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THE FCC LATTICE AND THE CUSPED HYPERBOLIC 4-ORBIFOLD
OF MINIMAL VOLUME

THIERRY HILD and RUTH KELLERHALS

In memoriam H. S. M. Coxeter

Abstract

The 1-cusped hyperbolic coset space of H4 by the Coxeter group [4, 32,1] of volume π2/1440 is the unique
minimal volume orbifold among all non-compact complete hyperbolic 4-orbifolds. Our proof is geometric and
based on horoball geometry combined with Gauss’s characterization of the face centered cubic lattice packing
as the densest one in euclidean 3-space.

Introduction

Let Q be a non-compact complete hyperbolic 4-orbifold of finite volume. Then, Q is the quotient
of hyperbolic space H4 by a discrete group Γ < Iso(H4) with parabolic elements. In this article,
we show that the quotient space Q∗ of H4 by the hyperbolic Coxeter group Γ∗ = [4, 32,1] with
diagram

Σ∗ : ◦–——◦–——◦–——◦

◦
∣∣ 4

is the unique non-compact hyperbolic 4-orbifold of minimal volume. The orbifold Q∗ is isometric
to a hyperbolic Coxeter 4-simplex of volume equal to π2/1440 with precisely one vertex at
infinity. Its vertex neighborhood is a cone over the euclidean tetrahedron Δfcc, which is a
fundamental domain for the action of the symmetry group of the famous fcc lattice given by
the parabolic Coxeter group Γfcc < Γ∗ with diagram

Σfcc : ◦–——◦–——◦

◦
∣∣ 4

.

By a well-known result of Gauss, the fcc packing is the unique lattice packing of E3 with
maximal density π/

√
18. Indeed, our methods are based on results about crystallographic

groups and lattice packings in E3 as well as horoball geometry in hyperbolic space. In particular,
a conjugacy class of a subgroup of parabolic type in Γ gives rise to a canonical cusp in Q which
we control very well.

Our theorem generalizes the area minimality property of the triangle group (2, 3,∞). It is
known that the quotient of H2 by the group (2, 3,∞) with fundamental triangle of non-zero
angles π/2, π/3 is the unique 2-orbifold of minimal area equal to π/6 (cf. [2, § 10]). Meyerhoff
[12] showed that among the non-compact oriented hyperbolic 3-orbifolds, the oriented double
cover of the quotient of H3 by the Coxeter group [3, 3, 6] with diagram

◦–——◦–——◦—6–——◦
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is of minimal volume. The methods which we develop allow to conclude that the space
H3/[3, 3, 6] is the hyperbolic 3-orbifold of minimal volume and as such is unique. It is of
volume equal to 1

8 JI( 1
3π) � 0.04229, where JI denotes the Lobachevsky function (cf. § 2.2).

Acknowledgements. The authors would like to express their thanks to the referee for many
valuable remarks.

1. Preliminaries

1.1. Hyperbolic space and isometries

Let Hn denote the standard hyperbolic space realized in the upper half-space model
En

+ = { x = (x1, . . . , xn) | xn > 0 } equipped with the hyperbolic metric ds2 = 1/x2
n (dx2

1 +
· · · + dx2

n). Points at infinity are elements of the boundary ∂Hn = Ên−1 = En−1 ∪ {∞}. In
this model, a hyperbolic r-sphere Sp(r) centered at p = (p1, . . . , pn) is a euclidean (pn sinh r)-
sphere centered at (p1, . . . , pn−1, pn cosh r). In the limiting case when p tends to a point at
infinity, we obtain a horosphere based at a point at infinity of ∂Hn which is either a euclidean
sphere Sq(∞) internally tangent at q ∈ En−1 or a hyperplane S∞(ρ) = { x ∈ En

+ | xn = ρ },
for some ρ > 0, based at ∞. Consider a horosphere of the type S∞(ρ), for example. It bounds
a horoball B∞(ρ) in Hn of infinite volume. Moreover, it carries a euclidean metric in a natural
way given by

ds2
0 =

1
ρ2 (dx2

1 + · · · + dx2
n−1), (1)

where the subscript 0 refers to the flatness of the metric. Therefore, S∞(ρ) can be identified
with a copy of En−1. We obtain a unified picture by passing to the ball model realized in the
unit ball B ⊂ En equipped with the corresponding metric

ds2
B = 4

dx2
1 + · · · + dx2

n

(1 − |x|2)2 . (2)

Here, all horospheres are euclidean spheres internally tangent to boundary Sn−1 of points at
infinity.

The group Iso(Hn) of hyperbolic isometries consists of Möbius transformations leaving
invariant En

+. By Poincaré extension [2, § 3.3], it is isomorphic to the group of Möbius
transformations of Ên−1. According to the fixed point behavior, elements γ ∈ Iso(Hn) fall
into the three conjugacy classes of elliptic, parabolic and loxodromic elements. More precisely,
γ is elliptic if it possesses at least one fixed point in Hn, and γ is parabolic if it has precisely
one fixed point (called parabolic fixed point) which lies in ∂Hn. Suppose that the parabolic
element γ fixes ∞. Then, γ acts as a euclidean isometry on each horosphere S∞(ρ) for ρ > 0.

1.2. Some horoball geometry

In Hn, consider the horoball B∞(ρ) based at ∞ with euclidean distance ρ from the ground
space En−1 and a horoball Bx = Bx(ρ) based at x ∈ En−1 with euclidean diameter ρ. Let l be a
geodesic with endpoints x and y ∈ En−1 \ {x}. Put a = (x, ρ) and b = (y, ρ), and denote by d =
dist0(a, b) the euclidean distance on S∞(ρ) = ∂B∞(ρ) from a to b. By (1), d = dist0(x, y)/ρ.
Suppose without loss of generality that d � 1. Let p ∈ ∂Bx be the intersection point of l with
the horosphere Sx = ∂Bx. By generalizing a result of Adams [1, Lemma 4.3], we can identify
the euclidean distance dist0(a, p) on Sx as follows.

Lemma 1.

dist0(a, p) =
1
d

. (3)
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Proof. Let g be the semicircle centered at x and ending at y. Let γ ∈ Iso(Hn) be the half-
turn around g. Then, γ(l) is the geodesic line from y to ∞, and γBx is a horoball B∞(τ)
for some τ > 0. Since γ is an isometry, the hyperbolic distance from the horosphere boundary
S∞(τ) to g is given by

dist(S∞(τ), g) = log
τ

ρd
= log

ρd

ρ
= dist(Sx, g),

that is, τ = ρ d2. Moreover, the points a and p are sent to A = (x, τ) and P = (y, τ),
respectively. By (1) and the properties of γ, we deduce that

dist0(a, p) = dist0(A, P ) =
1
τ

dist0(x, y) =
ρ

ρ d2 dist0(a, b) =
1
d

.

Lemma 2. Let Bx(ρ) be a horoball of diameter ρ > 0 in Hn. Then, the interior of its upper
hemisphere is an open ball of radius 1 with respect to the euclidean metric on the boundary
Sx(ρ).

Proof. Write B = Bx(ρ) and a = (x, ρ). Let l be a geodesic starting at x and passing
through a point p of the equator set of B. Denote the endpoint of l by y. Then, dist0(x, y) = ρ.
Let g be the semicircle centered at x and starting from y. Then, the half-turn γ ∈ Iso(Hn)
around g sends l to the geodesic from y to ∞ and the horoball B to the horoball B∞(ρ).
Moreover, b := (y, ρ) = γ(p). We have to show that dist0(a, p) = 1 on Sx(ρ). By the properties
of the isometry γ and by (1), dist0(a, p) = dist0(a, b) = dist0(x, y)/ρ = ρ/ρ = 1 which finishes
the proof.

1.3. Groups of parabolic type and associated horoballs

Consider a subgroup Γ < Iso(Hn). The group Γ is said to be elementary if it has a finite orbit
in Hn. More specifically, an elementary discrete subgroup Γ < Iso(Hn) is of elliptic or parabolic
type if it has a finite orbit in Hn or fixes precisely one point in ∂Hn and has no other finite
orbit in Hn. These notions are conjugacy invariant characterizations. Let Γ < Iso(Hn) be a
finite covolume discrete group containing a parabolic element fixing ∞. Then, the stabilizer Γ∞
is of parabolic type acting cocompactly as discrete subgroup of Iso(En−1) on each horosphere
Sρ(∞) for ρ > 0. Hence, Γ∞ is a crystallographic group, that is, the subgroup of translations
in Γ∞ has finite index and corresponds to a lattice Λ of En−1.

In Λ, consider a vector of shortest length μ > 0, and define the horoball

B∞(μ) := { x ∈ Hn | xn > μ } . (4)

It turns out that B∞(μ) is precisely invariant with respect to Γ projecting to an embedded
cusp neighborhood in the quotient space Hn/Γ. The set B∞(μ) is called a canonical horoball
associated to ∞, and C = B∞(μ)/Γ∞ is called a canonical cusp in Hn/Γ. Canonical horoballs
and cusps associated to inequivalent parabolic fixed points are disjoint [7, Proposition 3.3].

Expand the canonical cusp C by diminishing μ in such a way that it touches itself. Such a
cusp is called the maximal cusp associated to Γ∞. It is of the form B∞(ρ)/Γ∞ for some ρ � μ.

Finally, consider a horoball γB∞(ρ) = Bq(ρ), γ ∈ Γ \ Γ∞, based at a point q ∈ En−1 which
is of diameter ρ. It touches B∞(ρ) and is called a fullsized horoball associated to ∞.

1.4. Crystallographic groups and the fcc lattice

Consider crystallographic groups in Iso(E3) with their associated lattices Λ and point groups.
Fedorov and Schoenflies classified and described all 219 crystallographic groups acting on E3

(cf. [4]). Associated to these are 14 different (Bravais) lattices grouped together into seven
crystal classes by taking into account their axial symmetries. The lattices of highest symmetry
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Figure 1. The fcc lattice

are the three cubic lattices, the simple cubic or sc lattice, the body centered cubic or bcc lattice
and the face centered cubic or fcc lattice. More concretely, the fcc lattice (cf. Figure 1) is the
translation group Λfcc generated by the basis of vectors

1√
2

(1, 1, 0),
1√
2

(1, 0, 1),
1√
2

(0, 1, 1) (5)

in E3. Notice that the four points consisting of 0 and the three in (5) define a regular
tetrahedron in E3. The symmetry group Γfcc of the fcc lattice has a point group of maximal
order which, in fact, is the group of symmetries of a regular octahedron. A fundamental domain
of Γfcc is given by the simplex Δfcc with vertices

a = (0, 0, 0), b =
1√
2
(1, 0, 0), c =

1
2
√

2
(1, 1, 0), d =

1
2
√

2
(1, 1, 1). (6)

Moreover, the fcc lattice underlies the single quasi-regular honeycomb in E3 with Schläfli
symbol

{
3, 3

4

}
consisting of regular tetrahedra and octahedra (cf. [6, § 4.7]). All the

faces are triangles, each one belonging to one regular tetrahedron {3, 3} and one regular
octahedron {3, 4}.

1.5. Geometric Coxeter groups

Let Xn = Sn, En or Hn, and consider a discrete subgroup Γ < Iso(Xn). Simplest examples
are the groups generated by reflections R in hyperplanes H of Xn called (geometric) Coxeter
groups. More specifically, an elliptic, parabolic or hyperbolic Coxeter group ΓC is a discrete
group generated by finitely many reflections R in hyperplanes H of Sn, En or Hn subject to
relations

R2 = 1; (RR′)p = 1 if ∠(H, H ′) = π/p for p ∈ N, p > 1.

A convex fundamental polytope of ΓC is called a Coxeter polytope and will be denoted by PC.
Its dihedral angles are of the form π/p for integers p � 2. The Coxeter diagram Σ of ΓC or of
PC is a labeled graph, nodes i, k of which correspond to generators Ri, Rk of ΓC or hyperplanes
Hi, Hk of PC. Suppose that (RiRk)p = 1. If p = 2, the nodes i, k are not connected. For p = 3
and for p � 4, they are connected by a single edge and by an edge marked p, respectively. Notice
that hyperbolic Coxeter diagrams of finite covolume are connected graphs. The most basic
examples are Coxeter groups with linear diagrams of rank n and n + 1. Such Coxeter groups
generate the symmetry group of regular n-polytopes and honeycombs in Xn. Of particular
interest will be the elliptic Coxeter group A4 = [3, 3, 3] given by diagram ◦–——◦–——◦–——◦ of
rank 4 acting on S3, the parabolic Coxeter group Γfcc = [4, 31,1] of rank 4 given by diagram

Σfcc : ◦–——◦–——◦

◦
∣∣ 4

(7)



FCC LATTICE AND MINIMAL VOLUME 4-ORBIFOLD 681

acting on E3 and the hyperbolic Coxeter group Γ∗ = [4, 32,1] of rank 5 acting on H4 given by
the diagram

Σ∗ : ◦–——◦–——◦–——◦

◦
∣∣ 4

. (8)

The group A4 is associated to the honeycomb {3, 3, 3} of S3 by regular tetrahedra {3, 3} of
dihedral angle 2π/3 (cf. [14, pp. 214–215]). A fundamental domain of Γfcc is the Coxeter
simplex Δfcc with vertices (6) and with diagram (7). Observe that Γ∗ contains A4 and Γfcc as
elliptic and parabolic subgroups, respectively. Moreover, Γ∗ has a simplex fundamental domain
with one vertex at infinity. Its covolume equals π2/1440 � 0.00685 and is the (only) smallest
covolume of hyperbolic Coxeter groups with simplex fundamental domain (cf. [8]).

1.6. Sphere packings and the simplicial density bound

Let B be a packing of Xn with r-balls B (for balls in Sn, we assume that r < π/4). Associate
to each ball B of B its Dirichlet–Voronǒı cell or DV-cell D consisting of all points closer to
B than to any other ball of B. Consider the local density of B in D given by ld(B, D) =
voln(B)/voln(D) < 1. It can be estimated from above by the simplicial density function dn(r).
For its definition, consider n + 1 r-balls B mutually touching one another. Their centers give
rise to a regular n-simplex Sreg of edge length 2r and of dihedral angle 2α, say. The simplicial
density function is given by

dn(r) = (n + 1)
voln(B ∩ Sreg)

voln(Sreg)
.

In the euclidean case, the simplicial density function dn(r) does not depend on r, and we write
dn = dn(r). By results of Coxeter, Rogers and Böröczky (cf. [3], for example), the local density
can be estimated as follows:

ldn(B, D) � dn(r) ∀ B ∈ B .

In particular, d3 � 0.77964. In the special case of lattice packings of E3, a well-known result
of Gauss says that the maximal (global) density δ3 for lattice packings equals

δ3 = π/3
√

2 � 0.74048, (9)

and it is uniquely attained by the fcc lattice packing (cf. [5]). Consider basis (5) generating
the fcc lattice and the packing Bfcc of E3 by balls B of radius 1

2 centered at the different
lattice points. The DV-cell of B is a rhombic dodecahedron with characteristic simplex Δfcc,
the center stabilizer of which is the Coxeter group Π♦ of order 48 with diagram

Σ♦ : ◦–——◦—4–——◦ .

The lattice packing density vol3(B)/vol3(D) equals δ3. As a consequence, let BΛ be an arbitrary
lattice packing of E3 by balls B of radius 1

2 . Denote by dΛ the packing density of BΛ. Then,
for the DV-cell D of B, we obtain

vol3(D) =
vol3(B)

dΛ
� vol3(B)

δ3
=

π/6
π/3

√
2

=
1√
2

. (10)

Another important optimality property of the fcc lattice packing Bfcc is the fact that for each
ball there are three further balls in Bfcc such that the four balls mutually touch one another.
The four centers form a regular tetrahedron of edge length 1 (cf. [3, § 4]).

In the hyperbolic case, we also allow arrangements B∞ by horoballs B∞ of infinite radius.
Consider a horoball B∞ and a point p ∈ Hn. Then, dist(p, B∞) is defined to be the length
of the unique perpendicular from p to the horosphere S∞ bounding B∞, where dist(p, B∞) is
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taken negative for p ∈ B∞. The DV-cell D∞ of B∞ is defined to be the convex body

D∞ = { p ∈ Hn | dist(p, B∞) � dist(p, B′
∞) ∀B′

∞ ∈ B∞ } .

Since both B∞ and D∞ are of infinite volume, the notion of local density has to be modified (cf.
[3, § 6] or [10, § 2.2]). As for the simplicial density function, consider n + 1 horoballs B∞ that
are mutually tangent. The convex hull of their base points at infinity forms an ideal regular
simplex S∞

reg ⊂ Hn with dihedral angle given by 2αn
∞ = arccos(1/n − 1). Define

dn(∞) = (n + 1)
voln(B∞ ∩ S∞

reg)
voln(S∞

reg)
.

The following relation exists between dn(∞) and the volume μn of an ideal regular hyperbolic
n-simplex (cf. [10, Theorem 3.2]):

dn(∞) =
n + 1
n − 1

·
√

n

2n−1 ·
n−1∏
k=2

(
k − 1
k + 1

)n−k/2

· 1
μn

.

By combining this result with [9, (14.57)], we derive the value

d4(∞) � 0.73046. (11)

By a result of Böröczky [3, § 6], the local horoball density ldn(B∞, D∞) of any element B∞ ∈
B∞ with respect to its DV-cell D∞ is bounded from above by dn(∞).

2. Hyperbolic orbifolds

2.1. Basic notions

Denote by Q a complete hyperbolic n-orbifold, that is, Q = Hn/Γ with Γ < Iso(Hn) a
discrete group of hyperbolic isometries (cf. [13, § 13]). In the sequel, we tacitly suppose a
hyperbolic orbifold to be complete and of finite volume.

Denote by π : Hn → Q = Hn/Γ the natural projection. Let q ∈ Q and choose a point
p ∈ π−1(q). The stabilizer Γp of p in Γ is a finite group. If p′ ∈ π−1(q) is another point lying
above q, then the stabilizer Γp′ is Γ-conjugate and therefore isomorphic to Γp. In the sequel,
we often do not distinguish between these groups and introduce the notion of isotropy group
or stabilizer Γq of q.

The singular locus S ⊂ Q consists of all points q ∈ Q with Γq �= 1. The set S is closed with
empty interior. Let Q be non-compact. Then, the group Γ contains parabolic elements giving
rise to subgroups of parabolic type and canonical cusps in Q (cf. § 1.3). Let C denote the finite
set of (disjoint) canonical cusps C in Q. Then, voln(Q) � voln(C) =

∑
C∈C voln(C). As in the

case of oriented hyperbolic n-orbifolds with empty singular set (cf. [11, § 3]), one verifies the
following improvement.

Lemma 3. Let Q be a hyperbolic n-orbifold. Then,

voln(Q) � voln(C)
dn(∞)

. (12)

Next, consider a single element C ∈ C. For simplicity, suppose that Γ has non-trivial stabilizer
Γ∞. It acts as crystallographic group on En−1 with translational lattice Λ of rank n − 1 and of
finite index iΛ = [Γ∞ : Λ]. Denote by μ > 0 the shortest translational length in Λ and consider
a Dirichlet fundamental domain P ⊂ En−1 for Λ. Then, P contains a ball B0 = B(μ/2) which
is part of the lattice packing BΛ = { γB0 | γ ∈ Λ } of En−1. In fact, P is the DV-cell of B0.
Denote by dΛ the corresponding lattice density.
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Lemma 4. Let C = B∞(μ)/Γ∞ ⊂ Q be a canonical cusp. Then

voln(C) =
voln−1(P )

(n − 1) · μn−1 · iΛ
=

voln−2(Sn−2)
2n−1 · (n − 1)2 · iΛ · dΛ

. (13)

Proof. By Section 1.6, we have

voln−1(P ) =
voln−1(B0)

dΛ
=

voln−2(Sn−2) · μn−1

2n−1 · (n − 1) · dΛ
.

For the action of the Poincaré extension of Λ on B∞(μ), a fundamental domain F is of the
form

F = { x = (x1, . . . , xn) ∈ Hn | (x1, . . . , xn−1) ∈ P ; xn > μ }
and of volume

voln(F ) =
∫
F

dx1 · · · dxn

xn
n

= voln−1(P ) ·
∫∞

μ

dxn

xn
n

=
voln−1(P )

(n − 1) · μn−1 .

Therefore,

voln(F ) =
voln−2(Sn−2)

2n−1 · (n − 1)2 · dΛ
.

For the canonical cusp C = B∞(μ)/Γ∞, we deduce

voln(C) =
voln(F )

iΛ
=

voln−1(P )
(n − 1) · μn−1 · iΛ

=
voln−2(Sn−2)

2n−1 · (n − 1)2 · iΛ · dΛ
.

2.2. Examples

An important class of hyperbolic orbifolds arises as quotients of Hn by hyperbolic Coxeter
groups. Let us consider the non-compact case only. It is not difficult to see (cf. [2, § 10], for
example) that the planar Coxeter group Γ2

∗ = (2, 3,∞) given by diagram

Σ2
∗ : ◦–——◦—∞–——◦

is of minimal covolume equal to π/6. More precisely, the coset space H2/Γ2
∗ is the unique

minimal volume orbifold among all non-compact hyperbolic 2-orbifolds.
The Coxeter group Γ3

∗ given by diagram

Σ3
∗ : ◦–——◦–——◦—6–——◦

is not cocompact but of finite covolume equal to 1
8 JI( 1

3π) � 0.04229. Here

JI(α) = −
∫α

0
log |2 sin t| dt =

1
2

∞∑
r=1

sin(2rα)
r2

denotes the Lobachevsky function (cf. [9, for example]). Meyerhoff [12] showed that the oriented
double cover of the coset space H3/Γ3

∗ is a minimal volume orbifold among all non-compact
oriented hyperbolic 3-orbifolds.

Finally, consider the hyperbolic Coxeter group Γ∗ := Γ4
∗ given by diagram (8). It is of

covolume v∗ = π2/1440 � 0.00685 (cf. Section 1.5). We shall prove that the coset space Q∗ :=
H4/Γ∗ is the unique minimal volume orbifold among all non-compact hyperbolic 4-orbifolds.

2.3. Small-volume hyperbolic 4-orbifolds

Let Q = H4/Γ, Γ < Iso(H4), be a non-compact hyperbolic 4-orbifold of volume

vol4(Q) � 0.012 . (14)

For short we say that Q is of small volume.
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Lemma 5. Let Q be a non-compact hyperbolic 4-orbifold of small volume. Then, Q has
only one cusp.

Proof. It suffices to show that Q has only one canonical cusp. Write Q = H4/Γ with
Γ < Iso(H4) and denote by C its set of k � 1 canonical cusps. By Lemma 3, (11) and (14)

0.012 � vol4(Q) � vol4(C)
d4(∞)

> 1.36 · vol4(C). (15)

Consider an arbitrary element C ∈ C arising as quotient of a canonical horoball in H4 by
some subgroup Γq < Γ of parabolic type with translational lattice Λ (cf. Section 1.3). By (13),
and since iΛ � 48 (cf. [4, p. 72]) and dΛ � δ3 = π/

√
18, we deduce that

vol4(C) =
vol2(S2)

8 · 9 · iΛ · dΛ
> 0.00491. (16)

By combining (15) and (16), 0.012 � vol4(Q) > 1.36 · k · 0.00491 > k · 0.00667 which implies
that k = 1.

Let Q = H4/Γ be a non-compact orbifold of small volume. By Lemma 5, Q has only one
cusp. We normalize this situation and assume that Γ∞ �= 1. Denote by Λ its translational
subgroup and suppose that its minimal translational length equals 1. Let P ⊂ E3 be a Dirichlet
fundamental domain for the action of Λ. Finally, let B = B∞(ρ), ρ � 1, be the maximal
horoball associated to ∞. Hence, C = B∞(ρ)/Γ∞ ⊂ Q. We investigate image horoballs of B
under the action of Γ. A fullsized horoball is a ball of diameter ρ based at a point of E3.

Lemma 6. Let Q be a non-compact hyperbolic 4-orbifold of small volume. Then, every
non-fullsized horoball is tangent to a larger horoball.

Proof (compare also [1, Lemma 4.8]). Let Bx be a non-fullsized image of B based at x ∈ E3

and not tangent to any larger horoball. Hence, the upper hemisphere of Bx contains no tangency
point with any other image horosphere of ∂B. By Lemma 2, this upper hemisphere is an open
ball of radius 1 with respect to the euclidean metric on ∂Bx. Sending Bx to B by an isometry
of Γ, we obtain an open ball of radius 1 on ∂B, containing no tangency point of B with any
of its fullsized images. Consider a fundamental domain P ⊂ E3 for the action of Λ. By the
maximality of B, at least one point of P is the base point of a fullsized horoball. We conclude
that — modulo the action of Λ — P contains at least two disjoint euclidean balls of radius
ρ/2. In other words, we find two disjoint open balls of radius ρ/2 in E3 denoted by K1 and K2
which project to two disjoint open balls of radius ρ/2 in the quotient E3/Λ. Now, consider the
lattice packing

BΛ = { γK1, γK2 | γ ∈ Λ }

of E3 satisfying the density bound

2 vol3(K1)
vol3(P )

=
π ρ3

3 vol3(P )
� d3 .

By Section 1.6, we deduce that vol3(P ) �
√

2 ρ3. By (11)–(13), and since iΛ � 48, we obtain
the following lower volume bound for Q:

vol4(Q) � vol4(C)
d4(∞)

=
vol3(P )

3 · ρ3 · iΛ · d4(∞)
> 0.013,

which, by (14), contradicts the small volume assumption.
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Lemma 7. Let Q be a non-compact hyperbolic 4-orbifold of small volume. Then, the
translational lattice Λ permutes all fullsized horoballs.

Proof (compare also [1, Lemma 4.7]). By the proof of Lemma 6, the quotient E3/Λ cannot
contain two disjoint open balls of radius ρ/2 and so there is only one Λ-orbit of fullsized
horoballs.

Lemma 8. Let Q be a non-compact hyperbolic 4-orbifold of small volume. Then, there are
largest non-fullsized horoballs and they are tangent to fullsized horoballs.

Proof. By Lemma 6, it suffices to exclude the possibility of an infinite chain of tangent
horoballs γB, γ ∈ Γ \ Γ∞, getting larger and larger but not fullsized. The existence of such a
chain would imply an infinite number of tangent horoballs of euclidean diameter in [δ − ε, δ] for
some δ < ρ and ε > 0 and not being tangent to another larger horoball. Consider a fundamental
domain P ⊂ E3 for the action of Λ. The prism P × [0, δ] has finite euclidean volume and cannot
contain an infinite number of tangent horoballs all having a euclidean diameter in [δ − ε, δ]. By
Lemma 6 and the fact that P yields a lattice tiling of E3, we deduce that all these horoballs
must be of the same euclidean diameter. This implies the absence of tangency points on their
upper hemispheres. A similar argument as in the proof of Lemma 6 yields now a contradiction
to the small volume assumption.

3. The cusped hyperbolic 4-orbifold of minimal volume

3.1. Let Q0 = H4/Γ0, Γ0 < Iso(H4), be a non-compact hyperbolic 4-orbifold of minimal
volume (cf. [14, Part II, Chapter 7, § 3], for example). Then, vol4(Q0) � v∗ = π2/1440 �
0.00685.

Proposition 1. Let Q0 = H4/Γ0 be a hyperbolic 4-orbifold of minimal volume. Then, a
maximal subgroup of parabolic type in Γ0 is isomorphic to the crystallographic group Γfcc, the
symmetry group of the fcc lattice.

Proof. Modulo conjugation, assume that the stabilizer Γ∞ < Γ0 is non-trivial and that its
lattice Λ of index iΛ = [Γ∞ : Λ] has minimal translational length 1. Let P be a fundamental
parallelepiped of Λ. Then, by Lemmata 3, 4 and by (11),

0.00685 � vol4(Q0) � vol3(P )
3 · iΛ · d4(∞)

> 0.45 · vol3(P )
iΛ

. (17)

The crystallographic groups and the associated Bravais lattices in E3 are well known (cf. [4]).
In particular, for non-cubical lattices Λ, iΛ � 24 so that (17) together with (10) imply the
inequality

vol4(Q0) � 0.45 · 1/
√

2
24

> 0.01 > 0.00685.

As a consequence, the lattice Λ associated to Γ∞ is cubical with iΛ = 48. For the sc lattice Λsc
with minimal translational length 1, vol3(P ) = 1 which, by (17), has to be excluded. For the
bcc lattice Λbcc with minimal translational length 1, one has vol3(P ) = 4/

√
27 which yields

a contradiction to (17) as well. Therefore, Λ is equal to the fcc lattice Λfcc. By Lemma 7, its
0-orbit is identical to the Γ∞-orbit of 0. Hence, Γ∞ is isomorphic to Γfcc (cf. § 1.4; [4, p. 161]).

Lemma 9. Let Q0 be a non-compact hyperbolic 4-orbifold of minimal volume. Then, the
canonical horoball is maximal.
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Proof. By Lemma 5, Q0 = H4/Γ0 has only one cusp which we assume to be maximal.
Denote it by M . Modulo conjugation, suppose that the stabilizer Γ∞ < Γ0 is non-trivial. By
Proposition 1, Γ∞ is isomorphic to the crystallographic group Γfcc the translational lattice
Λ of which is of index 48. Suppose that the minimal translational length of Λ equals 1. The
point group of Γ∞ can be identified with Π♦. A fundamental domain of Λ∞ is a rhombic
dodecahedron. It is the DV-cell of a ball of radius 1

2 giving rise—by the action of the center
stabilizer Π♦—to the 12 symmetry axes passing through the ball center and the centers (or
kissing points) of the rhombic facets.

Now, let B = B∞(ρ) denote the maximal horoball based at ∞ with ρ � 1 covering M . By
(4), we have to show that ρ = 1. Suppose that ρ �= 1. Then, fullsized horoballs are pairwise
disjoint. We shall derive the inequality ρ � 1/

√
2 which yields the volume bound vol4(Q0) �

vol4(M)/d4(∞) > 0.019 > v∗ (cf. proof of Lemma 4) in contradiction to the minimal volume
assumption.

Without loss of generality, we may suppose that one fullsized horoball, say B0, is based at
0. Let B1 be one of the 12 fullsized horoballs at minimal euclidean distance from B0. Its base
point x1 ∈ E3 satisfies d0(0, x1) = 1.

Next, there is an element γ ∈ Γ0 \ Γ∞ such that γB0 = B. Consider the fullsized horoball
γB =: B′. The image γB1 =: B′

1 is one of the 12 largest non-fullsized horoballs touching B′. It
belongs to the packing of H4 by disjoint horoballs induced by the action of Γ0 on B. In fact,
B′

1 is a ball of euclidean diameter ρ3, the base point γ(x1) of which is at euclidean distance ρ2

from the base point γ(∞) of B′. To see this, denote by τ the euclidean diameter of B′
1 and by

p the touching point of B′
1 with B′. By (1) and Lemma 1,

dist0((γ(∞), ρ), p) =
ρ

dist0(γ(∞), γ(x1))
=

ρ
√

ρ τ
=

√
ρ√
τ

. (18)

Since dist0((γ(∞), ρ), p) equals the minimal translation length 1/ρ of γΛγ−1, (18) implies that
τ = ρ3 and dist0(γ(∞), γ(x1)) = ρ2.

By Lemma 7, the horoball B′ is based at a lattice point λ(0) for some λ ∈ Λ. Consider the
inverse image λ−1(B′

1) of B′
1. We show that its base point y is collinear with 0 and the base

point x of a fullsized horoball at minimal translational distance 1 from B0 = λ−1(B′) implying
that 2ρ2 � 1 as desired. To this end, it is sufficient to show that y lies on one of the 12 symmetry
axes of the DV-cell of B0 as described above. Consider the stabilizer Π♦ of 0 given by diagram

Σ♦ : ◦–——◦—4–——◦

which is of order 48 and the fundamental domain of which is a cone based at 0 bounded by the
mirrors of the three generating reflections with dihedral angles π/2, π/3 and π/4. We look at
the possible positions of y in the cone. The only way to get length 12 for the Π♦-orbit of point
y is for y to lie on the intersection line l of the mirror planes forming the angle π/2. In this
case, the product of the corresponding reflections is a rotation of order 2 fixing l pointwise.
Finally, observe that l is identical to one of the 12 symmetry axes passing though 0 and the
centers of the rhombic facets.

Remark 1. Denote by σ the reflection with respect to the hemisphere H0 bisecting B and
B0. The above proof shows that

σ ∈ Γ0.

Indeed, consider the Möbius transformation γ ∈ Γ0 \ Γ∞ with γB0 = B. Then, we can write
γ = ψ ◦ σ, where ψ denotes a euclidean isometry fixing ∞ (cf. [2, § 3.5]). Consider the
composition φ := λ−1 ◦ γ = λ−1 ◦ ψ ◦ σ, where λ ∈ Λ denotes the translation above. Then,
φ fixes the touching point (0, 1) of B0 with B and permutes the 12 fullsized horoballs tangent
to B0. As H0 touches ∂H4 at their 12 base points, σ fixes these points. Therefore, λ−1 ◦ ψ
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permutes the 12 base points and fixes their centroid 0 as well as ∞. As a consequence,
λ−1 ◦ ψ permutes the 12 face centers and fixes the center of the rhombic dodecahedron so
that it belongs to its symmetry group Π♦. Hence, σ ∈ Γ0 as asserted.

3.2. Let Q0 = H4/Γ0, Γ0 < Iso(H4), be a non-compact hyperbolic 4-orbifold of minimal
volume. By Lemma 5, Q0 has precisely one canonical cusp C which we may assume to be
of the form C = B∞(1)/Γfcc. By Lemma 9, the canonical horoball B = B∞(1) is maximal.
Therefore, some of the images, Bq = γB, γ ∈ Γ0 \ Γfcc, are fullsized of diameter 1. Assume
without loss of generality that one of these fullsized horoballs is based at 0 ∈ ∂H4 and call it
B0. Then, the base points q ∈ ∂H4 belong to the Λfcc-orbit of 0. Orthogonal projection of the
fullsized horoballs onto the horosphere ∂B gives the fcc lattice packing of balls of radius 1

2 of
E3. A fundamental domain of the action of Γfcc on E3 is given by the Coxeter simplex Δfcc
with vertices a, b, c, d according to (6). Here, a is the center of a ball in the fcc lattice packing
and tangency point with the fullsized horoball B0. Obviously, the diameter ρ of Δfcc equals
dist0(a, b) = 1/

√
2. By Poincaré extension, a Dirichlet fundamental domain for the action of

Γfcc must be contained in the cylinder Z = Δfcc×]0,∞[ of width ρ.

Proposition 2. Let Q0 = H4/Γ0 be a non-compact hyperbolic 4-orbifold of minimal
volume. Then, the Ford domain of Γ0 is a hyperbolic 4-simplex with precisely one vertex
at infinity.

Proof. We will show that the effect of elements in Γ0 \ Γfcc induces a cut of Z by one
additional geodesic hemisphere H so that a fundamental domain for Γ0 is a simplex. The
simplex will have ∞ as single vertex at infinity and its local structure is a cone over the
tetrahedron Δfcc. To this end, consider the horoball packing B∞ = { γB | γ ∈ Γ0 } of H4 and
study the DV-cell D (of infinite volume) of element B. In fact, a Ford fundamental domain
for Γ0 is the intersection D ∩ Z. By construction of Δfcc (cf. also Section 1.4), B0 is the only
fullsized horoball in B∞ with non-empty intersection with Z. Consider the bisecting hyperplane
H0 of B and B0 passing therefore through (a, 1). We will show that H = H0. More concretely,
we will show that the bisecting hyperplanes associated to the largest horoballs in B∞ of diameter
less than 1 do not affect the codimension 1 face complex of D ∩ Z. By Lemma 8, there is a
largest horoball B′ ∈ B∞ of diameter δ < 1 which touches B0. Denote by x its base point. An
easy calculation shows that dist0(0, x) = |x| =

√
δ. Let H ′ be the bisecting hyperplane of B′

and B. Consider the intersection L = H0 ∩ H ′ in the 2-plane E determined by 0, x,∞. By sym-
metry, it is sufficient to show that point s = (u, v) := E ∩ L satisfies |u| � ρ = 1/

√
2. Suppose

without loss of generality that u > 0. First, we determine the radius r of the half-circle E ∩ H ′.
In fact, since the hyperbolic distances from H ′ to B′ and B, respectively, are identical, we
deduce that

log
1
r

= log
r

δ
, that is, r =

√
δ. (19)

Next, since s = (u, v) ∈ H0 ∩ H ′, we obtain u2 + v2 = 1, and by (19), (u −
√

δ)2 + v2 = δ.
That is,

u =
1

2
√

δ
. (20)

Consider the group Γ̃ conjugate to Γfcc acting on the horosphere ∂B0 with lattice Λ̃ of shortest
translational length 1 isomorphic to Λfcc. By Lemma 2, the euclidean distance from the north
pole (a, 1) ∈ ∂B0 to the tangent point p = ∂B0 ∩ ∂B′ equals the second minimal translational
length

√
2 of Λ̃ (cf. Section 1.4). By Lemma 1, we conclude that

√
δ = 1/

√
2. By (20), u = 1/

√
2.

The situation is illustrated in Figure 2. Therefore, we have showed that the hyperplane H ′ has
empty intersection with the interior of Z ∩ D.
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Figure 2.

We know that a minimal volume non-compact hyperbolic 4-orbifold is the quotient of H4

by a discrete group Γ0 < Iso(H4) with simplex fundamental domain S ⊂ H4 having precisely
one vertex at infinity. The structure at infinity is a cone over the Coxeter tetrahedron Δfcc
which itself is a fundamental domain of the parabolic Coxeter group Γfcc = [4, 31,1] with the
following diagram (cf. (7)).

Σfcc : ◦–——◦–——◦

◦
∣∣ 4

The next result distinguishes one of the remaining ordinary vertices of S as being a center of
high regularity (cf. Section 1.5).

Proposition 3. Let Q0 = H4/Γ0 be a non-compact hyperbolic 4-orbifold of minimal
volume. Then, Γ0 contains the elliptic Coxeter group A4 = [3, 3, 3].

Proof. Consider the fundamental simplex S ⊂ H4 as above. Suppose that the vertex at
infinity is ∞ and denote by B∞ the associated canonical horoball. The vertex neighborhood
of ∞ in S is a chimney in B∞ over the Coxeter tetrahedron Δfcc ⊂ ∂B∞, the vertices of which
may be chosen to be a, b, c, d according to (6) (cf. also Figure 1). The tetrahedron Δfcc is a
fundamental domain of the symmetry group Γfcc < Γ0 associated to the fcc lattice packing
Bfcc of E3 with balls of radius 1/2. Observe that vertex d is equidistant from four mutually
tangent balls of Bfcc which, together with their centers, are permuted by means of the subgroup
A3 = [3, 3] of Γfcc (cf. (7)). After Poincaré extension, these balls become four mutually tangent
fullsized horoballs B0, . . . , B3 in H4. By Remark 1, Section 3.1, the reflection σ with respect
to the unit hemisphere H0 (cf. Figure 2) belongs to Γ0. The element σ transposes B0 and
B∞ =: B4 and fixes the horoballs B1, B2, B3 since H0 touches ∂H4 at their base points. The
passage to the ball model (B, ds2

B) (cf. (2)) turns the horoballs B0, . . . , B4 into five mutually
tangent horoballs. Modulo an isometry, we may assume that their radical point z (intersection
point of the five bisector hyperplanes) equals the origin 0 ∈ B of E4 and the five horoballs
are congruent in E4. Their euclidean centers form a regular simplex Sreg with center z = 0 in
E4, the symmetry group of which is generated by the reflections of A3 and σ. Therefore, the
Coxeter group A4 = [3, 3, 3] is a subgroup of Γ0.

3.3. We are now ready to prove our main result.

Theorem. The non-compact hyperbolic 4-orbifold of minimal volume is given by
Q∗ = H4/Γ∗, where Γ∗ is the Coxeter group

Σ∗ : ◦–——◦–——◦–——◦

◦
∣∣ 4

.

Q∗ is unique, 1-cusped and of volume v∗ = π2/1440.
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Proof. Let Q0 = H4/Γ0, Γ0 < Iso(H4), denote a non-compact hyperbolic 4-orbifold of
minimal volume. By Propositions 1, 2 and 3, a fundamental domain of Γ0 is a simplex
bounded by five hyperplanes with precisely one vertex at infinity. Moreover, Γ0 contains Coxeter
subgroups Γfcc and A4 given by diagrams

Σfcc : ◦–——◦–——◦

◦
∣∣ 4

and Σ4 : ◦–——◦–——◦–——◦ (21)

respectively, each being generated by reflections in four of the five bounding hyperplanes and
fixing two of the five vertex figures of S. However, in a 4-simplex, the passage to one vertex figure
corresponds to the omission of one node together with its connecting edges in the Vinberg graph
of order 5 and valence less than or equal to 4 (cf. [14, Part I, Chapter 6; Part II, Chapter 5,
§ 1.3]). Hence, the only hyperbolic 4-simplex bounded by hyperplanes giving rise to reflections
grouped together to satisfy (21) is the Coxeter simplex associated to the Coxeter group Γ∗
with diagram Σ∗.

Remark 2. It is well known that the Coxeter group Γ∗ is arithmetic. Consult [14, p. 226 ff]
concerning an arithmeticity criterion for hyperbolic Coxeter groups.
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