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ABSTRACT

This thesis presents the Volume Conjecture raised by R. Kashaev and provides
proofs for the figure-eight knot 41 and the knot 52.
With the goal of constructing the colored Jones polynomial - one principal con-
stituent of the Volume Conjecture - we first explain the main aspects of the theo-
ries of knots, tangles and braids. Hyperbolic geometry, with its volume measure,
forms another essential ingredient.
Then we switch to the concept of Hopf algebras to derive the Yang-Baxter equa-
tion, whose solutions, the so-called R-matrices, will be investigated through the
formalism of quantum groups.
These preliminaries culminate in a physical interpretation and their direct appli-
cation to the construction of the colored Jones polynomial: consider the finite-
dimensional irreducible representations of the quantum universal enveloping
algebra of the Lie algebra sl2.C/, a quantum group, and decorate the .1; 1/-
tangle diagram of a link according to certain assignment rules. This leads to
the treasured colored Jones invariant. Parallel to this, the Kashaev invariant,
based on the quantum dilogarithm, is introduced and shown to coincide with
the colored Jones polynomial evaluated at the N th root of unity.
Finally, the Volume Conjecture is exposed first in its original version by R.
Kashaev and then in a modified formulation by H. Murakami and J. Murakami.
Numerical evidence supporting the Conjecture and rigorous proofs for the cases
of the knot 41 and the knot 52 are provided. The thesis concludes with a current
list of links for which the Volume Conjecture has been analytically proven and
with some general remarks regarding possible generalizations of the Conjecture
and related methods.
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1. INTRODUCTION

The genuine discovery of the Jones polynomial in 1984 sparked off a daz-
zling quest for other link invariants and tremendous progress in the domain
of knot theory has been achieved since then. Most fascinating is the fact that
these new achievements are not confined to knot theory, but appeal to many
other fields ranging from topology, geometry to algebra and mathematical
physics. In particular, many concepts come from the physics area leading to
so-called quantum groups from which quantum invariants are derived. The
Volume Conjecture, first raised by R. Kashaev in 1996, is one stunning result
that unifies the world of these invariants with the world of hyperbolic geom-
etry. Indeed, it states that the classical limit of the colored Jones polynomial
of a knot evaluated at a root of unity gives the hyperbolic volume of the knot
complement.
In this context, the present work not only aims to provide a survey of the
Volume Conjecture, its constituent parts and proofs for two selected cases,
but also to comment on the physics at the background of the theory of three-
manifold invariants.

First, we explain the main features of the theories of knots, tangles and
braids, which are essential notions for the construction of the colored link
invariants. The first theory is necessary to understand the impact of these
invariants, the second theory is indispensable to prove their mere existence
and finally the third theory enters into the link invariant definition. Besides,
a seemingly completely different subject is treated in the second part of chap-
ter 2, namely hyperbolic geometry. Of particular interest is the computation
of hyperbolic volume as well as the Gromov norm of the three-manifold given
by the link complement.
Switching over to algebra and physics in chapter 3, we derive, by a purely
abstract method involving Hopf algebras, the Yang-Baxter equation. This
equation stands at the basis of the link invariants we are heading for and
is of significant relevance in physics. A fundamental role is played by the
quantum inverse scattering method. Moreover, we study quantum groups
that were originally conceived as a machinery for producing solutions to the
Yang-Baxter equation by the so-called R-matrices. This approach gradually
found applications in other areas, particularly in the theory of link invariants.
The quantum universal enveloping algebra of a Lie algebra represents one of
the most important classes of quantum groups. We investigate the case of the
Lie algebra sl2.C/, whose finite-dimensional irreducible representations are
required for coloring the Jones polynomial.
This alludes to chapter 4, which is dedicated to the colored Jones polynomial
JN , a generalization of the well-known Jones polynomial. Its general con-
struction is explained, followed by the definition of the link invariant h�iN
introduced by R. Kashaev in the framework of quantum groups. With the
goal of clarifying Kashaev’s invariant from a mathematical point of view, H.
Murakami and J. Murakami revised the colored Jones polynomial evaluated
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at the N th root of unity and this in the framework of enhanced Yang-Baxter
operators. In this way, they succeeded to show the equivalence between both
invariants.
In chapter 5, we turn to the famous Volume Conjecture, exposing first its
original formulation by R. Kashaev and then a modified version by H. Mu-
rakami and J. Murakami. Main evidence to the Conjecture is provided by a
numerical method. However, this one is not entirely satisfactory for a stout-
hearted mathematician but stimulates the search for a general algorithm in
order to show the Volume Conjecture rigorously. Up to now, such a method
is still not available, and henceforth the Conjecture needs to be studied for
each link individually. We illustrate the difficulties through the proofs for the
figure-eight knot 41 and the knot 52. A current list of links for which the
Volume Conjecture has been analytically proven is attached. Finally, we con-
clude with some remarks on possible generalizations as well as on a potential
global algorithm to prove the Conjecture.



2. PRELIMINARIES

Although the present work, motivated by physical arguments, involves fea-
tures of knot theory, algebra as well as geometry, we are not able to give
here an elaborate introduction to these vast fields. With the objective of be-
ing self-explanatory, this thesis should not overflow the reader with certainly
interesting, but not vital information for the sequel. Therefore, we briefly
introduce the main notions in the areas of:

- knots, links, braids and tangles (2.1, 2.2),

- hyperbolic geometry (2.3).

2.1. Knots and Links

The roots of knot theory lie back in the 19th century, when C.F. Gauss ded-
icated to them a first mathematical study. Significant stimulus to the field
was then brought by Lord Kelvin, who had the conviction that atoms were
knots in the aether. By that time, tabulation of knots was of major concern
and cumulated in Tait’s knot tables. Through the following century, knot
theory gained further interest and established as part of the subject of topol-
ogy. Despite this tremendous gain in popularity, the major and most exciting
breakthroughs in the field date from the past thirty years and inconceivable
jewels are yet to be discovered. Proper understanding of the complicated
knotting phenomena in DNA helices or other polymers are just some of the
numerous yet open questions that keep research in knot theory extremely
active.
Here, we concentrate primarily on invariants, whose breakthrough came
with the discovery of the Jones polynomial and the work of other distin-
guished mathematicians and theoretical physicists, as well as on the volume
of the knot complement in the 3-sphere. We refer to [Ada94], [Lic97], [PS97]
and [Tur09] for more details.

2.1.1. Polygonal and smooth approaches. Intuitively, we would define a
knot as a subspace of R3 homeomorphic to the circle S1. However this defini-
tion is not satisfactory, because it allows knots with infinitely many crossings,
the so-called wild knots. As a consequence, we rely on the polygonal ap-

Figure 1: Example of a wild knot

proach in order to define knots without being confronted to such problems.

Definition 2.1.
A polygonal knot is a subset of R3 homeomorphic to S1 and expressible as
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a disjoint union of finitely many points (vertices) and open straight lines
(edges).

Remark. Imagine a physical knot K in R3. Clearly, a knot diagram corre-
sponds to the planar representation (standard projection on the xy-plane) of
K with additional information recorded (over/under-crossings) (see Figure
2). However, we need to be careful while drawing a knot diagram: knots
must be in general position before being projected. In general position means
that the pre-image of every point in the projected knot consists of either one
or two points and in the latter case, neither being a vertex of K. In other
words, in the 3-dimensional knot picture, there are no edges above edges, no
vertical edges (that is parallel to the z-axis), no tangencies and no triple (or
”higher”) points. It turns out that any knot can be put into general position
(by a small perturbation of the vertices). Hence, every knot disposes of a
representing diagram.

Figure 2: polygonal knots: unknot, trefoil and figure-eight knot

Even though this definition is mathematically compliant, it does not reflect
our intuitive perception of a tangled rope. Thus, we invoke the smooth ap-
proach. In the sequel, we denote by S1 and S3 the 1-sphere and the 3-sphere
respectively, that is

S1 D fx 2 R2 j kxk D 1g;

S3 D fx 2 R4 j kxk D 1g Š R3 [ f1g:

Definition 2.2.
Let f W S1 �! S3 be an infinitely differentiable embedding with non-vanishing
differential. Then K WD f .S1/ is called a (smooth) knot.

Remarks.
- These two approaches of definitions 2.1 and 2.2 give rise to the same
theory. Indeed, there is a 1-to-1 correspondence, called smoothing, that takes
polygonal knots to smooth knots. Thus, from now on, we consider all knots to
be polygonal, but we are going to think about them as being drawn smoothly.
- An oriented knot is obtained by specifying a direction on it.
- Two oriented knots K1 and K2 may be added in the way Figure 5 illus-
trates. This process is called connected sum (we write K1#K2) and is well
defined, since it does not depend on where the addition takes place. More-
over, the unknot plays the role of neutral element.
- In the study of the existence of an additive inverse for a non-trivial knot,
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the notion of prime knot is indispensable. In fact, a knot is said to be prime if
it is not the unknot and if it is not the connected sum of two non-trivial knots.
Similarly to numbers, every knot can be expressed uniquely, up to recording
of summands, as a finite sum of prime knots (Schubert’s theorem). Conse-
quently, the answer to the question on additive inverses is negative. We are
going to work merely with prime knots in the sequel.

Here are some examples of prime knots. Those are denoted by an indexed
integer Nm, where N is the number of crossings in the knot diagram and m
is the tabulation parameter, distinguishing knots with same N .

Figure 3: Unknot, right- and left- handed trefoil

Figure 4: Figure-eight knot 41, knot 52, knot 72, knot 83 and knot 88

#

K1 K2 K1 K2#

=

Figure 5: Connected sum of two knots K1 and K2

The notion of a knot generalizes to that of a link.

Definition 2.3.
A link L of m components is a collection of m disjoint knots.

Remarks.
- A one-component link is a knot.
- The notions of general position and diagrams are defined for links as for
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knots.
- An oriented link is a choice of direction for each component.
- The connected sum does not exist for links, since it is not well defined.
- There exist many types of links (and knots). One important class (for
which the Volume Conjecture holds) contains the so-called torus links T .p; q/,
where p 2 N�; q 2 Z are coprime. They are constructed in the following
way: place p strands equally along the length of a cylinder and rotate the
latter by 2�q

p
in the anti-clockwise direction if q > 0 and in the clockwise

direction if q < 0. Then, join up the ends of the cylinder in order to make a
torus. Finally, throw away the torus, but keep the strands. The result is the
torus link T .p; q/. The class of torus knots constitutes an important example
of prime knots. For instance the right-handed trefoil correponds to T .3; 2/,
the left-handed trefoil to T .3;�2/ and the knot 72 from Figure 4 is the torus
knot T .7; 2/.

Figure 6: 3-component unlink, Hopf link, Borromean rings and Whitehead link

2.1.2. Equivalence. The aim of this section consists in explaining the no-
tions of equivalent knots and equivalent links. For the sake of legibility, we are
going to talk only about links in the sequel, but the whole theory is of course
applicable to knots.
The projection of a link is not an injective process. Indeed, a link, depending
on how it is embedded in 3-dimensional space, can have various link dia-
grams. A natural question that arises is the following: Given a set of links,
which of them can be deformed by stretching and twisting (without cutting
up any strand) one into the other? To answer this question, we need a precise
definition of the deformation process.

Definition 2.4.
Suppose a closed triangle ABC in R3 meets a polygonal link L such that
the sides AC and BC of the triangle are edges of the link L that does not
intersect the triangle ABC at any other points. Replace the two edges AC
and BC by the edge AB obtaining a new link L0. Such a move or its reverse
is called a �-move.

Definition 2.5.
Two links L and L0 are equivalent or isotopic if they can be joined by a
sequence of links L0 D L, L1,..., Ln D L0 in which each pair .Li ; LiC1/
(0 � i � n � 1) is related by a �-move.



ON THE VOLUME CONJECTURE 7

C

B

A

L

-move

C

B

A

L'

Figure 7: �-move

Remarks.
- In general, two links L and L0 are said to be equivalent in S3 if there
exists an (orientation preserving, if orientation is involved) piecewise linear
homeomorphism h W S3 �! S3 such that h.L/ D L0.
- This implies that the complements to the links L and L0, that is the sets
S3 n L and S3 n L0 are homeomorphic. Caution is needed for the converse
statement: for knots it is true, but not for links. Indeed, there exist non-
isotopic links with homeomorphic complements.

2.1.3. Reidemeister’s Theorem. In 1926, K. Reidemeister succeeded in
establishing a sequence of moves, called Reidemeister moves, that are needed
and sufficient to take equivalent links one into the other. More precisely,
consider the following local Reidemeister moves.

(R0) (R3)(R2)(R1)

Remark. Link diagrams related by a sequence of moves of type (R0) are said
to be planar isotopic, that is, the underlying graph structure remains un-
changed.

Definition 2.6.
Two diagrams D and D0 representing the links L and L0 respectively, are
Reidemeister equivalent if they can be joined by a sequence of diagrams D0 D
D, D1,..., Dn D D0 in which each pair .Di ;DiC1/ (0 � i � n � 1) is related
by one of the moves (R0)-(R3).

THEOREM 2.7 (Reidemeister’s Theorem)
Let L and L0 be two links with corresponding diagrams D and D0. Then L and
L0 are isotopic if and only if D and D0 are Reidemeister equivalent.

Proof. A proof can be found in [PS97] p.11-12.
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2.1.4. Invariants. In section 2.1.2 we addressed the problem of comparing
links, that is of how to detect if two links are equivalent or not. The Reide-
meister moves give us the transformations needed to deform one link into
the other if they are equivalent. But still we lack a convenient tool to decide
whether or not two links are equivalent and only then, we seek for the ap-
propriate Reidemeister sequence. Another natural question that occurs is the
unknotting problem: given a link, is it isotopic to the m-component unlink?
The quest for solutions to these essential problems in knot theory motivates
the introduction of link invariants: we assign to each link diagram an alge-
braic object, such as a number or a polynomial, that depends only on the link
isotopy class. If the value of the invariant for the considered link differs from
the value for the unlink, then the link is not isotopic to the latter one. In gen-
eral, if the values of such an invariant for two links do not coincide, then they
are not equivalent. However, the converse does not hold (even though we
wish it to do so), that is if the invariants issue identical values, then the links
are not necessarily equivalent. Certainly, this method is effective only if there
is a simple algorithm for computing the invariant from the link diagram.

2.1.5. The Jones polynomial. The famous Jones polynomial, discovered
by V. Jones in 1984, is such an invariant for oriented links. Its construction in-
volves the so-called bracket polynomial due to L. Kauffman, which associates
to every unoriented link diagram D a Laurent polynomial in one variable A
with integer coefficients.

Definition 2.8.
The Kauffman bracket or bracket polynomial is a function

h�i W flink diagrams Dg �! ZŒA˙1� defined by
(i) invariance under planar isotopy (R0),

(ii) h unknot i D 1,
(iii) hD ti D .�A�2 � A2/hDi,
(iv) h/i D AhHi C A�1h1i.

Remarks.
- (iv) is referred to as skein relation and defines the bracket inductively.
- Besides, the Kauffman bracket can be expressed as a state sum. This will
be useful for the physical interpretation we give in chapter 3. A state S of
a diagram is an assignment of C1 or �1 to each crossing; indeed we can
resolve each crossing by the rule

H / 1
C1

oo �1 // :

As a result, each state S gives a collection of circles in the plane, �.S/ being
the number of these circles. The Kauffman bracket can now be reformulated
as follows

hDi D
X
S

A&.S/.�A2 � A�2/�.S/�1; (2.1)
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where &.S/ is the sum of the assignment values ˙1. A straightforward calcu-
lation using this new definition of the bracket then shows that

hD1#D2i D hD1ihD2i: (2.2)

The Kauffman bracket has one main deficiency: it is not invariant under
Reidemeister move (R1), whereas (R0),(R2),(R3)-invariance is guaranteed.
This makes us wondering if there exists a slight modification which trans-
forms the bracket into a new polynomial, invariant under all Reidemeister
moves. The answer is yes and the result is the Jones polynomial. The modi-
fication occurs in 2 steps.

1. We need to introduce the notion of writhe !.D/ of an oriented link
diagram, which corresponds to the sum of the signs of all the crossings;
the sign of a crossing being defined as follows

+1 -1

Figure 8: Sign associated to a crossing

It turns out that ! is invariant under (R0), (R2) and (R3) and changes
by ˙1 under (R1).

2. For an oriented link diagram D, we define

fD.A/ WD .�A
3/�!.D/hDi 2 ZŒA˙1�: (2.3)

Clearly, fD.A/ is invariant under (R0), (R2) and (R3) since both !.�/ and
h�i are. A short calculation shows that (R1)-invariance is also satisfied by
fD.A/. This enables us to define the Jones polynomial.

Definition 2.9.
The Jones polynomial V.L/ of an oriented link L is the polynomial fD.A/ for
any diagram D representing L with the substitution A D t�

1
4 .
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Examples 2.10.

V./D .�A3/�!./hi
ˇ̌̌
A!t

� 1
4

(ii)
D .�A3/0 � 1

ˇ̌
A!t

� 1
4
D 1

V.t/D .�A3/�!.t/h ti
ˇ̌̌
A!t

� 1
4

(iii)
D .�A3/0.�A�2 � A2/hi

ˇ̌
A!t

� 1
4

(ii)
D .�A�2 � A2/

ˇ̌
A!t

� 1
4
D �t

1
2 � t�

1
2

V.&/D .�A3/�!.&/h&i
ˇ̌̌
A!t

� 1
4
D : : : D �t4 C t3 C t

V ../D .�A3/�!../h.i
ˇ̌̌
A!t

� 1
4
D : : : D �t�4 C t�3 C t�1

Similarly to the Kauffman bracket, the Jones polynomial satisfies a skein re-
lation.

THEOREM 2.11
Let LC, L� and L0 be three oriented links differing only locally according to the
diagrams

L+ L- L0

Then the following skein relation is satisfied

t�1V.LC/ � tV .L�/ D .t
1
2 � t�

1
2 /V .L0/: (2.4)

Proof. The calculations for the proof may be found in [Lic97] p.28.

Properties 2.12.

1. V.L/ 2 ZŒt�
1
2 ; t

1
2 � for any link L.

2. As a result of (2.3), we get V.L t/ D .�t�
1
2 � t

1
2 /V .L/ for any link

L.

3. (2.2) implies that V.K1#K2/ D V.K1/V .K2/ for any two knots K1, K2.

4. As a consequence of the previous property and theorem 2.11 we have
that V.K1 tK2/ D .�t�

1
2 � t

1
2 /V .K1/V .K2/ for any two knots K1, K2.

5. If NL is the mirror image of L (that is, the link obtained by reversing all
over-/undercrossings), then V. NL/ D V.L/

ˇ̌
t!t�1

:

6. It can be shown that the Jones polynomial is the only polynomial in-
variant in ZŒt�

1
2 ; t

1
2 � of oriented links featuring property (2.4) and a

normed value for the unknot, namely 1.
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In fact, the efficiency of a link invariant is not only measured by the computa-
tional costs, but simultaneously by the ’degree of accuracy’ of the statement
that identical invariants yield equivalent links. The Jones polynomial is ex-
cellent at distinguishing knots and links, but unfortunately not infallible. For
instance for the knots 51 and 10132, that cleary are not equivalent (different
crossing numbers), the Jones polynomials coincide. Another related problem
with the Jones polynomial is the open question whether there exists a non-
trivial knot K (that is, different from the unknot) such that V.K/ D 1.
Attempts to generalize or to improve the Jones polynomial lead to the Kauff-
man polynomial and the HOMFLY-PT polynomial, invariants of oriented links
given by Laurent polynomials with integer coefficients and in two variables.
They are independent invariants in the sense that they distinguish different
pairs of knots (for instance the knots 11255 and 11257 have the same Kauff-
man polynomial but different HOMFLY-PT polynomials). We remark that by
a subtle change of variables, these polynomials can be reduced to the Jones
polynomial. We will not give further details to these and other polynomial
invariants here. However, notice that the procedure in chapter 4, used to de-
fine the colored Jones polynomial, leads to the HOMFLY-PT polynomial with a
particular choice of enhanced Yang-Baxter operator (cf. 4.5).

2.1.6. The link group. In addition to the scalar and polynomial invari-
ants, there exist other invariants of links that do not rely on their diagrams
and bear powerful techniques of algebraic topology and homology (two in-
teresting vast fields, that we are however not going to specify in this work,
since they are not of main concern). The group of a link provides such an
example. Its definition involves the link complement or the link exterior.

Definition 2.13.
Let L be a link in S3. The link exterior X is defined to be

X WD S3 n fopen neighbourhood of Lg:

Remarks.
- X is a compact 3-manifold with boundary a torus.
- X is homeomorphic to S3 n L.

Definition 2.14.
The link group of a link L � S3 is defined to be the fundamental group of its
exterior, that is …1.S

3 n L/.

We are not going to specify presentations of the link group. We refer to
[Tur09] for an overview on the Wirtinger presentation and on Van Kampen’s
Theorem. Even though, let us have a glance at two examples.

Examples 2.15.
- …1.S

3 n/ Š Z.
- …1.S

3 n T .p; q// Š ha; b W ap D bqi.
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2.2. Braids and Tangles

The study of braid groups turns out to be essential for defining an important
class of link invariants, namely the colored Jones polynomials. Furthermore,
we are going to see in section 3 that the braid point of view establishes a
connection between the Yang-Baxter equation and knot theory. The following
initiation is based on [PS97].

2.2.1. Geometrical interpretation of braids. We start by defining braids
geometrically. For an integer n � 1, we imagine 2n points Ai D .i; 0; 0/ and
Bi D .i; 0; 1/ .i D 1; 2; :::; n/ in R3. A polygonal line joining one of the points
Ai with one of the points Bj is called ascending if in the motion of a point
from Ai to Bj along this line, its z-coordinate increases monotonically. A
braid in n strands is defined as a set of pairwise non-intersecting ascending
polygonal lines (strands) joining the points A1; :::; An to the points B1; :::; Bn.

x
y

z

B1

B1

B1B2

B2

B2 B3

B3 B4

A1 A2 A1A1 A2A2A3 A3A4

Figure 9: Examples of braids

Two braids are said to be equivalent if one can be deformed into the other us-
ing the Reidemeister moves with the additional condition that the line ABC
shown below is ascending. Similarly, if we consider braids whose strands are
ascending smooth lines, then equivalence is defined as isotopy, that is as a
smooth deformation (the Reidemeister moves can be considered as smooth
deformations instead of the polygonal approach) in the class of braids.

A
B

C

A
B

C

~

C

A

B

C

A

B

~

Figure 10: Additional requirement for equivalence between braids
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2.2.2. Group structure of braids. The set of equivalence classes of braids
in n strands has a natural group structure, namely

- the product of two braids � and � in n strands is given by their con-
catenation; the associativity of this multiplication is an immediate con-
sequence of the definition,

- the unit element simply corresponds to the braid in n parallel vertical
strands,

- the inverse ��1 of a braid � is given by its mirror image with respect to
the plane in z D 1

2
that is parallel to the xy-plane.

The following figures illustrate these properties.

. =

  

Figure 11: Product of two braids � and �

1 2 3 n...

1 2 3 n...

Figure 12: Unit element in the braid group

. =

  -1

~

 -1 

Figure 13: Inverse of a braid

The set of equivalence classes of braids in n strands together with this oper-
ation is called braid group and is denoted by Bn. Our next goal consists in
determining a presentation for the braid group and accordingly, we will give
a formal definition of Bn.
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2.2.3. Presentation of braid groups. First, let us look at the generators
of the braid group in n strands. In every equivalence class, we choose one
representative with the following projective behaviour

(i) the projections of the strands on the xz-plane are not tangent to each
other;

(ii) no point in the xz-plane is the projection of 3 or more points from
different strands;

(iii) all the crossings occur at different altitudes above the xy-plane.

With respect to these restrictions, the xz-plane projection of a braid in Bn
will be given by a product of generators �1; :::; �n�1 and their inverses.

1 2 3 4 5 n...

1 2 3 4 5 n...

1 2 3 4 5 n...

1 2 3 4 5 n...

1 2 3 4 n...

1 2 3 4 n...

n-1

n-1

Figure 14: Generators �1; �2; �n�1

1 2 3 4 5 n...

1 2 3 4 5 n...

1 2 3 4 5 n...

1 2 3 4 5 n...

1 2 3 4 n...

1 2 3 4 n...

n-1

n-1

Figure 15: Inverses of generators ��11 ; ��12 ; ��1n�1

Now, we are heading for relations among these generators. To this end, we
need to consider braid transformations under which the conditions (i) to
(iii) break down. It turns out that these transformations correspond mainly
to the Reidemeister moves (we exclude (R1), since it does not preserve the
braid character), as we want the braid projections to be equivalent. From the
pictures below, the following relations result:

�i�
�1
i D 1; (2.5)

�i�iC1�i D �iC1�i�iC1; (2.6)

�i�j D �j�i whenever ji � j j � 2: (2.7)

The second condition is also called Artin or braid relation, whereas the last
one stands for far commutativity, because it states that generators commute,
only if they are sufficiently far from each other.
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~ ~

Figure 16: Illustration of relation (2.5) - result from (R2). (i) breaks down
under this transformation.

~ ~~

Figure 17: Illustration of relation (2.6) - Result from (R3). (ii) breaks down
under this transformation.

~...... ... ...... ...

Figure 18: Illustration of relation (2.7). (iii) breaks down under this transfor-
mation.

Let us summarize these properties in a formal definition for Bn.

Definition 2.16.
Fix an integer n � 3. The braid group with n strands is the group Bn gener-
ated by n � 1 generators �1; :::; �n�1 that satisfy the relations

�i�j D �j�i whenever ji � j j � 2;

�i�iC1�i D �iC1�i�iC1;

for any 1 � i; j � n � 1.

Remarks.

- For n D 1, we get the trivial group: B1 D f1g,
- For n D 2, we get the free group on one generator: B2 Š Z,

- For n � 2, Bn is an infinite group.

2.2.4. Mechanical interpretation. In classical mechanics, the space of all
possible positions that a physical system, possibly subject to external con-
straints, may attain is called the configuration space. For typical systems, this
space is endowed with the structure of a manifold and is also referred to as
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configuration manifold (e.g. the configuration manifold of a system of n par-
ticles progressing in R3 corresponds to R3n or a subspace of R3n depending
on the kinematical properties of the system). Generally, the configuration
space of n particles moving in a manifold M can be regarded as Mn.
With the aim of linking braid theory to mechanics, we limit our study to the
case where the physical system is composed of n identical distinct particles
in the plane. The configuration space CnR2 is given by

CnR2 D FnR2=Sn;

where FnR2 D f.x1; x2; : : : ; xn/ 2 .R
2/njxi ¤ xj ;8i ¤ j g and Sn is the

symmetric group acting by permuting the coordinates of FnR2. Henceforth,
CnR2 consists of unordered n-tuples of points in R2 and is endowed with the
natural topology (see [PS97]).
It turns out that in CnR2 the homotopy classes of loops based at !0, where
we choose the base point to be !0 D f.1; 0/; .2; 0/; : : : ; .n; 0/g, correspond
bijectively to the isotopy classes of braids in n strands. Indeed, suppose that
at some moment in time t0, 0 � t0 � 1, a loop passes through an element
X.t0/ of the configuration space CnR2. ViewingX.t0/ as a horizontal cut in R3

at z D t0, X.t0/, as a set, contains n distinct points marked on it. The result of
considering these planes for all t0 2 Œ0; 1� is a braid in n strands. To exemplify,
we look at a physical system of 3 distinct particles in the plane. One possible
time evolution of their trajectories is illustrated below. It cleary corresponds
to a braid in 3 strands. Furthermore, as a consequence of the correspondence

y

x

z

z=1

z=0

z=t0

Figure 19: Braid in 3 strands corresponding to a loop in C3R2

between the product of braids and the composition of loops, the fundamental
group of the configuration space of n identical distinct particles in the plane
is isomorphic to the braid group in n strands

…1.CnR2/ Š Bn:

2.2.5. Relationship between braids and links. Up to now, we have not
yet established any relationship between braids and links. A natural way for
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doing so is provided by the closure map � W Bn �! flinksg. Given a braid � ,
we join the upper points of its strands to the lower ones and thus get a link
or even a knot. Two questions immediately arise:

1. For what braids does the closure map � produce a knot rather than a
link?

2. Is � a bijective map, that is, is there a 1-to-1 correspondence between
the braid group and the set of all possible links?

closure ~

Figure 20: Illustration of the closure map for the figure-eight knot

The answer to the first question is given by considering the following map
between the braid group Bn and the permutation group Sn

� W Bn �! Sn

�i 7�! .i; i C 1/ DW �i;iC1:

In other words, regarding the geometrical interpretation of braids, the i th

strand from a braid � originating from Ai ends up at B�.�/.i/. The following
properties hold for �:

- � is surjective (as the permutation group is generated by transposi-
tions),

- � is a group homomorphism: it is sufficient to show that �.�i�j / D
�.�i /�.�j / for 1 � i; j � n. Actually, we have:

�.�i�j / D

(
1 D �2i;iC1 D �.�i /

2 if i D j;
�i;iC1�j;jC1 D �.�i /�.�j / if ji � j j � 1:

Now we are able to answer our first question: the closure of a braid � 2 Bn is
a knot if and only if the associated permutation is cyclic of order n, otherwise
there will be more components either linked or unlinked. Thus, we have

PROPOSITION 2.17
The closure of a braid � 2 Bn is a knot() h�.�/i Š Zn.

Let us turn to our second question on the bijective character of the closure
map. By looking for example at the closures of �1; ��11 2 B2, we get in both
cases the unknot, although �1 ¤ ��11 . Thus injectivity already fails. However,
the closure map is surjective.
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THEOREM 2.18 (Alexander’s Braiding Theorem)
Any link, in particular any knot, is the closure of some braid.

Proof. A proof may be found in [KT08] p.59-60 or in [Bir74] p.55-56.

� not being a bijection, we want to know in what cases the closures of
different braids produce isotopic links. This problem has been solved by
Markov. Before exposing his result, we need to introduce the following alge-
braic transformations of braids, called Markov moves:

1. For braids �; � 2 Bn, exchange � by ����1 (first Markov move);

2. For a braid � 2 Bn � BnC1 and �n 2 BnC1 (nth generator of BnC1),
exchange � by ��˙1n (second Markov move) or exchange ��˙1n by �
(inverse second Markov move).

...

...


...

...

...

...







-1

conjugation

Figure 21: First Markov move: conjugation

stabilization

...

...


...

...


destabilization

Figure 22: Second Markov move and its inverse: (de-)stabilization

THEOREM 2.19 (Markov’s Theorem)
The closures of two braids are isotopic if and only if one braid can be deformed
into the other by a finite sequence of Markov moves.

Proof. For a proof, we refer to [KT08] p.69-90. The first published proof may
be read in [Bir74] p.51-69.

2.2.6. Tangles. In addition to the theories of knots, links and braids, there
is another interesting related concept - the concept of tangles, which gener-
alizes the notion of links. In this section, we will just give a brief introduction
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to the theory of tangles in order to be appropriately equipped for the sequel.
For further details [KM91], [KRT97] and [Kass95] may be consulted.
In the following, we denote by I the closed unit interval Œ0; 1� and by M1 a
1-manifold (that is a circle or an arc or here a finite collection of them).

Definition 2.20.
Let f WM1 �! I3 � R3 be a proper embedding such that @T � 1

2
� I � @I,

where T WD f .M1/. Define @�T WD T \.I2�0/; @CT WD T \.I2�1/ as well as
m WD j@�T j and n WD j@CT j for m; n 2 N. Then T is called an .m; n/-tangle.

Remarks.
- As a consequence of the definition, a link is a .0; 0/-tangle. Any general
tangle consists of a link together with a finite collection of proper (pairwise
disjoint) arcs.
- Braids constitute a special class of tangles. For any integer n � 1, a braid
on n strands can be considered as an .n; n/-tangle T with the additional prop-
erties that T does not contain any closed circles and that the intersection of
T with I2 � z;8z 2 I, consists of exactly n distinct points. Henceforth, in the
following chapters, although we are going to work exclusively with braids,
we can apply results from the theory of tangles.
- Unless explicitly stated, we do not assume tangles to be oriented.
- Similary to links and braids, we study tangles by their 2-dimensional dia-
grams D in the square I2, where @D � I � @I.

Examples 2.21.
The .2; 2/-tangle does not correspond to a braid in B2, because there is a
variable number of intersection points of the tangle with I2 � z; z 2 I.

Figure 23: (3,1)-tangle and (2,2)-tangle (extracted from [KRT97])

Finally, we look for an adequate equivalence relation on the set of all .m; n/-
tangles, which, by the way, form a complex vector space (see [KRT97] p.54
for more details). It turns out that any tangle diagram can be split into ele-
mentary diagrams denoted by I;R;L;\;[ (with all possible orientations if
required) using the composition ı (when defined) and the tensor product ˝
of diagrams (see Figure 24).



20 A. SCHMITGEN

T1 T2
T1

T2

o = T1 T2 T2T1=

I R L 

Figure 24: Elementary diagrams; composition and tensor product of tangles

Similarly to links, the Reidemeister moves defined in 2.1.3 apply to tangle
diagrams as well (clearly, they do not move the endpoints of the arcs). Thus,
two .m; n/-tangles S and T are said to be equivalent or isotopic if their com-
ponent diagrams are related by a sequence of Reidemeister moves together
with the implicit associativity and identity relations and .S1ıT1/˝.S2ıT2/ D
.S1 ˝ S2/ ı .T1 ˝ T2/.
In chapter 4, we will consider .1; 1/-tangles in order to define link invariants.

2.3. Hyperbolic Geometry

The discovery of hyperbolic geometry was stimulated by the criticism of the
parallel (fifth) postulate of Euclidean geometry, which states that for any
point outside a given infinite straight line, there exists only one infinite
straight line running parallel to the first line and passing through that point.
On one side, this criticism was nourished by the fact that in comparison to
the four other postulates of Euclidean geometry, the fifth was of infinitesimal
nature and less axiomatic. On the other side, Euclid showed in one of the
books of his famous work Elements the converse of the parallel postulate (that
is that the sum of the angles of a triangle is less than 180ı), which is curious
because the postulate itself seemed to be unprovable. Combined with the
fact that most of plane geometry can be proved without the fifth postulate,
these arguments militated in favour of the unnecessity of the latter.
In the 18th and at the beginning of the 19th century, C.F. Gauss, J. Bolyai and
N. Lobachevsky studied a theory based on the Euclidean axioms apart from
the fifth postulate. These investigations led to the unexpected and remark-
able discovery of a new consistent, non-Euclidean geometry, today known
as hyperbolic geometry. As a result for this progress, E. Beltrami succeeded
finally in 1868 to show the independence of the fifth postulate.
In order to work in hyperbolic geometry, we need an appropriate model, an
equivalent to the unit sphere for spherical geometry. There are at least four
models: the Beltrami-Klein model (projective disc model), the Poincaré ball
model (conformal ball model), the Poincaré half-space model and the Lorentz
model (hyperboloid model). We are going to treat briefly the last three ones
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with the aim of exposing how to compute the volume of a hyperbolic 3-
manifold.
The following introduction is not exhaustive (we omit all proofs), but will be
sufficiently helpful for the sequel. For further reading, especially for proofs,
we may refer to [Rat06], [Kel08] and [Kel10].

2.3.1. The hyperboloid model. The hyperboloid model or Lorentz model
is often used as basic model for hyperbolic geometry, since it most naturally
exhibits the duality between spherical and hyperbolic geometries.

In a first step, we need to define a new inner product on RnC1 (suppose n >
1) beside the habitual one. LetEn be the Euclidean n-space with the standard
basis fe1; e2; : : : ; eng and let En;1 be the real vector space RnC1 endowed with
the following bilinear form

hx; yin;1 WD

nX
kD1

xkyk � xnC1ynC1;

where x D .x1; x2; : : : ; xnC1/; y D .y1; y2; : : : ; ynC1/ 2 RnC1. En;1 is called
Lorentzian n-space with signature .n; 1/. Notice that this new inner product
is not a scalar product and induces the norm kxkn;1 WD C

p
hx; xin;1 which

allows for complex lengths. Thus, we may distinguish three types of vectors
in En;1, namely x 2 En;1 is said to be8<: light-like () kxkn;1 D 0;

space-like () kxkn;1 > 0;

time-like () kxkn;1 < 0:

A time-like vector is called positive if and only if xnC1 > 0.
What is more, equivalently to the orthogonal transformations defined on
RnC1 with respect to the Euclidean inner product, we may define endomor-
phisms ˆ of RnC1 featuring the same property with respect to the Lorentzian
inner product. Such a map is called Lorentz transformation and satisfies

hˆ.x/;ˆ.y/in;1 D hx; yin;1:

A matrix A 2 Mat.n C 1;R/ is said to be Lorentzian if and only if the asso-
ciated linear transformation A W RnC1 �! RnC1 defined by A.x/ D Ax is
Lorentzian. The set of all Lorentzian .nC 1/� .nC 1/-matrices together with
matrix multiplication forms a group, called the Lorentz group and is denoted
by O.n; 1/. The set

PO.n; 1/ WD fA 2 O.n; 1/jA positiveg

is a subgroup of O.n; 1/ and is called positive Lorentz group.
In order to define the hyperboloid model explicitly, we need the following
result.

PROPOSITION 2.22
Let x; y 2 En;1 be positive time-like vectors. Then there is a unique nonnegative
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real number �.x; y/ such that

hx; yin;1 D kxkn;1kykn;1 cosh �.x; y/:

�.x; y/ is called the Lorentzian time-like angle between x and y.

�

Definition 2.23.
The hyperboloid model or Lorentz-Minkowski model for hyperbolic n-space Hn

is defined by
Hn
WD fx 2 En;1jkxkn;1 D �1; xnC1 > 0g:

For x; y 2 Hn, a distance is given by

dH .x; y/ WD �.x; y/;

dH is called the hyperbolic distance between x an y on Hn.

Remarks. Let us summarize some important facts on .Hn; dH /.

- The group of isometries of Hn is isomorphic to the positive Lorentz
group, that is Iso.Hn/ Š PO.n; 1/.

- In order to study geodesics inHn, we shall recall the notions of geodesic
(line) and hyperbolic line. Indeed a geodesic line � of .Hn; dH / is a lo-
cally distance preserving continuous function � W R �! Hn. A geodesic
g in Hn is the image of a geodesic line �, that is g WD �.R/. Finally,
a hyperbolic line of Hn is defined to be the intersection of Hn with a
2-dimensional time-like vector subspace of RnC1. It can be shown that
the geodesics of Hn are precisely its hyperbolic lines.

- The element of hyperbolic volume of Hn with respect to the Euclidean
coordinates x1; x2; : : : ; xn is given by

dVoln D
dx1dx2 : : : dxnq

1C x21 C x
2
2 C � � � C x

2
n

:

�

2.3.2. The conformal ball model. Another model for hyperbolic geometry
is provided by the conformal ball model. The great advantage of this model
lies in the fact that its angles agree with the Euclidean angles and that it
exhibits Euclidean rotational symmetry with respect to its Euclidean centre.
However, this is only achieved at the expense of distortion.
Rather than Hn, we now choose the unit ball Bn WD fx 2 RnC1jkxk <

1; xnC1 D 0g for our model (k�k describing the Euclidean norm). By confor-
mal stereographic projection p of Bn onto Hn via

p W Bn �! Hn

x 7�!

�
2x1

1 � kxk2
;

2x2

1 � kxk2
; : : : ;

2xn

1 � kxk2
;
1C kxk2

1 � kxk2

�
;
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we sense that Bn inherits the metric dH ofHn. Indeed, we have for x; y 2 Bn

dB.x; y/ WD dH .p.x/; p.y//

is a metric. This leads us to

Definition 2.24.
The conformal ball model for hyperbolic n-space Hn is defined by

Bn WD fx 2 RnC1jkxk < 1; xnC1 D 0g:

For x; y 2 Bn and p the stereographic projection of Bn onto Hn, a distance
is given by

dB.x; y/ WD dH .p.x/; p.y//;

and satisfies

cosh dB.x; y/ D 1C
2kx � yk2

.1 � kxk2/.1 � kyk2/
:

dB is called the hyperbolic distance between x an y on Bn.

Remarks.

- As a consequence to this metric, we have dB.x; 0/
x!q2@Bn

�������! 1, which
suggests that points situated at the boundary of Bn actually form the
set of points at infinity.

- The group of isometries of Bn is isomorphic to the group of Möbius
transformations of Bn, that is Iso.Bn/ Š M.Bn/.

- The geodesics of Bn are composed of the open diameters of Bn (all
crossing the centre 0) and circular segments of Bn that are orthogonal
to @Bn.

- The element of hyperbolic volume of Bn with respect to the Euclidean
coordinates x1; x2; : : : ; xn is

dVoln D 2n
dx1dx2 : : : dxn

.1 � kxk2/n
:

�

2.3.3. The upper half-space model. Continuing our walk along the mod-
els for hyperbolic space, we now arrive at the upper half-space model, which
features conformal Euclidean angles and Euclidean translational symmetry -
again at the expense of an unlimited amount of distortion. Similarly to the
previous method in the conformal ball model, we pass from Bn to the upper
half-space U n WD fx 2 Rnjxn > 0g via a particular map and then transfer the
metric. In this case, we choose the Cayley transformation c (c is a conformal
diffeomorphism) of Bn onto U n given by

c W Bn �! U n

x 7�! �en C

 p
2

kx C enk

!2
.x C en/:
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This map corresponds to the inversion with respect to the sphere S.�en;
p
2/,

hence satisfies c2 D id. The metric induced by Bn on U n reads for x; y 2 U n

dU .x; y/ WD dB.c.x/; c.y//:

Definition 2.25.
The upper half-space model for hyperbolic n-space Hn is defined by

U n WD fx 2 Rnjxn > 0g:

For x; y 2 U n and c the Cayley map from Bn onto U n, a distance is given by

dU .x; y/ WD dB.c.x/; c.y//;

and satisfies

cosh dU .x; y/ D 1C
kx � yk2

2xnyn
:

dU is called the Poincaré metric on U n.

Remarks.

- The group of isometries of U n is isomorphic to the group of Möbius
transformations of U n, that is Iso.U n/ Š M.U n/.

- The geodesics of U n are composed of vertical (Euclidean) lines in U n

and semicircles centered in En�1 (thus orthogonal to En�1.

- The element of hyperbolic volume of U n with respect to the Euclidean
coordinates x1; x2; : : : ; xn is

dVoln D
dx1dx2 : : : dxn

.xn/n
:

�

2.3.4. Hyperbolic triangles. Instead of exposing a general theory on hy-
perbolic polytopes and their volume, we concentrate on the cases in 2 and 3
dimensions. For the sake of coherence, we start with some explanations on
hyperbolic triangles until switching over to the 3-dimensional case.
Analogous to Euclidean geometry, a hyperbolic triangle originates from the
connection of three noncollinear points. Let x; y be distinct points of Hn.
Then x; y span a 2-dimensional time-like vector space V.x; y/ � RnC1 and
we have that

L.x; y/ WD Hn
\ V.x; y/

is the unique hyperbolic line of Hn crossing both x and y.

Definition 2.26.
Three points x; y; z 2 Hn are hyperbolically collinear if and only if there is a
hyperbolic line L of Hn containing x; y; z.
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Definition 2.27.
Let x; y; z be three hyperbolically noncollinear points of H 2. Further, let
L.x; y/ be the unique hyperbolic line of H 2 containing x and y and let
Hz.x; y/ be the closed half-plane of H 2 with L.x; y/ as its boundary and z in
its interior. The hyperbolic triangle �.x; y; z/ with vertices x; y; z is defined
to be

�.x; y; z/ WD Hz.x; y/ \Hx.y; z/ \Hy.z; x/:

A generalized hyperbolic triangle in H 2 is a hyperbolic triangle that may have
some of its vertices at infinity (the corresponding angle(s) being 0), that is
ideal vertices. A hyperbolic triangle with three ideal vertices is called an ideal
hyperbolic triangle.

80 3. Hyperbolic Geometry

§3.5. Hyperbolic Trigonometry

Let x, y, z be three hyperbolically noncollinear points of H2. Let L(x, y)
be the unique hyperbolic line of H2 containing x and y, and let H(x, y, z)
be the closed half-plane of H2 with L(x, y) as its boundary and z in its
interior. The hyperbolic triangle with vertices x, y, z is defined to be

T (x, y, z) = H(x, y, z) ∩ H(y, z, x) ∩ H(z, x, y).

We shall assume that the vertices of T (x, y, z) are labeled in negative order
as in Figure 3.5.1.

Let [x, y] be the segment of L(x, y) joining x to y. The sides of T (x, y, z)
are defined to be [x, y], [y, z], and [z, x]. Let a = η(y, z), b = η(z, x), and
c = η(x, y). Then a, b, c is the hyperbolic length of [y, z], [z, x], [x, z],
respectively. Let

f : [0, a] → H2, g : [0, b] → H2, h : [0, c] → H2

be geodesic arcs from y to z, z to x, and x to y, respectively.
The angle α between the sides [z, x] and [x, y] of T (x, y, z) is defined to

be the Lorentzian angle between −g′(b) and h′(0). The angle β between
the sides [x, y] and [y, z] of T (x, y, z) is defined to be the Lorentzian an-
gle between −h′(c) and f ′(0). The angle γ between the sides [y, z] and
[z, x] of T (x, y, z) is defined to be the Lorentzian angle between −f ′(a)
and g′(0). The angles α, β, γ are called the angles of T (x, y, z). The side
[y, z], [z, x], [x, y] is said to be opposite the angle α, β, γ, respectively.

Lemma 1. If α, β, γ are the angles of a hyperbolic triangle T (x, y, z), then

(1) η(z ⊗ x, x ⊗ y) = π − α,

(2) η(x ⊗ y, y ⊗ z) = π − β,

(3) η(y ⊗ z, z ⊗ x) = π − γ.

Proof: Without loss of generality, we may assume that x = e1. The proof
of (1) is evident from Figure 2.5.2. The proof of (2), and (3), is similar.

x

α

y

β

z

γ

a

b

c

Figure 3.5.1. A hyperbolic triangle T (x, y, z)

Figure 25: Hyperbolic triangle in H 2 (extracted from [Rat06])

Remark. By virtue of the theorem of angular defect, we have the following
relation for a hyperbolic triangle �.x; y; z/ in H 2 with angles ˛; ˇ; 

˛ C ˇ C  < �:

Besides the definition of a hyperbolic triangle with respect to the hyperboloid
model, we can adopt the point of view of the upper half-plane model, where
a triangle is characterized by its angles rather than its vertices. If at least one
vertex is at infinity (and thus admits an angle 0), we speak of an asymptotic
triangle in the upper half-space model U 2, described by �1.�2 ; ˛; 0/. For an
illustration, see the figure below. Although having at least one vertex at in-

-1 1



Figure 26: Asymptotic triangles �1.�2 ; 0; 0/ and �1.�2 ; ˛; 0/ in U 2

finity, an asymptotic triangle exhibits a finite area. The general area formula
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for a hyperbolic triangle in H 2 is sustained after a right parametrisation of
x; y; z by hyperbolic coordinates and integration.

THEOREM 2.28
The area of a hyperbolic triangle �.x; y; z/ in H 2 with angles ˛; ˇ;  is given by

Vol2.�.x; y; z// D � � .˛ C ˇ C /:

�

Remark. Consequently, for an asymptotic triangle in U 2, we get

Vol2
�
�1

��
2
; ˛; 0

��
D
�

2
� ˛ <1:

2.3.5. Hyperbolic orthoschemes and tetrahedra. Next, we shall concen-
trate on hyperbolic orthoschemes and tetrahedra. In fact, the key idea behind
this study is that the volume of any hyperbolic 3-manifold obtained by glu-
ing together a finite family of disjoint, convex, finite-sided polyhedra in H3

of finite volume can be computed by knowing only the gluing pattern. More
precisely, the volume of the latter is nothing else than the sum of the volumes
of the involved hyperbolic tetrahedra.

Definition 2.29.
A generalized orthoscheme or orthotetrahedron S in H3 with angles ˛; ˇ;  is
a generalized tetrahedron in H3 with three right dihedral angles and whose
four sides can be ordered F1; F2; F3; F4 so that �.F1; F2/ D ˛; �.F2; F3/ D

ˇ; �.F3; F4/ D  , �.Fi ; Fj / being dihedral angles (1 � i < j � 4).

Remark. An orthoscheme can be seen as the 3-dimensional analogue of a
right triangle, since its four sides are right triangles. Any tetrahedron can be
expressed as the algebraic sum of orthoschemes.§10.4. Hyperbolic Volume 463
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γπ
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u1

u2

u3

u4

Figure 10.4.1. An orthotetrahedron T in D3 with vertex u3 at the origin

Let ui be the vertex of T opposite side Si for i = 1, . . . , 4. See Figure
10.4.1. The four sides of an orthotetrahedron T are right triangles with
right angles at vertices u2 and u3. Hence u2 and u3 are actual vertices
of T . Observe that α is the angle of side S4 at u3 and γ is the angle of
side S1 at u2. Therefore α, γ < π/2. By considering the link of u1 in T ,
we see that β + γ ≥ π/2 with equality if and only if u1 is ideal. Likewise
α + β ≥ π/2 with equality if and only if u4 is ideal. If u4 is ideal, then
β = π/2 − α < π/2. Suppose u4 is actual. Then the link of u4 in T is
a spherical triangle with angles α, β, π/2. By Exercise 2.5.2(b), we have
cos β = cos φ sinα where φ is the angle of side S1 at u4. Now φ < π/2, and
so β < π/2. Thus β < π/2 in general.

The standard Gram matrix of T is

A =




1 − cos α 0 0
− cos α 1 − cos β 0

0 − cos β 1 − cos γ
0 0 − cos γ 1


 .

The determinant of A is

D = sin2 α sin2 γ − cos2 β.

By Theorems 7.2.4 and 7.3.1, we have that D < 0, and so sin α sin γ < cos β.
The next theorem follows from Theorems 7.2.5 and 7.3.2.

Theorem 10.4.1. Let α, β, γ be positive real numbers. Then there is a
generalized orthotetrahedron T in H3 with angles α, β, γ if and only if
α, β, γ < π/2, sinα sin γ < cos β, and α + β, β + γ ≥ π/2, with equal-
ity if and only if the associated vertex of T is ideal.

Figure 27: Orthoscheme in H3 (extracted from [Rat06])

Definition 2.30.
A hyperbolic tetrahedron is the hyperbolic convex hull of 4 points (possibly at
infinity) which do not lie in a 2-dimensional hyperbolic subspace. A vertex
at infinity is called an ideal vertex. A hyperbolic tetrahedron with four ideal
vertices is said to be an ideal tetrahedron.
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448 10. Hyperbolic 3-Manifolds

§10.3. Finite Volume Hyperbolic 3-Manifolds

In this section, we construct some examples of open, complete, hyperbolic
3-manifolds of finite volume obtained by gluing together a finite number
of regular ideal polyhedra in H3 along their sides. Each of these examples
is homeomorphic to the complement of a knot or link in Ê3. We begin by
showing that the figure-eight knot complement has a hyperbolic structure.

Let T be a regular ideal tetrahedron in B3. See Figure 10.3.1. Since
the group of symmetries of T acts transitively on its edges, all the dihedral
angles of T are the same. The link of each ideal vertex of T is a Euclidean
equilateral triangle, and so all the dihedral angles of T are π/3.

Let T and T ′ be two disjoint regular ideal tetrahedrons in B3. Label the
sides and edges of T and T ′ as in Figure 10.3.2. Since a Möbius transforma-
tion of B3 is determined by its action on the four vertices of T , the group of
symmetries of T corresponds to the group of permutations of the vertices
of T . Consequently, there is a unique orientation reversing isometry fS of
B3 that maps T ′ onto T and side S′ onto S in such a way as to preserve
the gluing pattern between S′ and S in Figure 10.3.2 for S = A, B, C, D.

Let gS be the composite of fS followed by the reflection in the side S.
Then gA, gB , gC , gD and their inverses form an I0(B

3)-side-pairing Φ for
{T, T ′}. There are six points in each edge cycle of Φ. Hence, the dihedral
angle sum of each edge cycle of Φ is 2π. Therefore Φ is a proper side-pairing.

Let M be the space obtained by gluing together T and T ′ by Φ. Then
M is an orientable hyperbolic 3-manifold by Theorem 10.1.2. There is
one cycle of ideal vertices. The link of the cusp point of M is a torus by
Theorem 10.2.1. This can be seen directly in Figure 10.3.3.

Figure 10.3.1. A regular ideal tetrahedron in B3

Figure 28: Regular ideal tetrahedron in B3 (extracted from [Rat06])

A classification of ideal tetrahedra is achieved by studying horospheres. A
horosphere † of Bn based at a point b of @Bn is the intersection of Bn with of
a Euclidean sphere in B

n
tangent to @Bn at b. Its convex interior is referred

to as horoball centered at b. In 3 dimensions, the visualization of † in U 3

is easier, since it inherits a canonical Euclidean structure in an obvious way.
Henceforth, we consider a horosphere† based at an ideal vertex v of an ideal
tetrahedron T that does not meet the opposite side of T . Then L.v/ WD †\T
is a Euclidean triangle and is called the link of v in T . It turns out that the
link of T does not depend on the choice of vertex and that

THEOREM 2.31
An ideal tetrahedron in H3 is determined, up to congruence, by the three dihe-
dral angles ˛; ˇ;  of the edges incident to a vertex of T . Moreover, ˛CˇC D �
and the dihedral angles of opposite edges of T are equal. Conversely, if ˛; ˇ; 
are positive real numbers such that ˛CˇC  D � , then there is an ideal tetra-
hedron in H3 with dihedral angles ˛; ˇ;  . Such an ideal tetrahedron is denoted
by T .˛; ˇ; /.

�

§10.4. Hyperbolic Volume 473

Theorem 10.4.6. The volume of a generalized orthotetrahedron T , with
one ideal vertex and angles δ, π

2 − δ, γ, is given by

Vol(T ) =
1

4

[
L(δ + γ) + L(δ − γ) + 2L(π/2 − δ)

]
.

Proof: Let Tα,β,γ be the generalized orthotetrahedron in Figure 10.4.2
with u1, u2, γ fixed and u1 an actual vertex. By Lebesgue’s monotone
convergence theorem,

Vol(Tδ,π/2−δ,γ) = lim
α→δ−

Vol(Tα,β,γ).

Theorem 10.4.7. The volume of a generalized orthotetrahedron T , with
two ideal vertices and angles δ, π

2 − δ, δ, is given by

Vol(T ) =
1

2
L(δ).

Proof: This follows from Theorem 10.4.6, Lebesgue’s monotone conver-
gence theorem, and Formula 10.4.9.

Ideal Tetrahedra

Let T be an ideal tetrahedron in H3 and let Σ be a horosphere based at
an ideal vertex v of T that does not meet the opposite side of T . Then
L(v) = Σ ∩ T is a Euclidean triangle, called the link of v in T . See Figure
10.4.6 below. The orientation preserving similarity class of L(v) does not
depend on the choice of Σ.

α

βγ

α

βγ

L(v)

v = ∞

Figure 10.4.6. An ideal tetrahedron in U3

Figure 29: Ideal tetrahedron in U 3 (extracted from [Rat06])

Contrary to the previous section, the integration of the volume differential
involves more complicated functions.
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2.3.6. Dilogarithm, Lobachevsky and Bloch-Wigner functions. In order
to compute the hyperbolic volume of simplices of the type we encountered
in the previous section, we need three important functions, namely the Euler
dilogarithm, the Lobachevsky function and the Bloch-Wigner function. We
start with the study of the Euler dilogarithm.

Definition 2.32.
For z 2 C such that jzj � 1, the Euler dilogarithm is defined by

Li2.z/ WD
1X
rD1

zr

r2
:

Remarks.
- There is an integral form of the Euler dilogarithm, that extends the

domain of Li2 to the whole complex plane. More precisely, for z 2 C

such that j arg.z/j < � , the analytic continuation of the dilogarithm
function is given in a unique way by

Li2.z/ WD �

zZ
0

log.1 � t /
t

dt; (2.8)

with 0 < arg.1 � z/ < 2� . In the sequel, if we mention the Euler
dilogarithm, we always refer to its analytic continuation.

- For z D 1, we obtain the Riemann zeta function � evaluated at 2

Li2.1/ D
1X
rD1

1

r2
D �.2/ D

�2

6
:

-1-2 1

-1

-2

1

0
z

Li (z)2

Figure 30: Euler dilogarithm for real arguments z

Next, we turn to the Lobachevsky function.

Definition 2.33.
For � 2 R, the Lobachevsky function is defined by the formula

ƒ.�/ WD
1

2
I .Li2 .exp .2� i/// D

1

2

1X
rD1

sin .2r�/
r2

:
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Remark. As for the Euler dilogarithm, the Lobachevsky function can be ex-
pressed in the form of an integral, more precisely

ƒ.�/ D �

�Z
0

log j2 sin .t/ jdt: (2.9)

0 _
6

_
2

5_
6 



()
1_
2

-1_
2

Figure 31: One period of the Lobachevsky function

THEOREM 2.34
The Lobachevsky function satisfies the following properties:

(i) ƒ is well defined and continuous for all � 2 R.
(ii) ƒ is an odd function.

(iii) ƒ is �-periodic.
(iv) For each positive integer n, ƒ satisfies the identity

ƒ.n�/ D n

n�1X
kD0

ƒ

�
� C

k�

n

�
:

�
Remarks.

- ƒ attains its maximum value at �
6

and its minimum value at 5�
6

in Œ0; ��.

- By virtue of the previous theorem, we deduce for � D �
6

1

2
ƒ
�
2
�

6

�
(iv)
D ƒ

��
6

�
Cƒ

��
6
C
�

2

�
(iii)
D ƒ

��
6

�
Cƒ

��
6
�
�

2

�
(ii)
Dƒ

��
6

�
�ƒ

��
3

�
;

which leads to the following equality, that will be helpful in section 5.

ƒ
��
3

�
D
2

3
ƒ
��
6

�
(2.10)

Finally, let us introduce the Bloch-Wigner function.

Definition 2.35.
For z 2 C nR, the Bloch-Wigner function is defined by the formula

D.z/ WD I .Li2.z//C arg.1 � z/ log jzj: (2.11)

For z 2 R [ f1g, D.z/ D 0.
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Remark. Note that for � 2 R, we have the following relation between the
Euler dilogarithm, the Lobachevsky and the Bloch-Wigner functions

D .exp .i�// D I .Li2.exp .i�/// D 2ƒ
�
�

2

�
:

LEMMA 2.36
The Bloch-Wigner function satisfies the following properties for z 2 C nR:

(i) D.z/C D.1 � z/ D 0,

(ii) D.z/C D.z�1/ D 0,

(iii) D.z/C D.z�/ D 0,

where z� denotes the complex conjugate of z, z� D Nz.
�

The way these three functions are related to the hyperbolic volume will be
explained in the next section.

2.3.7. Hyperbolic volume. Using the previous functions, particularly the
Lobachevsky function, we can give the essential volume formulas for an or-
thoscheme and an ideal tetrahedron.

THEOREM 2.37
Let S be an orthoscheme in H 3 with angles ˛; ˇ; ; and let ı 2

�
0; �

2

�
be defined

by

tan ı WD

q
cos2 ˇ � sin2 ˛ sin2 

cos˛ cos 
:

Then the volume of S is given by

Vol3.S/ D
1

4
Œƒ.˛ C ı/ �ƒ.˛ � ı/Cƒ. C ı/ �ƒ. � ı/�

C
1

4

h
�ƒ

��
2
� ˇ C ı

�
Cƒ

��
2
� ˇ � ı

�
C 2ƒ

��
2
� ı

�i
:

�

THEOREM 2.38
Let T .˛; ˇ; / be an ideal tetrahedron in U 3 with dihedral angles ˛; ˇ;  . The
volume of T .˛; ˇ; / is given by

Vol3.T .˛; ˇ; // D ƒ.˛/Cƒ.ˇ/Cƒ./: (2.12)

Suppose that T .˛; ˇ; / is parametrized in a way such that its vertices corre-
spond to 0; 1;1 and z 2 C with positive imaginary part (this is possible by
applying an appropriate isometry of H3). The tetrahedron is then denoted by
T .z/ and the previous formula becomes

Vol3.T .z// D D.z/: (2.13)
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�

Returning to knots, we say that a knot is hyperbolic if its complement is
equipped with a complete hyperbolic structure.

Example 2.39.
A hyperbolic structure on the complement of the figure-eight knot in S3 can
be obtained by gluing together two copies of T

�
�
3
; �
3
; �
3

�
. For details about

the gluing, we refer to [Rat06, chapter 10.3] or [Thu02, chapters 1,3,4].
With regard to formula (2.12) from the previous theorem, its volume is given
by

Vol
�
T
��
3
;
�

3
;
�

3

��
D 6ƒ

��
3

�
: (2.14)

This result is crucial in section 5 while proving the Volume Conjecture for the
figure-eight knot.

2.3.8. The Gromov norm. In this section the Gromov norm of a closed,
connected, orientable, hyperbolic manifold will be considered.

Definition 2.40.
Let X be a topological space with kth homology group Hk.X;R/ (k � 1) and
˛ be a homology class in Hk.X;R/. The simplicial norm of ˛ is defined to be
the real number

k˛k D inffkckjc is a k- cycle representing ˛g:

Definition 2.41.
The Gromov norm of a closed, connected, orientable n-manifold Mn is the
simplicial norm of a fundamental class of Mn in Hn.Mn;R/. The Gromov
norm of Mn is denoted by kMnk.

An important result on the Gromov norm for the proof of the Volume Con-
jecture for torus knots, that are not hyperbolic, is

THEOREM 2.42
If Mn is a closed, connected, orientable, spherical or Euclidean n-manifold (n >
0), then kMnk D 0.

�

Furthermore, it is worth evoking Gromov’s theorem that establishes the con-
nection between its norm and the hyperbolic volume.

THEOREM 2.43
Let Mn be a closed, connected, orientable, hyperbolic n-manifold with n > 1,
and let �n be the volume of a regular ideal n-simplex in Hn. Then

kMn
k D

Voln .Mn/

�n
:

�



3. THE YANG-BAXTER EQUATION AND QUANTUM GROUPS

After this introduction to the world of knots, links, braids and tangles, and
of hyperbolic geometry, we could immediately go on by defining the link in-
variants we are actually heading for and investigate the Volume Conjecture.
However, for the sake of coherence, we choose another option, that not only
maintains some suspense, but mainly motivates the steps we are going to
take. In this chapter, we concentrate on:

- exposing the Yang-Baxter equation via the concept of Hopf algebras
and explaining the relationship with knot theory (3.1),

- presenting an overview on the physical significance of the Yang-Baxter
equation (3.2),

- alluding to quantum groups with their physical and mathematical in-
terpretations (3.3),

- studying the Lie algebra sl2.C/, which will be the key algebra in chap-
ter 4 for defining link invariants (3.4).

3.1. The Yang-Baxter equation

As already announced, the Yang Baxter equation plays an important role in
different domains. Originally motivated by physics, it has become the subject
of abstract Hopf algebra theory. We will start with that point of view until
switching to a survey on the evolution of the physical significance of the
Yang-Baxter equation. As references, we use [KM91], [Kass95] and [PS97].

3.1.1. Hopf algebra. The motivation for introducing Hopf algebras will be
emphasized in the subsequent chapter when dealing with quantum groups.
For the time being, we need the definition in order to understand the maps
that will be used in the following. We start with some definitions.

Definition 3.1.
Let A be a vector space over the field F and let � W A˝A �! A, � W F �! A,
� W F ˝ A �! A and Q� W A ˝ F �! A be the linear maps defined by
�.a1 ˝ a2/ WD a1a2, �.k/ WD k idA, �.k ˝ a/ WD ka and Q�.a ˝ k/ WD ak

respectively, idA being the identity map on A, such that

�.� ˝ idA/ D �.idA˝�/ (Associativity);

�.�˝ idA/ D �A (Unitality);

�.idA˝�/ D Q�A (Unitality):

Then the triple .A; �; �/ is called an algebra. If in addition, for the permuta-
tion (or flip) map P W A˝ A �! A˝ A defined by P.a1 ˝ a2/ WD a2 ˝ a1,
we have

�.P / D � (Commutativity),

then A is said to be a commutative algebra.
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Remark. Given two algebras A1 and A2, the tensor product A1˝A2 inherits
an algebra structure by putting .a1 ˝ a2/.a01 ˝ a

0
2/ D a1a

0
1 ˝ a2a

0
2, for any

a1; a
0
1 2 A1; a2; a02 2 A2.

Example 3.2.
Mat.N;F/, where F is a field, forms an algebra under matrix multiplication
and addition. More generally, any ring of matrices with coefficients in a
commutative ring R forms an algebra.

Example 3.3.
Every polynomial ring RŒx1; x2; : : : ; xn�, where R is a commutative ring,
is a commutative algebra (called the free commutative algebra on the set
fx1; x2; : : : ; xng).

Definition 3.4.
Let C be a vector space over the field F and let � W C �! C ˝ C, � W C �! F ,
 W C �! F˝C and Q W C �! C˝F be linear maps such that  .c/ WD 1F˝c,
Q .c/ WD c ˝ 1F and such that the following diagrams commute

C C ˝ C

C ˝ C C ˝ C ˝ C

� //

�

��

id˝�

��

�˝id
//

C ˝ C F ˝ C C ˝ C C ˝ F

C C

�˝id
//

id˝�
//

 

OO

�

__?????????????
�

__?????????????

Q 

OO

that is

.�˝ idC/� D .idC ˝�/� (Coassociativity);

.� ˝ idC/� D  (Counitality);

.idC ˝�/� D Q (Counitality):

Then the triple .C; �; �/ is called a coalgebra. If in addition, for the permuta-
tion map P W C ˝ C �! C ˝ C defined by P.c1 ˝ c2/ WD c2 ˝ c1, we have

P.�/ D � (Cocommutativity),

then C is said to be a cocommutative algebra.

Remarks.
- The map � is called comultiplication or coproduct, whereas � is referred

to as counit.



34 A. SCHMITGEN

- In analogy to algebras, the tensor product C1 ˝ C2 of two coalgebras
.C1; �1; �1/ and .C2; �2; �2/ has a coalgebra structure with comultipli-
cation .idC1 ˝P ˝ idC2/ (P being the permutation map from C1˝ C2 to
C2 ˝ C1) and counit �1 ˝ �2.

Example 3.5.
Consider a field F and the maps �.k/ WD k ˝ k and �.k/ D k, k 2 F . The
triple .F ; �; �/ has a coalgebra structure (called the ground coalgebra).

Example 3.6.
Given a finite set X D fx1; x2; : : : ; xng and a field F , the following vector
space is generated by X

C WD
nM
kD1

Fxk :

.C; �; �/ is then a coalgebra if we define �.xk/ WD xk ˝ xk and �.xk/ WD 1F

for any xk 2 X (it is sufficient to define the maps on the generator set of C,
because of the bilinearity and associativity properties of the tensor product).

Example 3.7.
The dual of the algebra Mat.N;F/ is a coalgebra, called the matrix coalgebra.
This can be seen by defining

�.xij / WD

NX
kD1

xik ˝ xkj and �.xij / WD ıij ;

where fEi;j j1 � i; j � N g, Ei;j being the matrix with all entries equal to 0
except for the .i; j /th entry which is 1, is a basis for Mat.N;F/ and fxi;j j1 �
i; j � N g is the associated dual basis.

Remark. In general, the dual vector space of a finite-dimensional algebra is
a coalgebra. The converse, that is the dual vector space of a coalgebra is an
algebra, holds for all dimensions. (see [Kass95] p.41)

Definition 3.8.
A bialgebra is a quintuple .H; �; �;�; �/ where .H; �; �/ is an algebra and
.H; �; �/ is a coalgebra satisfying the equivalent conditions

(i) � and � are morphisms (linear maps) of coalgebras,

(ii) � and � are morphisms of algebras.

Remark. The equivalence between these two conditions needs actually to be
proved. This can be done by looking at the commutative diagrams illustrating
each statement. Details may be found in [Kass95] p.45-46.

Example 3.9.
Recall from example 3.6 that for a finite setX D fx1; x2; : : : ; xng and a field F ,
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.C; �; �/ is a coalgebra with C WD
nL
kD1

Fxk , �.xk/ WD xk ˝ xk and �.xk/ WD 1F

for any xk 2 X . Suppose we have an associative map from � W X � X �! X

with a right and left unit. This map then induces an algebra structure on C
with �.xk ˝ xl / WD xkxl D �..xk ; xl //. It is sufficient to show that � and �
are morphisms of algebras (see the equivalence in definition 3.8) in order to
conclude that .C; �; �;�; �/ is a bialgebra. In fact, we have

�.xkxl / D xkxl ˝ xkxl D .xk ˝ xk/.xl ˝ xl / D �.xk/�.xl /;

�.xkxl / D 1F D 1F 1F D �.xk/�.xl /;

which proves the statement.

Definition 3.10.
Let .A; �; �/ be an algebra and .C; �; �/ a coalgebra. The convolution of two
maps f; g 2 Hom.C;A/ is the bilinear map

? W Hom.C;A/ � Hom.C;A/ �! Hom.C;A/
.f; g/ 7�! f ? g WD �..f ˝ g/.�//:

Eventually, we are able to define

Definition 3.11.
A Hopf algebra is a bialgebra .H; �; �;�; �/ together with a map S 2 End.H/,
called antipode for H and satisfying

S? idH D idH ?S D � ı �:

We therefore write .H; �; �;�; �;S/:

Remark. The antipode of a bialgebra H - if it does exist - is unique: suppose
S and S0 being antipodes of H, then

S D S?.��/ D S?.idH ?S0/ D .S? idH/ ? S0 D .��/ ? S0 D S0 :

Example 3.12.
.C; �; �;�; �/ from example 3.9 is not a Hopf algebra. Without any additional
structure on the set X , we do not know anything about the existence of
multiplicative inverses, thus we are not able to define an antipode.
However, if the set X is endowed with a group structure (in this case, we
write X DW G) and the bialgebra C corresponds to the group algebra FG,
.FG; �; �;�; �/ becomes a Hopf algebra where the morphisms are defined by

�

0@X
g2G

˛gg ˝
X
g2G

ˇgg

1A WDX
h2G

0BB@ X
x;y2G
xyDh

˛xˇyh

1CCA ;
�.˛g/ WD ˛g1C ; �.g/ WD g ˝ g; �.g/ WD 1F ; S.g/ WD g�1;

for any ˛g ; ˇg 2 F and for any g 2 G.
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3.1.2. The Yang-Baxter equation. Using the notations from the previous
section, we are able to introduce the notions of quasitriangular Hopf algebra,
R-matrix and the Yang-Baxter equation.

Definition 3.13.
Let H be a Hopf algebra and R 2 H˝H an invertible element satisfying

L�.h/ WD P.�.h// D R�.h/R�1; (3.1)

.�˝ idH/.R/ D R13R23; (3.2)

.idH˝�/.R/ D R13R12; (3.3)

where h 2 H, R12 D R ˝ idH, R23 D idH˝R and R13 D .P ˝ idH/.R23/.
Then the pair .H; R/ is called a quasitriangular Hopf algebra. If in addition
R12R21 D idH˝3 , then .H; R/ is said to be triangular. R is called a universal
R-matrix for H. LR D P ıR is referred to as LR-matrix.

We consider now such a universal R-matrix in H˝H as described in the pre-
vious definition. The composition of the linear maps R12; R23; R13 satisfies
the following relation

R12R13R23
.3:2/
D R12.�˝ idH/.R/ D .R˝ idH/.�˝ idH/.R/

.3:1/
D . L�˝ idH/.R/.R˝ idH/

.3:2/
D .P ˝ idH/.R13R23/R12

.|/
D R23R13R12

This identity is called the Yang-Baxter equation for the R-matrix. Similarly,
we may derive the Yang-Baxter equation for the LR-matrix. Indeed, by means
of the following identity for the linear map P

.P ˝ idH/.idH˝P /.P ˝ idH/ D .idH˝P /.P ˝ idH/.P ˝ idH/;

and the above equation, we establish the second version of the Yang-Baxter
equation, namely

LR12 LR23 LR12 D LR23 LR12 LR23:

This leads us to the formal definition.

Definition 3.14.
Let V be a complex vector space, idV the identity map on V and R 2 End.V ˝
V / an invertible map. The following equation for R

.R˝ idV /.idV ˝R/.R˝ idV / D .idV ˝R/.R˝ idV /.idV ˝R/ (3.4)

is called the Yang-Baxter equation (YBE). The solution R is called R-matrix.

Remarks.

- With respect to the above vocabulary, we should have chosen the LR-
notation in this definition. However, for convenience, we always write



ON THE VOLUME CONJECTURE 37

R-matrix in the sequel and specify - if not clear - what we are referring
to.

- There exists a classical version of the YBE, that uses solely the Lie alge-
bra structure of End.V /. For r 2 End.V ˝ V / and r12 D r ˝ idV ; r23 D
idV ˝r; r13 D .P ˝ idV /r23, this equation reads

Œr12; r13�C Œr12; r23�C Œr13; r23� D 0:

- The YBE is sometimes called star-triangle relation, which is a motivation
for the name (quasi-)triangular Hopf algebra. However, in order to
explain the origin of the ”star-triangle” denomination, we need to lean
on physics. A deeper investigation on this subject is given in paragraph
3.2.2.

Example 3.15 ([Tur88]).
Take V D C2 with basis fv1; v2g, q 2 C and define

R WD �q
X
j

Ej;j ˝Ej;j C
X
j¤k

Ej;k ˝Ek;j C .q
�1
� q/

X
j<k

Ej;j ˝Ek;k ;

with Ej;k W C2 �! C2 defined by Ej;k.vl / D ıj;lvk for 1 � j; k; l � 2. R
satisfies the YBE. To show this, we use the associated matrices with respect
to the basis fv1 ˝ v1 ˝ v1; v1 ˝ v1 ˝ v2; : : : ; v2 ˝ v2 ˝ v2g of C2 ˝ C2 ˝ C2.
First, we get for R and idC2

R D

0BB@
�q 0 0 0

0 q�1 � q 1 0

0 1 0 0

0 0 0 �q

1CCA ; 12 D

�
1 0

0 1

�
:

With the help of Mathematica, we calculate the Kronecker products R ˝ 12

and 12 ˝R respectively. The matrix products .R˝ 12/.12 ˝R/.R˝ 12/ and
.12 ˝R/.R˝ 12/.12 ˝R/ each lead to the same result0BBBBBBBBBBB@

�q3 0 0 0 0 0 0 0

0 q � q3 �1C q2 0 �q 0 0 0

0 �1C q2 �q 0 0 0 0 0

0 0 0 q � q3 0 �1C q2 �q 0

0 �q 0 0 0 0 0 0

0 0 0 �1C q2 0 �q 0 0

0 0 0 �q 0 0 0 0

0 0 0 0 0 0 0 �q3

1CCCCCCCCCCCA
:

Consequently R defined as above is an R-matrix.

3.1.3. The Yang-Baxter equation in knot theory. Up to now, all the de-
scriptions have been very abstract and the connections to knot theory that
we are going to establish below are purely mathematical. However, it should
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be emphasized that all the basic ingredients are due to physicists.

The first bridge between the YBE and knot theory is the Artin braid rela-
tion, which can be understood in the following way. To each strand of an
n-braid, we associate a vector space V such that the whole braid is related to
the n-fold tensor product V ˝n. The braiding between initial and endpoints
can be viewed as a composition of endomorphisms of V ˝n, according to the
following identification of the generators �1; �2; : : : ; �n�1

�j  ! id˝j�1V ˝R˝ id˝n�j�1V WD Rj ;

for 1 � j � n� 1 and for R 2 Aut.V ˝V /. It turns out that the braid relation
in terms of the previous description writes as

RjRjC1Rj D RjC1RjRjC1;

which is nothing but the YBE.

~
1 12  2 21=

V V V 

idVR

idV R

idVR

V V V 

V V V 

idVR

idV R

V V V 

idV R

Figure 32: Illustration for n=3

Since the braid relation emerged from the condition on the third Reidemeis-
ter move, as seen in chapter 2 (Figure 17), it is obvious that the previous
identification combined with (R3) leads to the YBE too.

Finally, a connection between the YBE and knot invariants can be drawn by
referring to representation theory. Indeed any irreducible representation of
a simple Lie algebra can be used to produce an R-matrix in the sense that
it sets up the involved vector spaces. In order to produce a link invariant,
we go back to the braid representation of the link and thus associate it with
a composition of endomorphisms Rj , each containing the R-matrix. Now
taking the trace (or a version of the trace operator) we get a well defined
invariant of links. This procedure is explained in more details in 4.3 for
the case of the simple Lie algebra sl2.C/ and will lead to the colored Jones
polynomials.

3.2. Physical Interpretation.

The YBE is an equation that comes from two totally distinct sources which
are statistical physics and quantum mechanics. It takes its name from the
independent work of C.N. Yang from 1968 and R.J. Baxter from 1971. Recent
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progress in other fields such as link invariants, quantum groups, quantum
field theories shed new light to the significance of the YBE. We start by its
very first manifestation, our resources being [KaM98], [Ada94], [Jim94],
[PS97], [Fad95] and [Akt09].

3.2.1. Bethe’s Ansatz. A few years after the formulation of quantum me-
chanics (1923-1927), W. Heisenberg and P. Dirac succeeded to uncover the
old mystery of ferromagnetism. As a consequence to the laws of quantum
mechanics, they observed the existence of an effective interaction between
electron spins on neighbouring atoms with overlapping orbital wave func-
tions, caused by the combined effect of the Coulomb repulsion and the Pauli
exclusion principle. A model for the study of critical points and phase tran-
sitions of magnetic systems had been provided by the quantum Heisenberg
model. In the 1-dimensional case for an N -body system with periodic bound-
ary conditions (spins: SNC1 D S1) and under the assumption of solely mag-
netic interactions between adjacent dipoles, the Hamiltonian in the spin 1

2

Heisenberg model takes the following form

H D �J

NX
jD1

Sj SjC1;

where J is the coupling constant and Sj D .Sxj ; S
y
j ; S

z
j / is the spin. This

Hamiltonian acts on a 2N -dimensional Hilbert space spanned by the orthog-
onal basis vectors js1; s2; : : : ; sN i with sj being either spin up ", either spin
down #. The commonly used method to solve this model consists in deter-
mining the Hamiltonian matrix (occasionally, for the sake of diminishing the
computational efforts, it can be rewritten in block diagonal by performing
basis transformations) and the eigenvectors via diagonalization leading to
the acquaintance of the physical quantities of interest.
Opposite to this mechanism, Bethe exposed in 1931 another method for the
computation of the exact eigenvalues and eigenvectors of H . It is based on
a parametrization of the eigenvectors, also called Bethe Ansatz and features
two main advantages: all eigenstates are characterized by a set of quantum
numbers which can be used to distinguish them according to specific physi-
cal properties and in many cases the eigenvalues and the physical properties
derived from these numbers can be evaluated in the thermodynamic limit
(i.e. N � 1). For the application of the Bethe Ansatz, two symmetries in the
Heisenberg model are essential:

- rotational symmetry around the quantization axis z implying the con-

servation of Sztot WD
NP
jD1

Szj . The action of H on js1; s2; : : : ; sN i yields

a linear combination of the basis vectors, each of which has the same
number of spins #.

- translational symmetry of H with respect to discrete translations by
any number of lattice spacings.
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Hence, sorting the basis vectors according to the quantum number Sztot D
N
2
� r , r being the number of # spins, the Hamiltonian matrix will be block

diagonalized. To get the idea, here are the steps for the easiest case, that is
r D 1.

1. Bethe Ansatz for the eigenstates: j i D
NP
jDn

a.n/jni.

2. j i is a solution to the eigenvalue equationH j i D Ej i. Considering
the action of H on the basis and denoting by E0 D �JN

4
the energy of

the state with all spins ", we get the equations

2.E �E0/a.n/ D J Œ2a.n/ � a.n � 1/ � a.nC 1/�:

3. Using the periodic boundary conditions a.n C N/ D a.n/, N linearly
independent solutions will be given by

a.n/ D exp .ikn/ ; k D
2�m

N
; m D 0; 1; : : : ; N � 1:

k is called the momentum of the Bethe Ansatz.

4. After normalization, we obtain the so-called magnon states and energy
eigenvalues

j i D
1
p
N

NX
jDn

exp .ikn/ jni; E �E0 D J.1 � cos k/:

This method can be generalized for 2 � r � N
2

. Nowadays, the procedure
introduced by Bethe has been tremendously extended in a way that many
other quantum many-body systems have been solved in the meantime.
What is the importance of the YBE in this system? The answer is given by
the scattering matrix S , short S -matrix, which is the unitary operator that de-
scribes the evolution of the physical interacting system. Suppose the system
passes from t0 to t , then the S -matrix is defined to be

S D lim
t0!�1
t!1

U.t; t0/;

where U.t; t0/ is the evolution operator defined by

U.t; t0/ WD exp .iH0t / exp .�iH .t � t0// exp .�iH0t0/ ;

H D H0 CHI with H0 the free and HI the interacting part of the Hamilto-
nian. This leads then to the calculation of the transition probability. It can
be shown that this S -matrix factorizes to that of the two-body problem and
can be determined exactly. The YBE appears as consistency condition for this
factorization.
Another picture to visualize more concretely the occurrence of the YBE in
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quantum mechanical systems is given by a 1-dimensional 3-body problem.
Suppose the result of the interaction of the three aligned particles is the per-
mutation .13/ of their positions (particle 2 stays at its site). There are two
possibilities for the intermediate process:

1. 1 ! 2; 1 ! 3; 2 ! 3;

2. 2 ! 3; 1 ! 3; 1 ! 2:

According to the Heisenberg indeterminacy principle, we can never learn,
which process actually occured. The two are equiprobable, which translates
by the following equation

R12R13R23 D R23R13R12;

where Rjk are the endomorphisms as defined above and describe the in-
teraction of the j th and kth particles. We rediscovered the YBE equation,
sometimes also referred to as quantum Yang-Baxter equation, since it appears
in the context of quantum mechanics.
We continue by commenting on statistical mechanics.

3.2.2. Ising and Potts models. Invented by W. Lenz for the study of fer-
romagnetism in statistical mechanics, the Ising model was developed for par-
ticles that interact only with nearest neighbours, similarly to the Heisenberg
model. It was already solved for the 1-dimensional case in 1925 by E. Ising,
student of W. Lenz. Despite this fast success, the 2-dimensional square lat-
tice Ising model turned out to be a much harder nut to crack. In the case of
zero magnetic field, it was given a complete analytic description much later
in 1944 by L. Onsager. This model corresponds to one of the simplest sta-
tistical models with a phase change, since the 1-dimensional model does not
have this property. The solution of the model with non zero magnetic field
has yet to be found. In more than 2 dimensions, the Ising model becomes
complicated, inaccurate and computations very intractable. Let us shortly
explain the square lattice model with its significance to the YBE, omitting the
solution of the model.
We imagine the molecules in the metal we investigate arranged in a lattice,
that is, we get a graph with vertices illustrating the particles and edges de-
noting the interaction between adjacent neighbours. Since metals are built
up more or less in such a 3-dimensional lattice, this model is quite relevant
in practice. Each vertex, that is each particle, is assigned a spin, either C1
(") or �1 (#). Among the 2N possible states of a system composed of N
molecules, a particular one is represented by a vector S D .s1; s2; : : : ; sN /.
The goal consists in the determination of the partition function of the system
defined by

Z WD
X

states S

exp
�
�E.S/

kBT

�
D

X
states S

Y
1�j;k�N

!.sj ; sk/; (3.5)
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where E.S/ is the energy of the state S , kB is the Boltzmann constant, T is
the temperature and !.sj ; sk/ WD exp

�
�E.sj ;sk/

kBT

�
is the weight of the edge

joining particles j and k (again, there are only two possible values). This
function is actually a crucial quantity in order to calculate the value of differ-
ent observables, for instance the expected value for the total energy or the
probability to find the system in a given state QS

P. QS/ D
exp

�
�E. QS/
kBT

�
Z

:

Henceforth we need to calculate the energy of the system. At the basis, this
is not difficult, since every edge in the lattice, representing the interaction
(only source of energy) between the vertices at its ends, can have only two
possible values EC, if the adjacent vertices have same spins, or E� in the con-
trary case. The total energy is just the sum of these energies E.sj ; sk/. Things
become more complicated when reintroducing E.S/ in (3.5) and aiming the
explicit computation. The immediate evaluation of this sum is impossible,
except for a system with very few particles. Unfortunately, in practice the
number of particles is much bigger (studying a metal involves moles) and
thus the number of states becomes enormous.
The remedy is found in the star-triangle relation or Yang-Baxter equation in-
troduced by Onsager in 1944. Instead of restricting to lattices, we consider
all kinds of planar graphs with no edges crossing over one another. The key

A

B

CD

B

CD

Figure 33: Illustration of the star-triangle exchange

to the alleviate partition function is to replace a star in the graph by a trian-
gle, reducing the number of vertices by 1, but halfening the number of states
in Z! The condition for this exchange is that there exist new energy weights
!0 along the three edges between B;C and D, such that their product equals
the total weights of interaction between the centered vertex A and B;C and
D, summed over the possible states of A. In the case under consideration,
this condition, that is the star-triangle relation, becomes

!.1; sB/!.1; sC /!.1; sD/C !.�1; sB/!.�1; sC /!.�1; sD/

D !0.sB ; sC /!
0.sC ; sD/!

0.sD; sB/:

Consequently, if this equation holds, then we calculate the partition function
of the new graph with the star replaced by a triangle, which coincides with
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the partition function of the prior graph.

Furthermore, the connection between statistical mechanics and knot theory,
more precisely invariants of links, becomes obvious once we remember the
state sum expression of the Kauffman bracket introduced in (2.1). In fact, a
link diagram can be seen as a planar graph as in the Ising model, where the
vertices represent particles and the edges represent interaction energies. A
state of the graph, that is a choice of spin for each site, corresponds to the
assignment ˙1 to the crossings in the link diagram following the rule from
section 2.1.5. The Kauffmann bracket can thus be seen as the state model’s
partition function. Despite the fact that the partition function itself is not a
link invariant due to (R1) which it does not respect (the Kauffman bracket
bears the same problem), it can be modified by addition of some factor such
that the final ”partition function” becomes invariant under all three Reide-
meister moves. In the case of the Ising model, this invariant is called Arf
invariant.

The Potts model from 1952 is a generalization of the Ising model where the
particles can have more than 2, say q � 1 possible states. Its partition
function generates a link invariant in two variables q and t when t satis-
fies t D exp

�
�

1
kBT

�
� 1. This invariant is known as dichromatic polynomial

ZG.q; t/ (G standing for the underlying graph), since we may think of the
particles as being colored rather than being in some undefined state. With
the appropriate choice of interaction energies in the Potts model, the parti-
tion function generates the Jones polynomial V.t/, with q and t related via
2C t C t�1.

3.2.3. Inverse scattering method. At the origin of the inverse scattering
method (ISM) stands the Korteweg-de Vries equation (KdV) from 1895

@u.x; t/

@t
� 6u.x; t/

@u.x; t/

@x
C
@3u.x; t/

@x3
D 0:

This dispersive, nonlinear, partial differential equation (NPDE) depicts a mo-
del of waves on shallow water surfaces. Since a general theory on how to
solve NPDEs didn’t (actually doesn’t) seem to exist, an algorithm was to be
invented for its individual resolution. The fruit of these investigations was the
inverse scattering method (ISM), that allowed to find an exact solution of the
KdV equation. It can be seen as the nonlinear analogue of the Fourier trans-
form. With this impulse, other scientists adapted the method quite quickly
to other exactly solvable models/NPDEs. More recent research in the field
appealed to the quantum version of this process, which leads to surprising
results and involves commutation relations of operators that are described
by a solution to the YBE.
The precise presentation of the ISM is far too technical and elaborate for the
current framework, therefore we shall just briefly give the different steps of
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the method and refer to [Fad95] and [Akt09] for more details.

1. We begin with a linear ordinary differential equation (LODE) which is
known to be associated to the NPDE that has to be solved. It turns
out that such an LODE is integrable if its corresponding initial value
problem (IVP) can be treated with the help of an IST. The procedures
retained for establishing this association LODE! NPDE are either the
Lax method, or the AKNS method. For example, if we start with the LOD
Schrödinger equation

�
d2 

dx2
C u.x; t/ D k2 ;

these methods lead to the KdV equation. The function u.x; t/ has the
property of vanishing for x !1.

2. Consider the LODE at an initial time, say t D 0, where u.x; 0/, per-
ceived as potential, is known. By direct scattering method, we deter-
mine from the potential the scattering data S.�; 0/ at time t D 0, also
called Jost solutions.

3. The study of the time evolution of the previous solutions by means of
Lax or AKNS method leads to the knowledge of the time evolution of
the scattering data, thus of S.�; t/.

4. The last step consists then in solving the LODE for u.x; t/, knowing the
scattering data S.�; t/. This is precisly the IST and is effectuated by the
Marchenko integral.

Stunningly, the resulting function u.x; t/ satisfies the NPDE and has the prop-
erty that limt!0 u.x; t/ agrees with the initial profile u.x; 0/.
It is interesting to notice that the solutions to NPDEs include examples of
solitons, which have zero reflection coefficient in the corresponding scatter-
ing data. More precisely, solitons are self-reinforcing solitary waves, that
demonstrate particle-like behaviour and interact with each other nonlinearly,
but come out of interactions unaffected in size or shape except for some
phase shifts. Since at the beginning, the particle interpretation of solitons
was rather obscure, L. Faddeev and collaborators were motivated to consider
the quantization of these wave-like excitations. Progressively, the ISM was
adapted to the quantum domain (founding the QISM), raising new commu-
tation relations that could be described by solutions of YBE (1978-1983).
The QISM emerged to be a very powerful tool since all classical models were
imbedded into the realm of this method.
From a mathematical point of view, the quantization of integrable models is
related to the representation of the corresponding Lie algebra (of involved
operators). This more algebraic and abstract attitude was worked out by V.
Drinfeld and led to the introduction of quantum groups (see 3.3).
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Remark. It were the founders of the QISM (Faddeev, Takhtajan et al.) that
gave the YBE its denomination (previously only known as star-triangle rela-
tion), since the works of Yang and Baxter inspired them for the establishment
of the commutation relations. Being born in the context of QISM, the solu-
tions to the YBE could not be described as S -matrices, since this name was
reserved for the solutions of the direct scattering method, so they were re-
ferred to as R-matrices, R being the next letter in the inverse alphabetical
order (according to our interpretation).

3.3. Quantum Groups

3.3.1. Physical approach. In the same spirit as we presented the physical
motivations for the YBE in the previous paragraph, we will give here a phys-
ical introduction to what we will soon call a quantum group. Leaning on the
mechanical interpretation of the braid group 2.2.4 and inspired by [Dri87],
[Tur94] and [PS97], we oppose classical to quantum observables.
The basic mathematical model for a classical mechanical system composed
of n particles is a symplectic 2n-dimensional manifold M2n (that is a smooth
manifold equipped with a closed, nondegenerate, skew-symmetric 2-form),
called phase space. In general, a phase space represents all possible states
of a system, each one corresponding to one unique point on the manifold.
Usually, a state is characterized by two parameters in classical mechanics,
namely the position qj .t/ of a moving point together with its velocity Pqj .t/.
In the space of functions on M2n, a multiplication, called Poisson bracket, is
induced by the symplectic structure. The observables are functions on M2n

and form an associative commutative algebra with respect to this bracket.
The time evolution of the system depends on the choice of the Lagrangian
L, which summarizes the dynamics of the system and for which the Euler-
Lagrange equation holds

@L

@qj .t/
�
d

dt

@L

@ Pqj .t/
D 0:

A dual construction is obtained if we consider the Legendre transform of the

Lagrangian
nP

jD1

Pqj .t/
@L

@ Pqj .t/
�L D H which corresponds to the Hamiltonian of

the system. Instead of the velocity vectors Pqj .t/, we consider now the mo-
mentum covectors pj .t/ and the equivalent to the Euler-Lagrange equation
is given by the Hamilton’s equations

Pqj .t/ D
@H

@pj
; Ppj .t/ D

@H

@qj
:

In the treatment of quantum mechanics, the Hamilton formalism is used. The
states no longer form a finite-dimensional manifold, but they give rise to a
Hilbert space H (not to be confused with a Hopf algebra!). Contrary to the
classical states that can be given by a pair .qj .t/; Pqj .t//, the quantum states
are described by a density function that expresses the probability of a particle
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to have a certain location and velocity. The observables are now operators on
H and they form an associative noncommutative algebra with respect to the
usual commutator of operators ŒP;Q� D P ıQ �Q ı P . The time evolution
of the state  (it is a wave function) satisfies the Schrödinger equation of the
form

i„
@ 

@t
D OH ;

where OH is the Hamiltonian operator.
From an algebraic point of view, quantization can be seen as a replacement
of commutative algebras by noncommutative ones, as illustrated by the La-
grangian and Hamiltonian approaches. Performing a refinement of the al-
gebra of observables in quantum mechanics leads to a new structure that is
neither commutative, nor cocommutative. Anticommutativity and quantum
physics being closely related, V.G. Drinfeld introduced in 1986 the term of
quantum groups to refer to this new structure.

3.3.2. Mathematical approach. The theory of quantum groups was origi-
nally conceived as a machinery that produces solutions to the YBE. Later on,
they found applications in several areas, particularly in the theory of link in-
variants as we will see.
A rough construction of quantum groups is given by the following procedure:
one starts with a Lie group G whose elements are states. The complex-valued
smooth functions on G can be interpreted as observables and they form an
associative, commutative algebra A D Func.G/ equipped with the Poisson
bracket, as seen above. It turns out, that A is endowed with a Hopf alge-
bra structure. Indeed, the multiplication on G induces a comultiplication on
A � W A �! A ˝ A where A ˝ A D Func.G � G/. In general, this cor-
respondence defines a functor (map between categories) from the category
(that is an algebraic structure consisting of a collection of ”objects”, linked
together by maps, called morphisms, that can be composed associatively and
that contain an identity map for each object) of ”groups” to the category of
associative, commutative algebras that induces the Hopf algebra structure on
A. For more details, we refer to [Dri87]. A quantum group is defined to be
a realization of such a Hopf algebra A. Moreover if it is quasitriangular, then
the YBE is satisfied. In general, the commutativity and cocommutativity of
the Hopf algebra are not required conditions for having a quantum group.
Anyway, quantum groups were proposed in the framework of the QISM and
the underlying corresponding examples were neither commutative nor co-
commutative. The reason is simply, that cocommutative Hopf algebras are
trivially quasitriangular and thus not very interesting for the study of invari-
ants, since the YBE which takes the form (see (|) p.36)

R12R13R23 D R13R23R12

is satisfied for R D idA˝ idA. In that context, the method used to construct
noncommutative and noncocommutative Hopf algebras is based on the con-
cept of quantization.
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Definition 3.16.
A quantization of a Hopf algebra A over the field F is a deformation of A
depending on a parameter h 2 C giving rise to a Hopf algebra Ah over F ŒŒh��

such that Ah Š AŒŒh�� as modules and Ah=hAh Š A as Hopf algebras.

Remarks.

- F ŒŒh�� WD

�
1P
nD0

knh
njkn 2 F

�
is the set of formal power series in h with

coefficients in F . AŒŒh�� is a F ŒŒh��-module.

- We may think of the parameter h as Planck’s constant. In the classical
limit h! 0, Ah Š A, which agrees with the vanishing quantization.

- For our interest, it is sufficient to choose F D C.

Drinfeld showed that one can combine any Hopf algebra with its dual alge-
bra to get a larger Hopf algebra, called the quantum double, which is qua-
sitriangular, henceforth admits a universal R-matrix. For a proof, which is
quite tricky, we refer to [Dri87, 13], [KRT97, chapter 3] or [Kass95, chapter
IX]. A very important class of noncommutative, noncocommutative quantum
groups is composed of quantum universal enveloping algebras. Therefore, we
shall look at the following example.

Example 3.17.
Let g be a finite-dimensional Lie algebra over C. We first need to define the
tensor algebra over g by

T .g/ WD

1M
nD0

g˝n;

where g˝0 D C. This is an associative algebra with multiplication coming
from the natural tensor product in g and with unit 1C. Let i W g �! T .g/

be the canonical inclusion map and let the elements in the image of this
inclusion be called primitive. Then we can define a Hopf algebra structure on
T .g/ by specifying the comultiplication, counit and antipode only on these
primitive elements, the extension to all elements happens via linearity. We
get for a primitive element X 2 T .g/

�.X/ WD X ˝ 1T.g/ C 1T.g/ ˝X;

�.X/ WD 0;

S.X/ WD �X:

The definition of the universal enveloping algebra includes one more notion,
we have not yet encountered. A two-sided ideal I of the noncommutative
algebra T .g/ is a subset that is both a right ideal (i.e. 8 k 2 I;8 X 2 T .g/ W
kX 2 I ) and left ideal (i.e. 8 k 2 I;8 X 2 T .g/ W Xk 2 I ). We consider
more precisely the two-sided ideal I.g/ generated by XY � YX � ŒX; Y �, for
all primitive elements X; Y 2 g � T .g/. The universal enveloping algebra of g

is then defined to be
U.g/ WD T .g/=I.g/:
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U.g/ inherits the Hopf algebra structure from T .g/. Furthermore, U.g/ is
cocommutative, since for the permutation operator P on U.g/ ˝ U.g/, we
have

P.�.X// D P.X ˝ 1U.g/ C 1U.g/ ˝X/ D 1U.g/ ˝X CX ˝ 1U.g/ D �.X/:

Cocommutative Hopf algebras are not interesting for our later study of link
invariants, since they are always quasitriangular. Consequently, we try to
deform this algebra hoping to cancel out cocommutativity. Thus we get the
quantized universal enveloping algebra

Uh.g/=hUh.g/ Š U.g/:

Notice that the trivial quantization is not a good choice, since it still results in
a cocommutative algebra. Uh.g/ is again a Hopf algebra for reasons related
to the quantum double construction of Drinfeld, that we will not comment
here. We illustrate the quantized universal enveloping algebra in the next
section for one of the simplest and neatest cases g D sl2.C/.

Up to now, we have not yet clarified how quantum groups shall induce link
invariants. Their formal construction will be the subject of the next chapter,
but in order to have all the required tools at our disposal, we need to ad-
dress to representation theory. We study the case of the quantum universal
enveloping algebra Uh.sl2.C// below, a general theory being an exaggerated
ambition in the scope of this work.

3.4. The Lie Algebra sl2.C/

The discovery of the colored Jones polynomial is based on the study of the Lie
algebra sl2.C/. The aim of this section is to apply the previous theory, pro-
ducing the quantum group Uh.sl2.C// and to explain the precise connection
to the R-matrix.

3.4.1. Generalities. We start by recalling the definition of sl2.C/. First
notice that the Lie algebra of the general linear Lie group GL.2;C/ is given

gl2.C/ WD

� �
a b

c d

� ˇ̌̌̌
a; b; c; d 2 C

�
:

This is a 4-dimensional algebra generated by X; Y;H; 12

X WD

�
0 1

0 0

�
; Y WD

�
0 0

1 0

�
; H WD

�
1 0

0 �1

�
; 12 WD

�
1 0

0 1

�
;

with the commutator satisfying the obvious relations

Œ12; X� D Œ12; Y � D Œ12;H � D 0;

as well as
ŒX; Y � D H; ŒH;X� D 2X; ŒH; Y � D �2Y: (3.6)
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The Lie algebra sl2.C/ is defined to be

sl2.C/ WD
˚
a 2 gl2.C/

ˇ̌
Sp.a/ D 0

	
;

where Sp denotes the usual trace of matrices. Thus sl2.C/ corresponds to
the 3-dimensional subalgebra of gl2.C/ spanned by X; Y;H , satisfying (3.6).

The finite-dimensional irreducible representations of sl2.C/ are given by
.VN ; Q�N /, where VN is the space of homogeneous complex polynomials in
two variables z1; z2 of degree N 2 N

VN WD spanC

�
zN1 ; z

N�1
1 z2; : : : ; z1z

N�1
2 ; zN2

�
;

and the continuous linear action

Q�N W sl2.C/ � VN ! VN

is explicitly defined by

Q�N .X/vj D .j C 1/vjC1;

Q�N .Y /vj D jvj�1;

Q�N .H/vj D .2j �N C 1/vj ;

where fv0; v1; : : : ; vN g denotes the basis fzN1 ; z
N�1
1 z2; : : : ; z1z

N�1
2 ; zN2 g of VN .

Since a representation .VN ; Q�N / of sl2.C/ defines on VN the structure of a
CŒsl2.C/�-module, we also call it a sl2.C/-module. For more details, see for
instance [EW06, chapter 8].

3.4.2. The quantum universal enveloping algebra Uh.sl2.C//. The co-
commutative universal enveloping algebra of sl2.C/ is defined as in 3.17 by

U.sl2.C// WD T .sl2.C//=I.sl2.C//;

and is generated by X; Y;H , which satisfy (3.6). From this follows that
U.sl2.C// Š sl2.C/: The Hopf algebra structure can be seen through (cf.
3.17)

�.a/ D a˝ 1T.sl2.C// C 1T.sl2.C// ˝ a; �.a/ D 0; S.a/ D �a;

with a 2 fX; Y;H g.

For the quantum universal enveloping algebra, the following isomorphisms
hold (see 3.17)

U.sl2.C// Š Uh.sl2.C//=hUh.sl2.C//;

Uh.sl2.C// Š U.sl2.C//ŒŒh��:

A priori, U.sl2.C//ŒŒh�� may contain divergent power series in h. In order to
get rid of them, we restrict the quantum universal enveloping algebra to a
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subalgebra containing only the convergent power series in h. This new alge-
bra is denoted by Uq.sl2.C// where q replaces h by q WD exp .h/. The gener-

ator H undergoes a substitution too, namely K WD exp
�
hH
4

�
. Moreover, we

are interested in the case of a quantization by a root of unity, therefore we
set h WD 2� i

N
. Clearly, the classical limit becomes q ! 1.

With respect to these restrictions, the generators X; Y;K of Uq.sl2.C// are
subject to the relations (cf.[KM91])

KX D sXK; KY D s�1YK; ŒX; Y � D XY � YX D
K2 �K�2

s � s�1
;

XN D Y N D 0; K4N D 1Ug.sl2.C//;

where we used s WD exp
� i�
N

�
. The Hopf algebra structure on Uh.sl2.C//,

which is a module over CŒŒh�� according to (3.16), is inherited by Uq.sl2.C//

and is explicitly given by (cf.[KM91])

�.X/ D X ˝K CK�1 ˝X;

�.Y / D Y ˝K CK�1 ˝ Y;

�.K/ D K ˝K;

S.X/ D �sX; S.Y / D �s�1Y; S.K/ D K�1;

�.X/ D �.Y / D 0; �.K/ D 1:

3.4.3. Representation theory of Uq.sl2.C//. According to the algebra iso-
morphism over CŒŒh��

Uh.sl2.C// Š U.sl2.C//ŒŒh��

we deduce that the irreducible finite-dimensional representations of Uq.sl2.C//

can be derived from those of U.sl2.C// (which coincide with those of sl2.C//).
This leads us to the following theorem.

THEOREM 3.18
The finite-dimensional irreducible representations of Uq.sl2.C// are given by
.VN ; �N /, N � 0, where VN D spanC

�
zN1 ; z

N�1
1 z2; : : : ; z1z

N�1
2 ; zN2

�
, and the

continuous linear action

�N W Uq.sl2.C// � VN ! VN

is explicitly defined by

�N .X/vj D Œj C 1�vjC1;

�N .Y /vj D Œj �vj�1;

�N .K/vj D s
j�.N�1/=2vj ;

;

where fv0; v1; : : : ; vN g denotes the basis fzN1 ; z
N�1
1 z2; : : : ; z1z

N�1
2 ; zN2 g of VN

and
Œn� WD

sn � s�n

s � s�1

which is called quantum integer for s WD exp
� i�
N

�
.
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Finally, it can be shown that for this quantum group, there is a solution LR 2
Uq.sl2.C//˝ Uq.sl2.C// for the YBE (see [KM91, theorem 2.18]). Thus, we
conclude that Uq.sl2.C// is quasitriangular and the connection to topological
link invariants can now be established by the action of this LR-matrix on the
module VN ˝ VN (N 2 N) via (see [KM91, corollary 2.32])

. LR/
ij

kl
D

min .N�1�i;j /X
nD0

ıl;iCnık;j�n
.s � s�1/nŒi C n�ŠŒN � 1C n � j �Š

Œn�ŠŒi �ŠŒN � 1 � j �Š

� s2.i�.N�1/=2/.j�.N�1/=2/�n.i�j /�n.nC1/=2;

where

Œn�Š WD

nY
kD1

Œk�

is called the quantum factorial.

In the next chapter we will see how this R-matrix enters into the definition
of the colored Jones polynomial.



4. THE COLORED JONES POLYNOMIAL

Contrary to the previous chapters, we have now reached the marvellous stage
where we are able to apply and - above all - combine the prior acquired
knowledge to build a topological link invariant. Important contributions to
the field were achieved in 1991 by N. Reshetikhin and V.G. Turaev, who pub-
lished in [RT91] a detailed method for the construction of invariants of 3-
manifolds via modular Hopf algebras. The colored Jones polynomial is one
of these striking discoveries that we will concentrate on. This chapter is or-
ganized as follows:

- introduce the original definition of the colored Jones polynomial by
means of the irreducible complex representations of the quantum group
Uq.sl2.C// (4.1),

- allude to the link invariant defined by R. Kashaev using quantum dilog-
arithm (4.2),

- formalize the definition of the colored Jones polynomial, inspired on
the works of H. Murakami and J. Murakami (4.3),

- conclude that the two types of link invariants encountered in this chap-
ter coincide (4.4).

4.1. The Colored Jones polynomial

The decisive idea behind the theory of the colored Jones polynomial, which
is nothing but a generalization of the Jones polynomial of section 2.1.5, is
the following: given a planar oriented link diagram and the quantum group
Uq.sl2.C//, we associate to the components of the link a color through an
r-dimensional irreducible complex representation of Uq.sl2.C//, that is an
Uq.sl2.C//-module. Obeying certain assignment rules for the arcs and the
crossings that we will soon explain, we end up with a polynomial in one
variable, denoted by Jr .L/. The importance of working with quasitriangular
Hopf algebras (or quantum groups) is due to the fact that the set of repre-
sentations needs to be closed under taking tensor products and duals over C

and that the existence of an LR-matrix is necessary.
Let us proceed systematically in 6 steps.

1st step. We start with an oriented link L with corresponding diagram D

and arrange it by stretching in a way such that it fits with a pattern of hor-
izontal parallels - two consecutive lines surrounding exactly one elementary
tangle diagram of type R;L;\ or [ from section 2.2.6.

T1 T2
T1

T2

o = T1 T2 T2T1=

I R L 
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With respect to these elementary diagrams, we assign to each cross section a
tensor product by tensoring the diagrams at a given level from left to right.
We illustrate this process with the knot 52 in Figure 34 (actually, at this stage,
the orientation given in the picture is not yet important). The assignment of
elementary tangle diagrams becomes in this case

(1) W [ ı [; (2) W I ˝ L˝ I; (3) W I ˝ L˝ I; (4) W I ˝ L˝ I;

(5) W I ˝ I ˝R; (6) W I ˝ I ˝R; (7) W I ˝\˝ I; (8) W \:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 34: Oriented knot 52 with assigned cross sections (1)-(8)

2nd step. Next, we take into account the orientation of the diagram and
the fact, that in each cross section, we actually have a tangle (with typically
more than one component). Henceforth, we shall apply the theory of tangle
operators (see [KM91, section 3]): between two parallel lines, we decorate
each adjacent arc of D with a color given by an r-dimensional irreducible
Uq.sl2.C//-module Vr or its dual V �r , r 2 Œ2; N � (N is such that for the gen-
erators of Uq.sl2.C//, the relations XN D Y N D 0;K4N D 1 hold). This
induces a coloring of the two endpoints of each arc, where the rule to be
respected is the following:

Vr

V r'*Vr

Vr

V r'

V r'

if the arc colored by Vr is oriented downwards, we choose Vr to be assigned
to each of its endpoints, we choose the dual V �r if the arc is oriented upwards.
Tensoring from left to right results in a boundary Uq.sl2.C//-module at each
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line. By convention, the empty tensor product is C.

3rd step. At this point, we are going to mark the elementary tangle dia-
grams that we discretized in step 1 by a function with regard to the subse-
quent prescription (cf. [KM91, theorem 3.6]).

id RR

^ ^

-1

E E N2K -2KN

For a basis fe0; e1; : : : ; er�1g of Vr with associated dual basis fe0; e1; : : : ; er�1g
of V �r , and regarding the LR-matrix as a linear invertible operator, we make
use of the following functions:

id W Vr �! Vr is the identity map;

LR W Vr ˝ Vr �! Vr ˝ Vr is defined by the LR-matrix;

LR�1 W Vr ˝ Vr �! Vr ˝ Vr is defined by the inverse LR-matrix;

E W V �r ˝ Vr �! C is defined by E.f ˝ x/ WD f .x/ for f 2 V �r ; x 2 Vr ;

EK2 W Vr ˝ V
�
r �! C is defined by E.x ˝ f / WD f .K2x/ for f 2 V �r ; x 2 Vr ;

N W C �! Vr ˝ V
�
r is defined by N.1/ WD

X
j

ej ˝ e
j ;

NK�2 W C �! V �r ˝ Vr is defined by NK�2.1/ WD
X
j

ej ˝K�2ej :

Notice that for id; LR and LR�1, definitions involving V �r are also possible.
Caution is now required, because our whole link diagram is in fact a .0; 0/-
tangle and therefore the map by ascending along the side of the diagram is
an endomorphism of C. We apply this method to the example of the knot 52
by passing from (1) to (8). We get the following endomorphism of C

E.id˝E ˝ id/.id˝ id˝ LR/.id˝ id˝ LR/.id˝ LR�1 ˝ id/

.id˝ LR�1 ˝ id/.id˝ LR�1 ˝ id/.NK�2 ˝NK�2/:

4th step. Even though a knot or link is a priori a .0; 0/-tangle, we may
transform it into a .1; 1/-tangle by merely cutting up some arc. In this way,
we can apply the theory of tangles, although there will be only one coloring
Vr for the single component of the diagram. Reconsidering a similar map,
we explained before, we get now an endomorphism of Vr which is a complex
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Vr

L

Vr

L
Vr

Figure 35: From a closed link to a .1; 1/-tangle

multiple of idVr (as a consequence of Schur’s lemma). The complex multiple
is defined to be the r th-Colored Jones polynomial of the link L, denoted by
Jr .L/. This is effectively an element of CŒŒq��, as seen in the previous chap-
ter (3.16), thus a convergent power series in a variable q, which is a root of
unity. However we have not yet specified how this complex scalar is defined.

5th step. The colored Jones polynomial is a .1; 1/-tangle invariant, where-
fore we continue in this setting. Recalling the basis fe0; e1; : : : ; er�1g of Vr and
its dual basis fe0; e1; : : : ; er�1g, we choose a state of the diagram by matching
complex indices to each arc following

l m

kj

l m

kj

l m

j k

satisfying the relations below.

k

(e    e  )l m

(e    e  )l m

(e    e  )l m

l m

l m

kj

e    ej k

j k

e    ej

=

=
j,k

=
j,k

=
j,k

e    ej
k

l m

kj

(1)

Now, for q WD s2 D exp
�
2� i
N

�
, we define the following product

.q/n WD

nY
lD1

.1 � ql /;
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and we recall the LR-matrix for VN from the previous section

. LR/
ij

kl
D

min .N�1�i;j /X
nD0

ıl;iCnık;j�n
.s � s�1/nŒi C n�ŠŒN � 1C n � j �Š

Œn�ŠŒi �ŠŒN � 1 � j �Š

� s2.i�.N�1/=2/.j�.N�1/=2/�n.i�j /�n.nC1/=2;

where Œn�Š WD
nQ
kD1

Œk� and Œn� WD sn�s�n

s�s�1
.

Accordingly to this LR-matrix, the following formulas

.1/ W ıj;kq
j�.N�1/=2;

.2/ W ıl;mq
�lC.N�1/=2;

.3/ W ım;jChıl;k�h.�1/
jClC1

.q/�1j .q/k

.q/h.q/l .q/�1m
qjlC.jCl/=2C.N

2C1/=4;

.4/ W ıj;mChık;l�h.�1/
kCmC1

.q/�1
k
.q/j

.q/h.q/m.q/
�1
l

qkmC.kCm/=2C.N
2C1/=4;

.5/ W ım;j�hıl;kCh.�1/
kCmC1

.q�/�1
k
.q�/j

.q�/h.q�/m.q�/
�1
l

q�km�.kCm/=2�.N
2C1/=4;

.6/ W ıj;m�hık;lCh.�1/
jClC1

.q�/�1j .q�/k

.q�/h.q�/l .q�/�1m
q�jl�.jCl/=2�.N

2C1/=4;

.7/ W ık;l�hım;jCh.�1/
jCkC1

.q�/�1j .q�/�1
k

.q�/h.q�/
�1
l
.q�/�1m

q�jk�.lCm/=2�.N
2C1/=4;

.8/ W ıl;k�hıj;mCh.�1/
lCmC1 .q�/j .q

�/k

.q�/h.q�/l .q�/m
q�lm�.jCk/=2�.N

2C1/=4;

.9/ W ık;lChım;j�h.�1/
lCmC1 .q/j .q/k

.q/h.q/l .q/m
qlmC.jCk/=2C.N

2C1/=4;

.10/ W ıl;kChıj;m�h.�1/
jCkC1

.q/�1j .q/�1
k

.q/h.q/
�1
l
.q/�1m

qjkC.lCm/=2C.N
2C1/=4;

match with the diagrams on Figure 36.

6th step. Finally, we multiply all the involved elements from Figure 36,
and then sum over all the coloring indices that occur in the diagram. This
provides the colored Jones polynomial of the link.
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l m

kj

(4)
l m

kj

(6)
l m

kj

(3)
l m

kj

(5)

l m

kj

(7)
l m

kj

(10)
l m

kj

(9)

j

l m

k

(8)

(2)
l m

(1)

j k

Figure 36: Assignment of the R-matrix to the oriented crossings in a diagram

In order to exemplify, we pursue the case of the knot 52 with color N . We
choose a non-degenerate state of the diagram (for a systematical procedure
of such a choice, [Mur10, p.10-16] may be consulted), say

N - k +k1 3N - k +k1 3

N - k 1

k3

k3

k  - k2 3 k2

0

0

0

0

With respect to the previous assignment rules, we get

(a) W qk1�k3C.N�1/=2;

(b) W .�1/N�k1�k3C1q.N�k1Ck3/=2C.N
2C1/=4;

(c) W .�1/N�k1C1
.q/N�k1Ck3
.q/N�k1

q.N�k1/=2C.N
2C1/=4;

(d) W .�1/k3C1
.q�/k2�k3.q/k2

.q�/k2Ck1�k3�N .q/N�k1Ck3.q
�/N�k1

q.N�k1/=2C.N
2C1/=4;

(e) W .�1/k3C1
.q/k2
.q/k3

q.2k2�k3/=2C.N
2C1/=4;

(f) W .�1/k3C1qk3=2C.N
2C1/=4;
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corresponding to these components.

(a)
N - k +k1 3N - k +k1 3 0

0

(b)

N - k +k1 3

N - k +k1 3

0

(c)
k3N - k 1

N - k +k1 3

(e)
0k3

k2k  - k2 3

(d)

N - k +k1 3 N - k 1

k  - k2 3 k2
(f)

0

0 k3

k3

The resulting colored Jones polynomial is given by

JN .52/ D
X

k1;k2;k3

.a/.b/.c/.d/.e/.f /:

It is obvious that the computation of the colored Jones polynomial is an ex-
haustive task.

Remarks.
- It is important to notice that this construction of the colored Jones poly-

nomial is independent of the choice of the orientation of the diagram
and of the state for which we use the above formulas. Indeed, precisely
these properties turn it into a link invariant; for more details consult
[KM91, theorem 2.13, remark 3.26].

- The well-known Jones polynomial is obtained for the choice N D 2.

4.2. A link invariant defined by R. Kashaev

In 1994, R. Kashaev first introduced in his paper [Ka94] an invariant of tri-
angulated links in triangulated 3-manifolds. His construction resembles the
quantum mechanical approach we exposed in 3.3. We give just an over-
wiew of his procedure, because the details immediately involve a consider-
able amount of calculations and formulas. We refer to [Ka94] and [Ka95] for
more specifications.

The pivotal point in Kashaev’s theory was the study of the quantum diloga-
rithm function, which corresponds to a quantum version of the dilogarithm
function reviewed in (2.8) and is defined for x 2 C by

‰.x/ WD

1Y
nD1

.1 � xqn/;

where q is a fixed complex quantization parameter with jqj � 1. His goal
consisted in producing a quantum analogue of the pentagon identity by L.J.
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Rogers

L.x/C L.y/ � L.xy/ D L
�
x � xy

1 � xy

�
C L

�
y � xy

1 � xy

�
;

where x; y; z 2 C such that jxj; jyj; jzj � 1 and L denotes the Rogers’ diloga-
rithm function defined by means of the dilogarithm function

L.z/ D Li2.z/C log.1 � z/ log
�z
2

�
:

Indeed Kashaev succeeded to show the existence of a quantized pentagon
identity through the properties of a certain subalgebra of the Hopf algebra
Uq.sl2.C//. The stunning consequence was its relation to quantum groups,
similarly to the case of the YBE as previously shown in 3.3.
Thereafter, Kashaev discovered that the quantum 6j -symbols in Uq.sl2.C//

satisfy the generalized pentagon identity. Recall briefly that the quantum
6j -symbol �

i j k

l m n

�
;

is a number defined for 6 spins i; j; k; l; m; n assigned to the edges of a tetra-
hedron. These spins correspond to representations of Uq.sl2.C//. The classi-

i

i n

lk

j

m

Figure 37: Six parameters i; j; k; l; m; n

cal analogue are 6j -symbols that occur in the representations of sl2.C/. For
precise formulas, see [Ka94, section 1,2].

Needless to say that this coherence between topology and quantum physics
stimulated the study of 3-manifolds M3 on the one side and of R-matrices on
the other side. These investigations culminated first in the construction of an
invariant of triangulated links that Kashaev derived from a partition function
of the complement of a link L in a 3-manifold. This partition function hLiM3

raised to the N th-power for some integer N > 1, is shown to be an invariant
of links. We do not give the explicit form here (see [Ka94, (4.4)]).

Soon after, Kashaev determined another link invariant through a solution to
the YBE and he showed that it coincides with the previous one for odd N .
The following R-matrix is due to Kashaev.

THEOREM 4.1
The Kashaev RK -matrix, with respect to components .RK/cdab is defined by the
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following formula (see [Ka95, (2.12)])

Nq1Cd�bC.a�c/.d�b/
� .res .b�a�1/Cres .d�c// � .res .a�d/Cres .c�b//

.qres.b�a�1//.q
�
res.a�d//.qres.d�c//.q

�
res.c�b//

;

where N � 2; q WD s2D exp
�
2i�
N

�
; q�D NqD q�1; .q/n WD

nQ
lD1

.1 � ql / for n �

0; res .x/ 2 ZN D f0; 1; :::; N � 1g is the residue modulo N of x 2 Z and

� W Z �! f0; 1g

is defined by values �.n/ equal to�
1 if 0 � n � N � 1;

0 otherwise.

Similarly to the definition of the colored Jones polynomial, we can interpret
these factors on diagrams in the following way.

a b

cd

q   (R  ab
-c-d

K)cd

Figure 38: Assignment of .RK/cdab to a crossing in a diagram

In order to derive the Kashaev invariant from this R-matrix, we need to imag-
ine the following situation: suppose we have a .2; 2/-tangle planar represen-
tation of a link L in the 3-sphere. We define the sets of edges, vertices and
faces of this diagram by E ;V and F respectively. Then we introduce two
maps

 W E �! ZN ; ˛ W V � F �! ZN ;

with the restrictions
.e1/ D .e2/ D 0

for the outer strands of the tangle e1; e2, and for v 2 V, f 2 F

˛.v; f0/ D 0; for f0 the outer region of the plane;

˛.v; f / D 0; for v 62 f;X
f 2F

˛.v; f / D
X
v2V

˛.v; f / D 1; for f ¤ f0:

Moreover, to each vertex, we associate an element based on the previous fig-
ure and depending on ˛, say r˛.v/ 2 C. A partition function on this diagram
is then defined by

hLi WD
X


Y
v2V

r˛.v/
Y
e2E

q.e/:
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It turns out that, up to N th roots of unity, different choices of the map ˛

lead to the same partition function. This yields the following theorem, which
combines hLiM3 and hLi.

THEOREM 4.2
The quantity hLiN is an invariant of links. For odd N it coincides with the
invariant of triangulated links hLiNM3 in an oriented 3-manifold M3.

Examples 4.3 ([Ka94],[Ka97]).
For M WD S3 and writing now hLiN WD hLiN , we get:

- hiN D 1,

- h&iN D
N�1P
aD0

.q/a,

- h41iN D
N�1P
aD0

j.q/aj
2,

- h52iN D
P

0�a�b�N�1

.q/2
b

.q�/a
q�.bC1/a.

This summary reflects the amazing ideas inspired by mathematical physics
and an admirable ability of combining a priori non related fields. At the same
time, however, the definitions are not quite rigorous from a mathematical
point of view and difficult to develop further.

4.3. The Colored Jones polynomials by H. and J. Murakami

The family of link invariants introduced by Kashaev in section 4.2 arises from
a quite enigmatic procedure, where he uses the quantum dilogarithm. From
a mathematical point of view, his definition, even though only involving ele-
mentary tools, still lacks clarity. In the sequel, we are going to study the con-
nection between the link invariant established by Kashaev and the colored
Jones polynomial introduced in 4.1, a connection that was first suggested in
2001 by H. Murakami and J. Murakami in their famous article [MM01]. In
order to see a clear structure, let us briefly expose our approach:

- state the general definitions of an enhanced Yang-Baxter operator (4.3.1)
and the operator trace (4.3.2),

- define a link invariant (that is, the colored Jones polynomial) based on
the prior definitions (4.3.3),

- introduce and justify two concrete Yang-Baxter operators (4.4.1),

- analyse the resulting enhanced Yang-Baxter operators (4.4.2),

- identify the corresponding link invariants (4.4.3).

4.3.1. Enhanced Yang-Baxter operator. First, let us recall the definition
of an enhanced Yang-Baxter operator.
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Definition 4.4.
Let ˛; ˇ 2 C and consider the following maps

- id W CN �! CN the identity map on CN ,

- R W CN ˝CN �! CN ˝CN an invertible linear map,

- � W CN �! CN a homomorphism,

- Sp2 W End.CN ˝CN / �! End.CN / defined by

Sp2.f /.vi / D
N�1P
j;kD0

f
j;k

i;k
.vj / where the coefficients f j;k

i;k
correspond to

the entries of the matrix associated to f with respect to a basis
fv0; v1; :::; vN�1g of CN .

If they satisfy the equations:

(i) .R˝ id/.id˝R/.R˝ id/ D .id˝R/.R˝ id/.id˝R/,

(ii) .�˝ �/R D R.�˝ �/,

(iii) Sp2.R
˙1.id˝�// D ˛˙1ˇ id,

where the first condition is the Yang-Baxter equation, then the quadruple
S D .R; �; ˛; ˇ/ is called an enhanced Yang-Baxter operator (EYBO).

Example 4.5 ([Tur88]).
Recall the R-matrix from example 3.15

R WD �q
X
j

Ej;j ˝Ej;j C
X
j¤k

Ej;k ˝Ek;j C .q
�1
� q/

X
j<k

Ej;j ˝Ek;k ;

where we consider now the more general case V D CN , N � 1 and the
maps Ej;k W CN �! CN are defined by Ej;k.vl / D ıj;lvk for 1 � j; k; l � N .
According to Turaev, R enters into the definition of an EYBO by setting

� WD diag.�1; �2; : : : ; �N /;

˛ WD �qN

ˇ WD 1;

where diag.�1; �2; : : : ; �N / is the diagonal matrix with entries �j WD q2j�N�1

for any 1 � j � N . For the proof of the fact that .R; �; ˛; ˇ/ with the choices
above forms an EYBO, [Tur88, theorem 4.2.1] may be consulted. Notice, that
this EYBO gives rise to the HOMFLY-PT polynomial introduced in 2.1.5.

4.3.2. Operator trace. Another ingredient we need for the definition of
the link invariant is the operator trace Spk . We have already encountered it
in one of the conditions of an EYBO (for k D 2), but here we give a general
definition.
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Definition 4.6.
Let f be an endomorphism of .CN /˝k , k 2 N, fv0; v1; :::; vN�1g a basis of
CN and consider the coordinate expression

f .vi1 ˝ vi2 ˝ :::˝ vik / D

N�1X
j1;j2;:::;jkD0

f
j1;j2;:::;jk
i1;i2;:::;ik

.vj1 ˝ vj2 ˝ :::˝ vjk /:

giving rise to the k-dimensional N 2-matrix

..f
j1;j2;:::;jk
i1;i2;:::;ik

/0�i1;i2;:::;ik ;j1;j2;:::;jk�N�1/ 2 C2kN :

The kth operator trace

Spk W End..CN /˝k/ �! End..CN /˝k�1/ is defined to be

Spk.f /.vi1 ˝ vi2 ˝ :::˝ vik�1/ D
N�1X

j1;j2;:::;jk�1;jD0

f
j1;j2;:::;jk�1;j
i1;i2;:::;ik�1;j

.vj1 ˝ vj2 ˝ :::˝ vjk�1/:

Remark. To reach our goal, which consists in determining the colored Jones
polynomials explicitly, we need a method to compute the operator trace,
which constitutes the essential part in the definition of the link invariant.
Given a basis fv0; v1; :::; vN�1g of CN , the identification .CN /˝k Š CNk

through the map
vi1 ˝ vi2 ˝ :::˝ vik 7�! Vt ;

where t WD
k�1P
lD0

N l ik�l ; il 2 f0; 1; :::; N � 1g for 1 � l � k, is the key to

the subsequent procedure. Namely, instead of working with k-dimensional
N 2-matrices, we are going to deal with 2-dimensional N k-matrices for the
sake of keeping track of the calculations. For f 2 End..CN /˝k/ and f the
matrix associated to f in the basis fV0; :::; VNk�1g, the following coefficient
relationship holds:

f
j1;j2;:::;jk
i1;i2;:::;ik

D f t1;t2 ;

where t1 WD
k�1P
lD0

N ljk�l ; t2 WD
k�1P
lD0

N l ik�l . Moreover, a straightforward cal-

culation shows that the matrix Spk associated to Spk with respect to the basis
fW0; W1; :::; WNk�1�1g constructed in a similar way to the above, is given by

.Spk/i;j D
N�1X
lD0

f lCiN;lCjN ; 0 � i; j � N k�1
� 1:

We look at an example to clarify this method.

Example 4.7.
We choose N D 3; k D 2 and consider the following bases:

- fv0; v1; v2g basis of C3,
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- fV0; V1; :::; V8g basis of C9 Š .C3/˝2,
where V0 D v0 ˝ v0; V1 D v0 ˝ v1; V2 D v0 ˝ v2; V3 D v1 ˝ v0; V4 D

v1 ˝ v1; V5 D v1 ˝ v2; V6 D v2 ˝ v0; V7 D v2 ˝ v1; V8 D v2 ˝ v2:

For f 2 End..C3/˝2/, the associated matrix f 2 Mat.9;C/ with respect to
the above basis is defined by

f 0;0 D f
0;0
0;0 ; f 0;1 D f

0;0
0;1 ; : : : f 0;8 D f

0;0
2;2 ;

f 1;0 D f
0;1
0;0 ; f 1;1 D f

0;1
0;1 ; : : : f 1;8 D f

0;1
2;2 ;

:::

f 8;0 D f
2;2
0;0 ; f 8;1 D f

2;2
0;1 ; : : : f 8;8 D f

2;2
2;2 :

In this example the basis fW0; W1; W2g coincides with the initial basis fv0; v1; v2g
of C3, thus the matrix Sp2.f / is given by:0BB@

f 0;0 C f 1;1 C f 2;2 f 0;3 C f 1;4 C f 2;5 f 0;6 C f 1;7 C f 2;8

f 3;0 C f 4;1 C f 5;2 f 3;3 C f 4;4 C f 5;5 f 3;6 C f 4;7 C f 5;8

f 6;0 C f 7;1 C f 8;2 f 6;3 C f 7;4 C f 8;5 f 6;6 C f 7;7 C f 8;8

1CCA :
Clearly, Sp1.Sp2.f // D

8P
iD0

f i;i 2 C.

4.3.3. A link invariant. What do we need more for constructing a link in-
variant? In fact, we have an enhanced Yang-Baxter operator S D .R; �; ˛; ˇ/
as well as a method for computing the operator trace at our disposal. How-
ever, we have not yet explained rigorously any connection to links, except
from the brief paragraph in 3.1.3. As we know from section 2.2 that every
link L can be obtained as the closure of some braid, we are henceforth only
considering braids and their generators �˙1i . To a braid � 2 Bn whose closure
may give a link L we associate the following map

Bn �! Hom..CN /˝n/

�˙1i 7�! id˝:::˝ id„ ƒ‚ …
i�1

˝R˙1 ˝ id˝:::˝ id„ ƒ‚ …
n�i�1

:

In other words, we associate to a braid � 2 Bn a homomorphism bR.�/ 2

Hom..CN /˝n/ according to the above identification. This allows us to define
a candidate for a link invariant

TS .�/ WD ˛
�!.�/ˇ�n Sp1.Sp2.:::.Spn.bR.�/.�

˝n///// 2 End.C/ (4.1)

where !.�/ is the sum of the exponents appearing in the expression of � as
product of generators, thus �n � !.�/ � n. Assuming that the closure of �
produces the link L, we write TS .L/.

PROPOSITION 4.8
Let L be a link and let S D .R; �; ˛; ˇ/ be an enhanced Yang-Baxter operator.
Then TS .L/ 2 End.C/ is an invariant of links.
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Proof. We need to show that for a given enhanced Yang-Baxter operator S ,
TS .L/ is invariant under the three Reidemeister moves. Since equivalent
links L and L0 have the same braid representation, it is straightforward that
the corresponding homomorphisms bR.�/ and bR.�

0/ coincide and hence-
forth TS .L/ D TS .L0/.

Despite this property, TS has some deficiencies. The reason for this was
worked out by Turaev in [Tur88, theorem 3.2.1 and corollary 3.2.2]. To
sum up, he shows that this invariant is annihilated by a polynomial of degree
� N 2. Thus we consider a slightly modified version of TS :

TS;1.�/ WD ˛
�!.�/ˇ�n Sp2.Sp3.:::.Spn.bR.�/.id˝�

˝n�1///// 2 End.CN /:

(4.2)

PROPOSITION 4.9
If for �S;1.�/ 2 C and any � 2 Bn the following conditions hold:

(i) TS;1.�/ D �S;1.�/ id;

(ii) Sp1.�/�S;1.�/ D TS .�/;

then �S;1.�/ is a link invariant.

Proof. The argumentation is the same as in the proof of 4.8.

Remarks.
- By abuse of notation, if we are talking about the link invariant TS;1, we
actually refer to �S;1. For the same reason as above, we might write TS;1.L/,
respectively �S;1.L/. In section 4.4, we will write TS;1 DW JN (actually mean-
ing �S;1 DW JN ) to mention its connection to the colored Jones polynomial.
- TS;1.L/ can be regarded as an invariant of .1; 1/-tangles (see 4.1 and
[KM91, lemma 3.9]), which, together with the omission of Sp1, explains
the additional index 1.

4.4. Equivalence between Kashaev’s link invariant and the Colored Jones
polynomials

4.4.1. Two Yang-Baxter operators. After this formal study of the link in-
variant JN , we intend to analyse it more concretely.
On the one hand, recall from section 3 (or see [KM91, corollary 2.32 and
definition 2.35]) the R-matrix RJ with the ..i; j /; .k; l//th entry .RJ /

ij

kl
given

by
min .N�1�i;j /X

nD0

ıl;iCnık;j�n
.s � s�1/nŒi C n�ŠŒN � 1C n � j �Š

Œn�ŠŒi �ŠŒN � 1 � j �Š

� s2.i�.N�1/=2/.j�.N�1/=2/�n.i�j /�n.nC1/=2;

where N � 2; s WD exp
� i�
N

�
; Œk� WD sk�s�k

s�s�1
for k 2 C; Œk�Š WD

kQ
lD1

Œl �.
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Remark. RJ corresponds to the ”R-flip matrix” LRJ ([KM91, definition 2.35]),
that is, considerRJ to be the matrix associated in a fixed basis to the operator
P ıR, where P is the permutation homomorphism

P W CN
˝CN

�! CN
˝CN

a˝ b 7�! b ˝ a;

and R the operator given in [KM91, corollary 2.32]). We omit the L -sign in
the sequel, since there will be many more other, indispensable symbols in the
upcoming formulas.

On the other hand, consider the R-matrix RK introduced by Kashaev in 4.2
(or [Ka95]) with the ..c; d/; .a; b//th entry .RK/cdab given by

Nq1Cc�bC.a�d/.c�b/
� .res .b�a�1/Cres .c�d// � .res .a�c/Cres .d�b//

.qres.b�a�1//.q
�1
res.a�c//.qres.c�d//.q

�1
res.d�b//

;

where N � 2; q WD s2 D exp
�
2i�
N

�
; .q/n WD

nQ
lD1

.1 � ql / for n � 0; res .x/ 2

f0; 1; :::; N � 1g is the residue modulo N of x 2 Z and � W Z �! f0; 1g is
defined by values �.n/ equal to�

1 if 0 � n � N � 1;

0 otherwise.

Remark. Again RK corresponds to the ”R-flip matrix”, that is RK D P ı R0,
where R0 is the R-matrix given in theorem 4.1.

In order to be able to show afterwards that RJ and RK both satisfy the YBE
(up to now, we only know that it is fulfilled by R0), we first give a charac-
terization of their matrix entries. Actually, H. Murakami and J. Murakami,
inspired by the observation that RJ and RK have the same Jordan canonical
form for N D 2; 3, established the connection between these two R-matrices.
For the sake of avoiding a clumsy notation, rather than analyzing RJ , we are
interested in QRJ :

QRJ WD .W ˝W /.1N ˝D/RJ .1N ˝D
�1/.W �1 ˝W �1/;

whereW;D 2 Mat.N;C/ are defined by .W /i;j D s2ij and .D/i;j D ıi;j s.N�1/i

respectively and 1N 2 Mat.N;C/ is the identity matrix. QRJ is again an R-
matrix that features the following properties.

PROPOSITION 4.10

. QRJ /
cd
ab D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�.a; b; c; d/.�1/aCbC1 Œd�c�1�ŠŒN�1Cc�a�Š
Œd�b�ŠŒb�a�1�Š

if d � b > a � c;

�.a; b; c; d/.�1/aCc Œb�d�1�ŠŒN�1Cc�a�Š
Œc�d�ŠŒb�a�1�Š

if b > a � c � d;

�.a; b; c; d/.�1/bCd Œc�a�1�ŠŒN�1Cb�d�Š
Œc�d�ŠŒb�a�1�Š

if c � d � b > a;

�.a; b; c; d/.�1/cCd Œa�b�ŠŒN�1Cb�d�Š
Œc�d�ŠŒa�c�Š

if a � c � d � b;

0 otherwise;
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where �.a; b; c; d/ D 1
N2
s�N

2=2C1=2CcCd�2bC.a�d/.c�b/.s�s�1/2.N�1/ŒN �1�Š:

Proof. A thorough proof may be consulted in [MM01] p.90-94.

A similar result can be worked out for the matrix RK .

PROPOSITION 4.11

.RK/
cd
ab D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�.a; b; c; d/.�1/aCbC1 Œd�c�1�ŠŒN�1Cc�a�Š
Œd�b�ŠŒb�a�1�Š

if d � b > a � c;

�.a; b; c; d/.�1/aCc Œb�d�1�ŠŒN�1Cc�a�Š
Œc�d�ŠŒb�a�1�Š

if b > a � c � d;

�.a; b; c; d/.�1/bCd Œc�a�1�ŠŒN�1Cb�d�Š
Œc�d�ŠŒb�a�1�Š

if c � d � b > a;

�.a; b; c; d/.�1/cCd Œa�b�ŠŒN�1Cb�d�Š
Œc�d�ŠŒa�c�Š

if a � c � d � b;

0 otherwise;

where �.a; b; c; d/ D N
.ŒN�1�Š/2

sN
2=2�N=2C2CcCd�2bC.a�d/.c�b/.s � s�1/1�N :

Proof. For the proof, [MM01] p.95-96 may be looked up.

Consequently to the two previous propositions, we conclude that RJ and RK
differ only by a constant depending on N . We have

PROPOSITION 4.12
For any N � 2, the R-matrices RK and RJ are related by:

RK D s�.NC1/.N�3/=2.W ˝W /.1N ˝D/RJ .1N ˝D
�1/.W �1 ˝W �1/

D c�1 QRJ ;

where c WD s.NC1/.N�3/=2.

Proof. From the propositions 4.10 and 4.11, and the fact that s D exp
�
� i
N

�
,

we know that

. QRJ /
cd
ab

.RK/
cd
ab

D
�.a; b; c; d/

�.a; b; c; d/

D s�N
2

s.N�3/=2
�
.s � s�1/N�1ŒN � 1�Š

N

�3
D .�1/N s.N�3/=2

�
.s � s�1/N�1ŒN � 1�Š

N

�3
:

In order to prove the proposition, we thus only need to check that

. QRJ /
cd
ab

.RK/
cd
ab

D s.NC1/.N�3/=2 D .�1/N s.N�3/=2
�
.s � s�1/N�1ŒN � 1�Š

N

�3
:

On the one hand, using that 2i sin .x/ D .exp .ix/ � exp .�ix//;8x 2 R, we
have
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.s � s�1/N�1ŒN � 1�Š D .s � s�1/N�1
N�1Y
kD1

sk � s�k

s � s�1

D

N�1Y
kD1

.sk � s�k/

D

N�1Y
kD1

.exp
�
k� i
N

�
� exp

�
�
k� i
N

�
/

D

N�1Y
kD1

.2i sin
�
k�

N

�
/

D .2i/N�1
N�1Y
kD1

sin
�
k�

N

�
:

On the other hand, from [GR07] p.33, we employ the formula

sin .Nx/ D 2N�1
N�1Y
kD0

sin
�
x C k�

N

�
to get

lim
x!0

sin .Nx/
sin .x/

D N D lim
x!0

2N�1
N�1Q
kD0

sin
�
xCk�
N

�
sin .x/

D 2N�1 lim
x!0

N�1Y
kD1

sin
�
x C k�

N

�
D 2N�1

N�1Y
kD1

sin
�
k�

N

�
:

Finally, this results in

.�1/N s.N�3/=2
�
.s � s�1/N�1ŒN � 1�Š

N

�3
D .�1/N s.N�3/=2 i3.N�1/

D .sN /N s.N�3/=2s.N=2/3.N�1/

D s5N
2=2�N�3=2

D sN
2=2�N�3=2

D s.NC1/.N�3/=2:

Eventually, we get the answer to one question, that is whether RJ and RK
satisfy the YBE. For RJ , we refer to [KM91, lemma 2.35], for a thorough
proof. However, to see that RK satisfies the YBE, we need the following
lemma
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LEMMA 4.13
LetD 2 Mat.N;C/ be the matrix with the .i; j /th entryDi

j D ıi;j s
.N�1/j . Then

the following equality holds:

.1N ˝D/RJ .1N ˝D
�1/ D .D�1 ˝ 1N/RJ .D ˝ 1N/: (4.3)

Proof. Note that (4.3) is equivalent to .D ˝D/RJ D RJ .D ˝D/. Using the
definitions of D and RJ , one easily checks that

..D ˝D/RJ /
ij

kl
D .RJ .D ˝D//

ij

kl
:

PROPOSITION 4.14
Kashaev’s R-matrix RK satisfies the YBE, that is

.RK ˝ 1N/.1N ˝RK/.RK ˝ 1N/ D .1N ˝RK/.RK ˝ 1N/.1N ˝RK/: (4.4)

Proof. In order to compare the two sides of the equation, we transform each
of them using proposition 4.12, lemma 4.13 as well as the following proper-
ties:

W 1NW
�1
D D1ND

�1
D 1N;

D21N D D1ND:

A direct calculation then leads to the following expressions for the left and
right hand side of (4.4)
- .RK ˝ 1N/.1N ˝RK/.RK ˝ 1N/

D c�3.W ˝W ˝W /.1N ˝D ˝D
2/.RJ ˝ 1N/.1N ˝RJ /.RJ ˝ 1N/

�.1N ˝D
�1 ˝D�2/.W �1 ˝W �1 ˝W �1/

- .1N ˝RK/.RK ˝ 1N/.1N ˝RK/

D c�3.W ˝W ˝W /.1N ˝D ˝D
2/.1N ˝RJ /.RJ ˝ 1N/.1N ˝RJ /

�.1N ˝D
�1 ˝D�2/.W �1 ˝W �1 ˝W �1/:

As the YBE has been shown to be satisfied for RJ , that is

.RJ ˝ 1N/.1N ˝RJ /.RJ ˝ 1N/ D .1N ˝RJ /.RJ ˝ 1N/.1N ˝RJ /;

we conclude that the two sides of equation (4.4) coincide, thus the YBE is
fulfilled by RK too.

4.4.2. Two enhanced Yang-Baxter operators. Remembering that our aim
consists in proving that RJ and RK define the same link invariant, we should
now focus on establishing enhanced Yang-Baxter operators involving pre-
cisely RJ and RK . Thus, let us have a look at a possible candidate for SJ
given by the quadruple

SJ D .RJ ; �J ; ˛J ; ˇJ /

where �J 2 Mat.N;C/; .�J /ij WD ıi;j s
2i�NC1; ˛J WD s

.N2�1/=2 and ˇJ WD 1.
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LEMMA 4.15
SJ D .RJ ; �J ; s

.N2�1/=2; 1/ is an enhanced Yang-Baxter operator, that is

.�J ˝ �J /RJ D RJ .�J ˝ �J / (4.5)

Sp2.R
˙1
J .1N ˝ �J // D .s.N

2�1/=2/˙11N: (4.6)

Proof. Similarly to lemma 4.13, we check that the entries

..�J ˝ �J /RJ /
ij

kl
D .RJ .�J ˝ �J //

ij

kl

coincide. For the verification of the second equality, we check that the fol-
lowing identities hold in C:

N�1X
jD0

.RJ .1N ˝ �J //
N�1;j
N�1;j D s.N

2�1/=2;

N�1X
jD0

..RJ /
�1.1N ˝ �J //

0;j
0;j D .s.N

2�1/=2/�1:

This is sufficient, because the right-hand side of (4.6) equals a scalar multiple
of ıi;k , henceforth if the relation is satisfied in the special cases i D k D N �1
(for the positive power) and i D k D 0 (for the negative power), it will be so
in the general case. Recall that .�J /ij D ıi;j s

2i�NC1 and

.RJ /
ij

kl
D

min.N�1�i;j /X
nD0

ıl;iCnık;j�n
Œi C n�ŠŒN � 1C n � j �Š

Œi �ŠŒn�ŠŒN � 1 � j �Š

� .s � s�1/ns2.i�.N�1/=2/.j�.N�1/=2/�n.i�j /�n.nC1/=2;

.R�1J /
ij

kl
D

min.N�1�j;i/X
nD0

ıl;i�nık;jCn
Œj C n�ŠŒN � 1C n � i �Š

Œj �ŠŒn�ŠŒN � 1 � i �Š

� .�1/n.s � s�1/ns�2.i�.N�1/=2/.j�.N�1/=2/�n.i�j /Cn.nC1/=2:

Consequently, in the first case, we get

N�1X
jD0

.RJ .id˝�J //
N�1;j
N�1;j D

N�1X
jD0

N�1X
a;bD0

.RJ /
N�1;j

a;b
ıa;N�1.�J /

j

b

D

N�1X
jD0

.RJ /
N�1;j
N�1;j s

2j�NC1

D

N�1X
jD0

ıj;N�1s
.N�1/.j�N�12 /C2j�NC1

D s.N
2�1/=2:
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The second case involves
N�1X
jD0

.R�1J .id˝�J //
0;j
0;j D

N�1X
jD0

N�1X
a;bD0

.R�1J /
0;j

a;b
ıa;0.�J /

j

b

D

N�1X
jD0

ıj;0s
.N�1/.j�N�12 /C2j�NC1

D s�.N
2�1/=2:

Example 4.16.
As a wonderful consequence of lemma 4.15, we dispose now of an EYBO
(note that it is up to normalization and reparametrization equivalent to the
one suggested by Turaev in [Tur88]). We shall consider the case of the figure-
eight knot (recall Figure 20)

closure ~

as an example. Since computations are very exhaustive, we just write down
the principal results. More details may be found in [Mur10].

- Let S WD .RJ ; �J ; s.N
2�1/=2; 1/ be the EYBO from lemma 4.15.

- Denote by � 2 B3 a braid representative of the figure-eight knot, as re-
viewed on this picture from chapter 2. We have that � WD �1��12 �1�

�1
2 .

- The corresponding homomorphism is therefore given by

bRJ .�/ D .RJ ˝ id/.id˝R�1J /.RJ ˝ id/.id˝R�1J /:

- The sum of the exponents appearing in the generator expression of
� being equal to 0 in our case, the colored Jones polynomial for the
figure-eight knot, according to the definition (4.2), takes the form

TS;1.�/ D Sp2.Sp3
�
.RJ ˝ id/.id˝R�1J /.RJ ˝ id/.id˝R�1J /

�
:

This formula looks quite nice and not so complicated, which is the admirable
benefit from the rigorous formalism of J. Murakami and H. Murakami. None-
theless the calculations involved are not straightforward at all because of the
expression for RJ . We give immediately the result that will play an important
role in chapter 5. Notice that we use q D s2.

TS;1.41/ D
1

qN=2 � q�N=2

N�1X
kD0

ŒN C k�Š

ŒN � 1 � k�Š

�
q1=2 � q�1=2

�2kC1
:
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Next, we introduce another EYBO SK , based on RK

SK D .RK ; �K ; ˛K ; ˇK/

where �K 2 Mat.N;C/; .�K/ij WD �ıi;jC1s; ˛K WD �s and ˇK WD 1. The
following result is the main key for proving that SK is an enhanced Yang-
Baxter operator.

LEMMA 4.17
For W;D;�J and �K defined as above, the following equality holds:

WD�JD
�1W �1 D �K :

Proof. Since the diagonality of D and �J implies that they commute, we
need to show that W�JW �1 D �K . In this regard, we calculate the .i; j /th

component of W�JW �1:

.W�JW
�1/ij D

N�1X
a;bD0

W a
j .�J /

b
a.W

�1/ib

D
1

N

N�1X
aD0

s2ajC2a�NC1�2ai

D
1

N

N�1X
aD0

s1�N s2a.jC1�i/

D
�s

N
Nıi;jC1 D .�K/

i
j :

By this, we are able to show

LEMMA 4.18
SK D .RK ; �K ;�s; 1/ is an enhanced Yang-Baxter operator, that is

.�K ˝ �K/RK D RK.�K ˝ �K/ (4.7)

Sp2.R
˙1
K .1N ˝ �K// D .�s/˙11N: (4.8)

Proof. The two equalities are consequences of lemma 4.15. Indeed, the veri-
fication follows from proposition 4.12, lemma 4.17 and the fact that �J and
D commute.

4.4.3. Correspondence between the two link invariants. Finally, we can
reap the fruit of our calculatory preparations. We introduce the following
notations for the link invariants arising from SJ and SK respectively,

JN .L/ WD TSJ;1.L/I hLiN WD TSK;1.L/:

JN .L/ is nothing but the colored Jones polynomial at the N th root of unity
and hLiN corresponds to the Kashaev invariant. We now conclude
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THEOREM 4.19
For any link L and any integer N � 2, the link invariants JN .L/ and hLiN
coincide.

Proof. The proof is divided into 3 steps.
1st step. First, we show that lemma 4.13 generalizes to

R˙1J D .D
k
˝Dk/R˙1J .D�k ˝D�k/: (4.9)

Proof. (1st step.) The identity is immediately obtained by performing the
same computations as in lemma 4.13 on the components of R˙1J .Dk ˝Dk/

and .Dk ˝Dk/R˙1J .

2nd step. The braid homomorphisms bRK and bRJ are related in the fol-
lowing way; for any � 2 Bn

bRK .�/ D c
�w.�/.W ˝n/.

n�1O
lD0

Dl /bRJ .�/.

n�1O
lD0

D�l /..W �1/˝n/; (4.10)

where c WD s.NC1/.N�3/=2.

Proof. (2nd step.) It is sufficient to show that the above relation holds on the
generators of Bn, that is, for any 1 � i � n � 1

bRK .�
˙1
i / D c�1.W ˝n/.

n�1O
lD0

Dl /bRJ .�
˙1
i /.

n�1O
lD0

D�l /..W �1/˝n/:

Accordingly to proposition 4.12 and (4.9), we get

R˙1K D c�1.W ˝W /.1N ˝D/R
˙1
J .1N ˝D

�1/.W �1 ˝W �1/

D c�1.W ˝W /.Di�1
˝Di /R˙1J .D1�i

˝D�i /.W �1 ˝W �1/:

Recalling that bR.�˙1i / D 1
˝.i�1/
N ˝ R˙1 ˝ 1

˝.n�i�1/
N (amongst others valid

for bRK ; bRJ ), we have

bRK .�
˙1
i / D c�11

˝.i�1/
N ˝ .W ˝W /.Di�1

˝Di /R˙1J

�.D1�i
˝D�i /.W �1 ˝W �1/˝ 1

˝.n�i�1/
N

D c�1.W ˝n/.

n�1O
lD0

Dl /bRJ .�
˙1
i /.

n�1O
lD0

D�l /..W �1/˝n/:

3rd step. Ultimately, we conclude that the link invariants defined by SJ
and SK coincide, that is for any link L and for N � 2:

hLiN D JN .L/:
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Proof. (3rd step.) As a result of step 2 (4.10) as well as by the facts that
W�JW

�1 D �K and that �J commutes with Dk (for any k 2 R), we end up
with the identity

bRK .�/.1N ˝ �
˝.n�1/
K / D c�w.�/.AB/bRJ .�/.1N ˝ �

˝.n�1/
J /.AB/�1;

where A WD .W ˝n/; B WD .
n�1N
lD0

Dl / and � is the braid representation of L.

Applying now successively the trace operators Spk.n � k � 2/ on both sides
and using the conjugacy invariance of traces, we get

˛
w.�/
K ˇnKTSK;1.�/ D c

�w.�/˛
w.�/
J ˇnJTSJ;1.�/

() .�s/w.�/TSK;1.�/ D s
�w.�/.NC1/.N�3/=2sw.�/.N

2�1/=2TSJ;1.�/

() .�s/w.�/TSK;1.�/ D s
w.�/.NC1/TSJ;1.�/

() TSK;1.�/ D TSJ;1.�/:

Thus the conclusion hLiN D JN .L/:

This accomplishes the proof of theorem 4.19.

We now learnt that there are different methods to calculate the same invari-
ant of colored links. This is a great achievement, not only on the computa-
tional level, but most of all on the level of comprehension of a link invariant
based on an enhanced Yang-Baxter operator.



5. THE VOLUME CONJECTURE

The knowledge we have acquired up to here will soon culminate in the fa-
mous Volume Conjecture that was first raised by R. Kashaev in 1996. Amaz-
ingly, the world of quantum invariants with its appeal to algebra, topology
and knot theory is unified by this Conjecture with the world of hyperbolic
geometry. This chapter will take us back to the traces of Kashaev’s major in-
spiration sources, present the mathematical tools that were necessary to the
establishment of the Volume Conjecture, shed light onto its proved and yet
unproved parts and finally discusses its latest generalizations. We mainly rely
on the original article of R. Kashaev [Ka97] as well as on the proofs given in
[Mur10] by T. Ekholm and in [Yok03] by Y. Yokota. The milestones are the
following:

- introduction of the Volume Conjecture by R. Kashaev in 1996 (5.1),
- generalization of the Volume Conjecture using the Gromov norm, after

H. Murakami and J. Murakami in 2001, (5.2),
- general numerical method for proving the Volume Conjecture (5.3),
- proof of the Volume Conjecture for the figure-eight knot (5.4),
- proof of the Volume Conjecture for the knot 52 (5.5),
- comments on the Volume Conjecture (5.6).

5.1. The Volume Conjecture by R. Kashaev

Motivated by the quest for a quantum generalization of the hyperbolic vol-
ume invariant, R. Kashaev introduced a family of link invariants hLiN via
3-dimensional interpretation of the quantum dilogarithm and depending on
a natural number N . To understand why these means justify the end, we
need to refer to topological quantum field theories (TQFT) (that is a quan-
tum field theory that computes topological invariants), since the construc-
tion of hLiN can be regarded as an example of such a combinatorial TQFT.
A detailed clarification of these theories would exceed the aim of the present
work, therefore we just retain the following crucial ideas: On the one hand,
Kashaev knew that the partition function of the hyperbolic knot’s comple-
ment in an important case of TQFT (in quantum Chern-Simons theory with
a non-compact gauge group) leads to a topological invariant, whose classical
limit provides the hyperbolic volume of the knot. On the other hand, he was
aware of the fact, that the hyperbolic volume of a 3-manifold can be calcu-
lated using a smartly chosen triangulation of the latter into ideal tetrahedra.
The volume of these simplices can be expressed in terms of Lobachevsky’s
function, which is the imaginary part of Euler’s dilogarithm.
These arguments inspired Kashaev to define a corresponding topological link
invariant using quantum dilogarithm, expecting his invariant to reproduce
the knot’s hyperbolic volume in the classical limit (that is N ! 1). Unfor-
tunately, this problem is not straightforward to solve. Indeed, the discovery
of an ever-working algorithm still lacks and in each case, the computation
of the limit reveals to be quite laborious. So it comes that the Conjecture
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has only been proved for some few hyperbolic knots and links up to date (cf.
5.6).
In his notorious paper [Ka97], Kashaev analyses the growth behaviour of his
link invariant for the prime knots 41, 52 and 61 and suggests that the absolute
value of the latter increases exponentially asN goes to infinity, the hyperbolic
volume of the knot complement being the growth rate. The formulation of
the Volume Conjecture phrases as follows.

VOLUME CONJECTURE 5.1 (Kashaev, 1996)
For any hyperbolic link L with corresponding invariant hLiN and hyperbolic
volume Vol.L/, the following asymptotic behaviour holds:

2� lim
N!1

log jhLiN j
N

D Vol.L/: (5.1)

In sections 5.4 and 5.5, we are going to show that (5.1) holds for the figure-
eight knot and the knot 52 by studying numerically the asymptotic behaviour
of the Kashaev invariant and by giving a rigorous proof as well. However,
before approaching this rather technical part, we focus on J. Murakami’s and
H. Murakami’s formulation of the Volume Conjecture.

5.2. The modified Volume Conjecture by H. Murakami and J. Murakami

For the sake of clarifying the link invariant h�iN introduced by Kashaev,
J. Murakami and H. Murakami showed in 2001 its coincidence with the
N -dimensional colored Jones polynomial JN .�/ evaluated at the N th root
of unity. In this same spirit ([MM01, conjecture 5.1]), they generalized
Kashaev’s Volume Conjecture, using the Gromov norm, which can be re-
garded as a natural generalization of the hyperbolic volume.

VOLUME CONJECTURE 5.2 (J. Murakami, H. Murakami, 2001)
For any knot K with colored Jones polynomial JN .K/ and Gromov norm kKk,
the following asymptotic behaviour holds:

2�

�3
lim
N!1

log jJN .K/j
N

D kKk; (5.2)

where �3 is the volume of the ideal regular tetrahedron in the 3-dimensional
hyperbolic space H3.

Remark. If 5.1 is true, then 5.2 holds for any hyperbolic knot (not for links
in general!) and connected sums of such knots, since Gromov’s simplicial
volume (or the Gromov norm) is additive under the connected sum

2�

�3
lim
N!1

log jJN .K1#K2/j
N

D
2�

�3
lim
N!1

log jJN .K1/JN .K2/j
N

D
2�

�3
lim
N!1

log jJN .K1/j C log jJN .K2/j
N

.5:2/
D kK1k C kK2k D kK1#K2k:
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Accordingly, it is sufficient to verify the Volume Conjecture for prime knots.

A remarkable consequence of the Volume Conjecture is

COROLLARY 5.3
If the Volume Conjecture 5.2 is true, then a knot K is trivial if and only if all of
its colored Jones polynomials J.K/N are trivial.

Proof. The arguments for the proof may be found in [MM01] p.102-103.

In the next section, we concentrate on a method which enables us to check
the Volume Conjecture numerically.

5.3. Numerical evidence

In order to get a flavour of the complexity of the calculations required to
study the asymptotic behaviour of the colored Jones polynomial or equiva-
lently of the Kashaev invariant, we start by exposing numerical evidence for
the Volume Conjecture. Afterwards, we turn to a rigorous analytical proof
for 2 knots.
Inspired by the works of Kashaev in [Ka97] and of Hikami in [Hik03], we give
here a general procedure for comparing the classical limit of the Kashaev in-
variant for hyperbolic knots to the hyperbolic volume of the corresponding
complement. We illustrate the technique with the figure-eight knot 41 and
the knot 52 in 5.4 and 5.5 respectively.

5.3.1. 1st Approach: trial function. Given a knot K, its Kashaev invari-
ant can be computed numerically for different values of N using PARI/GP.
Studying the quantity 2� log.jhKiN j/

N
is equivalent to examining the real part

R
�
2�

log.hKiN /
N

�
since for hKiN DW r exp .i�/ 2 C, we have

R

�
2�

log .hKiN /
N

�
D R

�
2�

log .r exp .i�//
N

�
D R

�
2�

log r C i�
N

�
D 2�

log r
N
D 2�

log .jhKiN j/
N

:

We plot R
�
2�

log.hKiN /
N

�
as a function of N (for examples, see Figure 39 and

Figure 41) and resort to the least-squares method to achieve a trial function
vK.N / that may be expressed as follows

vK.N / D R

�
2�

log .hKiN /
N

�
D c1.K/C c2.K/

2� logN
N

C
c3.K/

N
C
c4.K/

N 2
:

(5.3)
The motivation for choosing this trial function goes back to the asymptotic
expansion of Kashaev’s invariant for torus knots T .p; q/. More details may
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be read in [Hik03, section 3]. In the classical limit, we therefore have

lim
N!1

R

�
2�

log .hKiN /
N

�
D lim
N!1

vK.N / D c1.K/:

In other words, numerical results for c1.K/ should reproduce the value of
the K-associated hyperbolic volume. Clearly, this method corresponds to an
experimental verification of the Volume Conjecture rather than to a rigorous
proof, but it is quite satisfactory in itself as long as the number of crossings
does not exceed a certain treshold of computational costs. Nonetheless, we
browse another numerical approach, that supports the present one.

5.3.2. 2nd Approach: potential and saddle point. In order to study the
asymptotic behaviour of the Kashaev invariant, we need to know the maxi-
mum summand which dominates the limit. Unfortunately, this task can not
be accomplished in a direct way. We rather need to pass to an approximate
integral expression that we manage to evaluate in a best possible way. Thus,
the objective consists now in the determination of a potential VK.x/, x 2 Cp,
p being the number of summations appearing in hKiN , such that the invari-
ant can be represented as an integral of this potential, namely

hKiN �

“
: : :

Z pY
jD1

dxj exp
�

iN
2�
VK.x/

�
: (5.4)

In order to define such a potential, recall the following definitions

.q/n WD

nY
jD1

.1 � qj / and .q/�n WD

nY
jD1

.1 � q�j /;

where q D exp
�
2� i
N

�
. With respect to the asymptotic behaviour (very rough!)

lim
N!1

2� i
N

log.q/n D lim
N!1

2� i
N

nX
jD1

log
�
1 � qj

�
D lim
N!1

2� i
N

nX
jD1

log
�
1 � exp

�
2� ij
N

��

D

2� in
NZ
0

log .1 � exp .t// dt

D Li2.1/ � Li2 .qn/

D
�2

6
� Li2 .qn/
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the following approximate expressions for qab, .q/n and .q/�n result for large
N

qab � exp
�
�

iN
2�

log qa log qb
�

(5.5)

.q/n � exp
�

iN
2�

�
Li2 .qn/ �

�2

6

��
(5.6)

.q/�n � exp
�

iN
2�

�
� Li2 .q�n/C

�2

6

��
; (5.7)

with a, b, n 2 f0; 1; : : : ; N � 1g. The substitution of the factors .q/n and .q/�n
in the Kashaev invariant hKiN by formulas (5.5), (5.6) and (5.7) as well as
a careful replacement of the summation by a contour integral lead to the de-
sired expression (5.4).
For the evaluation of integral (5.4) in the large N -limit, we can apply a sta-
tionary phase approximation and obtain a saddle point x0 as a solution to

@

@xj
VK.x/

ˇ̌̌
xDx0

D 0; 8j D 1; : : : ; n:

With this solution, we obtain (cf. [Hik03])

hKiN � exp
�

iN
2�
VK.x0/

�
;

and therefore

lim
N!1

2�
log .hKiN /

N

.5:4/
D iVK.x0/:

Hopefully, the real part of this limit releases the value of the K-associated
hyperbolic volume. Such a limit is called optimistic limit and to give special
emphasis to this characterization, it is sometimes denoted by

o � lim
N!1

R

�
2�

log .hKiN /
N

�
WD R .iVK.x0// ;

but we often omit it in the sequel.

5.4. Proof of the Volume Conjecture for the figure-eight knot 41

The figure-eight knot is he first (with respect to an ascending crossing num-
ber order) non-trivial knot that admits a complete hyperbolic structure on its
complement and is subject to the Volume Conjecture. The fact that S3 n 41

is a complete hyperbolic 3-manifold is known and explicitly shown by M.
Jacquement in [Jac10].

5.4.1. Numerical evidence involving the Kashaev invariant.

Proof. 1st Approach: trial function. We start by reviewing the Kashaev
invariant for the figure-eight knot 41 from chapter 4, more precisely

h41iN D

N�1X
aD0

j.q/aj
2: (5.8)
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After computations of h41iN for different values ofN , we plot R
�
2�

log.h41iN /
N

�
and fit the numerical data, marked by a �, by the trial function (5.3), which
leads to the illustration below. Hikami: Volume Conjecture and Asymptotic Expansion of q-Series 333

100 1000 10000 100000.
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2.075

2.1

2.125

2.15

2.175

2.2

N

v(N)

FIGURE 2. Figure-eight knot.

• Numerical result (Figure 2):

Vol(S3 \ 41) = 2D(eπi/3) = 2.029883212819307...

c1 = 2.029883193056962 ± 7.77 × 10−9

c2 = 1.50002685 ± 2.42 × 10−6

c3 = −1.7269321 ± 0.000095

c4 = 3.575981 ± 0.0027.

• Potential and saddle point:

V41
(x) = Li2(x) − Li2(x

−1), (4–11)

x0 = exp(−π i/3).

Note that asymptotic behavior of this ω-series is

proved rigorously (see, e.g., [Murakami 00]).

52 Knot.

〈52〉N =
∑

0≤a≤b≤N−1

(
(ω)b

)2

(ω) ∗
a

ω−(b+1)a. (4–12)

• Numerical result (Figure 3):

Vol(S3 \ 52) = 2.828122088330783...

c1 = 2.8281219744 ± 1.5571 × 10−8

c2 = 1.5000269858 ± 2.01 × 10−6

c3 = −2.648116951 ± 0.0000732

c4 = 4.22788 ± 0.00169.
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FIGURE 3. Knot 52.

• Potential and saddle point:

V52
(x, y) = 2Li2(y) + Li2(x

−1) + log x log y − π2

2
,

(4–13)

(
x0

y0

)
=

(
0.122561 + 0.744862 i
0.337641 − 0.56228 i

)
.

61 Knot.

〈61〉N =

N−1∑

a,b,c=0
a+b≤c

∣∣(ω)c

∣∣2

(ω)a (ω) ∗
b

ω(c−a−b)(c−a+1). (4–14)

• Numerical result (Figure 4):

Vol(S3 \ 61) = 3.16396322888...

c1 = 3.1639628602 ± 3.04 × 10−8

c2 = 1.5000356 ± 1.88 × 10−6

c3 = −4.0343627 ± 0.0000611

c4 = 3.971777 ± 0.000970.

Figure 39: Numerical data for the figure-eight knot (extracted from [Hik03])

The numerical result (extracted from [Hik03]) shows

c1.41/ D 2:029883193056962˙ 7:77 � 10
�9:

2nd Approach: potential and saddle point. The next goal consists in
calculating the potential V41.x/, where x 2 C (p D 1, since there is one sum)
satisfying log x D 2� i

N
a. Using relations (5.6) and (5.7) in (5.8), we get

j.q/aj
2
D .q/a.q/

�
a

D exp
�

iN
2�

�
Li2 .x/ �

�2

6

��
exp

�
iN
2�

�
� Li2

�
x�1

�
C
�2

6

��
D exp

�
iN
2�

�
Li2 .x/ � Li2

�
x�1

���
;

thus the potential V41.x/ D Li2 .x/ � Li2
�
x�1

�
and the approximation

h41iN �

Z
dx exp

�
iN
2�
V41.x/

�
: (5.9)

By use of the integral expression of the dilogarithm, we end up with the
following saddle point equation

d

dx
V41.x/ D 0

() �
log .1 � x/

x
C

log
�
1 � x�1

�
x�1

.�x�2/ D 0

() x2 � x C 1 D 0

() x0 D e˙i�=3 :

As the maximal contribution to the integral (5.9) comes from the root x0 D
e�i�=3, the other solution is neglected.
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Comparison. Finally, we compare c1.41/ and R
�
iV41.x0/

�
to the hyper-

bolic volume Vol.S3 n 41/.

c1.41/ D 2:029883193056962˙ 7:77 � 10
�9;

R
�
iV41.x0/

�
D 2:02988 : : : ;

Vol.S3
n 41/ D 6ƒ

��
3

�
D 2:029883212819307 : : :

These results only differ by a value smaller than 10�5 which is in agreement
with the Volume Conjecture 5.1.

5.4.2. Analytical proof. The demonstration we expose here follows the
work of T. Ekholm (and rewieved in [Mur10]).

Proof. The proof is organized in 3 steps.
1st step. First, we aim to show the following asymptotic behaviour

lim
N!1

logJN .41/
N

D
2

�

5�
6Z
0

log.2 sin .x//dx where (5.10)

JN .41/ D
1

qN=2 � q�N=2

N�1X
kD0

ŒN C k�Š

ŒN � 1 � k�Š

�
q1=2 � q�1=2

�2kC1
; (5.11)

with q D exp
�
2� i
N

�
and Œk� WD qk=2�q�k=2

q1=2�q�1=2
.

Proof. (1st step.) The basic idea of the proof is to use the Sandwich theorem,
that is, to confine the limit (5.10) with the limit of another function, that can
be computed more easily. In order to find this function, we transform (5.11)
according to

JN .41/ D
1

qN=2 � q�N=2

N�1X
jD0

ŒN C j �Š

ŒN � 1 � j �Š

�
q1=2 � q�1=2

�2jC1

D
1

qN=2 � q�N=2

N�1X
jD0

NCjQ
mD1

�
qm=2 � q�m=2

�
N�j�1Q
mD1

�
qm=2 � q�m=2

�
D

N�1X
jD0

NCjY
mDN�j

�
qm=2 � q�m=2

� �
qN=2 � q�N=2

��1
D

N�1X
jD0

N�1Y
mDN�j

�
qm=2 � q�m=2

� NCjY
mDNC1

�
qm=2 � q�m=2

�
D

N�1X
jD0

jY
kD1

�
q.N�k/=2 � q�.N�k/=2

� jY
lD1

�
q.NCl/=2 � q�.NCl/=2

�
D

N�1X
jD0

jY
kD1

�
q.N�k/=2 � q�.N�k/=2

� �
q.NCk/=2 � q�.NCk/=2

�
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where we put k WD �mCN , l WD m�N and k; l � 0. Replacing q by exp
�
2� i
N

�
and using the relation 2i sin .x/ D .exp .ix/ � exp .�ix// for any x 2 R, we
get

JN .41/ D

N�1X
jD0

jY
kD1

�
2i sin

�
� �

k�

N

���
2i sin

�
� C

k�

N

��

D

N�1X
jD0

jY
kD1

�
2 sin

�
k�

N

��2
D

N�1X
jD0

jY
kD1

f .N I k/

where f .N I k/ WD
�
2 sin

�
k�
N

��2
. Next, we set g.N I j / WD

jQ
kD1

f .N I k/. From

the graph of the function f .N I k/ (see Figure 40), we deduce that g.N I j /
is decreasing for j 2 �0; N

6
Œ [ �5N

6
; N � 1Œ and increasing for j 2 �N

6
; 5N
6
Œ.

Since j does only take integer values, we actually refer to the integer part of
the fractions N

6
; 5N
6

. The table below summarizes theses observations.

0

2

3

4

1

k

f(N;k)

N
6
_ 5N

6
_N

2
_

Figure 40: Graph of f .N I k/

k, j 0 : : : N
6

: : : N
2

: : : 5N
6

: : : N

f .N I k/ 0 % 1 % 4 & 1 & 0
g.N I j / 1 & % % ? &

The star ? stands for g.N I 5N
6
/, that is, for the maximum value reached by

g.N; j /.

As a consequence to the positive terms in JN .41/ D
N�1P
jD0

g.N I j /, the follow-

ing inequality holds

g

�
N;
5N

6

�
� JN .41/ � Ng

�
N;
5N

6

�
(5.12)
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and since the logarithm function is strictly increasing, (5.12) becomes

log
�
g
�
N; 5N

6

��
N

�
log .JN .41//

N
�

logN
N
C

log
�
g
�
N; 5N

6

��
N

:

The function we were looking for can be defined as

h.N I j / WD
log .g .N; j //

N
:

Using the fact that limN!1
logN
N
D 0, the following comparison results

lim
N!1

h

�
N I

5N

6

�
� lim
N!1

log .JN .41//
N

� lim
N!1

h

�
N I

5N

6

�
:

By virtue of the Sandwich theorem, we conclude

lim
N!1

log .JN .41//
N

D lim
N!1

h

�
N I

5N

6

�
: (5.13)

Of course, we have not yet reached our goal, because the limit on the right
hand side of (5.13) still needs to be evaluated. Before doing so, let us trans-
form this limit according to

lim
N!1

h

�
N I

5N

6

�
D lim
N!1

log
�
g
�
N; 5N

6

��
N

D lim
N!1

1

N

5N=6X
kD1

log .f .N I k//

D 2 lim
N!1

1

N

5N=6X
kD1

log
�
2 sin

�
k�

N

��

D
2

�

5�
6Z
0

log.2 sin .x//dx:

This accomplishes the proof of the first step (the integral computation being
the objective of step 2).

2nd step. Using the Lobachevsky function ƒ, the evaluation of the limit
(5.10) gives

2

�

5�
6Z
0

log.2 sin .x//dx D
3

�
ƒ
��
3

�
: (5.14)

Proof. (2nd step.) The key for the demonstration lies in the definition and
properties of the Lobachevsky function. Recall that

ƒ.�/ WD �

�Z
0

log j2 sin .x/ jdx for � 2 R:
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As for x 2 Œ0; 5�
6
�, the sine is always positive, the integral becomes

2

�

5�
6Z
0

log.2 sin .x//dx D �
2

�
ƒ

�
5�

6

�
:

From the properties 2.34 of ƒ and (2.10) we conclude that

ƒ
�
5�
6

�
D �ƒ

�
�
6

�
;

ƒ
�
�
3

�
D

2
3
ƒ
�
�
6

� �
H) ƒ

�
5�

6

�
D �

3

2
ƒ
��
3

�
and therefore

2

�

5�
6Z
0

log.2 sin .x//dx D
3

�
ƒ
��
3

�
:

This finally results in

2� lim
N!1

logJN .K/
N

D 4

5�
6Z
0

log.2 sin .x//dx

D 6ƒ
��
3

�

3rd step. In the last step, we need to show that

k41k D
6

�3
ƒ
��
3

�
(5.15)

which finalizes the proof of (5.2).

Proof. (3rd step.) The proof for the third step is straightforward, once we are
aware of the following theorem.

THEOREM 5.4 ([Thu02])
The complement of the figure-eight knot can be obtained by gluing two ideal
hyperbolic regular tetrahedra.

Since an ideal hyperbolic regular tetrahedron is isometric to T
�
�
3
; �
3
; �
3

�
, the

complement of the figure-eight knot in S3 is isometric to the union of two
copies of T

�
�
3
; �
3
; �
3

�
. Consequently

Vol.S3 n 41/ D 2Vol
�
T
��
3
;
�

3
;
�

3

��
.2:14/
D 6ƒ

��
3

�
:

Using the fact that Vol.S3n41/ D �3k41k, we end up with equality (5.15).

To sum up, we combine the 3 steps in order to get

2�

�3
lim
N!1

logJN .41/
N

D
4

�3

5�
6Z
0

log.2 sin .x//dx D
6

�3
ƒ
��
3

�
D k41k:
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5.5. Proof of the Volume Conjecture for the knot 52

Characterized by its neatness, the proof of the Volume Conjecture for the
figure-eight knot is not quite representative for the difficulties we prophesied
at the beginning of this chapter. However, in the next proof we will see that,
although the number of crossings of the considered knot increases only by 1
compared to the figure-eight knot, the involved arguments will be completely
different and of more constructive nature.

5.5.1. Numerical evidence involving the Kashaev invariant.

Proof. 1st Approach: trial function. Recall the Kashaev invariant for the
knot 52

h52iN D
X

0�a�b�N�1

..q/b/
2

.q/�a
q�.bC1/a: (5.16)

After computations of h52iN for different values ofN , we plot R
�
2�

log.h52iN /
N

�
and fit the numerical data, marked by a �, by the trial function (5.3), which
leads to the illustration in Figure 41.Hikami: Volume Conjecture and Asymptotic Expansion of q-Series 333

100 1000 10000 100000.
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N

v(N)

FIGURE 2. Figure-eight knot.

• Numerical result (Figure 2):

Vol(S3 \ 41) = 2D(eπi/3) = 2.029883212819307...

c1 = 2.029883193056962 ± 7.77 × 10−9

c2 = 1.50002685 ± 2.42 × 10−6

c3 = −1.7269321 ± 0.000095

c4 = 3.575981 ± 0.0027.

• Potential and saddle point:

V41
(x) = Li2(x) − Li2(x

−1), (4–11)

x0 = exp(−π i/3).

Note that asymptotic behavior of this ω-series is

proved rigorously (see, e.g., [Murakami 00]).

52 Knot.

〈52〉N =
∑

0≤a≤b≤N−1

(
(ω)b

)2

(ω) ∗
a

ω−(b+1)a. (4–12)

• Numerical result (Figure 3):

Vol(S3 \ 52) = 2.828122088330783...

c1 = 2.8281219744 ± 1.5571 × 10−8

c2 = 1.5000269858 ± 2.01 × 10−6

c3 = −2.648116951 ± 0.0000732

c4 = 4.22788 ± 0.00169.

100 150 200 300 500 700 1000 15002000
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v(N)

FIGURE 3. Knot 52.

• Potential and saddle point:

V52
(x, y) = 2Li2(y) + Li2(x

−1) + log x log y − π2

2
,

(4–13)

(
x0

y0

)
=

(
0.122561 + 0.744862 i
0.337641 − 0.56228 i

)
.

61 Knot.

〈61〉N =

N−1∑

a,b,c=0
a+b≤c

∣∣(ω)c

∣∣2

(ω)a (ω) ∗
b

ω(c−a−b)(c−a+1). (4–14)

• Numerical result (Figure 4):

Vol(S3 \ 61) = 3.16396322888...

c1 = 3.1639628602 ± 3.04 × 10−8

c2 = 1.5000356 ± 1.88 × 10−6

c3 = −4.0343627 ± 0.0000611

c4 = 3.971777 ± 0.000970.

Figure 41: Numerical data for the knot 52 (extracted from [Hik03])

The numerical result (extracted from [Hik03]) shows

c1.52/ D 2:8281219744˙ 1:5571 � 10
�8:

2nd Approach: potential and saddle point. Next, we aim the computa-
tion of the potential V52.x/, where x D .x1; x2/ 2 C2 (p D 2, since there are
two sums in h52iN ) satisfying log x1 D 2� i

N
a and log x2 D 2� i

N
b respectively.

Using relations (5.5), (5.6) and (5.7) in (5.16), we get

..q/b/
2

.q/�a
q�.bC1/a

D

exp
�

iN
2�

�
2 Li2 .x2/ � �2

3

��
exp

�
iN
2�

�
� Li2

�
x�11

�
C

�2

6

�� exp
�

iN
2�

log x1 log x2

�
D exp

�
iN
2�

�
2 Li2 .x2/C Li2

�
x�11

�
C log x1 log x2 �

�2

2

��
;
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thus the potential V52.x1; x2/ D 2 Li2 .x2/CLi2
�
x1
�1
�
C log x1 log x2� �

2

2
and

the approximation

h52iN �

“
dx1dx2 exp

�
iN
2�
V52.x1; x2/

�
: (5.17)

Again by use of the integral expression of the dilogarithm, we end up with
the following saddle point equations and solutions (with the help of Mathe-
matica) (

@
@x1
V52.x/ D 0

@
@x2
V52.x/ D 0

()

(
log.1�x1�1/

x1
C

logx2
x1

D 0

�2
log.1�x2/

x2
C

logx1
x2

D 0

()

�
x1;0 D 0:122561C i 0:744862
x2;0 D 0:337641 � i 0:56228

or�
x1;0 D 0:122561 � i 0:744862
x2;0 D 0:337641C i 0:56228:

As the first solution is responsible for the maximum contribution to the inte-
gral (5.17), we only retain that root.

Comparison. Finally, we compare c1.52/ and R
�
iV52.x10; x20/

�
to the hy-

perbolic volume Vol.S3 n 52/.

c1.52/ D 2:8281219744˙ 1:5571 � 10
�8;

R
�
iV52.x10; x20/

�
D 2:82812 : : : ;

Vol.S3
n 52/ D 2:828122088330783 : : :

These results support the Volume Conjecture 5.1, since they only differ by a
value smaller than 10�5.

5.5.2. Analytical proof. The proof we expose for the knot 52 is similar to
the potential/saddle point method encountered in chapter 5.3. Indeed, we
introduce a potential function (but different from the one in 5.3), that was
first suggested by Y. Yokota and which allows us to express the Kashaev in-
variant as an integral solvable with the saddle point method. The crucial
difference to the numerical method lies in the connection that is established
between the saddle point equations and the hyperbolicity equations for a cer-
tain topological triangulation of the knot complement. Indeed they coincide.

Proof. In this proof, we are merely going to explain the essential ideas for
showing the Volume Conjecture (version 5.1) for the knot 52, for the details
of some constructions, we refer to the original articles [Yok03], [Yok] and
[Cho10]. Let us proceed in 4 steps.
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1st step. The first step is sacrificed to the construction of the potential
function V associated to the .1; 1/-tangle diagram of the knot 52 illustrated
by Figure 42 (Db). The potential function can be expressed as

V.x; y/ D Li2 .x/C Li2

�
1

x

�
C Li2 .y/ � Li2

�
1

y

�
� Li2

�y
x

�
�
�2

6
: (5.18)

Proof. (1st step.) We are going to explain the construction of this potential
function following [Cho10].

Da Db

J1

z2

1

z1

J2 Dc

T1 T5

T3

T2

T4

z1

z2

1

1 1

1

1

Figure 42: Construction of the potential V via triangulation

(a) We start from the reduced (there are no unnecessary crossings) dia-
gram Da of 52 and define edges of Da as arcs connecting two adjacent
crossing points. In our case, Da contains 10 edges.

(b) We transform Da into a .1; 1/-tangle diagram Db by cutting up one arc
of Da in order to obtain the two open edges J1 and J2. Yokota assumes
several conditions on the .1; 1/-tangle diagram (see [Yok]), but we re-
tain, that Db should again be reduced (this is achieved by performing
(R1) and (R2)) and that J1 respectively J2 should be chosen in a way
such that they are first involved in an over-/ undercrossing. Then J1
and J2 are extended so that their non-boundary endpoints become the
first undercrossing- and first overcrossing points respectively, these two
points not being the same. It was shown by Yokota in [Yok] that such a
situation is always possible for every hyperbolic knots.

(c) J1 and J2 are now removed from Db and the resulting open edges
are glued together with the exception of the trivalent points. 5 edges
remain on the new diagram Dc . Next, we associate complex variables
z1, z2 to contributing edges of Dc (that is, edges lying on the bounded
regions of Dc) and 1 to the non-contributing edges.
At each remaining crossing, we draw a small circle with the part in the



88 A. SCHMITGEN

unbounded region of the diagram and the part that was on J1 [ J2

omitted. The surviving 5 arcs correspond to ideal tetrahedra and an
ideal triangulation of S3 n 52 is obtained by gluing them together. For
more details on the gluing rules, again [Yok] may be consulted. The
most important rule to guarantee the complete hyperbolic structure are
the hyperbolicity equations, appearing in step 3. We denote by T .tj /
(Tj on the figure) these ideal tetrahedra, each of them parametrized by
a complex number tj , 1 � j � 5, with positive imaginary part.

(d) The assignment of a parameter tj , of a dilogarithm function as well as
of a signature �j to each tetrahedra T .tj / is ruled by

T(t )j
x y

t = x
y_

j  =+1 j,

Li (t ) -
6
_

j2

2

x y

T(t )j

t = x
y_

j  = -1 j,

- Li (t ) + j2
_
6
2

The reason for the dilogarithm association will be given in step 3 and
is quite similar to the argument exposed in the numerical proof 5.3.

(f) Eventually, the potential introduced by Y. Yokota is defined as

V.z1; z2/ WD

5X
jD1

�j

�
Li2

�
t
�j
j

�
�
�2

6

�
:

In our case, we find

j 1 2 3 4 5

tj z2 z1
1
z1

z1
z2

z2

�j �1 C1 C1 �1 C1

and thus, by setting x WD z1 and y WD z2, the resulting potential is given by

V.x; y/ D � Li2

�
1

y

�
C
�2

6
C Li2 .x/ �

�2

6
C Li2

�
1

x

�
�
�2

6

� Li2
�y
x

�
C
�2

6
C Li2 .y/ �

�2

6

D Li2 .x/C Li2

�
1

x

�
C Li2 .y/ � Li2

�
1

y

�
� Li2

�y
x

�
�
�2

6
:

2nd step. In the next step, we can face the computation of the volume of
the 52 knot complement. It turns out that the following equality holds

Vol.S3 n 52/ D 2D .y0/C D
�
x0

y0

�
D 2:828122088330783 : : : ; (5.19)
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where D is the Bloch-Wigner function defined in (2.11) and .x0; y0/ is the
unique solution (geometric solution) to the hyperbolicity equations arising
from the ideal triangulation of step 1.

Proof. (2nd step.) Using the triangulation from step 1, the resulting hyper-
bolicity equations (standing for the consistency and the cusp conditions) that
need to be satisfied for having a complete hyperbolic structure on the 52 knot
complement, write�

1 � y
x

�
.1 � x/

1 � 1
x

D
1 � y

x

.1 � y/
�
1 � 1

y

� D 1: (5.20)

For their derivation, we refer to [Yok03] p.5-8. They can be reduced to�
y D .y � 1/3

x D y � 1:

With the help of Mathematica, the solutions to these equations are deter-
mined (we do not retain the real solution)�
x0 D �0:662359C i 0:56228
y0 D 0:337641C i 0:56228

or
�
x0 D �0:662359 � i 0:56228
y0 D 0:337641 � i 0:56228:

The last solution is excluded since the imaginary parts should be positive.
Consequently, with respect to this solution, the ideal triangulation T .t1/, : : : ,
T .t5/ where t1 D y, t2 D x, t3 D 1

x
, t4 D x

y
and t5 D y can be reformulated

as being composed of the ideal tetrahedra

T .y0/; T .x0/; T

�
1

x0

�
; T

�
x0

y0

�
; T .y0/;

with
x0 D �0:662359C i 0:56228; y0 D 0:337641C i 0:56228:

The corresponding hyperbolic volume, according to (2.13), is given by

Vol.S3 n 52/ D D.y0/C D.x0/C D
�
1

x0

�
C D

�
x0

y0

�
C D.y0/

D 2D.y0/C D
�
x0

y0

�
;

since D.z/ D �D
�
1
z

�
for any z 2 C [ f1g.

3rd step. So far, we handle the right hand side (5.1) for 52. In order to
enlighten the left hand side and its coherence with the volume formula, we
establish a relationship between the classical limit of the Kashaev invariant
and the potential V.x; y/ abiding by the scheme from section 5.3. Thus, we
show

2� lim
N!1

log jh52iN j
N

D I .V .x0; y0//; (5.21)

.x0; y0/ being a saddle point of V.x; y/ with maximal contribution.
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Proof. (3rd step.) Recall the approximations we deduced in section 5.3 for
qab, .q/n and .q/�n for large N

qab � exp
�
�

iN
2�

log qa log qb
�

.q/n � exp
�

iN
2�

�
Li2 .qn/ �

�2

6

��
.q/�n � exp

�
iN
2�

�
� Li2 .q�n/C

�2

6

��
:

Almost 1 equivalent to (5.16), the Kashaev invariant for the knot 52 can be
expressed as (see [Yok03])

h52iN D ˙
X

1�a�b�N�1

N 3q�bCa

.q/a�1.q/
�
a�1.q/b�1.q/

�
b�a

.q/�b
: (5.22)

Before substituting the previous approximations in (5.22), we shall transform
the latter formula using for n 2 f0; 1; : : : ; N � 1g the identities

N D .q/n�1.q/
�
N�n;

.q/��n D .q/�N�n:

These modifications lead to (after choosing the C convention)

h52iN D
X

1�a�b�N�1

.q/��a.q/
�
�b
.q/�

b�1
q�bCa

.q/�a�1.q/
�
b�a

:

The replacements (5.5), (5.6) and (5.7) then provide an approximation for
the Kashaev invariant

h52iN �
X

1�a�b�N�1

exp
�

iN
2�

�
� Li2 .qa/ � Li2

�
qb
�
� Li2

�
qq�b

�
C
�2

6

��
� exp

�
iN
2�

�
Li2 .qq�a/C Li2

�
qa�b

�
� log q log q�bCa

��
�

X
1�a�b�N�1

Q̨ .qa; qb; N / � exp
�
N

2� i
QV .qa; qb; N /

�
;

1In fact, this formula contains a bug: there are seemingly three terms missing! While working
on this proof, I tried to understand the correspondence between the Yokota potential and the
potential introduced in the framework of the numerical method. The conclusion is that the
Kashaev invariant (5.16), known to be true, is not equivalent to (5.22), a contradiction! We
communicated the problem to H. Murakami, J. Cho and J. Murakami and they quickly confirmed
the inconsistency. J. Cho and J. Murakami forwarded us a preprint on Optimistic limits of the
colored Jones invariants. A suggestion of H. Murakami states that the term for a D b D 0 and
twice the term a D 0,b D 1 are missing in the formula. A sketchy calculation of my own let me
think, that the proof presented here does nonetheless work, since these terms will pass in the
realm of the function Q̨ .
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where

Q̨ .qa; qb; N / WD exp
�
�

iN
2�

log q log q�bCa
�
;

QV .qa; qb; N / WD Li2 .qa/CLi2
�
qb
�
CLi2

�
qq�b

�
�
�2

6
�Li2 .qq�a/�Li2

�
qa�b

�
:

After setting x WD qb, y WD qa and by fading to the classical N -limit, the
resulting potential is given by

V.x; y/ D Li2 .y/C Li2 .x/C Li2

�
1

x

�
� Li2

�
1

y

�
� Li2

�y
x

�
�
�2

6
;

and Q̨ .qa; qb; N / ! ˛.N /, which is at most of order 1. Notice that the q-
factors from the dilogarithm terms Li2 .qq�a/ and Li2 .qq�a/ vanish for N !
1, since q ! 1. This potential is in agreement with the potential (5.18) from
step 1.
We now focus on the computation of the approximation of h52iN . As the
asymptotic behaviour is controlled by the maximum summand, we seek for
this term. Therefore, we pass from the summation to an integral

h52iN �

“
dxdy ˛.N / exp

�
N

2� i
V.x; y/

�
; (5.23)

for lack of clear arguments, we do not detail the integration contours. This
shapes up as useful, because the integral can be evaluated by means of the
saddle point method, that is, its value is largely dominated by a critical value
of V.x; y/, reached in some extremum point .x0; y0/ 2 C2

h52iN � ˛.N / exp
�
N

2� i
V.x0; y0/

�
:

As an immediate consequence of this approximation, the classical N -limit
becomes

2� lim
N!1

logh52iN
N

D 2� lim
N!1

log .˛.N //
N„ ƒ‚ …

D0

�i lim
N!1

V.x0; y0/

D �iV.x0; y0/:

Note that in the Volume Conjecture, we study the growth of the absolute
value of the Kashaev invariant. This is reflected in the previous calculation
by taking

2� lim
N!1

log jh52iN j
N

D 2� lim
N!1

R

�
logh52iN

N

�
D R .�iV.x0; y0//

D I .V .x0; y0// :
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Despite of the right form, the previous limit makes no sense until the ex-
tremum point .x0; y0/ is specified. Indeed .x0; y0/ is a complex solution to(

@V.x;y/
@x

D 0
@V.x;y/
@y

D 0

()

8<: log.1�x/
x
�

log.1�x�1/
x

C
log.1�yx�1/

x
D 0

�
log.1�y/

y
�

log.1�y�1/
y

C
log.1�yx�1/

y
D 0

()

8<: .1�x/.1�yx�1/
1�x�1

D 1
1�yx�1

.1�y/.1�y�1/
D 1:

These are nothing else than the hyperbolicity equations (5.20) and therefore
we retain the following numerical solution of maximum contribution to the
integral (5.23)

x0 D �0:662359C i 0:56228; y0 D 0:337641C i 0:56228:

4th step. Let us summarize the previous steps in order to draw the appro-
priate and intended conclusion, namely

Vol.S3 n 52/ D I .V .x0; y0// : (5.24)

Proof. (4th step.) The investigation of the right hand side of the Volume Con-
jecture consisted in the study of the knot diagram and its possible triangula-
tion, providing the potential V.x; y/ (5.18), giving rise to the hyperbolicity
equations (5.20) and resulting in the volume formula (5.19) for the 52 knot
complement. For the left hand side of the Volume Conjecture, by means
of approximations, we compassed the potential QV .qa; qb; N / and the saddle
point .x0; y0/ leading to the asymptotic value (5.21) of the Kashaev invariant.
The parallels of the two approaches become obvious through the relations

lim
N!1

QV .qa; qb; N /

ˇ̌̌̌
qa!y

qb!x

D V.x; y/;

x
@V.x; y/

@x
D 0() log .H1/ D 0;

y
@V.x; y/

@y
D 0() log .H2/ D 0;

where H1, H2 correspond to the first and second part of the hyperbolicity
equations (5.20). The last missing piece of the puzzle, that is the ultimate
connection between the two sides (5.24), is explored by using the Bloch-
Wigner function (2.11) in the expression of the classical N -limit of the po-
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tential V.x; y/. This results in

I .V .x; y// D I

�
Li2 .y/C Li2 .x/C Li2

�
1

x

�
� Li2

�
1

y

�
� Li2

�y
x

��
D D .y/C D .x/C D

�
1

x

�
� D

�
1

y

�
� D

�y
x

�
C log jxj

�
� arg .1 � x/C arg

�
1 �

1

x

�
� arg

�
1 �

y

x

��
C log jyj

�
� arg .1 � y/ � arg

�
1 �

1

y

�
C arg

�
1 �

y

x

��
:

At the saddle point, all but the Bloch-Wigner function terms vanish, since

log jx0j
�
� arg .1 � x0/C arg

�
1 �

1

x0

�
� arg

�
1 �

y0

x0

��
C log jy0j

�
� arg .1 � y0/ � arg

�
1 �

1

y0

�
C arg

�
1 �

y0

x0

��

D log jx0j

0BBBBB@arg

0BBBBB@
1 � 1

x0

.1 � x0/
�
1 � y0

x0

�
„ ƒ‚ …

D1

1CCCCCA
1CCCCCAC log jy0j

0BBBBB@arg

0BBBBB@
1 � y0

x0�
1 � 1

y0

�
.1 � y0/„ ƒ‚ …

D1

1CCCCCA
1CCCCCA

D 0

As a consequence, we get

I .V .x0; y0// D D .y0/C D .x0/C D
�
1

x0

�
� D

�
1

y0

�
� D

�
y0

x0

�
D 2D .y0/C D

�
x0

y0

�
.5:19/
D Vol.S3 n 52/

This accomplishes the proof of the Volume Conjecture for the knot 52.

5.6. Comments

The mysterious nature of the Volume Conjecture, which fascinates through
its aptitude for establishing a bridge between quantum invariants of knots
and hyperbolic geometry, has been highly clarified since its formulation by
Kashaev in 1996. An important step in favour of a better understanding was
the equivalence between the Kashaev invariant and the colored Jones poly-
nomial shown by Murakami, Murakami in 2001. The proofs and attempts for
proofs that have been worked out for the last years lead to a better compre-
hension of the Volume Conjecture and raised simultaneously new questions.
Two of them are commented below. Moreover, we give an up-to-date (ac-
cording to our information sources [vdV] and [Mur10]) list of knots and
links for which, the Conjecture has been proved so far.
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5.6.1. Generalization of the Volume Conjecture. The Volume Conjecture
treats the asymptotic behaviour of the absolute value of the Kashaev invari-
ant. A natural question we can ask is: What will happen if we drop this
condition and then study the asymptotic behaviour? W. Thurston mentioned
that the Chern-Simons invariant can be regarded as an imaginary part of
the volume. Again, we will not comment on Chern-Simons invariants in this
work, but it is interesting to know that if we involve it, we get a complexified
Volume Conjecture first pointed out in [MMOC02] in 2002.

VOLUME CONJECTURE 5.5 (Complexification of the Volume Conjecture, 2002)
For any hyperbolic knot K with corresponding colored Jones polynomial JN .K/
and hyperbolic volume Vol.K/, the following asymptotic behaviour holds:

2� lim
N!1

log .JN .K//
N

D Vol.K/C iCS.K/ mod �2iZ;

where CS.K/ is the Chern-Simons invariant defined for a 3-manifold S3 n K

with torus boundary.

Remark. This complexified version has so far been numerically verified for
knots up to 8 crossings as well as for the Whitehead link.

Another factor one can ponder on is the deformation parameter q. Indeed,
we considered the colored Jones polynomial evaluated at q, that is the N -
root of unity, since this coincides with the Kashaev invariant. The resulting
limit (if existing) corresponds to the complete hyperbolic structure of the hy-
perbolic knot complement. What happens now if the complete hyperbolic
structure is deformed to incomplete ones? Is there a way to modify the Vol-
ume Conjecture and its complexification in order to get a similar result? The
answer is given by studying the ”deformed” limit

2� lim
N!1

log .JN .KI Qq//
N

;

where JN .KI Qq/ is the colored Jones polynomial of K evaluated at Qq WD
q exp

�
u
N

�
, u 2 C. H. Murakami stated the following conjecture in [Mur07]

in 2007.

VOLUME CONJECTURE 5.6 (H. Murakami, 2007)
For any knot K, there exits an open set U � C such that if u 2 U , then the
following limit exists

lim
N!1

log
�
JN

�
KI exp

�
uC2�i
N

���
N

:

Moreover if we put

H.KIu/ WD .uC 2�i/ lim
N!1

log
�
JN

�
KI exp

�
uC2�i
N

���
N

;

v WD 2
dH.KIu/

du
� 2�i;
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then we have

Vol.KIu/ D I .H.KIu// � �R.u/ �
1

2
R.u/I .u/;

Vol.KIu/ being the volume of S3 nK with deformed hyperbolic structure.

Remark. The case for the figure-eight knot is verified in [Mur10], whereas
the case of torus knots is treated in [Mur07]. More proofs are not yet known.

5.6.2. Knots and links for which the Volume Conjecture is proved.
Through the previous proofs of the Volume Conjecture for particular knots,
we recognized how complex and diverse these demonstrations are. Each case
needs to be treated individually and requires a lot of geometrical and numer-
ical effort. For the following knots and links, the Volume Conjecture has been
shown to be true.

Knots:
- Figure-eight knot 41,
- the knot 52,
- torus knots,
- iterated torus knots,
- Whitehead doubles of torus knots of type T .2; 2p/.

Remark. The complement of a torus knot in the 3-sphere does not admit a
complete hyperbolic structure which implies that the hyperbolic volume as
well as the Gromov norm vanish. The asymptotic behaviour of the colored
Jones polynomial can also be shown to cancel out (see [KT00] or [Hik03]).

Links:
- Whitehead link and twisted Whitehead links,
- torus links of type T .2; 2p/,
- iterated torus links,
- Borromean rings,
- Whitehead chains,
- Borromean double of the figure-eight knot.

The theory established by Y. Yokota (cf. proof of the knot 52) seems to be
rather promising pertaining to the prospect of setting up a general algorithm
to verify the Volume Conjecture. It could have been applied in the proof
of the figure-eight knot too. However, as noticed in the proof, there are
still important arguments missing to justify some steps in the approximation
process, even though the latter is known to work numerically. What is more,
it remains nebulous how to define the theory on potentials in a way such that
it is invariant under the choice of expression for the knot invariant. These
are a few open problems on the Volume Conjecture that keep research on
this subject and related topics striving forward.
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