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Abstract
Cusped hyperbolic orbifolds are quotients of hyperbolic n-space by discrete sub-
groups of hyperbolic isometries having �nite volume. By a theorem of Kazhdan
and Margulis, the volume spectrum of these spaces possesses a minimal value
�n > 0 in every dimension n � 2. In our work, we generalize the results of
Siegel and Meyerho¤ in dimensions 2 and 3 by determining the values �n for
4 � n � 9 and by constructing the (unique) cusped orbifold Qn of volume
�n. The method we develop is based on results due to Adams in dimension 3
and combines geometric and algebraic group theory. It is universally applicable
but its success in dimension n � 9 relies on the existence of hyperbolic Coxeter
n-simplices with one vertex at in�nity and of (uniquely determined) densest lat-
tice packings in euclidean (n� 1)-space. In particular, the face-centered-cubic
packing from crystallography respectively the packing with inballs of the tes-
sellation with regular 24-cells in dimension 4 enter into the construction of Q4

respectively Q5.

This work is a self-contained version of our articles [HK] and [H],

[H] T. Hild, The cusped hyperbolic orbifolds of minimal volume in dimensions
less than ten, to appear in J. of Algebra.

[HK] T. Hild, R. Kellerhals, The fcc-lattice and the cusped hyperbolic 4-orbifold
of minimal volume, to appear in J. London Math. Soc.
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Zusammenfassung
Eine hyperbolische Orbifold mit Spitzen ist ein Quotient endlichen Volumens
des hyperbolischen n-Raums modulo einer diskreten Untergruppe der hyper-
bolischen Isometriegruppe. Nach einem Satz von Kazhdan und Margulis besitzt
das Volumenspektrum dieser Räume in jeder Dimension n � 2 einen minimalen
Wert �n > 0. In unserer Arbeit bestimmen wir diese Werte �n für 4 � n � 9
und konstruieren die (eindeutig bestimmte) Orbifold Qn mit Spitzen, deren
Volumen �n beträgt. Hiermit verallgemeinern wir die entsprechenden Resultate
von Siegel und Meyerho¤ in den Dimensionen 2 und 3. Die von uns entwickelte
Methode stützt sich auf Resultate, welche in Dimension 3 auf Adams zurück-
gehen und kombiniert geometrische und algebraische Gruppentheorie. Sie ist
universell einsetzbar doch ihr Erfolg in den Dimensionen n � 9 beruht auf der
Existenz sowohl n-dimensionaler hyperbolischer Coxetersimplizes mit einer Ecke
im Unendlichen als auch (eindeutig bestimmter) dichtester Gitterkugelpackun-
gen im euklidischen (n� 1)-Raum. Insbesondere benutzt die Konstruktion von
Q4 beziehungsweise Q5 das �ächenzentrierte kubische Gitter der Kristallogra-
phie beziehungsweise die Packung bestehend aus Inkugeln der 4-dimensionalen
P�asterung mit regulären 24-Zells.

Diese Arbeit ist eine in sich abgeschlossene Version unserer beiden Artikel [HK]
und [H],

[H] T. Hild, The cusped hyperbolic orbifolds of minimal volume in dimensions
less than ten, to appear in J. of Algebra.

[HK] T. Hild, R. Kellerhals, The fcc-lattice and the cusped hyperbolic 4-orbifold
of minimal volume, to appear in J. London Math. Soc.

ii



Résumé
Une orbifold hyperbolique avec pointes est un quotient de l�espace hyperbolique
de dimension n par un groupe discret d�isométries hyperboliques, ayant un vol-
ume �ni. D�après un théorème de Kazhdan et Margulis, le spectre du volume de
ces espaces possède une valeur minimale �n > 0 dans chaque dimension n � 2.
Dans notre travail, nous déterminons ces valeurs �n pour 4 � n � 9 et constru-
isons l�(unique) orbifold avec pointe Qn dont le volume vaut �n. Par ce fait,
nous généralisons les résultats analogues de Siegel et Meyerho¤ en dimensions
2 et 3. La méthode que nous développons est basée sur les résultats obtenus
par Adams en dimension 3 et combine les théories géométrique et algébrique
des groupes. Elle est universellement applicable mais son succès en dimensions
n � 9 est dû aussi bien à l�existence de simplexes hyperboliques de Coxeter avec
un sommet à l�in�ni en dimensions n � 9 qu�au fait que les réseaux euclidiens les
plus denses sont connus (et uniquement déterminés) en dimensions n � 8. En
particulier, le réseau cubique fcc de la cristallographie respectivement le pavage
avec des 24-cells réguliers en dimension 4 sont utilisés pour la construction de
Q4 respectivement Q5.

Cette thèse est une version autonome de nos articles [HK] et [H],

[H] T. Hild, The cusped hyperbolic orbifolds of minimal volume in dimensions
less than ten, to appear in J. of Algebra.

[HK] T. Hild, R. Kellerhals, The fcc-lattice and the cusped hyperbolic 4-orbifold
of minimal volume, to appear in J. London Math. Soc.
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1 Introduction

Let Hn denote the n-dimensional hyperbolic space and I (Hn) the group of
hyperbolic isometries.

In this thesis, we study non-compact, complete, hyperbolic orbifolds of �nite
volume, that is, quotients ofHn by non-cocompact, discrete subgroups of I (Hn)
of �nite covolume. By the �nite volume condition, Hn=� possesses a �nite
number of unbounded ends of �nite volume each. These parts are called cusps
of the orbifold and are associated to conjugacy classes of parabolic subgroups
of �. A cusp boundary is a compact euclidean orbifold En�1=�q, where �q is
the stabilizer in � of a parabolic �xed point q 2 @Hn.

While hyperbolic manifolds are di¢ cult to construct in dimensions n > 3, we
have the nice class of hyperbolic orbifolds modelled upon discrete Coxeter groups
of Hn at hand. A hyperbolic Coxeter group �C is generated by the re�ections
in the sides of a Coxeter polytope PC characterized by dihedral angles of the
form �

k , k � 2 an integer. Among Coxeter polytopes, Coxeter simplices TC are
distinguished by their simple combinatorics. In particular, the mirror images of
TC under the action of �C provide a very symmetric tessellation ofHn. However,
hyperbolic Coxeter simplices do not exist anymore in dimensions n > 9. The
start of this thesis was a strong believe of Ruth Kellerhals that a connection
exists between Coxeter simplices with one vertex at in�nity and cusped orbifolds
of small or minimal volume.

Understanding the volume spectrum

V n1 := fvoln (Hn=�) : Hn=� a cusped hyperbolic orbifoldg

for cusped hyperbolic n-orbifolds would constitute a �rst step towards a com-
plete classi�cation by controlling one of its most important topological invari-
ants. It is known that V n1 is well-ordered for n = 2; 3, and discrete for n � 4.
By a theorem of Kazhdan-Margulis [KM], there is a minimal element �n > 0 in
V n1 for every dimension n � 2. We address the problem to �nd all hyperbolic
n-orbifolds of volume �n and to determine the value �n explicitly. For n � 9,
we achieve a complete solution which can be stated as follows.

Main Theorem. For 4 � n � 9, let Hn=�� be a cusped hyperbolic orbifold
of minimal volume �n. Then, up to isomorphism, �� is related to a hyperbolic
Coxeter simplex group according to the table below, and as such uniquely deter-
mined.

It generalizes the results in dimensions 2 and 3 due to C. L. Siegel [Sie, 1945] and
R. Meyerho¤ [Me2, 1985] respectively. Our proof is based on a generalization
of methods developed by C. Adams [Ad1] in dimension 3. It is an interplay be-
tween algebraic and geometric group theory. For the convenience of the reader,
we included an illustrative survey in form of a tree on the previous page. The
�ve branches indicate the mathematical areas that enter the construction of
Hn=�� for n � 9. Every apple on a branch gives an important keyword associ-
ated with the theory symbolized by the branch.

The method we developped is universal. However, the lack of �nite volume
hyperbolic Coxeter simplices increases considerably the complexity of the ar-
guments in higher dimensions. At the end of this thesis, we discuss the 10-
dimensional case, only. In particular, we prove that H10=�� has at most two
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cusps and determine their shape. In this way, we can at least pinch the value
�10.

Dim n �� �n

2 r r r1 �

6
� 5:23 � 10�1

3 r r r r6 1

8
JI
��
3

�
� 4:23 � 10�2

4
r r r r4r �2

1 440
� 6:85 � 10�3

5 r r r r r r4 7 �(3)

46 080
� 1:83 � 10�4

6
r r r r r rr 4

�3

777 600
� 3:98 � 10�5

7 Z2-extension of

r r r r r r
rr

p
3 L(4; 3)

1 720 320
� 9:46 � 10�7

8
r r r r r r r rr �4

4 572 288 000
� 2:13 � 10�8

9
r r r r r r r r rr �(5)

22 295 347 200
� 4:65 � 10�11

The present work is a self-contained version of our two articles [HK] and [H]
accepted for publication in Journal of the London mathematical society and the
Journal of Algebra respectively. We tried to include all information a non-expert
needs to understand the methods and the proof of our theorem.

[H] T. Hild, The cusped hyperbolic orbifolds of minimal volume in dimensions
less than ten, to appear in J. of Algebra.

[HK] T. Hild, R. Kellerhals, The fcc-lattice and the cusped hyperbolic 4-orbifold
of minimal volume, to appear in J. London Math. Soc.
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2 Hyperbolic geometry

2.1 Preliminaries

As a reference for the material in this chapter, we recommend [Rat] and [Thu].

Hyperbolic n-space. Up to isometry, hyperbolic n-space Hn is the only sim-
ply connected, complete, n-dimensional, Riemannian manifold of constant sec-
tional curvature � = �1. We use the conformal Poincaré model Hn = (Un; d)
consisting of the upper half-space

Un = fx 2 Rn : xn > 0g � Rn

equipped with the hyperbolic distance function

cosh (d (x; y)) = 1 +
kx� yk2

2xnyn
;x; y 2 Un.

Here and in what follows, k.k denotes the euclidean norm in Rn induced by the
standard scalar product h:; :i. We often write En instead of Rn to indicate that
we consider the euclidean metric space (Rn; h:; :i). In particular, we have

d ((0; : : : ; 0; xn) ; (0; : : : ; 0; yn)) =

����ln xnyn
���� , for all xn; yn > 0. (1)

The Riemannian metric of the geometric model Hn is

ds2 =

Pn
i=1 dx

2
i

x2n
(2)

and yields the volume element

dv =
dx1 � � � dxn

xnn
. (3)

The boundary at in�nity of Hn is the one-point compacti�cation @Hn = @Un[
f1g = Rn�1. Elements of @Hn will be called points at in�nity, those of Hn

ordinary points.

Spheres and horospheres. In the upper half-space model, a hyperbolic sphere

S (a; r) := fx 2 Hn : d (a; x) = rg

of center a 2 Hn and radius r > 0 equals, as a set, the euclidean sphere
contained in Un with center (a1; : : : ; an�1; an cosh r) and radius an sinh r. Fix
a point c 2 S (a; r) = S and let l be the geodesic half-line through a with
endpoints c and p 2 @Hn. Expand S by moving the center a away from c on
l, while keeping c on S. The resulting hypersurface Sp is called a horosphere
based at p 2 @Hn. Geodesics and, more generally, totally geodesic k-planes in
Hn are intersections of Un with a euclidean k-plane or k-sphere orthogonal to
Rn�1 = @Un. Note that horosphere Sp is orthogonal to every geodesic with
endpoint p. Therefore, Sp is a euclidean hyperplane parallel to Rn�1 if p = 1
and the intersection of Un with a euclidean sphere in U

n
tangent to Rn�1 in p

if p 6=1. In particular, the horosphere

S1 (�) := fx 2 Un : xn = �g

3



is said to be at euclidean height � > 0. By means of (2), S1 (�) inherits a
positive multiple of the euclidean metric

ds2 jS1(�)=
1

�2

n�1X
i=1

dx2i . (4)

All horospheres being congruent to S1 (�), they are all endowed with a �at
Riemannian structure. The connected region bounded by Sp and meeting @Hn

only at p is termed horoball Bp. In particular, the horoball

B1 (�) := fx 2 Un : xn > �g

is said to be at euclidean height � > 0.

Hyperbolic isometries. The set of all hyperbolic isometries is denoted by
I (Hn). Every 
 2 I (Hn) is a �nite composition of re�ections with respect to
hyperplanes. It naturally extends to a homeomorphism of H

n
= Hn [ @Hn

and is completely determined by its behaviour on @Hn. To see this, we endow
@Hn with the chordal metric. A generalized sphere Ŝ (a; r) of Rn�1 is either a
euclidean sphere

S (a; r) := fkx� ak = rg

or an extended euclidean hyperplane

P (a; r) := fhx; ai = rg [ f1g

with unit normal vector a 2 Rn�1 and passing through ra, r 2 R. Note that
topologically, P (a; r) is a sphere. In the same spirit, a re�ection �̂a;r of R

n�1

with respect to Ŝ (a; r) is either a re�ection �a;r with respect to P (a; r) or an
inversion �a;r in S (a; r) :

�a;r (x) = x+ 2 (r � ha; xi) a , if x 2 Rn ; �a;r (1) =1,

�a;r (x) = a+
�

r
kx�ak

�2
(x� a) , if x 2 Rn ; �a;r (1) = a ; �a;r (a) =1.

Finite compositions of �̂a;r are called Möbius transformations of R
n�1

. The
group Möb(n� 1) of all (n� 1)-dimensional Möbius transformations is natu-
rally isomorphic to I (Hn). Indeed, if we interpret Rn�1 as the boundary of Un
and write ~a = (a; 0), then the isomorphism is given via the Poincaré extension

�̂a;r 7�! �̂~a;r jUn .

For more details, we refer to [Rat, §4.4 and §4.6].

Classi�cation of hyperbolic isometries. The Brouwer �xed point theorem
forces 
 2 I (Hn) to have a �xed point in H

n
. For 
 6= id, there are three

mutually excluding situations depending only on its conjugacy class in I (Hn).
We call 
 elliptic if 
 �xes a point p 2 Hn. It leaves every hyperbolic sphere
S (p; r) setwise invariant and acts on this sphere as an isometry of the induced
spherical metric. A parabolic isometry 
 has no �xed point in Hn and exactly
one �xed point p 2 @Hn. Every horosphere Sp is left invariant by 
 which
acts on it as an isometry of the induced �at metric. In particular, a parabolic
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element �xing 1 acts on S1 (1) as a euclidean isometry. Finally, a loxodromic
isometry has no �xed point in Hn and exactly two �xed points p; q 2 @Hn.
Denote by l the geodesic line joining p and q. Then 
 leaves invariant every
banana tube or cylinder fx 2 Hn : d (l; x) = rg of radius r > 0 around l and is
the composition of a non-trivial hyperbolic translation along l with a possibly
trivial elliptic isometry �xing l. We note the following useful result (see [Rat,
Thm. 4.7.3], for example).

Lemma 1 Let Sa and Sb be two horospheres and 
 2 I (Hn) such that 
 (Sa) =
Sb. Then, 
 is an isometry with respect to the induced �at metrics of Sa and
Sb.

Hyperbolic polytopes. The terminology used in the context of polytopes is
not uni�ed. This paragraph should help to avoid any confusion later. A hyper-
bolic polytope Pn = P in dimension n, or simply n-polytope, is the intersection
of the convex hull of �nitely many points in H

n
with Hn. We use the name

polygon for P 2 and polyhedron for P 3. A side S of P is a non-empty subset of
the boundary @P contained in a unique geodesic hyperplane hSi of Hn. Note
that P has �nite volume and only �nitely many sides.

If hSi� denotes the half-space bounded by hSi and containing P , then

P =
\

S a side of P

hSi� . (5)

The de�nition of P as an intersection of �nitely many half-spaces as in (5) would
have been equivalent to our de�nition. We often consider k-faces of P which
are de�ned inductively as follows: the only n-face is P itself and a k-face is the
side of a (k + 1)-face. For our work, the (n� 2)-faces or ridges and the 0-faces
or vertices are of special interest. We distinguish between ordinary and ideal
vertices. The latter ones lie at in�nity and do not belong to P . Their number is
at most �nite. A polytope all of whose vertices are ideal is called ideal polytope.
For completeness, we mention that a 1-face of P is called an edge.

Analogously, a spherical or euclidean polytope will always be the convex hull of
�nitely many points in Sn respectively En.

Vertex �gures and solid angles. Vertex �gures and solid angles generalize
the angle notion for polygons to higher dimensions. Every ordinary boundary
point x of a polytope Pn = P lives in the interior of a d-face F d = F , with
0 � d � n � 1. Choose a radius r > 0 so small that the hyperbolic n-sphere
S (x; r) centered in x only intersects the sides of P incident with F . Such a
radius exists because P has only �nitely many sides. Denote by F? the (n� d)-
plane passing through x and orthogonal to F . The intersection of F? with the
su¢ ciently small sphere S (x; r) is an (n� d� 1)-sphere Sn�d�1 (x; r). We
de�ne the solid angle of P with apex F to be the spherical (n� d� 1)-polytope

VF :=
1

r

�
P \ Sn�d�1 (x; r)

�
.

Up to isometry, VF is independent of x 2 F . By abuse of language, the name
of solid angle is also used for the spherical volume of VF . Often, a formula

5



involving solid angles is simpli�ed when using the normalized volume obtained
by dividing the solid angle by the volume


n�1 :=
2�

n
2

�
�
n
2

� (6)

of the unit (n� 1)-sphere. We write

!n�d�1 (F j P ) :=
voln (VF )


n�d�1
(7)

for the normalized volume of the solid angle with apex F in P . In particular,
we set !�1 (P j P ) = 1 and !0

�
Fn�1 j P

�
:= 1=2.

Some of the solid angles in P have special names. The solid angle with apex
a ridge R of P is called dihedral angle �R of P . We have �R = 2� !1 (R j P ).
The solid angle with apex a vertex v 2 D is termed vertex �gure in v. In the
case of a hyperbolic polytope P , the vertex �gure in an ideal vertex w is de�ned
to be the euclidean (n� 1)-polytope

Vw := P \ Sw

in the normalized �at metric of a su¢ ciently small horosphere Sw based at w.

6



2.2 Geometry of discrete groups

Complete hyperbolic orbifolds. A classi�cation theorem of Riemannian
geometry tells us that every connected, complete, n-dimensional real Riemannian
manifold of constant sectional curvature � = �1 is isometric to a quotient Hn=�
of Hn by a discrete, torsionfree subgroup of I (Hn). Since torsionfree subgroups
of I (Hn) act without �xed points in Hn, only parabolic and loxodromic ele-
ments occur in �. If we enlarge this class of hyperbolic manifolds by allowing
elliptic isometries in �, we obtain the class of (complete) hyperbolic n-orbifolds.
Every �xed point of an elliptic element projects to a singularity of the quotient
space Hn=�. A proof showing the completeness of these quotients can be found
in chapter 13 of [Thu] or [Rat].

Two orbifolds Hn=�1 and Hn=�2 are isometric if and only if �1 and �2 are
conjugate in I (Hn) [Rat, Thm 8.1.5]. Therefore, we are interested in properties
and objects invariant under conjugation. For instance, the stabilizers of two
�-equivalent points x; 
x 2 Hn

are conjugated, i.e.

�
x = 
�x

�1.

First, consider the stabilizer �x < � of an ordinary point x 2 Hn. Containing
elliptic elements only, �x is isomorphic to a �nite subgroup of the orthogonal
group O (n). This forces the �xed point set

S (
) := fx 2 Hn : 
x = xg

of a non-trivial isometry 1 6= 
 2 � to be empty or a hyperbolic k-plane di¤erent
from Hn. We deduce that the set

S :=
[

1 6=
2�
S (
)

of all points in Hn �xed by an element in � is a closed, nowhere dense subset.
Under the canonical projection � : Hn ! Hn=�, S projects to the so-called
singular set of Hn=�.

Now, let x 2 @Hn be the �xed point of a parabolic isometry. A discrete subgroup
of I (Hn) cannot contain a loxodromic and parabolic isometry with common
�xed point [Rat, Thm 5.5.4]. The stabiliser �x therefore contains only parabolic
and elliptic elements. It is called elementary of parabolic type. After conjugation,
assume x = 1 to see that �1 is the Poincaré extension of an in�nite discrete
subgroup of euclidean isometries acting on Rn�1 [Rat, Thm 5.5.5] and leaves
invariant every horosphere S1. By means of Lemma 1, �1 acts as an in�nite
discrete subgroup of isometries in the �at metric of S1.

Consider a subset V � Hn=� pierced by the singular set. The restriction of the
canonical projection � to ��1 (V ) is clearly not injective. Nevertheless, we call
V embedded if there is a point x in the closure of ��1 (V ) such that � induces
an isometry from ��1 (V ) =�x onto V . By abuse of language, we also say that
��1 (V ) embeds in Hn=�. In particular, for r satisfying

0 < r <
1

2
d (x;�xr fxg) ,

7



a hyperbolic ball B (x; r) of radius r centered in an ordinary point x 2 Hn

embeds in Hn=� since B (� (x) ; r) is isometric to B (x; r) =�x [Rat, Thm 13.1.1].
Later, we will see that each horoball Bx based at the �xed point x 2 @Hn of a
parabolic isometry 
 2 �, and of su¢ ciently small euclidean radius, projects to
an embedded subset Bx=�x of Hn=�.

Fundamental domains. The link between algebraic and geometric group
theory is made by the notion of fundamental domain. The terminology used in
connection with fundamental domains is not uni�ed. In this work, a fundamental
domain for a discrete group � < I (Hn) is a closed set D � Hn, such that the
�-images of its interior �D are all disjoint and the family

T = f
D : 
 2 �g , (8)

which we force to be locally �nite, partitions Hn. In general, D is not uniquely
determined. The Dirichlet construction yields a particularly useful fundamental
domain (see below).

Di¤erent elements in (8) intersect only on their boundaries, that is

D \ 
D � @D

for all non-trivial 
 2 �. Therefore each interior point of D has trivial stabiliser
in � whereas the set of �xed points S, modulo the action of �, lies on the
boundary @D. The inclusion � : D ,! Hn induces a homeomorphism � : D=�!
Hn=� [Rat, Thm 6.5.8]. Up to some identi�cations of boundary points, D can
thus be used as a topological model for the orbifold Hn=�.

If vol (@D) = 0, then D is said to be proper. Since all proper fundamental
domains of � have the same volume [Rat, Thm 6.5.5], the covolume of � is
well-de�ned by

covol (�) := vol (D) , D a proper fundamental domain of �.

Outside its singular set, Hn=� has the local structure of a manifold. The canon-
ical projection � maps D onto Hn=� so that vol (Hn=�) � vol (D). But, since
� is injective on �D, we also have vol (Hn=�) � vol

�
�D
�
. Combining both in-

equalities, we conclude that the volume of a complete orbifold Hn=� equals the
covolume of �, that is the volume of a proper fundamental domain of �.

Dirichlet fundamental domains. Dirichlet�s construction of a fundamental
domain for a discrete group � < I (Hn) starts, as usually, with the choice of
an ordinary point u 2 Hn with trivial stabilizer [Rat, Thm 6.5.14]. To every
1 6= 
 2 �, we associate the closed half-space

H
 (u) := fx 2 Hn : d (x; u) � d (x; 
u)g

containing u and bounded by the perpendicular bisector

P
 (u) := fx 2 Hn : d (x; u) = d (x; 
u)g

of the geodesic joining u to 
u. The Dirichlet fundamental domain D (u) with
center u is then given by

D (u) :=

8<:
Hn, if � = f1gT
1 6=
2�

H
 (u)
.

8



A parabolic isometry in � forces D (u) to be unbounded [Rat, Thm 6.5.7]. If �
has �nite covolume, D (u) is the intersection of only �nitely many half-spaces
H
 (u), hence a hyperbolic n-polytope. In what follows, we restrict ourselves to
the �nite volume case and put D = D (u). We will see that modulo the action of
�, every ideal vertex corresponds to the conjugacy class in I (Hn) of a parabolic
subgroup in �.

Side-pairing and Poincaré relations. Besides being proper, D is exact. This
means that with every side Si of D comes an isometry 1 6= si 2 � satisfying

Si = D \ siD.

This adjacency transformation si is uniquely determined and satis�es

S0i := s�1i Si is a side of D.

Since S0i = s�1i D \D, we deduce the side-pairing relation

sis
0
i = 1. (9)

Consider again the tessellation T de�ned in (8) and call chain in T a �nite
sequence of adjacent polytopes. The set of all chains in T is denoted by K.
In T , the passage from the polytope si�1 � � � s2s1D to its adjacent polytope
si � � � s2s1D with shared side si�1 � � � s2s1Si is described by the adjacency trans-
formation si. The uniqueness of si implies a one-to-one correspondence

� : G �! K
sm � � � s2s1 7�! fD; s1D; s2s1D; : : : ; sm � � � s2s1Dg

between the group G generated by the set of adjacency transformations � :=
fsi : Si a side of Dg and K. Any member of T being joined to D by a chain,
we conclude that G = �.

LD 1s D L3 2 1s s s D2 1s s D 1 1is s D- L 1is s DL 1ms s DL

1S
2 1 2

1 2

s s S
s S
¢

=

2 1 3s s S ( )1 1

1 1

i i i

i i

s s s S
s s S
-

-

¢

=

L

L

1 1m ms s S- L

A cycle in K is a chain whose �rst and last members coincide. Every cycle in
K corresponds, under �, to a relation in �. If the polytopes of a cycle all share
a common ridge in D, the corresponding relation

sf � � � s2s1 = 1 (10)

of elements si 2 � is termed Poincaré relation. One can show that

h� : Side-pairing relations, Poincaré relationsi (11)

yields a group presentation for � [Rat, Thm 13.5.3].

The next paragraph provides necessary conditions for the solid angles of funda-
mental polytopes. These conditions are hidden in every construction of orbifolds
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and indirectly enter the computation of orbifold volumes.

Cycle conditions. The side-pairing relations (9) imply that any class of �-
equivalent sides of D consists of one or two elements depending on whether the
associated adjacency transformation leaves the side invariant or not. On the
other hand, a Poincaré relation sf � � � s2s1 = 1 corresponds to the cycle around
a ridge Fn�2 of D. Clearly,

Fn�2 � si � � � s1D () (si � � � s1)�1 Fn�2 � D, 8i = 1; : : : ; f .

In what follows, we use the notation 
i := (si � � � s1)�1 and Fn�2i := 
iF
n�2.

By means of (11), the family

Fn�2 :=
n
Fn�2f = Fn�2 = Fn�20 ; Fn�21 ; Fn�22 ; : : : ; Fn�2f�1

o
contains all, possibly repeated, ridges of D equivalent to Fn�2 under �. Every
boundary point x 2 @D lies either in the the interior of a side or in a ridge.
Consider the equivalence class

[x] := fxf = x = x0; x1; x2; : : : ; xf�1g = �x \D (12)

containing all boundary points xi = 
i (x) equivalent to x. Fix 0 � d � n � 1.
Since two d-faces F1; F2 � D are �-equivalent if and only if their respective
interiors contain points x1 2 �F1and x2 2 �F2 of the same equivalence class
[x1] = [x1], Poincaré and side-pairing relations intrinsically de�ne an equivalence
relation on the set Fd (D) of all d-faces in D. In the sequel, we use the following
notations:

�d denotes the number of equivalence classes Fd(1);Fd(2); : : : ;Fd(�d) in
Fd (D). Every class Fd(i) contains fd(i) faces F d(i)j .

Similarly, we obtain equivalence classes on the set I (D) of ideal vertices.

I (D) splits intom equivalence classes I(1); I(2); : : : ; I(m), every class
I(i) containing l(i) ideal vertices w(i)j .

For �xed 0 � d � n � 1 and 1 � i � �d, we denote the order of a setwise
stabilizer of a face in Fd(i) by gd(i). On can show that the normalized angles with
apex F d(i)j satisfy the cycle conditionX

Fd
(i)
2Fd

(i)

!n�d�1

�
F d(i) j D

�
=

1

gd(i)
. (13)

In particular, the dihedral angle sum in �-equivalent ridges Fn�2 of D equals a
submultiple of 2�: X

Fn�2
(i)

2Fn�2
(i)

�Fn�2
(i)

(D) =
2�

gn�2(i)

. (14)

More details can be found in [Zeh, Thm. 13.1.1]. As explained by Poincaré�s
fundamental polyhedron theorem [Rat, §13.5], the dihedral angle sum condition
(14) is, in some sense, already a su¢ cient condition for D to be the fundamental
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domain for a discrete subgroup of I (Hn).

Cusp of an orbifold. The present paragraph de�nes the most important
objects of our work: the cusps of an orbifold. We use the notation introduced
above. Consider an equivalence class I = [w] = fw1; : : : wl�1; wl = wg of ideal
vertices in D. Let 
j 2 � be the isometry satisfying wj = 
jw. Every ideal
vertex wj of D is �xed by a parabolic isometry in � [Rat, Corollary to Thm
12.2.4]. Since it cannot be at the same time �xed point of a loxodromic element
[Rat, Thm 5.5.4], we can associate with each wj , a horosphere Swj based at wj
such that Swj = 
jSw. The union of vertex �gures

V[w] =
l[

j=1


�1j
�
Swj \D

�
� Sw

is formed by adjacent, bounded euclidean (n� 1)-polytopes, no two of which
have common interior points. The set V[w] represents a fundamental domain
for the action of the stabiliser �w of elementary parabolic type on Sw. By
conjugation, we may assume w =1 and the su¢ ciently small horosphere S1 (r)
to be at euclidean height r > 0, i.e

S1 (r) = fx 2 Un : xn = rg .

The �nite volume condition forces �1 to be the Poincaré extension of a co-
compact discrete subgroup of euclidean isometries. It leaves every horosphere
S1 (�), � < r and therefore every horoball B1 (r) setwise invariant. The quo-
tient set C1 (r) := B1 (r) =�1 is an unbounded hyperbolic n-orbifold embed-
ded in Hn=�. It is called a cusp of Hn=� with cusped point [w]. We conclude
that there is a one-to-one correspondence between the conjugacy classes of par-
abolic isometries in � and the cusps of Hn=�.

Maximal and canonical cusps. The euclidean height r > 0 of S1 (r) is not
uniquely de�ned. More precisely, the sequence of all su¢ ciently small horoballs
(B1 (r))r2(0;d) de�nes a sequence of nested cusps (C1 (r))r2(0;d) in H

n=�. An
answer to the question about the best choice for r depends on the situation and
the results one is interested in. For instance, a lower volume bound for a un-
bounded orbifold is given by the sum of cusp volumes as long as their interiors
are disjoint. Furthermore, we want the cusps in Hn=� to be maximal in the
sense that no cusp can be enlarged without failing to be embedded. In practice,
such a set of maximal disjoint cusps is not easy to specify.

Another set of disjoint cusps is the one formed by canonical cusps (compare
for example [Bea, §7.37], [Shi, Lemma 4 & 5], [Me1], for n = 3 and [He1], [K4,
Lemma 2.7 & 2.8] for arbitrary n). Albeit not necessarily maximal, the canoni-
cal cusp has the advantage of an easy construction. By a hyperbolic isometry, we
map the �xed point of an associated parabolic element to 1. We already know
that �1 acts on @Un as a cocompact discrete subgroup of euclidean isometries.
Such groups are called crystallographic and are the subject of Chapter 4. There,
we explain that �1 contains non-trivial translations giving rise to the notion
of minimal translation length ! > 0. The particular horoball B1 (!) at euclid-
ean height ! is called canonical, and the canonical cusp Ccan1 (!) = C1 (!) is
de�ned to be its image under projection to Hn=�.

11



2.3 Volume of non-euclidean polytopes

By de�nition, the volume of an orbifold Hn=� equals the volume of a fun-
damental polytope D for �. A good understanding of the volume spectrum
for hyperbolic n-orbifolds leads unavoidably to the non-trivial problem of com-
puting the volume of hyperbolic n-polytopes. All results known so far about
non-euclidean volume determination are based on ideas developed by L. Schlä�i
and N. I. Lobachevsky (compare [Sch] and [Lo1], [Lo2]). Good references for
the following paragraphs are [Vin1, Part I, Chapter 7], the PhD thesis of Zehrt
[Zeh] and the survey article [K3].

Poincaré�s angle sum. A volume formula which goes back to Poincaré [Poi,
for n = 2] links the volume of an even dimensional hyperbolic polytope P 2m = P
with its generalized alternating angle sum

W (P ) :=
2mX
d=0

(�1)d
X

Fd2Fd(P )

!n�d�1
�
F d j P

�
(15)

by means of

W (P ) = (�1)m 2


2m
vol2m (P ) . (16)

It can be viewed as an angle analog of Euler�s Polyhedron Theorem. If D is
a fundamental polytope for a discrete group �, then the cycle condition (13)
transforms W (D) into an alternating sum of stabilizer orders

W (D) =
2mX
d=0

(�1)d
�dX
i=1

1

gd(i)
.

Poincaré�s formula (16) re�ects a fundamental di¤erence between even and odd
dimensions in connection with non-euclidean volume. Indeed, the alternating
angle sum of a polytope always vanishes in odd dimensions and yields no infor-
mation about volume.

It is interesting that for hyperbolic manifolds Mn = Hn=� of �nite volume,
the alternating angle sum of a fundamental polytope for � equals the Euler
characteristic � (Mn). By following the elementary approach of Hopf in the
compact case [Hop], Kellerhals and Zehrt [KZe, Thm 3.3] gave an elementary
combinatorial-metrical proof of the Gauß-Bonnet formula

� (Mn) =

(
(�1)m 2


n voln (M
n) , n = 2m

0 , n = 2m+ 1
. (17)

Schlä�i�s volume di¤erential. The qualitative di¤erence between odd and
even dimensions is also re�ected by Schlä�i�s di¤erential formula

d voln (P ) = �
1

n� 1
X

Fn�22Fn�2(P )

voln�2
�
Fn�2

�
d�Fn�2 . (18)

Here, the constant � is �1 or 1 depending on whether P is hyperbolic or spher-
ical. The inductive character of (18) allows to deduce volume formulae for a
�xed parity of the dimension.
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In the case of even dimension, we start with the assumption

vol0 (fpointg) = 1

to obtain the well-known hyperbolic defect formula which expresses hyperbolic
area as a function of its angles. This procedure was generalized to higher dimen-
sions by Schlä�i, the main problem being the determination of the integration
constant. The general reduction formula expresses even dimensional hyperbolic
volumes as functions of odd-dimensional spherical volumes by means of

vol2m (P ) =

2m

2

mX
j=0

X
F 2j2F2j(P )

�2j
�
F 2j

�
!2m�2j�1

�
F 2j j P

�
. (19)

The Schlä�i invariants �2j
�
F 2j

�
are rational constants depending only on the

combinatorics of F 2j . Zehrt computed the Schlä�i invariants for certain even
dimensional hyperbolic and spherical polytopes [Zeh, Thm 12.3.1].

In odd dimensions, the integration problem is considerably harder. First
di¢ culties already arise in dimension 3. Indeed, even the volume formulae
for the combinatorially simplest polyhedra require very complicated functions
related to the classical polylogarithm

Lik (z) =
1X
r=1

zr

rk
=

Z 1

0

Lik�1 (t)

t
dt, z 2 C and jzj � 1.

As examples we cite the Lobachevsky function

JI (�) =
1

2

1X
r=1

sin (2r�)

r2
= �

Z �

0

log (1� t)
t

dt =
1

2
Im
�
Li2
�
e2i�

��
,

the Riemann zeta function

� (k) = Lik (1) =
1X
r=1

1

rk

and the Dirichlet L-function

L (k; d) =
1X
r=1

�
r

d

�
1

rk
,

where
�
r
d

�
is the Legendre symbol. While Kellerhals [K2] could at least express

the volumes of some combinatorially simple hyperbolic 5-polytopes in terms of
the Trilobachevsky function

JI3 (�) =
1

4
Re
�
Li3
�
e2i�

��
,

the volume problem for n � 7 is, up to now, completely open.
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2.4 Volume of hyperbolic quotients

Volume spectrum. The volume of a hyperbolic n-orbifold is one of its most
important topological invariants. The topological invariance is a consequence of
Gauß-Bonnet in dimension 2, of Gromov-Thurston in dimension n � 3 ([Thu,
Thm 6.2], for example). Understanding the set of possible volumes would con-
stitute a �rst step on the long way to a complete classi�cation. This chapter
tries to give an overview of known results and an idea of the di¢ culties related
to the study of the volume spectrum

V n := fvoln (Qn) : Qn a hyperbolic n-orbifoldg .

In what follows, we restrict ourselves to the �nite volume case and often omit
the adjective hyperbolic since no confusion is possible.

The 2-dimensional spectrum V 2 is well understood. In 1945, Siegel found
a formula which relates the volume of a hyperbolic orbifold H2=� to the or-
ders of stabilizer subgroups of � and the number jI (P )j of ideal vertices of a
fundamental polygon P for � [Sie] (see also [Bea, §10.4 & 10.6]) :

vol2
�
H2=�

�
= �2�

24 �0X
i=1

 
1

g0(i)
� 1
2
f0(i)

!
+ 1� 1

2
jI (P )j

35 . (20)

Substituting integers for the parameters �0, g0(i), f
0
(i) and jI (P )j, he could con-

clude that the volume of a 2-orbifold is bounded from below by �
42 and that,

up to isometry, the orbifold corresponding to the Coxeter group (see Chapter
3) with graph r r r7
is unique to have area �

42 . Moreover, the only non-compact orbifold of smallest
possible volume �

6 is isometric to the quotient H
2=�, with � the Coxeter group

represented by r r r1 .

Siegel�s formula (20) generalizes the well-known Gauß-Bonnet formula which
gives the volume of oriented compact manifolds M2 according to

vol2
�
M2
�
= 4� (g � 1) , (21)

with g > 1 the genus of M2. In contrast to the discrete volume spectrum for
manifolds, one can show that V 2 is well-ordered of order type !!.

The 3-dimensional structure theory for the volume spectrum W 3
o of oriented

manifolds is developed by Jørgensen and Thurston [Thu, Chapter 5 & 6]. By
proving that volumes decrease when Dehn surgery is performed on a cusp of
the manifold, they showed that W 3

o is well-ordered of order type !
!. The limit

points in W 3
o are exactly the volumes of non-compact manifolds. More pre-

cisely, the volume of an (m+ 1)-cusped manifold is approximated from below
by volumes of m-cusped manifolds. Since any non-orientable manifold is doubly
covered by an oriented manifold, we know that W 3 is also well-ordered.

In [DM], Dunbar and Meyerho¤ use results of Adams [Ad1, Section 2] to gen-
eralize this structure theory to the orbifold case. The volume spectrum V 3 is
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still of order type !! and limit points of V 3 correspond to cusped orbifolds.
But this time, the converse is false since there is a second type of so-called rigid
cusps which do not allow Dehn-�lling. The volumes of non-compact orbifolds
all of whose cusps are rigid, represent isolated points in V 3.

The passage from dimension 3 to 4 reveals a big surprise. Indeed, by a result
of Wang [Wan], V n is discrete for all n � 4.

Small volumes. The volume spectrum gives a good idea of the variety of hy-
perbolic orbifolds. We are are especially interested in the small values of V n.
In dimension 2, Siegel�s formula implies a lower bound for the volume of an
orbifold and can be used to determine the singleton of minimal volume. The ex-
istence of a positive lower bound for arbitrary n � 2 is a consequence of a result
due to Kazhdan and Margulis [KM], who showed that every hyperbolic orbifold
contains a ball whose radius depends only on the dimension. This geometric
fact implies the following fundamental

Theorem 2 The volume spectrum V n contains a positive minimal value for all
n � 2.

The natural question now asks for this minimal value. Closely related is the
problem of constructing all hyperbolic n-orbifolds whose volume equals this
minimal value. Is there only one such orbifold up to isometry? In dimension 2,
we already know that the answer is yes. We will see that the answer remains
yes at least in dimensions n � 9.

Minimal volume cusped manifolds. The Gauß-Bonnet formula (17) shows
that, in particular, the discrete volume spectrum Wn � V n of hyperbolic man-
ifolds in even dimensions 2m is of the form

W 2m � 

2m

2
N. (22)

In dimension 2, the alternative version (21) of the Gauß-Bonnet formula im-
plies that

W 2 = 2�N.

Exactly four non-homeomorphic hyperbolic Riemann surfaces have minimal vol-
ume 2�, namely the 3-punctured sphere, the 1-punctured torus, the 1-punctured
Klein bottle and the projective plane with one handle.

By gluing together the sides of an ideal, regular 24-cell in H4, Ratcli¤e and
Tschantz constructed several cusped hyperbolic 4-manifolds with Euler char-
acteristic 1 and hence of minimal volume 4�2=3 [RT1]. In addition, they showed

W 4 =
4�2

3
N.

In a joint work with Everitt [ERT], they found cusped hyperbolic 6-manifolds
with Euler characteristic 1, hence minimal volume 8�3=15. All these manifolds
are constructed by gluing copies of an all right-angled Coxeter polytope. In
higher even dimensions however, no similar constructions yielding Euler char-
acteristic 1 and hence minimal volume have been realized until now. In fact, we
do not even know if (2m)-manifolds of Euler characteristic 1 still exist.
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Selberg lemma. We come back to the orbifold case. The subset relation (22)
allows some conclusions about the even dimensional volume spectrum of hyper-
bolic orbifolds. Indeed, by the Selberg lemma [Sel] (see also [Rat, Corollary 4 to
Thm 7.5.7]), every discrete subgroup � < I (Hn) has a �xed point free subgroup
�0 of �nite index [� : �0] = i. In other words, every hyperbolic orbifold Hn=� is
�nitely covered by a hyperbolic manifold Hn=�0 and

voln (H
n=�) =

voln (H
n=�0)

i
.

We deduce

V 2m � 

2m

2
Q.

Unfortunately the proof of Selberg�s lemma is not constructive so that the ques-
tion of how to determine a covering manifold for a given orbifold remains open
and is in general a very hard problem. Likewise, the related problem of �nding
all possible indices i of �xed point free subgroups of � is far from being solved.
It is not even known if a manifold of smallest volume covers an orbifold of small-
est volume. The volume spectrum in dimension n � 4 being discrete, we only
conclude that in some sense, most indices i are forbidden.

Zehrt�s formula. Combining the Schlä�i reduction formula (19) and the cycle
condition (13), Zehrt generalized Siegel�s formula (20) to higher even dimensions
[Zeh, Chapter 13]

vol2m
�
P 2m

�
= 
2m

2

mX
d=0

�2dX
i=1

X
F 2d
(i)
2F2d

(i)
(P 2m)

�2d
�
F 2d(i)

�
!2m�2d�1

�
F 2d(i) j P 2m

�

= 
2m

2

mX
d=0

�2dX
i=1

�2d
�
F2d(i)

�
1
gd
(i)

.

(23)

The last equality uses the fact that the Schlä�i invariants �2d
�
F 2d(i)

�
, depending

on the combinatorics of F 2d(i) only, are the same for all faces in a given class F2d(i).
By substituting the expressions he found for �2d

�
F2d(i)

�
, Zehrt proved that (23)

equals Siegel�s formula in dimension 2. In contrast to the 2-dimensional case, it
seems that Zehrt�s formula (23) does not help to determine hyperbolic orbifolds
of minimal volume. As an example, just take a look at the formula giving the
volume of a fundamental polytope P for a discrete group � in dimension 4 [Zeh,
Corollary 13.2.3]:

vol4 (P ) =

4

2

24 �0X
i=1

�
1
g0
(i)

� 1
2f

0
(i)

�
+

+
�2X
i=1

�
1� 1

2a
0
�
F 2(i)

���
1
g2
(i)

� 1
2f

2
(i)

�
+ 1� 1

2 jI (P )j

35 ,
where a0

�
F 2(i)

�
represents the number of ordinary vertices of P .
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Volumes of Coxeter simplices. Four our work, the most important result
is the list of all Coxeter simplex volumes which is due to Johnson, Kellerhals,
Ratcli¤e and Tschantz [JKRT]. Their results are based on various considerations
some of which are described above.

Lower volume bounds. Formulas like (23) are not suited in our quest of the
minimal value in V n. Another approach is by searching lower volume bounds
and then improving these bounds step by step. Since unbounded hyperbolic
quotients are more frequent in some sense and easier to handle, we restrict our
investigations to this case.

A lower volume bound for an unbounded orbifold is given by the volume of the
canonical cusp C1 (!). By means of (3), the volume of C1 (!) easily computes
to

voln (C1 (!)) =

Z
C1(!)

dv =

Z
F�(!;1)

dx1 � � � dxn
xnn

=
voln�1 (F )

(n� 1) !n�1 , (24)

where voln�1 (F ) is the euclidean volume of a fundamental domain F for �1
acting on @Un.
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3 Coxeter groups

Throughout this chapter, Xn denotes the hyperbolic space Hn, the sphere Sn or
the euclidean space En of curvature � = �1; 1 or 0 respectively. The di¢ culty
of �nding �xed point free discrete subgroups of I (Hn) makes the construction
of hyperbolic manifolds in dimensions n > 3 a very complicated task. Clearly,
the situation becomes easier when we omit the condition that the group has to
be �xed point free. This chapter describes a special class of discrete subgroups
providing easy examples of hyperbolic orbifolds in low dimensions. We restrict
ourselves to the �nite volume case. A general reference for this chapter is [Vin2]
or the more condensed version [Vin1, Part I, Chapter 6 and Part II, Chapter 5].

Coxeter groups, polytopes and graphs. We call discrete re�ection group
every discrete subgroup of I (Xn) generated by re�ections with respect to hy-
perplanes in Xn. In honour of H. S. M. Coxeter who �rst classi�ed these groups
in euclidean and spherical space, a discrete re�ection group � is said to be a
hyperbolic, elliptic or parabolic Coxeter group depending on whether � is �1, 1
or 0. Distinguished among all discrete subgroups by the simplicity of their geo-
metric description, they provide the simplest examples of orbifolds. The family
of all mirror hyperplanes associated to the elements of � decomposes Xn into
polytopes that are permuted under the action of �. Any polytope P � Xn of
the resulting tessellation is a fundamental domain for � and � is generated by
the re�ections with respect to the bounding hyperplanes of P [Vin1, Prop 1.4.].
By abuse of language, we say that � is generated by the re�ections in the sides
of P . The polytope P is called Coxeter polytope associated to �. One can show
that a polytope is a Coxeter polytope for some Coxeter group � if and only if
all of its dihedral angles are submultiples of �, i.e. of the form �

k , k 2 N, k � 2.

Being a discrete subgroup of I (Xn), the generating re�ections of a Coxeter
group are adjacency transformations and verify side-pairing and Poincaré re-
lations. We denote the re�ection in the side Si of P by si. The side-pairing
relations are of the form s2i = 1. If �=kij is the dihedral angle in the ridge
Rij = Si \ Sj , then the cycle of adjacent �-images of P around Rij yields the
Poincaré relation (sisj)

kij = 1. Two parallel sides Si and Sj are indicated by
(sisj)

1 and kij =1. Note that si and sj then generate an in�nite cyclic group.

Coxeter groups and polytopes are most conveniently described by Coxeter graphs.
Depending on the situation, a vertex i represents the generating re�ection si 2 �
or the corresponding side Si � P . An edge joining two vertices i and j is marked
by the integer 2 � kij � 1 associated to the relation (sisj)

kij . To simplify mat-
ters, we omit the edges marked 2 and leave an edge unmarked if kij = 3. For
completeness, we add that the vertices representing two divergent sides in Hn

with a common perpendicular of length l are joined by a dotted edge marked l.
However, this case will not occur in our work. In the sequel, we shall use the
terms node and branch for the vertices and edges of graphs in order to avoid
confusion with 0- and 1-faces of polytopes.

Classi�cation. Using linear algebra, it is possible to check if the polytope
represented by a given Coxeter graph is realizable in Xn. Modulo congruence,
this polytope is then uniquely determined. A Coxeter graph is termed spheri-
cal, euclidean of hyperbolic depending on whether the polytope it represents is
realized in Sn, En or Hn.
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It turns out that every spherical Coxeter polytope is a simplex while a euclid-
ean Coxeter polytope of �nite volume is a direct product of Coxeter simplices
(compare [Cox, § 11.2], for example). Euclidean and spherical Coxeter simplices
exist in all dimensions and have been completely classi�ed by Coxeter. Their
graphs can be found in [Vin1, Table 1 & 2 p.202], for example.

Note that the Coxeter graph of a spherical simplex T � Sn�1 also represents
an unbounded simplicial cone C � En with apex 0, such that

C \ Sn�1 = T:

Vice versa, the spherical vertex �gure T in 0 of a euclidean Coxeter simplex
arises by omitting its bounding hyperplane opposite to C. Since each vertex �g-
ure of a euclidean or spherical Coxeter simplex is a spherical Coxeter simplex,
we conclude that every subgraph obtained from a spherical of euclidean Cox-
eter simplex graph by removing one of the nodes together with every incident
branch, is spherical.

The hyperbolic case is much more complicated (see [Vin2], for example).
While, up to isometry, a hyperbolic Coxeter polytope of �nite volume is uniquely
determined by its connected graph, the number of nodes of this graph can be
arbitrarily large. Therefore, we cannot hope for a simple classi�cation of these
polytopes.

By the same argument as above, the vertex �gure in every ordinary vertex is
represented by a spherical Coxeter simplex graph. Analogously, the euclidean
vertex �gure associated to an ideal vertex is determined by a euclidean Coxeter
graph. In the neighborhood of every ideal vertex, a hyperbolic Coxeter poly-
tope has therefore the combinatorial structure of a cone over a direct product
of euclidean Coxeter simplices.

In low dimensions, hyperbolic Coxeter groups give nice examples of hyperbolic
orbifolds. Unfortunately, for n su¢ ciently large, there are no more Coxeter
polytopes and thus no discrete re�ection groups of �nite covolume in Hn. The
bounds n < 30 in the compact case and n < 996 in the �nite volume case are
due to Vinberg, Prokhorov and Khovanskij, respectively. Concrete examples
however are only known in dimensions n � 8 and n � 21 respectively.

It is worth while to note that the classi�cation problem for hyperbolic Coxeter
n-simplices is completely resolved. They are described by hyperbolic Coxeter
graphs, all of whose subgraphs with n nodes are elliptic or parabolic. In the
compact case, hyperbolic Coxeter simplices exist only in dimensions n � 4.
In the �nite volume case Coxeter simplices live in dimensions n � 9, only. A
complete list can be found in [Vin1, Table 3 & 4], for example. One has the
impression that in some sense, these simplices yield the most symmetric tes-
sellations of Hn. This feeling will be con�rmed by the statement of our main
theorem in Chapter 7.

Important examples. For n � 2, the linear Coxeter graph An de�ned byr r r p p p r r, n nodes,
represents a spherical simplex in dimension n � 1. It can be interpreted as
the euclidean fundamental cone for the symmetry group of the regular simplex
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spanned by the centers of n+ 1 mutually touching congruent balls in En.
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Figure 2

Chopping this cone by a suitable hyperplane and taking the bounded part yields
a euclidean simplex with Coxeter graph

r r r p p p r r��
�HHH
r

, n+ 1 nodes,

as indicated by the yellow color in the Figures 1 and 2 above.

The linear graph r r r1 (25)

describes a right angled hyperbolic triangle T with one ideal vertex symbolized
by the euclidean subgraph r r1 . Note that the associated Coxeter group in-
duces the symmetry group of the Z-lattice. The spherical subgraphs r r andr r in (25) represent the dihedral angles �

3 and
�
2 at the ordinary vertices of

T .

We will see in Chapter 7, that the vertex with vertex �gure r r can be in-
terpreted as the center of an (ideal) regular hyperbolic triangle spanned by the
(base or) center points of three mutually touching (horo)discs (see Figure 3).

1

π 3

01
2-1- 1

2

Figure 3
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Among all non-cocompact discrete subgroups of I
�
H2
�
, the Coxeter group de-

�ned by (25) has minimal covolume (see Chapter 6).

Consider again the euclidean cone de�ned by A2. This time we chop it by the
edge of the simplex spanned by the centers of the three congruent, mutually
touching balls to obtain the euclidean Coxeter triangle r r r6 indicated by
the blue color in Figure 1. This triangle represents the euclidean vertex �gure
in the unique ideal vertex of the hyperbolic tetrahedron de�ned by the Coxeter
graph r r r r6 . (26)

Note that it is also a characteristic simplex for the symmetry group of the
hexagonal packing of euclidean discs. Again, one of the spherical subgraphs
with three nodes belongs to the An-family. We will see in Chapter 6 that the
vertex with vertex �gure r r r can be interpreted as the center of an (ideal)
regular hyperbolic tetrahedron spanned by the base points of four mutually
touching (horo)balls. The Coxeter group de�ned by (26) has minimal covolume
among all non-cocompact discrete subgroups of I

�
H3
�
.

g

g

3
p

3
p

6
p

g

In dimension 10, consider the hyperbolic Coxeter polytope P 101 determined by

r r r r r r r r r r rr
1

i . (27)

As such, it is of simplest combinatorial type: it has twelve sides and exactly one
ideal vertex whose 9-dimensional vertex �gure is determined by the euclidean
subgraph

r r r r r r r r r rr
1

obtained by discarding the node i. Being disconnected, this vertex �gure is a
direct product of two euclidean simplices. Both simplices are well known to
crystallographers since they are fundamental domains for the a¢ ne Weyl group
of the E8-lattice and the Z-lattice respectively. Root lattices will be studied
in Chapter 4. The side represented by the node i is the only one which is not
incident with the ideal vertex. Using the self-de�ning abbreviation

r r r
i

�1 �2 ,
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all 9-dimensional spherical vertex �gures of P 101 can be found by removing one
node from �1 and one node from �2. They are listed in the Appendix A3
where we compute the volume of P 101 . Its volume yields an upper bound for the
minimal volume �10 of cusped hyperbolic orbifolds (cf. Chapter 8).

Wytho¤�s construction. We now describe the so-calledWytho¤ construction
which is used to de�ne an important class of polytopes in Xn. In particular,
regular polytopes belong to this class.

Consider a spherical Coxeter n-simplex T with associated graph � and group
�. To every side Si of T corresponds a unique vertex vi opposite to Si. We
interpret � as a subgroup of I

�
En+1

�
with �xed point 0 and consider the �-

orbit of vi. Their convex hull in En+1 de�nes a euclidean polytope Pvi = P . In
what follows, we symbolize this procedure by drawing a ring around the node i
of �. We speak about the ringed graph of P .

The dimension of P equals the number of nodes in the connected component �i
of i in �. Moreover, P is contained in the mirror hyperplanes of the re�ections
represented by the nodes of �r�i = ��. Therefore, the symmetry group of P
is induced by the Coxeter group with graph �i while the Coxeter group with
graph �� leaves P pointwise invariant. Finally, the Coxeter graph of the setwise
stabilizer Stab (P ) of P in � is obtained when removing from � the node i
together with all incident branches.

Throughout this paragraph, let � be a ringed, connected, spherical Coxeter
graph with n nodes. Then, � yields an n-dimensional polytope P . Consider
the center c of a side Fn�1 of P . By construction it is the image under �
of a vertex vj 6= vi of T . For simplicity, we assume c = vj . The side Sj
opposite vj is the only side of T which is not incident with vj . Hence, the
ringed graph � representing Fn�1 is derived from the graph � by removing the
node j together with all incident branches. But the ringed graph � has to be
connected since Fn�1 has dimension n � 1. We conclude that the node j is at
a free end of �. Analogously, the ringed graph representing an (n� k)-face is
obtained by discarding the node representing its center from the ringed graph
of an (n� k + 1)-face, for 1 � k � n.

Regular polytopes. Until now, a ringed Coxeter graph represents a euclidean
polytope. This paragraph explains how the same graph can be interpreted to
yield a spherical or a hyperbolic polytope as well. First, we apply Wytho¤�s
construction to a spherical Coxeter simplex T with linear graph �

s s s p p p s s
1 2 3 n � 1 n

p1 p2 pn�1

and corresponding group �. The vertex of T which is symbolized by the node i
is termed vi. The euclidean polytope Pe � En de�ned by putting a ring around
the node n, s s s p p p s s

1 2 3 n � 1 n

p1 p2 pn�1f
is called a regular polytope since all its sides and all its dihedral angles are the
same. We write �e for its dihedral angle. Let Te denote the bounded euclid-
ean simplex obtained when cutting the cone determined by � with a euclidean
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hyperplane orthogonal to the edge (0; vn). Then

Pe =
[

2�


Te,

and � determines Pe uniquely up to similarity.

Now, by using the natural embedding Sn � Sn+1, we can equally well interpret
� as a simplicial cone with apex a 2 Sn+1 r Sn and base T � Sn. Chopping
this cone with a spherical hyperplane Hs orthogonal to (0; vn) yields a bounded
spherical simplex Ts. The disjoint union of all �-images of Ts builds up a regular
spherical polytope Ps. Depending on the distance from Hs to a, the dihedral
angle �s of Ps satis�es �s 2 (�e; �).
Finally, � describes also a hyperbolic cone in Hn+1 with apex a 2 Hn+1 and
base T � Sn (a; r), r > 0. Chop the cone with a hyperbolic hyperplane Hh

orthogonal to (0; vn) to obtain a bounded hyperbolic simplex Th. The �-images
of Th add up to a regular hyperbolic polytope Ph. Depending on the distance
from Hh to a, the dihedral angle �h of Ph satis�es �h 2 (�0; �e). Up to
isomorphism, all regular polytopes in Sn+1 and Hn+1 are uniquely determined
by � and �s or �h. In particular, the minimal dihedral angle �0 corresponds
to the ideal regular polytope de�ned by �. The angles �e and �0 are listed in
[Vin1, Part II, Chapter 5, Table 2], for example.

Regular tessellations. A regular polytope generates a tessellation T of Xn if
its dihedral angle is of the form 2�

p0
, with p0 an integer. In that case, the Coxeter

group with graph �0

s s s s p p p s s
0 1 2 3 n � 1 n

p0 p1 p2 pn�1

induces the symmetry group of T . Note that �0 is obtained by adding a node to
the graph � de�ned above and joining it to the node 1 by a branch marked p0.
Up to congruence, a regular tessellation of En, Sn or Hn is therefore uniquely
determined by a linear euclidean, spherical or hyperbolic Coxeter graph with
the following property

deleting any node of the graph �0 yields an elliptic graph. Only in
the case of an hyperbolic tessellation with ideal regular polytopes,
the graph with the node n removed is parabolic.

Regular hyperbolic tessellations are classi�ed and listed in [Vin1, Part II, Chap-
ter 5, Table 6]. For compact polytopes, they only exist in dimensions n � 4.
Tessellations with ideal regular polytopes are realizable in dimensions n � 5
and represented in the following table.

n 2 3 4 5

� r r r� 1 , 3 � � < 1 r r r r� 3 6 , 3 � � � 5 r r r r r3 4 3 4 r r r r r r3 3 3 4 3r r r r3 4 4

Vertex �gure of a lattice. In the spirit of Wytho¤�s construction, ringing
the node 0 of the linear parabolic Coxeter graph �0 provides a lattice � in En:

s s s s p p p s s
0 1 2 3 n � 1 n

p0 p1 p2 pn�1g
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The lattice points are precisely the centers of the copies of P (determined by �)
in the tessellation T . For simplicity, assume that the center of P is 0 2 �. A
vector of minimal norm in � is the center of a copy adjacent to P in T . Their
convex hull V (0) is a polytope called vertex �gure of � in 0. Remember that
the symmetry group � of P is given by the Coxeter group with graph �. Up to
magni�cation by a factor 2, V (0) is the polytope with vertices �v1. The ringed
graph of V (0) is thus obtained by putting a ring around the node 1 of �.

s s sp p p s s
1 2 3 n � 1 n

p1 p2 pn�1g
Forcing � to be linear is very restrictive. Indeed, there is just one regular
tessellation in En for n > 4, namely the one with hypercubes. Fortunately all
the statements of this paragraph still hold for Coxeter trees under the condition
that the node 0 is joined to only one other node 1. In particular, all root lattices
can be represented by a ringed graph. This simpli�es the notation in Chapter
4. In fact, the polytopes whose combinatorics we determine in Appendix A1 are
all vertex �gures of root lattices.

Combinatorics. In this paragraph, we explain how the representation by a
ringed Coxeter tree can be used to determine the combinatorics of the vertex
�gure V (0) (compare [Cox, §11]). More precisely, we are interested in the
number Nn�k

m of (n� k)-faces in V (0) which are equivalent to Fn�km � V (0)
under the action of �. Elementary group theory yields

Nn�k
m =

j�j��Stab �Fn�km

��� ,
where Stab

�
Fn�km

�
is the setwise stabilizer of Fn�km in �. As speci�ed above,

the graph of Stab
�
Fn�km

�
is obtained by removing the node representing the

center of Fn�km from the original graph �. The orders of elliptic Coxeter groups
are listed in [Vin1, Part II, Chapter 5, Table 1], for example. In Appendix A1,
we present six examples of polytopes whose combinatorics are needed in the
proof of our main theorem.
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4 Crystallography

The shape of cusp boundaries is related to properties of crystallographic groups.
For our work, a good understanding of the geometric properties in crystallog-
raphy is therefore crucial. Good references are [Bou], [CS] and [BrB].

Euclidean lattices. An n-dimensional euclidean lattice is the set of all inte-
gral linear combinations of n linearly independent vectors "1; : : : ; "n in euclidean
m-space Em, m � n, i.e.

� = Z"1 � : : :� Z"n.

In what follows, we often identify � with the discrete group of translations along
its lattice vectors, that is with a subgroup of I (span ("1; : : : ; "n)) ' I (En). A
fundamental domain for � is given by the parallelotope

P� :=
nXn

i=1
�i"i, 0 � �i � 1

o
.

Its volume may be expressed in terms of the Gram matrix G� = (h"i; "ji)i;j
according to

voln (P�) =
p
det (G�). (28)

Note that a basis change matrix A for � has integral entries only and det (A) =
�1. Such a matrix A 2 GL (n;Z) is called unimodular. Since det (G�) =
det
�
AG�A

�1� is independent of the lattice basis, the volume of � is well de�ned
by

voln (�) := voln (P�) .

Dual lattices. The lattice generated by the dual vectors "�1; : : : ; "
�
n is called

dual lattice and denoted by

�� = fx 2 En : hx; yi 2 Z, 8y 2 �g :

Plugging the well-known identity G�G�� = I from linear algebra into (28) yields

voln (�
�) =

1

voln (�)
. (29)

A lattice whose Gram matrix has integral entries only is termed integral lattice.
Integral lattices can be interpreted as sublattices of their duals and, according
to (29), satisfy

voln (�) =
p
[�� : �]. (30)

Note that integral self-dual lattices are unimodular by means of (30). Prominent
examples of unimodular lattices are the cubic lattice Zn and the root lattices
D4 and E8.

Automorphism groups. Every lattice � comes with its automorphism group
Aut (�) that consists of all euclidean isometries �xing the origin and mapping
� onto itself. Since � is discrete, Aut (�) is a �nite subgroup of O (n). One can
show that dual lattices have the same automorphism group, i.e.

Aut (��) = Aut (�) .
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Adjoining the translations along lattice vectors to Aut (�) yields the a¢ ne au-
tomorphism group Auta (�) of �. We remark that Auta (�) is the group of all
distance preserving euclidean transformations mapping � onto itself, that is, it
equals the symmetry group of �.

Root lattices. An integral lattice � is said to be even if all its vectors have
even squared norm, that is

hx; xi � 0 (mod 2) , 8x 2 �.

The minimal vectors of norm ! =
p
2 are the roots of �. An even integral lattice

generated by its roots is called a root lattice. Chapter VI of [Bou] presents an
introduction to their theory. It turns out that any root lattice � admits a
fundamental basis �1; : : : ; �n verifying

h�i; �ii = 2, 8i 2 f1; : : : ; ng and h�i; �ji 2 f0;�1g , 8i 6= j

and is a direct sum of irreducible ones:

� = �1 � : : :� �k.

Among the euclidean lattices, root lattices are distinguished by extremal prop-
erties. In this context, it is preferable to normalize the situation in order to
have minimal norm ! = 1.

Therefore, roots have minimal norm 1 in what follows and the elements of a
fundamental root basis �1; : : : ; �n satisfy

h�i; �ii = 1, 8i 2 f1; : : : ; ng and h�i; �ji 2
�
0;�1

2

�
, 8i 6= j. (31)

All vectors x of a root lattice then satisfy

hx; xi 2 N. (32)

Weyl groups. To every root �, we associate the family of parallel hyperplanes

P�;k :=

�
hx; �i = k

2

�
, k 2 Z,

orthogonal to � and passing through k
2�. The re�ection ��;k with respect to

P�;k equals the re�ection in P�;0 followed by k translations along the root � :

��;k (x) = x� 2
�
hx; �i � k

2

�
� = ��;0 + k�. (33)

From now on, let R denote the set of roots associated to an irreducible root
lattice �. The �nite subgroup of Aut (�) generated by the re�ections ��;0,
� 2 R, is named the Weyl group W (�) of �. The union of all hyperplanes
P�;0, � 2 R, partitions En into simplicial cones with apex 0. Every such cone
C is a fundamental domain for W (�). Moreover, the roots associated to the
bounding hyperplanes of C form a fundamental root basis for � [Bou, Chapter
VI, n�1.5]. By means of property (31), the vertex �gure in 0 of C is a simplex
described by a connected spherical Coxeter graph all of whose branches are
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unmarked.

A¢ ne Weyl groups. Adjoining the translations along root vectors to W (�)
yields the in�nite a¢ ne Weyl group Wa (�). Formula (33) shows that Wa (�) is
generated by the re�ections with respect to the hyperplanes P�;k, � 2 R, k 2 Z.
The union of all P�;k provides a tiling of En with simplices. Every simplex T
de�nes a fundamental domain for Wa (�). Those with vertex 0 are obtained
by chopping one of the fundamental cones C for W (�) with the hyperplane
P�̂;1 associated to the highest root �̂ corresponding to C. We will not need a
precise de�nition of the highest root in what follows. The interested reader is
referred to [Bou, Chapter VI, n�1.8 & 2.1]. Much more important for us is the
fact that T is a euclidean Coxeter simplex whose graph is obtained by adding
a node representing P�̂;1 and one or two unmarked branches to the graph of C.
As explained at the end of Chapter 3, this euclidean graph with a ring around
the additional node describes �. The following list gives all connected spherical
Coxeter graphs de�ning a Weyl group and the ringed graphs for the associated
root lattices (cf. [CS, Table 4.1], for example).

Root lattice Weyl group ringed graph

A1 r er r1

An
n � 2 nodes

r r r p p p r r r r r p p p r r��
�HHH
re

Dn

n � 4 nodes r r r p p p r r rr r r r p p p r r rrre

E6 r r r r rr r r r r rrre

E7 r r r r r rr r r r r r r rre
E8 r r r r r r rr r r r r r r r rre

Crystallographic groups. By de�nition, crystallographic groups are cocom-
pact discrete groups of euclidean isometries. They describe the symmetries
of lattices and have been characterized algebraically by Ludwig Bieberbach in
[Bie]. In particular, a¢ ne Weyl and automorphism groups are crystallographic
groups. The following paragraph summarizes some of Bieberbach�s results.

A (linear) isometry of En is of the form (a;A) := (x 7! Ax+ a), with a 2 Rn
and A 2 O (n). Every crystallographic group � < I (En) therefore comes with
two important groups. The �rst one is its normal subgroup of translations
� C � identifed with the corresponding euclidean lattice. It is the kernel of the
canonical homomorphic projection

p : � �! O (n)
(a;A) 7�! A

mapping each element (a;A) 2 RnoO (n) to its di¤erential. The second group,
called the point group � of �, is de�ned as the image of p. Let � : � ,! � denote
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the natural injection a 7! (a; I), I the identity matrix as usually. Then we have
an exact sequence of groups

1! �
�
,! �

p! �! 1. (34)

Characterized as the unique maximal free abelian subgroup of �, the lattice �
must have rank n and �nite index [� : �] = j�j in � [Rat, Thm. 7.4.2]. On
the other hand, � may be identi�ed with a subgroup of Aut (�) by means of
A 7! (0; A).

Two crystallographic groups �1 and �2 are isomorphic if and only if there is an
a¢ ne transformation � 2 Rn oO (n) such that

�2 = ��1�1�.

In what follows, we always suppose that 0 belongs to � and use a lattice basis
rather than the standard basis to express the elements of �. With respect to
this basis, � is just the lattice of integers Zn. Every element of the point group
� becomes a unimodular matrix A 2 GL (n;Z). Therefore, two crystallographic
groups �1 and �2 of the same order are isomorphic if and only if there is a
vector u 2 Rn and a unimodular matrix U 2 GL (n;Z) such that the repre-
sentation (g1; G1) 2 Zn o GL (n;Z) of every element in �1 is conjugate to the
representation (g2; G2) 2 Z oGL (n;Z) of an element in �2 according to

(u; U)
�1
(g1; G1) (u; U) = (g2; G2) :

Classi�cation of crystallographic groups. In 1911, Bieberbach answered
a¢ rmatively Hilbert�s 18th problem by proving that in every dimension n, the
number of isomorphism classes of crystallographic groups is �nite. For an el-
ementary proof of Bieberbach�s theorem, see [Bus]. A complete classi�cation
exists only in dimensions n � 4. It is due to Fedorov and Schön�ies in dimen-
sions 2 and 3, to Brown, Bülow, Neubüser, Wondratschek and Zassenhaus in
dimensions 4 (compare e.g. [Bur] for n = 2 or 3 and [BrB], for n = 4). Fortu-
nately, the classi�cation in isomorphism classes is more than su¢ cient for our
needs. In fact, a lot of information about a crystallographic group is encoded in
its �nite point group. The classi�cation into arithmetic and geometric crystal
classes plays on this assertion.

Two crystallographic groups belong to the same arithmetic crystal class or sim-
ply Z-class if their point groups �1 and �2 are conjugate according to

9U 2 GL (n;Z) such that �2 = U�1U
�1. (35)

It is important to note that every Z-class consists of full isomorphism classes. If
we reduce even more the importance of the lattice vectors by allowing the basis
change matrices to have real entries, then the set of all Z-classes splits into geo-
metric crystal classes or simply Q-classes. More precisely, two crystallographic
groups belong to the same Q-class if their point groups �1 and �2 satisfy

9U 2 GL (n;R) such that �2 = U�1U
�1.

The name of Q-class is justi�ed because the existence of a real such matrix U
implies automatically the existence of a rational matrix with the same proper-
ties.
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Symmorphic groups. Remember that the a¢ ne automorphism groupAuta (�)
of an n-dimensional euclidean lattice � is the crystallographic group that con-
tains all euclidean isometries mapping � onto itself. In other words, Auta (�)
is the semi-direct product of Zn with Aut (�) :

Auta (�) = Zn oAut (�)
(a;A) � (b; B) = (a+Ab;AB) .

A crystallographic group � de�ned as the semi-direct product of Zn with a
subgroup of Aut (�) is called symmorphic. Some authors prefer the name of
split group instead of symmorphic group in order to point out that the exact
sequence (34) splits for �, meaning that a homomorphism q : Aut (�) ! �
exists, with p � q = id. A symmorphic group is characterized by the property
to contain for each motion also its linear and translational parts. Let us point
out, that in an equivalent but more geometric way, a crystallographic group �
is symmorphic if and only if the �-orbit of 0 equals the lattice �.

It is important to note that not every crystallographic group is symmorphic.
We cite the following example in dimension 2 : consider the dihedral group of
order 8 generated by the point inversion �I, the rotation R of �=2 around 0
and the re�ection C in the x-axis. Then the crystallographic group � generated
by (�I; 0) ; (R; 0) ; (C; (1=2; 1=2)) and (I; u) ; u 2 Z2, is not symmorphic. In
fact, the underlying lattice is the square lattice Z2 but the �-orbit of 0 contains
besides the lattice points, also the midpoints � (1=2; 1=2) of each square.

Bravais types. The elements of an isomorphism class are either all symmorphic
or all non-symmorphic. Among the isomorphism classes belonging to a given
Z-class, there is exactly one class of symmorphic elements. In particular, given
a lattice �, there is one Z-class that contains the isomorphism class of Auta (�).
This class is called Bravais Z-class for �. Two lattices are said to be of the
same Bravais type if they both determine the same Bravais Z-class. One thus
obtains a classi�cation of the in�nitely many lattices of �xed dimension into a
�nite number of Bravais types. In dimension 3, this de�nition yields the famous
14 Bravais lattices �rst enumerated by Auguste Bravais in 1849.

Normalized crystallographic groups. The covolume of a crystallographic
group � equals the volume of the associated lattice � divided by the order of
its point group �, i.e.

covol (�) =
voln (�)

j�j .

Since similar lattices � and �� + b, � 2 R�, b 2 Rn have the same point group
�, a normalization to minimal norm ! = 1 in � justi�es to speak about the
crystallographic group of smallest covolume in dimension n. Indeed, having a
�nite number of Bravais types and Z-classes only, and every point group having
�nite order, a normalized crystallographic group of smallest covolume exists.
We will see that, at least in dimensions n � 8, it is uniquely determined if we
restrict ourselves to symmorphic groups.

Biggest and second biggest order of a Q-class. Denote by 'n,  n the
biggest, respectively second biggest order of a point group in dimension n. For
n � 4, the classi�cation of crystallographic groups yields 'n and  n in an ex-
plicit way(see [BrB, Fig 5, Fig 6, Fig 7], for example).
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For 5 � n � 9, we lack of a complete classi�cation but Plesken and Pohst listed
all Q-classes of maximal �nite irreducible subgroups of GL (n;Z) together with
the Z-classes they contain (see [PP1] for n = 5; 7, [PP2] for n = 6, [PP3] for
n = 9 and [PP4] for n = 8). Reducible matrix groups are direct products of
irreducible ones. Their order is obtained by multiplying the orders of their irre-
ducible components. Starting with the maximal order of a representative of an
irreducible Q-class taken from the work of Plesken and Pohst and comparing
with the orders of reducible matrix groups, we compute 'n for 5 � n � 9.
The representing element of the Q-class of maximal order 'n is denoted by Gn.
It turns out that for n � 8, Gn is actually irreducible. However, '9 is the order
of the reducible automorphism groupW (Z)�W (E8) of the root lattice Z�E8.
The determination of  n is analogous but slightly more di¢ cult. Not only the
representatives of irreducible Q-classes with second biggest order  0n but also
the subgroups of Gn have to be considered. Since all Gn are re�ection groups,
they contain a subgroup of index 2 generated by the elements of determinant
1. The computation of  n thus involves  

0
n and 'n=2. For n = 1; 3; 4; 6; 7; 8 or

9, one shows that  n = 'n=2. In dimension 2, the irreducible dihedral group of
order 8, which is the automorphism group of the square lattice Z2 has second
biggest order. For n = 5, the reducible automorphism group of the root lattice
Z �D4 has order  5 = 2 � 1152 = 2304. The results are listed in the tables of
Appendix A2.

Lattices of maximal symmetry. In this paragraph, we determine all lat-
tices Lni of �xed dimension having maximal symmetry. Note that a lattice in
dimension n has maximal symmetry if its automorphism group equals Gn. In
some dimensions, only one such lattice exists up to Bravais type. In that case,
we omit the index i which, in general, enumerates distinct Bravais types.

In dimension 1, there is only one Bravais type L1, namely the Z-lattice. It
has automorphism group G1 = Z2 and can be described by the ringed graphre r1 .

In dimension 2, the Q-class of maximal order contains one Z-class (cf. [BrB,
Table 1A], for example). We conclude that there is only one Bravais lattice
L2 of maximal symmetry G2, namely the selfdual hexagonal lattice A2. The
automorphism group of A2 is the dihedral group of order 12 which contains the
Weyl group W (A2) as a subgroup of index 2. Geometrically, this is interpreted
by the following bisection of the spherical vertex �gure of the fundamental cone
for W (A2) :

3
p 6

p

6
p

The ringed Coxeter graphs re r r6 and re r r3
both describe the hexagonal lattice L2.
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In dimension 3, the Q-class of maximal order contains three Z-classes (cf.
[BrB, Table 1B], for example). We conclude that there are three Bravais types
of maximal symmetry G3, the so-called cubic lattices. The Weyl group of the
root lattice D3 = A3 has order 24 = '3=2. However, the spherical vertex �gure
in 0 of its fundamental cone

π
3

π
3

π
4

can be bisected into two congruent triangles with Coxeter graph r r r4 [Cox,
§11.7]. This Coxeter graph thus represents G3. There exist two di¤erent ringed
euclidean Coxeter graphs describing euclidean 3-lattices with automorphism
group G3: re r r r44e and r r r4re .

The left graph determines the simple cubic lattice Z3 (sc-lattice) while the right
graph stands for the face-centered cubic lattice (fcc-lattice). Both lattices can be
seen as generalized root lattice (cf. [Bou, Chapter VI], for example). The dual
of the fcc-lattice is the body-centered cubic lattice (bcc-lattice). It is well-known
that the three cubic lattices represent distinct Bravais types ([Max, Table 1],
for example). Hence,

L31 = fcc-lattice, L
3
2 = bcc-lattice, L

3
3 = sc-lattice.

In dimension 4, the Q-class of maximal order consists of one Z-class only (cf.
[BrB, Table 1C], for example). The Bravais type L4 of maximal symmetry is
represented by the self-dual root lattice D4. Note that [Aut (D4) :W (D4)] = 6.
The geometric reason is given by the following dissection of the spherical vertex
�gure in 0 of a fundamental cone for W (D4)

π
3

π
3

π
3

π
4 π

3

π
3

into six congruent orthoschemes with Coxeter graph r r r r4 . We conclude
that the ringed graph for L4 is given byr r r r r4e
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Dimension 5 is similar to dimension 3. The Q-class of maximal order splits
into three Z-classes yielding three Bravais types of lattices [PP1]. The Weyl
group of the D5-lattice has order 1920 = '5=2. The spherical vertex �gure in 0
of its fundamental cone is represented by the Coxeter graph

r r r rr
and bisects into two congruent tetrahedra with graphr r r r r4 (36)

(cf. [Cox, §11.7], for example). Hence, (36) determines G5. Again, there are
two ringed euclidean graphs describing a lattice with vertex �gure (36) in 0 :

r r r r r r44e and r r r r rr
4e .

The left graph stands for the simple cubic lattice Z5 while the right graph
represents the generalized fcc-lattice whose dual is the generalized bcc-lattice.
By means of Table 1 in [Max], the three cubic lattices correspond to di¤erent
Bravais types. We conclude that

L51 = fcc-lattice, L
5
2 = bcc-lattice, L

5
3 = Z5.

In dimension 6, the Q-class of maximal order contains two Z-classes [PP2].
Every element of this Q-class is isomorphic to the Z2-extension of W (E6). By
Table 1 of [Max], the two Bravais types of symmetry W (E6) correspond to the
E6-lattice described by the ringed graph

r r r r rrre (37)

and its dual lattice. The theory of root lattices tells us that the quotient group
Aut (E6) =W (E6) is isomorphic to the automorphism group of the Coxeter graph

r r r r
r r

@@
��

6 3

4

2

5

1

(38)

which describes W (E6) [Bou, Chapter VI, n�4.2, Corollary to Prop 1]. Beside
the identity, (38) admits the involutary automorphism � permuting the nodes
according to

1 ! 5, 2 ! 4, 3 ! 3 and 6 ! 6. (39)

Hence, Aut (E6) =W (E6) is isomorphic to Z2 and Aut (E6) equals G6. We
conclude that

L61 = E6-lattice, L62 = E�6 -lattice:

To describe a fundamental simplex for Auta (E6), we need to understand the
action of the isometry " induced by � in E6. First, we point out that " 2
Aut (E6). Indeed, beeing a lattice, L61 admits the symmetry �1. Moreover, we

32



know that the Weyl group of a root lattice contains an element w0 mapping
a fundamental cone C for its action onto its negative �C [Bou, Chapter VI,
n�1.6, Corollary 3 to Prop 17]. Since �1 62 W (E6) [Bou, Chapter V, n�6.2,
Corollary 3 to Prop 3 & Chapter VI, n�4.12 (X)], we deduce that w0 = �" and
the assertion follows.

Every node i in (38) represents a hyperplane P�i;0 bounding C. Therefore, " is
a symmetry of the E6-lattice which permutes the fundamental roots �1; : : : ; �6
and the associated hyperplanes P�i;0 according to (39). The unringed graph

r r r r r
r r

@@
��

0 6 3

4

2

5

1

(40)

determines a fundamental simplex T for Wa (E6) obtained by chopping C with
an additional hyperplane. Let vi be the vertex opposite the side P�i;0, for
i = 1; : : : ; 6. Then, " �xes the vertex 0 and permutes the vertices v1; : : : ; v6
according to (39). Denote by s1 the re�ection with respect to the hyperplane S1
passing through the points 0; v1; v3; v4; v5; v6 and 1

2 (v2 + v4), by s2 the re�ection
with respect to S2 through 0; v1; v2; v3; v4; v6 and 1

2 (v1 + v5). Since " = s1 � s2,
a fundamental simplex T0 for Auta (E6) is obtained when bisecting T by means
of S1 or S2. It can be represented by one of the following weighted graphs:

r r r r r
r r

��

�
�
�

@@
0 v6 v3

v4

v2

1

2
(v1 + v5)

v1�

� 4 or r r r r r
r r

��

�
�
�

0 v6 v3

v4

1

2
(v2 + v4)

v5

v1

�

�4

where � = arccos
�

1
2
p
2

�
and � = � � �. Here, the nodes represent the vertices

or the sides of T0 but not the corresponding re�ections. A non-integral weight
symbolizes a dihedral angle formed by two sides. Note that Auta (E6) is no
more generated by re�ections. In particular, it does not contain the re�ections
si, i = 1; 2. Clearly, Auta (E6) equals the Z2-extension of Wa (E6).

In dimension 7, the Q-class of maximal order splits into two Z-classes yielding
two Bravais types [PP1]. The automorphism group of both lattices is W (E7).
Using Table 1 of [Max], we have

L71 = E7-lattice, L72 = E�7 -lattice.

The ringed Coxeter graph for L71 is given by

r r r r r r rre .

In dimension 8, the Q-class of maximal order contains only the Z-class of the
Weyl group W (E8). The unimodular E8-lattice is represented by the ringed
Coxeter graph r r r r r r r rre
(compare [PP4]). As indicated in Table 1 of [Max],

L8 = E8-lattice.
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Dimension 9 uses the results of dimension 1 and 8. The Q-class of maximal
order is the automorphism group of the reducible root lattice Z � E8. Since
Aut (Z� E8) =W (Z)�W (E8), we have

L9 = Z� E8-lattice.

The lattice of maximal symmetry L9 is described by the Coxeter graph

r r r r r r r r � r rr
1ee .

Here, be aware of the unusual interpretation of the non-connected Coxeter
graph. In fact, it represents the direct sum of the lattices Z and E8. However
the non-connectedness does not imply that the space containing E8 is orthogo-
nal to the line containing Z.

Geometry of the most symmetric lattices. Irreducible root lattices and
their duals are well understood. References are [CS, Chapter 4 and 21] and
[Bou]. An overview can be found in the tables of Appendix A2. The rest of this
paragraph explains how the motivated reader can verify these data.

Fundamental roots �1; : : : �n for Lni and the corresponding highest root �̂ can
be found in the references mentioned above. We normalize the situation to have
minimal norm 1 in Lni and use the so-called even coordinate system for E8.
A fundamental simplex T0 for Auta (Lni ) is bounded by the hyperplanes Pai;0,
i = 1; : : : ; n, and P�̂;1. The fundamental simplices given in chapter 21 of [CS]
are further normalized and dissected as described in the previous paragraph.
Finally, the intersection of all but one hyperplane equals the vertex opposite
the omitted plane. The Gram matrix G = (h�i; �ji)i;j yields the volume of the
normalized lattice Lni by means of

voln (L
n
i ) =

p
det (G).

Covering radius and deep holes. Important quantitative invariants which
come with a lattice � are its packing radius r� and covering radius R�. The
packing radius is the maximal radius for congruent but non-overlapping balls
centered in the lattice points. It equals half the minimal norm ! of the lattice.
The covering radius stands for the minimal radius that congruent balls centered
in the lattice points must have in order to cover the whole space En. While
the packing radius in our normalized setting ! = 1 is always 1=2, the covering
radius changes from lattice to lattice. Every point of En whose distance from
the nearest lattice point is a local maximum is called a hole of Lni . The holes
for which this distance is a global maximum and equals the covering radius
are termed deep holes. Among the vertices of T0, the one of maximal norm is
a deep hole. In Chapter 5, we de�ne the Dirichlet-Vorono¼¬-cell of a ball in a
sphere packing. For lattice packings, one can show that every vertex of this
Dirichlet-Vorono¼¬-cell is a hole. For more information, see [CS, Chapter 2].
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5 Packings

A sphere packing B in Xn = En, Sn or Hn is a set of non-overlapping congruent
n-balls. More appropriate would be the name of ball packing. The interested
reader should consult [FTK] or [Rog]. A quantitative value associated with
a packing is its density � (B), the proportion of space occupied by the balls
in B. In this chapter, we focus on some aspects of euclidean sphere packings
and hyperbolic horoball packings. In particular, we will see how upper density
bounds can be used to determine lower volume bounds for lattices, cusps and
hyperbolic orbifolds.

Euclidean sphere packings. The density � (B j D) of a euclidean sphere
packing B with respect to a bounded region D � En is just the fraction of space
in D �lled by balls of the packing. A suitable de�nition for the density � (B) of
B with respect to the whole space En starts with the density of B with respect
to an arbitrary ball B (r) of radius r > 0 and then takes the lim sup over r.
Indeed, the real number

� (B) := lim sup
r�!1

24 1

voln (B (r))
X

B�B\B(r)

voln (B)

35 < 1
is well-de�ned and independent of the choice for B (r). An extremely di¢ cult
problem is the determination of the densest packings in dimension n. The solu-
tion is only known for n = 2 and 3. In 1611, Kepler asserted that the canonball
packing associated to the fcc-lattice D3 has maximal density �=

p
18 among all

packings in dimension 3. Thue a¢ rmed in 1890 that the hexagonal lattice pack-
ing A2 is unique to have maximal density �=12 among all 2-dimensional packing.
While the veri�cation of Thue�s theorem is elementary, Kepler�s conjecture re-
mained open for almost 400 years until Hales published his proof in 1998. We
recommend his survey article [Hal].

Upper density bounds. In higher dimensions there are still upper density
bounds. Chapter 2.3 of [FTK] gives an overview. In this paragraph we concen-
trate on the simplicial density bound due to Rogers. By de�nition, the simplicial
density dn is the ratio

dn := (n+ 1)
voln

�
B (r) \ Snreg (2r)

�
voln

�
Snreg (2r)

�
between the total volume of the sectors of (n+ 1) mutually touching balls B (r)
of radius r > 0 lying in the euclidean regular simplex Snreg (2r) of edge length 2r
spanned by their centers and the volume of the whole simplex Snreg (2r). Note
that dn is independent of the radius r. In 1958, Rogers proved the following
theorem in [Rog, Thm 7.1].

Theorem 3 The density of an arbitrary sphere packing B in En satis�es

� (B) � dn. (41)
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Compared to other density bounds, the simplicial bound has the signi�cant
advantage to generalize to sphere packings in spherical and hyperbolic space.
In particular, it is sharp in dimension 2. The �rst few values for dn are listed
below (cf. [CS, Table 1.2], for example).

Dim n 1 2 3 4

dn ' 1 0:90691 0:77367 0:64780

Dim n 5 6 7 8

dn ' 0:52570 0:41921 0:32984 0:25676

Euclidean lattice packings. A sphere packing B� is said to be a lattice
packing if the centers of its balls form a euclidean lattice �. As usually, the
minimal norm of � is assumed to be 1. Moreover, we always suppose that the
radius of the balls in B� equals the packing radius 1=2. The periodicity of �
reduces the study of density to a local problem. More precisely, � (B�) can be
proven to be the ratio

� (B�) =
voln

�
B
�
1
2

��
voln (�)

=

n�1

2nn voln (�)
, (42)

where 
n�1 denotes the volume (6) of the unit (n� 1)-sphere and B (1=2) the
ball of radius 1=2. The right term in formula (42) proves the scaling invariance of
� (B�). Under these regularity conditions, the question about the densest lattice
packing is answered in dimensions n � 8 due to results of Lagrange [Lag], Gauß
[Gau], Korkine and Zolotare¤ [KZ1], [KZ2] as well as Blichfeldt [Bli].

Remember the root lattice Ln1 de�ned in Chapter 3. For this work, it is crucial
that beside having maximal symmetry, Ln1 is the unique lattice that generates
the densest euclidean lattice packing in dimension n. The corresponding density
�n is as indicated in the following table.

n Ln1 �n n Ln1 �n

1 Z 1 5 D5
�2

15
p
2

Korkine,
Zolotare¤
1877

2 A2
�p
12

Lagrange
1773

6 E6
�3

48
p
3

Blichfeldt
1925

3 A3
�p
18

Gauß
1831

7 E7
�3

105
Blichfeldt
1926

4 D4
�2

16
Korkine,
Zolotare¤
1872

8 E8
�4

384
Blichfeldt
1934

Smallest volume lattices. By means of formula (42), an upper bound for the
lattice density yields a lower volume bound for normalized euclidean lattices.
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As an example, Rogers�simplicial density bound (41) forces the volume of every
normalized lattice � in En to verify

voln (�) �
voln

�
B
�
1
2

��
dn

.

For n � 8, we can optimize this lower bound by using the maximal lattice
density �n instead of dn. We conclude that every normalized lattice volume
exceeds the volume of Ln1 , i.e.

voln (�) � voln (Ln1 ) , (43)

and equality holds if and only if � = Ln1 .

Hyperbolic packings. Questions about the density of a sphere packing in
hyperbolic space are much more complicated than in euclidean space. The
reason for that is the lack of similarities in Hn. In particular, K. Böröczky sen.
observed that Hn admits no reasonable global notion of density. He published
his arguments in a hungarian journal but one of his examples can be found
in chapter 3.2 of [FTK]. Nevertheless, one can generalize the notion of local
density (42) from the lattice packing case.

Consider an arbitrary sphere packing B in Xn. Every ball B in B lives in its
Dirichlet-Vorono¼¬-cell D (B;B) consisting of all points in Xn closer to B than
to any other ball in B, i.e.

D (B;B) = fx 2 Xn : d (x;B) � d (x;B0) , 8B0 2 Bg � B.

The local density of B in B is then de�ned by

ld (B;B) := voln (B)

voln (D (B;B))
.

It is the right object to use when searching for lower volume bounds in the
context of discrete group quotients inHn. First, suppose a hyperbolicmanifold
Hn=� contains an embedded ball b (r) = b of radius r > 0. Let B be one of the
balls in Hn covering b. Altogether, the �-copies of B form a periodic hyperbolic
sphere packing B� := ��1 (b) which is precisely invariant under �, that is,


B \B = ;, 8
 2 �.

If c is the center of B, then the Dirichlet-Vorono¼¬-cell of B with respect to B�
equals the Dirichlet fundamental domain for � with center c. In particular, the
balls in B� have congruent Dirichlet-Vorono¼¬-cells. Hence

voln (H
n=�) = voln (D (B;B)) =

voln (B)

ld (B;B�)
. (44)

In the orbifold case, the center c of B may project to the singular set of Hn=�.
The stabilizer �c < � is then isomorphic to a non-trivial, �nite subgroup of
O (n). Nevertheless, B is still precisely �-invariant:


B = B, 8
 2 �c and 
B \B = ;, 8
 2 �r �c .
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Since D (B;B�) =�c is a fundamental domain for the action of �c on D (B;B�),
the quotientD (B;B�) =�c is a fundamental domain for � acting inHn (compare
[Bea, Section 9.6], for n = 2). Finally

ld (B;B�) =
voln (B)

voln (D (B;B�))
=

voln (B=�c)

voln (D (B;B�) =�c)
,

and equality (44) holds for orbifolds too.

Simplicial density function. In 1978, Böröczky sen. con�rmed a conjecture
of Fejes Tóth and Coxeter by proving, for packings in Xn, the validity of Rogers�
simplicial bound formulated in terms of local density [Bör, Thm 1]. Here we
discuss the hyperbolic case only. The simplicial density function inHn is de�ned
by

dn (r) := (n+ 1)
voln

�
B (r) \ Snreg (2r)

�
voln

�
Snreg (2r)

� ,

where Snreg (2r) denotes the regular simplex of edge length 2r spanned by the
centers of (n+ 1) mutually touching balls B (r) of radius r > 0. The big dif-
ference with the euclidean case is the dependence of dn (r) on the radius r. By
looking at the curvature dependence of the volume element in Hn, we can in-
terpret the euclidean dn as a limiting density dn = limr!0 dn (r) on Hn. This
justi�es the use of the same letter dn as in the euclidean case.

Böröczky showed that the local density of a sphere packing with balls of radius
r is always bounded from above by the simplicial density dn (r). Together with
(44), we deduce the following lower volume bound for hyperbolic n-orbifolds
containing an embedded ball of radius r (compare [Me3])

voln (H
n=�) =

voln (B (r))

ld (B (r) ;B�)
� voln (B (r))

dn (r)
. (45)

Horoball packings. An even more general version of Rogers�bound treats
the case of horoball packings in H

n
. By de�nition, a horoball packing is a set

B1 of non-overlapping horoballs in H
n
. Let Bq = B, q 2 @Hn be a horoball

in B1. We write dist (x;B) for the length of the unique perpendicular from a
point x 2 Hn to the bounding horosphere of B. Here, dist (x;B) is taken to be
negative if x 2 B. Roughly speaking, the local density of B with respect to B1
is the proportion of space occupied by B in its Dirichlet-Vorono¼¬-cell

DV (B;B1) := fx 2 Hn : dist (x;B) � dist (x;B0) ;8B0 2 B1g .

Since both, B and DV (B;B1) have in�nite volume, we need to adapt the
concept of local density. Consider the cone Cq (r) in H

n
with apex q and

consisting of all geodesics with limit point q passing through the euclidean ball
Bn�1 (c; r) of center c and radius r > 0 living on the horosphere @Bq. Then,
the well-de�ned real number

ldn (B;B1) := lim sup
r�!1

voln (B \ Cq (r))
voln (DV (B;B1) \ Cq (r))

< 1

is independent of the choice for c and measures the local density of B with
respect to B1.
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This notion of local density is best suited for searching lower volume bounds
of cusped hyperbolic orbifolds Hn=�. A cusp C in Hn=� is covered by the
periodic packing B1 = ��1 (C) of horoballs. Let Bq be one of the horoballs in
B1. Then Bq is precisely invariant under the action of �, i.e.


Bq = Bq, 8
 2 �q and 
Bq \Bq = ;, 8
 62 �r �q . (46)

For such a periodic packing, the local density is the same for all horoballs. By
means of (46), a fundamental domain D for the action of �q on DV (Bq;B1)
is automatically a fundamental domain for � (compare [Bea, Section 9.6], for
n = 2). Therefore, we deduce the following simple expression for the local
density

ldn (Bq;B1) =
voln (Bq \D)
voln (D)

=
voln (C)

voln (Hn=�)
. (47)

Simplicial horoball bound. The simplicial horoball density dn (1) in Hn is
de�ned to be the density of (n+ 1) horoballs B mutually touching one another
with respect to the ideal regular n-simplex Snreg (1) spanned by the base points
of these horospheres, i.e.

dn (1) = (n+ 1)
voln

�
B \ Snreg (1)

�
voln

�
Snreg (1)

� .

Alternatively, we can interpret dn (1) as the limiting density limr!1 dn (r).
In the last paragraph of his paper [Bör, Thm. 4], Böröczky formulates the
generalization of Rogers�simplicial bound to horoball packings:

Theorem 4 In Hn, consider a horoball packing B1. Then the local density ldn
of each horoball with respect to its Dirichlet-Vorono¼¬-cell cannot be greater than
the simplicial horoball density dn (1):

ldn � dn (1) . (48)

In combination with (47), Theorem 4 yields the following lower volume bound
for a non-compact hyperbolic n-orbifold with cusp C (compare [Me3] and [K1,
Lemma 3.2], for example)

voln (H
n=�) =

voln (C)

ld (B;B�)
� voln (C)

dn (1)
. (49)

The volume bound (49) is crucial in order to determine the non-compact orb-
ifolds of minimal volume. In fact, it is one of the most important ingredients in
the proof of almost all results known so far about small volume cusped hyper-
bolic orbifolds.

In Chapter 3, we expained how Coxeter graphs can be used to describe regular
tessellations. Böröczky�s proof shows that equality in the simplicial horoball
bound (48) holds if and only if the horoballs are inscribed in the unbounded
cells of a regular tessellation with Coxeter graphr r r p p p r r rm ;m � 3.

The table on page 23 reveals precisely two such tilings. The �rst one lives in
dimension 2 and de�nes the packing with horodiscs inscribed in the tessellationr r r1
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with regular convex tiles having in�nitely many sides and dihedral angle �=3. Its
dual tessellation is the famous tiling of H2 with ideal triangles all of whose ver-
tices are surrounded by in�nitely many triangles. The second one describes the
packing in H3 with horoballs representing the inballs of the regular tessellationr r r r6 .

Its dual tiling consists of ideal regular tetrahedra with dihedral angle �=3 build-
ing up a 6-cycle around each edge.

For all n � 2, R. Kellerhals expressed dn (1) in terms of the volume vn of
Snreg (1) [K1, Thm 2.1]:

dn (1) =
n+ 1

n� 1
n

2n�1

n�1Y
k=2

�
k � 1
k + 1

�n�k
2 1

vn
. (50)

A representation of vn as a power series is due to J. Milnor [Mil, How to compute
volume in hyperbolic space, Section 4]:

vn =
p
n

1X
k=0

� (� + 1) � � � (� + k + 1)
(n+ 2k)!

An;k ,

with

� =
n+ 1

2
and An;k =

X
i0+���in=k;iu�0

(2i0)! � � � (2in)!
i0! � � � in!

.

The �rst few values for dn (1) are listed below (see [K5, Table 1.4.4]).

Dim n 1 2 3 4 5

dn(1) ' � 0:95493 0:85328 0:73046 0:60695

Dim n 6 7 8 9 10

dn(1) ' 0:49339 0:39441 0:31114 0:24285 0:18789
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6 Minimal volume cusped hyperbolic orbifolds

Throughout the rest of this work, we restrict ourselves to the non-compact,
�nite volume, hyperbolic orbifold case. We write �n > 0 for the smallest value
of the volume spectrum

V n1 := fvoln (Qn) : Qn a cusped hyperbolic n-orbifoldg .

The problem we are interested in is the determination of all cusped orbifolds
of minimal volume �n. The values �2 and �3 and the corresponding orbifolds
are due to Siegel [Sie, 1945] and Meyerho¤ [Me2, 1985], respectively. Our main
theorem gives all minimal volume cusped hyperbolic orbifolds in dimensions less
than 10. This chapter is the content of our two papers [HK] and [H], accepted for
publication in the Journal of the London Mathematical Society and the Journal
of Algebra.

6.1 Lower bounds

A �rst lower bound. Our strategy to determine cusped hyperbolic orbifolds of
minimal volume is as follows: by considering particular cusps, we obtain lower
volume bounds which are improved in successive steps until they realize the
volume of a minimizer. This turns out to be successful in dimensions less than
10. The fundamental di¤erence with the compact case comes from the euclidean
structure of the cusp boundary which allows us to use our knowledge about
crystollographic groups. Cornerstone of the general method is the lower volume
bound (49) for an orbifold Hn=� with disjoint embedded cusps C1; : : : ; Cm :

voln (H
n=�) �

Pm
i=1 voln (Ci)

dn (1)
. (51)

Canonical cusp. At the end of Chapter 2.2, we already mentioned two types of
cusps, the canonical and the maximal one. Because of their easy construction,
we �rst consider canonical cusps. It is well known that the canonical cusps
associated to inequivalent parabolic elements in � are embedded and disjoint
(compare for example [Bea, §7.37], [Shi, Lemma 4 & 5], [Me1], for n = 3, and
[He1], [K4, Lemma 2.7 & 2.8] for arbitrary n). The proof of this property
exploits the Leutbecher-Shimizu inequality (see [Leu] and [Shi, Lemma 4], for
n = 3, [Wat, Thm 8], [K4, Thm 1.2] and [He2], for arbitrary n).

Improving the lower bound. After conjugation, we always assume that 1
is a parabolic �xed point of �. By the �nite volume condition, the stabilizer
�1 is the Poincaré extension of an (n� 1)-dimensional crystallographic group.
In what follows, we use the same symbols for elements acting on the ground
space @Un = En�1 and their Poincaré extensions. In Chapter 4, we saw that
every crystallographic group comes with a lattice �1 and a point group �1.
As usually, let ! denote the minimal norm of �1. By de�nition, the canonical
horoball based at 1 equals

B1 (!) = fx 2 Hn : xn > !g .

The horoball packing B1 = �B1 yields, after projection, the canonical cusp
C1 (!) with cusped point 1. Here, we use 1 as a representative of the class
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[1] of parabolic �xed points equivalent to 1 under �.

Formula (24) yields the volume of C1 (!) in terms of ! and the euclidean
volume of a proper fundamental domain F for the crystallographic group �1 <
I
�
En�1

�
. The volume of F equals the volume of �1 devided by the index of

�1 in �1. Hence,

voln (C1 (!)) =
voln�1 (�1)

(n� 1) [�1 : �1] !n�1
. (52)

Since the quotient voln�1 (�1) =!n�1 is invariant under rescaling, we may al-
ways suppose the lattice to be normalized, i.e. ! = 1. In the paragraph about
smallest lattice volumes in Chapter 5, we presented the values

Vn :=
voln

�
B
�
1
2

��
�n

, 1 � n � 8, (53)

which are in fact the minimal volumes voln (Ln1 ) for normalized lattices in E
n.

Substituting (52) in (51), we obtain the re�ned bound

voln (H
n=�) � m Vn�1

(n� 1)'n�1dn (1)
(54)

for m-cusped n-orbifolds. Remember that 'n�1 symbolizes the maximal point
group order in dimension n�1. The beauty of the volume bound (54) lies in its
validity for arbitrary dimensions. But is there a dimension n � 2, such that the
right hand side of (54) with m = 1 represents the volume of a cusped orbifold?

Known minimizers. A necessary condition for equality in (54) is the existence
of a periodic horoball packing in dimension n with local density dn (1). The
last paragraph of Chapter 5 excludes the existence of such a packing for n � 4.
We immediately conclude that the volume of a cusped orbifold satis�es

voln (H
n=�) >

Vn�1
(n� 1)'n�1dn (1)

, for n � 4.

In dimension 2 and 3 however, the equality sign in (54) is possible. For n = 2,
we �nd again Siegel�s result. Indeed, inspection of the tables in Appendix A2
reveals V1 = 1 and '1 = 2. Together with d2 (1) = 3

� , we have

vol2
�
H2=�

�
� �

6
= �2.

Equality can only occur if the canonical horoballs covering the cusp are the
inscribed discs of the regular tessellation represented by the Coxeter graphr r r1 (55)

with density 3
� . We write �20 for the hyperbolic Coxeter group represented

by (55). For n = 3, the table yields V2 =
p
3
2 and '2 = 12. Together with

d3 (1) =
p
3

2v3
, where v3 = vol3

�
S3reg (1)

�
= 3 JI

�
�
3

�
, we obtain

vol3
�
H3=�

�
�
JI
�
�
3

�
8

= �3.
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Here, equality only occurs if the canonical horoballs covering the canonical cusp
are the inscribed balls of the regular tessellation given by the Coxeter graphr r r r6 . (56)

In 1985, Meyerho¤ was the �rst one to develop this strategy in order to deter-
mine the minimal value �3 2 V 31. More precisely, he showed in [Me2] and [Me3]
that the orbifold H3=PGL (O3), with O3 the ring of integers in Q

�p
�3
�
, has

minimum volume among all orientable cusped hyperbolic 3-orbifolds. It is the
oriented double cover of the quotient of H3 by the group �30 determined by the
graph (56). Since every non-oriented orbifold is doubly covered by an oriented
one, it follows that H3=�30 is the only non-compact 3-orbifold of smallest volume
�3 =

1
8JI
�
�
3

�
(compare [Ad4, Conclusion]).

Maximal cusp. It is important to note the maximality of the canonical cusp
C1 (1) in H2=�20 and H

3=�30. Being the inballs of a regular tessellation, the
canonical horoballs projecting to C1 (1) have common touching points. By
touching point between two horoballs, we mean a point common to their bound-
ing horospheres. Enlarging the canonical horoballs would thus lead to self-
intersections and the resulting cusp in the quotient would no longer be em-
bedded. Hence, C1 (1) satis�es the de�nition of a maximal cusp as given in
Chapter 2.2

Colin Adams studied maximal cusps instead of canonical ones (compare [Ad1],
[Ad2], [Ad3], [Ad4] and [Ad5]). The idea of his strategy in the one-cusped case
can be described as follows. Consider the packing B1 of horoballs covering the
maximal cusp. After conjugation, one of the horoballs in B1 is assumed to be
based at 1 and at euclidean height 1. We put B1 = B1 (1). Note that in this
setting, the minimal norm of the lattice �1 is not necessarily 1. By maximal-
ity, there are horoballs in B1 with euclidean diameter 1. These horoballs are
called fullsized, while the remaining horoballs in B1 are termed non-fullsized.
Conjugating again, we may suppose that one of the fullsized horoballs, B0 say,
is based at 0. Then, there is at least a fullsized horoball based at every point
of the orbit �1 (0) � @Hn. In particular, every lattice point �1 (0) is the
base point of a fullsized horoball. Orthogonal projection of the elements of the
packing B1r fB1g to the boundary @B1 yields a euclidean arrangement of, in
general, overlapping balls. This arrangement is called horoball diagram. Com-
bining the theory of crystallographic groups with some horoball geometry, it is
possible to obtain conclusions about realizable horoball diagrams. The corre-
sponding cusp volume is then computed with formula (24). Plugging it into
(49), a lower bound for the resulting orbifold is obtained. In the best possible
case, this bound equals �n.

Results due to Adams. In the way described above, Adams �rst determined
the non-compact hyperbolic 3-manifold of minimal volume [Ad2]. The main
argument in his proof is the existence of fullsized horoballs based at points out-
side the orbit �1 (0) [Ad2, Thm. 2]. In fact, suppose that �1 identi�es all
fullsized horoballs. Since B1 consists of �-images of B1, there is a 
 2 � with

B0 = B1. Denote by a the touching point of B0 with B1. Then 
B1 is a
fullsized horoball touching B1 in 
 (a). By our assumption, there is a � 2 �1
with �
B1 = B0. The element �
 2 � �xes the point a what is forbidden in
the manifold case. A fundamental domain for �1 thus contains at least two
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projections of fullsized horoballs. Knowing that the maximal order of a point
group associated with a �xed point free crystallographic group in dimension 2
equals 1 ([K1, (3.3)], for example), the lower bound (54) becomes

vol3
�
M3 (�)

�
� v3 = 3JI

��
3

�
.

Adams showed that the Gieseking manifold is the unique cusped 3-manifold
with volume v3 = vol3

�
S1reg

�
.

The cusp of the minimal volume 3-orbifold H3=�30 turns out to be rigid. There-
fore, �3 is an isolated point of V

3
1. The study of realizable horoball diagrams

allowed Adams to �nd the three smallest limit points of V 31 (see [Ad1]). In
particular, the smallest limit volume is uniquely attained by a quotient of H3

by PSL (2;O1) and its volume equals 1=12 that of the regular ideal octahedron,
that is 0:30532 : : : The main idea of his proof is to show that the only singular
axes intersecting a non-rigid cusp are of order two and go directly out the cusp.
This property clearly restricts the possible horoball diagrams.
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6.2 Horoball geometry

Consider the horoball packing B1 covering a maximal cusp of Hn=�. After
conjugation, we assume that B1 is the set of all �-images of B1 (�) based at1
and at euclidean height � > 0. In our notation, �1 always denotes the lattice
of �1 interpreted, via Poincaré extension, as a crystallographic group acting in
the euclidean metric of @Un = En�1. When studying the acting of �1 on the
horosphere @B1 (�) = S1 (�), one has to be careful. To avoid any confusion
later, we give a detailed description of the situation.

Consider the point (0; �) 2 S1 (�) lying above 0. The orbit of (0; �) under the
action of �1 < �1 inHn consists of the points (x; �) 2 S1 (�), x 2 �1 (0) lying
above lattice points of En�1 = fxn = 0g. Every point in this orbit is a touching
point of B1 (�) with a fullsized horoball of B1. Two points (a; �) and (b; �) of
the orbit �1 (0; �) are related by the translation x 7! x+(b� a) in �1. In the
induced metric of S1 (�), however, this translation reads x 7! x+ 1

� (b� a) by
means of (2). Hence, when �1 is interpreted as a crystallographic group acting
in the induced metric of S1 (�), the translational part of all its motions has to
be multiplied by 1

� . In the following, we write
1
��1 for the lattice group acting

on S1 (�). This notation is justi�ed since the orbit of (0; �) in the induced
metric equals the set 1

��1 (0; �).

For every 
 2 �r�1, the horoball 
B1 (�) = B
(1) (�) based at 
 (1) 2 @Un
belongs to B1rB1 (�). The conjugate group 
 1��1


�1 of 1��1 is a subgroup
of the stabilizer �
(1) and, by Lemma 1, acts as a crystallographic group in the
induced metric of @B
(1) = S
(1). It is associated to the lattice



1

�
�1


�1 (
 (0; �)) = 


�
1

�
�1

�
� S
(1).

For our work, it is important to realize that every point of 

�
1
��1

�
is the

touching point of B
(1) with another horoball in B1.
For a detailed investigation of B1, we need formulae comparing distances on
touching horospheres. We present a lemma and two corollaries which have been
extensively used by Adams, when studying horoball diagrams, and by ourselves
in [HK] and [H].

Lemma 5 Consider B1 (�) and a fullsized horoball Bx based at x. Let l be a
geodesic with endpoints x and y 2 Rn�1 r fxg. Denote by d the distance from
a := (x; �) to (y; �) on @B1 (�), by d0 the euclidean distance from x to y. Call
p the intersection point of l with Sx = @Bx. Then the distance d (a; p) from a
to p on Sx is given by

( )B r¥

r

a b

yx
0d

xB

d( a,p) p l

d

d (a; p) =
1

d
=

�

d0
.
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Proof. (cf. [Ad1, Lemma 4.3] and [HK, Lemma 1]) Assume x = 0 and let

 2 I (Hn) be the half-turn around the geodesics with endpoints �y and y.
Then 
 (B0) is a horoball B1 (�) centered at 1 and at euclidean height � > 0.
Formula (1) implies � = d20=�. Since 
 maps l onto the geodesic with endpoints
y and 1, we have

d (a; p) = d (a; 
 (p))
(2)
=
d0
�
=

�

d0

(2)
=
1

d
.

�

Corollary 6 Let Bx (h) be a horoball of euclidean diameter h > 0 based at
x 6=1. Then the interior of its upper hemisphere is an open ball of radius 1 in
the induced metric of its boundary Sx (h).

1

x

Proof. The euclidean distance from x to the second endpoint y 2 Rn�1 r fxg
of a geodesic emanating from x and passing through an equator point of Bx (h)
equals h. �

Corollary 7 Let Bx (h) and By (k) be two horoballs with common touching
point p and of euclidean diameter h and k respectively. Call d0 the euclidean
distance between their base points x and y. Denote by d = d0=h the distance
from (x; h) to (y; h) on the horosphere based at 1 and at euclidean height h.
Then the distance d (a; p) from a to p on @Bx (h) is given by

h

d

k

0d

p

a

d( a,p)

x y

d (a; p) =

p
hp
k
=
d0
k
=

h

d0
=
hd

k
=
1

d
.

Proof. Assume h > k. The euclidean centers of Bx (h) and By (k) together
with

�
x; h2 �

k
2

�
span a right angled triangle. By Pythagoras,

d20 +

�
h

2
� k

2

�2
=

�
h

2
+
k

2

�2
=) d0 =

p
hk .

�
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6.3 Small volume cusped hyperbolic orbifolds

In this paragraph, let 2 � n � 9. By de�nition, a cusped hyperbolic orbifold
Hn=� is of small volume if

voln (H
n=�) <

3

2

voln�1
�
Bn�1

�
1
2

��
(n� 1) 'n�1 dn�1 dn (1)

=: �n. (57)

Notice that this de�nition di¤ers from that as given in [HK] and [H]. We come
back to this point at the end of this paragrah.

In order to get information about the cusps in the small volume case, we exploit
the lower volume bound (54) by using (53). We obtain

voln (H
n=�) � m Vn�1

(n� 1)'n�1dn (1)
= m

voln�1
�
Bn�1

�
1
2

��
(n� 1) 'n�1 �n�1 dn (1)

for m-cusped hyperbolic orbifolds Hn=�. The quotients Hn=� investigated in
the following propositions are all assumed to be of small volume. Recall that
by (43), the root lattice Ln�11 is the only lattice of minimal volume Vn�1 in
dimension n � 1 � 8. Furthermore, the symmetry group Gn�1 of L

n�1
1 has

maximal order 'n�1 among all point groups.

The �rst proposition is an immediate corollary of (57).

Proposition 8 A small volume non-compact hyperbolic orbifold has exactly one
cusp.

Proof. The lower volume bound (54) in the case m � 2 in combination with
�n�1 � dn�1 yields the contradiction voln (Hn=�) � �n. �
As usually, suppose �1 6= 1 and let B1 be the horoball packing covering the
unique maximal cusp of Hn=�. We write B1 (�) 2 B1 for the horoball at
euclidean height � based at1 and C1 (�) for the associated cusp. The next four
propositions explain how the small volume condition implies strong constraints
for the algebraic de�nition of � as well as for the geometry of B1 and the cusp
boundary (cf. [Ad1, Lemma 4.7 & 4.8], [HK, x2:3] and [H, Lemma 2 & 3]).

Proposition 9 The point group �1 of �1 has maximal order 'n�1.

Proof. Assume j�1j < 'n�1. Then j�1j is bounded from above by the second
biggest point group order  n�1. We consult the tables in Appendix A2 to �nd

 n�1 �
2

3
'n�1. (58)

Plugging (58) into (54) leads to the contradiction voln (Hn=�) � �n. �

Corollary 10 The lattice subgroup �1 of �1 is isometric to one of the lattices
Ln�1i having maximal symmetry.

All the lattices Ln�1i and their volumes are listed in the tables of Appendix A2.
In dimension n� 1 = 1; 2; 4 or 8, only one such lattice Ln�11 = Ln�1 exists and
we conclude that for these dimensions, �1 is isometric to Ln�1.
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Proposition 11 The lattice �1 identi�es all fullsized horoballs in B1.

Proof. Orthogonal projection of all fullsized horoballs in B1 to the ground
space @Un = En�1 yields a euclidean sphere packing B0 with balls of radius
�=2. Let K1 and K2 be the projections of fullsized horoballs based at a point
of �1 (0) � @Un and a non-lattice point, respectively. Because B1 is precisely
invariant under �1, the same is true for B0. Modulo the action of �1, a
fundamental domain P�1 for �1 acting on En�1 contains therefore at least
the Dirichlet-Vorono¼¬-cells of K1 and K2 with respect to B0. Using Roger�s
simplicial bound (41) for the local density of a ball in its Dirichlet-Vorono¼¬-cell,
we deduce

voln�1 (P�1) � voln�1 (DV (K1) [DV (K2))

= voln�1 (DV (K1)) + voln�1 (DV (K2))

� 2voln�1(B(�=2))dn�1
.

Plugging this bound into (52), we obtain the following volume estimate for the
canonical cusp in Hn=� :

voln�1 (C1 (�)) � 2
voln�1

�
B
�
�
2

��
(n� 1) 'n�1 �n�1 dn�1

= 2
voln�1

�
B
�
1
2

��
(n� 1) 'n�1 dn�1

. (59)

Substitution of (59) in (51) contradicts the small volume assumption by means
of

voln (H
n=�) � �n.

�
Note the fundamental di¤erence with the manifold case, where �1 never iden-
ti�es all fullsized horoballs (see results of Adams in §6.1).

Corollary 12 The parabolic subgroup �1 is symmorphic.

Proof. Suppose �1 is not symmorphic. Then the orbit �1 (0) contains non-
lattice points. Hence, �1 cannot identify the fullsized horoballs based at these
points with those horoballs based at lattice points. By Proposition 11, Hn=�
cannot be of small volume. �
In Chapter 4, we learned that the a¢ ne automorphism groups Auta

�
Ln�1i

�
of lattices with maximal symmetry are the only symmorphic crystallographic
groups associated with a point group of maximal order 'n�1 and a lattice L

n�1
i

having maximal symmetry. Propositions 9 and 11 thus imply the following.

Corollary 13 The parabolic subgroup �1 is isomorphic to Auta
�
Ln�1i

�
.

Proposition 14 Every non-fullsized horoball in B1 is tangent to a larger one.

Proof. Suppose that B1 contains a non-fullsized horoball B1 not tangent to
any larger one. By Corollary 6, the upper hemisphere of B1 is an open ball
of radius 1. Since B1 is a �-image of B1 (�), there exists an isometry 
 2 �
such that 
B1 = B1 (�). By de�nition, B1 is left setwise invariant by 
. By
Proposition 11, orthogonal projection of all fullsized horoballs in B1 to the
horosphere @B1 (�) yields a lattice packing B0 with balls of radius 1=2 with
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respect to the induced metric. But the centers of all these balls lie outside a
ball of radius 1. Indeed, the isometry 
 maps the upper hemisphere of B1 to a
ball of radius 1 on @B1 (�) which does not contain a touching point of B1 (�)
with a fullsized horoball. This ball of no tangency thus has the same e¤ect than
an additional radius 1=2 ball with the same center.

Now, interpret B0 as a lattice packing with balls of radius � with respect to
the standard euclidean metric of Un. By the same argument as in the proof of
Proposition 11, a fundamental domain of the lattice associated with B0 contains
at least the Dirichlet-Vorono¼¬-cells of two balls of radius �=2, which contradicts
the small volume condition. �

Proposition 15 There are largest non-fullsized horoballs in B1 and they are
tangent to fullsized ones.

Proof. Proposition 14 implies that every non-fullsized horoball is tangent to
one of strictly larger euclidean diameter. All horoballs in a chain of strictly
increasing horoballs with euclidean diameter d 2 [� � "; �] for some � < 1 and
" > 0 are inequivalent under �1. However, a fundamental domain P�1 for �1
acting on @Un has �nite diameter and cannot contain the base points of such a
chain. �
Remark. In [HK] and [H], a cusped hyperbolic orbifold Hn=�, with 2 � n � 9,
was said to be of small volume when

voln (H
n=�) < �

voln�1
�
Bn�1

�
1
2

��
(n� 1) 'n�1 �n�1 dn (1)

=: ~�n, (60)

with

� =

(
5
3 , if n� 1 = 5
2 , elsewhere

.

At this point, we inform the reader of a misprint in [H], where we used � = 2
for n = 6, too, which causes a problem with the assertion of Proposition 9.
Clearly, ~�n > �n increases the number of cusped orbifolds with small volume.
The lemmata in [HK], [H], which correspond to the Propositions 8, 11, 14 and
15 above still hold for ~�n. In fact, it su¢ ces to prove that Proposition 11 holds.

Proof of Proposition 11 with ~�n. Suppose that �1 does not identify all
fullsized horoballs, and that B1 is at euclidean height 1. As in the proof above
of Proposition 11, a fundamental domain for �1 in @B1 contains the orthogonal
projections K1 and K2 of at least two disjoint fullsized horoballs in B1. For
n � 1 = 2, the claim follows immediately since �2 = d2 (compare with [Ad3,
Lemma 2.2]). In dimensions 4 � n � 9we need to study more carefully the
�1-orbits of K1 and K2. Under �1, these two balls of radius 1=2 give rise to
two lattice packings

PK1 :=
�
�K1 : � 2 Ln�1i

	
and PK2 :=

�
�K2 : � 2 Ln�1i

	
.

Here, we used the fact that the lattice subgroup of �1 is isomorphic to Ln�1i

as guaranteed by the Corollary to the Proposition 9. The most e¢ cient way
to combine both packings to the periodic packing PK1

[ PK2
is by putting the

centers of the balls in PK2
into the deep holes of PK1

. The distance from a deep
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hole to a nearest lattice point in Ln�1i equals the covering radius R of Ln�1i . In
order to avoid any overlapping of balls in PK1

[PK2
, the lattice Ln�1i has to be

rescaled by a factor 1
R . This rescaling increases the volume of L

n�1
i by a factor�

1
R

�n�1
. Using the values of R given in the tables of Appendix A2, we verify

that

voln�1 (P�1) �
�
1

R

�n�1
voln�1

�
Ln�1i

�
� �Vn�1,

which, together with (24) and (51), contradicts (60). �
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7 Main theorem

We are now ready to formulate and prove our main theorem.

Main Theorem. For 4 � n � 9, let Hn=�� be a cusped hyperbolic orbifold
of minimal volume �n. Then, up to isomorphism, �� is related to a hyperbolic
Coxeter simplex group according to the following table, and as such uniquely
determined.

Dim n �� �n

2 r r r1 �

6
� 5:23 � 10�1

3 r r r r6 1

8
JI
��
3

�
� 4:23 � 10�2

4
r r r r4r �2

10440
� 6:85 � 10�3

5 r r r r r r4 7 �(3)

460080
� 1:83 � 10�4

6
r r r r r rr 4

�3

7770600
� 3:98 � 10�5

7 Z2-extension of

r r r r r r
rr

p
3 L(4; 3)

107200320
� 9:46 � 10�7

8
r r r r r r r rr �4

4057202880000
� 2:13 � 10�8

9
r r r r r r r r rr �(5)

22029503470200
� 4:65 � 10�11

Proof. Let 4 � n � 9 and Hn=�� be a cusped hyperbolic orbifold of minimal
volume �n. A look at the list of Coxeter simplex volumes in [JKRT] reveals
that Hn=�� is of small volume. To see this, we denote by Tn the unbounded
hyperbolic Coxeter simplex of smallest volume �n in dimension n 6= 7. In
dimension 7, the smallest volume unbounded Coxeter simplex bisects in an
obvious way into two congruent copies of the unbounded hyperbolic simplex T 7

of volume �7. In each case
�n � �n < �n.

It is important to note that the volumes �n equal the values given in the right
column of the table above, and that the simplices Tn are related to the Coxeter
graphs in the middle column. To prove the theorem, it is therefore su¢ cient
to show that a fundamental polytope of a discrete subgroup �� < I (Hn) with
covolume �n is isometric to T

n.

SinceHn=�� has small volume, it veri�es all conditions given by the propositions
and corollaries in §6.3. In particular, the parabolic subgroup associated with the
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unique cusp of Hn=�� is isomorphic to the symmorphic crystallographic group
Auta

�
Ln�1i

�
whose point group Gn�1 = Aut

�
Ln�1i

�
has maximal order 'n�1.

Modulo conjugation, assume �1 6= 1. In what follows, B1 denotes the horoball
packing covering the maximal cusp. In a similar way, the maximal horoball
B1 (1) = B1 2 B1 based at 1 is supposed to be at euclidean height 1. Write
S1 = @B1. In this setting, the induced metric on S1 is the standard euclidean
metric. Finally, modulo conjugation, suppose the fullsized horoballs in B1 to
be based at the lattice points Ln�11 (0) � @Un. As usually, the one based at 0
is termed B0.

At this point it is worth while to inform the reader of a little di¤erence with the
setting in our proofs of [H] and [HK]. Instead of �xing the minimal translation
length of Ln�1i to 1 we now �x to 1 the euclidean height of B1. The reason
is that this alternative setting is the one used by Adams in his work. Since
the euclidean height of the canonical horoball based at 1 equals the minimal
translation length of Ln�1i , Step 2a of the proof will show that both settings are
in fact equivalent.

For the proof, we proceed in four steps:

Step 1. �1 is isomorphic to Auta
�
Ln�11

�
.

Since Hn=�� has small volume, �1 is isomorphic to Auta
�
Ln�1i

�
. It is thus

su¢ cient to exclude the possibilities i 6= 1. To this end, we recall that the
volume of the canonical cusp is given by formula (52). Note that the lattice
volume used in this formula corresponds to the normalized lattice. Substitute
the volumes of the normalized lattices Ln�1i given in the tables of Appendix A2.
Together with the lower bound (51), we have the following inequality

voln�1
�
Ln�1i

�
(n� 1) 'n�1 dn (1)

� voln�1 (Hn=��) � �n ,

which is only satis�ed if i = 1.

Step 2a. The maximal cusp is canonical.

By assumption, the maximal horoball B1 is at euclidean height 1. The euclid-
ean height of the canonical horoball equals the minimal norm in Ln�11 . Therefore
we have to show that the minimal norm ! in Ln�11 equals 1.

Suppose ! > 1. Then the fullsized horoballs in B1 are not touching one another.
An element � 2 �� with � (B0) = B1 maps B1 onto a fullsized horoball which
touches B1 in p, say. By Proposition 11, Ln�11 identi�es all fullsized horoballs.
Hence, there is a � 2 Ln�11 such that � � � 2 �� permutes B0 and B1.

Let F be the set of all fullsized horoballs based at minimal elements xi 2 Ln�11 ,
that is kxik = !. Lemma 1 implies that the isometry � maps F onto the set
of all non-fullsized horoballs touching the fullsized horoball � (B1) at points
which lie at a distance ! from p on @B1. By Lemma 5, � �� maps F onto the
set N of all non-fullsized horoballs touching B0 with base points yi of norm 1

! .

We now analyze the relative position of the points xi and yi. Consider the vertex
�gure V (0) = V of Ln�11 in 0. By means of Wytho¤�s construction explained in
Chapter 3, the ringed graphs in Appendix A1 de�ne V up to similarity. Being
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minimal, the points xi lie on the lines passing through 0 and the vertices of V .

Since B1 is precisely ��-invariant, both sets F and N are setwise invariant
under the point group Aut

�
Ln�11

�
. By de�nition, Aut

�
Ln�11

�
is the symmetry

group of V . Therefore, the Aut
�
Ln�11

�
-orbits of xi and yi have equal length

N0, where N0 denotes the number of vertices of V . In Appendix A1, we use
the method described in last paragraph of Chapter 3 in order to determine the
number Nd

j of d-faces in V equivalent to a given face F dj under the action of
Aut

�
Ln�11

�
.

If n 6= 5, then Nd
j 6= N0 for all 0 < d � n � 1 and j. Hence, the points yi are

colinear with 0 and xi. In dimension 5, the vertex �gure of L4 is a self-dual
24-cell and the point yi could also be colinear with 0 and the midpoints mi of
the 3-sides. In that case, the rays (0; xi) and (0; yi) would subtend an angle �

4 .
All horoballs are disjoint so that we conclude in both cases that

2 1! � ! () ! �
p
2 , if n 6= 5

2 1! cos
�
�
4

�
� ! () ! � 4

p
2 , if n = 5.

Together with (52) and (51), we obtain the following contradiction

�n = voln�1 (H
n=��) �

!n�1Vn�1
(n� 1) 'n�1 dn (1)

> �n � �n .

Therefore, ! = 1 and the maximal horoball is canonical.

Step 2b. A special element in �� .

We come back to the element � � � 2 ��. It �xes the touching point (0; 1) of
B1 with B0 and transposes 0 and 1. Therefore � � � is an elliptic element
which leaves the geodesic (0;1) setwise invariant. If � denotes the re�ection
with respect to the bisector H0 of B1 and B0, we can write

� � � =  � �,

where  is a hyperbolic isometry �xing the line (0;1) pointwise. Because of
! = 1, we have F = N . By de�nition, � �xes the base points xi of elements
in F whereas  permutes the xi and �xes their centroid 0. Consequently,  
belongs to the symmetry group of the vertex �gure V . Hence, � 2 ��.
Step 3. Construction of a fundamental domain for ��.

In what follows denote by T0 a fundamental simplex of Auta
�
Ln�11

�
. Then,

a fundamental domain Fn for �� is given by the intersection of the cylinder
Zn = T0 � (0;1) with the Dirichlet-Vorono¼¬-cell of B1, that is,

Fn = Zn \DV (B1) .

By de�nition, DV (B1) is the set of all hyperbolic points lying above the bi-
sectors of B1 with its ��-images in B1. When intersecting with DV (B1), the
cylinder Zn is at least chopped by H0, where H0 is the mirror hyperplane of �
as above. Let � be the simplex of �nite volume and vertex 1 arising from Zn

by a cut along H0. In the tables of Appendix A2, we listed the vertices vi of
T0. By construction, the ordinary vertices of � are of the form

~vi :=

�
vi;

q
1� kvik2

�
, 1 � i � n. (61)
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A detailed study of B1 will allow to prove the following

Assertion: � = Fn: (62)

The veri�cation of this equality is quite technical and needs a case-by-case analy-
sis with respect to the dimension n.

Given a non-fullsized horoball Bq 2 B1 based at q 2 @Hn and of euclidean
diameter 0 < h < 1, we have to exclude a non-empty intersection of � with
the bisector Hq of B1 with Bq. Note that the euclidean radius of Hq equalsp
h by formula (1). We call �rst generation of horoballs the set G1 = G1 (B0)

of horoballs in B1 touching B0. The base point q of an element in G1 is the
�-image of a point in Ln�11 (0), that is,

q = � (x) =
x

kxk2
, for some x 2 Ln�11 (0) .

Since Ln�11 is a root lattice, we know by (32) that kxk2 2 N. By means of
Lemma 5, the euclidean diameter h of an element Bq in G1 veri�es

p
h = kqk () h =

1

j
, j 2 N. (63)

The bisector Hq thus has a euclidean radius of the form 1p
j
, j 2 N. More

precisely, Hq is the hemisphere parametrized by

Hq =

�
y 2 Un : ky � (q; 0) k = 1p

j

�
.

In the next lines, we say that Hq is generated by Bq. We remark that the
intersection of Hq with H0 = fy 2 Un : kyk = 1g is given by

H0 \Hq =

�
y 2 Un : hy; (q; 0)i = 1

2

�
. (64)

Dimensions n = 4; 5 and 9 represent the warm-up case. Indeed, for these n,
the diameter d of T0 satis�es

max
i
kvik = d � 1p

2
.

Therefore, by (61), the nth coordinate of a vertex ~vi of � is at least 1p
2
, and

no bisector intersecting � can be generated by an element of the G1-family.
Proposition 15 implies, in particular, that the largest non-fullsized horoballs
belong to G1 and the assertion follows.
Dimension n = 6 or 7. The diameter d of T0 satis�es

1p
2
< d �

r
2

3
,

forcing the nth coordinate of a vertex ~vi of � to exceed 1p
3
. In other words, only

the bisectors generated by horoballs of euclidean diameter � 1
3 may be excluded
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immediately.

We call second generation G2 = G2 (B0) the set of all horoballs touching a largest
non-fullsized horoball Bu 2 G1 which has non-empty intersection with Zn. By
(63), the euclidean diameter of Bu equals 1

2 . For its base point u, we deduce
that u = 1

2�, � 2 L
n�1
1 with k�k =

p
2. In other words, u is the vertex of T0 of

norm 1p
2
.

Proposition 14 implies that it is su¢ cient to exclude the chopping of � by the
bisector Hu of Bu with B1 as well as the existence of a horoball of euclidean
diameter 1

3 < h < 1
2 in G2.

First we show the impossibility of the chopping. In the tables of Appendix
A2, all vertices vi are listed. There, the only vertex of norm exceeding 1p

2
is

symbolized by the letter t. We plug the coordinates of u and t into (61) and,
by means of (64), conclude that the vertices ~u and ~t (cf. 61) of � belong to
H0 \Hu. Hence, H0 \Hu contains a 5-side of �, and non-trivial chopping of
� by Hu does not happen.

Now, we use the properties of root lattices to show that the set of possible
diameters h for horoballs in G2 is a subset of

�
1; 12 ;

1
3 ;

1
4 ; : : :

	
. To this end, we

consider the element � := � � r, where r is the re�ection with respect to the
bisector H� of B1 and � (Bu) = B�. Note that � is a half-turn around ~u which
permutes B1 and Bu. By Step 2b, � 2 ��. Since the point (u; 1) 2 S1 is
transposed with the north pole q = (u; 1=2) 2 @Bu under �, the distances � on
@Bu from q to the touching points of Bu with G2-horoballs equal the distances
in S1 from (u; 1), or equivalently, from u = 1

2� to lattice points l in L
n�1
1 (0).

Hence

� = ku� lk =
r
1

4
k�k2 + klk2 � h�; li .

The properties of root lattices then imply that k�k2 2 2N, klk2 2 N, and
that h�; li is a linear combination of elements in

�
0;� 12 ; 1

	
. We conclude that

� 2
q

j
2 , j 2 N, and by Corollary 7, h 2

�
1; 12 ;

1
3 ;

1
4 ; : : :

	
.

u0

( )0B Bls =

uB

0B

2u l=

1
2

1
B¥ ( )qh

q

1
2

rs

Dimension 8. Since the diameter veri�es

d =

p
3

2
,

only horoballs of euclidean diameter � 1=4 may directly be excluded. We use
again the coordinates given in the table of Appendix A2.

55



First, we show, by the same argument as in dimensions 6 and 7, that no horoball
of the G1-family generates a bisector chopping �.

Then, again by the same argument as in dimensions 6 and 7, we show that
the spectrum of possible euclidean diameters for elements in G2 is a subset of�
1; 12 ;

1
3 ;

1
4 ; : : :

	
. By Proposition 15, those horoballs of diameter 12 belong to G1.

Therefore, we only need to exclude the chopping of � by the bisector generated
by a 1

3 -ball Bv in G2 :
Since Bv is touching Bu, Corollary 7 shows that v lies on the sphere S of radius
1p
6
centered in u. The re�ection r 2 �� de�ned as above interchanges Bv with a

horoball B0 2 G1. Moreover, v must lie outside the ball B of radius 1p
3
centered

at 0 since it has no overlap with B0. The intersection @B \ S is a subset of the
unit sphere centered at � (u). In fact, this sphere is the equator of the mirror
hyperplane of r. We deduce that B0 is of euclidean diameter h � 1

3 .

If h = 1
3 , then B

0 = Bv 2 G1 and hence does not e¤ect the construction of Fn.
If h = 1, then Bv 2 G1(� (Bu)). Therefore, the bisector of Bv and B does not
chop �.

We are left with the case h = 1
2 . The base points of largest non-fullsized

horoballs in H8 have coordinates of the form

1

2
p
2

�
2; 07

�
;
1

2
p
2

�
14; 04

�
,
1

2
p
2

�
12; 04; 12

�
, or "

1

2
p
2

�
3

2
;
1

2

7�
(65)

from which the full list can be deduced by applying arbitrary permutations and
signs to the �rst 6 vector entries, except for the vector with pre�x ", where an
even number of minus signs is required for the �rst 6 vector entries (compare
with [CS, Table 4.10]).

v

¶B

S

1
1
3

3
2

( ) 2u us =

u

u- 0
1
2

1
6

( )r S

( )r v z=

Consider the base point z of B0. It belongs to the list (65) and is a point of the
sphere r (S) of radius

p
3=
p
2 centered at �u. The bisector Hv of Bv and B1,

whose radius equals 1p
3
, chops � if the following inequality holds:

kr(z)� tk < 1

2
p
3
; (66)
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with t the only vertex of T0 whose norm exceeds 1p
2
. However, there is no

solution z with v = r(z) satisfying condition (66). Therefore, the Hv does not
chop �.

Finally, we have to consider the third generation G3 = G3 (B0) consisting of
all horoballs touching a non-fullsized horoball Bw intersecting Zn and being of
euclidean diameter 13 . The family G3 splits into two subsets G

1
3 and G23 , where G13

represents the case Bw 2 G1, and G23 the case Bw 2 G2. By Proposition 14 and
15, the assertion (62) follows if we can exclude the existence of horoballs in G3
having euclidean diameter 14 < h < 1

3 . We treat both cases G
1
3 and G23 separately

to show that the spectrum of possible euclidean diameters for horoballs in G3 is
a subset of

�
1; 12 ;

1
3 ;

1
4 ; : : :

	
.

For the subset G13 , we �nd the base point w of Bw among the vertices of T0
(compare the table in Appendix A2). Note that kwk = 1p

3
and � (w) = 3w.

Denote by f the re�ection with respect to the bisector of B1 and the fullsized
horoball � (Bw). Then, � �f 2 �� conjugates the lattice L71 acting on S1 to the
lattice �0 acting on @Bw. In particular, the touching point p of Bw and B0 is
the image of (� (w) ; 1) under � � f . By Lemma 5, the distance from the north
pole q 2 Bw to p equals 1p

3
on @Bw. We deduce that q is the (� � f)-image of

the point

(a; 1) :=

 
k� (w) k � 1p

3

k� (w)k � (w) ; 1

!
=

�
2

3
� (w) ; 1

�
= (2w; 1) . (67)

Now, each B0 2 G3 touches Bw at a point b of �0. The distance � on @Bw from
b to the north pole q of Bw equals the distance on S1 from (c; 1) := � � f (b) 2
L71 (0) � S1 to (a; 1), or equivalently, from c to a. We compute

� = ka� ck =

q
kak2 + kck2 � 2 ha; ci

(67)
=

q
4 kwk2 + kck2 � 2 hw; ci

=
q

4
3 k� (w)k

2
+ kck2 � 2

3 h� (w) ; ci .

Since � (w) and c are points of the root lattice L71, we conclude that

� 2
(
1p
3
;

p
2p
3
; 1;

2p
3
; : : :

)
.

fs

w0

( ) 3w wB Bs =

wB

0B

( )3w ws=

( )( ),1ws

1

B¥

p

q

1
3

( )2 ,1w

1
3

1
3
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By Corollary 7, the euclidean diameter of B0 thus equals 1
3�2
2
�
1; 12 ;

1
3 ;

1
4 ; : : :

	
as pretended.

For the subset G23 , the horoball Bw touches Bu. Therefore, its base point w
belongs to the points de�ned as v = r (z), where z is in the list (65). Denote by
g the re�ection with respect to. the bisector of Bw = Br(z) and Bu. Observe
that � := � � g = � � r � g 2 ��.
By means of � , the lattice L71 on S1 conjugates to the lattice ~� acting on @Br(z).
In particular, � sends the touching point ~p of Br(z) and Bu to a lattice point �(~p)
of L71. Let ~q and q denote the north poles of Br(z) and Bu. Using g

�
Br(z)

�
= Bu

and � (Bu) = B1 together with Lemma 5, we deduce successively

d (~p; ~q) = d (~p; g (~q)) =
p
2p
3
; d (q; ~p) =

p
3p
2
,

and
d (q; g (~q)) = d (� (q) ; � (~q)) =

p
3p
2
�

p
2p
3
= 1p

6
.

and determine �(~q) according to

�(~q) = �(q) +
u� r(z)
ku� r(z)k d(�(~q); �(q)) = (2u� r(z); 1) . (68)

The distance � from ~q to a lattice point ~c of ~� equals the distance from �(~q) to
� (~c) = c 2 L71. Hence,

� = k�(~q)� ck2 = k�(~q)� �(~p) + �(~p)� ck2

= k�(~q)� �(~p)k2 + k�(~p)� ck2 � 2 k�(~p)k2 + 2 h�(~p); ci+ 2 h�(~q); �(~p)� ci .

Corollary 7 yields k�(~q)� �(~p)k2 = 2
3 . Moreover,

k�(~p)� ck2 � 2 k�(~p)k2 + 2 h�(~p); ci

is an integer since �(~p); c 2 L71 are integral linear combinations of the basis
vectors �1; : : : ; �n�1 satisfying h�i; �ki 2 f0;� 12 ; 1g. Furthermore, one checks,
with (68) and (65), that every �(~q) 2 L71 is of the form

�(~q) =
1

3
l , l 2 L71,

so that 2 h�(~q); �(~p)� ci 2 1
3Z. We conclude that � 2

1
3Z. In other words, the

possible euclidean diameters 1
3�2

for elements in G23(Bw) belong to a subset of�
1; 12 ;

1
3 ;

1
4 ; : : :

	
.

fs

( )w r z v= =0

wB

0B

1

B¥

p%

q

1
2

1
6
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( )qh( ) ( )g q qh t=% %
o

g

1
3

u
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( )g q%

58



Step 4. The geometric presentation of �� .

By Step 3, a fundamental domain Fn for �� is constructed by cutting the cylin-
der Zn along the mirror hyperplane H0 of �. All (n� 1) bounding hyperplanes
of Zn which pass through 0 are perpendicular to H0. The remaining face of Zn

is the bisector H1 of B0 with a fullsized horoball touching B0. As indicated in
the �gure below, the dihedral angle subtended by H0 and H1 equals �

3 .

If n 6= 7 (n = 7), the simplex Fn is given by the Coxeter (weighted) graph
obtained when adding to the Coxeter (weighted) graph of Auta

�
Ln�11

�
, given

in the tables of Appendix A2, one node together with an unmarked branch in-
cident with the node 0. We conclude that Fn is isometric to the simplex Tn.
Moreover, Step 1 and 2b show that for n 6= 7, �� is generated by the re�ections
with respect to the sides of Fn. Therefore, �� is isomorphic to the Coxeter
group generated by the re�ections in the side hyperplanes of Fn. In dimension
7, we should not forget to add the Poincaré extension of the involution " de�ned
in Chapter 4.

3
p

This �nishes the proof of our main theorem. �
Alternative version of Step 4. In dimensions n = 5; 6; 7; 8, we can determine
the geometric presentation of �� in an alternative way. We decided to include
this version here since it gives a better insight into the symmetry properties of
the horoball packing B1.

Step 1 says that the parabolic subgroup of �� is isomorphic to Auta
�
Ln�11

�
.

The Coxeter graph associated with Auta
�
Ln�11

�
reveals the existence of a very

special subgroup, the group An�1, whose graph is obtained by omitting the
node i. The node i represents the vertex vi of the fundamental Coxeter simplex
for Auta

�
Ln�11

�
characterized by kvik = 1=

p
2 = d. This vertex is a deep hole

equidistant from nmutually touching balls in the Ln�11 -lattice packing B0 which,
together with their centers, are permuted by means of the subgroup An�1 of
Auta

�
Ln�11

�
.

After Poincaré extension, these balls become mutually tangent fullsized horoballs
B0; : : : ; Bn in Hn. Here, B0 is the horoball based at 0 as before. The re�ection
� 2 �� de�ned in Step 2b transposesB0 andB1 =: Bn+1 and �xesB1; : : : ; Bn�1
since the mirror hyperplane H0 of � touches @Hn at their base points. Their
radical point (intersection of the n + 1 bisector hyperplanes) equals the vertex
~vi of Fn lying above vi. The base points of the horoballs B0; : : : ; Bn+1 span
an ideal, regular simplex Snreg (1) with center ~vi whose symmetry group An is
generated by An�1 and �. We deduce that An is an elliptic Coxeter subgroup
of ��.

By Step 3, we know that a fundamental domain Fn for �� is a hyperbolic simplex
with precisely one ideal vertex. Moreover, �� contains the elliptic subgroup An
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and the parabolic subgroup Auta
�
Ln�11

�
represented by Coxeter graphs with n

nodes representing n of the n+ 1 bounding hyperplanes of the simplex Fn. In
Chapter 3, we explained that the passage from Fn to one of its vertex �gures
corresponds to the omission of one node together with its connecting edges in
its weighted graph. We conclude that the only simplex with the desired vertex
�gures is the Coxeter simplex Tn. Finally, �� is isomorphic to the Coxeter group
represented by the graph of Tn.

60



8 About dimension 10

As shows the proof of the main theorem, our method for constructing minimal
volume hyperbolic orbifolds holds for arbitrary n. The success of our method in
dimensions n � 9 is due to the existence of hyperbolic Coxeter simplices serving
as building blocks and the fact that the densest lattice packings are related to
irreducible root lattices. In higher dimensions, however, densest lattice packings
are not as yet identi�ed and the number of familiar hyperbolic orbifolds is very
small.

We decided to conclude this work with some remarks on dimension 10. In
particular the following results are proven:

Proposition 16 The value �n satis�es

1:87 � 10�11 � �n �
�5

50431087801440000
' 5:64 � 10�11.

Proposition 17 The minimal volume cusped hyperbolic 10-orbifold has at most
two cusps.

Proposition 18 The point group �1 is isomorphic to a subgroup of the direct
product W (E8)� f�1g, and its lattice subgroup is isomorphic to E8 � Z.

Several cusps. By taking into account the touching points between maximal
cusps, Adams could improve, in dimension 3, the lower volume bound (54) for
m-cusped hyperbolic n-orbifolds (compare [Ad3, Lemma 2.3 & 4.2] and [Ad1,
Lemma 3.3]). More precisely, he could replace m by 2m in the manifold case
and by 2m � 1 in the orbifold case, respectively. The bigger constant 2m in
the manifold case is due to the presence of two non-equivalent fullsized horoball
under the action of �1 (see results of Adams in Chapter 6.1 and Proposition
11). His arguments generalize to higher dimensions as in the manifold case [K1].

Lemma 19 Let Hn=� be an m-cusped hyperbolic n-orbifold. Then,

voln (H
n=�) � (2m� 1) voln�1 (B (1=2))

(n� 1) 'n�1 dn�1 dn (1)
.

Volume computation. Candidates for small or minimal volume in dimension
10 are the Coxeter polytopes P 101 and P 102 determined by the Coxeter graphs

r r r r r r r r r r rr
1 (69)

and r r r r r r r r r r rr
14 (70)

respectively. In [Vin3], Vinberg studies re�ective arithmetic groups associated
to the unique, up to integral equivalence, odd unimodular integral quadratic
form of type

fn (x) = �x20 + x21 + � � �+ x2n
with signature (n; 1). In dimension 10, the fundamental polytope of the corre-
sponding group is P 102 .
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Poincaré�s formula (16) allows to compute the volume or the Euler characteristic
of even dimensional Coxeter polytopes P = P 2m. The method goes as follows.
Let � be the Coxeter graph of P . First, list all spherical subgraphs �q of �
having q nodes, with q varying from 2 to 2m. Then substitute the normalized
spherical volumes of �q in the generalized angle sum W

�
P 2m

�
. Remember that

all spherical Coxeter groups are classi�ed, and their corresponding orders are
listed in [Vin1, Part II, Chapter 5, Table 1], for example. Since the normalized
volume of �q equals the inverse of its order, the volume computation is just a
matter of assiduity.

The generalized angle sum or Euler characteristic of P 102 has already been de-
termined by Ratcli¤e and Tschantz in [RT2]:

W
�
P 102

�
= �

�
P 102

�
= � 1

11014706730600
.

The volume of P 102 therefore computes to

vol10
�
P 102

�
=

�5

329020407360000
.

Note that this is the smallest volume of a hyperbolic orbifold we found in the
literature. Now, Schlä�i�s di¤erential formula (18) implies that increasing one
of the dihedral angles while leaving all other angles invariant, yields a polytope
of smaller hyperbolic volume. Now, the polytope P 101 is obtained by changing
the dihedral angle �

4 of P
10
2 to �

3 . As a matter of fact, this change decreases the
volume by a factor 33

2 . Indeed, using Poincaré�s formula, we �nd

vol10
�
P 101

�
=

�5

50431087801440000
=
2

33
vol10

�
P 102

�
. (71)

The list of all spherical subgraphs of P 101 and the calculation of the volume have
been included in Appendix A3.

Some results in dimension 10. The Coxeter graph of P 101 shows that the
direct product W (E8) � f�1g, which has maximal order '9 among all point
groups in dimension 9, is a subgroup of (69). This justi�es in some sense the
use of

�10 :=
�5

50431087801440000

as a good upper bound for �10 although we doubt that �10 = �10. Up to iso-
morphism, there is only one lattice which can be associated to W (E8)� f�1g,
namely the root lattice E8�Z. For our quantitative purpose, we need informa-
tion about the angle subtended by the spaces containing Z and E8 respectively.
If these spaces are mutually orthogonal, then the lattice can be described by a
ringed Coxeter graph

E8 ? Z = r r r r r r r re re rr
1 :

However, there is another possibility when the basis vector in Z-direction is of
the form

�
�=2; 1=

p
2
�
, with � 2 E8 of second smallest norm

p
2. In this case,

the angle equals �
4 . The reader should note that �=2 is a deep hole of E8.
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The lattice obtained is called laminated lattice �9 (compare [CS, Chapter 6]).
This second possibility makes the geometric description of possible hyperbolic
orbifolds complicated.

Another problem we have to deal with is the fact that a densest lattice packing
in dimension 9 is unknown even though Conway and Sloane write in [CS] that
it is reasonable to guess that �9 is the densest lattice. The best bound known
today is Roger�s bound d9. The values of � (�9) and the simplicial density d9
are given in [CS, Table 1.2] :

� (�9) ' 0:14577, d9 ' 0:19815.

In what follows, H10=� denotes a cusped hyperbolic 10-orbifold of minimal
volume �10. As usually, we suppose 1 to be a parabolic �xed point of �. Let
�1 be the corresponding parabolic subgroup with lattice subgroup �1 and
point group �1.

Proof of Proposition 18. We have seen at the end of Chapter 4 that the
reducible direct productW (E8)�f�1g has biggest order '9 = 2�'8 = 2�192�10!
among all point groups in dimension 9. In [PP3], Plesken and Pohst show that
the wreath product C2 � S9 is the irreducible point group of maximal order
299! = 2

15'9 in dimension 9. By using our results listed in the tables of Appendix
A2, one easily veri�es that the order of a reducible point group in dimension 9
which is not a subgroup of W (E8)� f�1g exceeds 1

40'9.

Now, suppose �1 is not a subgroup of W (E8)� f�1g. Plugging j�1j � 2
15'9

and V9 � vol9(B(1=2))
d9

into (54) contradicts the minimal volume assumption by
means of

vol10
�
H10=�

�
� vol9 (B (1=2))

9 215 '9 d9 d10 (1)
> �10.

�
Proof of Proposition 17. Suppose H10=� has more than two cusps. Then
Lemma 19 implies the contradiction

vol10
�
H10=�

�
� 5 vol9 (B (1=2))

9 '9 d9 d10 (1)
> �10.

�
Proof of Proposition 16. The volume of H10=� is pinched between the lower
bound (54) and �10 = vol10

�
P 101

�
. Proposition 18 shows that the lattice acting

on the horospheres covering the boundary of a cusp is isomorphic to E8 � Z.
We may therefore replace the simplicial density d9 used in (54) by the density
� (�9) of the laminated lattice �9. By doing so, we obtain

1:87 � 10�11 = vol9 (B (1=2))

9 '9 �9 d10 (1)
< �10 < �10 =

�5

50431087801440000
.

�
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9 Appendix

A1. We compute the combinatorics Nk
i of six polytopes de�ned by ringed Cox-

eter graphs. Remember that Nk
i equals the number of k-faces of the polytope

which are equivalent to a given k-face F ki under the action of its symmetry
group. Since the vertices of the polytope de�ned by a ringed Coxeter graph are
by de�nition equivalent, we write N0 instead of N0

1 for its number.

The 3-dimensional cuboctahedron er r r4
k type of F km stabiliser of F km Nk

m

2 er r4 r r4 N2
1 =

48
8 = 6er r r r N2

2 =
48
6 = 8

1 er r N1
1 =

48
2 = 24

0 r r N0 = 48
2�2 = 12

The 4-dimensional 24-cell r r r r4e
3 er r r4 r r r4 N3

1 =
1152
23�3! = 24

2 er r r r r N2
1 =

1152
3!�2 = 96

1 er r r r N1
1 =

1152
2�3! = 96

0 r r r4 N0 = 1152
24�4! = 24

The 5-dimensional polytope r r r r4er
4 er r r r r r r r N4

1 =
3840
5! = 32er r r r4 r r r r4 N4

2 =
3840
24�4! = 10

3 er r r r r r r N3
1 =

3840
2�4! = 80er r r r r r N3

2 =
3840
4! = 160

2 er r r r r N2
1 =

3840
2�6 = 320er r r r r r4 N2

2 =
3840
6�8 = 80

1 er r r r4 N1
1 =

3840
2�8 = 240

0 r r r r4 N0 = 8�9!
25�6! = 126
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The 6-dimensional polytope r r r r rre
5 er r r rr r r r rr

N5
1 = N5

2 =
72�6!
245! = 27

4 er r r r
er r rr r r r rr

r r rr N4
1 = N4

2 =
72�6!
2�5! = 216

N4
3 =

72�6!
234! = 270

3 er r r r r rr
N3
1 = N3

2 =
72�6!
2�4! = 1080

2 er r r r rr r N2
1 =

72�6!
6�2�2 = 2160

1 er r rr r r N1
1 =

72�6!
2�6�6 = 720

0 r r r r r N0 = 72�6!
6! = 72

The 7-dimensional polytope r r r r r rre
6 er r r r rr r r r r rr

N6
1 =

8�9!
72�6! = 56er r r r r r r r r r r r N6

2 =
8�9!
7! = 576

5 er r r rr r r r r rr
N5
1 =

8�9!
2�24�5! = 756er r r r r r r r r r N5

2 =
8�9!
6! = 4032

4 er r r r r r r r r r N4
1 =

8�9!
5!�3! = 4032er r r r r r r r r N4

2 =
8�9!
2�5! = 12096

3 er r r r r r r r N3
1 =

8�9!
4!�3! = 20160

2 er r r r r r rr
N2
1 =

8�9!
4!�3!�2 = 10080

1 er r r r r r r N1
1 =

8�9!
2�6! = 2016

0 r r r r rr
N0 = 8�9!

25�6! = 126
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The 8-dimensional polytope r r r r r r rre
7 er r r r r rr r r r r r rr

N7
1 =

192�10!
26�7! = 2160er r r r r r r r r r r r r r N7

2 =
192�10!
8! = 17280

6 er r r r r r r r r r r r r N6
1 =

192�10!
2�7! = 69120er r r r r r r r r r r r N6

2 =
192�10!
7! = 138240

5 er r r r r r r r r r r N5
1 =

192�10!
6!�2 = 483840

4 er r r r r r r r r rr
N4
1 =

192�10!
5!�3!�2 = 483840

3 er r r r r r r r r r N3
1 =

192�10!
4!�5! = 241920

2 er r r r r r r rr
N2
1 =

192�10!
3!�24�5! = 60480

1 er r r r r r rr
N1
1 =

192�10!
2�72�6! = 6720

0 r r r r r rr
N0 = 172�10!

8�9! = 240
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A2. Crystallographic groups of minimal covolume and maximal symmetry.

Dimension 1
Biggest and second biggest point group order:
'1 = 2  1 = 1

Point group of maximal order:
G1 = Z2

r
1

Lattice of maximal symmetry:
L1 = Z-lattice
Base vector:
�1 = (1)

Volume of the most symmetric lattice:
vol1(L1) = 1

Fundamental simplex of Auta(L1) and vertices di¤erent from 0:r r1
0 1

v1 = (1)

Dimension 2
Biggest and second biggest point group order:
'2 = 12  2 = 8

Point group of maximal order:
G2 =Aut(A2),
dihedral group of order 6

r r
1 2

6

Lattice of maximal symmetry:
L2 = A2, hexagonal lattice

Description of L2, modulo normalization:
A2 = f(x0; x1; x2) 2 Z3 : x0 + x1 + x2 = 0g
Base vectors:
�1 =

1p
2
(�1; 1; 0) �2 =

1p
2
(0;�1; 1)

Volume of the most symmetric lattice:
vol2(L2) =

p
3
2

Covering radius:
1p
3

Fundamental simplex of Auta(L2) and vertices di¤erent from 0:

r r r
0 1 2

6
v1 =

1p
2
(� 23 ; (

1
3 )
2)

v2 =
1p
2
((� 13 )

2; 23 )
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Dimension 3
Biggest and second biggest point group order:
'3 = 48  3 = 24

Point group of maximal order:
G3 =Aut(A3) r r r

1 2 3

4

Lattices of maximal symmetry:
L31 = B3, fcc-lattice L32 = B�3 , bcc-lattice L33 = C3, cubic lattice

Description of L31, modulo normalization:
C3 = A3 = D3 = f(x1; x2; x3) 2 Z3 :

P3
i=1 xi � 0;mod2g

Description of L32, modulo normalization:
C�3 = A�3 = D�

3 = (2Z)3 [ ((2Z)3 + (1; 1; 1))
Description of L31:
B3 = Z3

Base vectors:
�1 =

1p
2
(0; 1; 1) !1 =

1p
3
(2; 0; 0) �1 = (1; 0; 0)

�2 =
1p
2
(1; 0; 1) !2 =

1p
2
(0; 2; 0) �2 = (0; 1; 0)

�3 =
1p
2
(1; 1; 0) !3 =

1p
2
(1; 1; 1) �3 = (0; 0; 1)

Volume of the most symmetric lattices:
vol3(L31) =

1p
2

vol3(L32) =
4

3
p
3

vol3(L33) = 1

Covering radius:
1p
2

p
5

2
p
3

p
3
2

Fundamental simplex of Auta(L31) and vertices di¤erent from 0:

r r rr0
1 2 3

4

v1 =
1p
2
(0; 0; 1)

v2 =
1p
2
(0; 12 ;

1
2 )

v3 =
1p
2
( 12 ;

1
2 ;

1
2 )
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Dimension 4
Biggest and second biggest point group order:
'4 = 1152  4 = 576

Point group of maximal order:
G4 =Aut(D4) r r r r

1 2 3 4

4

Lattice of maximal symmetry:
L4 = D4 = D�

4 , checkerboard lattice

Description of L4, modulo normalization:
D4 = f(x1; x2; x3; x4) 2 Z4 :

P4
i=1 xi � 0;mod2g

Base vectors:
�1 =

1p
2
(�1;�1; 02) �3 =

1p
2
(0; 1;�1; 0)

�2 =
1p
2
(1;�1; 02) �4 =

1p
2
(02; 1;�1)

Volume of the most symmetric lattice:
vol4(L4) = 1

2

Covering radius:
1p
2

Fundamental simplex of Auta(L4) and vertices di¤erent from 0:

r r r r r
0 1 2 3 4

4
v1 =

1p
2
(( 12 )

2; 02)

v2 =
1p
2
( 23 ; (

1
3 )
2; 0)

v3 =
1p
2
(( 13 )

3; 0)

v4 =
1p
2
(( 12 )

4)
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Dimension 5
Biggest and second biggest point group order:
'5 = 3840  5 = 2304

Point group of maximal order:
G5 =Aut(D5) r r r r r

1 2 3 4 5

4

Lattices of maximal symmetry:
L51 = B5, fcc-lattice L52 = B�5 , bcc-lattice L53 = C5, cubic lattice

Description of L51, modulo normalization:
C5 = D5 = f(x1; : : : ; x5) 2 Z5 :

P5
i=1 xi � 0;mod2g

Description of L52, modulo normalization:
C�5 = D�

5 = 2Z5 [ ((2Z)5 + (15))
Description of L51:
B5 = Z5

Base vectors:
�1 =

1p
2
(�1;�1; 03) !1 =

1
2 (2; 0

4) �1 = (1; 0
4)

�2 =
1p
2
(1;�1; 03) !2 =

1
2 (0; 2; 0

3) �2 = (0; 1; 0
3)

�3 =
1p
2
(0; 1;�1; 02) !3 =

1
2 (0

2; 2; 02) �3 = (0
2; 1; 02)

�4 =
1p
2
(02; 1;�1; 0) !4 =

1
2 (0

3; 2; 0) �4 = (0
3; 1; 0)

�5 =
1p
2
(03; 1;�1) !5 =

1
2 (1

5) �5 = (0
4; 1)

Volume of the most symmetric lattices:
vol5(L31) =

1
2
p
2

vol5(L52) =
1
2 vol5(L53) = 1

Covering radius:
p
5

2
p
2

3
4

p
5
2

Fundamental simplex of Auta(L51) and vertices di¤erent from 0:

r r r r rr0
1 2 3 4 5

4

v1 =
1p
2
(04; 1) = u

v2 =
1p
2
(03; ( 12 )

2)

v3 =
1p
2
(02; ( 12 )

3)

v4 =
1p
2
(0; ( 12 )

4) = u

v5 =
1p
2
(( 12 )

5) = t

70



Dimension 6
Biggest and second biggest point group order:
'6 = 2 � 72 � 6!  6 = 72 � 6!
Point group of maximal order:

G6 =Aut(E6), that is
G6 = Z2-extension of W (E6) r r r r rr6

1 2 3 4 5

Lattices of maximal symmetry:
L61 = E6-lattice L62 = E�6 -lattice
Description of L61, modulo normalization:
E6 is the set of vectors in E8 orthogonal to any A2-lattice V of E8.
If we choose V = span((06; 1;�1); (05; 1;�1)), then
E6 = f(x1; : : : ; x8) 2 E8 : x1 = �x2 = �x3g
Description of L62, modulo normalization:
Using the alternative root basis f�ig for E6, we have
E�6 = E6 [ (E6 + (0; (� 23 )

2; ( 13 )
4)) [ (E6 + (0; ( 23 )

2; (� 13 )
4)).

Base vectors:
�1 =

1p
2
(03; 1;�1; 03) �1 =

1p
2
(0;�1; 1; 05) !1 =

2p
3
(0;�1; 1; 05)

�2 =
1p
2
(04; 1;�1; 02) �2 =

1p
2
(02;�1; 1; 04) !2 =

2p
3
(02;�1; 1; 04)

�3 =
1p
2
(05; 1;�1; 0) �3 =

1p
2
(03;�1; 1; 03) !3 =

2p
3
(03;�1; 1; 03)

�4 =
1p
2
(06; 1;�1) �4 =

1p
2
(04;�1; 1; 02) !4 =

2p
3
(04;�1; 1; 02)

�5 =
1p
2
( 1
2
; (� 1

2
)6; 1

2
) �5 =

1p
2
(05;�1; 1; 0) !5 =

2p
3
(0; ( 2

3
)2; (�1

3
)4; 0)

�1 =
1p
2
(06; 12) �6 =

1p
2
(( 1
2
)4; (� 1

2
)4) !6 =

2p
3
(( 1
2
)4; (� 1

2
)4)

Volume of the most symmetric lattices:
vol6(L61) =

p
3
8 vol6(L62) =

9
p
3

64

Covering radius:p
2p
3

1p
2

Fundamental simplex of Auta(L61) and vertices di¤erent from 0:

r r r r r
r r

��

�
�
�

@@
0 6 3

4

2

5

1�

� 4

v1 =
1p
2
(05;�( 23 )

2; 23 ) = t

v2 =
1p
2
(� 14 ; (

1
4 )
4;�( 512 )

2; 512 )

v3 =
1p
2
(02; ( 13 )

3; (� 13 )
2; 13 )

v4 =
1p
2
(03; ( 12 )

2; (� 13 )
2; 13 )

v5 =
1p
2
(04; 12 ; (�

1
2 )
2; 12 )=u

v6 =
1p
2
(( 14 )

5;�( 14 )
2; 14 )
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Dimension 7
Biggest and second biggest point group order:
'7 = 8 � 9!  7 = 4 � 9!
Point group of maximal order:

G7 =W (E7) r r r r r rr7
1 2 3 4 5 6

Lattices of maximal symmetry:
L71 = E7-lattice L72 = E�7 -lattice

Description of L71, modulo normalization:
E7 is the set of vectors in E8 perpendicular to any
minimal vector v of E8. If we choose v = (12; 06), then

E7 = f(x1; : : : ; x8) 2 E8 : x1 = �x2g.
Description of L72, modulo normalization:
Using the alternative root basis f�ig for E7, we have
E�7 = E7 [ (E7 + (( 14 )

6; (� 34 )
2)).

Base vectors:
�1 =

1p
2
(02; 1;�1; 04) �1 =

1p
2
(�1; 1; 06) !1 =

3p
2
(�1; 1; 06)

�2 =
1p
2
(03; 1;�1; 03) �2 =

1p
2
(0;�1; 1; 05) !2 =

3p
2
(0;�1; 1; 05)

�3 =
1p
2
(04; 1;�1; 02) �3 =

1p
2
(02;�1; 1; 04) !3 =

3p
2
(02;�1; 1; 04)

�4 =
1p
2
(05; 1;�1; 0) �4 =

1p
2
(03;�1; 1; 03) !4 =

3p
2
(03;�1; 1; 03)

�5 =
1p
2
(06; 1;�1) �5 =

1p
2
(04;�1; 1; 02) !5 =

3p
2
(04;�1; 1; 02)

�6 =
1p
2
( 12 ; (�

1
2 )
6; 12 ) �6 =

1p
2
(05;�1; 1; 0) !6 =

3p
2
(05;�1; 1; 0)

�7 =
1p
2
(06; 12) �7 =

1p
2
(( 12 )

4; (� 12 )
4) !7 =

3p
2
((� 34 )

2; ( 14 )
6)

Volume of the most symmetric lattices:
vol7(L71) =

1
8 vol7(L72) =

8
27
p
3

Covering radius:
p
3
2

p
7

2
p
3

Fundamental simplex of Auta(L71) and vertices di¤erent from 0:

r r r r r r rr7
1 2 3 4 5 6 0

v1 =
1p
2
(05;�1; 12 ;�

1
2 ) = t

v2 =
1p
2
(04; (� 12 )

2; 12 ;�
1
2 ) = u

v3 =
1p
2
(03; (� 13 )

3; 12 ;�
1
2 )

v4 =
1p
2
(02; (� 14 )

4; 12 ;�
1
2 )

v5 =
1p
2
( 16 ;�(

1
6 )
5; 12 ;�

1
2 ) = w

v6 =
1p
2
(06; 12 ;�

1
2 )

v7 =
1p
2
((� 14 )

6; 12 ;�
1
2 )
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Dimension 8
Biggest and second biggest point group order:
'8 = 192 � 10!  8 = 96 � 10!
Point group of maximal order:

G8 =W (E8) r r r r r r rr8
1 2 3 4 5 6 7

Lattice of maximal symmetry:
L8 = E8 = E�8 -lattice

Description of L8, modulo normalization:
E8 = D8 [ (D8 + ((

1
2 )
8)), that is

E8 = f(x1; : : : ; x8) 2 Z8 [ (Z8 + (( 12 )
8)) :

P8
i=1 xi � 0;mod2g

Base vectors:
�1 =

1p
2
(0; 1;�1; 05) �5 =

1p
2
(05; 1;�1; 0)

�2 =
1p
2
(02; 1;�1; 04) �6 =

1p
2
(06; 1;�1)

�3 =
1p
2
(03; 1;�1; 03) �7 =

1p
2
( 12 ; (�

1
2 )
6; 12 )

�4 =
1p
2
(04; 1;�1; 02) �8 =

1p
2
(06; 12)

Volume of the most symmetric lattice:
vol8(L8) = 1

16

Covering radius:
1p
2

Fundamental simplex of Auta(L8) and vertices di¤erent from 0:

r r r r r r r rr8
0 1 2 3 4 5 6 7

v1 =
1p
2
(06; ( 12 )

2)

v2 =
1p
2
(05; ( 13 )

2; 23 )

v3 =
1p
2
(04; ( 14 )

3; 34 )

v4 =
1p
2
(03; (� 15 )

4; 45 )

v5 =
1p
2
(02; ( 16 )

5; 56 )

v6 =
1p
2
(� 18 ; (

1
8 )
6; 78 )

v7 =
1p
2
(07; 1)

v8 =
1p
2
(( 16 )

7; 56 )
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A3. We compute the volume of unbounded hyperbolic polytope P 101 with Cox-
eter graph

r r r r r r r r r r rr
1 .

First, we list all n generator spherical subgraphs with multiplicity N :

2 generators 3 generators

N � order N � order

10 q q 3! 10 q q q 4!

55 q q 22 79 q q q 3! � 2
121 q q q 23

4 generators

N � order N � order

1 q q qq 23 � 4! 26 q q q q (3!)2
9 q q q q 5! 214 q q q q 3! � 22
68 q q q q 4! � 2 132 q q q q 24
5 generators

N � order N � order

2 q q qq q 24 �5! 147 q q q q q 4! � 22
6 q q qq q 24 �4! 108 q q q q q (3!)2�2
7 q q q q q 6! 240 q q q q q 3! � 23
53 q q q q q 5! � 2 66 q q q q q 25
43 q q q q q 4! � 3!
6 generators

N � order N � order

1 q q qq q q 27 �34 �5 93 q q q q q q 5! � 22
1 q q qq q q 25 � 6! 17 q q q q q q (4!)2
11 q q qq q q 24 � 5! � 2 133 q q q q q q 4! � 3! � 2
4 q q qq q q 23 �4! �3! 115 q q q q q q 4! � 23
10 q q qq q q 23 �4!�22 13 q q q q q q (3!)3
6 q q q q q q 7! 128 q q q q q q (3!)2 �22
33 q q q q q q 6! � 2 107 q q q q q q 3! � 24
31 q q q q q q 5! � 3! 11 q q q q q q 26
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7 generators

N � order N � order

1 q q qq q q q 210 � 34 � 5 � 7 41 q q q q q q q 6! � 22

5 q q qq q q q 28 � 34 � 5 23 q q q q q q q 5! � 4!
1 q q qq q q q 26 � 7! 72 q q q q q q q 5! � 3! � 2
4 q q qq q q q 26 � 6! 53 q q q q q q q 5! � 23

7 q q qq q q q 24 � 5! � 3! 35 q q q q q q q (4!)2 � 2
16 q q qq q q q 26 � 5! 18 q q q q q q q 4! � (3!)2

3 q q qq q q q 23 � (4!)2 97 q q q q q q q 4! � 3! � 22

9 q q qq q q q 24 � 4! � 3! 27 q q q q q q q 4! � 24

4 q q qq q q q 26 � 4! 18 q q q q q q q (3!)3 � 2
5 q q q q q q q 8! 51 q q q q q q q (3!)2 � 23

22 q q q q q q q 7! � 2 12 q q q q q q q 3! � 25

16 q q q q q q q 6! � 3!

8 generators

N � order N � order

1 q q qq q q q q 214 � 35 � 52 � 7 8 q q q q q q q q 7! � 3!
4 q q qq q q q q 211 � 34 � 5 � 7 18 q q q q q q q q 7! � 22
3 q q qq q q q q 27 � 34 � 5 � 3! 10 q q q q q q q q 6! � 4!
6 q q qq q q q q 29 � 34 � 5 21 q q q q q q q q 6! � 3! � 2
1 q q qq q q q q 27 � 8! 14 q q q q q q q q 6! � 23
3 q q qq q q q q 27 � 7! 7 q q q q q q q q (5!)2
2 q q qq q q q q 25 � 6! � 3! 31 q q q q q q q q 5! � 4! � 2
3 q q qq q q q q 27 � 6! 6 q q q q q q q q 5! � (3!)2
5 q q qq q q q q 24 � 5! � 4! 36 q q q q q q q q 5! � 3! � 22
13 q q qq q q q q 25 � 5! � 3! 6 q q q q q q q q 5! � 24
5 q q qq q q q q 27 � 5! 5 q q q q q q q q (4!)2 � 3!
2 q q qq q q q q 23 � 4! � 5! 11 q q q q q q q q (4!)2 � 22
4 q q qq q q q q 24 � (4!)2 13 q q q q q q q q 4!�(3!)2 �2
1 q q qq q q q q 23 � 4! � (3!)2 17 q q q q q q q q 4! � 3! � 23
2 q q qq q q q q 25 � 4! � 3! 7 q q q q q q q q (3!)3 � 22
4 q q q q q q q q 9! 3 q q q q q q q q (3!)2 � 24
13 q q q q q q q q 8! � 2
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9 generators

N � order N � order

3 q q qq q q q q q 215 � 35 � 52 � 7 3 q q q q q q q q q 10!
2 q q qq q q q q q 210 �34 �5�7�3! 6 q q q q q q q q q 9! � 2
3 q q qq q q q q q 212 � 34 � 5 � 7 2 q q q q q q q q q 8! � 3!
2 q q qq q q q q q 27 � 34 � 5 � 4! 6 q q q q q q q q q 8! � 22
4 q q qq q q q q q 28 � 34 � 5 � 3! 3 q q q q q q q q q 7! � 4!
1 q q qq q q q q q 210 � 34 � 5 6 q q q q q q q q q 7! � 3! � 2
1 q q qq q q q q q 28 � 9! 3 q q q q q q q q q 7! � 23
2 q q qq q q q q q 28 � 8! 4 q q q q q q q q q 6! � 5!
1 q q qq q q q q q 26 � 7! � 3! 5 q q q q q q q q q 6! � 4! � 2
1 q q qq q q q q q 28 � 7! 6 q q q q q q q q q 6! � 3! � 22
1 q q qq q q q q q 25 � 6! � 4! 6 q q q q q q q q q (5!)2 � 2
1 q q qq q q q q q 26 � 6! � 3! 2 q q q q q q q q q 5! � 4! � 3!
3 q q qq q q q q q 24 � (5!)2 4 q q q q q q q q q 5! � 4! � 22
5 q q qq q q q q q 25 � 5! � 4! 3 q q q q q q q q q 5! � (3!)2 � 2
1 q q qq q q q q q 24 � 5! � (3!)2 2 q q q q q q q q q 5! � 3! � 23
2 q q qq q q q q q 26 � 5! � 3! 1 q q q q q q q q q (4!)2 � 3! � 2
1 q q qq q q q q q 23 � 4! � 6! 2 q q q q q q q q q 4!�(3!)2 �22
1 q q qq q q q q q 24 � 4! � 5!

10 generators

N � order N � order

1 q q qq q q q q q q 214�35�52�7�3! 1 q q qq q q q q q q 25 � (5!)2

1 q q qq q q q q q q 216 � 35 � 52 � 7 1 q q q q q q q q q q 11!
1 q q qq q q q q q q 210 �34 �5�7�4! 2 q q q q q q q q q q 10! � 2
1 q q qq q q q q q q 211 �34 �5�7�3! 1 q q q q q q q q q q 9! � 22
1 q q qq q q q q q q 27 � 34 � 5 � 5! 1 q q q q q q q q q q 8! � 3! � 2
1 q q qq q q q q q q 28 � 34 � 5 � 4! 1 q q q q q q q q q q 7! � 5!
1 q q qq q q q q q q 29 � 10! 1 q q q q q q q q q q 7! � 3! � 22
1 q q qq q q q q q q 29 � 9! 1 q q q q q q q q q q 6! � 5! � 2
1 q q qq q q q q q q 24 � 5! � 6!
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Then, we compute in each dimension, the sum of all normalized angles (inverse
of orders) counted with multiplicity :

w�1 = 1 = 1

w0 = 12 12 = 6

w1 = 10 13! + 55
1
22 = 185

12

w2 = 10 14! + 79
1
3!�2 + 121

1
23 = 177

8

w3 =
1

23�4! + 9
1
5! + 68

1
4!�2 + 26

1
3!2 + 214

1
3!�22 + 132

1
24 = 55 831

2880

w4 = 2 1
24�5! + 6

1
24�4! + 7

1
6! + 53

1
5!�2 + 43

1
4!�3!+

+147 1
4!�22 + 108

1
3!2�2 + 240

1
3!�23 + 66

1
25 = 5107

480

w5 =
1

27�34�5 +
1

25�6! + 11
1

24�5!�2 + 4
1

23�4!�3! + 10
1

23�4!�22+

+6 17! + 33
1
6!�2 + 31

1
5!�3! + 93

1
5!�22 + 17

1
4!2 + 133

1
4!�3!�2+

+115 1
4!�23 + 13

1
3!3 + 128

1
3!2�22 + 107

1
3!�24 + 11

1
26 = 5234 389

1451 520

w6 =
1

210�34�5�7 + 5
1

28�34�5 +
1

26�7! + 4
1

26�6! + 7
1

24�5!�3! + 16
1

26�5!+

+3 1
23�4!2 + 9

1
24�4!�3! + 4

1
26�4! + 5

1
8! + 22

1
7!�2 + 16

1
6!�3!+

+41 1
6!�22 + 23

1
5!�4! + 72

1
5!�3!�2 + 53

1
5!�23 + 35

1
4!2�2+

+18 1
4!�3!2 + 97

1
4!�3!�22 + 27

1
4!�24 + 18

1
3!3�2 + 51

1
3!2�23+ = 24 697

34 560

w7 =
1

214�35�52�7 + 4
1

211�34�5�7 + 3
1

27�34�5�3! + 6
1

29�34�5 +
1

27�8!+

+3 1
27�7! + 12

1
3!�25 + 2

1
25�6!�3! + 3

1
27�6! + 5

1
24�5!�4! + 13

1
25�5!�3!+

+5 1
27�5! + 2

1
23�4!�5! + 4

1
24�4!2 +

1
23�4!�3!2 + 2

1
25�4!�3! + 4

1
9!+

+13 1
8!�2 + 8

1
7!�3! + 18

1
7!�22 + 10

1
6!�4!21

1
6!�3!�2 + 14

1
6!�23+

+7 1
5!2 + 31

1
5!�4!�2 + 6

1
5!�3!2 + 36

1
5!�3!�22 + 6

1
5!�24 + 5

1
4!2�3!+

+11 1
4!2�22 + 13

1
4!�3!2�2 + 17

1
4!�3!�23 + 7

1
3!3�22 + 3

1
3!2�24 = 6414 413

87 091 200

w8 = 3 1
215�35�52�7 + 2

1
210�34�5�7�3! + 3

1
212�34�5�7 + 2

1
27�34�5�4!+

+4 1
28�34�5�3! +

1
210�34�5 +

1
28�9! + 2

1
28�8! +

1
26�7!�3! +

1
28�7!+

+ 1
25�6!�4! +

1
26�6!�3! + 3

1
24�5!2 + 5

1
25�5!�4! +

1
24�5!�3!2

+2 1
26�5!�3! ++

1
23�4!�6! ++

1
24�4!�5! + 3

1
10! + 6

1
9!�2 + 2

1
8!�3!+

+6 1
8!�22 + 3

1
7!�4! + 6

1
7!�3!�2 + 3

1
7!�23 + 4

1
6!�5! + 5

1
6!�4!�2+

+6 1
6!�3!�22 + 6

1
5!2�2 + 2

1
5!�4!�3! + 4

1
5!�4!�22 + 3

1
5!�3!2�2+

+2 1
5!�3!�23 +

1
4!2�3!�2 + 2

1
4!�3!2�22 = 21 265

6967 296

w9 =
1

214�35�52�7�3! +
1

216�35�52�7 +
1

210�34�5�7�4! +
1

211�34�5�7�3!+

+ 1
27�34�5�5! +

1
28�34�5�4! +

1
29�10! +

1
29�9! +

1
24�5!�6! +

1
25�5!2+

+ 1
11! + 2

1
10!�2 +

1
9!�22 +

1
8!�3!�2 +

1
7!�5! +

1
7!�3!�22 +

1
6!�5!�2 = 4096 223

183 936 614 400
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According to (15), the alternating angle sum now computes to

W
�
P 101

�
= 1� 6 + 185

12 �
177
8 + 55 831

2880 �
5107
480 +

5234 389
1451 520�

� 24 69734 560 +
6414 413
87 091 200 �

21 265
6967 296 +

4096 223
183 936 614 400 = � 1

183 936 614 400 .

Finally, by means of (16), the volume of P 101 is given by

vol10
�
P 101

�
=

W
�
P 10

�
(�1)5 2


10

=
�
11
2

183 936 614 400 � �
�
11
2

� = �5

5431 878 144 000
,

where the Gamma function satis�es

�

�
11

2

�
=
945
p
�

32
.
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