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Chapter 1

Introduction

The upper half-space Hd = {x = (x1, · · · , xd) ∈ Rd |xd > 0} with the metric
|dx|/xd is a model of hyperbolic d-space, so called the upper half-space model.
In the upper half-space model Hd, a hyperplane H is defined to be a Euclidean
hemisphere or half-plane orthogonal to Ed−1 = {x ∈ Rd|xd = 0}. Every hyper-
plane H subdivide Hd into two closed components H+ and H− bounded by H,
then H± is called a closed half-space bounded by H. According to the position
of two hyperplanes H1 and H2, we define the dihedral angle between the closed
half-spaces H−

1 and H−
2 as follows ; (i) if H1 and H2 are intersecting in Hd, let us

choose a point x ∈ H1∩H2 and consider the outer normal vector u1 and u2 of H
−
1

and H−
2 at x. Then the dihedral angle between H−

1 and H−
2 is defined as the real

number θ ∈ [0, π) satisfying cos θ = −(u1, u2) where (·, ·) denotes the Euclidean
inner product on Rd. (ii) if H1 and H2 meet at a point on the boundary ∂Hd,
then we define the dihedral angle between H−

1 and H−
2 to be equal to zero.

We call P ⊂ Hd a hyperbolic d-polytope if P can be written as the intersection
of finitely many closed half-spaces and has a non-empty interior. In particular,
a hyperbolic 2-(resp. 3-)polytopes are called a hyperbolic polygon (resp. poly-
hedron). A hyperbolic d-polytope P ⊂ Hd of finite volume is called a Coxeter
polytope if all of its dihedral angles are of the form π

k
for an integer k ≥ 2 or

k = ∞ i.e., the intersection of the respective facets is a point on the boundary
∂Hd. The set S of reflections with respect to the facets of P generates a discrete
group Γ < Isom(Hd), called a hyperbolic Coxeter group, and the pair (Γ, S) is
called the Coxeter system associated with P . Then P becomes a fundamental
domain for Γ. If P is compact (resp. non-compact), the hyperbolic Coxeter group
Γ is called cocompact (resp. cofinite). The growth series fS(t) of a Coxeter system
(Γ, S) is the formal power series

∑∞
l=0 alt

l where al is the number of elements of
Γ whose word length with respect to S is equal to l. Then τΓ := lim supl→∞

l
√
al

is called the growth rate of the Coxeter system (Γ, S). By means of the Cauchy-
Hadamard theorem, τΓ is equal to the reciprocal of the radius of convergence R of
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fS(t). The growth series and the growth rate of a hyperbolic Coxeter polyhedron
P is defined to be the growth series and the growth rate of the Coxeter system
(Γ, S) associated with P , respectively.

It is known that the growth rate of a hyperbolic Coxeter polyhedron is a
real algebraic integer bigger than 1 [8]. Certain classes of real algebraic integers
show up in the study of the growth rates of hyperbolic Coxeter polytopes: Salem
numbers, Pisot numbers, and Perron numbers. We recall the definitions of them;
a real algebraic integer τ > 1 is called (i) a Salem number if τ−1 is an algebraic
conjugate of τ and all other algebraic conjugates lie on the unit circle. (ii) a Pisot
number if all its algebraic conjugates are less than 1 in absolute value. (iii) a
Perron number if all other algebraic conjugates are less than τ in absolute value.
By definition, Salem numbers and Pisot numbers are Perron numbers.

For compact hyperbolic Coxeter polygons and polyhedra, Cannon-Wagreich
and Parry showed that their growth rates are Salem numbers [2], [16]. Floyd
also showed that the growth rates of non-compact hyperbolic Coxeter polygons
are Pisot numbers [6]. In the case of non-compact hyperbolic Coxeter simplices
and pyramids, Komori and Umemoto showed that their growth rates are Perron
numbers [12], [13]. Kellerhals-Nonaka and Komori-Yukita proved that the growth
rates of ideal hyperbolic Coxeter polyhedra are Perron numbers, independently
[14], [15]. By results of [10] and [22], the growth rates of certain families of compact
hyperbolic Coxeter 4-polytopes are Perron numbers. In general, Kellerhals and
Perren conjectured that the growth rates of hyperbolic Coxeter polytopes are
Perron numbers [10]. Moreover, they conjectured about the distribution of poles
of the growth functions of compact hyperbolic Coxeter d-polytopes as follows; (i)
for d is odd number, the growth function has a pole at 1 and precisely d−1

2
poles

in an open unit interval (0, 1). (ii) for d is even number, the growth function has
precisely d

2
poles in the unit interval. (iii) in both cases, there exists a real pole

t ∈ (0, 1) such that any non-real pole z is contained in the annulus {t < |z| < t−1}.
In this dissertation, we study the arithmetic property of growth rates of non-

compact hyperbolic Coxeter polyhedra and 4-polytopes, and prove the following
Theorems:

Theorem A. [24], [25] The growth rates of non-compact hyperbolic Coxeter poly-
hedra are Perron numbers.

By combining with the results of Parry, Theorem A can be summarized in
Theorem B.

Theorem B. The growth rates of hyperbolic Coxeter polyhedra are Perron num-
bers.

In the study of the growth rates of non-compact hyperbolic Coxeter 4-polytopes,
we provide the first example of an infinite sequence of non-compact hyperbolic
Coxeter 4-polytopes whose growth rates are Perron numbers.

5



Theorem C. [26] Let P1 be an ideal hyperbolic Coxeter 4-pyramid over a 3-
dimensional cube. Then, (i) We can glue n copies of P1 along their isometric
facets and construct ideal hyperbolic Coxeter 4-polytope Pn with n+ 6 facets. (ii)
For any n ≥ 1, the growth rate of Pn is Perron number.

This dissertation is organized as follows. In Chapter 2, we provide the nec-
essary background and review useful formulas which allow us to calculate the
growth function of a hyperbolic Coxeter polytope. In Chapter 3, we establish
the growth function of a non-compact hyperbolic Coxeter polyhedron and prove
Theorem A. The proof of Theorem A is subdivided into two parts. In Section 3.1,
we consider non-compact hyperbolic Coxeter polyhedra whose dihedral angles are
of the form π

k
for k = 2, 3, 4, 5, 6. In Section 3.2, we calculate the growth functions

of non-compact hyperbolic Coxeter polyhedra having at least one dihedral angle
of the form π

k
for some integer k ≥ 7. In Chapter 4, we construct an infinite

sequence of ideal hyperbolic Coxeter 4-polytopes and prove Theorem C.
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Chapter 2

Preliminaries

In this chapter, we introduce the relevant notations and review some useful iden-
tities in order to calculate the growth functions of hyperbolic Coxeter polytopes.

2.1 Coxeter groups, growth series and growth

rate

Definition 2.1.1. [9, Coxeter system, Coxeter graph, growth rate]
(i) A Coxeter system (Γ, S) consists of a group Γ and a finite set of generators

S ⊂ Γ, S = {si}Ni=1, with relations (sisj)
mij for each i, j , where mii = 1 and

mij ≥ 2 or mij = ∞ for i ̸= j. We call Γ a Coxeter group. For any subset T ⊂ S,
we define ΓT to be the subgroup of Γ generated by {si}t∈T . Then ΓT is called the
Coxeter subgroup of Γ generated by T .

(ii) The Coxeter graph of (Γ, S) is constructed as follows:
Its vertex set is S. If mij ≥ 3 (si ̸= sj ∈ S), we join the pair of vertices by an
edge and label it with mij.

(iii) The growth series fS(t) of a Coxeter system (Γ, S) is the formal power
series

∑∞
l=0 alt

l where al is the number of elements of Γ whose word length with
respect to S is equal to l. Then τ = lim supl→∞

l
√
al is called the growth rate of

(Γ, S).

A Coxeter system (Γ, S) is irreducible if the Coxeter graph of (Γ, S) is con-
nected. Irreducible finite Coxeter systems are completely classified by Coxeter
[4].

Theorem 2.1.1. [4] Let (Γ, S) be a finite Coxeter system. Then, the Coxeter
graph of (Γ, S) is isomorphic to one of Table 2.1.

We recall Solomon’s formula and Steinberg’s formula which are very useful for
calculating growth series.
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An

Bn

Dn

E6

E7

E8

F4

H3

H4

I2(n)

Table 2.1: The Coxeter graphs of irreducible finite Coxeter systems

Theorem 2.1.2. [19, Solomon’s formula] The growth series fS(t) of an irreducible
finite Coxeter system (Γ, S) can be written as fS(t) = [m1+1;m2+1; · · · ;mp+1]
where [n] = 1+ t+ · · ·+ tn−1, [m;n] = [m][n],etc., and where {m1,m2, · · · ,mp} is
the set of exponents of (Γ, S).

The exponents of irreducible finite Coxeter groups are shown in Table 2.2 (see
[9] for details).

Theorem 2.1.3. [20, Steinberg’s formula] Let (Γ, S) be a Coxeter system. Denote
by ΓT the Coxeter subgroup of Γ generated by the subset T ⊆ S, and denote by
fT (t) the growth series of the Coxeter system (ΓT , T ). Set F = {T ⊆ S : ΓT is
finite }. Then

1

fS(t−1)
=

∑
T∈F

(−1)|T |

fT (t)
.

By Theorem 2.1.2 and Theorem 2.1.3, the growth series of (Γ, S) is represented

by a rational function p(t)
q(t)

(p, q ∈ Z[t]). The rational function p(t)
q(t)

is called the
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Table 2.2: Exponents
Coxeter group Exponents growth series

An 1, 2, · · · , n [2; 3; · · · ;n+ 1]
Bn 1, 3, · · · , 2n− 1 [2; 4; · · · ; 2n]
Dn 1, 3, · · · , 2n− 3, n− 1 [2; 4; · · · ; 2n− 2;n]
E6 1,4,5,7,8,11 [2; 5; 6; 8; 9; 12]
E7 1,5,7,9,11,13,17 [2; 6; 8; 10; 12; 14; 18]
E8 1,7,11,13,17,19,23,29 [2; 8; 12; 14; 18; 20; 24; 30]
F4 1,5,7,11 [2; 6; 8; 12]
H3 1,5,9 [2; 6; 10]
H4 1,11,19,29 [2; 12; 20; 30]
I2(n) 1, n− 1 [2;n]

growth function of (Γ, S). Since the coefficients of the growth series are positive,
fS(t) diverges at t = R, where R is the radius convergence of the series. Therefore,
the positive real root of q(t) which has the smallest absolute value among all the
roots of q(t) is equal to R.

2.2 Hyperbolic Coxeter polytopes

In this dissertation, we are interested in Coxeter groups which act discontinuously
on the hyperbolic space Hd.

Definition 2.2.1. [18, Upper half-space model of hyperbolic d-space] The upper

half-space Hd =
{
(x1, · · · , xd) ∈ Rd

∣∣ xd > 0
}
equipped with the metric |dx|

xd
is a

model of the d-dimensional hyperbolic geometry, so called the upper half-space
model. The boundary ∂Hd of Hd in the one-point compactification Rd ∪ {∞} of
the Euclidean d-space Rd is called the boundary at infinity. We denote the closure
of a subset A ⊂ Rd ∪ {∞} by Ā.

By identifying Rd−1 with Rd−1 × {0} in Rd, the boundary at infinity ∂Hd is
equal to Rd−1 ∪{∞}. A subset H ⊂ Hd is called a hyperplane of Hd if and only if
it is a Euclidean hemisphere or a half-plane orthogonal to Rd−1. Every hyperplane
H subdivide Hd into two closed components H+ and H− bounded by H, then H±

is called a closed half-space bounded by H.

Definition 2.2.2. [23, Hyperbolic d-polytope] A subset P ⊂ Hd
is called a hy-

perbolic d-polytope if P can be written as the intersection of finitely many closed
half-spaces: P = ∩H−

i , where H
−
i is the closed domain of Hd bounded by a hy-

perplane Hi. We also assume that none of the closed half-spaces H−
i contains
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the intersection of all the others. A hyperbolic 2- (resp. 3-)polytope is called a
hyperbolic polygon (resp. hyperbolic polyhedron).

Suppose that Hi ∩Hj ̸= ∅ in Hd. Then we define the dihedral angle between
H−
i and H−

j as follows: let us choose a point x ∈ Hi ∩Hj and consider the outer
normal vectors ui and uj of H

−
i and H−

j at x. Then the dihedral angle between
H−
i and H−

j is defined as the real number θ ∈ [0, π) satisfying cos θ = −(ui, uj)

where (·, ·) denotes the Euclidean inner product on Rd at x.

If Hi ∩Hj ∈ Hd
is a point at the boundary ∂Hd of Hd, we define the dihedral

angle between H−
i and H−

j to be equal to zero.

Theorem 2.2.1. [18, Theorem 6.3.1 and Theorem 6.3.4] Let P = ∩Ni=1H
−
i be a

hyperbolic d-polytope. Set Fi = P ∩Hi for i = 1, · · · , N . Then, Fi is a hyperbolic
(d− 1)-polytope.

We call F1, · · · , FN the facets of P .

Definition 2.2.3. [18, Faces of hyperbolic polytope] The (d − k)-faces of P for
k = 1, · · · , d are defined inductively as follows: The (d− 1)-faces are defined to be
the facets of P . By Theorem 2.2.1, (d− 1)-faces are hyperbolic (d− 1)-polytopes.
Suppose that all the (d − k)-faces of P have been defined and that are hyperbolic
(d− k)-polytopes. Then, the (d− k − 1)-faces of P are defined to be the facets of
the (d− k)-faces of P . We call a 0- (resp. 1-)face vertex (resp. edge).

A horosphere Σ based at a point at infinity u is defined to be a (d − 1)-
dimensional Euclidean sphere in Hd tangent to Rd−1 at u (resp. a Euclidean
hyperplane parallel to Rd−1) if u is situated on Rd−1 (resp. u = ∞). If we restrict
the hyperbolic metric to the horosphere Σ, it makes a model of (d−1)-dimensional
Euclidean geometry.

Definition 2.2.4. [23, Vertex at infinity] A point at infinity p ∈ ∂Hd is called a
vertex at infinity of P if p ∈ P̄ and there exists a horosphere Σ based at p such
that the intersection of Σ and P is bounded subset of Σ.

A hyperbolic polytope is called ideal if all of its vertices are vertices at infinity.

Definition 2.2.5. [23, Hyperbolic Coxeter polytope] A hyperbolic d-polytope P ⊂
Hd of finite volume is called a hyperbolic Coxeter d-polytope if all of its dihedral
angles have the form π

k
for an integer k ≥ 2 or k = ∞ if the intersection of the

respective bounding hyperplanes is a point on the boundary ∂Hd.

Notice that a hyperbolic polytope in Hd is of finite volume if and only if it is

the convex hull of finitely many points in Hd
.
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Theorem 2.2.2 (Theorem 7.1.2 and Theorem 7.1.4 [18]). Let P be a hyperbolic
Coxeter d-polytope and {Fi}Ni=1 be the set of facets of P . Denote the reflection in
the facet Fi by si. Then, (i) the group Γ generated by the reflections in the facets
of P is a discrete subgroup of Isom(Hd), and (ii)the pair (Γ, S), S = {si}Ni=1, is a
Coxeter system, with relations (sisj)

kij for each pair of intersecting two facets Fi
and Fj, where

π
kij

is the dihedral angle between Fi and Fj.

We call Γ (resp. (Γ, S)) the d-dimensional hyperbolic Coxeter group (resp.
system) associated with P . Moreover, if P is compact (resp. non-compact), Γ is
called cocompact (resp. cofinite). The growth series, growth function and growth
rate of the hyperbolic Coxeter system (Γ, S) associated with P is called the growth
series, growth function and growth rate of P , respectively. We denote the growth
function and the growth rate of P by fP (t) and τP .

Definition 2.2.6. [23, Gram matrix, Coxeter scheme] Let P = ∩Ni=1H
−
i be a

hyperbolic Coxeter polytope. For every pair of facets Fi and Fj, define

cij =


1 if i = j

− cos π
kij

if they intersect at the dihedral angle π
kij

−1 if its intersection is a point on ∂Hd

− cosh d(Fi, Fj) if they do not intersect

where, d(Fi, Fj) is the hyperbolic distance between them. The N × N symmetric
matrix M(P ) = (cij) is called the Gram matrix of P . The Coxeter scheme X(P )
of P is defined as follows; Its vertex set is {F1, · · · , FN}. If the dihedral angle
π
kij

between two facets Fi and Fj is less than
π
2
, we join the pair of vertices by an

edge. For each edge, we label it with kij if kij ≥ 4. Two vertices are joined by a
dotted edge labeled with the hyperbolic distance between corresponding hyperplanes
if they do not intersect.

Note that the Coxeter graph of the hyperbolic Coxeter system associated with
P can be obtained by changing dotted edges of the Coxeter scheme into edges
labeled with ∞.

A subscheme of a Coxeter scheme X(P ) is called elliptic (resp. parabolic) if
the corresponding submatrix of the Gram matrix M(P ) is positive definite (resp.
positive semi-definite and its rank equals d − 1). It is known that elliptic (resp.
parabolic) subschemes correspond to finite (resp. affine) Coxeter systems.

Theorem 2.2.3. [23, Theorem 2.2, p.109 and Theorem 2.5, p.110] Let P be a
hyperbolic Coxeter d-polytope and f be a (d− k)-face of P . (i) Suppose that f is
not a vertex at infinity and the k facets F1, · · · , Fk are adjacent to f . Then, the
subscheme of X(P ) spanned by the vertices corresponding to F1, · · · , Fk is elliptic.
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Figure 2.1: hyperbolic Coxeter pyramid and its Coxeter scheme

(ii) If f is a vertex at infinity of P , then the corresponding subscheme is parabolic.
(iii) For any elliptic (resp. parabolic) subscheme of X(P ), the intersection of the
facets corresponding to the vertices of the subscheme is a face (resp. vertex at
infinity) of P .

Combining Theorem 2.1.2, Theorem 2.1.3, and Theorem 2.2.3, we can compute
the growth function of a hyperbolic Coxeter polytope in terms of its combinatorial
structure. For example, we calculate the growth function of the hyperbolic Coxeter
pyramid P depicted in Fig 2.1. Since P is ideal, vertices do not contribute to the
growth function of P . By Theorem 2.2.3, the 5 facets of P are correspond to
the finite Coxeter system A1, and the 4 edges whose dihedral angles are π

2
(resp.

π
4
) correspond to the finite Coxeter system A1 × A1 (resp. I2(4)). Therefore,

by Theorem 2.1.2 and Theorem 2.1.3, the growth function fP (t) of P can be
calculated as

1

fP (t−1)
= 1− 5

[2]
+

4

[2, 2]
+

4

[2, 4]
.

Parry calculated the growth functions of compact hyperbolic Coxeter polygons
and polyhedra, and by expressing the growth functions in suitable forms, clarified
the arithmetic nature of the growth rates.

Theorem 2.2.4. [16] The growth rates of compact hyperbolic Coxeter polygons
and polyhedra are Salem numbers, where a real algebraic integer τ > 1 is called a
Salem number if τ−1 is an algebraic conjugate of τ and all other algebraic conju-
gates lie on the unit circle (see Fig 2.2).

Floyd considered the growth rates of non-compact hyperbolic Coxeter poly-
gons.

Theorem 2.2.5. [6] The growth rates of non-compact hyperbolic Coxeter polygons
are Pisot numbers, where a real algebraic integer τ > 1 is called a Pisot number
if all its algebraic conjugate are less than 1 in absolute value (see Fig 2.3).
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Figure 2.2: Salem num-
ber

�1 1 2 3

�1.0

�0.5

0.5

1.0

Figure 2.3: Pisot num-
ber

Figure 2.4: Perron num-
ber

For the case of non-compact hyperbolic Coxeter polyhedra, Komori and Umem-
oto studied the growth rates of non-compact hyperbolic Coxeter tetrahedra.

Theorem 2.2.6. [12] The growth rates of non-compact hyperbolic Coxeter tetra-
hedra are Perron numbers, where a real algebraic integer τ > 1 is called a Perron
number if all its algebraic conjugates are less than τ in absolute value (see Fig
2.4).

We would like to comment here that Kellerhals and Perren conjectured that
the growth rates of hyperbolic Coxeter polytopes are Perron numbers [10].

2.3 Andreev’s Theorem

In this section, we restrict our attention to the 3-dimensional case and review the
complete classification of hyperbolic polyhedra by Andreev.

Definition 2.3.1. [1, abstract polyhedron] An abstract polyhedron C is a simple
graph on the 2-dimensional sphere S2 all of its vertices are 3-valent or 4-valent.
If each edge e of an abstract polyhedron C is labeled with 0 < αe ≤ π

2
, C is called

an abstract acute-angled polyhedron.

Theorem 2.3.1. [1, Andreev’s theorem] Let C be an abstract acute-angled polyhe-
dron not a tetrahedron. There is a hyperbolic polyhedron P of finite volume in H3

whose 1-skeleton provides C if and only if the following conditions are satisfied:
(a) if three distinct edges of C meet at a vertex, then the sum of the labels is

greater than or equal to π;
(b) if four distinct edges of C meet at a vertex, then all the labels equal π

2

(c) if three faces of C are pairwise adjacent but do not meet at a vertex, then
the sum of the labels on the edges formed by adjacent faces is less than π;

(d) if four faces of C are cyclically adjacent but do not meet at a vertex, then
the sum of the labels on the edges formed by adjacent faces is less than 2π;

(e) if a face Fi is adjacent to faces Fj and Fk, while Fj and Fk are not adjacent
but have a common vertex which Fi does not share, then at least one of the labels
on the edges formed by Fi with Fj or with Fk is different from π

2
.
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(f) if C is a triangular prism, then the sum of the labels on edges contained in
one of the triangular bases is strictly less than 3π.

Figure 2.5: An exapmle of Andreev’s theorem; the labels 2 and 4 in the left hand-
side figure mean that the labels on edges are π

2
and π

4
. The red coloured facet in

the left hand-side figure is realized by the red coloured hemisphere in the right
hand-side figure.

Suppose that P is a Coxeter polyhedron in H3, and let v be a vertex of P .
Let F1, · · · , Fn be adjacent facets of P incident to v and π

ki
be the dihedral angle

between Fi and Fi+1. By Theorem 2.3.1, the number of facets of P incident to v
is at most 4 and k1, · · · , kn satisfy the following conditions.

k1 = k2 = k3 = k4 = 2 if n = 4. (2.1)

1

k1
+

1

k2
+

1

k3
≥ 1 if n = 3. (2.2)

Note that a vertex v of P belongs to ∂H3 if and only if k1 = k2 = k3 = k4 = 2 or
1

k1
+

1

k2
+

1

k3
= 1, and we call such a vertex a cusp, for short.

We shall use the following notation and terminology in this section and Chap-
ter 3:
• If a vertex v of P satisfies the identity (2.1), we call v a cusp of type (2, 2, 2, 2).
• If a vertex v of P satisfies the inequality (2.2), we call v a vertex of type
(k1, k2, k3).
• v2,2,2,2 denotes the number of cusps of type (2, 2, 2, 2).
• vk1,k2,k3 denotes the number of vertices of type (k1, k2, k3).
• V,E, F denotes the number of vertices, edges and facets of P .
• If an edge e of P has dihedral angle π

k
, we call it π

k
-edge.
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• ek denotes the number of π
k
-edges.

Lemma 2.3.1. Let P ⊂ H3
be a non-compact hyperbolic Coxeter polyhedron.

Then the following identities and inequality hold.

V − E + F = 2. (2.3)

V = v2,2,2,2 +
∑
n≥2

v2,2,n + v2,3,3 + v2,3,4 + v2,3,5 + v2,3,6 + v2,4,4 + v3,3,3. (2.4)

E =
∑
n≥2

en. (2.5)

2e2 = 4v2,2,2,2 + 3v2,2,2 + 2
∑
n≥3

v2,2,n + v2,3,3 + v2,3,4 + v2,3,5 + v2,3,6 + v2,4,4(2.6)

2e3 = 3v3,3,3 + 2v2,3,3 + v2,2,3 + v2,3,4 + v2,3,5 + v2,3,6. (2.7)

2e4 = 2v2,4,4 + v2,2,4 + v2,3,4. (2.8)

2e5 = v2,2,5 + v2,3,5. (2.9)

2e6 = v2,2,6 + v2,3,6. (2.10)

2en = v2,2,n for n ≥ 7. (2.11)

v2,2,2,2 + v2,3,6 + v2,4,4 + v3,3,3 ≥ 1. (2.12)

Proof. The identity (2.3) is Euler’s polyhedral formula. By the definitions of V,E
and en, the identities (2.4) and (2.5) hold for P . Non-compactness of P implies
the inequality (2.12). The other identities are obtained by counting the number of
edges which is adjacent to each vertex. For example, the identity (2.8) is obtained
as follows. Any π

4
-edge has strictly two vertices of type (2, 2, 4) or (2, 3, 4) or

(2, 4, 4) (see Fig 2.6). On the other hand, any vertex of type (2, 2, 4) or (2, 3, 4)
has one π

4
-edge and any vertex of type (2, 4, 4) has two π

4
-edges. Hence, we obtain

the identity (2.8). □
We use these identities and the last inequality to express growth functions of

the hyperbolic Coxeter polyhedra under consideration.

Theorem 2.3.2. Let σ be the sum of the π
k
-edges for k ≥ 7 of a non-compact

hyperbolic Coxeter polyhedron P , that is,

σ =
∑
k≥7

ek

Then we obtain the following inequality.

σ ≤ F − 3
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4

4

4 4 43

2
type   (2,2,4) type   (2,3,4) type   (2,4,4)

2

2 2

vertex  of  type  (2,2,4)  or  (2,3,4)  or  (2,4,4)

π
４ - edge

Figure 2.6:

Moreover, if the equality σ = F − 3 holds, then P has a unique cusp of type
(2, 2, 2, 2), and all other vertices of P are of type (2, 2, k) for k ≥ 7.

In order to prove Theorem 2.3.2, we use the following deformation argument
for Coxeter polyhedra studied by Kolpakov in [11]. We present it in a modified
form which is more suitable for further account.

Theorem 2.3.3. [11, Proposition 1 and 2] (i) Suppose that a non-compact hy-
perbolic Coxeter polyhedron P ⊂ H3 has some π

k
-edges for k ≥ 7. Then all of

the π
k
-edges can be contracted to cusps of type (2, 2, 2, 2). The hyperbolic Coxeter

polyhedron P̂ which is obtained from P by contracting all π
k
-edges for k ≥ 7 of P

is called the pinched Coxeter polyhedron of P .
(ii) If a hyperbolic Coxeter polyhedron P has some cusps of type (2, 2, 2, 2), then

there exists a unique Coxeter polyhedron which is obtained from P by opening one
cusp of type (2, 2, 2, 2). (see Fig 2.7)

⇆
m

２

２

２

２
２

２
２ ２

Contraction

Opening cusp

P P^

Figure 2.7: Deformation argument

Proof of Theorem 2.3.2. Suppose that P is a non-compact hyperbolic Coxeter
polyhedron and the sum of the numbers of the π

k
-edges for k ≥ 7 of P is σ.

In this proof, P̂ denotes the pinched Coxeter polyhedron obtained from P and
V̂ , Ê, F̂ , v̂2,2,2,2, v̂k1,k2,k3 and êk denote respectively the number of vertices, edges,

facets, cusps of type (2, 2, 2, 2), vertices of type (k1, k2, k3) and π
k
-edges of P̂ .
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By substituting the identities (2.4)-(2.11) for the identity (2.3), we can see the
following identity for P̂ .

F̂ − 2 = v̂2,2,2,2 +
1

2
(the number of vertices of P̂ with valency 3). (2.13)

Even if we contract the all π
k
-edges for k ≥ 7 of P , the number of facets of P̂ is

equal to the number of faces of P , so that we obtain the following relations for P̂ .

F = F̂ . (2.14)

v̂2,2,2,2 = v2,2,2,2 + σ. (2.15)

Then, by substituting the identities (2.14) and (2.15) for (2.13), we see that

F − 2 = v2,2,2,2 + σ +
1

2
(the number of vertices of P̂ with valency 3).(2.16)

The identity (2.16) implies that

σ ≤ F − 2.

Moreover, if P satisfies the identity σ = F − 2, then all of the vertices of P̂ are
cusps of type (2, 2, 2, 2) obtained from P by contracting all π

k
-edges for k ≥ 7 of

P . This observation means that all of the vertices of P are of type (2, 2, k) for
k ≥ 7. Therefore, P has no cusps. This fact contradicts the assumption that P
is non-compact. Thus, we obtain the following inequality.

σ ≤ F − 3.

Suppose that σ = F − 3. Then, the identity (2.16) is rewritten as

F − 2 = v2,2,2,2 + F − 3

+
1

2
(the number of vertices of P̂ with valency 3) (2.17)

Since any π
k
-edge for k ≥ 3 is adjacent to two vertices with valency 3, if P has

at least one cusp of type (2, 3, 6) or (2, 4, 4) or (3, 3, 3), then P has at least three
vertices with valency 3.

Therefore, by the identity (2.17), we obtain the following inequality.

F − 2 ≥ v2,2,2,2 + F − 3 +
3

2
= v2,2,2,2 + F − 3

2
.

Hence if P has at least one cusp of type (2, 3, 6) or (2, 4, 4) or (3, 3, 3), we arrive
at a contradiction. This implies that if σ = F − 3, P has a unique cusp of type
(2, 2, 2, 2), and all other vertices of P are of type (2, 2, k) for k ≥ 7. □
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2.4 Computing the root distribution of a real

polynomial

In this Section, we review Sturm’s theorem and Kronecker’s theorem. Sturm’s
theorem allows one to determine the distribution of the real roots of a real poly-
nomial and Kronecker’s theorem tells us how to count roots of a real polynomial
contained in a closed disk of radius r centered at the origin 0 in the complex plane
C. For references, see [3], [11] and [17].

2.4.1 Sturm’s theorem

Let f and g be real polynomials. We may assume that deg f ≥ deg g. By the
Euclidean algorithm, we can define polynomials f2, · · · , fr as follows:

f = q1g − f2, deg g > deg f2.

g = q2f2 − f3, deg f2 > deg f3.

f2 = q3f3 − f4, deg f3 > deg f4.

...

fr−2 = qr−1fr−1 − fr, deg fr−1 > deg fr.

fr−1 = qrfr.

Then, the finite sequence f0 := f, f1 := g, f2, · · · , fr of real polynomials is called
the Sturm sequence S(f, g) of f and g. Note that fr is the greatest common
divisor of polynomials f and g. For any t0 ∈ R, the number of sign changes in
S(f, g) at t0 is denoted by w(t0), that is, w(t0) is the number of sign changes in
the sequence f(t0), g(t0), f2(t0), · · · , fr(t0) ignoring zeros.

Example 2.4.1. Let f(z) := z5 − 3z − 1 and g(z) := f ′(z) = 5z4 − 3. Then,
S(f, g) can be calculated as follows:

f(z) = z5 − 3z − 1.

g(z) = 5z4 − 3.

f2(z) = 12z + 5.

f3(z) = 1.

We consider the number of sign changes in the Sturm sequence at −2. We have
f(−2) = −27, g(−2) = 77, f2(−2) = −19, f3(−2) = 1, so that w(−2) is equal to
3.

Theorem 2.4.1. [3, Theorem 8.8.15, Sturm’s theorem] Let f be a real polynomial
and S(f, f ′) = {f0, f1, · · · , fr}. Suppose that a, b ∈ R, a < b, are not roots of f .

18



Then the number of distinct real roots of f in the closed interval [a, b] is equal to
w(a)− w(b).

From now on, we assume that the real polynomials f and g have no common
roots. For each real root t0 of f , the number of sign changes in f, g satisfies one
of the following three conditions;

(i) the number of sign changes in f(t), g(t) decreases by 1 when t passes through
t0.

(ii) the number of sign changes in f(t), g(t) increases by 1 when t passes through
t0.

(iii) the number of sign changes in f(t), g(t) does not vary when t passes through
t0.

We assign the number εt0 = 1,−1 and 0 to each root t0 of f when the number of
sign changes of f and g satisfies the condition (i), (ii) and (iii), respectively. The
following well-known theorem is proved analogously to Sturm’s theorem.

Theorem 2.4.2. Suppose that the real numbers a and b are not roots of f . Then,
the following identity holds for S(f, g).∑

t0∈[a,b]:f(t0)=0

εt0 = w(a)− w(b).

2.4.2 Separation of complex roots

We use the following notation:

• Cz and Cw denote respectively the complex planes with coordinates z =
x+ iy and w = u+ iv.

• Sr ⊂ Cz is a circle of radius r > 0 centered at the origin 0 ∈ Cz.

• Br ⊂ Cz is an open disk of radius r > 0 centered at 0.

• A parametrization for Sr is given as follows:

z(t) = r
t2 − 1

t2 + 1
− ir

2t

t2 + 1
.

• f(z) is a real polynomial of a complex variable z.
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• Expanding f(z(t)), it can be represented as

f(z(t)) =
φr(t) + iψr(t)

(t2 + 1)deg f
on Sr,

where φr(t) and ψr(t) are real polynomials of a real variable t.

Lemma 2.4.1. Suppose that f(z) has no roots on Sr. Given M > 0 such that the
closed interval [−M,M ] contains all real roots of φr, the following identity holds
for S(φr, ψr). ∑

t0∈[−M,M ]:φr(t0)=0

εt0 = w(−M)− w(M).

Proof. The assumption that f(z) has no roots on Sr implies that the real poly-
nomials φr(t) and ψr(t) do not have common real roots. Therefore, we can apply
Theorem 2.4.2 to φr(t) and ψr(t). □

By considering f(z) as a holomorphic function from Cz to Cw, we parameterize

the closed curve f(Sr) as w(t) =
φr(t)

(t2+1)deg f + i ψr(t)
(t2+1)deg f . In order to calculate the

winding number of f(Sr), we divide f(Sr) into closed curves C1, · · · , Cm as follows;
trace f(Sr) from the initial point f(r) = limt→−∞w(t), and if the curve crosses
the v-axis twice, then we mark each crossing point with α1 and α2 and go back to
the initial point f(r) along the straight line from the point α2 to the initial point
f(r). This locus makes the closed curve C1. After that, we go back to f(Sr) along
the straight line from f(r) to α2. By repeating this procedure, the closed curve
f(Sr) is divided into closed curves C1, · · · , Cm (see Fig 2.8). Under the division

Figure 2.8: Division of the closed curve f(Sr)

of f(Sr), the winding number of f(Sr) equals the sum of the winding numbers of
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closed curves C1, · · · , Cm. To calculate the winding number of each closed curve
Ci, we assign the number χαk

= 1 (resp. χαk
= −1) to a crossing point αk of

the v-axis and Ci if the argument of Ci is increasing (resp. decreasing) around
the crossing point αk (see Fig 2.9). Then, the winding number of Ci is equal to

Figure 2.9: Assigning the number to crossing points

the sum of 1
2
χαk

at each crossing point αk. Note that if Ci has no crossing points
of the v-axis and Ci, then the winding number of Ci equals 0. For example, the
winding number of C1, C2 and C3 in Fig 2.9 is equal to 0,−1 and 0, respectively.
This observation shows that the winding number of f(Sr) equals the sum of the
number 1

2
χα on each crossing point α of the v-axis and f(Sr).

Let us now consider the Sturm sequence of polynomials φr(t) and ψr(t). Every
crossing point of the curve f(Sr) corresponds to a root of φr(t). For any root
t0 ∈ R of φr(t), the argument of f(Sr) is increasing (resp. decreasing) if εt0 = −1
(resp. εt0 = 1). This observation, together with Theorem 2.4.2 and the argument
principle, implies the following equalities.

# { z ∈ Br | z is a root of f(z) } = the winding number of f(Sr)

=
1

2

∑
αk: a mark on f(Sr)

χαk

=
1

2

∑
t0:φr(t0)=0

−εt0 .

By Lemma 2.4.1, we obtain Kronecker’s theorem.

Theorem 2.4.3. [17, Theorem 1.4.6, Kronecker’s theorem] Suppose that f(z)
has no roots on Sr. Then the number of roots of f contained in Br equals to
w(M)−w(−M)

2
, where M > 0 is a real number such that [−M,M ] contains all roots

of φr(t).

If we substitute z(t) = r
t− i

t+ i
for f(z), then f(z(t)) can be rewritten according

to

f(z(t)) =
Φ(t) + iΨ(t)

(t+ i)deg f
.
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Since 1
2π

∫
f(Sr)

d logw = 1
2π

∫
f(Sr)

d argw (see [7]), the winding number of f(Sr)

equals 1
2π

∫∞
−∞ arg {Φ(t) + iΨ(t)}dt − 1

2π

∫∞
−∞ arg (t+ i)deg fdt. For abbreviation,

we denote the quantities 1
2π

∫∞
−∞ arg {Φ(t) + iΨ(t)}dt and 1

2π

∫∞
−∞ arg (t+ i)deg fdt

by Θ(Φ(t)+ iΨ(t)) and Θ((t+ i)deg f ). Θ(Φ(t)+ iΨ(t)) and Θ((t+ i)deg f ) measure
the increases of arguments of the curves Φ(t) + iΨ(t) and (t+ i)deg f , respectively
(see [7] for details). Applying the previous argument to the curve Φ(t) + iΨ(t),
we obtain

Θ(Φ(t) + iΨ(t)) =
w(M)− w(−M)

2
.

By substituting t = tan θ to change the variable t into θ, we have

Θ((t+ i)deg f ) = −deg f

2
.

Therefore, we get the following corollary with the help of Kronecker’s theorem.

Corollary 2.4.1. Suppose that f(z) has no roots on Sr. Let w(t) denote the
number of sign changes in the Sturm sequence of Φ(t) and Ψ(t). Then, the number

of roots of f contained in Br equals to
w(M)− w(−M) + deg f

2
.

For any real polynomial f , the sign of f(t) for sufficiently large (resp. small)
t ∈ R is determined by the leading coefficient (resp. multiplied by (−1)deg f ).
Therefore, in order to determine w(M), we only have to consider the leading
coefficients of the Sturm sequence of Φ(t) and Ψ(t). For the rest of the paper,
w(∞) (resp. w(−∞)) denotes the number of sign changes of the leading coefficient
(resp. multiplied by (−1)deg fi) of the Sturm sequence.

2.4.3 Method for deciding about the root distribution of
a real polynomial.

Suppose f(z) is a real polynomial of one complex variable z. Then, we can
determine its roots as follows.

In order to count the number of real roots of f contained in the closed interval
[a, b]:

1. Check that a and b are not roots of f .
2. Calculate the Sturm sequence of f(t) and f ′(t).
3. By using Sturm’s theorem, w(a)−w(b) is equal to the number of real roots

of f contained in [a, b].

In order to count the number of roots of f contained in Br:
1. Calculate the two real polynomials Φ(t) and Ψ(t) by substituting z(t) =

r
t− i

t+ i
into f(z).

22



2. Check that f(z) has no roots on Sr. For example, if the resultant of Φ(t)
and Ψ(t) is not 0, then f(z) has no roots on Sr.

3. Calculate the Sturm sequence of Φ(t) and Ψ(t).
4. By Corollary 2.4.1 and the definition of w(∞) and w(−∞), the number of

roots of f contained in Br is equal to
w(∞)− w(−∞) + deg f

2
.
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Chapter 3

Growth rates of 3-dimensional
hyperbolic Coxeter groups

Komori and Umemoto proved that the growth rates of non-compact hyperbolic
Coxeter simplices are Perron numbers [12] (see Theorem 2.2.6). Therefore, we
may assume that the number of faces of the hyperbolic Coxeter polyhedra under
consideration is at least 5. The following proposition due to Komori and Umemoto
[12] will be of fundamental importance when showing that the growth rates of
non-compact hyperbolic Coxeter polyhedra are Perron numbers. In this chapter,
a facet of P is called a face.

Proposition 3.0.1 (Lemma 1 [12]). Let g(t) be a polynomial of degree n ≥ 2
having the form

g(t) =
n∑
k=1

nkt
k − 1,

where nk are non-negative integers. We assume that the greatest common divisor
of {k ∈ N | nk ̸= 0} is 1. Then there exists a real number r0, 0 < r0 < 1 which is
the unique zero of g(t) having the smallest absolute value among all zeros of g(t).

Our aim is to express the growth functions of non-compact hyperbolic Coxeter
polyhedra as rational functions whose denominator polynomials satisfy the con-
ditions of Proposition 3.0.1. This will be done by using Steinberg’s formula (see
Theorem 2.1.3) and the relations (2.3)-(2.12) (see Lemma 2.3.1). By applying this
strategy to the growth functions of ideal hyperbolic Coxeter polyhedra, Komori
and Yukita showed the following theorem.

Theorem 3.0.1. [14] Let P be an ideal hyperbolic Coxeter polyhedron with F
faces. Then, (i) τP is a Perron number. (ii) F − 3 ≤ τP ≤ F − 1 and τP = F − 3
if and only if all of the dihedral angles of P are π

2
. (iii) The set of the growth

rates of ideal hyperbolic Coxeter polyhedra is unbounded above.
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3.1 The growth rates of non-compact hyperbolic

Coxeter polyhedra whose dihedral angles are

of the form π
m for m = 2, 3, 4, 5, 6

In this section, we prove the following theorem.

Theorem 3.1.1. [24] Let P be a non-compact hyperbolic Coxeter polyhedron
whose dihedral angles are π

2
, π
3
, π
4
, π
5
and π

6
. Then the growth rate of P is a Perron

number.

The proof of Theorem 3.1.1 will be divided into two steps.

3.1.1 The growth rates of right-angled non-compact hy-
perbolic polyhedra

Let P be a right-angled non-compact hyperbolic polyhedron, that is, all of its
dihedral angles are π

2
. By means of Steinberg’s formula, we can calculate the

growth function fP (t) of P as

1

fP (t−1)
= 1− F

[2]
+

e2
[2, 2]

− v2,2,2
[2, 2, 2]

.

By using the identities (2.3), (2.4), (2.5), and (2.6), it can be rewritten as

1

fP (t)
= 1− Ft

[2]
+
e2t

2

[2, 2]
− v2,2,2t

3

[2, 2, 2]

=
(t− 1)

[2, 2, 2]

{
(v2,2,2,2 − 1)t2 + (v2,2,2,2 +

1

2
v2,2,2 − 2)t− 1

}
=

(t− 1)

[2, 2, 2]

{
(v2,2,2,2 − 1)t2 + (F − 4)t− 1

}
=

(t− 1)

[2, 2, 2]
H2(t)

where we put

H2(t) = (v2,2,2,2 − 1)t2 + (F − 4)t− 1.

Proposition 3.1.1. All the coefficients of H2(t) is nonnegative except its constant
term. Moreover, the growth rate of P is a Perron number.
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Proof. Put n2 = v2,2,2,2 − 1 and n1 = F − 4. F ≥ 5 and the inequality (2.12)
imply that n1, n2 ≥ 0. If v2,2,2,2 ≥ 2, by using Proposition 3.0.1, we conclude
that the growth rate of P is a Perron number. If v2,2,2,2 = 1, by Andreev’s
theorem (see Theorem 2.3.1) and the result of Federico [5], we can see that such
a hyperbolic Coxeter polyhedron has at least 6 faces. Therefore, H2(t) has only
one real positive root which is less than 1. Hence, we conclude that the growth
rate of P is a Perron number. □

3.1.2 The growth rates of non-compact Coxeter polyhedra
whose dihedral angles are π

2 ,
π
3 ,

π
4 ,

π
5 and π

6

Let P be a non-compact hyperbolic Coxeter polyhedron whose dihedral angels
are π

2
, π
3
, π
4
, π
5
and π

6
. In order to prove Theorem 3.1.1, by Proposition 3.1.1, we

may assume that P is not a right-angled polyhedron. By means of Steinberg’s
formula, we calculate the growth function fP (t) of P as

1

fP (t)
= 1− Ft

[2]
+
e2t

2

[2; 2]
+
e3t

3

[2; 3]
+
e4t

4

[2; 4]
+
e5t

5

[2; 5]
+
e6t

6

[2; 6]
− v2,2,2t

3

[2; 2; 2]
− v2,2,3t

4

[2; 2; 3]

− v2,2,4t
5

[2; 2; 4]
− v2,2,5t

6

[2; 2; 5]
− v2,2,6t

7

[2; 2; 6]
− v2,3,3t

6

[2; 3; 4]
− v2,3,4t

9

[2; 4; 6]
− v2,3,5t

15

[2; 6; 10]

By using Mathematica, we can see that the polynomial [2; 4; 6; 10] is a common
multiple of the denominator polynomials of the above identity. Therefore, the
growth function fP (t) can be written as

1

fP (t)
=
h2,3,4,5,6(t)

[2; 4; 6; 10]
,

where h2,3,4,5,6(t) is a integer polynomial of at most degree 18. Substituting the
identities (2.3)∼(2.10) into the coefficients of h2,3,4,5,6(t), we obtain that h(1) = 0.
By using Mathematica, the growth function fP (t) is expressed as

1

fP (t)
=

(t− 1)

[2; 4; 6; 10]
H2,3,4,5,6(t),

where

H2,3,4,5,6(t) = (v2,3,6 + v2,4,4 + v3,3,3 + v2,2,2,2 − 1)t17

+ (2v2,3,6 + 2v2,4,4 + 2v3,3,3 + v2,2,2,2 + F − 5)t16

+ (1
2
v2,2,3 +

1
2
v2,2,4 +

1
2
v2,2,5 +

1
2
v2,2,6 + v2,3,3 + v2,3,4 + v2,3,5 + 4v2,3,6 + 4v2,4,4 +

7
2
v3,3,3 + 3v2,2,2,2 + F − 8)t15

+ (1
2
v2,2,4 +

1
2
v2,2,5 +

1
2
v2,2,6 + v2,3,3 +

3
2
v2,3,4 +

3
2
v2,3,5 +

11
2
v2,3,6 + 5v2,4,4 + 5v3,3,3 + 3v2,2,2,2 + 3F − 16)t14

+ (v2,2,3 + v2,2,4 +
3
2
v2,2,5 +

3
2
v2,2,6 + 2v2,3,3 + 3v2,3,4 +

7
2
v2,3,5 +

15
2
v2,3,6 + 7v2,4,4 + 7v3,3,3 + 5v2,2,2,2 + 3F − 20)t13
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+ (1
2
v2,2,3 + v2,2,4 + v2,2,5 +

3
2
v2,2,6 + 2v2,3,3 +

7
2
v2,3,4 +

9
2
v2,3,5 + 8v2,3,6 + 8v2,4,4 +

15
2
v3,3,3 + 5v2,2,2,2 + 5F − 28)t12

+ (v2,2,3 +
3
2
v2,2,4 + 2v2,2,5 + 2v2,2,6 + 3v2,3,3 +

9
2
v2,3,4 + 6v2,3,5 + 9v2,3,6 + 9v2,4,4 + 9v3,3,3 + 6v2,2,2,2 + 5F − 31)t11

+ (v2,2,3 +
3
2
v2,2,4 +

3
2
v2,2,5 + 2v2,2,6 + 3v2,3,3 +

9
2
v2,3,4 +

13
2
v2,3,5 + 9v2,3,6 + 9v2,4,4 + 9v3,3,3 + 6v2,2,2,2 + 6F − 35)t10

+ (v2,2,3 +
3
2
v2,2,4 + 2v2,2,5 + 2v2,2,6 + 3v2,3,3 +

9
2
v2,3,4 + 7v2,3,5 + 9v2,3,6 + 9v2,4,4 + 9v3,3,3 + 6v2,2,2,2 + 6F − 36)t9

+ (v2,2,3 +
3
2
v2,2,4 + 2v2,2,5 + 2v2,2,6 + 3v2,3,3 +

9
2
v2,3,4 + 7v2,3,5 + 9v2,3,6 + 9v2,4,4 + 9v3,3,3 + 6v2,2,2,2 + 6F − 36)t8

+ (v2,2,3 +
3
2
v2,2,4 +

3
2
v2,2,5 + 2v2,2,6 + 3v2,3,3 +

9
2
v2,3,4 +

13
2
v2,3,5 + 8v2,3,6 + 8v2,4,4 + 8v3,3,3 + 5v2,2,2,2 + 6F − 35)t7

+ (v2,2,3 +
3
2
v2,2,4 + 2v2,2,5 + 2v2,2,6 + 3v2,3,3 +

9
2
v2,3,4 + 6v2,3,5 + 7v2,3,6 + 7v2,4,4 + 7v3,3,3 + 5v2,2,2,2 + 5F − 31)t6

+ (1
2
v2,2,3 + v2,2,4 + v2,2,5 +

3
2
v2,2,6 + 2v2,3,3 +

7
2
v2,3,4 +

9
2
v2,3,5 + 5v2,3,6 + 5v2,4,4 +

11
2
v3,3,3 + 3v2,2,2,2 + 5F − 28)t5

+ (v2,2,3 + v2,2,4 +
3
2
v2,2,5 +

3
2
v2,2,6 + 2v2,3,3 + 3v2,3,4 +

7
2
v2,3,5 +

7
2
v2,3,6 + 4v2,4,4 + 4v3,3,3 + 3v2,2,2,2 + 3F − 20)t4

+ (1
2
v2,2,4 +

1
2
v2,2,5 +

1
2
v2,2,6 + v2,3,3 +

3
2
v2,3,4 +

3
2
v2,3,5 +

3
2
v2,3,6 + 2v2,4,4 + 2v3,3,3 + v2,2,2,2 + 3F − 16)t3

+ (1
2
v2,2,3 +

1
2
v2,2,4 +

1
2
v2,2,5 +

1
2
v2,2,6 + v2,3,3 + v2,3,4 + v2,3,5 + v2,3,6 + v2,4,4 +

3
2
v3,3,3 + v2,2,2,2 + F − 8)t2

+ (F − 5)t− 1.

Let us write H2,3,4,5,6(t) =
∑17

k=1 nkt
k − 1.

Lemma 3.1.1. All the coefficients of H2,3,4,5,6(t) are non-negative except the co-
efficients n2, n4, n6, and its constant term. Moreover, the coefficients n16 and n15

are positive.

Proof. Consider the sum of the terms v2,3,6, v2,4,4, v3,3,3, v2,2,2,2, and F of the coef-
ficients of H2,3,4,5,6(t). By the inequality (2.12) and F ≥ 5, we obtain nk ≥ 0 for
k ̸= 2, 4, 6. Moreover, we have n16 ≥ (v2,3,6 + v2,4,4 + v3,3,3 + v2,2,2,2) + F − 5 > 0.
Substituting the identities (2.7), (2.8), (2.9), and (2.10) into the coefficient n15,
we get

n15 ≥
1

2
v2,2,3 +

1

2
v2,2,4 +

1

2
v2,2,5 +

1

2
v2,2,6 + v2,3,3 + v2,3,4 + v2,3,5 +

1

2
v3,3,3 + v2,4,4 + v2,3,6

=
1

3
e3 + e4 + e5 + e6 +

1

3
v2,2,3 +

2

3
v2,3,3 +

1

3
v2,3,4 +

1

3
v2,3,5 +

1

3
v2,3,6.

The assumption that P is not a right-angled polyhedron implies that n15 is posi-
tive. □

By Lemma 3.1.1, it is sufficient to prove that the coefficients n2, n4, and n6

are non-negative.

Lemma 3.1.2. Suppose that P has at least two cusps. Then, the coefficients
n2, n4 and n6 of H2,3,4,5,6(t) are non-negative.

Proof. In a manner similar to the proof of Lemma 3.1.1, we obtain that n4 and
n6 are non-negative. Substituting the identities (2.7), (2.8), (2.9), and (2.10) into
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the coefficient n2, we can write n2 as follows:

n2 =


1
2v2,2,4 +

1
2v2,2,5 +

1
2v2,2,6 +

1
2v2,3,4 +

1
2v2,3,5 +

1
2v2,3,6 + v2,4,4 + v2,2,2,2 + e3 + F − 8

1
2v2,2,3 +

1
2v2,2,5 +

1
2v2,2,6 + v2,3,3 +

1
2v2,3,4 + v2,3,5 + v2,3,6 +

3
2v3,3,3 + v2,2,2,2 + e4 + F − 8

1
2v2,2,3 +

1
2v2,2,4 +

1
2v2,2,6 + v2,3,3 + v2,3,4 +

1
2v2,3,5 + v2,3,6 + v2,4,4 +

3
2v3,3,3 + v2,2,2,2 + e5 + F − 8

1
2v2,2,3 +

1
2v2,2,4 +

1
2v2,2,5 + v2,3,3 + v2,3,4 + v2,3,5 +

1
2v2,3,6 + v2,4,4 +

3
2v3,3,3 + v2,2,2,2 + e6 + F − 8.

(3.1)

By the equality (3.1),

n2 ≥ max {e3, e4, e5, e6}+ v2,2,2,2 +
1

2
(v2,3,6 + v2,4,4 + v3,3,3) + F − 8.

If P has one of the cusps of type (2, 3, 6), (2, 4, 4) and (3, 3, 3), then max {e3, e4, e5, e6}
is strictly greater than 1. Therefore, by the assumption that P has at least two
cusps, n2 is non-negative. □

Since the coefficients of the polynomial H2,3,4,5,6(t) are integers, the following
result is proved analogously to Lemma 3.1.2.

Lemma 3.1.3. Suppose that P has one of the cusps of type (2, 3, 6), (2, 4, 4) and
(3, 3, 3). Then, the coefficients n2, n4 and n6 are non-negative.

Proof of Theorem 3.1.1 By Proposition 3.1.1, if P is a right-angled non-
compact hyperbolic Coxeter polyhedron, then the growth rate is a Perron number.
Therefore, we may assume that P is not a right-angled polyhedron. Suppose that
P has at least two cusps or one of the cusps of type (2, 3, 6), (2, 4, 4) and (3, 3, 3).
Then, by Lemma 3.1.1, Lemma 3.1.2 and Lemma 3.1.3, the denominator polyno-
mial H2,3,4,5,6(t) of the growth function fP (t) satisfies the conditions of Proposition
3.0.1. Finally, the remaining case is that P is not a right-angled polyhedron, and
has the unique cusp which is furthermore of type (2, 2, 2, 2). Apply Theorem 2.3.3
(ii) and consider the unique hyperbolic polyhedron P̃ obtained by opening this
cusp in P . By a result of Kolpakov [11, Theorem 5], the growth rate of P is a
Pisot number and therefore also a Perron number. □

3.2 Non-compact Coxeter polyhedra some of whose

dihedral angles are π
k for k ≥ 7

In this section, we calculate the growth function fP (t) of a non-compact hyperbolic
Coxeter polyhedron P some of whose dihedral angles are π

k
for k ≥ 7 and prove

the following theorem.

Theorem 3.2.1. [25] Let P be a non-compact hyperbolic Coxeter polyhedron some
of whose dihedral angles are π

k
for k ≥ 7. Then the growth rate of P is a Perron

number.
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Let us denote the number of π
k
-edges with k ≥ 7 by σ. By Theorem 2.3.2, the

proof of Theorem 3.2.1 will be divided into two steps; one is the case of σ = F −3,
and second is of σ ≤ F − 4.

3.2.1 The growth rates in the case of σ = F − 3

By Theorem 2.3.2, P has a unique cusp which is furthermore of type (2, 2, 2, 2).
Apply Theorem 2.3.3 (ii) and consider the unique hyperbolic polyhedron P̃ ob-
tained by opening this cusp in P . Then, P̃ is a compact Coxeter polyhedron
whose growth rate is a Salem number. By a result of Kolpakov (Theorem 5 [11]),
the growth rate of P is then a Pisot number and therefore also a Perron number.

3.2.2 The growth rates in the case of σ ≤ F − 4

In this subsection, let us first prove the following theorem.

Theorem 3.2.2. Suppose that σ ≤ F − 4 and P satisfies the following inequality

v2,2,2,2 + e3 + e4 + e5 + e6 + F − 8 ≥ 0. (3.2)

Then the growth rate of P is a Perron number.

In order to prove Theorem 3.2.2, we shall use the following notation and termi-
nology in this subsection. For any hyperbolic Coxeter polyhedron P , the bound-
ary ∂P is homeomorphic to S2. This implies that the 1-skeleton of P provides
an abstract Coxeter polyhedron C. We call C the abstract Coxeter polyhedron
associated to P . Suppose that C is an abstract Coxeter polyhedron and that v is
a vertex with valency i for i = 3 or i = 4. Let c1, · · · , ci be the edges of C incident
to v and denote by π

ki
the label of the edge ci.

• If a vertex v of C with valency 3 satisfies the inequality 1
k1

+ 1
k2

+ 1
k3
> 1,

we call v a spherical vertex of type (k1, k2, k3).

• If a vertex v of C with valency 3 satisfies the equality 1
k1

+ 1
k2

+ 1
k3

= 1, we
call v a Euclidean vertex of type (k1, k2, k3).

• If a vertex v of C with valency 3 satisfies the inequality 1
k1

+ 1
k2

+ 1
k3
< 1,

we call v a hyperbolic vertex of type (k1, k2, k3).

• If a vertex v of C with valency 4 satisfies the equality k1 = k2 = k3 = k4 = 2,
we call v a Euclidean vertex of type (2, 2, 2, 2).

• A vertex v of C with valency 4 different from a Euclidean vertex is called a
hyperbolic vertex of valency 4.
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• Vk1,k2,k3 denotes the number of spherical vertices of type (k1, k2, k3) of C.

• Ek denotes the number of edges labeled by π
k
of C.

• F denotes the number of faces of C.

A spherical, Euclidean or hyperbolic vertex v of type (k1, k2, k3) of C corresponds
to a spherical, Euclidean or hyperbolic Coxeter triangle ∆k1,k2,k3 whose interior
angles are π

k1
, π
k2

and π
k3
, respectively. We denote by fk1,k2,k3(t) the growth func-

tion of ∆k1,k2,k3 . Then the abstract growth function fC(t) of C is defined by the
following identity.

1

fC(t−1)
:= 1− F

[2]
+
∑
k≥2

Ek
[2; k]

−
∑

1
k1

+ 1
k2

+ 1
k3
>1

Vk1,k2,k3
fk1,k2,k3(t)

.

In the sequel, let C be the abstract Coxeter polyhedron associated with P and
C ′ be the abstract Coxeter polyhedron obtained from C by changing one of the
labels of C from π

k
to π

6
(see Fig 3.1). Then we can see that the abstract growth

function fC(t) of C is equal to the growth function fP (t) of P .

Figure 3.1:

By Andreev’s theorem (see Theorem 2.3.1), the endpoints of a π
k
-edge of P are

vertices of type (2, 2, k) for k ≥ 7 so that the abstract polyhedron C ′ has at least
one Euclidean vertex and no hyperbolic vertices of valency 4. Then the growth
function fP (t) of P differs from the abstract growth function fC′(t) of C ′ in the
terms related to changing the label. This implies the following identity by using
the relation 1

[k](t−1)
= tk−1

[k]
.

1

fP (t)
=

1

fC′(t)
+
{
(− t6

[2; 6]
+

2t7

[2; 2; 6]
) + (

tk

[2; k]
− 2tk+1

[2; 2; k]
)
}

=
1

fC′(t)
+

(t− 1)

[2; 2; 6; k]

k−1∑
n=6

tn (3.3)

Proof of Theorem 3.2.2. Let P ⊂ H3 be a non-compact Coxeter polyhedron
with F ≥ 5 faces. The proof of the theorem proceeds by induction on the number

30



σ of π
k
-edges with k ≥ 7 of P . More specifically, denote by Pσ such a polyhedron

with dihedral angles π
k1
, · · · , π

kσ
where k1, · · · , kσ ≥ 7. In order to prove that the

growth rate of Pσ is a Perron number, we show that the growth function fPσ(t)
of Pσ satisfies the following identity.

1

fPσ(t)
=

(t− 1)Qσ(t)

[2; 2; 6; k1; · · · ; kσ](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)
,

where Qσ(t) is the integer polynomial of degree k1 + · · · + kσ + 16 − σ whose
constant term is equal to −1 and the coefficients of Qσ(t) except its constant
term are non-negative.

Step 1 In the case σ = 1, consider the abstract Coxeter polyhedron C ′
1 whose

labels lie in the set {π
k
| k = 2, 3, 4, 5, 6} by construction. By the calculation of

subsection 3.1.5, 1
fC′

1
(t)

is written as

1

fC′
1
(t)

=
(t− 1)

[2; 4; 6; 10]
H2,3,4,5,6(t)

where H2,3,4,5,6(t) is the integer polynomial of at most degree 17. Then, by using
Mathematica, we see that the polynomial H2,3,4,5,6 is divisible by the polynomial
[2] = t+ 1.

1

fC′
1
(t)

=
(t− 1)

[4; 6; 10]
G2,3,4,5,6(t),

where G2,3,4,5,6(t) :=
H2,3,4,5,6(t)

[2]
is the integer polynomial of degree 16. By using

Mathematica, G2,3,4,5,6(t) can be rewritten as follows

G2,3,4,5,6(t) = (v′2,3,6 + v′2,4,4 + v′3,3,3 + v′2,2,2,2 − 1)t16

+ (v′2,3,6 + v′2,4,4 + v′3,3,3 + F ′ − 4)t15

+ (1
2
v′2,2,3 +

1
2
v′2,2,4 +

1
2
v′2,2,5 +

1
2
v′2,2,6 + v′2,3,3 + v′2,3,4 + v′2,3,5 + 3v′2,3,6 + 3v′2,4,4 +

5
2
v′3,3,3 + 3v′2,2,2,2 − 4)t14

+ (1
2
v′2,2,2 +

1
2
v′2,2,4 +

1
2
v′2,2,5 +

1
2
v′2,2,6 +

1
2
v′2,3,3 + v′2,3,4 + v′2,3,5 + 3v′2,3,6 +

5
2
v′2,4,4 + 3v′3,3,3 + v′2,2,2,2 + 2F ′ − 10)t13

+ (3
2
v′2,2,3 + v′2,2,4 +

3
2
v′2,2,5 +

3
2
v′2,2,6 + 2v′2,3,3 +

5
2
v′2,3,4 + 3v′2,3,5 + 5v′2,3,6 + 5v′2,4,4 +

9
2
v′3,3,3 + 5v′2,2,2,2 − 8)t12

+ (v′2,2,2 + v′2,2,4 +
1
2
v′2,2,5 + v′2,2,6 + v′2,3,3 + 2v′2,3,4 +

5
2
v′2,3,5 + 4v′2,3,6 + 4v′2,4,4 + 4v′3,3,3 + 2v′2,2,2,2 + 3F ′ − 16)t11

+ (2v′2,2,3 +
3
2
v′2,2,4 +

5
2
v′2,2,5 + 2v′2,2,6 + 3v′2,3,3 +

7
2
v′2,3,4 +

9
2
v′2,3,5 + 6v′2,3,6 + 6v′2,4,4 + 6v′3,3,3 + 6v′2,2,2,2 − 11)t10

+ (v′2,2,2 + v′2,2,4 + v′2,2,6 + v′2,3,3 + 2v′2,3,4 + 3v′2,3,5 + 4v′2,3,6 + 4v′2,4,4 + 4v′3,3,3 + 2v′2,2,2,2 + 4F ′ − 20)t9

+ (2v′2,2,3 +
3
2
v′2,2,4 + 3v′2,2,5 + 2v′2,2,6 + 3v′2,3,3 +

7
2
v′2,3,4 + 5v′2,3,5 + 6v′2,3,6 + 6v′2,4,4 + 6v′3,3,3 + 6v′2,2,2,2 − 12)t8

+ (v′2,2,2 + v′2,2,4 + v′2,2,6 + v′2,3,3 + 2v′2,3,4 + 3v′2,3,5 + 4v′2,3,6 + 4v′2,4,4 + 4v′3,3,3 + 2v′2,2,2,2 + 4F ′ − 20)t7

+ (2v′2,2,3 +
3
2
v′2,2,4 +

5
2
v′2,2,5 + 2v′2,2,6 + 3v′2,3,3 +

7
2
v′2,3,4 +

9
2
v′2,3,5 + 5v′2,3,6 + 5v′2,4,4 + 5v′3,3,3 + 5v′2,2,2,2 − 11)t6
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+ (v′2,2,2 + v′2,2,4 +
1
2
v′2,2,5 + v′2,2,6 + v′2,3,3 + 2v′2,3,4 +

5
2
v′2,3,5 + 3v′2,3,6 + 3v′2,4,4 + 3v′3,3,3 + 2v′2,2,2,2 + 3F ′ − 16)t5

+ (3
2
v′2,2,3 + v′2,2,4 +

3
2
v′2,2,5 +

3
2
v′2,2,6 + 2v′2,3,3 +

5
2
v′2,3,4 + 3v′2,3,5 + 3v′2,3,6 + 3v′2,4,4 +

7
2
v′3,3,3 + 3v′2,2,2,2 − 8)t4

+ (1
2
v′2,2,2 +

1
2
v′2,2,4 +

1
2
v′2,2,5 +

1
2
v′2,2,6 +

1
2
v′2,3,3 + v′2,3,4 + v′2,3,5 + v′2,3,6 +

3
2
v′2,4,4 + v′3,3,3 + v′2,2,2,2 + 2F ′ − 10)t3

+ (1
2
v′2,2,3 +

1
2
v′2,2,4 +

1
2
v′2,2,5 +

1
2
v′2,2,6 + v′2,3,3 + v′2,3,4 + v′2,3,5 + v′2,3,6 + v′2,4,4 +

3
2
v′3,3,3 + v′2,2,2,2 − 4)t2

+ (F ′ − 4)t− 1

where F ′, v′2,2,2,2 and v′k1,k2,k3 denote respectively the number of faces, Euclidean
vertices of type (2, 2, 2, 2) and spherical vertices of type (k1, k2, k3) of C ′

1. We
denote ni by the i-th coefficient of the polynomial G2,3,4,5,6(t). By using the
identities (2.3)-(2.10) and the inequality (2.12), we can see that the following
inequalities.

ni ≥ 0 ( i = 1, 3, 5, 7, 9, 11, 13, 15) (3.4)

ni + ni+1 ≥ 0 (i = 1, · · · , 15) (3.5)

ni + ni+1 + ni+2 ≥ 0 (i = 1, · · · , 14) (3.6)

By using the identity (3.3), we can see that

1

fP1(t)
=

1

fC′
1
(t)

+
(t− 1)

[2; 2; 6; k1]

k1−1∑
i=6

ti

=
(t− 1)

[4; 6; 10]
G2,3,4,5,6(t) +

(t− 1)

[2; 2; 6; k1]

k1−1∑
i=6

ti

=
(t− 1)

[2; 2; 5; 6](1 + t2)(1− t+ t2 − t3 + t4)
G2,3,4,5,6(t) +

(t− 1)

[2; 2; 6; k1]

k1−1∑
i=6

ti

=
(t− 1)

{
[k1]G2,3,4,5,6(t) + (1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)

∑k1−1
i=6 ti

}
[2; 2; 6; k1](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)

Let Q1(t) := [k1]G2,3,4,5,6(t) + (1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)
∑k1−1

i=6 ti.

[k1]G2,3,4,5,6(t)

=
(k1−1∑
j=0

tj
)( 16∑

i=1

nit
i − 1

)
=

k=1−1∑
j=0

16∑
i=1

nit
i+j −

k1−1∑
j=0

tj

=

k1+15∑
i=1

{
χ[1,k1](i)n1 + · · ·+ χ[16,k1+15](i)n16

}
ti −

k1−1∑
j=0

tj.
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(1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)

k1−1∑
i=6

ti

=

k1+9∑
i=8

{
2
(
χ[8,k1+1] + χ[10,k1+3] + χ[12,k1+5] + χ[14,k1+7]

)
(i) + χ[16,k1+9](i)

}
ti +

k1−1∑
j=6

tj.

where χ[p,q] is defined to be the simple function on the closed interval [p, q]. Then

the degree of Q1(t) is k1 + 15, so that we can represent Q1(t) as
∑k1+15

i=1 n
(1)
i ti − 1

and n
(1)
i is written as follows.

n
(1)
i =

16∑
j=1

χ[j,k1+j−1](i)nj+2
(
χ[8,k1+1]+χ[10,k1+3]+χ[12,k1+5]+χ[14,k1+7]

)
(i)+χ[16,k1+9](i)−χ[1,5](i).

Therefore, by combining the inequalities (3.4), (3.5) and (3.6), we can obtain
the following inequalities and identities.

n
(1)
i ≥ 0 (6 ≤ i ≤ k1 + 15).

n
(1)
5 = n5 + n4 + n3 + n2 + n1 − 1

n
(1)
4 = n4 + n3 + n2 + n1 − 1

n
(1)
3 = n3 + n2 + n1 − 1

n
(1)
2 = n2 + n1 − 1 = v′2,2,2,2 + e′3 + e′4 + e′5 + e′6 + F ′ − 9

n
(1)
1 = n1 − 1 = F ′ − 5,

Since C ′
1 is obtained from P1 by changing one dihedral angle from π

k1
to π

6
, n

(1)
2

can be rewritten as

n
(1)
2 = v2,2,2,2 + e3 + e4 + e5 + e6 + F − 8. (3.7)

The equality (3.7) together with F ′ = F ≥ 5 mean that the coefficients ofQ1(t)
except its constant term are non-negative under the assumption of Theorem 3.2.2.
Therefore, by Proposition 3.0.1, the growth rate of P1 is a Perron number.

Step 2. We assume that the following identity holds for the growth function
fPσ−1(t) of Pσ−1 for σ ≥ 2 as inductive hypothesis.

1

fPσ−1(t)
=

(t− 1)Qσ−1(t)

[2; 2; 5; 6; k1; · · · ; kσ−1](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)
,

where Qσ−1(t) is a polynomial of degree k1 + · · · + kσ−1 + 16 − (σ − 1) and the
coefficients of Qσ−1(t) except its constant term are non-negative. By the identity
(3.3) we deduce that the following identities.
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1

fPσ(t)
=

(t− 1)

[2; 2; 6]

{ Qσ−1(t)

[k1; · · · ; kσ−1](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)
+

∑kσ−1
n=6 tn

[kσ]

}
=

(t− 1){[kσ]Qσ−1(t) + [k1; · · · ; kσ−1](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)
∑kσ−1

n=6 tn}
[2; 2; 6; k1; · · · ; kσ](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)

Let Qσ(t) := [kσ]Qσ−1(t)+[k1; · · · ; kσ−1](1+2t2+2t4+2t6+2t8+t10)
∑kσ−1

n=6 tn

and R(t) := [k1; · · · ; kσ−1](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)
∑kσ−1

n=6 tn. Note that the
coefficients of R(t) is non-negative. Moreover, the coefficients of i-th terms are
positive for 6 ≤ i ≤ kσ − 1.

deg [kσ]Qσ(t) = (kσ − 1) + degQσ−1

= k1 + · · ·+ kσ + 16− σ. (3.8)

degR(t) = (k1 − 1) + · · ·+ (kσ−1 − 1) + 10 + (kσ − 1)

= k1 + · · ·+ kσ + 10− σ. (3.9)

The equalities (3.8) and (3.9) imply that the degree of Qσ(t) is equal to k1+ · · ·+
kσ + 16 − σ. We denote n

(σ−1)
i by the i-th coefficient of the polynomial Qσ−1(t),

so that Qσ−1(t) can be rewritten as
∑

i≥1 n
(σ−1)
i ti − 1.

Qσ(t) = [kσ]
(∑
i≥1

n
(σ−1)
i ti

)
− [kσ] +R(t)

=
( 6∑
i=0

ti +
kσ−1∑
i=7

ti
)(∑

i≥1

n
(σ−1)
i ti

)
−
(
1 +

5∑
i=1

ti +
kσ−1∑
i=6

ti
)
+R(t)

=
(∑
i≥1

n
(σ−1)
i ti

)
+
(∑
i≥2

n
(σ−1)
i−1 ti

)
+
(∑
i≥3

n
(σ−1)
i−2 ti

)
+
(∑
i≥4

n
(σ−1)
i−3 ti

)
+
(∑
i≥5

n
(σ−1)
i−4 ti

)
+
(∑
i≥6

n
(σ−1)
i−5 ti

)
+
(∑
i≥7

n
(σ−1)
i−6 ti

)
+

kσ−1∑
j=7

∑
i≥1

n
(σ−1)
i ti+j +

{
R(t)−

kσ−1∑
i=6

ti
}
−

5∑
i=1

ti − 1,

and hence we obtain the following inequality and identities once we represent
Qk(t) as

∑
n
(σ)
i ti − 1.

n
(σ)
i ≥ 0 (i ≥ 6).

n
(σ)
5 = n

(σ−1)
5 + n

(σ−1)
4 + n

(σ−1)
3 + n

(σ−1)
2 + n

(σ−1)
1 − 1.
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n
(σ)
4 = n

(σ−1)
4 + n

(σ−1)
3 + n

(σ−1)
2 + n

(σ−1)
1 − 1.

n
(σ)
3 = n

(σ−1)
3 + n

(σ−1)
2 + n

(σ−1)
1 − 1.

n
(σ)
2 = n

(σ−1)
2 + n

(σ−1)
1 − 1.

n
(σ)
1 = n

(σ−1)
1 − 1 = n

(1)
1 − (σ − 1).

By the result of Step 1,

n
(σ)
1 = n

(1)
1 − (σ − 1) = F − 4− σ.

Therefore the coefficients of Qσ(t) except its constant term are non-negative
and the constant term ofQσ(t) is equal to−1 if P satisfies the inequality F−4 ≥ k.
Therefore, by Proposition 3.0.1, the growth rate of Pσ is a Perron number. □

3.2.3 The proof of Theorem 3.2.1

By Theorem 3.2.2, the condition (3.2) is sufficient in order to deduce that the
growth rate of P is a Perron number when F − 4 ≥ σ. First, suppose that P is a
non-compact hyperbolic Coxeter polyhedron with F ≥ 7. Since P has at least 1
cusp, we get the following inequality

v2,2,2,2 + e3 + e4 + e5 + e6 + F − 8 ≥ 1 + 7− 8 = 0

which allow us to conclude. Therefore, it remains to consider non-compact Coxeter
polyhedra with F = 5 or F = 6 faces and which do not satisfy the inequality (3.2)
of Theorem 3.2.2. Figure 3.2 shows all possible combinatorial structures of acute-
angled convex polyhedra with 4, 5 or 6 faces [5].

We use Andreev’s Theorem (see Theorem 2.3.1) in order to describe a non-
compact hyperbolic Coxeter polyhedron with 5 or 6 faces which does not satisfy
inequality (3.2).

By Theorem 2.3.3 and Andreev’s Theorem, it is not difficult to see that a non-
compact finite volume hyperbolic Coxeter polyhedron P with 5 or 6 faces and
with at least one π

k
-edge for k ≥ 7 has to be of combinatorial type (ii), (iv), (v),

(viii), (ix), (x). If the combinatorial structure of P is (viii), P has 2 cusps of type
(2, 2, 2, 2) and if the combinatorial structure is (ix) or (x), P has at least one of
cusps of type (2, 3, 6) or (2, 4, 4) or (3, 3, 3). Hence, the inequality (3.2) holds for
polyhedra P of type (viii), (iv) or (x), and by Theorem 3.2.2 their growth rates
are Perron numbers.

Consider finally Coxeter polyhedra P of type (ii), (iv) or (v). First and by
means of Theorem 2.3.3, we determine which edges of P subject to (ii), (iv) or
(v) can be of the form π

k
for k ≥ 7. In this way, we can deduce that each such

polyhedron P results from opening cusps of type (2, 2, 2, 2) as shown in Figure
3.3.
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In Figure 3.3, labels on edges mean the dihedral angles and k, k1, k2 ≥ 7. If
the inequality (3.2) does not hold for the case of (iv) or (v), all of the dihedral
angles other than π

k1
, π
k2

are π
2
, since v2,2,2,2 = 1.

Proposition 3.2.1. Suppose that the combinatorial structure of P is (iv) or (v).
Then the growth rate of P is a Perron number.

Proof. By means of Steinberg’s formula (see Theorem 2.1.3), we can calculate the
growth function fP (t) of P as follows.

1

fP (t)
= 1− 6t

[2]
+

9t2

[2; 2]
+

tk1

[2;m1]
+

tk2

[2; k2]
− 2t3

[2; 2; 2]
− 2tk1+1

[2; 2; k1]
− 2tk2+1

[2; 2; k2]

=
(t− 1)

{
(2t+ 1)[k1; k2]− (t+ 1)([k1] + [k2])

}
[2; 2; 2; k1; k2]

Let Q(t) := (2t + 1)[k1; k2] − (t + 1)([k1] + [k2]). We may assume that k1 ≥ k2,
without loss in generality.

If k1 = k2, Q(t) can be rewritten as,

Q(t) = [k1]
{
(2t+ 1)[k1]− (2t+ 2)

}
= [k1]

(
2

k1−1∑
i=0

ti+1 +

k1−1∑
i=0

ti − 2t− 2
)

= [k1](2t
k1 + 3tk1−1 + 3tk1−2 + · · ·+ 3t2 + t− 1)

If k1 > k2, Q(t) can be rewritten as,

Q(t) = (2t+ 1)
{
(tk1−1 + · · ·+ tk2)[k2] + [k2]

2
}
− (t+ 1)

{
(tk1−1 + · · ·+ tk2) + 2[k2]

}
= (2t+ 1)(tk1−1 + · · ·+ tk2)[k2]− (t+ 1)(tk1−1 + · · ·+ tk2) + [k2]

{
(2t+ 1)[k2]− (2t+ 2)

}
= [k1](2t

k2 + 3tk2−1 + · · ·+ 3t2 + t) + t(tk1−1 + · · ·+ tk2)− [k2]

By the above calculation, the coefficients of Q(t) except its constant term are
non-negative.

Therefore we can apply Proposition 3.0.1 to conclude that the growth rate is
a Perron number. □

It remains to study the growth rates of non-compact Coxeter triangular prisms
P (see Fig 3.3). Since P has at least one vertex at infinity, P has precisely one
π
k
-edge for k ≥ 7. By contraction of this edge to a vertex of type (2, 2, 2, 2)

(see Theorem 2.3.3), P deforms into exactly one among the hyperbolic Coxeter
pyramid P̂ which have been entirely classified by Tumarkin [21]. In this way, we
can deduce a precise configuration for P (see Fig 3.4) and prove the following
result.
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Proposition 3.2.2. Suppose that P is a Coxeter triangular prism and P does
not satisfy the inequality (3.2). Then P has the dihedral angles as in Figure 3.4
and the growth rate of P is a Perron number.

m

2
2 2 2

2
2

4

(Ⅰ) (Ⅱ)

4

m

2
2 2 2

6
2

2

3

Figure 3.4:

Proof. Case.(I) By means of Steinberg’s formula, we can calculate the growth
function fP (t) of P , and hence the growth function is written as,

1

fP (t)
=

(t− 1)(2tk+2 + 3tk+1 + 4tk + · · ·+ 4t4 + 3t3 + t2 − 1)

[2; 2; 4; k]

Case.(II) The growth function is calculated in the same manner:

1

fP (t)
=

R(t)

[2; 2; 2; 3; 6; k]

where

R(t) = 2tk+8 + 5tk+7 + 7tk+6 + 7tk+5 + 6tk+4 + 5tk+3 + 3tk+2 + tk+1

−t9 − 4t8 − 7t7 − 8t6 − 7t5 − 6t4 − 4t3 − t2 + t+ 1

Let us notice that R(t) is divisible by [2;3] and (t − 1). Therefore fP (t) can
be rewritten as,

1

fP (t)
=

(t− 1)(2tk+4 + 3tk+3 + 4tk+2 + 5tk+1 + 6tk + · · ·+ 6t6 + 5t5 + 3t4 + 2t3 + t2 − 1)

[2; 2; 6; k]

Hence, we can apply Proposition 3.0.1 to conclude that the growth rate is a
Perron number. □

Proof of Theorem 3.2.1 Let P be a non-compact hyperbolic Coxeter polyhe-
dron having at least one dihedral angle of the form π

k
for some integer k ≥ 7 and

σ be the number of π
k
-edges of P with k ≥ 7. By Theorem 2.3.2, P satisfies the

inequality σ ≤ F − 3. If the equality σ = F − 3 holds for P , by combining with
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the observation in subsection 3.2.1, the growth rate of P is a Perron number. If
the inequality σ ≤ F − 4 holds for P , there are two cases that can be considered.
First, the case that P satisfies the inequality (3.2). In this case, by Theorem
3.2.2, the growth rate of P is a Perron number. Second, the case that P does not
satisfy the inequality (3.2). In this case, P has to be of combinatorial type (ii),
(iv) or (v) (see Fig 3.2). By Proposition 3.2.1 (resp. Proposition 3.2.2), if the
combinatorial structure of P is (iv) or (v) (resp. (ii)), the growth rate of P is a
Perron number. □
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Chapter 4

An infinite sequence of ideal
hyperbolic Coxeter 4-polytopes
whose growth rates are Perron
numbers

4.1 Construction of infinite sequence of ideal non-

simple hyperbolic Coxeter polytopes

In this Section, we construct an infinite sequence {Pn}n∈N of non-simple ideal
hyperbolic Coxeter 4-polytopes by glueing ideal hyperbolic Coxeter 4-pyramids
along their isometric facets. First, we introduce the vertical projection p∞ from
∞ to R3 and describe how to see hyperbolic 4-polytopes in terms of the projection.
Second, we review hyperbolic Coxeter 4-pyramids P1 over the product of three
simplexes which are completely classified by Tumarkin [21] and then construct
the infinite sequence {Pn}n∈N. Finally, we determine the combinatorial structure
of Pn in order to calculate the growth rate τPn . In the sequel, we call 2-faces of
4-polytope faces.

4.1.1 The vertical projection from ∞
A horosphere Σ = Σu based at a point at infinity u ∈ ∂Hd is defined to be a
3-dimensional Euclidean sphere in H4 tangent to R3 at u (resp. a Euclidean
hyperplane parallel to R3) if u is situated on R3 (resp. u = ∞). The restriction
of the hyperbolic metric to the horosphere Σ turns Σ into a Euclidean 3-space.

Lemma 4.1.1. [18, Theorem 6.4.5] Suppose that P = ∩mi=1H
−
i is a non-compact

hyperbolic 4-polytope of finite volume and u is a vertex at infinity of P . Let Σ
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be a horosphere based at u such that Σ intersects with P only at the bounding
hyperplanes incident to u. Then, L(u) := P ∩ Σ has the following properties.

• L(u) is a 3-dimensional Euclidean polytope in Σ.

• For any bounding hyperplane Hi incident to u, Hi ∩ L(u) is a bounding
hyperplane of L(u) in Σ.

• If 2 facets Fi := Hi ∩ P and Fj := Hj ∩ P make the face of P , then the
intersection of Fi ∩ L(u) and Fj ∩ L(u) is an edge of L(u) and the dihedral
angle ∠Fi ∩ Fj is equal to the dihedral angle ∠

(
Fi ∩ L(u)

)
∩
(
Fj ∩ L(u)

)
Consider the vertical projection from ∞ denoted by

p∞ : H4 → R3; (x, y, z, t) 7→ (x, y, z).

Let P = ∩mi=1H
−
i be a non-compact hyperbolic 4-polytope of finite volume and u

be a vertex at infinity of P . By using the translation of R3 which maps u to 0 and
the inversion with respect to the unit sphere in R4, we may assume that u is ∞.
If a hyperplane Hi is incident to (resp. not incident to) ∞, then Hi is a Euclidean
hyperplane (resp. hemisphere) in H4 orthogonal to R3. Note that in our setting
any closed half-space H−

i contains ∞. Since the vertical projection p∞ maps any
horosphere Σ based at ∞ conformally onto R3, by using Lemma 4.1.1, we can
treat dihedral angles between 2 bounding hyperplanes of P incident to ∞ as the
corresponding dihedral angles in the 3-dimensional Euclidean polytope p∞(L(∞)).
Suppose that the bounding hyperplanes Hi and Hj of P are not incident to ∞.
By choosing a point in Hi ∩Hj ∩R3 and considering the outer normal vectors ui
and uj, the dihedral angle ∠Hi ∩Hj in P is given by arccos−(ui, uj).

Figure 4.1: The dihedral angle in R3
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4.1.2 The ideal hyperbolic Coxeter pyramid P1.

In [21], Tuamrkin classified all hyperbolic Coxeter 4-pyramids whose apex at infin-
ity has a cubical structure. In particular, there exists an ideal hyperbolic Coxeter
4-pyramid P1 with Coxeter scheme shown in Figure 4.2.

Figure 4.2: The Coxeter scheme X(P1)

In the sequel, we use the following notations.

• The non-simple vertex of P1 is denoted by u.

• F0 denotes the unique cubical facet of P1.

• The pyramidal facets of P1 are denoted by F1, · · · , F6. The facets have
property that Fi and Fi+1(i = 1, 3, 5) meet at the non-simple vertex u of P1

and the dihedral angle formed by Fi and F0 is equal to π
4
for i = 1, 2.

• If the intersection of facets Fi and Fj is a (polygonal) face of P1, we denote
it by fij. fij is the ridge of the dihedral angle ∠Fi ∩ Fj.

• The hyperplane carrying Fi is denoted by Hi.

Since the vertex link of u is a Euclidean right-angled cube given by Ã1×Ã1×Ã1,
by using suitable isometries of H4, P1 can be normalized as follows:

• The vertex u is ∞.

• The hyperplane H0 is the unit hemisphere centered at origin.

• The hyperplanes H1 and H2 are orthogonal to the x-axis.

• The hyperplanes H3 and H4 are orthogonal to the y-axis.

• The hyperplanes H5 and H6 are orthogonal to the z-axis.

Under this normalization of P1, we can depict p∞(P1) according to Figure 4.3.
The coordinates of the eight vertices A,B,C,D,E, F,G and H are

A = (
1√
2
,
1

2
,
1

2
) B = (− 1√

2
,
1

2
,
1

2
) C = (− 1√

2
,−1

2
,
1

2
)
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D = (
1√
2
,−1

2
,
1

2
) E = (

1√
2
,
1

2
,−1

2
) F = (− 1√

2
,
1

2
,−1

2
)

G = (− 1√
2
,−1

2
,−1

2
) H = (

1√
2
,−1

2
,−1

2
).

A
D

C

EF
G H

B

xy

z

Figure 4.3: p∞(P1)

In Figure 4.3, the hyperplanes carrying the quadrangular faces ADHE, ABFE
and ABCD are p∞(H1), p∞(H3) and p∞(H5). We take a copy of P1, denoted by
P ′
1. The facets F ′

k of P ′
1 is isometric to the facet Fk of P1 for k = 0, · · · , 6. Then,

glue two isometric 4-pyramids P1 and P ′
1 along the facet F1 of P1 and the facet

F ′
2 of P ′

1 to obtain a new polytope P2.

(     )H1∞p

glueing

(     )H2∞p

Figure 4.4: The projective images of P1 and P ′
1

The projective image of the polytope P2 is depicted in Figure 4.5. By the
glueing procedure, the facets F1 of P1 and F ′

2 of P ′
1 do not appear in P2. Since

the hyperplanes p∞(H3), p∞(H4), p∞(H5) and p∞(H6) of P1 and P
′
1 coincide with

each other, the faces f13, f14, f15, f16 in P1 and f23, f24, f25, f26 in P
′
1 do not appear

in P2 as well. On the other hand, P2 has some new faces; one is the quadrangular
face coming from the cubical facet F0 in P1 and P ′

1, and the other new faces are
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Figure 4.5: The projective image of the resulting 4-polytope P2.

composed by the unions of f34, f45, f56 and f63 in P1 ∪ P ′
1. Since the pyramidal

facets F2 in P1 and F ′
1 in P ′

1 do not contribute to the glueing procedure, P2 has
the two facets F1 and F2 in its boundary.

In summary, we obtain the following combinatorial data for P2.

• P2 has 8 facets; 2 cubical facets, 2 pyramidal facets and 4 facets with 6 faces.

• P2 has 23 faces; (i) 8 triangular faces come from F2 of P1 and F
′
1 of P

′
1, (ii) 10

quadrangular faces come from F0 in P1 and P ′
1, (iii) only one quadrangular

face comes from the intersection of F1 in P1 and F
′
2 in P

′
1, (iv) 4 quadrangular

faces come from the union of f34, f45, f56 and f63 of P1 and P ′
1.

• P2 has 28 edges.

• P2 has 13 ideal vertices; only the vertex ∞ is non-simple.

Since the two pyramidal facets of P2 are isometric to the pyramidal facets F1 and
F2 of P1, we can repeat this procedure by glueing P1 and P2 along their pyramidal
facets, and the resulting 4-polytope is denoted by P3. By induction, glueing a
copy of P1 to Pn−1 gives rise to a new polytope denoted by Pn. In fact, the ideal
hyperbolic 4-polytope Pn is obtained by glueing n copies of P1 along the isometric
facets F1 and F2.

4.1.3 The combinatorial structure of Pn.

Lemma 4.1.2. Pn has the following combinatorial data.

(Facets) (n + 6) facets; n cubical facets, 2 pyramidal facets and the other 4 facets
have (n+ 4) faces.

(Faces) (5n+13) faces; 8 triangular faces, 5n+1 quadrilateral faces and 4 (n+2)-
gonal faces.

(Edges) (8n+ 12) edges.
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(Vertices) (4n+ 5) vertices; 4n+ 4 simple vertices and only one non-simple vertex.

Proof. It suffices to consider p∞(Pn). Indeed, the projective image Pn consists
of n right quadrangular prisms inscribed in closed balls of radius 1 (see Fig 4.6).

□.

・・・

Figure 4.6: The projective image of Pn

We use the following notation and terminology to describe Pn.

• The 2 pyramidal facets of Pn are denoted by F1 and F2.

• The n cubical facets of Pn are denoted by C1, · · · , Cn. Moreover, we suppose
that C1 ∩ F1, Cn ∩ F2 and Ci ∩ Ci+1 are the quadrilateral faces.

• The remaining facets of Pn are denoted by G1, G2, G3, G4. Moreover, we
suppose that Gi ∩Gi+1 (i mod 4) is a (n+ 2)-gonal face.

• Xn denotes the Coxeter scheme of Pn.

• If a face of Pn has the dihedral angle π
m
, we call it a π

m
-face.

Figure 4.7: The front, top, back, and bottom planes are labeled by G1, G2, G3,
and G4, respectively, following the notations for Pn.

Let us determine the elliptic and parabolic subschemes of Xn.
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(1) By Lemma 4.1.2, Xn has n+6 vertices.
(2) Since each quadrilateral face Ci ∩Ci+1 is the intersection of glueing facets,

its dihedral angle ∠Ci ∩ Ci+1 is equal to π
2
. If we glue Pn−1 and P1 along their

isometric pyramidal facets, then all faces of Pn−1 and P1 which are not incident
to the glueing facets are invariant. Therefore, we have the following situation.

• The triangular faces Fi ∩Gj are
π
2
-faces.

• The (n+ 2)-gonal faces Gi ∩Gi+1 are π
2
-faces.

• The quadrilateral faces Gi ∩ Cj are π
3
-faces.

• The quadrilateral faces C1 ∩ F1 and Cn ∩ F2 are π
4
-faces.

(3) Each edge of Pn is expressed as the intersection of precisely three facets.

• If an edge is the intersection Fi ∩ Gj ∩ Gj+1, it corresponds to the elliptic
subscheme A1 × A1 × A1 of Xn.

• If an edge is the intersection F1 ∩Gi ∩C1 or F2 ∩Gi ∩Cn, it corresponds to
the elliptic subscheme B3 of Xn.

• If an edge is the intersection Gi ∩ Gi+1 ∩ Cj, it corresponds to the elliptic
subscheme A3 of Xn.

• If an edge is the intersection Gi ∩ Cj ∩ Cj+1, it corresponds to the elliptic
subscheme A3 of Xn.

(4) Each vertex corresponds to a parabolic subscheme of Xn.

• If a vertex is the intersection F1 ∩ Gi ∩ Gi+1 ∩ C1 or F2 ∩ Gi ∩ Gi+1 ∩ Cn,
then it corresponds to the parabolic subscheme B̃3 of Xn.

• If a vertex is the intersection Gi ∩Gi+1 ∩ Cj ∩ Cj+1, then it corresponds to
the parabolic subscheme Ã3 of Xn.

• The non-simple vertex corresponds to the parabolic subscheme Ã1×Ã1×Ã1

of Xn.

4.2 The growth function of Pn

By implementing the combinatorial data of Pn into Steinberg’s formula (see The-
orem 2.1.3), the growth function fn(t) of Pn can be calculated as follows.
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1

fn(t−1)
= 1− n+ 6

[2]
+
n+ 11

[2, 2]
+

4n

[2, 3]
+

2

[2, 4]
− 8

[2, 2, 2]
− 8

[2, 4, 6]
− 8n− 4

[2, 3, 4]
.

By using Mathematica, the growth function fn(t) can be expressed as

fn(t
−1) :=

Nn(t)

Dn(t)

where

Nn(t) = (t+ 1)3(t2 + 1)(t2 − t+ 1)(t2 + t+ 1)

Dn(t) = t9 − (n+ 3)t8 − (n− 4)t7 + (2n− 8)t6

+ (2n+ 8)t5 + (2n− 8)t4 − (2n− 11)t3 + (3n− 5)t2 + (3n+ 4)t− 4(n+ 1).

Lemma 4.2.1. All the roots of Dn(t) are simple.

Proof. We show that the resultant R(Dn(t), D
′
n(t)) ofDn(t) andD

′
n(t) is not equal

to 0 for any n ∈ N. By using Mathematica, we can calculate it as follows:

R(Dn(t), D
′
n(t)) = 9367548196608n16 − 84315693201408n15 − 3211145218356480n14

− 13452086684085248n13 − 76883986729280512n12 − 221310749589989376n11

− 369276695931527424n10 − 436823682353681408n9 − 375744535536699392n8

− 227155659791212544n7 − 100271146222672128n6 − 28147372028425216n5

− 2791806794781440n4 − 1194005028478976n3 − 23952968404992n2

− 2787725279232n.

By using Descartes’ rule [17, Corollary 1, p.28], R(Dn(t), D
′
n(t)) has at most one

positive real root as a real polynomial with related to the index n. We can check
the following equalities by using Mathematica.

R(D25(t), D
′
25(t)) = −5236764089528548306162419869100800,

R(D26(t), D
′
26(t)) = 18356309345841539117459400503775232.

Hence, R(Dn(t), D
′
n(t)) ̸= 0 for any n ∈ N. □

4.2.1 The distribution of the real roots of Dn(t)

Lemma 4.2.2. Let w(t) be the number of sign changes in the Sturm sequence of

Dn(t) and D
′
n(t). Then, w(0) =

{
6 (1 ≤ n ≤ 25)

5 (26 ≤ n)
and w(∞) =

{
3 (1 ≤ n ≤ 25)

2 (26 ≤ n)
.

Moreover, by using Sturm’s theorem, the number of positive real roots of Dn(t) is
equal to 3 for any n ∈ N.
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Proof. The equality Dn(0) = −4(n + 1) implies that 0 is not a root of Dn(t)
for any n ∈ N. By using Mathematica, the Sturm sequence S(Dn, D

′
n) can be

calculated (see Appendix). Let us write S(Dn, D
′
n) = {d0, · · · , d9}, and denote

the i-th coefficient of dk(t) as a
(k)
i , that is,

dk(t) =
9−k∑
i=0

a
(k)
i ti. (∗)

Then, w(0) (resp. w(∞)) is equal to the number of sign changes in the sequence

a
(0)
0 , · · · , a(9)0 (resp. a

(0)
9 , a

(1)
8 , · · · , a(8)1 , a

(9)
0 ). The sign of each coefficient a

(k)
i de-

pends on n ∈ N. Let us determine their signs. For example, we consider the
sign of a

(5)
0 . The sign of a

(5)
0 depends on the following factor polynomial p(n) (see

Appendix);

p(n) = 13008n8 + 20600n7 − 1607896n6 + 2420092n5 + 2017855n4

+ 899112n3 + 1122697n2 − 1476508n− 45088.

The difference of p(n+ 1) and p(n) equals

p(n+ 1)− p(n) = 52032n7 + 254212n6 − 4243164n5 − 5193210n4

+ 781934n3 + 7841885n2 + 7857749n+ 1704480.

By Descartes’ rule, the number of positive real zeroes of p(n+1)−p(n) is at most
2. Consider

p(2)− p(1) = 9055918 > 0,

p(3)− p(2) = −140899954 < 0,

p(8)− p(7) = −10316213144 < 0,

p(9)− p(8) = 16414574600 > 0.

This observation shows that
p(2) > p(1)

p(2) > p(3) > · · · > p(7) > p(8)

p(8) < p(9) < · · · < p(n) < p(n+ 1) < · · · .

Moreover,

p(1) = 3363872.

p(3) = −260324200.

p(9) = −39144733360.
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p(10) = 162088321532.

Therefore, we can determine the sign of a
(5)
0 as follows.

a
(5)
0


> 0 (n = 1, 2)

< 0 (3 ≤ n ≤ 9)

> 0 (n ≥ 10).

The remaining cases concerning a
(k)
i follow by analogy. □

We can calculate w(−∞) analogously to the proof of Lemma 4.2.2, in such a
way that

w(−∞) =

{
6 (1 ≤ n ≤ 25)

7 (26 ≤ n).

Therefore, by combining Lemma 4.2.2 and Sturm’s theorem, we obtain the fol-
lowing result.

Proposition 4.2.1. The denominator polynomial Dn(t) has the following real
roots: {

three positive roots and no negative roots (1 ≤ n ≤ 25)

three positive roots and two negative roots (n ≥ 26)

4.2.2 The distribution of the complex roots of Dn(t)

By applying the method prescribed in section 2.4.3, we can deduce an upper
bound for the absolute values of all complex roots of Dn(t).

1. Calculate the two real polynomials Φ(t) and Ψ(t) which are given by

Dn(z(t)) =
Φ(t) + iΨ(t)

(t+ i)degDn
,

where z(t) = 2
t− i

t+ i
. By using Mathematica, Φ(t) and Ψ(t) can be written as

follows:

Φ(t) = −(162n+ 56)t9 + (6456n− 6512)t7 − (2476n− 49792)t5

− (7176n+ 60048)t3 + (894n+ 13752)t,

Ψ(t) = (2034n− 456)t8 − (8280n− 24880)t6 − (7188n+ 67136)t4

+ (4136n+ 36816)t2 − (14n+ 2808).
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2. By using Mathematica, we can show that the resultant of Φ(t) and Ψ(t) is
not equal to 0 for any n ∈ N . Therefore Dn(t) has no roots on the circle S2 of
radius 2 centered at the origin.

3. By using Mathematica, the Sturm sequence S(Φ,Ψ) can be calculated.
4. In a manner similar to the argument in section 4.2.1, we can calculate the

numbers of sign changes w(∞) and w(−∞) in S(Φ,Ψ).

Lemma 4.2.3. For any n ∈ N, w(∞) = 8 and w(−∞) = 1. By Corollary 2.4.1,
the number of roots of Dn(t) contained in the closed disk of radius 2 centered at
the origin in the complex plane C is equal to 8.

Theorem 4.2.1. The growth rate of the polytope Pn is a Perron number for any
n ∈ N.

Proof. By Lemma 4.2.3, the absolute values of the 8 roots of Dn(t) are strictly
less than 2. Since degDn(t) = 9, it is sufficient to prove that Dn(t) has a positive
real root which is greater than 2. In order to prove that, we consider w(2). By
Section 2.4.1, we obtain

w(2) =

{
4 (1 ≤ n ≤ 25)

3 (26 ≤ n).

Therefore, by Sturm’s theorem, the polynomial Dn(t) has the unique positive real
root which is strictly greater than 2 for any n ∈ N. □

4.3 Appendix: the Sturm sequence of Dn(t) and

D′
n(t)

In this section, we provide the Sturm sequence S(Dn, D
′
n) = {d0, · · · , dk} consid-

ered in Section 4.2.1, ((∗)).

d0(t) = t9 − (n+ 3)t8 − (n− 4)t7 + (2n− 8)t6

+ (2n+ 8)t5 + (2n− 8)t4 − (2n− 11)t3 + (3n− 5)t2 + (3n+ 4)t− 4(n+ 1)

d1(t) = 9t8 − 8(n+ 3)t7 − 7(n− 4)t6 + 6(2n+ 8)t5

+ 5(2n+ 8)t4 + 4(2n− 8)t3 − 3(2n− 11)t2 + 2(3n− 5)t+ (3n+ 4)

d2(t) =
1

81

{
(8n2 + 66n)t7 + (7n2 − 61n+ 132)t6 + (−12n2 − 60n− 144)t5

+ (−10n2 − 160n+ 240)t4 + (−8n2 + 116n− 498)t3 + (6n2 − 204n+ 216)t2

+ (−6n2 − 224n− 258)t− 3n2 + 311n+ 312
}
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d3(t) =
81

4n2(4n+ 33)2

{
(39n4 + 266n3 − 2673n2 − 1848n− 1936)t6

+ (36n4 + 612n3 + 3956n2 + 4480n+ 2112)t5

+ (54n4 + 470n3 − 1872n2 − 4372n− 3520)t4

+ (−88n4 − 776n3 + 3866n2 + 6246n+ 7304)t3

+ (150n4 + 1374n3 − 3216n2 − 1660n− 3168)t2

+ (162n4 + 2508n3 + 8540n2 + 8870n+ 3784)t

− 259n4 − 3428n3 − 7161n2 − 8548n− 4576
}

Next, we list the coefficients of the polynomials d4(t), · · · , d8(t).

The denominator of d4(t) = 81(1936 + n(1848 + n(2673− n(266 + 39n))))2

a
(4)
5 = 8n2(4n+ 33)2(270n6 − 930n5 − 59765n4 − 72316n3 − 51247n2 − 34920n+ 11920)

a
(4)
4 = −16n2(4n+ 33)2(51n6 + 1630n5 + 7368n4 − 68445n3 − 3176n2 − 41152n+ 16768)

a
(4)
3 = 8n2(4n+ 33)2(471n6 + 6452n5 − 5086n4 − 176746n3 − 54403n2 − 120344n− 8944)

a
(4)
2 = 16n2(4n+ 33)2(153n6 − 411n5 − 32385n4 − 33106n3 − 44007n2 − 20216n− 7664)

a
(4)
1 = −8n2(4n+ 33)2(579n6 + 14834n5 + 101041n4 + 47610n3 + 25760n2 + 3472n− 25280)

a
(4)
0 = 16n2(33 + 4n)2(10304 + 60992n+ 92088n2 + 112317n3 + 78944n4 + 5932n5 + 33n6)

The denominator of d5(t) = 4n2(33 + 4n)2(11920− 34920n− 51247n2 − 72316n3

− 59765n4 − 930n5 + 270n6)2

a
(5)
4 = −81(39n4 + 266n3 − 2673n2 − 1848n− 1936)2(246n8 − 5794n7 + 360959n6

+ 5606880n5 − 3313218n4 + 6140122n3 − 3491843n2 + 2584756n− 544176)

a
(5)
3 = 162(39n4 + 266n3 − 2673n2 − 1848n− 1936)2(5289n8 + 5992n7 − 788952n6

− 810030n5 − 5107313n4 + 118907n3 − 2823408n2 + 1353973n− 43828)

a
(5)
2 = −81(39n4 + 266n3 − 2673n2 − 1848n− 1936)2(8442n8 − 32742n7 − 1868957n6

− 1946748n5 − 4253223n4 − 1203496n3 − 1818280n2 + 440564n− 127008)

a
(5)
1 = −162(39n4 + 266n3 − 2673n2 − 1848n− 1936)2(6261n8 + 27352n7 − 543939n6

+ 1168425n5 − 740209n4 − 333809n3 − 454006n2 − 793981n+ 269220)

a
(5)
0 = 81(39n4 + 266n3 − 2673n2 − 1848n− 1936)2(13008n8 + 20600n7 − 1607896n6
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+ 2420092n5 + 2017855n4 + 899112n3 + 1122697n2 − 1476508n− 45088)

The denominator of d6(t) = 81(−1936− 1848n− 2673n2 + the266n3 + 39n4)2

(−544176 + 2584756n− 3491843n2 + 6140122n3 − 3313218n4

+ 5606880n5 + 360959n6 − 5794n7 + 246n8)2

a
(6)
3 = −8n2(4n+ 33)2(270n6 − 930n5 − 59765n4 − 72316n3 − 51247n2 − 34920n+ 11920)2

(403481n10 + 2480778n9 − 37969219n8 − 158119702n7 − 1100390746n6 − 216055166n5

− 1160964773n4 + 282443786n3 − 329580155n2 + 172728524n− 35052620)

a
(6)
2 = 16n2(4n+ 33)2(270n6 − 930n5 − 59765n4 − 72316n3 − 51247n2 − 34920n+ 11920)2

(169494n10 + 14649n9 − 18830064n8 + 62828800n7 − 387398843n6 + 226406803n5

− 413299018n4 + 245275527n3 − 138927361n2 + 67186063n− 4007124)

a
(6)
1 = 8n2(4n+ 33)2(270n6 − 930n5 − 59765n4 − 72316n3 − 51247n2 − 34920n+ 11920)2

(474903n10 + 4516538n9 − 11601465n8 + 104831670n7 + 294141284n6 − 180768204n5

+ 111338775n4 − 296355112n3 + 31452859n2 − 39181768n+ 10452012)

a
(6)
0 = −16n2(4n+ 33)2(270n6 − 930n5 − 59765n4 − 72316n3 − 51247n2 − 34920n+ 11920)2

(252601n10 + 1535932n9 − 10172760n8 + 137682333n7 + 130244020n6 + 208421539n5

+ 143139607n4 + 2115857n3 + 44003972n2 − 41200307n+ 18745192)

The denominator of d7(t) = 4n2(33 + 4n)2(11920− 34920n− 51247n2 − 72316n3

− 59765n4 − 930n5 + 270n6)2(−35052620 + 172728524n

− 329580155n2 + 282443786n3 − 1160964773n4 − 216055166n5

− 1100390746n6 − 158119702n7 − 37969219n8 + 2480778n9 + 403481n10)2

a
(7)
2 = 81(39n4 + 266n3 − 2673n2 − 1848n− 1936)2(246n8 − 5794n7 + 360959n6 + 5606880n5

− 3313218n4 + 6140122n3 − 3491843n2 + 2584756n− 544176)2(48400755n12

+ 245803454n11 − 4721345357n10 − 11572421870n9 − 124324436353n8 − 146160412422n7

− 206861074257n6 − 134297550268n5 − 66775078001n4 − 24225751096n3 + 3620403819n2

− 813838328n+ 111404496)

a
(7)
1 = 162(39n4 + 266n3 − 2673n2 − 1848n− 1936)2(246n8 − 5794n7 + 360959n6 + 5606880n5

− 3313218n4 + 6140122n3 − 3491843n2 + 2584756n− 544176)2(9127365n12

+ 43738914n11 − 1050600669n10 − 2134594907n9 − 221052668n8 + 8764159647n7

+ 11937399782n6 + 16709700491n5 + 4028829086n4 + 2954840024n3 − 2598459169n2
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− 405956928n− 67672272)

a
(7)
0 = −81(39n4 + 266n3 − 2673n2 − 1848n− 1936)2(246n8 − 5794n7 + 360959n6 + 5606880n5

− 3313218n4 + 6140122n3 − 3491843n2 + 2584756n− 544176)2(59130903n12

+ 320783028n11 − 5921870437n10 − 16668405100n9 − 117418503841n8 − 151967821848n7

− 180213457131n6 − 140644288440n5 − 51131969275n4 − 32331152680n3 + 5676560341n2

− 2814520288n− 23940048)

The denominator of d8(t) = 81(−1936− 1848n− 2673n2 + the266n3 + 39n4)2

(−544176 + 2584756n− 3491843n2 + 6140122n3 − 3313218n4

+ 5606880n5 + 360959n6 − 5794n7 + 246n8)2(111404496− 813838328n

+ 3620403819n2 − 24225751096n3 − 66775078001n4 − 134297550268n5

− 206861074257n6 − 146160412422n7 − 124324436353n8

− 11572421870n9 − 4721345357n10 + 245803454n11 + 48400755n12)2

a
(8)
1 = 16n2(4n+ 33)2(270n6 − 930n5 − 59765n4 − 72316n3 − 51247n2 − 34920n+ 11920)2

(403481n10 + 2480778n9 − 37969219n8 − 158119702n7 − 1100390746n6 − 216055166n5

− 1160964773n4 + 282443786n3 − 329580155n2 + 172728524n− 35052620)2

(1462545045n14 − 10472627469n13 − 402243294759n12 − 1104112693071n11

− 8571517376059n10 − 16797900884717n9 − 22904507347277n8 − 22168784110521n7

− 14235620251809n6 − 6907194126551n5 − 2062300172501n4 − 196719185377n3

− 72614586920n2 + 4391952n− 226865664)

a
(8)
0 = −16n2(4n+ 33)2(270n6 − 930n5 − 59765n4 − 72316n3 − 51247n2 − 34920n+ 11920)2

(403481n10 + 2480778n9 − 37969219n8 − 158119702n7 − 1100390746n6 − 216055166n5

− 1160964773n4 + 282443786n3 − 329580155n2 + 172728524n− 35052620)2

(682442280n14 − 13967744415n13 − 318617986273n12 − 866028050552n11

− 5973136686946n10 − 11470936502501n9 − 15278417145211n8 − 15018314214172n7

− 9591556809634n6 − 5038052836203n5 − 1582742665577n4 − 286371055374n3

− 76587929392n2 − 3723242592n− 226865664)

The numerator of d0 = 81(39n4 + 266n3 − 2673n2 − 1848n− 1936)2(246n8 − 5794n7
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+ 360959n6 + 5606880n5 − 3313218n4 + 6140122n3 − 3491843n2

+ 2584756n− 544176)2(48400755n12 + 245803454n11 − 4721345357n10

− 11572421870n9 − 124324436353n8 − 146160412422n7 − 206861074257n6

− 134297550268n5 − 66775078001n4 − 24225751096n3 + 3620403819n2

− 813838328n+ 111404496)2(36591985143n15 − 329358176568n14

− 12543536009205n13 − 52547213609708n12 − 300328073161252n11

− 864495115585896n10 − 1442487093482529n9 − 1706342509194068n8

− 1467752091940232n7 − 887326796059424n6 − 391684164932313n5

− 109950671986036n4 − 10905495292115n3 − 4664082142496n2

− 93566282832n− 10889551872)

The denominator of d0 = 4n(4n+ 33)2(270n6 − 930n5 − 59765n4 − 72316n3 − 51247n2 − 34920n

+ 11920)2(403481n10 + 2480778n9 − 37969219n8 − 158119702n7

− 1100390746n6 − 216055166n5 − 1160964773n4 + 282443786n3

− 329580155n2 + 172728524n− 35052620)2(1462545045n14

− 10472627469n13 − 402243294759n12 − 1104112693071n11

− 8571517376059n10 − 16797900884717n9 − 22904507347277n8

− 22168784110521n7 − 14235620251809n6 − 6907194126551n5

− 2062300172501n4 − 196719185377n3 − 72614586920n2 + 4391952n

− 226865664)2

54



Bibliography

[1] E. M. Andreev, On convex polyhedra of finite volume in Lobachevskij space,
Mat. Sb., Nov. Ser. 83 (1970), 256-260. English transl.: Math. USSR, Sb. 12
(1971), 255- 259.

[2] J. W. Cannon and P. Wagreich, Growth functions of surface groups, Math.
Ann. 293 (1992), 239-257.

[3] P.M.Cohn, Basic Algebra: groups, rings, and fields., Springer-Verlag, London
(2003).

[4] H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math.
(2)35 (1934), no.3, 588-621.

[5] P. J. Federico, Polyhedra with 4 to 8 faces, Geometriae Dedicata 3 (1975),
469–481.

[6] W. J. Floyd, Growth of planer Coxeter groups, P.V. numbers, and Salem
numbers, Math. Ann. 293 (1992), 475-483.

[7] Gamelin.T.W, Complex Analysis, Undergraduate Texts in Mathematics,
Springer, New York (2001).

[8] P. de la Harpe, Groupes de Coxeter infinis non affines, Exposition. Math 5
(1987), 91–96.

[9] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies
in Advanced Mathematics, 29, Cambridge Univ. Press, Cambridge, 1990.

[10] R. Kellerhals and G. Perren, On the growth of cocompact hyperbolic Coxeter
groups, European J. Combin. 32 (2011), no. 8, 1299-1316.

[11] A. Kolpakov, Deformation of finite-volume hyperbolic Coxeter polyhedra,
limiting growth rates and Pisot numbers, European J. Combin. 33, (2012),
1709-1724.

55



[12] Y. Komori and Y. Umemoto, On the growth of hyperbolic 3-dimensional
generalized simplex reflection groups, Proc. Japan Acad. Ser. A Math. Sci.
Volume 88, Number 4 (2012), 62–65.

[13] Y. Komori and Y. Umemoto, On 3-dimensional hyperbolic Coxeter pyramids,
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