Convergence of linear barycentric rational interpolation for analytic functions

Georges Klein
(with Stefan Güttel, Oxford)

University of Fribourg (Switzerland)

georges.klein@unifr.ch
homeweb.unifr.ch/kleing/pub

Oslo, July 2, 2012
Outline

1. Linear barycentric rational interpolation
2. Polynomial interpolation of analytic functions
3. Barycentric rational interpolation of analytic functions
Introduction and notation

Linear barycentric rational interpolation

G. Klein

Convergence of LBRI for analytic functions
One-dimensional interpolation

Given:

\[a \leq x_0 < x_1 < \ldots < x_n \leq b, \quad n + 1 \text{ distinct nodes and} \]
\[f(x_0), f(x_1), \ldots, f(x_n), \quad \text{corresponding values}. \]

We study functions \(g \) from a finite-dimensional linear subspace of \((C[a, b], \| \cdot \|_\infty) \) which interpolate \(f \) between the nodes,

\[g(x_i) = f(x_i) = f_i, \quad i = 0, \ldots, n. \]
Construction presented by Floater and Hormann

- Given n, choose an integer $d \in \{0, 1, \ldots, n\}$, the “blending parameter”,
- for $i = 0, \ldots, n - d$, define $p_i(x)$, the polynomial of degree $\leq d$ interpolating $f_i, f_{i+1}, \ldots, f_{i+d}$.

The d-th interpolant of the family is a “blend” of the p_i,

$$r_n(x) = \frac{\sum_{i=0}^{n-d} \lambda_i(x) p_i(x)}{\sum_{i=0}^{n-d} \lambda_i(x)}, \quad \text{with} \quad \lambda_i(x) = \frac{(-1)^i}{(x - x_i) \ldots (x - x_{i+d})}.$$

Note that for $d = n$, r_n simplifies to p_n.
Construction presented by Floater and Hormann

- Given n, choose an integer $d \in \{0, 1, \ldots, n\}$, the “blending parameter”,
- for $i = 0, \ldots, n - d$, define $p_i(x)$, the polynomial of degree $\leq d$ interpolating $f_i, f_{i+1}, \ldots, f_{i+d}$.

The d-th interpolant of the family is a “blend” of the p_i,

$$r_n(x) = \sum_{i=0}^{n-d} \frac{\sum_{j=0}^{n-d} \lambda_i(x) p_i(x)}{\sum_{i=0}^{n-d} \lambda_i(x)}$$

with $\lambda_i(x) = \frac{(-1)^i}{(x - x_i) \ldots (x - x_{i+d})}$.

Note that for $d = n$, r_n simplifies to p_n.
Construction presented by Floater and Hormann

- Given \(n \), choose an integer \(d \in \{0, 1, \ldots, n\} \), the “blending parameter”,
- for \(i = 0, \ldots, n - d \), define \(p_i(x) \), the polynomial of degree \(\leq d \) interpolating \(f_i, f_{i+1}, \ldots, f_{i+d} \).

The \(d \)-th interpolant of the family is a “blend” of the \(p_i \),

\[
 r_n(x) = \frac{\sum_{i=0}^{n-d} \lambda_i(x)p_i(x)}{\sum_{i=0}^{n-d} \lambda_i(x)}, \quad \text{with} \quad \lambda_i(x) = \frac{(-1)^i}{(x - x_i) \cdots (x - x_{i+d})}.
\]

Note that for \(d = n \), \(r_n \) simplifies to \(p_n \).
Construction presented by Floater and Hormann

- Given \(n \), choose an integer \(d \in \{0, 1, \ldots, n\} \), the “blending parameter” ,
- for \(i = 0, \ldots, n - d \), define \(p_i(x) \), the polynomial of degree \(\leq d \) interpolating \(f_i, f_{i+1}, \ldots, f_{i+d} \).

The \(d \)-th interpolant of the family is a “blend” of the \(p_i \),

\[
 r_n(x) = \frac{\sum_{i=0}^{n-d} \lambda_i(x)p_i(x)}{\sum_{i=0}^{n-d} \lambda_i(x)}, \quad \text{with} \quad \lambda_i(x) = \frac{(-1)^i}{(x - x_i) \cdots (x - x_{i+d})}.
\]

Note that for \(d = n \), \(r_n \) simplifies to \(p_n \).
For its evaluations, we write \(r_n \) in **barycentric form**

\[
r_n(x) = \frac{\sum_{i=0}^{n-d} \lambda_i(x) p_i(x)}{\sum_{i=0}^{n-d} \lambda_i(x)} = \frac{\sum_{i=0}^{n} \frac{w_i}{x - x_i} f_i}{\sum_{i=0}^{n} \frac{w_i}{x - x_i}}.
\]

For equispaced nodes, the weights \(w_i \) oscillate in sign with absolute values

\[
1, 1, \ldots, 1, 1, \quad d = 0, \quad \text{(Berrut)}
\]

\[
\frac{1}{2}, 1, 1, \ldots, 1, 1, \frac{1}{2}, \quad d = 1, \quad \text{(Berrut)}
\]

\[
\frac{1}{4}, \frac{3}{4}, 1, 1, \ldots, 1, 1, \frac{3}{4}, \frac{1}{4}, \quad d = 2, \quad \text{(Floater–Hormann)}
\]

\[
\frac{1}{8}, \frac{4}{8}, \frac{7}{8}, 1, 1, \ldots, 1, 1, \frac{7}{8}, \frac{4}{8}, \frac{1}{8}, \quad d = 3. \quad \text{(Floater–Hormann)}
\]
Properties of Floater–Hormann interpolation

Theorem (Floater–Hormann (2007))

Let $0 \leq d \leq n$ and $f \in C^{d+2}[a, b]$, $h = \max_{0 \leq i \leq n-1} (x_{i+1} - x_i)$, then

- the rational function r_n has no poles in \mathbb{R},
- if $d \geq 1$,

$$
\|f - r_n\|_\infty = \max_{a \leq x \leq b} |f(x) - r_n(x)| \leq Kh^{d+1},
$$

- if $d = 0$,

$$
\|f - r_n\|_\infty \leq K \beta h,
$$

where β is a mesh ratio and K is a constant, independent of n.
The **Lebesgue constant** associated with linear barycentric interpolation,

\[
\Lambda_n = \max_{a \leq x \leq b} \left| \sum_{i=0}^{n} \frac{w_i}{x - x_i} \right|,
\]

is the condition number of the interpolation scheme.

Theorem (Bos–De Marchi–Hormann–K. (2012))

Let \(0 \leq d \leq n\) and the nodes \(x_i, i = 0, \ldots, n\), be equispaced. Then

\[
\frac{2^{d-2}}{d+1} \log \left(\frac{n}{d} - 1 \right) \leq \Lambda_n \leq 2^{d-1}(2 + \log n).
\]
The **Lebesgue constant** associated with linear barycentric interpolation,

\[
\Lambda_n = \max_{a \leq x \leq b} \frac{\sum_{i=0}^{n} \left| \frac{w_i}{x - x_i} \right|}{\sum_{i=0}^{n} \left| w_i \right|},
\]

is the condition number of the interpolation scheme.

Theorem (Bos–De Marchi–Hormann–K. (2012))

Let \(0 \leq d \leq n\) and the nodes \(x_i, i = 0, \ldots, n\), be **equispaced**. Then

\[
\frac{2^{d-2}}{d+1} \log \left(\frac{n}{d} - 1 \right) \leq \Lambda_n \leq 2^{d-1}(2 + \log n).
\]
Convergence/divergence of polynomial interpolation for analytic functions
Node density, node measure and logarithmic potential

Let the nodes \(x_i \) be distributed according to a node measure \(\mu \) with support \([a, b]\) and positive piecewise continuous node density

\[
\phi(x) = \frac{d\mu}{dx}(x) > 0, \quad \text{for } x \in [a, b].
\]

Associated with \(\mu \) is a logarithmic potential

\[
U^\mu(z) := - \int_a^b \log |z - x| \, d\mu(x) = - \int_a^b \phi(x) \log |z - x| \, dx.
\]
Let the nodes x_i be distributed according to a **node measure** μ with support $[a, b]$ and positive piecewise continuous **node density**

$$\phi(x) = \frac{d\mu}{dx}(x) > 0, \quad \text{for } x \in [a, b].$$

Associated with μ is a **logarithmic potential**

$$U^\mu(z) := -\int_a^b \log |z - x| \, d\mu(x) = -\int_a^b \phi(x) \log |z - x| \, dx.$$
Theorem

For a given node measure μ and the associated potential U^μ, let f be analytic inside C_s, the level line of U^μ which passes through a singularity s of f. The polynomial interpolant p_n of f then converges to f inside C_s, diverges outside and

$$\lim_{n \to \infty} |f(z) - p_n(z)|^{1/n} = \exp\left(U^\mu(s) - U^\mu(z)\right).$$
Figure: Level lines of $\exp(U^\mu(s) - \min_{-1 \leq x \leq 1} U^\mu(x))$ for polynomial interpolation with equispaced nodes (left) and Chebyshev points (right).
Convergence/divergence of linear barycentric rational interpolation for analytic functions
Variable blending parameter

Aim: We generalize the potential theory from polynomial interpolation to linear rational interpolation.

From now on, the blending parameter d is a variable nonnegative integer $d(n)$ such that

$$d(n)/n \rightarrow C, \quad n \rightarrow \infty,$$

for $C \in (0, 1]$ fixed. In practice, e.g., $d(n) = \text{round}(Cn)$.
Variable blending parameter

Aim: We generalize the potential theory from polynomial interpolation to linear rational interpolation.

From now on, the blending parameter d is a variable nonnegative integer $d(n)$ such that

$$d(n)/n \to C, \quad n \to \infty,$$

for $C \in (0, 1]$ fixed. In practice, e.g., $d(n) = \text{round}(Cn)$.
We suppose that \(j(n) \) is a sequence of indices such that \(j(n) \leq n - d(n) \) and \(x_{j(n)} \to \alpha \) for some \(\alpha \in [a, b] \).

One can show that the nodes \(x_{j(n)}, \ldots, x_{j(n)+d(n)} \) of \(p_{j(n)}(x) \), are then asymptotically contained in an interval \([\alpha, \beta(C)] \), and distributed according to the node density \(\phi(x) \), restricted and normalized to that interval, and a node measure \(\nu_\alpha \).
Two important bounds

Recall that

\[r_n(x) = \frac{\sum_{i=0}^{n-d} \lambda_i(x) p_i(x)}{\sum_{i=0}^{n-d} \lambda_i(x)}, \quad \lambda_i(x) = \frac{(-1)^i}{(x - x_i) \ldots (x - x_{i+d})}. \]

Lemma

For any \(C \in (0, 1], \ z \in \mathbb{C} \setminus [a, b] \) and \(x \in [a, b] \), we have

\[\limsup_{n \to \infty} \left| \sum_{i=0}^{n-d(n)} \lambda_i(z) \right|^{1/(n+1)} \leq \max_{\alpha} \exp(CU^{\nu}\alpha(z)) \]

and

\[\liminf_{n \to \infty} \left| \sum_{i=0}^{n-d(n)} \lambda_i(x) \right|^{1/(n+1)} \geq \max_{\alpha} \exp(CU^{\nu}\alpha(x)). \]
If f is analytic inside a simple, closed and rectifiable curve C, which is contained in a closed simply connected region around the nodes, then the interpolation error may be written as

$$f(x) - r_n(x) = \frac{1}{2\pi i} \int_C \frac{f(s)}{x-s} \cdot \frac{\sum_{i=0}^{n-d} \lambda_i(s)}{\sum_{i=0}^{n-d} \lambda_i(x)} \, ds,$$

which is a Hermite-type error formula.

We define the new “potential function”

$$V^{C,\mu}(z) := \max_{\alpha} C U^{\nu\alpha}(z),$$

and the contours

$$C_R := \left\{ z \in \mathbb{C} : \frac{\exp(V^{C,\mu}(z))}{\min_{x \in [a,b]} \exp(V^{C,\mu}(x))} = R \right\}.$$
Hermite-type error formula

If f is analytic inside a simple, closed and rectifiable curve C, which is contained in a closed simply connected region around the nodes, then the interpolation error may be written as

$$f(x) - r_n(x) = \frac{1}{2\pi i} \int_C \frac{f(s)}{x - s} \cdot \frac{\sum_{i=0}^{n-d} \lambda_i(s)}{\sum_{i=0}^{n-d} \lambda_i(x)} \, ds,$$

which is a Hermite-type error formula.

We define the new “potential function”

$$V^{C,\mu}(z) := \max_\alpha CU^{\nu_\alpha}(z),$$

and the contours

$$C_R := \left\{ z \in \mathbb{C} : \frac{\exp(V^{C,\mu}(z))}{\min_{x \in [a,b]} \exp(V^{C,\mu}(x))} = R \right\}.$$
Main convergence/divergence theorem

Theorem (Güttel–K. (2012))

Let f be a function analytic in an open neighbourhood of $[a, b]$ and let $R > 0$ be the smallest number such that f is analytic in the interior of C_R, then

$$\limsup_{n \to \infty} \|f - r_n\|_\infty^{1/n} \leq R.$$

In the case of equispaced nodes, further simplifications occur in $\sum_{i=0}^{n-d} \lambda_i(z)$ due to symmetries.
Main convergence/divergence theorem

Theorem (Güttel–K. (2012))

Let f be a function analytic in an open neighbourhood of $[a, b]$ and let $R > 0$ be the smallest number such that f is analytic in the interior of C_R, then

$$\limsup_{n \to \infty} \frac{\|f - r_n\|}{n^{1/n}} \leq R.$$

In the case of equispaced nodes, further simplifications occur in $\sum_{i=0}^{n-d} \lambda_i(z)$ due to symmetries.
Effects of the symmetry in $\sum \lambda_i$

Figure: Levels of $|\sum_{i=0}^{n-d} \lambda_i(z)|^{1/(n+1)}$ with $d = 20$ for $n = 100$ equispaced nodes (left) and perturbed equispaced nodes (right) on a log_{10} scale.
Convergence/divergence behaviour

Figure: Level lines of convergence for barycentric rational interpolation for $C = 0.2$ with equispaced nodes (left) and (right) relative error curves for the interpolation of $1/(x - 0.3i)$ with both node sequences, asymptotic relative error bound and upper bound on $\epsilon \cdot \Lambda_n$.
The choice of C and d

The numerically observed error, which depends on n and C, is a superposition of exponential convergence or divergence of the interpolant in exact arithmetic (e.a.) and the amplification of rounding errors, i.e., in equispaced nodes,

$$\text{observed error}(C, n) \approx \text{interpolation error in e.a.} + \text{imprecision} \times \text{condition number}$$

$$\approx DR^n + \varepsilon \|f\|_{\infty} \Lambda_n$$

$$=: \text{predicted error}(C, n).$$

Aim: given n and the closest singularity s of f, determine $C \in (0, 1]$ such that the predicted error is minimal.
The choice of C and d

The numerically observed error, which depends on n and C, is a superposition of exponential convergence or divergence of the interpolant in exact arithmetic (e.a.) and the amplification of rounding errors, i.e., in equispaced nodes,

\[\text{observed error}(C, n) \approx \text{interpolation error in e.a.} + \text{imprecision} \times \text{condition number} \]
\[\approx DR^n + \varepsilon s \| f \|_{\infty} \Lambda_n \]
\[=: \text{predicted error}(C, n). \]

Aim: given n and the closest singularity s of f, determine $C \in (0, 1]$ such that the predicted error is minimal.
The choice of C and d

The numerically observed error, which depends on n and C, is a superposition of exponential convergence or divergence of the interpolant in exact arithmetic (e.a.) and the amplification of rounding errors, i.e., in equispaced nodes,

observed error(C, n)
\approx interpolation error in e.a. + imprecision \times condition number
$\lesssim DR^n + \epsilon_s \| f \|_\infty \Lambda_n$
$=:$ predicted error(C, n).

Aim: given n and the closest singularity s of f, determine $C \in (0, 1]$ such that the predicted error is minimal.
\[\log(1.2 - x)(x + 2)^2 \text{ in } [-1, 1] \]

\[\log(1.2 - x)(x + 2)^2 \text{ in } [-1, 1] \]

Figure: Relative errors for \(f(x) = \log(1.2 - x)(x + 2)^2 \) with \(2 \leq n \leq 250 \) equispaced nodes in \([-1, 1]\) with \(d = \text{round}(Cn) \), asymptotic convergence rates and nearly optimal values of \(C \) and \(d \).
\[\log(1.2 - x)(x + 2)^2 \ \text{in} \ [-1, 1] \]

Figure: Relative errors for \(f(x) = \log(1.2 - x)(x + 2)^2 \) with \(2 \leq n \leq 250 \) equispaced nodes in \([-1, 1]\) with \(d = \text{round}(Cn) \), asymptotic convergence rates and nearly optimal values of \(C \) and \(d \).
arctan(\(\pi x\)) in \([-1, 1]\)

Figure: Relative errors for \(f(x) = \arctan(\pi x)\) with \(2 \leq n \leq 250\) equispaced nodes in \([-1, 1]\) with \(d = \text{round}(Cn)\) and nearly optimal values of \(C\) and \(d\) (\(s = \pm i/\pi\)), and asymptotic convergence rates.
Figure: Relative errors for \(f(x) = \Gamma(x + 1.1) \) with \(2 \leq n \leq 250 \) equispaced nodes in \([-1, 1]\) with \(d = \text{round}(Cn) \) and nearly optimal values of \(C \) and \(d \) (\(s = -1.1 \)), and asymptotic convergence rates.
Figure: Relative errors for \(f(x) = \sin(x) \) with \(2 \leq n \leq 1000 \) equispaced nodes in \([-5, 5]\) with \(d = \text{round}(Cn) \) and nearly optimal values of \(C \) and \(d \) (taking \(s = 10 \)), and asymptotic convergence rates.
Thank you!