. In both cases, thens@cy outcome occurs
with probability ni(n) if the edgee = (v, Vni1)+1) is open, and does not occuref
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Vin+1,14+1

Fig. 6.5 The third case of Figurg.5. If the dashed edge in the initial configuration (left) is ppleen, with
probability nk(n), the resulting configuration is that on the right side.

is closed. We therefore provide ourselves with a Bernoatidom variabléy,, with
parameteny(n), for use in the former situation. We have th#t™ = H< + 1 only if
Y, =1, and 6.17) follows.

LetA=¢ —anandB=B«—¢&.By (6.19,

_ Pr-aPrB _ sin(3A) sin(3B)
~ paPe  sin(i[m—A))sin(i[n—B])
cos(3[A—B]) — cogi[A+B))

nk(n)

= =:9(A,B).
cos 3[A—B]) —cog 3[2m— A—B)
By assumptionB > 0, and so by4.7),
e<A<A+B<m—e. (6.21)

There existg(g) > 0 such that, subject t&(27),
cog 3[A—B]) > cog3[A+B]) > cog3[2m— A—B]) +c(¢).

Therefore,
n:=sup{g(A,B):e <A<A+B<m—¢}

satisfies] < 1, and this concludes the proof of the lemma. O

Proof of Lemmé5.5. We sketch this. SincB(pN,N) C D°, we have thay® C D°. It
suffices to show that, for & k < AN andy an open path ifD¥, Uy does not break
andUy(y) C DK+,

By considering the individual track-exchanges of whighis composed, it may
be seen tha¥, (y) is an open path contained D+ for all j (with ¥ = 5j.10 W1
as in the last proof). In considering hd#(y) is obtained from¥,, 1(y), it is useful
to inspect the different cases of Figuseb, and in particular those involving blue
points. The path may be displaced laterally and, during ¢logiential application of
track-exchanges, the drift may be extended laterally asptopagated downwards.
The shapes of thB' have been chosen in such a way tie(ty) is contained irDk+1
for all j. The argument s valid regardless of the directioxpf O
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6.3 Vertical crossings

Proposition 6.8. Let & = 1p%_. € (0,3). There exists ¢ = cn(5) > 0 satisfying
cn — las N— oo such that

P (Cu[B(4N,ON)]) > cnPy g (CV[B(N,N)]),  NeN.

Proof. The notation of Sectio6.1 will be used. LetN € N, and, as in Sectiof.2,
we will work with a vertical strip of width #1 of the graphG = G, ;. For this proof

B
we takeM = 5N. Fork € {0,1,...,N — 1}, set
Vic = ZoN—k O+ 0 IN_kt1- (6.22)

The mapV exchanges the track at levdl— k with the N tracks immediately above
it. The sequential action &6, V1, ..., Vn_1 moves the regular block upwards track by
track, see Figuré.6.

z ) 2k

(o) ZN-ki2
e S S ji:

Fig. 6.6 The transformatiolx movessy_k upwards byN units.

Let w° be a configuration o° := G_ - chosen according to its canonical mea-

a,B
sureIP’a’E, and let
GX =Wc_q0--- oVo(Ga E),
WK =V 10 oVo((;JO)7

DX = {wy € (G : x| <N+2k+y, 0<y<2N},
Kk . DK,k
h = sup{h < N: 3x1,% € Z with Vg, 0 —— Vs, 0}

That is,h* is the greatest height of an open path@fstarting in{vxo : x € Z} and
lying in the trapeziunDX. The lawP of the sequencéw : k € Np) is a combination
of the law ofw® with those of the star-triangle transformations compgsheV.
The boxB(N,N) is contained irD°, and lies entirely in the regular block &°.
The boxB(4N, 5N) contains the part obN between heights 0 andN, and lies in
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the irregular section oBN (6 < % is given in the proposition). Therefore, it suffices
to prove the existence afy = cn(d) > 0 such thaty — 1 and

P(hN > 3N) > cyP(h° > N). (6.23)

The remainder of this section is devoted to the prooto? .
Let (4; : i € N) be independent random variables with common distribution

P(A=0)=25, PA=-1)=1-23. (6.24)

TheA; are independent of all random variables used in the cori&iruef the perco-
lation processes of this paper. We set

k
H=H°+ Y A, (6.25)
2
whereH? is an independent copy of, independent of thd;. The inequalities<s,
>t refer to stochastic ordering.

Lemma 6.9. LetO < k < N. If i* >g HK then K1 > HK+L,

Inequality 6.23 is deduced as follows. Evidently? > H® and, by Lemma.9,
hN >4 HN. In particular,

P(hN > 5N) > P(HN > &N).
Sinceh® andH° have the same distribution,

P(hN > &N)
P(h9 > N)

P(HN > 5N)
P(HO > N)
>P(HN > 8N |HO > N) =: cn(0).

v

Now, (H¥) is a random walk with mean step-siz&-2 1. By the law of large numbers,
cn — 1 asN — 0. In addition,cy > 0, and 6.23 follows. O

Proof of Lemma5.9. Let 0 < k < N. We applyVk to G¥, and study the effects of the
track-exchanges . FOrN —k < j <2N—k, let¥, = Zjo---0 Zy_k.1, and IetD'J-‘

be the subgraph ¢# (G)® induced by verticesy y with 0 <y < 2N and

N+2k+y+2 ify<j,
X < N+2k+y+1 ify=j+1, (6.26)
N-+2k+y ify>j+1.

TheD'j‘ increase withj, andDX C D, ,, D&, C DKL,
Let wf = (") and

k , Df
h = sup{h < N : 3x1, X € Z With vy, 0 —— Vi, 0},



Bond percolation on isoradial graphs 37

noting that
h<hK ., hE>hS (6.27)

First, we prove that, fol —k < j < 2N —Kk,

hi,; > hf—1, (6.28)
hSp>h ifhk 41, (6.29)
P, >h|h=h>25 ifh=]j+1. (6.30)

Fix j suchthaN —k < j <2N —k. Lety be anwjk-open path of¥] (GY), lying in
D'J-‘, with one endpoint at height 0 and the other at hehjht

By consideration of Figuré.5, Xj1(y) is aa)}‘ﬂ-open path contained iB‘J?H.

The lower endpoint of is not affected byzj ;1. The upper endpoint is affected only
if it is at heightj + 1, in which case its height decreases by at most 1 (see Figgre
This proves .29 and 6.29, and we turn to§.30.

Let #; be the set of pathg of ¥, (GX), contained inD‘J-(, with one endpoint at
height 0, the other endpoint at heidii) and all other vertices with heights between
1 andh(y) — 1.

We perform a preliminary computation. Lgty’ € &2;. We writey’ < yif y # v,
h(y') = h(y), andy contains no edge strictly to the right gfwithin {vyy : [x| <
M, 0<y<h(y)}. Note that

hs = sup{h(y) : y € 2}, yis wi-opery,

and denote by = I (w¥) thew!-open path of; that is the minimal element fy <
Z;hy) = h'j‘, yis a)}‘-oper} with respect to the ordetr. Thus,I” is the leftmost
path of #7; reaching heigh.

We have that

{r (o) =y} ={yiswf-oper NN,  ye %, (6.31)

whereNy is the decreasing event that:

(a) there is no/ € #; with h(y') > h(y), all of whose edges not belonging yo
arew!-open,

(b) thereis ng/ < ywith h(y') = h(y), all of whose edges not belongingy@re
wk-open.

Note thatNy is independent of the evefiyis w}(-oper}.

Let F be a set of edges Gﬂj(G"), disjoint fromy, and letCg be the event that
every edge ifF is wi-closed Let P denote the marginal law @b, andpe the edge-
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probability of the edge of ¥ (G¥). By (6.31) and the Harris—FKG inequality,

]PK(I-:V|CF) K
oy )

PNy [ CF)
Ny )

> P(Cr) = [1a-po. (6.32)

€

B(Cr | =) =

where we have extended the domairPdb include the intermediate subsequence of
= G Wy g = L

Letye & with h(y) = j+1and supposE(a)J'-‘) = y. Without loss of general-
ity, we may suppose tha;, 1, applied to¥, (GY), goes from left to right; a similar
argument holds otherwise.

Let z= vy j+1 denote the upper endpoint pfand letZ denote the other endpoint
of the unique edge of leading toz. EitherZ = vy, 1 or Z = vy_1 j. In the second
case, it is automatic as in Figusesthath(Z;1(y)) > j+ 1.

Assume that = vyy1 j, as illustrated in Figuré.7. LetF = {e, e, e3,e4} where

(Vi j+1, =1, j42) s (1,42, V=2, j4+1) s

e = & =
€3 = <Vx72,j+1,Vx71,j>7 €4 = <fol,j ;VX,j+1>a

are the edges of the face %T(Gk) to the left ofz. By definition of &, F is disjoint
from y. By studying the three relevant star—triangle transforomatcontributing to

211 as llustrated in Figuré.7, we find as in Figur®.2that

Pe; Pe,
(1= pey) (1~ pey)
> Pe, Pe,
" (1= pey)(1—pey)

P(h(Zj4a(y) = j+1|F =y) >

P(Cr |l =Yy)

P(Cr),

by (6.32.

Eix B0 Qo 4

Fig. 6.7 Three star—triangle transformations contributingjqs, from left to right. The dashed edges are
closed, the bold edges are open. The first and last passageswith probability 1, and the second with

probability pe; Pe, /(1 — Pe; ) (1— Pey)-
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In summary, we have that

Pe, P
B 2|7 =y) > St T @)
€

(1= Pe;)(1— pey
= Pey Pes (1 — Pe,) (1 — Pey)
> Pire = 29, (6.33)

by (2.4). The proof of £.30 is complete.
It remains to show that5(28—(6.30 imply the lemma. This may seem obvious,
but, since the sequen(:le‘j()j is not Markovian, some technical details are needed.
Supposé* > H¥. We shall bound (stochastically) the sequefiég; by a Markov
chain, as follows. LetX; : j = N—k,...,2N—k) be an inhomogeneous Markov chain
taking values ilNg, with transition probabilities given by

Xipp=Xj if Xj#j+1,
26 if x=j+1,

P(Xj1= XX :j+1):{126 if x=j

By (6.28-(6.30, for all j,
P(h, > x| W =y) > P(Xj11 > x| Xj=2), xY,zE€No, z<y.

Let Xy_k = HX. By the induction hypothesi$]* <s h* < h¥_,, whenceXon_k <st
hlﬁka asin[L9 Sect. 3.3] (by19, Lemma 3.7], iterated). Moreov&py_k — Xn_k =st
Ay 1. Therefore,

k+1 k k k+1
h<* > hZN—k ZstXZN—k =stH +Ak+l: H** s

as claimed.

7 Proof of Theorem3.1 The general case

Let G € ¥(g,1). By SGRI), there exist two familiegs; : j € Z) and (tj : i € Z)
of tracks forming a square grid @. A star—triangle transformation is said to act
‘betweens, andsy’ if the three faces o5 on which it acts are betweex andsp.
(Recall from Sectiord.5that such faces may belonggpbut not tosy). A path is said
to be betweersy ands if it comprises only edges betweegands, (that is, edges
belonging to faces betweep ands,). A vertex of G® is said to be ‘just belows if
it is adjacent tasy and betwees ;1 andsp.

Let En = En(G) be the event that there exists an open patih G such that:

(a) yis betweersy andsy,
(b) the endpoints of are just belows,
(c) one endpointis between,y andt_y and the other betwedg andtoy.
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There is no further condition on the horizontal extenyofVe claim that there exists
0 =9d(¢g,1) > 0, independent o andN, such that

Pc(En) > 9, N> 1. (7.1)

Sincey contains a horizontal crossing of the domain= 2(t_n,tn; S, ), (7.1)
implies

Pg [Ch(t-n,tn;S0,Sn)] > 0.
Sinced depends only os andl, the corresponding inequality holds for crossings of
translations of7, and also with the roles of ths;) and(t;) reversed. By Proposition
4.2 the claim of the theorem (together with the stronger stetar@. 1)) follows from
(7.2), and we turn to its proof.

The method is as follows. Consider the grapbetweersy andsy. By making a
finite sequence of star—triangle transformations betvggemdsy, we shall move the
sj downwards in such a way that the section of the resultingtgigmg both between
t_on andtyy and between the images®fandsy, forms a box of an isoradial square
lattice. By Corollary6.2, this box is crossed horizontally with probability bounded
away from 0. The above star—triangle transformations aga teversed to obtain a
horizontal crossing o in the original graplt.

Since a finite sequence of star—triangle transformatioas@hsG at only finitely
many places, we may retain the track-notatgpnt; throughout their application.
We saysj,sj.1,...,Sj+k areadjacent betweeryt and &, if there exists no track-
intersection in the domaif (ty, ,tn,; Sj,Sj+k) except those 08;,Sj.1,...,Sj+k. The
proof of the next lemma is deferred until later in this seatio

Lemma 7.1. There exists a finite sequen¢k : 1 < k < K) of star-triangle trans-
formations, each acting betweeg and $, such that, in o --- o T1(G), the tracks
%,---,Sn are adjacent between 3y and by.

Let (Ty : 1 < k < K) be given thus, and writ€® = G andGK = Txo--- o T (GP).
Let S be the inverse transformation ©f, as in Sectiorb.1, so thatSk(G") =Gk 1,
Since the track notation is retained for eadk the eventEy is defined on each
such graph. By a careful analysis of its action, we may seeShareservegy for
k=K,K—1,...,1. The details of the argument (which requires no estimathef
value ofK) are provided in the next paragraph.

Let 1< k < K and lety be an open path dBX satisfying (a)—-(c) above. Since
Tk acts betweesy ands, it does not movey, andSc(y) has the same endpoints as
y. Moreover the three faces ¢6%) on whichS; acts are either all strictly below
Sy, or two of them are part ofy and the third is above. In the first caSgy) may
differ from y but is still contained betweesy andsy; in the second casg does not
influencey. In conclusionS(y) is an open path 06X~ that satisfies (a)—(c).

Since the canonical measure is conserved under a staghrigansformation,
the remark above implies

Pg(En) > Pgk (En). (7.2)

It remains to prove a lower bound f®gx (En).
Write (rj ;i € Z) for the sequence of all tracks other than #jeindexed and
oriented according to their intersections with with ro = tg, and including the; in
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increasing order. Lg8; be the transverse anglegf andrr+ a; that ofr;. Since each
ri intersects eachy, the vectorsx = (a; :i € Z), B = (Bj : j € Z) satisfy @.7), and
henceGy g is an isoradial square lattice satisfying B&#. By Corollary6.2, there
existsd’ = &'(e) > 0 such thaG, g satisfies the box-crossing property BXP).

The track-system o6X inside P (t_on,ton; So,SN) IS isomorphic to a rectangle
of Z2, and comprises the horizontal trackss:, .. ., S\, crossed in order by those
between (and including) oy andtoy. Thus,GX agrees wittG, g inside this domain.

Consider the following boxes ¢fGX)°:

Vi = 2(t_on,t-N; S0, SN),
Vo = Z(tn,ton; S0, SN),
H = 2(t_on,ton; S0, SN)-

By the Harris—FKG inequality,

Pk (EN) > Pk [C\,(Vl) ﬂCV(Vz) ﬂCh(H)}
> P (Vo) [P Gy (V) P [Ca(H)]. 73)

The boxesd/;, V» in (GKX)® may be regarded as boxes@(gﬁ, and have heighil
and width at leasN. Similarly, the boxH has heighiN and width at most iN. By
BXP(d’) and (7.3), there exist®) = d(¢,l) > 0 such thalPek (En) > 6, and (7.2) is
proved.

Proof of Lemm& .1 We shall prove the existence of a finite sequefige 1 < k <
K) of star-triangle transformations, each acting betwgemdsy, such that, infk o
---0T1(G), the trackssy,s; are adjacent betwedn,y andtyy. The general claim
follows by iteration.

In this proof we work with the grap@ only through its track-se® . Tracks will
be viewed as arcs iR?. A pointof .7 is the intersection of two tracks, and we write
& for the set of points.

Let .4 be the set of tracks that are not parallekgoAny r € .4 intersects both
S ands; exactly once, and we orient sucin the direction from its intersection with
S to that withs;.

An oriented pathy on the track-set is calledincreasingif it uses only tracks
in .4 and it conforms to their orientations. For poigtsy, € &2, we writey; > y»
if there exists an increasing pafhfrom y, to y;. By the properties of7 given in
Section4.2, the relation> is reflexive, antisymmetric, and transitive, and is thus a
partial order on#2.

Let % be the closed region @ delimited byt_y, ty, So, S1, illustrated in Figure
7.1 Apointy € & is colouredblackif it is strictly betweensy ands;, and in addition
y >y for somey in % := %N or on its boundary. In particular, any point in the
interior of # or of its left/right boundaries is black. We shall see thatltack points
are precisely those to be ‘moved’ abaeby the star—triangle transformatioms

We prove first that the numb&rof black points is finite. By BAPg), the number
of tracks intersecting? is finite. Lety™ (respectivelyy~) be the rightmost (respec-
tively, leftmost) point ors; that is the intersection & with a trackr that intersects
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ton ton

y | | | I l / [y

Sl y R

Y1 /

Y2

%llﬁj \I

Fig. 7.1 The black points are indicated. The patfrom y; to y; is drawn in red. The pointgandy; are
maximal, and are not comparable. The regidiis shaded.

2. We claim that
if r € 7 has a black point, it intersecss betweery~ andy™. (7.4)

Assume {.4) for the moment. Since a black point is the unique intersaatif two
tracks, and since7(4) implies that there are only finitely many tracks with black
points, we have thd < co.

We prove {.4) next. Lety be a black point. Iy € %, (7.4) follows immediately.
Thus we may suppose, without loss of generality, thist strictly to the left of%.
There exists an increasing pathstarting at a point on the left boundary &f and
ending aty. Takey to be the ‘highest’ such path. Lét; : 1 <| <L) be the tracks
used byy in order, wherd < . We will prove by induction that, for > 1,

r intersects; betweeny— andy*. (7.5)

Clearly (7.5) holds withl = 1 sincer; intersectsz.

A A s Y. A A s

t t_on ton
z

-l

N y M4+1

S So

Fig. 7.2 Left The oriented track, 1 crosses| from right to left, in contradiction of the choice gfas
highest.Right The trackr|, 1 crosses) from left to right.
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Suppose K | < L and (7.5 holds forr|, and lez=r; Nr 1. If |11 intersects#
(before or after), (7.5) follows trivially. Suppose; . 1 does notintersec¥. There are
two possibilities: either| ; crosses; from right to left, or from left to right. The first
case is easily seen to be impossible, since it contradietshbice ofy as highest.
Hence,r . ; crosses; from left to right (see Figur€.2). The part of the oriented
trackr, 1 afterzis therefore above the corresponding pantoSincer|, ; intersects
s afterz, and does not interseg?, the intersection of| | ; ands; lies betweery™
andy", and the induction step is complete.

In conclusionr, intersectss; betweeny™ andy~. Let r denote the other track
containingy. By the same reasoningjntersects| from left to right, whence it also
intersectss; betweeny™ andy~. This concludes the proof of (4), and we deduce
thatB < co.

If B=0, there is no point in the interior of eithef or its left/right sides, whence
S, 1 are adjacent betweenyy andtoy.

SupposeB > 1. We will show thatB may be reduced by one by a star—triangle
transformation acting betweep ands;, and the claim of the lemma will follow by
iteration.

SinceB < o, there exists a black point that is maximal in the partiakotd, and
we pick such a poiny = r; Nry. By the maximality ofy, the tracksq, ro, s form
a track-triangle. By applying the star—triangle transfation to this track-triangle
as in Figure5.3 the pointy is moved aboves;, and the number of black points is
decreased. This concludes the proof of Lemiia O

8 Arm exponents
8.1 Outline of proof

We recall the isoradial embeddirg /> of the homogeneous square lattice, with
associated measure denokgg; .

Proposition 8.1. Let ke {1,2,4,...}, € > 0, and | € N. There exist constants &
ci(k,g,1)>0and N = Ng(k, &,1) € N such that, for N> Ng, n> coNp, G € ¥ (¢, 1),
and any vertex u of &,

C1Po /2[A(N, )] < PGA(N, N)] < C2Po r/2[Ak(N, n)].

Part (a) of Theoren3.4 is an immediate consequence; part (b) is discussed in
Section8.6.

Sections8.2-8.5are devoted to the proof of PropositiBri. In Section8.2is pre-
sented a modified definition of the arm-events, adapted todh&ext of an isoradial
graph. This is followed by Propositiod.2, which asserts in particular the equiva-
lence of the two types of arm-events. The proof of Propasiid follows, using the
techniques of the proof of Theore®l; the proof for isoradial square lattices is in
Section8.3 and for general graphs in SectiBrd. Section8.5 contains the so-called
separation theorem, together with the proof of Proposhién

For the remainder of this section,> 0 andl € N shall remain fixed. Unless
otherwise stated, constarms> 0, Np € N depend only org, |, and on the numbek
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of arms in the event under study. We use the expressiom‘foN sufficiently large’
to mean: fom > cgN andN > Ng.

8.2 Arm-events

LetGe¥(e,l), ke {1,2,4,...}, and letshe a track and be a vertex oG, adjacent
to s. Forn > N, we define the ‘modified arm-eve@’S(N,n) as follows. For sim-
plicity of notation, we omit explicit reference twands when no ambiguity results
but in such a case we say tha{N, n) is ‘centred au’.

A certain technical assumption will be useful in Sect®8 when applying star—
triangle transformations to isoradial square latticexaRehe notatiom\” (n) from
Section4.4, and the constarty of (4.2). We shall frequently require a primal vertex
uand dual vertexi* of G® to satisfy the appropriate inclusion of the following:

Cu C AL (3c3n), 5 CAS(3c3n). (8.1)

The modified arm-even# (N, n) = A*%(N,n) are defined thus:

(i) Fork=1,As(N,n) is the event that there exist verticase A (N) andy; ¢
AS (n), both adjacent ts, on the same side sfasu and satisfying§.1), such
thatX]_ — yl

(i) For k=2, A2(N,n) is the event that there exist verticesx; € A" (N) and
y1,Y; ¢ AL (n), all adjacent tes and on the same side shsu, such that:

(a) xq1, x; andyy, y; satisfy @.1),
(b) X1 — W1 arldxj —*yi.

(iii) For k=2j > 4, A«(N,n) is the event that there exist vertices...,x; €
AS(N) andys,...,y; ¢ AS(n), all adjacent tos and on the same side f
asu, such that:

(a) eachx; andy; satisfies 8.1),
(b) % <=y andx; <4 X fori #1i'.

The following proposition contains three statements, theltof which relates
the modified arm-events to those of Sect®rAll arm-eventsA, andAy considered
here are centred at the same verexG®. The eveni (N, n) is to be interpreted in
terms of any of the tracks to whiahis adjacent.

Proposition 8.2. There exist constants & 0 such that, for n> N sufficiently large,

Pg[Ac(N,2n)] < Pg[Ac(N,n)] < ciPg[A«(N, 2n)], (8.2)
PG[A(N, n)] < Pc[A«(2N,n)] < coPc[A(N,n)], (8.3)
caP[Ax(N, )] < P[Ac(N, )] < c4Pg[Ac(N,n)]. (8.4)

By (8.4), for n > N sufficiently large, there exist constamtscg > 0 such that, if
uis adjacent to the tracksandt,

csPG A S(N,)] < Po[AL (N, )] < csPG[A(N,n)].

The proof of Propositior8.2 is deferred to SectioB.5. It relies on the so-called
separation theorem, an account of which may be found in dudios.
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8.3 Proof of PropositioB.1: Isoradial square lattices

Let G be an isoradial square lattice satisfying the boundedesnuloperty BAPe),
and letu be a vertex of5°. As usual, the horizontal tracks are labellgfl: j € Z)
and the vertical trackd; : i € Z).

As explained in Sectiod.6, G = G, g for angle-sequences = (a; : i € Z),
B =(Bj:]€Z)satisfying @.7). We labelar andf in such a way thati = v 9, whence
u is adjacent tdp andsg (here we do not requirgy o to be primal). The horizontal
track at level 0, initiallysp, may change its label through track-exchanges.éLbée
such thato and the constant sequen@®) satisfy BAR¢€), (4.7). All arm-events in
the following are centred at= vqo.

Lemma 8.3. There exist constants & 0 such that, for n> N sufficiently large,

ClPa,.f [Ak(Nv n)] S ]P)G[Ak(Na n)] S CZ]P)(X,E [Ak(Na n)]

Proof. LetN,n € N be picked (later) such tha&t andn/N are large, and writé =
[3c§n1. For 0< m< M, let G™ be the isoradial square lattice with angle-sequences

a=(0i:—4M <i < 4M) andﬁm, with

3 if —m<j<m,

~ ’ if — <j<—

Bjm: BJ-+m ?f (m--i-M)_j< m, (8.5)
Bji-m ifm<j<m+M,

3 if j <—(M+M)orj>m+M.

ThusG™ is obtained fronG by taking the horizontal trackg, —M < j < M, splitting
them with a band of heightr, and filling the rest of space with horizontal tracks
having transverse angfe By the choice of, eachG™ satisfies BARg). Moreover,
insideA$ (M), G is identical toG andGM is identical toG, ¢.

ForO<m< M, let

Up = (Zm+lo---ozm+M)O(Zf(erl)o"'ozf(vaM)L

where theZ; are given in Section.3. UnderUp, the track at levein+ M is moved
to the position directly above that at lewal— 1, and the level-(m+ M + 1) track
below the level-mtrack. We have that

Un(G™) = G™ L,

Let w° be a configuration 0iG® such thatA,"®(N,n) occurs. Sef = 1 when
k=1, andj = k/2 whenk > 2. There exist verticesy, ...,Xj, y1,...,y; and, when
k=2,x;,y;, all lying in the sef{vmo : me Z} of vertices ofG®, such that:

0 .0 0 .0
@) x <Ly andx 2 xi fori A1,
0 .0
(b) x; <2 yz, whenk = 2,
(c) d®(Vo,0,%) <N, d®(voo,Yi) >,
(d) d°(voo,%;) <N, d®(voo,Y;) > n, whenk = 2,
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() Gy € AJ (M) and, wherk = 2,C;. CAS (M).

As we applyUy_10---oUp to (G°, w?), the images of paths from eachxfy;,
andxj,y; retain their starting points.

EachAS (r) has a diamond shape. By an argument similar to that of Leffa
for0<m<M,

Ci (W™ CAS(M+2m), Ch(w™) CAJ(M+2m).

X1

Moreover, since,, (w™) andC;i(wm) do not extend to the left/right boundaries of
G™, these clusters neither break nor merge with one anotherefdre,

M M M .M

@) x <y andx 22 x fori £ 1,
M M

(b) xt Sy whenk = 2,

so thatwM e Ak(ch,cgln). (A related discussion may be found 0] Sect. 3.2].)
In conclusion, there existg > 0 such that

PG[A(N, n)] < caPgo[Ax(N,n)] by (8.9
< caPgu [Ac(caN, cgtn)].

Since the intersection of ar§™ with < (cgN, c;*n) is contained imM (M), we
have by the discussion afted.f) that there exists, > 0 with

P[Ak(N,N)] < CaPq £ [A(CaN, cg )]
< €3CaPq g [A(N, N)],

by (8.2 and 8.3, iterated. The second inequality of Lem@a&is proved.

Turning to the first inequality, leb™ be a configuration oM such tha#\, (N, n)
occurs (the arm event is defined in terms/gh and the horizontal track at level 0).
It may be seen as above thaP = Uy_10--- oUO(mM) is a configuration org?
contained irAk(ch,cgln). Furthermore,

Pg & [A(N,n)] < caPam [Ak(N,n)] < cacaPs[A(N,n)].
The proofis complete. O

Corollary 8.4. There exist constants & 0 such that, for n> N sufficiently large and
any isoradial square lattice G € ¥ (&, 1),

C1Po /2 [A(N, )] < Py g[A(N, )] < €2 r/2[Ak(N, N)]. (8.6)

Proof. If a is a constant vectdiy), (8.6) follows by LemmeB.3with & = ap+ 11/2.
For a non-constant, we apply Lemn&a3 with & = By, thus bounding the arm-

event probabilities foG, g by those forG, g,. Now, G, g, is of the type analysed

above, and the conclusion follows. O
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8.4 Proof of PropositioB.1: The general case

LetGe¥(¢,l), andlet(s; : j € Z) and(t; : i € Z) be two families of tracks forming

a square grid of3, duly oriented. Write(r; : i € Z) for the sequence of all tracks
other than thesj, indexed and oriented according to their intersectionk gt with

ro = to, and including the; in increasing order. Le; be the transverse angle gjf
andt+ a; that ofr;. Since each; intersects each;, the vectorsy = (a; @i € Z),

B = (B;j:]€Z)satisfy @.7), and henc&, g is an isoradial square lattice satisfying
BAP(¢g). Asin Lemma’.1, we may retain the labelling of tracks throughout the proof.
Let u be the vertex adjacent & andtgy, below and respectively left of these tracks.
All arm-events in the following are centred at the venteand expressed in terms of
the tracksy.

Lemma 8.5. There exist constantg &, > 0 such that, for n> N sufficiently large,
C1Pq g[A(N,N)] < PG[A(N, N)] < P g[A(N,N)].

This lemma, together with Corolla®.4, implies Propositior8.1 for arm events
centred au. By the square-grid property, any vertex is within boundestdasce of
one of the trackss; : j € Z). This allows us to extend the conclusion to arm events
centred at any vertex.

Proof. Letn € N andM = [cy4n]. By Lemma7.1, applied in two stages above and
belows, there exists a finite sequenié of star-triangle transformations such that,
in GM := R*(G), the trackss_, . .., su are adjacent betweeny andty. Moreover,
no star—triangle transformation R* involves a rhombus lying isg. The sequence
R* has an inverse sequence dend®ed Note thatGM agrees WithG, g insideBy, +
UC AL (M).

Let w be a configuration oG belonging toﬂk(N,n), and let vertices, y; be
given accordingly. Consider the image configuratidh = R™(w®) onGM. By con-
sidering the action of the transformatigt, we may see that

M M M M
@ x % yi andx; é& Xy fori # 1V,
(b) X3 <G—’w>*y{, whenk = 2.

Taken together with4.2), this implies thatw e Ak(ch,cgln). Therefore, there
existc; > 0 such that

Ps[A(N,n)] < csPs[A(N,N)] by (8.4
< CaPem[Ac(CaN, c5 )]
= CaPy g[Ak(CaN, ¢4 n)]
< c3CalPg g[A(N, n)] by (8.2 and 8.3,

and the second inequality of the lemma is proved.
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Conversely, leto™ be a configuration o™ belonging to&k(N, n). By applying
the inverse transformation, we obtain the configuration R~ (wV) onG. As above,

Pg g[A(N,N)] = Pgw [A(N, n)]

< c3Pgm [Ac(N, n)] by (8.4
< caPg[Ak(caN, c5 )]
< c3c4P[AK(N, n)] by (8.2 and @8.3).
This concludes the proof of the first inequality of the lemma. O

8.5 Proof of PropositioB.2

This section is devoted to the proof of Propositig, and is not otherwise relevant
to the rest of the paper. The two main ingredients of the pesefthe separation
theorem (Theorerfi.6) and the equivalence of metricd,.D).

8.5.1 Separation theorem

The so-called separation theorem was proved by KesteB0n(§nd elaborated in
[33)) in the context of homogeneous site percolation. The t@ois set more gen-
erally in [20, Thm 3.5], and this gives rise to the current version, The®e5, to be
used in the proof of Propositich 2. The formal statement of Theore®nt requires
some notation fromZ0,30,33] which, for completeness, is presented below.

Let G € ¥(¢,l). By Theorem3.1 (see also3.1)), P satisfies the box-crossing
property BXRd) with d = d(¢,1). Let o be a colour sequence of lendthThe event
As(N,n) requires the existence of a number of ‘arms’ crossing anlasnRoughly
speaking, the separation theorem implies that the extiesrof these arms may be
taken to be distant from one another.

We shall consider open and (dual) op@mnossings between the interior and ex-
terior boundaries of# (N, n). For clarity, we concentrate first on the behaviour of
crossings at their exterior endpoints. et (0,1). A primal (respectively, dual)-
exterior-fences a setf” of connected open (respectively, opepaths comprising the
union of:

(i) a crossing ofe7 (N,n) from its interior to its exterior boundary, with exterior
endpoint denoted ef{t ),

together with certain further paths which we describe tmdenthe assumption that
ext(l") = (n,y) is on the right side 09 B:

(i) avertical crossing of the bo, (14 ,/m)n] x [y—nn,y+nn|,
(iif) a connection between the above two crossings, coathin ext/”) + B mn.

If ext(I") is on a different side 08B, the event of condition (ii) is replaced by an

appropriately rotated and translated event. This defmigdllustrated in Figure.1
One may similarly define an-interior-fence by considering the behaviour of

the crossing near its interior endpoint. We introduce akso doncept of a primal
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Fig. 8.1 A primal n-exterior-fence™ with exterior endpoing;, and a duah-exterior-fence’.
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Fig. 8.2 The evenﬂf,‘J(N,n) with o = (1,0, 1) andn-landing-sequencé. Each crossing; is ann-fence
with exterior endpoing € nJ.

(respectively, duall-fence this is a union of an open (respectively, opecrossing
of 7 (N, n) together with further paths in the vicinities of both interand exterior
endpoints along the lines of the above definitions.

An n-landing-sequenceis a sequence of closed sub-intervalk =
(J:1=1,2,...,k) of 9By, taken in anticlockwise order, such that edchas length
n, and the minimal distance between any two intervals, anadssi any interval and
a corner oy, is greater than. 1. We shall assume that

0<k(n+2ym) <8, (8.7)

so thatn-landing-sequences exist.
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Let n,n’ satisfy 8.7), and letJ (respectively,)’) be ann-landing-sequence (re-
spectively,n’-landing-sequence). WritA‘(],—’J/(N,n) for the event that there exists a
sequence ofj-fences(l; : i =1,2,...,k) in the annulus/ (N, n), with colours pre-
scribed byo, such that, for ali, the interior (respectively, exterior) endpointipfies
in NJ (respectivelyn). These definitions are illustrated in Figuge.

We now state the separation theorem. The proof is omitted,naay be con-
structed via careful readings of the appropriate sectioh3®33].

Theorem 8.6(Separation theoremJor g > 0 and a colour sequena, there exist
constants ¢~ 0 and N € N depending only omg, o, €, and | such that: for all
n,n’ > no satisfying(8.7), all n-landing-sequences J ang-landing-sequences,J
and all N> N; and n> 2N, we have

Pg[AY” (N,n)] > cPs[As (N, N)].

8.5.2 Proof of Propositios.2

Inequalities 8.2) and @.3) follow from Theorem3.6 and the box-crossing property.
The proof, omitted here, is essentially that 88[Prop. 12], and uses the extension
of paths by judiciously positioned box-crossings. We turaréfore to the proof of
(8.4).

Consider the first inequality oB(4) (the second is easier to prove). The idea is as
follows. Suppose tha (N, n) occurs (together with some additional assumptions).
One may construct a bounded number of open or bper-crossings in order to ob-
tain Ac(N, n). These two arm-events are given in terms of annuli definediffierent
metrics — the Euclidean metric amnld, respectively — but the radii of these annuli
are comparable byi(2).

Assumen/N > 2, and let

M=cy'N, m=cqgn, (8.8)

with cg asin @.2). Letk € {1,2,4,...}, 0 = (1,0,1,0,...), and consider the corre-
sponding arm-everf (M, m). All constants in the following proof may depend on
k, £, andl but, unless otherwise specified, on nothing else. All aren&vthat fol-
low are assumed centred at the venieadjacent to a track By translation, we may
assume that is the origin of R?. In order to gain some control over the geometry
of s, we may assume, without loss of generality, that its trarsevangle3 satisfies
Belzmin.

Let n = n(k) > 0 satisfy 8.7), and letd be ann-landing sequence of length
k, entirely contained i1} x [0,1], with J; being the lowest interval. Henceforth
assumeM > Nz, whereN; is given in Theoren8.6 with no = n. By that theorem,
there existgg > 0 such that

Po[AY (M,m)] > coPg [A(M, m)] (8.9)

Let (M,vi) be the lower endpoint d1J;, and (M, w;) the upper. LeHy be the
event that, foi € {1,2,...,k}, the following crossings of colous; exist:
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(a) ahorizontal crossing ¢fwi, M] x [vi,w],

(b) a vertical crossing df-wi, —Vi] x [—W;, W],

(c) foriodd, a horizontal crossing ¢fwi,w;] x [—wi, —Vi],
(d) fori even, a horizontal crossing pfw;, wy| x [—wi, —vi].

If k > 4, we require also an opénertical crossing ofvy, W] x [—W,0]. The event
Hwm depends only on the configuration insiBg, and is illustrated in Figurg.3

Fig. 8.3 Left The evenHy for k= 4. The red paths are open, the blue paths are*ofédre thin coloured

paths are parts of the interior fencesﬁ(ifJ(M,m). Right The eventK, for k = 2, together with parts of
the exterior fences of the arm-event. The traditersects the open/operrossings just above the points
labelledx; andy;.

Let (m,vi) be the lower endpoint ainJ, and (m,w;) the upper. LeKy, be the
event that, for € {1,2,...,k}, the following crossings of colous; exist:

(a) ahorizontal crossing ¢, (Mm+w;)] x [vi, W],

(b) avertical crossing dim+ Vi), m+w] x [—(m+w;), w;],

(c) ahorizontal crossing df-(m+w;), m+w;] x [—(M+w;), —(M+ V)],

(d) if i is odd, a vertical crossing ¢f(m+w;), —(m+v;)] x [—(M+w;), m+wi],
(e) ifiis even, avertical crossing Bf (Mm+w;), —(mM+V;)] x [—(M+w; ), M+ W]

We require in addition the following:
() whenk =1, an opehcircuit in .27 (2m,3m),
(9) whenk =2, an open circuit in(2m, 3m),
(h) whenk > 2, an opehcircuit in 7 (m+ vi, M+ w).
The evenKy, depends only on the configuration insidgm,3m), and is illustrated

in Figure8.3.
Setj =1 whenk=1, andj = k/2 whenk > 2. We claim that, orHy NKmN

A;(]’J(M,m), there exist vertices,, ..., X;j, y1,...,y; and, wherk = 2, x;, y;, all adja-
cent tosand on the same side sfsu, such that:

() X € Bw, ¥i ¢ Bmand, wherk=2,X; € By, y; ¢ Bw,

(b) X < vyi andx; & x fori 17,
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(c) x; «="y; whenk =2,
(d) Cx € Bamand, wherk = 2,C;;i C Bam.

This claim holds as follows. The crossings in the definitibig (respectivelyKn)
may be regarded as extensions of the armAio]f(M,m) inside By (respectively,
outsideBpy,). Let A be the straight line with inclinatiofi € [%rr, %rr], passing through

u. Sinces corresponds to a chain of rhombi with common sides paradlél,tit
intersects\ only in the edge 06° crossingsand containingi. Therefore, the part of
sto the left of A necessarily intersects all the above extensions. Theses@ttions
provide thex;, y; and, wherk = 2,x7, y;. The remaining statements above are implied
by the definitions of the relevant events.

By (4.2, (8.1, and 8.9),
Hu N KmN A (M, m) C Ag(cgM, 5 tm).
By the extended Harris—FKG inequality &Q, Lemma 3] (see als@B, Lemma 12]),
P (Hvm NKmN A (M,m) > Pg(Hw)Ps(Km)Pa[Ar (M, m)].

The eventdHy andKy, are given in terms of crossings of boxes with aspect-ratios
independent oM andm. Therefore, there existg > 0 such that, fom andM suf-
ficiently large,Pg(Hw) > ¢1 andPg(Km) > c1. In conclusion, by §.8), there exists

¢s > 0 such that, fon/N > 2,

PG AN, N)] > Pa(Hu)Pa(Km)Pa[Ay” (M, m)]

> cicoPa[A(M, )] by (8.9
> cfeoCsPa[Ak(CaM, ¢4 tm)]
= cfcocsPalAk(N, N)] by (8.8

where the third inequality holds by iteration d&.9)—(8.3). The first inequality of
(8.4) follows. B
The second inequality is simpler. 3é¢t= cyN andm= cgln. By (4.2), Ak(cglM ,Cgm) C
A(M,m). By iteration of 8.2—(8.3), there existgs > 0 such that, fom > M suffi-
ciently large,
Pg[A(cy ™M, cam)] < Pg[A(M, m)]
< CeP[Ac(Cg ™™, cgm)].

This concludes the proof of Propositi8r.

8.6 Proof of Theorer3.4(b)

Theorem3.4(b) follows from Theoren3.4(a) and the following proposition.

Proposition 8.7. Let Ge ¢. If either p or n exists for G, them, n, andd exist for
G, and they satisfpp =2and2p =+ 1.
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Kesten R9| proved this statement for the special case of homogenember-
colation on the square lattice, using arguments that refviheon estimates from
the earlier 8. As noted in these papers, the conclusions may be extendpe-t
riodic models satisfying the box-crossing property. Thegynn fact be extended
still further, to planar percolation processg P) embedded irR? that satisfy the
following:

(a) a uniform upper bound on the lengths of both primal and edges,

(b) a (strictly positive) lower and upper bound on the dgnsftvertices ofG,

(c) P and the measur®* of the dual process have the box-crossing property,

(d) the existence of a constanit> 0 such that, fon sufficiently large and any
verticesu, v,

¢ 'P(radCy) > n) < P(radC,) > n) < cP(radCy) > n).

Conditions (a) and (b) are satisfied by any isoradial grapgh thie bounded-angles
property. By Theoren3.1 and Propositior8.1, conditions (c) and (d) are satisfied
by isoradial graphs with the bounded-angles property aadstjuare-grid property.
Proposition8.7 follows for generalG € 4.

No major changes are required in adapting the proof2&2[)], and we include
no further details here.
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