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This is a summary of a survey talk about Hilbert’s third problem on scissors

congruence and analogous questions in hyperbolic geometry. The interested

reader finds some selected publications for further information in the bibliog-

raphy.

1. Introduction and some history. In the list of 23 problems proposed by

David Hilbert during the Second International Congress of Mathematicians

held in Paris in 1900, the third problem plays a special role, and does so in

several respects.

In contrast to the other problems, the third one deals with elementary ge-

ometrical questions about the foundations of geometry. Actually, in 1899,

Hilbert had just finished writing the book Grundlagen der Geometrie and was

interested in how to teach geometry. In this context, Hilbert mentioned that—

contrary to the planar case—volume computations in three-dimensional Eu-

clidean geometry are always based on some limiting process and on methods

of exhaustion. He asked for a rigorous proof that one cannot construct a theory

of polyhedral volume without the continuity axiom. His precise formulation

goes as follows.

The equality of the volumes of two tetrahedra of equal bases and equal

altitudes. In two letters to Gerling, Gauss expresses his regret that certain theo-

rems of solid geometry depend upon themethod of exhaustion, that is, inmodern

phraseology, upon the axiom of continuity (or upon the axioms of Archimedes).

Gauss mentions in particular the theorem of Euclid, that triangular pyramids

of equal altitudes are to each other as their bases. Now, the analogous problem

in the plane has been solved. Gerling also succeeded in proving the equality of

volume of symmetrical polyhedra by dividing them into congruent parts. Never-

theless, it seems to me probable that a general proof of this kind for the theorem

of Euclid just mentioned is impossible, and it should be our task to give a rigor-

ous proof of its impossibility. This would be obtained, as soon as we succeeded

in “specifying two tetrahedra of equal bases and equal altitudes which can in no

way be split up into congruent tetrahedra, and which cannot be combined with

congruent tetrahedra to form two polyhedra which themselves could be split up

into congruent tetrahedra.”
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In the very same year, Max Dehn confirmed Hilbert’s conjecture by con-

structing two polyhedra of equal volume which are not equidecomposable. I

will come back to Dehn’s solution below.

For a long while, the problem was forgotten until some Swiss mathemati-

cians started to work on related questions. Among those were

– Jean-Pierre Sydler, a student of Heinz Hopf at the ETH Zürich, who ex-

tended the work of Dehn in a completely satisfactory way. For this, he obtained

the Gold Medal of the Danish Academy of Sciences in 1966;

– Hugo Hadwiger and his group at the University of Bern who contributed

by extending Hilbert’s problem to Euclidean spaces of arbitrary dimensions.

In 1974, during the conference on mathematical developments arising from

Hilbert problems at DeKalb, there was a talk held about the third problem.

Unfortunately, the speaker did not submit his manuscript for publication in

the proceedings (see [12]).

In recent years, the mathematicians B. Jessen, A. Thorup, J. Dupont of the

Danish school, C.-H. Sah, P. Cartier, J. Milnor, J.-L. Cathelineau, A. Goncharov,

and others showed active interest in this circle of questions.

2. Reformulation and results. Although Hilbert’s third problem deals with

solid geometry and polyhedral volume, it is basically an algebraic problem.

Let Xn = Sn, En or Hn be the standard space of constant curvature 1, 0, or −1.

The scissors congruence or polytope group �(Xn) of Xn is the abelian group

generated by the symbols [P] for each polytope P ⊂Xn subject to the relations

[P�Q]= [P]+[Q], where P�Q is the disjoint union of P,Q;

[g(P)]= [P], ∀g ∈ Iso
(
Xn).

The problem can now be stated as follows: Find a complete system of invariants

for the scissors congruence or groups. There is the following criterion.

Proposition 2.1 (Zylev). [P] = [Q] � P ∼ Q equidecomposable, that is,

∃P = P1�···�Pn,Q=Q1�···�Qn such thatgk(Pk)=Qk for someg1, . . . ,gn ∈
Iso(Xn).

For n = 2 and in all geometries, a classical result due to Farkas Bolyai and

P. Gerwien says that polygonal area separates points in �(X2).

Lemma 2.2. Let P , Q ⊂ X2 be two polygons. Then, [P] = [Q] if and only if
vol2(P)= vol2(Q).

3. Dehn’s solution for E3 and the theorem of Dehn-Sydler. We now present

a short outline of Dehn’s proof and note that he profited from a hint of Bricard.

Dehn discovered—beside polyhedral volume—another scissors congruence in-

variant, the so-called Dehn invariant.
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Let P ⊂ E3 be a Euclidean polyhedron with edges e1, . . . ,er of lengths l1, . . . , lr
and dihedral angles α1, . . . ,αr attached at e1, . . . ,er . The Dehn invariant is then

defined by

D(P)=
r∑

i=1

li⊗Zαi ∈R⊗ZR/πZ.

It is obvious that D(prism)= 0. Now, a necessary condition for two polyhedra

P,Q⊂ E3 to be equidecomposable is that

vol3(P)= vol3(Q), D(P)=D(Q). (∗)

Dehn’s solution consists of the construction of the following counter-example.

Let P := Sreg(2α) be a regular tetrahedron of edge length 1, that is, cos(2α)=
1/3 and α is irrational. On the other hand, choose a regular cube Q with

vol3(Q)= vol3(P). Then, P and Q cannot be scissors congruent since D(Q)= 0

while D(P)= 6⊗2α = 0 (see (∗)).

In 1965, after 20 years of hard work, Sydler proved that the conditions (∗)

are also sufficient.

Theorem 3.1 (Dehn-Sydler). Let P ,Q⊂ E3 be two polyhedra. Then, [P]= [Q]
if and only if vol3(P)= vol3(Q) and D(P)=D(Q).

In 1968, Jessen [9] found a much simpler proof of Sydler’s result. Moreover,

only a few years later, he discovered that the analogous problem for E4 can be

reduced to the case of E3 as follows.

Let P ⊂ E4 be a Euclidean polytope with polygonal faces p1, . . . ,pr of areas

f1, . . . ,fr and with dihedral angles α1, . . . ,αr attached at p1, . . . ,pr . Consider

the Dehn invariant defined, similarly as above, by

D(P)=
r∑

i=1

fi⊗Zαi ∈R⊗ZR/πZ.

Theorem 3.2 (Jessen). Let P , Q ⊂ E4 be two polytopes. Then, [P] = [Q] if
and only if vol4(P)= vol4(Q) and D(P)=D(Q).

The proof is based essentially on the reducibility to the 3-dimensional result

by using the properties that

(a) in E4: P ∼ [0,1]×Q for some polyhedron Q⊂ E3;

(b) D(P)=D(I×Q)=D(Q).

However, for arbitrary spaces Xn = Sn, En or Hn, n≥ 3, and Xn = E3, E4, the

generalized third problem of Hilbert asking for a complete system of invariants

for �(Xn) is unresolved.

4. Some developments concerning �(Hn). In the last few years, Hilbert’s

third problem experienced some revival. This is mainly due to the interplay

with the cohomology of Lie groups made discrete, number theory and polylog-

arithms, algebraic K—theory and Borel groups, and the motivic interpretation
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of the non-Euclidean Dehn complex. For example, it was shown that the theo-

rem of Dehn-Sydler is equivalent to the fact that

H2
(
SO(3),R3)= 0.

In this article, it is impossible to discuss these relations (see [3, 7]). However,

in the following, I would like to indicate how some geometrical ideas of Sydler

and Jessen can be adapted to describe �(H3).

Consider hyperbolic space Hn with boundary ∂Hn of points at infinity. For

this space, there are different polytope groups. While �(Hn) denotes the usual

polytope group, �(Hn) is built upon polytopes with vertices possibly at infin-

ity, and �(Hn)∞ is generated by hyperbolic simplices all of whose vertices are

at infinity (such simplices are termed ideal).

Moreover, in any n-space of constant curvature, one can decompose con-

vex polytopes and simplices into orthoschemes; these are certain orthogonal

simplices which generalize the notion of right-angled triangles in some way.

They possess exactly two among the n+1 vertices which might be at infinity

(in the extremal case, they are termed doubly asymptotic). Orthoschemes are

very basic and fundamental in the following sense.

Proposition 4.1 (Debrunner-Sah). (1) �(Hn) is generated by orthoschemes.
(2) �(H2m+1) is generated by doubly asymptotic orthoschemes.
(3) For n≥ 3 : �(Hn)��(Hn)��(Hn)∞.

Now, the notion of the Dehn invariant can be extended, to include the case of

asymptotic, hyperbolic polyhedra. For example, consider an ideal tetrahedron

S∞(z)⊂H3 =
(
P1(C)×R+,ds2 = |dz|2

(Imz)2

)

with vertices 0,1,∞,z in the upper half space model. S∞(z) has three pairs of

dihedral angles attached at opposite edges, namely

α1 := argz, α2 := arg
(

1− 1
z

)
, α3 := arg

1
1−z

=π−(α1+α2
)
.

It can be seen that the formula

D
(
S∞(z)

)= 2
3∑

i=1

log
(
2sinαi

)⊗Zαi

extends Dehn’s invariant of a hyperbolic tetrahedron if all vertices tend to

boundary points. Hence, the generalized third Hilbert problem for hyperbolic

space goes as follows.

Conjecture 4.2. P ∼Q in H3 � vol3(P)= vol3(Q), D(P)=D(Q).

Sydler’s original papers (cf. [14]) are difficult to read. The simplification of

Jessen still reflects the principal geometrical idea as expressed by the role
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of orthogonal simplices and the fundamental lemma. That is, consider an or-

thoscheme R(a,b;λ)⊂ E3 defined by the parameters

a= sin2 α1, b = sin2 α3 whence cos2 α2 = a·b,

as well as

λ := l1 ·tanα1 = l2 ·cotα2 = l3 ·tanα3.

Here, α1, α2, and α3 denote the non-right dihedral angles of R attached at

edges of lengths l1, l2, l3 (see Figure 4.1).
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Figure 4.1.

It follows that

vol3
(
R(a,b;λ)

)= λ3

6

(
v(ab)−v(a)−v(b)

)
, where v(x) := 1−x

x
.

For 0 <a,b,c < 1, put

X := R(a,b;λ)+R(ab,c;λ), Y := R(a,c;λ)+R(ac,b;λ).

An easy calculation shows that vol3(X)= vol3(Y) and D(X)=D(Y).

Theorem 4.3 (The fundamental lemma). X∼Y , that is,R(a,b;λ)+R(ab,c;λ)
∼ R(a,c;λ)+R(ac,b;λ).

Given this lemma the Dehn-Sydler theorem, according to Jessen, is roughly

proven as follows:

(1) Let � < �(E3) be generated by the prisms in E3, that is, � ⊂ ker(D),

and suppose �(E3)/� admits the structure of a real vector space. Moreover,

suppose

vol3 : � �→R is bijective.

Then, one shows that �= ker(D) which finally yields that

vol3×D : �
(
E3) �→R×(R⊗ZR/πZ) is injective.
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(2) Next, one observes that the class of orthoschemes are generators of

�(E3)/� and that the fundamental lemma provides several important algebraic

relations. A crucial implication of these are the following properties, stated and

proved in a very elegant algebraic setting by Jessen and Thorup.

Theorem 4.4 (Jessen-Thorup). Let F : (0,1)×(0,1) �→ V be a mapping to a

real vector space V satisfying

F(a,b)= F(b,a), F(a,b)+F(ab,c)= F(b,c)+F(a,bc).

Then, there is a mapping f : (0,1) �→ V such that F(a,b) = f(ab)−f(a)−
f(b).

Theorem 4.5 (Jessen-Thorup). Let G : (0,∞)×(0,∞) �→ V be such that

G(a,b)=G(b,a), G(a,b)+G(a+b,c)=G(b,c)+G(a,b+c),

G(ac,bc)= cG(a,b).

Then, there is a mapping g : (0,∞) �→ V such that G(a,b)= g(a+b)−g(a)−
g(b).

(3) To finish the proof, take a polyhedral basis {Qr} of �(E3)/� so that, for

each polyhedron P , we have

P ∼�

∑
r
mrQr for some mr ∈R.

In particular, we obtain R ∼�

∑
r
FrQr with Fr = Fr (a,b) satisfying the con-

dition of Jessen-Thorup in Theorem 4.4. Therefore, there is a function fr (x)
which is additive, annulates π and is such that

fr (P) :=
∑

l edge of P
l⊗fr (α)

represents Dehn’s invariant. Since R is a generator, one deduces that P ∼�∑
r fr (P)Qr . Finally, one gets A∼�

∑
r fr (A)Qr =

∑
r fr (B)Qr ∼� B.

Now turn to the hyperbolic analogue. Let R(a,b;µ) ⊂ H3 denote a hyper-

bolic orthoscheme with parameters a,b as above and consider the additional

parameter

µ = cos2 α2−sin2 α1 sin2 α3

cos2 α1 cos2 α3
=: tan2 θ, θ ∈

[
0,

π
2

]
.

One checks that

µ = tanhl1 ·tanα1 = tanhl2 ·cotα2 = tanhl3 ·tanα3,

and that

cos2 α2 = a©µ b := ab+µ2(1−a)(1−b).
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For 0 <a,b,c < 1, put

U := R(a,b;µ)+R
(
a©µ b,c;µ

)
, V := R(a,c;µ)+R

(
a©µ c,b;µ

)
.

Again, it follows that vol3(U)= vol3(V) and D(U)=D(V).

Question 4.6 (Analogue of the fundamental lemma for H3). U ∼ V , that is,

R(a,b;µ)+R(a©µ b,c;µ)∼ R(a,c;µ)+R(a©µ c,b;µ)?

In order to simplify the question, the following observation is useful. Com-

puting the volume of R (an expression in dilogarithm functions), one finds that

vol3
(
R(a,b;µ)

)= vol3
(
R∞(a)

)+vol3
(
R∞(b)

)−vol3

(
R∞
(
a©µ b

))
,

where R∞(a) denotes a simply asymptotic orthoscheme with dihedral angles

α1, θ, (π/2)−θ. Therefore, a way to study Hilbert’s third problem for hyper-

bolic 3-space, is to investigate the above question for �(H3) and to profit from

the isomorphisms in Proposition 4.1.

5. Algebraic K-theoretical aspects—a brief account. The group �(H3) ad-

mits further equivalent and very elegant interpretations. The following is a

very short tour around these ideas (due to Sah, Dupont, Thurston, and others).

Let �(C) be the abelian group generated by {z}, z ∈ C, such that

(1) {0} = {1} = 0;

(2) ∀a = b ∈ C\{0,1} : {a}−{b}+{a/b}−{1−a/1−b}+{b(1−a)/a(1−
b)} = 0.

This group can be isomorphically identified with the group �(C) generated

by ideal tetrahedra, that is, �(C) is the group of 4-tuples (p0,p1,p2,p3), pi ∈
P1(C), with

(1′) (g(p0),g(p1),g(p2),g(p3))= (p0,p1,p2,p3), ∀g ∈ PSL(2,C),

(2′) ∀p0, . . . ,p4 ∈ C disjoint:

4∑
i=1

(−1)i
(
p0, . . . , p̂i, . . . ,p4

)= 0.

The identification is then performed by using the map(
p0,p1,p2,p3

) � �→ {
z := r

(
p0,p1,p2,p3

)}
(r denotes cross-ratio).

Furthermore, one has

vol3
(
p0,p1,p2,p3

)= vol3

(
∞,0,1,r

(
p0,p1,p2,p3

))=D(z),

where

D(z) := log |z| arg(1−z)− ImLi2(z)

denotes the Bloch-Wigner dilogarithm (a modification of the classical diloga-
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rithm Li2(z)) which satisfies the 5-term relation of Spence-Abel

4∑
i=1

(−1)iD
(
r
(
p0, . . . , p̂i, . . . ,p4

))= 0.

Now, the following isomorphisms can be established.

�
(
H3)��

(
H3
)
∞ ��(C)/〈{z}+{z̄}〉 ��(C)−,

where the exponent − describes the eigenspace to the eigenvalue −1 with re-

spect to complex conjugation. Next, consider the following mappings:

ρ : �(C) �→Λ2
ZC

× = C×⊗ZC×/〈a⊗b+b⊗a〉, ρ({z}) := z∧(1−z),

D̃ : �(C) �→R, D̃({z}) :=D(z).

They are related to volume and Dehn’s invariant according to the following

picture:

(a) The composition �(H3) �→�(C)− D̃
�������������→R is the volume.

(b) The composition �(H3) �→ �(C)− ρ−
������������������������������������→ (Λ2

ZC
×)− � R⊗Z R/πZ is Dehn’s

invariant.

Finally, consider the Bloch group defined by B(C) := ker
(
�(C) ρ

�→ Λ2
ZC

×).
Again, let B(C)− denote the negative part of B(C) with respect to the involution

induced by the conjugation (actually, the Bloch group can be identified with

the group of polyhedra with vanishing Dehn invariant). In this setting, Hilbert’s

third problem for H3 can be reformulated very efficiently as follows:

Is the mapping D̃ : B(C)− �→R injective?
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