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IntrodutionThe basi objets of study in this thesis are even-dimensional polytopes and polytopal omplexesin spaes of onstant urvature. The onnetions between ombinatoris, angles and volume arein the enter of the investigations.More preisely, we will develop volume formulas for polytopes in the spherial spae S2m andhyperboli spae H 2m of even dimension whih only depend on the ombinatoris and the odd-dimensional angles of the polytope. These types of formulas are usually alled redution formulasbeause they redue the volume problem in spherial and hyperboli spae of even dimensionto the determination of odd-dimensional spherial volumes. The general redution formula fora 2m-dimensional polytope P in X2m = S2m with onstant urvature K = 1, E 2m with K = 0or H 2m with K = �1 an be written as2 �12m Km volX2m(P ) = XP2j2
2j (P )j=0;:::;m �2j(P 2j) �2m�2j�1(P 2j) (?)where 2m denotes the volume of the 2m-dimensional unit sphere, 
2j(P ) is the set of all 2j-dimensional ordinary faes of P , �2m�2j�1(P 2j) is the (2m� 2j � 1)-dimensional (normalized)angle in the apex P 2j and �2j(P 2j) are rational numbers whih only depend on the ombinatorisof the fae P 2j . If we �x a ombinatorial type, the main problem is the expliit determination ofthese rational numbers whih reet in a yet mysterious way the ombinatoris of the polytopeP . These oeÆients �2j(P 2j) an also be viewed as ombinatorial invariants whih map theset of all 2j-dimensional polytopes P2j into the rational numbers�2j : P2j �! QP 2j 7�! �2j(P 2j):In honour to Ludwig Shl�ai these invariants are alled Shl�ai invariants.We point out that little is known about volume funtions for odd-dimensional polytopes in thespherial and hyperboli spae. About 1935 Coxeter [C℄ introdued the funtionS(�; �; ) := 1Xr=1 (�X)rr2 ( os 2r�� os 2r� + os 2r � 1 )� �2 + �2 � 2where X = sin� sin �Dsin� sin +D with D =pos2 � os2  � os2 �:Coxeter ombined results of Shl�ai [Sh℄ for spherial and Lobatshewsky [L℄ for hyperboliorthoshemes and proved that the volume of an orthosheme R = R(�; �; ) in S3 or H 3 an bewritten as volX3(R) = 8>>><>>>: 14 S ��2 � �; �; �2 � � ; X3 = S3i4 S ��2 � �; �; �2 � � ; X3 = H 3 :The redution formula (?) arises in two di�erent ways. The �rst way was followed by Shl�ai[Sh℄. He used the so-alled Shl�ai Di�erential Formula to prove (?) by indution. Furthermore,



he identi�ed the numbers �2j(T 2j) for a simplex T 2j as the modi�ed tangent numbers. Thereforethe redution formula for simplies is often alled Shl�ai's Redution Formula. Moreover,Shl�ai notied that the numbers �2j(P 2j) an always be determined by reursion formulas.The seond way was followed by E. Peshl [Pe℄. He used the so-alled Poinar�e Formula [Po℄ toprove (?) for simplies by ombinatorial methods. Poinar�e's Formula an be written asW (P ) = � 2 Km �12m volX2m(P ) ; n = 2m even0 ; n = 2m+ 1 oddwhere W (P ) denotes the generalized (alternating) angle sum of the polytope P . This formulaan be viewed as an angle analog of Eulers Polyhedron Theorem and it gives a volume formulafor even-dimensional polytopes in spherial and hyperboli spae.A �rst aim of this thesis is the determination of the numbers �2j(P 2j) for the lass of simpleand simpliial polytopes. These polytopes have an easy ombinatorial struture and the dualityallows us to transfer results from one lass to the other. The method of the determination of thenumbers �2j(P 2j) an be desribed as follows. We deompose P 2j suitably into simplies. Thenwe use Shl�ai's Redution Formula and add all the volumes and the deomposition angles.In dimension two this is quite easy. We see that the sum of the deomposition angles are anglesof the deomposed polygon.
Of ourse, we also see that we an simplify our lives by hoosing a suitable deomposition. Fordimensions bigger or equal to three the onnetions between the deomposition angles and theangles of the polytope are no longer obvious.
Hene the general problem here is to understand how angles in the deomposition add to anglesin the polytope.We will solve this problem by developing a general ombinatorial alulus. This alulus allowsus to transfer linear relations between angles and ombinatorial values of polytopes to polytopalomplexes whih are deomposable into suh "briks". In more details, let � be an n-dimensionalpolytopal omplex in Xn and D = D(�) a polytopal deomposition of �. Furthermore, let0 = FD = XDi2
i(D)i=0;:::;n �(Di) �n�i�1(Di) + �(D) volXn(D)



be a linear relation for eah element D 2 D. Here �(Di) and �(D) denote arbitrary real numberswhih depend on the fae Di or D. Then this alulus allows us to ombine all these relationsto a relation for the omplex � of the form0 = F� = XPi2
i(�)i=0;:::;n �(P i) ��n�i�1(P i) + � volXn(�);where ��n�i�1(P i) denotes the omplex angle of � in the apex P i. The main problem is to seethat a sum of deomposition angles in D with the same apex gives a omplex angle of a ertaindimension. This dimension depends on the dimension of the fae of �, whih ontains the (open)apex in the relative interior. This gives us a redution formula and the determination of theoeÆients �2j(P 2j) is then a purely ombinatorial problem. We �nd out that�2j(P 2j) = 8>>>><>>>>: 2 jXk=0(�1)k a2k+1 a2k�1(P 2j) ; P 2j simpliial2 jXk=0(�1)k a2k+1 a2j�2k(P 2j) ; P 2j simple ;
where a2k+1 (k � 0) is a modi�ed tangent number and al(P 2j) the number of l-dimensional faesof P 2j . By using ombinatorial relations the faevetors of partiular (well-known) polytopeswee see that �2j(P 2j) = 8<: 2 (�1)j a2j+1 ; P 2j simplex(�1)j E2j ; P 2j ube or ross polytope ;where E2j is a Euler number. This method is only suessful here beause the ombinatorialstruture of P 2j is not too ompliated and applied to arbitrary polytopes it supplies a volumeformula whih depends also on even-dimensional angles.So for the desription of the Shl�ai invariants for arbitrary polytopes we must go another way.We take up the idea of Shl�ai that all invariants �2j(P 2j) an be determined by reursionformulas. A seond aim of this thesis is to work out this idea. These reursion formulas an beonstruted by mapping a spherial polytope to a hyperplane. We thus get a tesselation of thishyperplane whih has the same ombinatoris as the boundary of the polytope. Furthermore,this tesselation an be viewed as the boundary of a degenerated spherial polytope and all anglesof this polytope are of measure one half. Hene all angles disappear in the reursion formulaand we get a relations between the Shl�ai invariants of di�erent dimensions�2m(P ) = 1� 12 m�1Xj=0 XP 2j2
2j(P ) �2j(P 2j):Polytopes in spaes of onstant urvature have onnetions with disrete groups � of isometriesand with geometri orbifolds. In more details, we an onstrut (generalized) polytopes foreah disrete group. These polytopes are losures of fundamental domains and the simplestonstrution method is the Dirihlet onstrution. If these (generalized) polytopes have only�nitely many faes, they are alled fundamental polytopes and the important invariant of thegroup �, the ovolume ovol(�), an be omputed as the volume of these fundamental polytopes.



Furthermore, the faes (of a �xed dimension) of a fundamental polytope an be arranged inpairwise disjoint sets of �-equivalent faes
d(P ) = C1 [ C2 [ : : : [ Ck(d)for 0 � d � n� 1. The angles with apexes at the faes of one of these subsets Ci add up to arational number XP d2Ci �n�d�1(P d) = 1gdiwhere gdi is the number of elements in the (setwise) stabilizer subgroup of the fae P d fori = 1; : : : ; k(d). This ondition is usually alled the yle ondition. The stabilizer subgroupsan be viewed as disrete subgroups of O(d), so they are �nite. Of ourse, all elements in Ci are�-equivalent and all stabilizer subgroups of elements in Ci are onjugated to eah other.A third aim of this thesis is to onstrut volume formulas for fundamental polytopes whihdepend on orders of stabilizer subgroups instead of angles by using the yle ondition. Atwo-dimensional formula of this type was onstruted by Carl Ludwig Siegel [S℄2 K �12 volX2(P ) = �0Xi=1 � 1g0i � 12 l0i �+ 1� 12a0inf (P )where �0 denotes the number of equivalene lasses of ordinary verties, l0i the number of vertiesin an equivalene lass Ci and a0inf (P ) the number of verties at in�nity of P . Siegel used thisformula to determine a lower bound for the ovolumes of disrete subgroups � of hyperboliisometries. Furthermore, he showed that this minimum is realized by the Coxeter group [2; 3; 7℄ovol (�) � �42 = ovol � Æ Æ 7 Æ �:In the last part of this thesis we will try to show the utility of the onstruted formulas byexhibiting expliit examples. So we ompute the ovolume of Coxeter groups, lassi�ed by I. M.Kaplinskaja [Kapl℄, F. Esselmann [Es℄ and P. Tumarkin [T℄, and of the group PSL (2;Z[i1; i2℄)(in a quite natural way) by omputing the volume of a fundamental polytope. Here the groupPSL (2;Z[i1; i2℄) an be viewed as the 4-dimensional generalization of the well-known disretesubgroup PSL (2;Z) < Iso(H 2) and its ovolume is equal to �272 .
Also by omputing the volume of a fundamental polytope we establish the volumes of the ideal24-ell manifold, the Davis manifold [D℄ and the Ivan�si� manifolds [I℄.
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11 Three Metri SpaesIn this setion we will de�ne the Eulidean spae En , the spherial spae Sn and the hyperbolispae H n as metri spaes. Espeially in the ase of the hyperboli spae it is very helpful touse several models. To avoid onfusion we will use the following notations. We shall denote byH n \the" hyperboli spae without interpretation in one of the models, by IHn the hyperbolispae in the vetor-spae model, by IBn the hyperboli spae in the ball model, by IDn thehyperboli spae in the projetive model and by IUn the hyperboli spae in the upper half-spae model. Furthermore, we have bijetive (and by onstrution isometri) maps between thedi�erent models. � � �H n : IDn �! IHn  � IBn  � IUnFor the details of all notions in this setion see for instane [R℄, setions 1 - 5.From the viewpoint of di�erential geometry the three spaes En , Sn and H n are the only omplete,onneted and simply-onneted Riemannian manifolds with onstant setional urvature K =0; 1 or �1 (up to an isometry of Riemannian manifolds).For more details you may use [V2℄.1.1 The Eulidean Spae EnDenoting the oordinates in the spae IRn by x1; : : : ; xn, we de�ne the salar produt, the(indued) norm and the (indued) metri by the formulaehx; yin := x1y1 + : : :+ xnynjjxjjn := phx; xind(x; y) := jjx� yjjnfor all x; y 2 IRn. The metri spae (IRn; d), or simply En , is alled the Eulidean spae. Thenotions plane, hyperplane, et. in the spae En are de�ned in the well-known way.From the viewpoint of di�erential geometry the spae En an be viewed as a omplete, onnetedand simply-onneted Riemannian manifolds with onstant setional urvature K = 0.1.2 The Spherial Spae SnWe de�ne Xn1 := Sn(0; 1)= nx 2 IRn+1 : hx; xin+1 = 1oas the set of all points in IRn+1 with distane 1 from the origin. Now we an de�ne an intrinsimetri on Xn1 by dS : Xn1 �Xn1 �! IR(x; y) 7�! �(x; y);where �(x; y) is the Eulidean angle between x and y, de�ned in the well-known way byos dS(x; y) = hx; yin+1:



2The metri spae (Xn1 ; dS), or simply Sn, is alled the spherial spae.From the viewpoint of di�erential geometry the spae Sn an be viewed as a omplete, onnetedand simply-onneted Riemannian manifolds with onstant setional urvature K = 1.1.3 The Vetor Spae Model of H nThe Lorentz-Minkowski Spae Denote the oordinates in the spae IRn+1 by x0; x1; : : : ; xn.We introdue another bilinear form and a pseudonorm on IRn+1 by the formulaehx; yi1;n := �x0y0 + x1y1 + : : :+ xnynjjxjj1;n := qhx; xi1;n 2 Cfor all x; y 2 IRn+1. The (n+ 1)�dimensional vetor spae IRn+1 with the bilinear form h ; i1;nis alled the (n+ 1)-dimensional Lorentz-Minkowski spae, denoted by IR1;n. With referene tothis pseudonorm, the spae IR1;n deomposes into three parts:1. The light one is the setCn := nx 2 IR1;n : jjxjj1;n = 0o= nx 2 IRn+1 : x20 = x21 + : : : + x2noand all vetors x 2 Cn are alled light-like or paraboli.2. The exterior of the light one is the setECn := nx 2 IR1;n : jjxjj1;n 2 IR and jjxjj1;n > 0o= nx 2 IRn+1 : x20 < x21 + : : : + x2noand all vetors x 2 ACn are alled spae-like or ellipti.3. The interior of the light one is the setICn := nx 2 IR1;n : jjxjj1;n positive imaginary o= nx 2 IRn+1 : x20 > x21 + : : :+ x2noand all vetors x 2 ICn are alled time-like or hyperboli. A time-like vetor x 2 ICn isalled positive (resp. negative), if x0 > 0 (resp. x0 < 0).The onneted omponent of ICn onsisting of all positive (resp. negative) vetors isdenoted by ICn+ (resp. ICn�).A vetor subspae V of IR1;n is alled time-like if V has a time-like vetor, spae-like if everynonzero vetor in V is spae-like and light-like otherwise.If x and y are two positive time-like vektors in IR1;n then we havehx; yi1;n � jjxjj1;n| {z }pos. im. � jjyjj1;n| {z }pos. im.| {z }neg. realwith equality if and only if x and y are linearly dependent. Hene, there is an uniqu real number�(x; y), the spae-like Lorentzian angle between x and y, suh thathx; yi1;n = jjxjj1;n � jjyjj1;n � osh �(x; y).



3The Hyperboli Spae in the Vetor Spae Model IHn We de�neXn�1 := nx 2 IRn+1 : hx:xi1;n = �1oHn := nx 2 Xn�1 : x0 > 0o:Now we an understand the hyperboli spae in the vetor-spae model as the (metri) spae(Hn; dH), or simply IHn, with dH : Hn �Hn �! IR(x; y) 7�! �(x; y):Indeed, dH is a metri on the set Hn and for all x; y 2 Hn we have the identityosh dH(x; y) = �hx; yi1;n:From the viewpoint of di�erential geometry the spae IHn an be viewed as a omplete, onnetedand simply-onneted Riemannian manifolds with onstant setional urvature K = �1.1.4 Planes in Sn and IHnTo simplify the notations we writeh ; iXn = 8<: h ; in+1 ; Xn = Snh ; in ; Xn = Enh ; i1;n ; Xn = H n :Let Xn = Sn or IHn. A k-dimensional plane F in Xn is a non-empty intersetion of Xn witha (k + 1)-dimensional vetor subspae UF of IRn+1, alled the de�ning subspae of the planeF . An (n � 1)-dimensional plane in Xn is alled a hyperplane. Every hyperplane H in Xn isdetermined by an n-dimensional vetor subspae UH in IRn+1 and divides the whole spae Xninto two losed half-spaes, denoted by H+ and H�. In partiular, the hyperplane H and thelosed half-spaes H+ and H� are given byH = nx 2 IRn+1 : hx; eiXn = 0o \ Xn;H+ = nx 2 IRn+1 : hx; eiXn � 0o \ Xn;H� = nx 2 IRn+1 : hx; eiXn � 0o \ Xn;where e is a unit normal vetor of the de�ning subspae UH of H. For any set K � Xn we denoteby < K > the intersetion of all planes in Xn whih ontain the set K. Of ourse, < K > itselfis a plane.1.5 Other Models of H nThe Ball Model We denote by � the stereographi projetion from the point �e0, whihmaps the n-dimensional unit ball Bn := fx 2 IRn+1 : jjxjjn+1 < 1 and x0 = 0g (embedded inthe spae IRn+1), bijetively on the set Hn by:� : Bn �! Hn(0; x1; : : : ; xn) 7�! 11� jjxjj2n+1�1 + jjxjj2n+1; 2x1; : : : ; 2xn�:



4The inverse of � is the map: ��1 : Hn �! Bn(y0; y1; : : : ; yn) 7�! 11 + y0 (y1; : : : ; yn):We an de�ne the so-alled Poinar�e metri on Bn bydB(x; y) := dH(�(x); �(y))for all x; y 2 Bn. The metri spae (Bn; dB), or simply IBn, is alled the (onformal) ball modelof the hyperboli spae. The losure IBn of IBn is the natural ompati�ation of IBn and pointsin �IBn := IBn�IBn are alled points at in�nity. Of ourse, �IBn is homeomorphi to Sn�1(0; 1).Furthermore, for the metri dB we have the following result (see [R℄ Theorem 4.5.1.).Theorem 1.5.1 The metri dB is given byosh dB(x; y) = 1 + 2jjx� yjj2n(1� jjxjj2n)(1� jjyjj2n) :The Projetive Disk Model In this ase we denote the n-dimensional unit ball by Dn :=fx 2 IRn+1 : jjxjjn+1 < 1 and x0 = 0g (embedded in the spae IRn+1). The gnonomi projetion� maps the set Dn bijetively on the set Hn:� : Dn �! Hnx 7�! x+ e0j jjx+ e0jj1;nj :The inverse of � is the map: ��1 : Hn �! Dn(x0; x1; : : : ; xn) 7�! 1x0 (x1; : : : ; xn):The map � is a deomposition of a vertial translation of Dn by e0 and a radial projetion withenter 0. We an de�ne a metri on Dn bydD(x; y) := dH(�(x); �(y))for all x; y 2 Dn. The metri spae (Dn; dD), or simply IDn, is alled the projetive disk modelof the hyperboli spae. The losure of IDn is denoted by IDn and �IDn := IDn � IDn ishomeomorphi to Sn�1(0; 1).The Upper Half-Spae Model We denote by Un the n-dimensional upper half-spae Un :=fx 2 IRn : xn > 0g. Let � be the standard transformation from the upper half-spae Un to theunit ball Bn. This means that � = �� where � is the reetion of IR̂n in the hyperplane IRn�1and � is the reetion of IRn in the sphere S(en;p2):� : Un �! �Un(x1; x2; : : : ; xn) 7�! (�x1; x2; : : : ; xn)� : �Un �! Bnx 7�! e1 + 2jjx� e1jj2n (x� e1):



5As usual, we an de�ne a metri on Un bydU (x; y) := dB(�(x); �(y))for all x; y 2 Un. The metri spae (Un; dU ), or simply IUn, is alled the upper half-spaemodel of the hyperboli spae. The losure of IUn is denoted by IUn and �IUn := IUn � IUnis homeomorphi to IRn�1 [ f1g. Furthermore, for the metri dU we have the following result(see [R℄ Theorem 4.6.1.).Theorem 1.5.2 The metri dU is given byosh dU (x; y) = 1 + jjx� yjj2n2 x0 y0 :



62 The Groups of IsometriesIn this setion we will study the groups of isometries of the three spaes En , Sn and H n . Fur-thermore, we will desribe several representations of the group of isometries of the hyperbolispae in the di�erent models by so-alled M�obius transformations.2.1 The Group of Isometries of EnLet O(n) be the group of orthogonal transformations and Tn the group of translations in IRn.Then the group of isometries Iso(En) of the spae En is the semidiret produtIso(En) = Tn � O(n):2.2 The Group of Isometries of SnThe group O(n+ 1) of all orthogonal transformations of IRn+1 maps the sphere Xn1 bijetivelyon itself. Then the group of isometries Iso(Sn) of the spae Sn is the restrition of the ation ofO(n+ 1) on the sphere Iso(Sn) = O(n+ 1)jSn:2.3 The Group of Isometries of IHnLet O(1; n) be the group of all linear transformations in IRn+1 whih preserve the bilinear formh ; i1;n. Of ourse, this group maps the set Xn�1 bijetively on itself but the elements mayexhange the two onneted omponents. Let O(1; n)0 be the subgroup of O(1; n) (of index 2)whih maps Hn(� Xn�1) bijetively on itself. Then the group of isometries Iso(IHn) of the spaeIHn is Iso(IHn) = O(1; n)0jIHn :2.4 The Group of Isometries of IUnClearly, we an de�ne the groups of isometries in the several models of the hyperboli spae byonjugation with the isometri maps �, � or �, respetively. Another diret way to de�ne thegroups of isometries for the upper half-spae model and the ball model is the use of the so-alledM�obius transformations. Sine we only make use of the upper half-spae model in this thesis wewill explain it in this ase. For more details see [R℄.M�obius Transformations of ÎRn Let IRn be the Eulidean spae with the anonial bilinearform (and indued metri) and ÎRn = IRn [ f1g the one-point ompati�ation of IRn.A sphere P in ÎRn is de�ned as either a Eulidean sphereS(a; r) = fx 2 IRn : jjx� ajjn = rgor an extended hyperplanêP (a; t) = P (a; t) [ f1g= fx 2 IRn : hx; ain = tg [ f1g:



7A reetion � = �a;t in an extended hyperplane P̂ (a; t) is de�ned as�(x) = � 1 ; x =1x+ 2 (t� hx; ain) a ; otherwise :A reetion (or inversion) � = �a;r in a sphere S(a; r) is de�ned as�(x) = 8>><>>: 1 ; x = aa ; x =1a+ r2jjx� ajj2n (x� a) ; otherwise :De�nition 2.4.1 The omposition of �nitely many reetions in extended hyperplanes andspheres is alled a M�obius transformation.Reetions in hyperplanes as well as reetions in spheres are onformal maps, whih meansthat they preserve angles. So every M�obius transformation is a onformal map.M�obius transformations form a topologial group, whih is alled the general M�obius groupGM(n), and we denote the subgroup of orientation preserving elements in GM(n) by GM+(n).Of ourse, Iso(En) and Sim(En) are subgroups of GM(n) (eah element is a deomposition of�nitely many reetions in hyperplanes).Let u; v; x; y be points in ÎRn with u 6= v and x 6= y. The ross ratio [u; v; x; y℄ is de�ned as[u; v; x; y℄ = d(u; x) d(v; y)d(u; v) d(x; y)where d denotes the hordal metri on ÎRn. A map � : ÎRn ! ÎRn is a M�obius transformationif and only if it preserves ross ratios.If � is in GM(n) with �(1) =1, then it an be written as�(x) = b+ kAxwith b 2 IRn, k > 0 and A 2 O(n), whih means that � is a Eulidean similarity.Let � 2 GM(n) with �(1) 6= 1 and a = ��1(1). Then the omposition ��a;r of � with thereetion �a;r in the sphere S(a; r) satis�es the equality ��a;r(1) =1 and so we get�(x) = b+ kA�a;r(x)with b 2 IRn, k > 0 and A 2 O(n). Furthermore, � ats on S(a; rpk) as a Eulidean isometry:jj�(x) � �(y)jjn = k r2 jjx� yjjnjjx� ajjn jjy � ajjn= jjx� yjjnfor all x; y 2 S(a; rpk). This sphere is uniquely determined by this property and it is alled theisometri sphere of �. We get �(x) = b+A�a;rpk(x):Let � 2 GM(n) be a M�obius transformation. The map � is a omposition of �nitely manyreetions �(a; t) in extended hyperplanes P̂ (a; t) and reetions �b;r in spheres S(b; r). It is



8possible to extend � to an element ~� 2 GM(n + 1) in a anonial way and it is enough tode�ne the extension of the following two types of transformations: We embed ÎRn into ÎRn+1 byx 7! ~x = (x; 0) and de�ne ~� = ~�~a;t as the reetion of ÎRn+1 in the extended hyperplane P̂ (~a; t)and ~� = ~�~b;r as the reetion of ÎRn+1 in the sphere S(~b; r).De�nition 2.4.2 Let � 2 GM(n) be a M�obius transformation. Then the so-alled Poinar�eextension ~� 2 GM(n + 1) is de�ned as the omposition of the anonial extensions of thereetions in �.M�obius Transformations of IUnDe�nition 2.4.3 A M�obius transformation of the upper half-spae IUn is a M�obius transfor-mation of ÎRn, that leaves IUn invariant.Let GM(IUn) be the set of all M�obius transformations of the upper half-spae IUn. Of ourse,GM(IUn) is a subgroup of GM(n). Furthermore, GM(IUn) is isomorphi to GM(n � 1) (byPoinar�e extension) and every M�obius transformation of IUn is a omposition of reetions ofÎRn in spheres orthogonal to IRn�1.Let �IUn be the losed upper half-spae. We see that eah element in GM(IUn) leaves thelosed upper half-spae �IUn invariant and so has a �xed point in �IUn by Brouwer's Fixed PointTheorem. Now we will lassify the elements of GM(IUn) by their �xed points.De�nition 2.4.4 Let � be an element in GM(IUn). Then � is said to be1. ellipti if � �xes a point of IUn,2. paraboli if � �xes no point of IUn and �xes a unique point in ÎRn�1 or3. hyperboli if � �xes no point of IUn and �xes two points of ÎRn�1.Of ourse, these properties depend only on the onjugay lass of � in GM(IUn). Now we havethe following important results (see [R℄ Theorems 4.7.1 , 4.7.2 and 4.7.4).Theorem 2.4.1 Let � be an element in GM(IUn).1. � is ellipti if and only if � is onjugated in GM(IUn) to an orthogonal transformation ofEn .2. � is paraboli if and only if � is onjugated in GM(IUn) to the Poinar�e extension of a�xed point free isometry  of En�1 of the form  (x) = b+Ax with b 6= 0 and A 2 O(n�1).3. � is hyperboli if and only if � is onjugated in GM(IUn) to the Poinar�e extension of asimilarity  of En�1 of the form  (x) = kAx with k > 1 and A 2 O(n� 1).



9Elementary Groups Let G be a subgroup of GM(IUn). Then G is alled elementary if Ghas a �nite orbit in the losed upper half-spae �IUn. We divide the elementary subgroups ofGM(IUn) into three di�erent types.De�nition 2.4.5 Let G be an elementary subgroup of GM(IUn). Then G is said to be of1. ellipti type if G has a �nite orbit in IUn,2. paraboli type if G �xes a point in ÎRn�1 and has no other �nite orbit in �IUn or3. hyperboli type if G is neither of ellipti nor of paraboli type.Now we have the following important results (see [R℄, Theorems 5.5.2, 5.5.5 and 5.5.7).Theorem 2.4.2 Let G be an elementary disrete subgroup of GM(IUn). Then G is of1. ellipti type if and only if G is onjugated in GM(IUn) to a �nite subgroup of O(n).2. paraboli type if and only if G is onjugated in GM(IUn) to an in�nite disrete subgroupof Iso(En).3. hyperboli type if and only if G is onjugated in GM(IUn) to an in�nite disrete subgroupof Sim(En), that leaves the set f0;1g invariant.We have the following result (see [R℄, Paragraph 12.1, Lemma 2).Lemma 2.4.1 If G is a disrete subgroup of GM(IUn) all of whose elements are ellipti, thenG is elementary of ellipti type and so onjugated to a �nite subgroup of O(n).The Group of Isometries of IUn Now we an desribe the group of isometries of the (metri)upper half-spae IUn in terms of M�obius transformations of IUn. We have the following result(see [R℄, Theorem 4.6.2.).Theorem 2.4.3 Every element in GM(IUn) restrits to an isometry of the upper half-spaeIUn and every isometry of IUn extends to a unique M�obius transformation of IUn.So the groups Iso(IHn) and GM(IUn) are isomorphi and the two spaes (IHn; Iso(IHn)) and(IUn; GM(IUn)) an be viewed as isomorphi homogeneous spaes.2.5 Cli�ord Matries and M�obius TransformationsThere is another way to desribe hyperboli isometries in the upper half-spae model. We dothis by using Cli�ord matries, whih are strongly related to the M�obius transformations. Inthe following we reord results of L. Ahlfors [A℄ and P.L. Waterman [W℄.



10The Cli�ord Algebra Let Cn be the Cli�ord algebra whih is the real assoiative algebra,generated by n elements i1; i2; :::; in subjeted to the relationsikil = �iliki2k = �1;for all k 6= l. Furthermore, let i0 = 1. Every element a in Cn an be expressed uniquely in theform a = X aI Iwhere I = iv1 iv2 � � � ivk with 1 � v1 < v2 < ::: < vk � n and aI 2 IR. We de�ne the Eulideannorm jaj of a 2 Cn by jaj =qP a2I . As with omplex numbers we distinguish the real and thepurely imaginary parts a = aIR+ aC with aIR = a0. An element a in Cn is alled pure if aIR = 0.We de�ne S2n�1 = f a 2 Cn : jaj = 1 g;the unit sphere of Cn. Let C�n be the group of units in Cn (this is the set of invertible elements).There are three involutions of Cn:1. � : replaes eah I = iv1 iv2 :::ivk with ivk ivk�1 :::iv1 . This map determines an anti-automorphismof Cn: (a+ b)� = a� + b�(ab)� = b�a�:2. 0 : replaes eah ik with �ik for k > 0. This map determines an automorphism of Cn:(a+ b)0 = a0 + b0(ab)0 = a0b0 :3. � : �a = (a0)� = (a�)0 . This map determines an anti-automorphism of Cn:(a+ b) = �a+�b(ab) = �b �a:Cli�ord numbers of the form x = x0 + x1i1 + ::: + xnin are alled vetors. Clearly, they forman (n+ 1)-dimensional subspae of the 2n-dimensional real vetor spae Cn, whih we identifywith IRn+1. For vetors we have x� = x, �x = x0 and x�x = �xx = jxj2. So nonzero vetors x areinvertible with x�1 = �x=jxj2.Thus produts of nonzero vetors are also invertible and form a multipliative group, whih weall the Cli�ord group �n.Cli�ord Multipliation and Orthogonal Maps Now we have the following onnetionbetween orthogonal maps and multipliation with invertible Cli�ord numbers (see [W℄, Theorems2 and 3).



11Theorem 2.5.1 If a 2 Cn is invertible and axa0�1 2 IRn+1 for all x 2 IRn+1, then�a : IRn+1 �! IRn+1x 7�! axa0�1is orthogonal. Furthermore, if a is in IRn+1�f0g, then �a is the deomposition of the reetionR1 in the perpendiular through 0 to 1 and the reetion Ra in the perpendiular through 0 to a.Theorem 2.5.2 The map � : �n �! O(n+ 1)a 7�! �ais onto SO(n+ 1) with kernel IR� f0g.Cli�ord MatriesDe�nition 2.5.1 We de�ne byGL(2; Cn) = � T = � a b d � : a; b; ; d 2 Cn and T indues a bijetion fromIR̂n+2 �! IR̂n+2x 7�! (ax+ b)(x+ d)�1 �the general linear group of 2� 2 matries with entries in the Cli�ord algebra Cn. Furthermore,let T be an element in GL(2; Cn). Then the pseudo-determinant � of T is de�ned by�(T ) = ad� � b�:We an show (ompare [W℄, Lemma 10) that any T 2 GL(2; Cn) is a deomposition of a:translation � 1 �0 1 � x 7! x+ � � 2 IRn+1inversion � 0 1�1 0 � x 7! �x�1 = � �xjxj2dilatation � � 00 1=� � x 7! �2x � 2 IR+trivial map � � 00 � � x 7! x � 2 IR� f0gorthogonal map � a 00 a0 � x 7! axa� a 2 �n; jaj = 1reetion � 1 00 �1 � x 7! �x



12Sine the M�obius group GM(n + 1) of the spae IR̂n+1 is generated by transformations of theabove types we have the following result (see [W℄, Theorem 4).Theorem 2.5.3 The group GL(2; Cn) ats on IR̂n+1 byT : IR̂n+1 �! IR̂n+1x 7�! (ax+ b)(x + d)�1as the group of M�obius transformations with kernel f�I : � 2 IR� f0gg.Thus with PGL(2; Cn) := GL(2; Cn) = f �I : � 2 IR� f0g gSL(2; Cn) := f T 2 GL(2; Cn) : �(T ) = 1 gPSL(2; Cn) := SL(2; Cn) = f �I gwe have the following result (see [W℄, Theorem 5).Theorem 2.5.4 The group PGL(2; Cn) is isomorphi to the full group of M�obius transforma-tions and PSL(2; Cn) to the group of orientation preserving M�obius transformations of IR̂n+1:PGL(2; Cn) �= GM(n+ 1)PSL(2; Cn) �= GM+(n+ 1):Furthermore, the group SL(2; Cn) preserves hyperboli (n + 2)-spae IUn+2 = f x 2 IRn+2 :xn+1 > 0 g in the upper half-spae model and the metri in IUn+2 (ompare L. Ahlfors [A℄,setion 2.5).Theorem 2.5.5 The group PSL(2; Cn) ats on the hyperboli spae IUn+2 as the group oforientation preserving isometries.



133 Polytopal ComplexesIn this setion we will de�ne polytopes and polytopal omplexes. For the ombinatorial point ofview the lassial book [AH℄ and the modern book [Z℄ are good referenes. For the geometrialpoint of view see [R℄ or [V2℄ and for more information about algebrai topology (CW-omplexes,Euler-Poinar�e Charateristi) see [Ma℄.3.1 CombinatorisPolytopes and Polytopal Complexes Throughout this hapter let Xn be Sn, En or H n , ifnot spei�ed otherwise.Let U be a Xn-onvex set in Xn and < U > the intersetion of all hyperplanes in Xn, ontainingthe set U . Then the relative interior of U , denoted by ri(U), is the interior of U in the plane< U >. The losure of the set U is denoted by l(U) and the set rb(U) := l(U)� ri(U) is alledrelative boundary of U .De�nition 3.1.1 An n-dimensional (onvex and generalized) polytope P in Xn is� the Sn-onvex hull of �nitely many points for Xn = Sn whih are ontained in an openhemisphere,� the En -onvex hull of �nitely many points for Xn = En and� the H n -onvex hull of �nitely many ordinary points and points at in�nity for Xn = H nwhih ontaines an open set of Xn.Then P may not be ompat but it is always of �nite volume. It turns out that P is theintersetion of �nitely many half-spaes (see [Z℄, Theorem 1.1)P = \i2IH�i :An n-dimensional simplex T in Xn is an n-dimensional polytope Xn, whih is the onvex hull of(n+ 1) points. A supporting hyperplane H of P is a hyperplane in Xn suh that P is ontainedin H� or H+ and P \H 6= ;. The intersetion of a supporting hyperplane H of P with P isalled a fae of P . The dimension of a fae is the minimal dimension of a plane in Xn, whihontains this fae.De�nition 3.1.2 A generalized polytopal omplex � in Xn is a set of polytopes in Xn suh that1. if a polytope belongs to � then so do all its faes,2. the intersetion of two polytopes in � is a fae of both polytopes and3. the omplex � is loally �nite.A polytopal omplex � in Xn is a generalized polytopal omplex � in Xn, onsisting of �nitelymany polytopes.



14A simpliial omplex in Xn is a polytopal omplex in Xn whih onsists only of simplies. Furtherj�j denotes the underlying topologial spae of �. The dimension of � is the maximal dimensionof an element in �. The omplex � is alled pure if all elements of � are inluded in an elementof the dimension of �.The boundary �� of a pure n-omplex is the pure (n � 1)-omplex onsisting of all (n � 1)-dimensional faes of � (and their faes), whih are not ontained in exatly two n-dimensionalfaes of �.Let � be a pure polytopal omplex of dimension n in Xn with more than one maximally di-mensional element and 0 � k < n. Then � is alled k-onneted if for eah pair P;Q in � ofmaximal dimension n there is a �nite sequene P1; :::; Pm in � with1. dim(Pi) = n for eah i = 1; :::;m;2. P1 = P; Pm = Q and3. Pi�1 and Pi share a ommon side of dimension = k for eah i > 0.If � is (n� 1)-onneted we all � onneted.Let � be a polytopal omplex in Xn. For all d with 0 � d � n we denote by Gd(�) the d-skeletonof �, whih is the polytopal omplex onsisting of all elements in � of dimension � d:Gd(�) := nP 2 � : dim(P ) � do:Let � be a polytopal omplex in Xn. A polytopal deomposition D = D(�) is a polytopalomplex, suh that jDj = � and eah element of D is ontained in an element of �. If � is pure(for instane if � is a polytope) then D is pure and it inludes only �nitely many deompositionpolytopes of eah dimension.One of the simplest and most symmetrial deompositions is the baryentri deomposition B(�)of a polytopal omplex �.Example 3.1.1 Let P be the 2-dimensional polytope in Figure 1. The polytope P is a purepolytopal omplex with four 0-dimensional elements P 01 , P 02 , P 03 , P 04 ; four 1-dimensional elementsP 11 = onv(P 01 ; P 02 ), P 12 = onv(P 02 ; P 03 ), P 13 = onv(P 03 ; P 04 ), P 14 = onv(P 04 ; P 01 ); and onemaximally dimensional element P 21 = onv(P 01 ; P 02 ; P 03 ; P 04 ).CCCCCCCCCC
���������� P 01

P 02P 03
P 04

Figure 1: A 2-dimensional Polytope



15Example 3.1.2 Let � be the 2-dimensional polytopal omplex in Figure 2. The omplex on-sists of eight 0-dimensional elements P 01 , P 02 , P 03 , P 04 , P 05 , P 06 , P 07 , P 08 ; ten 1-dimensional ele-ments P 11 = onv(P 01 ; P 02 ), P 12 = onv(P 02 ; P 03 ), P 13 = onv(P 03 ; P 01 ), P 14 = onv(P 01 ; P 04 ), P 15 =onv(P 04 ; P 05 ), P 16 = onv(P 05 ; P 01 ), P 17 = onv(P 01 ; P 06 ), P 18 = onv(P 06 ; P 07 ), P 19 = onv(P 07 ; P 08 ),P 110 = onv(P 08 ; P 01 ) and three maximally dimensional elements P 21 = onv(P 01 ; P 02 ; P 03 ), P 22 =onv(P 01 ; P 04 ; P 05 ) and P 23 = onv(P 01 ; P 06 ; P 07 ; P 08 ).Furthermore, eah element in � is inluded in an element of the dimension of �; so � is pureand 0-onneted.
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Figure 2: Polytopal ComplexFor all d with 1 � d � n let ad(�) be the number of d-dimensional faes, a0ord(�) the number ofordinary 0-dimensional faes and a0inf (�) the number of points at in�nity, whih are ontainedin �. Clearly for � � Sn we have a0inf (�) = 0. Futhermore let a0(�) := a0ord(�) + a0inf (�).Every polytope an be viewed as a polytopal omplex. For example, we have the followingwell-known result (ompare [G℄, hapter 4).Lemma 3.1.1 Let T be an n-dimensional simplex, W an n-dimensional ube and W � an n-dimensional ross polytope (dual ube). Then we haveak(T ) = �n+ 1k + 1�; ak(W ) = 2n�k �nk�; ak(W �) = 2k+1 � nk + 1�;for all k with 0 � k � n.For all d with 1 � d � n let 
d(�) := nP d1 ; P d2 ; : : : ; P dad(�)obe the set of d-dimensional ordinary faes
0(�) := nP 01 ; P 02 ; : : : ; P 0a0ord(�)o



16the set of ordinary verties and�0(�) := np01; p02; : : : ; p0a0inf (�)othe set of points at in�nity in �. Furthermore, we de�ne by 
(�) the set of all ordinary faesof the omplex �.If we onsider geometrial properties of the polytopal omplexes there are great di�erenesbetween ordinary verties and verties at in�nity. So the above notation indiates learly thedistintion of the two types of points. However, if we onsider ombinatorial properties there isno di�erene between these two types of verties.The Fae PosetDe�nition 3.1.3 We denote by �n (resp. Pn) the set of all pure n-dimensional polytopalomplexes (resp. n-dimensional polytopes) in the spaes Sn; En and H n .Let � be an element of�n. The fae poset F(�) of � is the set of all faes of �, partially orderedby inlusion. Let �1 and �2 be elements in �n. Then �1 and �2 are alled ombinatoriallyisomorphi, if the two fae posets F(�1) and F(�2) are isomorphi (as partially ordered sets).Two elements P1 and P2 in Pn are said to be ombinatorially isomorphi, denoted by P1 � P2,if they are ombinatorially isomorphi as polytopal omplexes. These are equivalene relationson the sets �n and Pn, respetively.For all P 2 Pn we denote by Cl(P ) the ombinatorial equivalene lass, to whih the polytopeP belongs. The set of all equivalene lasses is denoted by Pn� and � : Pn �! Pn� is the quotientmap.Let P = Ti2I H�i � Xn be an n-dimensional polytope. For all d-faes P d of 
d(P ) with0 � d � n we put I(P d) := ni 2 I : P d � Hio:The family of all subsets of I of this form an be partially ordered by inlusion. We denote thispartially ordered set by F(P ) and all it the omplex of the polytope P . If P is in H n , then theverties at in�nity of P are of speial interest. For all p0 2 �0(P ) letI(p0) := ni 2 I : p0 � �Hio:We denote by �F(P ) the olletion of all subsets of I obtained by adding all subsets of the formI(p0), for p0 2 �0(P ), to F(P ). Also �F(P ) an be partially ordered by inlusion and it is alledthe extended omplex of the polytope P . It is easy to see that �F(P ) is anti-isomorphi to thefae poset F(P ) of P .Combinatorial Invariants for PolytopesDe�nition 3.1.4 Let J be a set. A map j : Pn �! J is alled a ombinatorial n-invariant ifthere exists a map j� : Pn� �! J suh that j� Æ � = j. A ombinatorial invariant j is alledomplete if j� is injetive.



17The numbers ai(P ) for 0 � i � n � 1 are of ourse inomplete ombinatorial invariants (forn > 2). The isomorphism lass of the fae poset F (P ) is, by de�nition, a omplete ombinatorialinvariant.Another omplete ombinatorial invariant arises by onsidering the inidene matrix M(P ) of apolytope P 2 Pn, de�ned as follows. Let P be an element in Pn,
0(P ) [�0(P ) = n P 01 ; : : : ; P 0a0(P ) o
n�1(P ) = n P n�11 ; : : : ; P n�1an�1(P ) o(we do not distinguish between ordinary verties and verties at in�nity). The matrixM(P ) = (mij)is de�ned by mij = � 1 ; P 0i is a fae of P n�1j0 ; otherwise :Then the map j : Pn �! Mat, P 7�! M(P ) from Pn in the set of all matries Mat, is aomplete ombinatorial invariant and so the struture of F (P ) an be dedued from the matrixM(P ).3.2 The Euler-Poinar�e CharateristiDe�nition 3.2.1 Let � be a pure n-dimensional polytopal omplex in Xn. We de�ne the ombi-natorial Euler-Poinar�e harateristi �(�) and the geometrial Euler-Poinar�e harateristi�g(�) of � by �(�) := nXv=0(�1)v av(�)�g(�) := nXv=1(�1)v av(�) + a0ord(�):In the ases where there is no di�erene between � and �g we will write simply �. Of ourse, forpolytopal omplexes without verties at in�nity we have �(�) = �(�) = �g(�) and in generalwe have the relation �(�) = �g(�) + a0inf (�).If � is a ompat polytopal omplex in Xn then the pair (j�j;�) an be viewed as a �niteCW-omplex. For details see [Ma℄, setion IV.2. Espeially, the Euler-Poinar�e harateristi�(�) is a topologial invariant of the spae j�j and so is independent of the deomposition ofthe topologial spae j�j. Hene we have the following result (see [Ma℄, Theorem IV.3.6).Theorem 3.2.1 Let � and �0 be n-dimensional pure ompat polytopal omplexes in Xn suhthat j�j is homeomorphi to j�0 j. Then�(�) = �(�0):Furthermore, we an dedue the following lemma.



18Lemma 3.2.1 Let � be an n-dimensional pure polytopal omplex in Xn and �0 a polytopaldeomposition of �. Then �(�) = �(�0)�g(�) = �g(�0):Proof: If � is ompat the result follows immediately from Theorem 3.2.1. Hene we only haveto onsider the ase where � is a nonompat polytopal omplex in H n . We work in the modelIDn of the hyperboli spae and we denote by � the ompati�ation of � in the ambient spaeIRn � IDn. Then � and �0 an be viewed as a Eulidean polytopal omplex where �0 is apolytopal deomposition of � with �(�) = �(�) and �(�0) = �(�0). With Theorem 3.2.1we have �(�) = �(�0) and the �rst equation follows.Furthermore, the number a0inf (�) does not hange under an arbitrary deomposition and so we�nd with the �rst part of the proof�g(�) = �(�)� a0inf (�)= �(�0)� a0inf (�0)= �g(�0): 2In the speial ase where the polytopal omplex is a polytope with all of its faes we an deduethe following lemma (ompare [Ma℄, setion IV.3).Lemma 3.2.2 Let P be an n-dimensional polytope in Xn, D = D(P ) a polytopal deompositionof P and �D = D(P ) \ �P the deomposition omplex of the boundary of P . Then�(D) = �g(D) + a0inf (P ) = 1�(�D) = �g(�D) + a0inf (P ) = 1 + (�1)n�1:Proof: If P is a ompat polytope in Xn then jDj is homeomorphi to the losed n-dimensionalunit ball and �(D) = 1. Furthermore, j�Dj is homeomorphi to the (n� 1)-dimensional sphereand �(�D) = 1 + (�1)n�1.Let P be a nonompat hyperboli polytope in the model IDn of the hyperboli spae. Wedenote by D (resp. �D) the ompati�ation of D (resp. �D). These two omplexes an beviewed as Eulidean polytopal omplexes. We get �(D) = �(D), �(�D) = �(�D) and withthe �rst part of the proof the lemma follows. 2The Euler Polyhedron Theorem In the proof of the previous lemma we have used theequation �(D) = 1 for a polytopal deomposition D = D(P ) of a polytope P in Xn. This is ageneralization of the well-known Euler Polyhedron Theorem.This Theorem was disovered by L. Euler for 3-dimensional polytopes (polyhedrons) in 1752.It is interesting that this result was known to R. Desartes about hundred years earlier. Inthe middle of the nineteenth entury L. Shl�ai generalized Euler's Polyhedron Theorem topolytopes of all dimensions (ompare [Sh℄, page 190).There are many di�erent proofs for this nie theorem. For instane, we an use the fat thatthe boundary of all polytopes is a so-alled shellable polytopal omplex (see [Z℄, Corollary 8.17).For another proof whih works with intersetions of the polytope with hyperplanes see [Br℄,Theorem 16.1.



19Theorem 3.2.2 (Euler Polyhedron Theorem) Let P be an n-dimensional polytope in Xn.Then �(P ) = a0inf (P ) + a0ord(P )� a1(P ) + � � �+ (�1)n�1an�1(P ) + (�1)n = 1:3.3 AnglesNormalized Angles Let P be an n-dimensional polytope in Xn. In the following we willde�ne the notion of an (n�k� 1)-dimensional angle of P at a fae P k. So let P k be an elementin 
k(P ) for 0 � k � n � 1; this means it has no vertex at in�nity of P . Further let x be aninterior point of P k and K the (n � k)-dimensional plane passing through x and orthogonalto the plane < P k >. It is possible to �nd an � > 0, suh that the sphere Sn�1(x; �) � Xnwith enter x and radius � > 0 only intersets faes of P that are inident with P k. Then the(n�k�1)-dimensional sphere Sn�k�1(x; �) � K intersets also only faes of P that are inidentwith P k.De�nition 3.3.1 The (n� k � 1)-dimensional (normalized) angle of P at a fae P k is de�nedas ��1(P jP ) = ��1(P ) := 1�n�k�1(P kjP ) = �n�k�1(P k) := n�k�1(�)�1 vol �Sn�k�1(x; �) \ P��n(;jP ) = �n(P ) := �1n volXn(P )for 0 � k � n� 1, where the onstant m(�) denotes the volume of the m-dimensional sphere ofradius � and m := m(1). A 1-dimensional angle of P is also alled a dihedral angle.Remark 3.3.1 All angles of an n-dimensional polytope P an also be measured (n� 1)-dimen-sionally. Let P k 2 
k(P ) for 0 � k � n. We use the same notations as above. The real number� > 0 is hosen in suh a way that the sphere Sn�1(x; �) only intersets faes of P that areinident with P k. Then we have�n�k�1(P k) = n�1(�)�1 vol �Sn�1(x; �) \ P �for all 0 � k � n� 1 (ompare [Pe℄).The fae P k of P is alled the apex of the angle �n�k�1(P kjP ). This angle does not dependon the hoie of x and � > 0, and it is normed in suh a way, that the whole sphere will bemeasured as 1. Furthermore, we de�ne by�n�k�1(P kjP ) := 12 � �n�k�1(P kjP )the exterior angle of P with apex P k for 0 � k � n� 1.



20Fae Figures The intersetion Sn�k�1(x; �)\P is an (n�k�1)-dimensional spherial polytopein Sn�k�1(x; �) (see [R℄). By simple radial projetion pr we an map it on the unit sphereSn�k�1(x; 1) � Sn�k�1 and get an (n�k�1)-dimensional spherial polytope in the sense of ourde�nition. We de�ne the fae �gure or the link L(P k) asL(P k) := pr �Sn�k�1(x; �) \ P�for all P k in 
k(P ) with 0 � k � n� 1.Let p0 be an element in �0(P ) and P a horosphere with basepoint p0 suh that P meets onlythe sides of P inident with p0. The intersetionL(p0) := P\Pis also alled fae �gure or link of P in p0. The Eulidean geometry of L(p0) is uniquelydetermined by p0 up to a similarity (indued by a radial projetion from p0). So L(p0) an beviewed as an (n� 1)-dimensional Eulidean polytope.Angle Sums Let P be a polytope in Xn. Then the (n � k � 1)-dimensional angle sum of Pis de�ned as the sum of all (n� k � 1)-dimensional angles of P for all 0 � k � n. This means:!n�k�1(P ) := XP k2
k(P )�n�k�1(P kjP ) for k = 0; : : : ; n;!n(P ) := �1n volXn(P ):So we get for instane !0(P ) = an�1(P )2 and !�1(P ) = 1. Furthermore, we de�ne the generalizedangle sum W (P ) of P asW (P ) := nXi=0(�1)i !n�i�1(P )= !n�1(P )� !n�2(P ) + :::+ (�1)n !�1(P ):Complex Angles The notion of an angle of P at a fae P k an be generalized to purepolytopal omplexes � of dimension n in Xn as follows. Let P k be an element in 
k(�) for0 � k � n. Then P k is inluded in a �nite number of elements P n1 ; :::; P nh in 
n(�) of maximaldimension suh that P k = P n1 \ : : : \ P nh . Furthermore, the number h is maximal whih meansthat there are no other elements in 
n(�) ontaining P k.De�nition 3.3.2 The (n� k � 1)-dimensional omplex angle of � at a fae P k is de�ned as��n�k�1(P k) := hXi=1 �n�k�1(P kjP ni )for 0 � k � n.De�ning �n�k�1(P kjP n) = 0 if P k is not a fae of the polytope P n we an write the aboveequation as ��n�k�1(P k) = XPn2
n(�)�n�k�1(P kjP n):



21We an also speak of the exterior omplex angle and de�ne��n�k�1(P k) := 12 � ��n�k�1(P kjP )for 0 � k � n� 1. A simple omputation shows that for all pure polytopal omplexes � and forall k with 0 � k � n we haveXPn2
n(�) XP k2
k(Pn)�n�k�1(P kjP n) = XP k2
k(�)��n�k�1(P k):Example 3.3.1 Let � be the 2-dimensional polytopal omplex in Example 3.1.2 (see Figures2 and 3). We use the same notations P 21 = onv(P 01 ; P 02 ; P 03 ), P 22 = onv(P 01 ; P 04 ; P 05 ) andP 21 = onv(P 01 ; P 06 ; P 07 ; P 08 ). For example we haveXP 22
2(�) XP 02
0(P 2)�1(P 0jP 2) = XP 02
0(P 21 )�1(P 0jP 21 ) + XP 02
0(P 22 )�1(P 0jP 22 )+ XP 02
0(P 23 )�1(P 0jP 23 )= �1(P 01 jP 21 ) + �1(P 02 jP 21 ) + �1(P 03 jP 21 )+�1(P 01 jP 22 ) + �1(P 04 jP 22 ) + �1(P 05 jP 22 )+�1(P 01 jP 23 ) + �1(P 06 jP 23 ) + �1(P 07 jP 23 ) + �1(P 08 jP 23 )= 8Xi=1 ��1 (P 0i )= XP 02
0(�)��1 (P 0);where we use that ��1 (P 01 ) = �1(P 01 jP 21 ) + �1(P 01 jP 22 ) + �1(P 01 jP 23 ).
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Figure 3: The Complex Angle in P 014 Combinatorial NumbersThe ombinatorial numbers desribed in this setion are oeÆients in the Taylor series ofanalyti funtions. The tangent numbers T2n+1 will appear in Shl�ai's Redution Formula forsimplies if we normalize the angles in suh a way, that the generalized otand is measured as 1(ompare L. Shl�ai [Sh℄; here denoted as an ) and the modi�ed tangent numbers a2n+1 if wenormalize the angles in suh a way, that the whole sphere is measured as 1 (ompare E. Peshl[Pe℄). The Euler numbers will appear in the Redution Formula for ubes.For the study of number series the book [S℄ and on line version [OL℄ are very helpfull.The Bernoulli numbers, the tangent numbers and the Euler numbers play also an important rolein algebrai geometry. For instane, they are used to desribe topologial invariants of oriented(even-dimensional) manifolds (ompare [Hir℄, hapter 8.9).Thus we will reall some de�nitions. A omplex or real funtion f is alled analyti in a pointz0 in C or IR if f an be expanded as a power series in z, whih onverges to the funtion in aneighborhood of z0. If f is analyti in a point z0 then the power series is the Taylor series andso f an be written as f(z) = 1Xn=0 f (n)(z0)n! (z � z0)n:The omplex number f(n)(z0)n! is alled the n-th oeÆient of the Taylor series for f in z0 and thenumber f (n)(z0) is alled the n-th redued oeÆient of the Taylor series for f in z0.4.1 The Stirling NumbersLet X be a �nite set with n elements. A family of subsets A1; :::; Am of X is alled a partitionof X if� Ai 6= ; for all i;



23� Ai \Aj = ; for all i; j with i 6= j;� [mi=1Ai = X.The sets Ai are alled the lasses of the partition.For all m � n the number Smn of partitions of a set of n objets into m lasses is alled Stirlingnumber (of the seond kind). We have (see [B℄):1. S1n = Snn = 1;2. Smn+1 = Sm�1n +mSmn for all 1 < m < n;3. the number of surjetions of X into a set A with jAj = m is equal to m! Smn and4. Smn = 1m! mXv=0(�1)m�v�mv�vn= 1m! mXv=0(�1)v�mv�(m� v)n:4.2 The Square-Root NumbersThe real funtion f(x) = p1 + x is analyti in the point x = 0. The square-root numbers qn(n � 0) are de�ned as the oeÆients of the Taylor series of f at x = 0p1 + x = 1Xn=0 qn xnwith q0 = 1q1 = 12qn = (�1)n 1 � 3 � 5 � � � 2n� 32 � 4 � 6 � � � 2n :By a diret alulation we get the following result.Lemma 4.2.1 We have qn+1 = �2n� 12n+ 2 qnqn+1 = (�1)nn+ 1 �2nn � 122n+1for all n with 1 � n <1.For instane, we have the following values:



24n 0 1 2 3 4 5 6 7 8 9 10 11qn 1 12 �18 116 � 5128 7256 � 211024 332048 � 42932768 71565536 � 2431262144 41995242884.3 The Bernoulli NumbersThe omplex funtion f(z) = zexp z�1 has a removable singularity in the point z = 0. TheBernoulli numbers Bn (n � 0) are de�ned as the redued oeÆients of the Taylor series of f(z)zexp z � 1 = 1Xn=0 Bnn! zn:Comparing this with the series of the exponential funtion we get the reursion:B0 = 10 = n�1Xv=0 �nv� Bv:For instane, we have the following values:n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Bn 1 �12 16 0 � 130 0 142 0 � 130 0 566 0 � 6912730 0 76 0 �36175104.4 The Tangent NumbersThe omplex funtions f(z) = tan(z) and g(z) = tanh(z) are analyti in the point z = 0. Thetangent numbers T2n+1 (n � 0) are de�ned as the redued oeÆients of the Taylor series oftan(z) (or tanh(z) ) tan(z) = 1Xn=0 T2n+1(2n+ 1)! z2n+1tanh(z) = 1Xn=0 (�1)n T2n+1(2n+ 1)! z2n+1:Comparing these series with those of sin(z) and os(z) we get the reursionT1 = 1(�1)n T2n+1 = 1� n�1Xv=0 (�1)v �2n+ 12v + 1� T2v+1:It follows by indution that all tangent numbers are integers. For instane, we have the followingvalues:



25m 1 3 5 7 9 11 13 15 17Tm 1 2 16 272 7936 353792 22368256 1903757312 209865342976Furthermore, we have the following relations between tangent and Bernoulli numbers (see [Sh℄,page 243).Theorem 4.4.1 For all integers n � 0 we haveT2n+1 = (�1)n 22n+1 (22n+2 � 1)n+ 1 B2n+2:4.5 The Euler NumbersThe omplex funtions f(z) = os�1(z) and g(z) = osh�1(z) are analyti in the point z = 0.The Euler numbers E2n (n � 0) are de�ned as the redued oeÆients of the Taylor series ofos�1(z) (or osh�1(z)) in 0 1os z = 1Xn=0 E2n(2n)! z2n1osh z = 1Xn=0 (�1)n E2n(2n)! z2n:We get the reursion E0 = 1(�1)n E2n = n�1Xv=0 (�1)v+1 �2n2v� E2v :For instane, we have the following values:m 0 2 4 6 8 10 12 14 16 18Em 1 1 5 61 1385 50521 2702765 199360981 19391512145 2404879675441Furthermore, we have the following relation between the Euler and the tangent numbers (see[N℄, page 52):Lemma 4.5.1 We have (�1)n E2n = nXv=0 (�1)v �2n2v� T2v+1for all n � 0.



264.6 Related NumbersFor all intergers n � 0 we de�ne the rational numbers a2n+1 (n � 0) bya2n+1 = 122n+1 T2n+1G2n+1 = n+ 122n T2n+1The numbers G2n+1 are alled the Genohi numbers. The numbers a2n+1 are the oeÆientsof the Taylor series of the funtion tan(z=2). We havetan�z2� = 1Xn=0 a2n+1(2n+ 1)! z2n+1= 1Xn=0 G2n+1(2n+ 2)! z2n+1Thus we an easily modify the reursion formula for the tangent numbers to obtaina1 = 12(�1)n a2n+1 = 12 � 12 n�1Xv=0 (�1)v �2n+ 12v + 1� a2v+1:Furthermore, by a diret alulation we getLemma 4.6.1 We have(�1)n a2n+1 = nXv=0 (�1)v �2n+ 12v � a2v+1(�1)n a2n+1 = � 12n n�1Xv=0 (�1)v �2n+ 12v � a2v+1for all n � 1.For instane, we have the following values:m 1 3 5 7 9 11 13 15 17 19 21am 12 14 12 178 312 6914 54612 92956916 32022912 2219305814 47221165212Gm 1 1 3 17 155 2073 38227 929569 28820619 11096552905 51943281731



274.7 Zik-Zak PermutationsThe Euler numbers E2n and tangent numbers T2n+1 play an essential role for ounting the num-ber of zik-zak permutations. Thus they have a pure ombinatorial desription. A permutation� 1k1 � � �� � � mkm�of m elements is alled a zik-zak permutation if(kv � kv�1) (kv+1 � kv) < 0for all 2 � v � m�1. We denote the number of zik-zak permutations of m elements by Z(m).We have the following result (ompare [En℄).Lemma 4.7.1 We have for all m > 1Z(m) = 14 m�1Xv=0 �m� 1v � Z(v) Z(m� v � 1)and furthermore Z(m) = � 2 Em ; m even2 Tm ; m odd :



285 The Gram Matrix and Aute-Angled PolytopesIn this setion we reord well-known fats about Gram matries and the onnetion of the Grammatrix of aute-angled polytopes with their ombinatorial struture. For more details see [V1℄and [V2℄.5.1 General FatsLet P = \i2IH�i be an n-dimensional polytope in Xn, where we use the vetor-spae model IHnin the hyperboli ase. Let ei be the unit normal vetor of the de�ning subspae UHi , diretedinwards with respet to P for all i 2 I. The Gram matrix of P is the matrixG(P ) = � hei; ejiXn �i;j2I :Clearly, G(P ) is symmetri with 10s along the diagonal.For Xn = Sn the matrix G(P ) is positive semide�nite of rank � n + 1, and G(P ) de�nes thepolytope P up to an isometry. For all i; j 2 I with i 6= j we have hei; ejiSn = � os(�ij) with�ij = \(Hi;Hj) equal to the intersetion angle formed by Hi and Hj.For Xn = En the matrix G(P ) is positive semide�nite of rank � n. For all i; j 2 I with i 6= j wehave hei; ejiEn = � � os(�ij) ; Hi;Hj interset with angle �ij�1 ; Hi;Hj parallel :For Xn = H n the matrix G(P ) is inde�nite of rank n+1 and signature (1; n); and G(P ) de�nesthe polytope P up to an isometry. The entries hei; ejiHn for i 6= j have the following geometrialmeaning:hei; ejiHn = 8<: � os(�ij) ; Hi;Hj interset with angle �ij�1 ; Hi;Hj parallel� osh(lij) ; Hi;Hj ultraparallel with ommon perpendiular of length lij :5.2 The Gram Matrix of an Aute-Angled PolytopeAn n-dimensional polytope P in Xn is alled aute-angled if all dihedral angles of P are ofmeasure less than or equal to 1=4. In this ase P is simple, whih means that eah ordinary(n� k)-dimensional fae of P is ontained in exatly k distint (n� 1)-faes.A polytope P is alled a Coxeter polytope if all its dihedral angles have measure 12p for p 2 INwith p � 2. Any aute-angled polytope in Sn is a simplex. The Gram matrix G(P ) of P ispositive de�nite of rank = n+ 1, and it has only non-positive entries o� the diagonal.Any aute-angled polytope in En is a diret produt of simplies. The Gram matrix G(P ) ofP is positive semide�nite of rank n, and it has only non-positive entries o� the diagonal. Inpartiular G(P ) is paraboli, whih means that by permutating of the rows and olumns G(P )an be brought into the form 0BBB� A1 0A2 . . .0 Ak 1CCCAwhere A1; A2; :::; Ak, 1 � k � n are degenerate indeomposable positive-semide�nite matries.



29For an aute-angled polytope P in H n there is in general no simple ombinatorial desription.The Gram matrix G(P ) of P is indeomposable of signature (1; n) and it has only non-positiveentries o� the diagonal. The order of G(P ) an be arbitrarily large.Let P be a polytope in Xn. Then P is alled a Coxeter polytope if all its dihedral angles(1-dimensional angles) are of the form 12p for p 2 IN with p � 2.5.3 Gram Matrix and Combinatorial StrutureLet P = Ti2I H�i � Xn be an n-dimensional aute-angled polytope, G = G(P ) its Gram matrix,F(P ) the omplex of P and �F(P ) the extended omplex of P . For eah subset J � I we use thefollowing notation: GJ is the prinipal submatrix of G formed by the rows and olumns whoseindies belong to J . The following results are due to E. Vinberg ([V1℄, Theorems 3.1. and 3.2.).Theorem 5.3.1 Let J be a subset of I. Then J 2 F(P ) if and only if the matrix GJ is positivede�nite.Theorem 5.3.2 Let J be a subset of I. Then J 2 �F(P ) � F(P ) if and only if the matrix GJis paraboli of rank n� 1.With these two results we are able to reonstrut the ombinatorial struture of the polytopeP in terms of the inidene matrix (whih is a omplete ombinatorial invariant) from its Grammatrix. Let P = \i2IH�i be an n-dimensional aute-angled polytope in Xn and G = G(P )its Gram matrix. We use the following algorithm, alled the Gram matrix-Inidene matrixAlgorithm (GIA), de�ned as follows:1. Determination of the set of all positive de�nite and paraboli submatries of rank n� 1 ofG � GJj : j = 1; : : : ; a0(P ) 	 ;where Jj � I are the orresponding subsets of I for j = 1; : : : ; a0(P ). This set is bijetiveto the set of all verties (ordinary and at in�nity) of the polytope P .2. Of ourse, the set � Hi : i = 1; : : : ; an�1(P ) 	 :is bijetive to the set of all (n� 1)-dimensional faes of P .3. Now we an derive the inidene matrix M(P ) = (mij) of P bymji = � 1 ; i 2 Jj0 ; otherwisefor all 1 � i � an�1(P ) and 1 � j � a0(P ).



306 ShemesLet S be a graph with verties fvigi2I . Then S is alled a sheme if eah edge vivj has a positiveweight ij . If there is no edge between two verties we speak of an edge with zero weight. Asubsheme of S is a subgraph of S in whih every edge arries the same weight as S.The number of verties of S is the order of S. If fvigi2I is the set of vertives of S, we denote bySJ the subsheme of S with vertex set fvigi2J for all subsets J � I. Of ourse, we have SI = S.To eah sheme S one an assoiate a symmetri matrix A(S) = (aij)i;j2I with aii = 1 and aij =�ij for all i; j 2 I with i 6= j. A sheme S is onneted if and only if A(S) is indeomposable.The rank, determinant and signature of S an be transferred from A(S) to S and vie versa.Then S is alled ellipti, if A(S) is positive de�nite, paraboli if A(S) is paraboli or hyperboliif A(S) has index of inertia �1.De�nition 6.0.1 The sheme S of an aute-angled polytope P in Xn is the sheme orrespond-ing to its Gram-matrix G(P ).Let S be the sheme of an n-dimensional aute-angled polytope in Xn. The Theorems 5.3.1 and5.3.2 an be translated in the language of shemes.Theorem 6.0.3 Let J be a subset of I. Then J is in F(P ) if and only if the subsheme SJ isellipti. Furthermore, J is in �F(P )�F(P ) if and only if SJ is paraboli of rank n� 1.Of ourse, the Gram matrix-Inidene-Algorithm (GIA) an be modi�ed easily to a Sheme-Inidene matrix-Algorithm (SIA). The advantage of using shemes instead of the Gram matrixis reeted in the ase of Coxeter polytopes, beause we an use the lassi�ation results of elliptiand paraboli shemes.If P k (or p0) is an arbitrary fae of P with 0 � k � n� 1 we denote by S(P k) (or S(p0)) thesheme of the fae �gure L(P k) (or L(p0)) of P . This is an ellipti sheme in the �rst ase (P kis an ordinary fae of P ) and a paraboli sheme in the seond ase (p0 is a vertex at in�nity ofP ).



317 Disrete Subgroups of Iso(Xn)The groups whih are generated by the reetions in the faets of a Coxeter polytope aresimple ases of disrete subgroups of Iso(Xn). In this setion we give an introdution to disretesubgroups of Iso(Xn) for Xn = Sn, En or H n . Furthermore, we de�ne the notion of a fundamentalpolytope of a disrete group and the onnetions with tesselations.7.1 General FatsA family of subsets of Xn is alled loally �nite, if for eah point there is a neighbourhoodinterseting only �nitely many subsets of this family. A subgroup � < Iso(Xn) is alled disreteif the family fK :  2 �g is loally �nite for eah ompat set K � Xn.In the following let � < Iso(Xn) always be a disrete group. Of ourse, � ats on the spae Xnvia �� Xn �! Xn(; x) 7! x := (x):Now � is a disrete group if and only if � ats disontinously on Xn: for all ompat sets K � Xn,the set K \ K is nonempty for at most �nitely many  2 �.Let us extend the notion of ompat sets. A generalized ompat set of Xn is either an ordinaryompat set or for Xn = H n , interpreted in the model IDn, a set K in IDn suh that� �IDn \ �K is a �nite set of points� K [ f�IDn \ �Kg is an ordinary ompat set in En .Let K � Xn be an generalized ompat set. We de�ne by�K = Stab (K;�):= n 2 � : K = Kothe stabilizer of K in �.We prefer the seond notation in the ases where the the symbol of the set K ,,arries,, manyindies.Then �K is a subgroup of �. Furthermore, we de�ne the subgroup �0K < �K of all elements in�K , whih �x the set K pointwise:�0K = Stabp (K;�):= n 2 � : k = k for all k 2 Ko:Of ourse, �K and �0K are disrete groups. The family of subsets�K := nK :  2 �oof Xn is alled the �-orbit through K or the yle through K. The elements in �K are alled�-equivalent.



32The map � �! �K 7! Kis surjetive with kernel �K and thus indues a bijetion�=�K �! �K:It follows that ord(�K) = [� : �K ℄= ord(�)ord(�K) :Lemma 7.1.1 For all disrete subgroups of � < Iso(Xn) and all ordinary ompat sets K inXn eah of the groups �0K and �K is onjugated to a �nite subgroup of O(n).Proof:� �0K is a subgroup of O(n). This is lear for Xn = Sn or En . For Xn = H n the group �0Kis an elementary group of ellipti type (�0K has at least one �xed point). Hene �0K isisomorphi (onjugated) to a subgroup of O(n). Clearly �0K is �nite, beause it is disrete.� Let  be an element in �K . Then  maps the ompat set K onto itself and has a �xedpoint in K (by Browers Fixed Point Theorem). Hene  is onjugated to an orthogonalmap and we see that eah element in �K is ellipti and of �nite order (�K is disrete).Then �K is onjugated to a �nite subgroup of O(n) (ompare Lemma 2.4.1). 2If K is a ompat set in Xn then also K is a ompat set in Xn for all elements  2 � and thestabilizer �K is onjugated to �K : �K =  �K �1:It is often enough to onsider ompat sets K = fxg onsisting of one point only. In this asewe have �K = �0K =: �x and the following important result ([R℄, Theorem 5.3.4).Theorem 7.1.1 Let Xn = Sn or H n and � < Iso(Xn) an arbitrary subgroup. Then � is disreteif and only if� eah stabilizer subgroup of � is �nite, and� �x is a losed and disrete subset of Xn for all x 2 Xn.Let � < Iso(Xn) be disrete. Then there exists at least one point x 2 Xn suh that �x is trivial.If the group �x is trivial for all x 2 Xn, the ation of � on Xn is alled �xed point free.



337.2 Fundamental Regions of Disrete GroupsLet � < Iso(Xn) be a disrete subgroup of isometries in Xn. A subset R � Xn is alled a (loally�nite) fundamental region for � if1. R is losed in Xn;2. the elements in f ri(R) :  2 �g are mutually disjoint;3. Xn = [2� R;4. the family fR :  2 �g is a loally �nite family of subsets in Xn.If R is onneted, then R is alled a fundamental domain for �. A fundamental domain R for �is alled a fundamental polytope for � if R is an n-dimensional polytope in Xn. A fundamentalpolytope P for � is alled normal, if there exists  2 � with P n�1 = P \P for eah (n�1)-faeP n�1 of P .A fundamental region R for � is alled proper, if �R is a set of measure zero. All properfundamental regions R for � have the same volume. So we an de�ne the ovolume of � asovol(�) := volXn(R)for any proper fundamental region R for � (if there exists one). Of ourse fundamental polytopesfor � are proper fundamental domains for �. Disrete groups � < Iso(Xn) with ovol (�) <1are alled of �nite ovolume or rystallographi. If one fundamental region for � is ompat,then so are all other fundamental regions for �. In this ase � is alled oompat or uniform.Example 7.2.1 The modular group PSL(2;Z) an be viewed as a disrete subgroup of Iso(H 2),generated (for instane) by the elements� 1 10 1 � : z 7! z + 1� 0 1�1 0 � : z 7! �1z .In Piture 4 one an see a (anonial) proper fundamental polytope Pm = onv(A;B;1) forPSL(2;Z), where A = �1=2 + ip3=2 and B = 1=2 + ip3=2. The polytope Pm is a trianglewith one vertex at in�nity and the three 1-dimensional angles �1(1) = 0, �1(A) = 1=6 and�1(B) = 1=6; so Pm is a Coxeter polytope. Furthermore, PSL(2;Z) an be viewed as the subgroupof orientation preserving elements of the Coxeter group �, generated by the reetions in thefaes of the polytope P+m = onv(A;C;1) (ompare Piture 5). We have [G : PSL(2;Z)℄ = 2and volH2 (Pm) = 2volH2 (P+m ).7.3 Tesselations and Disrete GroupsA tesselation of the spae Xn is a olletion � of n-dimensional polytopes in Xn suh that1. the interiors of the polytopes in � are mutually disjoint;2. Xn = j�j;
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A B

0 1−1Figure 4: The Fundamental Polytope Pm of PSL(2;Z)

−1 10

A B
C

Figure 5: The Polytope P+m3. � is a loally �nite family of subsets in Xn.A tesselation � of Xn is alled normal if eah (n � 1)-dimensional fae of a polytope in � isontained in exatly two polytopes of �.Now we have the following important onnetion between tesselations and disrete groups (om-pare [R℄, Theorem 6.7.1.).Theorem 7.3.1 Let P be an n-dimensional polytope in Xn and let � be a group of isometriesof Xn. Then � is disrete and P is a (normal) fundamental polytope for � if and only if� = f P :  2 � gis a (normal) tesselation.Of ourse, eah normal tesselation of Xn is onneted. Furthermore, we have the following result(see [R℄, Theorem 6.7.3. and 6.7.4.).



35Theorem 7.3.2 Let P be a normal fundamental polytope for a disrete group � of isometriesof Xn. Then � is �nitely generated by the set	 = f  2 � : P \ P is a fae of P g :Example 7.3.1 Let Pm be the (\anonial") fundamental polytope for the disrete group PSL(2;Z)< Iso(IU2) desribed in Example 7.2.1 (see Figure 4). Then the set� := f P :  2 PSL(2;Z) gis a normal tesselation of the upper half-spae IU2 (see Figure 6).

0 1−1Figure 6: A PSL(2;Z)-TesselationFurthermore, the group PSL(2;Z) is �nitely generated by the set	 = f  2 PSL(2;Z) : Pm \ Pm is a fae of P g= f z 7! z + 1; z 7! z � 1; z 7! �1=z g :



368 Geometri OrbifoldsIn this setion we will develop the theory of geometri orbifolds and explain the onnetionswith disrete groups. For the details see [R℄, setion 13 or [Kapo℄, setion 6. Espeially, we showthat geometri orbifolds an be viewed as geometrial interpretations of disrete subgroups ofIso(Xn).8.1 De�nitionsIn the following let Xn = Sn; En or H n , G < Iso(Xn) an arbitrary subgroup of the group ofisometries of Xn and M a Hausdor� spae.An (Xn; G)-orbifold atlas for M is a olletion� = n(Ui; �i) : i 2 Ioof sets Ui �M and maps �i : Ui �! Xn=�i whih are alled harts, suh that for all i 2 I:1. The set Ui, whih is alled oordinate neighbourhood, is an open onneted subset of Mand �i is a disrete subgroup of Iso(Xn).2. The hart �i maps the oordinate neighbourhood Ui homeomorphially onto an opensubset of Xn=�i.3. M = Si2I Ui.4. If Ui and Uj overlap, the map�j Æ ��1i : �i(Ui \ Uj) �! �j(Ui \ Uj);alled oordinate hange, has the following property: If x; y are in Xn with�j Æ ��1i (�ix) = �jy;then there exists an element g 2 G with gx = y and whih lifts �j Æ��1i in a neighbourhoodof x. More preisely, we have �j Æ ��1i (�iw) = �jgwfor all w in a neighbourhood of x (see Figure 7).An (Xn; G)-orbifold struture for a Hausdor� spae M is a maximal (Xn; G)-orbifold atlas for M(for eah (Xn; G)-orbifold atlas forM there exists a unique maximal (Xn; G)-orbifold atlas forM ,whih ontains this atlas). An (Xn; G)-orbifold M is a Hausdor� spaeM with a (Xn; G)-orbifoldstruture for M . An (Xn; Iso(Xn))-orbifold is alledspherial orbifold :() Xn = Sn;Eulidean orbifold :() Xn = En ;hyperboli orbifold :() Xn = H n :Let M be an (Xn; G)-orbifold and u 2 M . A hart for (M;u) is a hart � : U ! Xn=� for Mwith u 2 U . If �i : Ui ! Xn=�i with �i(u) = �i(x) and�j : Uj ! Xn=�j with �j(u) = �j(y)
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Figure 7: The Coordinate Changeare harts for (M;u), then the stabilizer groups �x < �i and �y < �j are onjugated. Thismeans that there exists g 2 G with g�xg�1 = �y and gx = y, lifting �j��1i to a neighbourhoodof x. In partiular, we have ord(�x) =ord(�y). So we an de�ne the order of a point u 2M asthe order of the stabilizer group �x for any hart � : U ! Xn=� for (M;u) with �(u) = �(x).We all Mord := fu 2M : ord(u) = 1gMsin := fu 2M : ord(u) > 1gthe ordinary and the singular set ofM . Of ourse,M is the disjoint union ofMord andMsin;Mordis open and dense and Msin is losed and nowhere dense in M . In the speial ase Msin = f;g,M is alled a geometri manifold .Let  : [a; b℄ ! M be a urve in an (Xn; G)-orbifold M . We an de�ne the Xn-length jjjj of via harts in a anonial way. A urve  in M is alled Xn-reti�able if jjjj < 1. Then thefuntion d : M �M �! IR(u; v) 7�! inf jjjj;where  varies over all Xn-reti�able urves from u to v, is a metri on M . Hene M is a metrispae with an inner length metri. An (Xn; G)-orbifold M is alled omplete if M is a ompletemetri spae.8.2 (Xn ; G)-EquivalenesLet M and N be two (Xn; G)-orbifolds. A map� :M �! Nis alled an (Xn; G)-map if the following holds:1. � is ontinous and



382. for all harts � : U ! Xn=� for M and  : V ! Xn=� for N with U \ ��1(V ) 6= ; , themap  Æ � Æ ��1 : �(U \ ��1(V )) �!  (�(U) \ V )has the following properties: If x; y are in Xn with  Æ � Æ��1(�x) = �y, then there existsan element g 2 G suh that� gx = y and� g lifts  Æ � Æ ��1 to a neighbourhood of x (Figure 8).An (Xn; G)-map is alled an (Xn; G)-equivalene, if it is a homeomorphism.
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Figure 8: A (Xn; G)-mapNow we have the following result (ompare [R℄, Theorem 13.3.10.).Theorem 8.2.1 Let Xn = Sn; En or H n and G < Iso(Xn). Furthermore let M be a ompleteonneted (Xn; G)-orbifold. Then there exists a disrete group � < Iso(Xn) suh that M andXn=� are (Xn; G)-equivalent.Hene we an view a omplete onneted (Xn; Iso(Xn))-orbifold as another interpretation of adisrete subgroup of Iso(Xn).Let � < Iso(Xn) be disrete. Then the projetion map � : Xn �! Xn=� indues an isometryfrom B(x; r)=�x onto B(�(x); r) for all r suh that 0 < r � 14dist (x;�x� fxg) (ompare [R℄,Theorem 13.1.1.). Furthermore, the group �x is a disrete subgroup of Iso(Xn) with a �xedpoint in Xn. It is easy to see that �x is a �nite subgroup of O(n) for eah spae Xn = Sn; En orH n . In order to understand the loal struture of an orbifold near a point z = �(x) it is enoughto investigate the quotient spae B(x; r)=�x for a suitable r > 0.8.3 Loal Struture of Hyperboli 2-OrbifoldsWe desribe the loal struture of a hyperboli 2-orbifold M near a singular point z of M(ompare [Kapo℄). A �nite group of O(2) is onjugated to the group Z2 generated by a reetion,a yli group Cq generated by a rotation of order q � 2 or a dihedral group Dq generated bytwo reetions whose produt has order q � 2. Let U be a neighbourhood of z. Then we havethe following types of loal strutures near z (Table 1).
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Loal stuture near z U �= H 2=�Boundary (Reetor) H 2=Z2 : Z2 = Z=2ZCone Point H 2=Cq : Cq yli groupCone Reetor H 2=Dp : Dp dihedral group (p > 2)Table 1: The Loal Strutures of a 2-Orbifold

Cone point

Cusp

Tube Boundary

Cusp

Cone point

Cone reflector

Cone reflectorFigure 9: Hyperboli 2-Orbifold



409 Combinatoris and Angles9.1 The Combinatoris of Polytopal ComplexesIn this setion we will develop some onnetions between the ombinatoris of polytopal om-plexes and their deompositions. Partiularly we deompose the set of all deomposition poly-topes of a polytopal omplex � into subsets. Eah subset onsists of all deomposition polytopes(of several dimensions), whih are inluded in a skeleton of �xed dimension but not in a lower-dimensional skeleton of �.De�nition 9.1.1 Let � be an n-dimensional polytopal omplex in Xn, l an integer with 0 � l �n, D = D(P ) a deomposition of � and D 2 
(D) an element of D. Then D is alled elementin Gl(�), if jDj � jGl(�)j and jDj 6� jGl�1(�)j. We will denote this inlusion by D < Gl(�).In the speial ase � = D the fat D < Gl(�) means that D is an l-dimensional polytope in �.Lemma 9.1.1 Let � be an n-dimensional polytopal omplex in Xn, D = D(P ) a deompositionof � and D 2 
k(D) for 0 � k � n. Then D 2 Gl(�) for an l with k � l � n if and only ifthere is a uniquely determined P l 2 
l(�) suh that ri(D) � ri(P l).Proof:� Let D 2 
k(D) with D < Gl(�). Then jDj � jGl(�)j and of ourse, there is an elementP l 2 
l(�) with jDj � jP lj. We have to show that ri(D) � ri(P l). But the onditionjDj � jP lj means either that ri(D) � ri(P l), or that jDj � j�P lj � jGl�1(�)j whih isimpossible.Furthermore, the element P l is uniquely determined. Let Ql 2 
l(�) be a seond elementdi�erent from P l with ri(D) � ri(Ql). Then we have jDj � jP l \Qlj � jGl�1(�)j and thisis impossible.� Let D 2 
k(D) suh that there exists a uniquely determined P l 2 
l(�) with ri(D) �ri(P l). Then we have jDj � jP lj and so jDj � jGl(�)j. Now we assume that jDj �jGl�1(�)j. Then we have jDj � jP l�1j for an element P l�1 2 
l�1(�) whih impliesri(D) 6� ri(P l) for all P l 2 
l(�) in ontradition to the given onditions. 2Of ourse, the deomposition D of a polytopal omplex � indues (anonially) a deompositionof eah of the polytopes in this omplex. Let P l be an element in 
l(�). Then we denote byD \ P l the deomposition of the polytope P l indued by D.Lemma 9.1.2 Let � be an n-dimensional polytopal omplex in Xn, D = D(�) a deompositionof �, D 2 
k(D) with 0 � k � n and P l 2 
l(�) with k � l � n. Then we have:n D 2 
k(D) : ri(D) � ri(P l) o = n D 2 
k(D \ P l) : D < Gl(P l) oProof:



41� Let D 2 
k(D) with ri(D) � ri(P l). Then D is also a deomposition polytope in thedeomposition D \ P l of P l and jDj � jGl(P l)j = jP lj. Now we assume that jDj �jGl�1(P l)j = j�P lj. Then this implies that ri(D) 6� ri(P l).� Let D 2 
k(D \ P l), and D < Gl(P l). Then of ourse D 2 
k(D). Furthermore,D < Gl(P l) means jDj 6� jGl�1(P l)j, and so D is not a deomposition polytope in theboundary of P l. Thus ri(D) � ri(P l). 2Let � be an n-dimensional polytopal omplex in Xn and D = D(�) a deomposition of �. Theset 
(D) of all faes of the polytopal omplex D splits into disjoint subsets
(D) = 
0(�;D) [ 
1(�;D) [ ::: [ 
n(�;D)where the set 
l(�;D) is de�ned as:
l(�;D) := nD 2 D : D < Gl(�)ofor all l = 0; 1; :::; n. In the same way the set 
k(D) splits into (n � k + 1) pairwise disjointsubsets 
k(D) = n[l=k 
kl (�;D)for all 0 � k � n. The set 
kl (�;D) is de�ned by
kl (�;D) = nD 2 
k(D) : D < Gl(�)ofor all k � l � n.Lemma 9.1.3 The sets 
kl (�;D) are disjoint unions aording to
kl (�;D) = [P l2
l(�)n D 2 
k(D) : ri(D) � ri(P l) ofor all k with 0 � k � n and all l with k � l � n.Proof:It is lear that the union on the right-hand side is disjoint.� Let D 2 
kl (�;D). Then there exists a unique fae P l 2 
l(�) suh that ri(D) � ri(P l)(with Lemma 9.1.1) and we have the �rst inlusion.� Let D 2 
k(D) and P l 2 
l(�) with ri(D) � ri(P l). It is lear that jDj � jGl(�)j andjDj 6� jGl�1(�)j with Lemma 9.1.1. 2



42Example 9.1.1 Let � = onv(P 01 ; P 02 ; P 03 ; P 04 ) be the 2-dimensional polytope in Example 3.1.1and D = D(P ) the polytopal deomposition in Figure 10. We use the notation AB := onv(A;B)for a pair of points A and B. Then
00(�;D) = � P 01 ; P 02 ; P 03 ; P 04 	
01(�;D) = f Q;R g
02(�;D) = ;
11(�;D) = n P 01 P 02 ; P 02Q; QP 03 ; P 03P 04 ; P 04R; RP 01 o
12(�;D) = � QR 	
22(�;D) = � onv(Q;R; P 01 ; P 02 ); onv(Q;R; P 04 ; P 03 ) 	 :
CCCCCCCCCC

���������� P 01
P 02P 03

P 04
Q
R

Figure 10: Deomposition of a PolytopeExample 9.1.2 The Cone-Deomposition and the Deomposition of a ConeAn n-dimensional one C in Xn is a speial kind of a polytope. It an be written as the Xn-onvexhull of an (n� 1)-dimensional polytope ~C and a point m with m 62 ~C; so C = onv(m; ~C). Forall d with 0 � d � n � 1 we an divide the set 
d(C) into two subsets as follows: 
d(C)0 isthe set of d-dimensional faes of C whih are ontained in ~C and 
d(C)00 := 
d(C) � 
d(C)0.Clearly, we have 
0(C)00 = fmg and 
n�1(C)0 = f ~Cg.Now we will desribe two speial kinds of polytopal deompositions. Let P be a polytope in Xn.Then we denote by K = K(P ) the pure polytopal omplex we get from P by one deomposition.All maximally dimensional elements in K are of the form onv(b(P ); P n�1), where b(P ) is thebaryenter and P n�1 is an (n� 1)-dimensional fae of P . For the sets of faes in K we have:
0(K) = 
0(P ) [ n b(P ) o� � �
i(K) = 
i(P ) [ n onv(b(P ); P i�1) : P i�1 2 
i�1(P ) o� � �
n(K) = n onv(b(P ); P n�1) : P n�1 2 
n�1(P ) o:If C = onv(m; ~C) is a one in Xn, we denote by S = S(C) the pure simpliial omplex thatan be onstruted from C in the following way. Firstly we deompose ~C baryentrially withoutdeomposition of the 1-dimensional faes. Seondly we onstrut all ones with basis equal to



43one of the deomposition simplies in ~C and enter m. If C is a one in X4, then for the setsof faes in S we obviously have:
00(C;S) = 
0(C)
01(C;S) = ;
02(C;S) = n b(C2) : C2 2 
2(C)0 o
03(C;S) = n b( ~C) o
04(C;S) = ;
11(C;S) = 
1(C)
12(C;S) = n onv(b(C2); C0) : C0 2 
0(C)0 ; C2 2 
2(C)0 o
13(C;S) = n onv(b( ~C); C0) : C0 2 
0(C)0 o [n onv(b( ~C); b(C2)) : C2 2 
2(C)0 o [n onv(b(C2);m) : C2 2 
2(C)0 o
14(C;S) = n onv(b( ~C);m) o
22(C;S) = 
2(C)00 [ n onv(b(C2); C1) : C1 2 
1(C)0 o
23(C;S) = n onv(b( ~C); C1) : C1 2 
1(C)0 o [n onv(b( ~C); b(C2); C0) : C0 2 
0(C)0 ; C2 2 
2(C)0 ; jC0j � jC2j o [n onv(b(C2); C0;m) : C0 2 
0(C)0 ; C2 2 
2(C)0 ; jC0j � jC2j o
24(C;S) = n onv(b( ~C); C0;m) : C0 2 
0(C)0 o [n onv(b( ~C); b(C2);m) : C2 2 
2(C)0 o
33(C;S) = n onv(b(C2); C1;m) : C1 2 
1(C)0 ; C2 2 
2(C)0 ; jC1j � jC2j o [n onv(b( ~C); b(C2); C1) : C1 2 
1(C)0 ; C2 2 
2(C)0 ; jC1j � jC2j o
34(C;S) = n onv(b( ~C); C1;m) : C1 2 
1(C)0 o [n onv(b( ~C); b(C2); C0;m) : C0 2 
0(C)0 ; C2 2 
2(C)0 ; jC0j � jC2j o
44(C;S) = n onv(b( ~C); b(C2); C1;m) : C1 2 
1(C)0 ; C2 2 
2(C)0 ; jC1j � jC2j oDe�nition 9.1.2 Let � be an n-dimensional polytopal omplex in Xn, D = D(�) a polytopaldeomposition and k and l integers with 0 � k � l � n. Then we de�ne the non-negative integerZkl (�;D) as: Zkl (�;D) := ℄nD 2 
k(D) : D < Gl(�)o= ℄
kl (�;D):



44In partiular we have Zkl (�;D) = 0 for all k > l.This means that Zkl (�;D) is the number of k-dimensional deomposition polytopes in D whihare elements in the l-skeleton Gl(�) of �.Theorem 9.1.1 Let � be an n-dimensional polytopal omplex in Xn and D = D(�) a polytopaldeomposition of �. Then we havea0ord(D) = nXl=0 Z0l (�;D);ak(D) = nXl=k Zkl (�;D) andZkl (�;D) = XP l2
l(�)Zkl (P l;D \ P l)for all k with 1 � k � n and all l with k � l � n. The notation D\P l means the deompositionof the polytope P l indued by D.Proof: The seond (and also the �rst) equation follows from the observation thatak(D) = ℄
k(D)= ℄n
kk(�;D) [ ::: [ 
kn(�;D)oand that the union is disjoint. For the third equation we note thatZkl (�;D) = ℄
kl (�;D)= XP l2
l(�) ℄n D 2 
k(D) : ri(D) � ri(P l) o= XP l2
l(�) ℄n D 2 
k(D \ P l) : D < Gl(P l) o= XP l2
l(�)Zkl (P l;D \ P l);where we have used Lemma 9.1.3 in the seond step and Lemma 9.1.2 in the third step. 2For a shorter desription we write in the polytopal ase (with the same notations):z(k; P l;D) := Zkl (P l;D \ P l)this is the number of k-dimensional deomposition polytopes in D, whose relative interior isontained in the relative interior of P l.Example 9.1.3 Consider the deomposition of the polytope P in Example 9.1.1. For instanewe have z(0; P;D) = 0z(1; P;D) = 1z(2; P;D) = 2z(0; P 01 P 04 ;D) = 1z(1; P 01 P 04 ;D) = 2:



45Lemma 9.1.4 Let P � Xn be a polytope and D = D(P ) a polytopal deomposition of P . Thenfor all k with 0 � k � n and for all l-dimensional faes P l 2 
l(P ) of P with 0 � l � n we havez(k; P l;D) = ℄nD 2 
kl (�;D) : ri(D) � ri(P l)o:Proof: We have z(k; P l;D) = Zkl (P l;D \ P l)= ℄n D 2 
k(D \ P l) : D < Gl(P l) o= ℄n D 2 
k(D) : ri(D) � ri(P l) o= ℄n D 2 
kl (�;D) : ri(D) � ri(P l) o;where we have used Lemma 9.1.2 in the third step. 2Now we will onsider the �rst baryentri deomposition B(�) of a polytopal omplex � Ofourse, B(�) has the nie property that B(�) \ P l = B(P l) for all elements P l 2 
l(�)!De�nition 9.1.3 Let � be an n-dimensional polytopal omplex in Xn and k and l integers with0 � k � l � n. Then we de�ne the positive integer Bkl (�) as:Bkl (�) := Zkl ��;B(�)� :This means that Bkl (�) is the number of k-dimensional deomposition polytopes in B(�) whihlie in the l-skeleton G(�) of �.Proposition 9.1.1 Let � be an n-dimensional polytopal omplex in Xn. Thena0ord(B(�)) = nXl=0 B0l (�);ak(B(�)) = nXl=k Bkl (�) andBkl (�) = XP l2
l(�)Bkl (P l)for all k with 1 � k � n and all l with k � l � n.Proof: The �rst and the seond equation is a simple onlusion of Theorem 9.1.1. For the thirdequation we have: Bkl (�) = Zkl (�;B(�))= XP l2
l(�)Zkl (P l;B(�) \ P l)= XP l2
l(�)Zkl (P l;B(P l))= XP l2
l(�)Bkl (P l): 2



46De�nition 9.1.4 Let P n be an n-dimensional polytope in Xn and k an integer with 0 � k � n.Then we de�ne b(k; P n) := Bkn(P n)= z(k; P n;B(P n)):Now we develop an important property of the deompositions.Theorem 9.1.2 Let � be a pure n-dimensional polytopal omplex in Xn, D = D(�) a deom-position of � and P l an arbitrary element in 
l(�) for 0 � l � n. ThenlXk=0(�1)k z(k; P l;D) = (�1)l:Proof: Let P l be an arbitrary element in 
l(�) with 0 � l � n. The number z(k; P l;D) ofk-dimensional polytopes in D whose relative interiors are ontained in the relative interior of P lis equal to the number ak(D \ P l)� ak(�D \ P l) for all k = 0; : : : ; l. We getlXk=0(�1)k z(k; P l;D) = lXk=0(�1)k ak(D \ P l)� l�1Xk=0(�1)k ak(�D \ P l)= �g(D \ P l)� �g(�D \ P l)= 1� a0inf (P )� �1 + (�1)l�1 � a0inf (P )�= (�1)l;where we have used Lemma 3.2.2 in the third step. 2Theorem 9.1.3 Let P = P n be an n-dimensional polytope in Xn. Then we haveb(0; P ) = 1 andb(k; P ) = n�kXv=0 XPu2
u(P )u=k�1+v b(k � 1; P ui )for all k with 1 � k � n.Proof: Eah of the k-dimensional deomposition simplies of 
k(B(P n)) in the interior of P isa pyramide with base equal to a uniquely determined deomposition simplex of 
k�1(B(P n)).In ontrast, eah (k � 1)-dimensional deomposition simplex in the interior of a proper fae ofP determines a uniquely determined k-dimensional deomposition simplex in the interior of P .2For an n-dimensional polytope P = P n in Xn we de�ne a new ombinatorial number f(k; P ) forall k with 1 � k � n: f(k; P ) := nXi=k XP i2
i(P ) b(k; P i):It is easy to see that f(k; P ) is the number of all k-dimensional deomposition simplies inB1(P n). For all k > n we put f(k; P ) = b(k; P ) = 0.



47Speial Cases:1. Let P = T be an n-dimensional simplex and for all k with 0 � k � n we de�ne b(k; n) :=b(k; T ) and f(k; n) := f(k; T ). All faes of T are simplies of lower dimensions and thenumber of k-dimensional faes of T is equal to ak(T ) = �n+1k+1� (ompare Lemma 3.1.1). Sowe get with Theorem 9.1.3b(k; n) = n�kXl=0 �n+ 1k + l� b(k � 1; k � 1 + l)= n�kXl=0 �n+ 1n� l� b(k � 1; n� 1� l):2. Let P = W be an n-dimensional ube. All faes of W are ubes of lower dimensions andthe number of k-dimensional faes of W is equal to ak(W ) = 2n�k�nk� (ompare Lemma3.1.1). So we get with Theorem 9.1.3b(k;W ) = n�kXl=0 2n�k+1�l� nk � 1 + l� b(k � 1;W k�1+l):9.2 The Numbers f(k; n) and b(k; n)In this setion we will determine the numbers f(k; n) and b(k; n) by translation of ombinatorial-geometrial questions into ombinatorial-stohastial questions, whih are easier to solve.Let T = T n be an n-dimensional simplex in Xn with verties 
0(T ) = fT 00 ; : : : ; T 0ng, P :=P �
0(T )� the power set of 
0(T ) and B := B(T ) the baryentri subdivision of T . Then themap � : 
(T ) �! Ponv �T 0i0 ; : : : ; T 0ik� 7�! �T 0i0 ; : : : ; T 0ik	is bijetive and eah element in B an be written as the onvex hull of baryenters of faes ofT . This means that onv �b�T n(i0)i0 � ; : : : ; b�T n(ik)ik �� 2 
k(B)if and only if there exists a permutation � 2 Sk+1 with��T n(�(i0))�(i0) � � ��T n(�(i1))�(i1) � � : : : � ��T n(�(ik))�(ik) � :Now we an extend the results of D. G. Hoel (ompare [Hoe℄).Theorem 9.2.1 Let T be an n-dimensional simplex in Xn and k in IN with 0 � k � n. Thenf(k; n) = k+1Xi=0(�1)i�k + 1i �(k + 2� i)n+1b(k; n) = k+1Xi=0(�1)i�k + 1i �(k + 1� i)n+1= (k + 1)! Sk+1n+1where Sk+1n+1 is a Stirling number of the seond order.



48Proof: We will use a simpler notation. We �nd out that f(k; n) is equal to the number ofdi�erent olletions ff0; : : : ; fkg with� fi 2 P for all i;� fi 6= fj for all i 6= j and� f0 � : : : � fk.The set of these olletions will be denoted by Lf .Furthermore, b(k; n) is equal to the number of di�erent olletions ff0; : : : ; fkg with� fi 2 P for all i;� fi 6= fj for all i 6= j;� f0 � : : : � fk and� fk = fT 00 ; : : : ; T 0ng.The set of these olletions will be denoted by Lb. Of ourse, Lb � Lf .Let ff0; : : : ; fkg be a olletion. Then we de�ne indutively the following sets:E0 := f0Ei := fi � fi�1 for i = 1; : : : ; kEk+1 := V � fk:The sets E0; E1; : : : ; Ek+1 are pairwise disjoint.Let ff0; : : : ; fkg be a subset of Lb. The assigned sets E0; E1; : : : ; Ek are not empty and neitherthe set Ek+1 (fk = (v0; : : : ; vn) = V ). This means, that b(k; n) = ℄Lb is equal to the numberof possibilities of arranging (n+ 1) balls (the elements of V ) in (k + 1) ells (E0; E1; : : : ; Ek) insuh a way that no ell is empty.Let ff0; : : : ; fkg be a subset of Lf . The assigned sets E0; E1; : : : ; Ek are not empty but theset Ek+1 is empty if and only if ff0; : : : ; fkg � Lb. This means that f(k; n) = ℄Lf is equalto the number of possibilities of arranging (n + 1) balls (the elements of V ) in (k + 2) ells(E0; E1; : : : ; Ek+1) in suh a way that the �rst (k + 1) ells (E0; E1; : : : ; Ek) are not-empty.We denote the number of possibilities of arranging n balls in k ells in suh a way that no ellis empty by N(k; n). Then with ([F℄) we get:N(k; n) = kXi=0(�1)i�ki�(k � i)n:We dedue that f(k; n) = N(k + 1; n+ 1) +N(k + 2; n+ 1);b(k; n) = N(k + 1; n+ 1);and the theorem follows. 2Let T be a regular n-dimensional simplex in Xn, b(T ) the baryenter of T and fH1; : : : ;Hkgthe hyperplanes of symmetry of T . The (from these planes) indued deomposition of T is thebaryentri deomposition and this deomposition an be extended to a deomposition of thewhole spae Xn into k-dimensional open ones with apex b(T ). Let h(k; n) be the number ofk-dimensional ones in this deomposition of Xn. Then we have



49Corollary 9.2.1 h(k; n) = b(k; n)= (k + 1)! Sk+1n+1:for all k with 0 � k � n.Lemma 9.2.1 For all numbers n 2 IN and all k with 0 < k � n we haveb(k; n) = (k + 1) � b(k � 1; n� 1) + b(k; n� 1) �:Proof: We have(k + 1) � b(k � 1; n� 1) + b(k; n� 1) � = (k + 1) � k! Skn + (k + 1)! Sk�1n �= (k + 1)!� Skn + (k + 1) Sk�1n �= (k + 1)! Sk+1n+1= b(k; n);where we have used a slight modi�ation of equation (2) in Setion 4.1. 29.3 Angles and CombinatorisIn this setion we will develop some onnetions between the ombinatoris and the angles of apolytopal omplex.Theorem 9.3.1 Let � be a pure n-dimensional omplex, k an integer with 0 � k � n and �k aombinatorial k-invariant. Then we haveXPn2
n(�) XP k2
k(Pn) �k(P k) �n�k�1(P kjP n) = XP k2
k(�) �k(P k) ��n�k�1(P k):Proof: Let � be a pure n-dimensional omplex and �k a ombinatorial k-invariant for all kwith 0 � k � n. Then by de�nition we have:�k(P k) ��n�k�1(P k) = �k(P k) XPn2
n(�) �n�k�1(P kjP n):Summing over all k-dimensional elements in 
k(�) we getXP k2
k(�) �k(P k) ��n�k�1(P k) = XP k2
k(�) XPn2
n(�) �k(P k) �n�k�1(P kjP n)= XPn2
n(�) XPk2
k(�)Pk2
k(Pn) �k(P k) �n�k�1(P kjP n)+ XPn2
n(�) XPk2
k(�)Pk 62
k(Pn) �k(P k) �n�k�1(P kjP n)= XPn2
n(�) XPk2
k(�)Pk2
k(Pn) �k(P k) �n�k�1(P kjP n);



50beause �n�k�1(P kjP n) = 0 for P k 62 
k(P n). This ompletes the proof. 2The following two theorems will show how the angles of the deomposition polytopes are relatedto the angles of the basi n-dimensional polytope. In partiular, we annot expet that the sumof all angles (of a �xed dimension) with the same apex in the deomposition will give an angle ofthe same dimension in the polytope. In the following we use the fat that all angles of arbitrarydimension an be measured as the volume of a part of an (n� 1)-dimensional sphere Sn�1(x; �)with enter in an inner point x of the apex of this angle.Theorem 9.3.2 Let P be an n-dimensional polytope in Xn, D = D(P ) a polytopal deompositionof P , D 2 
kl (P;D) with 0 � k � l � n and P l = P l(D) the fae of P with ri(D) � ri(P l).Then we have �Dn�k�1(D) = �n�l�1(P l):Proof: For D 2 
kl (P;D) where 0 � k � l � n, let P l = P l(D) be the uniquely determinedfae of P with ri(D) � ri(P l) (ompare Lemma 9.1.1). We an �nd an inner point x in D and� > 0 suh that the sphere Sn�1(x; �) only intersets elements in 
(D) whih are inident withD. Hene there are �nitely many maximally dimensional elements Dn1 ; : : : ;Dnh 2 
nn(P;D) suhthat �Dn�k�1(D) = hXi=1 �n�k�1(DjDni ):Here we have used that every angle of arbitrary dimension an be measured (n�1)-dimensionally.

Figure 11: A Deomposition of a CubeOf ourse, x 2 ri(D) � ri(P l) is an inner point of P l and the sphere Sn�1(x; �) intersets onlyelements in 
(P ) whih are inident with P l. Furthermore, the set fDni \ Sn�1(x; �) : i =1; : : : ; lg an be viewed as a polytopal deomposition of P \ Sn�1(x; �) and�n�k�1(DjDni ) = n�1(�)�1 vol(Dni \ Sn�1(x; �)):We denote by n�1(�) := vol(Sn�1(x; �)) the volume of the (n�1)-dimensional sphere Sn�1(x; �)of radius �. It follows that�Dn�k�1(D) = n�1(�)�1 hXi=1 vol(Dni \ Sn�1(x; �))



51= n�1(�)�1 vol(P n \ Sn�1(x; �))= �n�l�1(P l): 2Theorem 9.3.3 Let � be a pure n-dimensional polytopal omplex in Xn, D = D(�) a polytopaldeomposition of �, D 2 
kl (�;D) with 0 � k � l � n and P l = P l(D) the fae of � withri(D) � ri(P l). Then we have �Dn�k�1(D) = ��n�l�1(P l):Proof: Let D 2 
kl (�;D) with 0 � k � l � n and P l = P l(D) be the uniquely determinedfae of � with ri(D) � ri(P l) (ompare Lemma 9.1.1). Then there are �nitely many maximallydimensional elements Dn1 ; : : : ;Dnh 2 
nn(�;D) suh that�Dn�k�1(D) = hXi=1 �n�k�1(DjDni ):Furthermore, there exist �nitely many elements P n1 ; : : : ; P nq 2 
n(�) and an arrangementDn1;1;Dn1;2 ; : : : ; Dn1;g(1)Dn2;1;Dn2;2 ; : : : ; Dn2;g(2): : :Dnq;1;Dnq;2 ; : : : ; Dnq;g(q)of the elements Dn1 ; : : : ;Dnh suh that P ni is the union of Dni;1; : : : ;Dni;g(i) whih meansP ni = g(i)[j=1Dni;jfor all i = 1; : : : ; q. Of ourse, P l is a fae of eah P ni . We haveg(i)Xs=1 �n�k�1(DjDni;s) = �n�k�1(DjP ni )= �D\Pnin�k�1(D)for all i = 1; : : : ; q, where D \ P ni denotes the deomposition of P ni indued by D. We followthat �Dn�k�1(D) = hXi=1 �n�k�1(DjDni )= qXi=1 g(i)Xs=1 �n�k�1(DjDni;s)



52 = qXi=1 �D\Pnin�k�1(D)= qXi=1 �n�l�1(P ljP ni )= ��n�l�1(P l);where we have used Theorem 9.3.1 in the forth step. 2Furthermore we have the following generalization of the latest theorem.Theorem 9.3.4 Let � be a pure n-dimensional omplex in Xn and D = D(�) a polytopaldeomposition of �. Then we have for all k with 0 � k � n and all l with k � l � n:XD2
kl (�;D) �(D) �Dn�k�1(D) = XP l2
l(�)0BBB� XD2
kl (�;D)ri(D)�ri(Pl) �(D)1CCCA ��n�l�1(P l);where all �(D) are arbitrary real numbers, whih only depend on the polytope D (for instane,they are ombinatorial k-invariants).Proof: Let � � Xn be a pure n-dimensional omplex and D = D(�) be an arbitrary polytopaldeomposition of �. Then we have jD(�)j = j�j. Furthermore let� : D(�) �! IRD 7�! �(D)be an arbitrary map. For example, � may be a ombinatorial k-invariant (but in general � isallowed to map ombinatorially equal deomposition polytopes to di�erent natural numbers) orthe k-dimensional volume of the deomposition polytope D. Now let k and l be natural numberswith 0 � k � n and k � l � n. It is lear that for eah D 2 
kl (�;D) there exists a uniquelydetermined l-dimensional fae P l = P l(D) 2 
l(�) suh that jDj � jP lj and there exists nolower-dimensional fae of � whih also ontains D (ompare Lemma 9.1.1). Now we sum overall elements D in 
kl (�;D) and with with Theorem 9.3.3 in the �rst step and Lemma 9.1.3 inthe seond step we getXD2
kl (�;D) �(D) �Dn�k�1(D)= XD2
kl (�;D) �(D) ��n�l�1(P l(D))
= 0BBBB� XD2
kl (�;D)ri(D)�ri(Pl1) �(D)1CCCCA ��n�l�1(P l1) + : : : +0BBBBB� XD2
kl (�;D)ri(D)�ri�Plal(�)� �(D)1CCCCCA ��n�l�1(P lal(�))
= XP l2
l(�) 0BBB� XD2
kl (�;D)ri(D)�ri(Pl) �(D)1CCCA��n�l�1(P l)



53where 
l(�) = fP l1; :::; P lal(�)g is the set of all l-dimensional faes of the omplex � as usual. 2In the speial ase where all the numbers �(D) are 1 we have the following result.Corollary 9.3.1 With the same notations as in Theorem 9.3.4 we have for all pure dimensionalomplexes � and deompositions D:XD2
kl (�;D)�Dn�k�1(D) = XP l2
l(P ) z(k; P l;D) ��n�l�1(P l):Proof: We have XD2
kl (�;D)ri(D)�ri(Pl) 1 = ℄nD 2 
kl (�;D) : ri(D) � ri �P l�o= z(k; P l;D);with Lemma 9.1.4, and the Corollary follows immediately. 2In the speial ase where the pure omplex � is a polytope P , the omplex angle ��n�l�1(P l) isequal to the ordinary angle �n�l�1(P l) of P in the fae P l. So we get the following result.Corollary 9.3.2 Let P be an n-polytope in Xn and D = D(P ) a polytopal deomposition of P .Then we have for all k with 0 � k � n and all l with k � l � n:XD2
kl (P;D) �(D) �Dn�k�1(D) = XP l2
l(P )0BBB� XD2
kl (P;D)ri(D)�ri(Pl) �(D)1CCCA �n�l�1(P l);where all �(D) are arbitrary natural numbers, whih only depend on the polytope D (for instane,they are ombinatorial k-invariants).Example 9.3.1 Let P = onv(P 01 ; P 02 ; P 03 ; P 04 ) be a 2-dimensional polytope and D = D(P )the polytopal deomposition in Figur 12. We denote by D21 = onv(Q;R; P 01 ; P 02 ) and D22 =onv(Q;R; P 03 ; P 04 ) the two deomposition polytopes of maximal dimension in D. Then we haveXD02
00(P;D)�D1 (D0) = �D1 (P 01 ) + �D1 (P 02 ) + �D1 (P 03 ) + �D1 (P 04 )= XP 02
0(P ) z(0; P 0;D) �1(P 0);XD02
01(P;D)�D1 (D0) = �D1 (R) + �D1 (Q)= �1(RjD21) + �1(RjD22) + �1(QjD21) + �1(QjD22);= 12 + 12= �0(P 02 P 03 jP ) + �0(P 01P 04 jP )



54 = XP 12
1(P ) z(0; P 1;D) �0(P 1);XD02
02(P;D)�D1 (D0) = 0;XD12
11(P;D)�D0 (D1) = �D0 (P 01 P 02 ) + �D0 (P 02Q) + �D0 (QP 03 )+�D0 (P 03 P 04 ) + �D0 (P 04R) + �D0 (RP 01 )= 6 12= �0(P 01 P 02 jP ) + 2 �D0 (P 02 P 03 jP ) + �0(P 03 P 04 jP ) + 2 �D0 (P 01 P 04 jP )= XP 12
1(P ) z(1; P 1;D) �0(P 1);XD12
12(P;D)�D0 (D1) = �D0 (QR)= 1= XP 22
2(P ) z(1; P 2;D) �0(P 2)= z(1; P;D) ��1(P );XD22
22(P;D)�D�1(D2) = �D�1(D21) + �D�1(D22)= 2= XP 22
2(P ) z(2; P 2;D) ��1(P 2)= z(2; P;D) ��1(P ):
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Figure 12: A Polytopal Deomposition10 Simplies and VolumeIn this setion we will reall some well-known fats about simplies in the spaes Xn = Sn orH n .10.1 Shl�ai's Di�erential Formula for SimpliesThis formula was established by L. Shl�ai for spherial simplies [Sh℄. Muh later, H. Kneser[Kn℄ gave a seond proof for both spherial and hyperboli simplies. This proof was workedout by J. B�ohm (ompare [BH℄). Another funtional analyti proof due to J. Milnor (ompare[Mi℄).Theorem 10.1.1 (Shl�ai's Di�erential Formula) Let T be an n-dimensional simplex inthe spae Xn = Sn or H n (n � 2). If the simplex T is deformed di�erentially in suh a way thatits ombinatorial stuture does not hange, then the volume of T hanges di�erentially and wehave KdvolXn(T ) = 1n� 1 XTn�22
n�2(T ) volXn(T n�2) d�1(T n�2) volX0(T 0) = 1:10.2 The Volume Funtion of a Simplex in XnLet T = T n be an n-dimensional simplex in the spae Xn = Sn or H n . The Gram matrixG = G(T ) of T , whih is de�ned by the dihedral angles of the simplex, de�nes T up to anisometry. Therefore, the volume volXn(T ) is a funtion of the dihedral angles.Let N = n(n+ 1)=2 and agree to number the oordinates of vetors in C N by unordered pairsof integers i; j, where i; j = 0; 1; : : : ; n; i 6= j. For eah vetor � 2 (0; �)N � C N we denote byG(�) the symmetri matrix of order (n+1) with 1's on the main diagonal and � os(�ij) o� it.Now we denote by M+ (respetively M0 and M�) the family of all sets of dihedral angles forsimplies in Sn (En , H n). Furthermore, let M =M+ [M0 [M� and for eah � 2M denote byT (�) the simplex whose dihedral angles are the entries of �. Now we have the following result(ompare [V1℄, Theorem 2.1, page 117).



56Theorem 10.2.1 For eah even integer n � 0 there exists an analyti funtion v whih isde�ned on an open subset of the spae C N ontaining the set M and assumes the followingvalues on M : v(�) = 8<: volSnT (�) ; � 2M+0 ; � 2M0(�1)n2 volHnT (�) ; � 2M� :For eah odd integer n � 0 there exists a two-valued funtion v whih is de�ned on an opensubset of the spae C N ontaining the set M , rami�es on the set of � with detG(�) = 0 andassumes the following values on M :v(�) = 8<: � volSnT (�) ; � 2M+0 ; � 2M0�i volHnT (�) ; � 2M� :10.3 Angle Sums and Poinar�e's FormulaLet T be an n-dimensional simplex in Sn and for all �1 � k � n let !n�k�1 be the sum of all(n � k � 1)-dimensional angles and let W (T ) be the generalized angle sum of P . H. Poinar�e[Po℄ proved in 1905 thatW (T ) = � 2 �12m volX2m(T ) ; n = 2m even0 ; n = 2m+ 1 odd :For the proof we an use the fat that the volume of a spherial simplex T is equal to the volumeof its antipodal simplex T a. By expressing these volumes by the integrals of the harateristifuntions we get the result (ompare [V2℄, page 120). This result was generalized by H. Hopfto simplies in all spaes Xn of onstant setional urvature K (ompare [Hop℄, Theorem III) inthe following way.Theorem 10.3.1 (Poinar�e's Formula for Simplies) Let T be an n-dimensional simplexin the spae Xn = Sn, En or H n . Then we haveW (T ) = � 2 Km �12m volX2m(T ) ; n = 2m even0 ; n = 2m+ 1 odd :Remark: If we use Theorem 10.2.1 we an follow the �rst equation (for even n = 2m) inTheorem 10.3.1 from Poinar�e's result in the spherial ase. The funtion v an be written asv (T (�)) = v(�) = 12 (�1)m 2m W (T (�)) :10.4 Shl�ai's Redution Formula and Peshl's Relations for SimpliesLet T be an n-dimensional simplex in Xn. Eah angle of T is equal to the (normalized) volume ofa spherial simplex. We an use Poinar�e's Formula to eliminate the volumes of even-dimensionalangles. So we get a volume formula for T whih depends only on the odd-dimensional angles andthe ombinatoris of T . This formula is alled Shl�ai's Redution Formula, �rst proved by L.Shl�ai [Sh℄ in 1901 by using his di�erential formula. E. Peshl proved this formula and otherlinear relations between the angle sums, alled Peshl's Relations, in a purely ombinatorial way(ompare [Pe℄) in 1955 by using Poinar�e's Formula.



57Theorem 10.4.1 (Shl�ai-Peshl Relations) Let T be an n-dimensional simplex in Xn. Thenwe have the following relations between the angle sums of T :!2l(T ) = lXk=0(�1)k a2k+1 �n� 2l + 2k + 12k + 1 � !2l�2k�1(T )for all l with 0 � l < [n=2℄ andW (T ) = 8><>: 2 mXk=0(�1)k a2k+1 !2m�2k�1(T ) ; n = 2m even0 ; n = 2m+ 1 odd :Furthermore, these relations are a omplete system of linearly independent linear relations be-tween the !i's.Remark: In the speial ase of a 2m-dimensional Eulidian simplex T in En (this means K = 0)we get !2m�1(T ) = mXk=1(�1)k+1 a2k+1 !2m�2k�1(T ):10.5 The Shl�ai-Kellerhals Redution Formula for OrthoshemesLet R be an orthosheme (of degree 0) in the spae X2m = S2m or H 2m . We de�ne 
d(R)� as theset of all elements Rd 2 
d(R) suh that the sheme S(Rd) is ellipti and all of its omponentsare of even order.The speial geometri properties of orthoshemes an be used to get a simpler redution formula.This formula was proved by L. Shl�ai [Sh℄ in 1901 for spherial orthoshemes and generalizedby R. Kellerhals [Ke℄ in 1991 to hyperboli orthoshemes of all degrees. Both proofs use Shl�ai'sDi�erential Formula. It is remarkable that this formula has the same struture for orthoshemesof all degrees though they are of di�erent ombinatorial types.Theorem 10.5.1 (Shl�ai-Kellerhals Formula) Let R be a 2m-dimensional orthosheme ofdegree 0 in the spae X2m = S2m or H 2m . Then2 Km �12m volX2m(R) = mXk=0 qk+1 !�2m�2k�1(R);with !�2m�2k�1(R) = XR2k2
d(R)� �2m�2k�1(R2k):The numbers qk+1 are the oeÆients of the Taylor expansion of p1 + x (ompare Lemma 4.2.1).



5811 Volumes and Angle Sums of Polytopal ComplexesIt is lear that all polytopes, and so all polytopal omplexes, an be deomposed into simplies.With the results of the previous setion we are able to transfer fats from setion 8 to polytopalomplexes. Furthermore, we will derive some well-known theorems by this mahinery.11.1 Shl�ai's Di�erential Formula for PolytopesIn this setion we will generalize Shl�ai's Di�erential Formula (Theorem 10.1.1) from simpliesto polytopes. Shl�ai remarked that this is possible by deomposition of a polytope into simplies(ompare [Sh℄, page 273). Now we will work out this idea.Theorem 11.1.1 (Shl�ai's Di�erential Formula for Polytopes) Let P be an n-dimensio-nal polytope in the spae Xn = H n or Sn. For all P n�2 in 
n�2(P ) let �1(P n�2) be the 1-dimensional angle of P with apex P n�2. If the polytope P is deformed di�erentially in suh away that its ombinatorial stuture does not hange, then the volume of P hanges di�erentiallyand we haveKdvolXn(P ) = 1n� 1 XPn�22
n�2(P ) volXn(P n�2) d�1(P n�2) volX0(P 0) = 1:Proof: We have proved this result in the speial ase where P is a simplex (see Theorem 10.1.1).Now, let P = P n be an n-dimensional polytope in Xn and D = D(P ) an arbitrary simpliialdeomposition of P . Then we haveKdvolXn(P ) = XTn2
n(D)KdvolXn(T n)= 1n� 1 XTn2
n(D) XTn�22
n�2(Tn) volXn(T n�2) d�1(T n�2)= 1n� 1 XTn�22
n�2(D) volXn(T n�2) d�D1 (T n�2)= 1n� 1 nXi=n�2 XTn�22
n�2i (P;D) volXn(T n�2) d�D1 (T n�2)= 1n� 1 nXi=n�2 XP i2
i(P ) 0BBB� XTn�22
n�2i (P;D)ri(Tn�2)�ri(Pi) volXn(T n�2)1CCCA d�n�i�1(P i):Here we have used Theorem 9.3.1 in the third step and Theorem 9.3.4 in the forth step. Ofourse, for i = n � 1 and n the di�erential d�n�i�1(P i) is equal to zero, beause the angle�n�i�1(P i) is onstant during the deformation. So we getKdvolXn(P ) = 1n� 1 XPn�22
n�2(P ) 0BBB� XTn�22
n�2n�2(P;D)ri(Tn�2)�ri(Pn�2) volXn(T n�2)1CCCA| {z }volXn(Pn�2) d�1(P n�2)



59= 1n� 1 XPn�22
n�2(P ) volXn(P n�2) d�1(P n�2): 211.2 Generalized Poinar�e RelationsTheorem 11.2.1 Let � be a pure n-dimensional polytopal omplex in Xn and volX2m(�) be thevolume of the geometri realization of � in Xn. ThenXPj2
j (�)j=0;:::;n (�1)j ��n�j�1(P j) = � 2 Km �12m volX2m(�) ; n = 2m even0 ; n = 2m+ 1 odd :Proof: Let � be a pure n-dimensional polytopal omplex and D = D(�) a simpliial deompo-sition of �. We know that the generalized angle sum of eah deomposition simplex is equal tozero in odd dimensions and proportional to the volume in even dimensions (ompare Theorem10.3.1). So we get: � 2 Km �12m volX2m(�) ; n = 2m even0 ; n = 2m+ 1 odd= XTn2
n(D)W (T n)= XTn2
n(D) nXi=0(�1)i !n�i�1(T n)= XTn2
n(D) nXi=0(�1)i XT i2
i(Tn)�n�i�1(T ijT n)= nXi=0(�1)i XTn2
n(D) XT i2
i(Tn)�n�i�1(T ijT n)= nXi=0(�1)i XT i2
i(D)�Dn�i�1(T i)= nXi=0(�1)i nXj=i XT i2
ij(�;D)�Dn�i�1(T i)= nXi=0(�1)i nXj=i XP j2
j(�) z(i; P j ;D) ��n�j�1(P i)= nXi=0(�1)i nXj=0 XP j2
j(�) z(i; P j ;D) ��n�j�1(P i)= nXj=0 XP j2
j(�)  nXi=0 (�1)i z(i; P j ;D) ! ��n�j�1(P j)= XPj2
j(�)j=0;:::;n  nXi=0 (�1)i z(i; P j ;D) ! ��n�j�1(P j):



60We have used Theorem 9.3.1 in the �fth step and Theorem 9.3.4, resp. Corollary 9.3.2, in theseventh step. Furthermore, we have z(i; P j ;D) = 0 for all i > j and with Theorem 9.1.2 thelaim follows immediately. 2If � is an n-dimensional polytope (with all of its faes) we get Poinar�e's formula for polytopes.Corollary 11.2.1 (Poinar�e's Formula for Polytopes) Let P be an n-dimensional poly-tope in Xn. ThenW (P ) = XPj2
j(P )j=0;:::;n (�1)j �n�j�1(P j) = � 2 Km �12m volX2m(P ) ; n = 2m even0 ; n = 2m+ 1 odd :With Theorem 11.2.1 we an easily ompute the Euler-Charateristi of the sphere Sn. But thisis not an independent proof beause we have used this result to dedue Theorem 11.2.1.Corollary 11.2.2 Let � be a tesselation of the sphere Sn. Then�(�) = � 2 ; n = 2m even0 ; n = 2m+ 1 odd :Proof: We have volSn(�) = n and eah omplex angle of � is of measure 1 (Sn has noboundary). Furthermore, the volume of Sn is equal to n. Hene we get with Theorem 11.2.1� 2 ; n even0 ; n odd= XPj2
j(�)j=0;:::;n (�1)j ��n�j�1(P j)= XPj2
j(P )j=0;:::;n (�1)j= a0(�)� a1(�) + :::+ (�1)nan(�)= �(�) 2Furthermore, from Corollary 11.2.1 we an derive the Gram-Sommerville Formula for Eulideanpolytopes. In 1874 Gram proved it for polytopes in E3 . A similar formula for n-dimensionalpolytopes was proved by Sommerville in 1927 (his proof ontained a gap, whih was removedby Gr�unbaum 1967). For a diret proof see for instane at [PT℄, page 143, Theorem 4 or [G℄,hapter 14.1.Proposition 11.2.1 (Gram-Sommerville Formula) Let P be an n-dimensional polytope inEn . ThenW (P ) = !n�1(P )� !n�2(P ) + � � �+ (�1)n�1!0(P ) + (�1)n!�1(P ) = 0:



61Proof: We know that K = 0 beause P is a Eulidean polytope. Furthermore, we haveXP j2
j(P )(�1)j �n�j�1(P j) = (�1)j !n�j�1(P )for all j = 0; 1; : : : ; n and the proposition follows immediately. 2Moreover, we an prove the Theorem of Gau� and Bonnet for polytopal Xn-manifolds with orwithout boundary. The following proposition an be viewed as a generalization of results of H.Hopf (ompare [Hop℄, equations (10) and (12)), but we fous our attention to the very speialase of pure n-dimensional polytopal omplexes in Xn.Proposition 11.2.2 (Gau�-Bonnet for Polytopal Complexes) Let � be a pure n-dimensio-nal polytopal omplex in Xn with boundary omplex ��. Then we have�g(�)� 12 �g(��) � r = � 2 Km �12m volX2m(�) ; n = 2m even0 ; n = 2m+ 1 odd ;where the number r is de�ned asr := XPj2
j(��)j=0;:::;n�2 (�1)j��n�j�1(P j):Proof: Let � be a pure n-dimensional polytopal omplex in Xn with boundary omplex ��. IfP j 2 
j(�)�
j(��) for some j = 0; : : : ; n then the omplex angle ��n�j�1(P j) is equal to oneand we get XPj2
j(�)�
j (��)j=0;:::;n (�1)j = nXj=0 (�1)j℄ �
j(�)� 
j(��)�= nXj=0 (�1)j �aj(�)� aj(��)�= nXj=0 (�1)jaj(�)� n�1Xj=0 (�1)jaj(��)= �g(�)� �g(��):Then we haveXPj2
j(�)j=0;:::;n (�1)j ��n�j�1(P j) = XPj2
j (�)�
j(��)j=0;:::;n (�1)j ��n�j�1(P j) + XPj2
j(��)j=0;:::;n�1 (�1)j ��n�j�1(P j)= �g(�)� �g(��) + XPj2
j(��)j=0;:::;n�1 (�1)j ��n�j�1(P j)= �g(�)� �g(��) + (�1)n�1 XPn�12
n�1(��)��0 (P n�1)+ XPj2
j (��)j=0;:::;n�2 (�1)j ��n�j�1(P j)



62 = �g(�)� �g(��) + 12(�1)n�1an�1(��)+ XPj2
j (��)j=0;:::;n�2 (�1)j ��n�j�1(P j):We have exert with Lemma 3.2.1 in the seond step and with ��0 (P n�1) = 12 for all P n�1 2
n�1(��) in the third step. Now we use the exterior angles ��n�j�1(P j) = 12 � ��n�j�1(P j) anddevelop the last sum. We �nd thatXPj2
j (��)j=0;:::;n�2 (�1)j ��n�j�1(P j) = XPj2
j(��)j=0;:::;n�2 (�1)j � 12 � ��n�j�1(P j) �= 12 � �g(��) � (�1)n�1an�1(��) �� XPj2
j (��)j=0;:::;n�2 (�1)j ��n�j�1(P j):So we get XPj2
j(�)j=0;:::;n (�1)j ��n�j�1(P j) = �g(�)� 12�g(��) � r;and with Theorem 11.2.1 the desired result follows immediately. Furthermore, we remark that�g(�)� 12�g(��) = �(�)� 12�(��)� 12a0inf (�): 2Example 11.2.1 Let � be the 2-dimensional polytopal omplex in Example 3.1.2 (see Figure2). We an easily see that �(�) = 8� 10 + 3 = 1�(��) = 8� 10 = �2r = 8Xi=1 ��1 (P 0i ) = 4� 8Xi=1 ��1 (P 0i );and so we get for the volume of �:2 K �12 volX2(�) = 8Xi=1 ��1 (P 0i )� 2:Example 11.2.2 Let � be the 2-dimensional polytopal omplex in Example 9.1.1 (see Figure10). We an easily see that �(�) = 6� 7 + 2 = 1�(��) = 6� 6 = 0r = 8Xi=1 ��1 (P ji ) = 2� 4Xi=1 ��1 (P 0i );and so we get for the volume of �:2 K �12 volX2(�) = 4Xi=1 ��1 (P 0i )� 1:



63Proposition 11.2.3 (Gau�-Bonnet for Polytopes) Let P be an n-dimensional polytope inXn. Then12 � 1 + (�1)n � a0inf (P )�� r = � 2 Km �12m volX2m(P ) ; n = 2m even0 ; n = 2m+ 1 odd ;where the number r is de�ned asr := XPj2
j(�P )j=0;:::;n�2 (�1)j�n�j�1(P j):Proof: The polytope P in Xn is an n-dimensional polytopal omplex with boundary omplex�P . Thus we have with Lemma 3.2.2�g(P ) = �(P )� a0inf (P )= 1� a0inf (P )�g(�P ) = �(�P ) � a0inf (P )= 1 + (�1)n � a0inf (P ):Hene, by a simple omputation we get�g(P ) + 12�g(�P ) = 12 � 1 + (�1)n � a0inf (P ) � ;and the laim follows with Proposition 11.2.2. 2Remark 11.2.1 Let P be an n-dimensional polytope in Xn. For even dimensions n = 2mProposition 11.2.3 an be written as1� r � 12 a0inf (P ) = 2 Km �12m volX2m(P );and for odd dimensions n = 2m+ 1 we getr + 12 a0inf (P ) = 0:If P is an n-dimensional polytope in the Eulidean spae En (K=0) Proposition 11.2.3 an bewritten as r = � 1 ; n even0 ; n odd :This is a generalization of the well-known fat that the sum of all exterior angles of a Eulideanpolygone (n=2) is equal to 1 (or 2� without normalization).11.3 The Generalized Shl�ai-Peshl RelationsNext we generalize Theorem 10.4.1 to polytopal omplexes by deomposing the omplex intosimplies.



64Theorem 11.3.1 (Generalized Shl�ai-Peshl Relations I) Let � be a 2m-dimensionalpure polytopal omplex in X2m and D = D(�) a simpliial deomposition of �. Then we have:2 Km �12m volX2m(�) = XPj2
j (�)j=0;:::;2m E(P j ;D) ��2m�j�1(P j)with E(P j ;D) = 2 mXk=0(�1)k a2k+1 z�2k; P j ;D�:Proof: Let � be a 2m-dimensional pure polytopal omplex in X2m and D = D(�) a simpliialdeomposition of �. Then with Theorem 10.3.1 and 10.4.1 we getKm �12m volXn(�) = Km �12m XT 2m2
2m(D) volXn(T 2m)= XT 2m2
2m(D) mXk=0(�1)ka2k+1 XT 2k2
2k(T 2m)�2m�2k�1(T 2kjT 2m)= mXk=0(�1)ka2k+1 XT 2m2
2m(D) XT 2k2
2k(T 2m)�2m�2k�1(T 2kjT 2m)= mXk=0(�1)ka2k+1 XT 2k2
2k(D)�D2m�2k�1(T 2k)= mXk=0(�1)ka2k+1 2mXj=2k XT 2k2
2kj (�;D)�D2m�2k�1(T 2k)= mXk=0(�1)ka2k+1 2mXj=2k XP j2
j(�) z(2k; P j ;D) ��2m�j�1(P j)= mXk=0(�1)ka2k+1 2mXj=0 XP j2
j(�) z(2k; P j ;D) ��2m�j�1(P j)= XPj2
j(�)j=0;:::;2m " mXk=0(�1)ka2k+1 z(2k; P j ;D) # ��2m�j�1(P j)= XP2j2
2j (�)j=0;:::;m " mXk=0(�1)ka2k+1 z(2k; P 2j ;D) # ��2m�2j�1(P 2j)+ XP2j+12
2j+1(�)j=0;:::;m�1 " mXk=0(�1)ka2k+1 z(2k; P 2j+1;D) # ��2m�2j(P 2j+1):The fourth step follows from Theorem 9.3.1 and the sixth step from Theorem 9.3.4 and Corollary9.3.2. In the seventh step we have used that z(2k; P j ;D) = 0 for all j < 2k. 2Corollary 11.3.1 (Redution Formula for a 4-dimensional Cone) Let C = onv(m; ~C)be a 4-dimensional one in X4 = S4 or H 4 . Furthermore, for all integers d with 0 � d � 4let 
d(C)0 be the set of d-dimensional faes of C whih are ontained in ~C and 
d(C)00 :=
d(C)�
d(C)0. Then



652 �14 volX4(C) = XC02
0(C)�3(C0) + XC22
2(C)0� 1� 12a0(C2) � �1(C2)� 12 XC22
2(C)00 �1(C2)+12 � 12 � a0( ~C) + a2( ~C) �+ 14 XC22
2( ~C) a0(C2).Proof: Let C = onv(m; ~C) be a 4-dimensional one in X4 = S4 or H 4 and S = S(C) thedeomposition of C, desribed in Example 9.1.2. We remark thatXC22
2( ~C) a1(C2) = XC22
2( ~C) a0(C2)= 2a1( ~C)beause we ount all edges of ~C twie. Then we havez�2k;C1;S� = 0 for C1 2 
1(C) and k = 0; 1; 2z�0; C3;S� = 1 for C3 = ~Cz�0; C3;S� = 0 for C3 2 
3(C)00z�2; C3;S� = a0(C3)� 1 for C3 2 
3(C)00 with C3 = onv(m;C2)z�2; C3;S� = a1(C3) + XC22
2(C3) a0(C2) = 32 XC22
2( ~C) a0(C2) for C3 = ~Cz�4; C3;S� = 0 for all C3 2 
3(C)z�0; C0;S� = 1 for all C0 2 
0(C)z�0; C2;S� = 1 for all C2 2 
2(C)0z�0; C2;S� = 0 for all C2 2 
2(C)00z�2; C2;S� = 1 for all C2 2 
2(C)00z�2; C2;S� = a1(C2) = a0(C2) for all C2 2 
2(C)0z�0; C ;S� = 0z�2; C ;S� = a0( ~C) + a2( ~C)z�4; C ;S� = XC22
2( ~C) a1(C2) = XC22
2( ~C) a0(C2):



66Sine a1 = 1=2; a3 = 1=4 and a5 = 1=2 we getE(C0;S) = 12E(C1;S) = 0E(C2;B) = 12 � 14a0(C2) for all C2 2 
2(C)0E(C2;S) = �14 for all C2 2 
2(C)00E( ~C;S) = 12 � 38 XC22
2( ~C) a0(C2)E(C3;S) = �14 a0(C2) for C3 = onv(m;C2)= �14 � a0(C3)� 1 �E(C ;S) = �14 � a0( ~C) + a2( ~C) �+ 12 XP 22
2( ~C) a0(C2):Thus we �nd for the volume of C (ompare Theorem 11.3.1) that�14 volX4(C) = 12 XC02
0(C)�3(C0) + XC22
2(C)0� 12 � 14a0(C2) ��1(C2)� 14 XC22
2(C)00 �1(C2)�18 XC32
3(C)00 � a0(C3)� 1 �+ 12 0� 12 � 38 XC22
2( ~C) a0(C2) 1A�14 � a0( ~C) + a2( ~C) �+ 12 XC22
2( ~C) a0(C2):Finally, we use the identity XC32
3(C)00 � a0(C3)� 1 � = XC22
2( ~C) a0(C2)and the theorem follows immediately. 2The following volume formula for 4-dimensional spherial polytopes P is due to L. Shl�ai (see[Sh℄, page 276) who proved it by a deomposition of P into ones.Corollary 11.3.2 (Redution Formula for a 4-dimensional Polytope) Let P be a 4-di-mensional polytope in X4 = S4 or H 4 . Then2 �14 volX4(P ) = XP 02
0(P )�3(P 0) + XP 22
2(P )� 1� 12a0(P 2) � �1(P 2)+1� 12 � a0(P ) + a2(P ) �+ 14 XP 22
2(P ) a0(P 2).



67Proof:Let P be a 4-dimensional polytope in X4 = S4 or H 4 and B = B(P ) the baryentri deompositionof P where 1-dimensional faes of P are not disseted. We remark thatXP 22
2(P 3) a0(P 2) = XP 22
2(P 3) a1(P 2)= 2a1(P 3)for all P 3 2 
3(P ), beause we ount all edges of P 3 twie. Furthermore, eah 2-dimensionalfae P 2 of P is ontained in exatly two 3-dimensional faes of P and so it intersets 2a1(P 2) =2a0(P 2) di�erent deomposition simplies. Henez�4; P ;B� = 2 XP 22
2(P ) a0(P 2)= 2 XP 22
2(P ) a1(P 2):Then we havez�2k; P 1;B� = 0 for P 1 2 
1(P ) and k = 0; 1; 2z�0; P 3;B� = 1 for P 3 2 
3(P )z�2; P 3;B� = a1(P 3) + XP 22
2(P 3) a0(P 2) = 32 XP 22
2(P 3) a0(P 2) for P 3 2 
3(P )z�4; P 3;B� = 0 for P 3 2 
3(P )z�0; P 0;B� = 1 for P 0 2 
0(P )z�0; P 2;B� = 1 for P 2 2 
2(P )z�2; P 2;B� = a0(P 2) for P 2 2 
2(P )z�0; P ;B� = 1z�2; P ;B� = a1(P )| {z }A +2a2(P )| {z }B + XP 22
2(P ) a0(P 2)| {z }C + XP 32
3(P ) a0(P 3)| {z }D= a1(P ) + 2a2(P ) + XP 22
2(P ) a0(P 2) + XP 32
3(P ) � 2 + a1(P 3)� a2(P 3) �= a1(P ) + 2a2(P ) + XP 22
2(P ) a0(P 2) + 2a3(P )



68 + XP 32
3(P ) a1(P 3)| {z }E � XP 32
3(P ) a2(P 3)| {z }F= a1(P ) + 2a2(P ) + 2 XP 22
2(P ) a0(P 2)z�4; P ;B� = 2 XP 22
2(P ) a0(P 2):Eah 2-dimensional deomposition polytope in the interior of P is a one with basis in a 1-dimensional deomposition simplex in the boundary of P . The term A is the number of ele-ments with basis equal to an edge of P , B is the number of elements with basis in a simplexonv( (midpoint of a 3-fae) , (midpoint of a 2-fae) ), C is the number of elements with basisin a simplex onv( (midpoint of a 2-fae), (vertex of a 2-fae) ) andD is the number of elementswith basis in a simplex onv( (midpoint of a 3-fae), (vertex of a 3-fae) ). Furthermore we usethat E = XP 32
3(P ) a1(P 3) = XP 22
2(P ) a1(P 2) = XP 22
2(P ) a0(P 2)F = XP 32
3(P ) a2(P 3) = 2a2(P ) = B:So we get E(P 0;B) = 12E(P 1;B) = 0E(P 2;B) = 12 � 14a0(P 2)E(P 3;B) = 12 � 38 XP 22
2(P 3) a0(P 2)E(P ;B) = 12 � 14a1(P )� 12a3(P ) + 12 XP 22
2(P ) a0(P 2)and it follows for the volume of P (ompare Theorem 11.3.1) that�14 volX4(P ) = 12 XP 02
0(P )�3(P 0) + XP 22
2(P )� 12 � 14a0(P 2) � �1(P 2)+12 XP 32
3(P )0� 12 � 38 XP 22
2(P 3) a0(P 2) 1A+12 � 14a1(P )� 12a3(P ) + 12 XP 22
2(P ) a0(P 2):



69Finally, we use the two identitiesXP 32
3(P ) XP 22
2(P 3) a0(P 2) = 2 XP 22
2(P ) a0(P 2)a1(P ) + a3(P ) = a0(P ) + a2(P )and the theorem follows immediately. 2Now we will generalize the remaining Shl�ai-Peshl Relations (ompare Theorem 10.4.1) fromsimplies to n-dimensional pure polytopal omplexes.Theorem 11.3.2 (Generalized Shl�ai-Peshl Relations II) Let � be an n-dimensionalpure polytopal omplex in Xn. ThenlXj=0 XPv2
v(�)v=q+2j "z�q � 1; P v ;D�+ jXp=0(�1)p+1a2p+1�q + 2p+ 12p+ 1 � z�q + 2p; P v ;D�# ��2l�2j�1(P v)+ lXj=0 XPu2
u(�)u=q+2j�1"z�q � 1; P u;D�+ j�1Xp=0(�1)p+1a2p+1�q + 2p+ 12p+ 1 � z�q + 2p; P u;D�# ��2l�2j(P u)= 0for all l with 0 � 2l < n and q := n� 2l.Proof:Let � be a n-dimensional pure omplex in Xn and D = D(�) a simpliial deomposition of �.Then with Theorem 10.4.1 we get for all l with 0 � 2l < n and for q = q(m; l) := n� 2l0 = XTn2
n(D)!2l(T n)� XTn2
n(D) lXk=0(�1)k a2k+1 �q + 2k + 12k + 1 � XTv2
v(Tn)v=q+2k �2l�2k�1(T v)= XTn2
n(D) XTv2
v(Tn)v=q�1 �2l(T v)� XTn2
n(D) lXk=0(�1)k a2k+1 �q + 2k + 12k + 1 � XTv2
v(Tn)v=q+2k �2l�2k�1(T v)= XTv2
v(D)v=q�1 �D2l(T v)



70 � mXk=0(�1)k a2k+1 �q + 2k + 12k + 1 � XTv2
v(D)v=q+2k �D2l�2k�1(T v)= nXj=q�1 XTv2
vj (D)v=q�1 �D2l(T v)� lXk=0(�1)k a2k+1 �q + 2k + 12k + 1 � nXj=q+2k XTv2
vj (�;D)v=q+2k �D2l�2k�1(T v)= nXj=q�1 XP j2
j(�) z(q � 1; P j ;D) ��n�j�1(P j)� lXk=0(�1)k a2k+1 �q + 2k + 12k + 1 � nXj=q+2k XP j2
j(�) z(q + 2k; P j ;D) ��n�j�1(P j):If we rearrange the parts of the sums skillfully, the theorem follows. 2Theorem 11.3.3 (Redution Formula for Simpliial Polytopes) For a simpliial 2m-di-mensional polytope P in X2m we have2 Km �12m volX2m(P ) = XP2j2
2j (P )j=0;:::;m �j(P 2j) �2m�2j�1(P 2j);with�j(P 2j) = 2 jXk=0(�1)k a2k+1 a2k�1(P 2j) = 8><>: (�1)j 2 a2j+1 ; 0 � j < m2 mXk=0(�1)k a2k+1 a2k�1(P ) ; j = mfor all 0 � j � m.Proof: Let P be a simpliial 2m-dimensional polytope in X2m and K = K(P ) the onedeomposition of P , desribed in Example 9.1.2. Of ourse, K is a simpliial omplex, beauseeah fae of P is a simplex. So we have for eah P 2j+1 in 
2j+1(P ) with j = 0; :::;m � 1z(2k; P 2j+1;K) = 0 (k = 0; :::;m)and for eah P 2j in 
2j(P ) with j = 0; :::;m � 1z(2k; P 2j ;K) = � 0 ; k < j or k > j1 ; j = j :Furthermore, we have for all k = 0; :::;mz(2k; P 2m;K) = z(2k; P;K)= a2k�1(P )with a�1(P ) := 1. Eah 2k-dimensional deomposition simplex is a one with base in a (2k�1)-dimensional fae of P . It follows with Theorem 11.3.1 thatE(P 2j+1;K) = 2 mXk=0(�1)k a2k+1 z(2k; P 2j+1;K)



71= 0�j(P 2j) := E(P 2j ;K)= 2 jXk=0(�1)k a2k+1 z(2k; P 2j ;K)= (�1)j 2 a2j+1�m(P ) := E(P;K)= 2 mXk=0(�1)k a2k+1 z(2k; P;K)= 2 mXk=0(�1)k a2k+1 a2k�1(P )for all j = 0; :::;m � 1. We remark that for a 2j-dimensional (deomposition) simplex T = T 2jwe have (�1)j 2 a2j+1 = 2 jXk=0(�1)k a2k+1 �2j + 12k �= 2 jXk=0(�1)k a2k+1 a2k�1(T );and so we get a onsistent desription of the oeÆients �j(P 2j) as�j(P 2j) = 2 jXk=0(�1)k a2k+1 a2k�1(P 2j)for all j with 0 � j � m (ompare Lemma 4.6.1). This ompletes the proof. 2Remark 11.3.1 (Determination of the tangent numbers) Let T be a 2m-dimensional sim-plex in X2m. The method used in the proof of Theorem 11.3.3 allows to determine expli-itly the ombinatorial invariants �m(T ) appearing in Shl�ai's Redution Formula. Indeed, letK = K(P ) be the one deomposition of T and let A2j+1 (j � 0) be rational numbers suh that2 Km �12m volX2m(T ) = XT2j2
2j (T )j=0;:::;m A2j+1 �2m�2j�1(T 2j):Then we get in the same way as in the theorem2 Km �12m volX2m(T ) = XT2j2
2j (T )j=0;:::;m A2j+1 �2m�2j�1(T 2j)= XT2j2
2j (T )j=0;:::;m  mXk=0 A2k+1 z(2k; T 2j ;K) !�2m�2j�1(T 2j)where we have used that z(2k; T 2j+1;K) = 0 for all j = 0; : : : ;m�1. Furthermore, the remainingdeomposition numbers are given byz(2k; T 2j ;K) = 8<: 0 ; k � j1 ; k = j < ma2k�1(T ) ; j = m



72where a2k�1(T ) = �2m+12k � is the number of (2k � 1)-dimensional faes of T . So we get theidentity XT2j2
2j(T )j=0;:::;m�1 A2j+1 �2m�2j�1(T 2j) +A2m+1= XT2j2
2j(T )j=0;:::;m�1 A2j+1 �2m�2j�1(T 2j) + mXk=0 A2k+1 �2m+ 12k �;and so A2m+1 = � 12m m�1Xk=0 A2k+1 �2m+ 12k �:If we use A1 = 1 we get A2m+1 = (�1)m 2 a2m+1 for all m > 1 by indution (ompare Lemma4.6.1).By using the well-known duality of simpliial and simple polytopes ( a2k�1 $ a2j�2k ) we getthe following result (ompare the statement in [V2℄, page 122).Corollary 11.3.3 (Redution Formula for Simple Polytopes) For a simple 2m-dimensio-nal polytope P in X2m we have2 Km �12m volX2m(P ) = XP2j2
2j (P )j=0;:::;m �j(P 2j) �2m�2j�1(P 2j);with �j(P 2j) = 2 jXk=0(�1)k a2k+1 a2j�2k(P 2j):Furthermore, we an determine the oeÆients for ubes (and also for their dual polytopes).Theorem 11.3.4 Let W =W 2m be a 2m-dimensional ube in X2m. Then2 Km �12m volXn(W ) = mXv=0(�1)v E2v !2m�2v�1(W )with the Euler numbers E2v.Proof: We know that a 2m-dimensional ube W is simple and eah 2j-dimensional fae W 2jof W is also a ube. Thus with Lemma 3.1.1 we geta2j�2k(W 2j) = 22k �2j2k�:With Corollary 11.3.3, Lemma 4.5.1 and Setion 4.6 we �nd�j(W 2j) = 2 jXk=0(�1)k a2k+1 22k �2j2k�= jXk=0(�1)k T2k+1 �2j2k�= (�1)j E2jand the theorem follows. 2



7312 General Shl�ai Redution FormulaIn the previous setion we have onstruted redution formulas for 4-dimensional polytopes(ompare Corollary 11.3.2) and simpliial and simple polytopes of even dimension (ompareTheorem 11.3.3 and Corollary 11.3.3) by deomposing into simplies. In the following setionwe will develop a general redution formula for arbitrary polytopes P in even-dimensional spaesX2m = S2m or H 2m without using deompositions of P . In the �rst part we show that suh aformula must exist. We do this by desribing a ombinatorial algorithm whih an be usedto eliminate all even-dimensional angles in Poinar�e's Formula. This algorithm produes aredution formula and in the seond part we will show that the ombinatorial invariants in itare uniquely determined. Then in the third part we give a general desription of these so-alledShl�ai invariants.12.1 ExisteneLet P be a 2m-dimensional polytope in X2m = S2m or H 2m . For eah element P k 2 
k(P )(0 � k � 2m) let x = x(P k) be an interior point of the fae P k and < P k >? be the (2m� k)-dimensional plane passing through x orthogonal to the plane < P k >. Furthermore, let � =�(P k) > 0 suh that the sphere S2m�1(x; �) only intersets faes of P that are inident with P k.Then also the sphere S2m�k�1(x; �) � < P k >? only intersets faes of P that are inident withP k. We note that�2m�k�1(P k) = vol (S2m�k�1(x; �) \ P )vol (S2m�k�1(x; �)) = �12m�k�1 volS2m�k�1(L(P k));where L(P k) denotes the (2m� k� 1)-dimensional link in the fae P k and 2m�k�1 the volumeof the (2m � k � 1)-dimensional unit sphere. The link is a (2m � k � 1)-dimensional spherialpolytope and with Poinar�e's Formula 11.2.1 we have2 Km �12m volX2m(P ) = XPk2
k(P )k=0;:::;2m (�1)k �2m�k�1(P k)= XPk2
k(P )k=0;:::;2m (�1)k �12m�k�1 volS2m�k�1(L(P k)):Let k be an odd number then L(P k) is an even dimensional spherial polytope. So we aneliminate the volume of this link by Poinar�e's Formula. In detail, we have�12m�k�1 volS2m�k�1 �L(P k)� = 12 XQj2
j(L(Pk))j=0;:::;2m�k�1 (�1)j �2m�k�j�2(Qj jL(P k)):Furthermore, eah of these angles �2m�k�j�2 �QjjL(P k)� of the link L(P k) is also a (2m�k�j�2)-dimensional angle of the polytope P with apex P k+j+1 suh thatQj = P k+j+1\S2m�k�1(x; �).Now we an redue all (2m � k � 1)-dimensional angles of P (k is odd) and we see that eahangle of P with the apex P k+j+1 (j = 0; : : : ; 2m� k � 1) will hange aording to�2m�k�j�2(P k+j+1); �2m�k�j�2(P k+j+1)�1 + 12(�1)j�(k; P k+j+1)� ;



74where �(k; P k+j+1) = ak(P k+j+1) is the number of k-dimensional faes of P whih are also faesof the polytope P k+j+1.If we start with the top-dimensional angles of P and redue, as desribed all even-dimensionalangles by Poinar�e's Formula in top-down fashion, we get a general redution formula2 Km �12m volX2m(P ) = XP2k2
2k(P )k=0;:::;m �2k(P 2k) �2m�2k�1(P 2k);where �2k(P 2k) is a rational ombinatorial invariant, depending on the ombinatorial strutureof the fae P 2k for all 0 � k � m.Furthermore, we all this way of angle reduing the Top to Down Algorithm (TDA). Of ourse,this is a purely ombinatorial method and independent of the ambient spae X2m.Desription for Simplies and CubesNow we will desribe this algorithm for the simplest 2m-dimensional polytopes. Let P be the2m-dimensional simplex T or the 2m-dimensional ube C. Both polytopes have the nie propertythat eah fae is also a polytope of the same type, but of lower dimension. So we an onsiderthe angle sums instead of the angles and if we redue all (2m� k � 1)-dimensional angles of P ,we see that the (2m� k � j � 2)-dimensional angle sum !2m�k�j�2(P ) will hange by!2m�k�j�2(P ) ; !2m�k�j�2(P )�1 + 12(�1)j�(k; j)� ;where �(k; j) = ak(P k+j+1) = 8>>>><>>>>: �k + j + 2k + 1 � ; P = T2j+1�k + j + 1k � ; P = C(ompare Lemma 3.1.1). Now we start with the top even dimensional angles of P and reduethem step by step. See the Appendix 16.2 and 16.3 for a detailed sheme for simplies andubes.By indution we see that in the simplex ase�0(T 0) = 1�2k(T 2k) = 1 + 12 kXj=1�2k + 12j � �2jfor all k � 1, where the numbers �2j are de�ned by reursion�2j = �1� 12 j�1Xv=1�2j2v� �2vfor all j � 2 and �2 = 2. So we an determine �rstly all the numbers �2j and seondly all thenumbers �2k(T 2k). In this way we �nd again that �2k(T 2k) = 2(�1)ka2k�1.



7512.2 UniquenessIn this setion we will prove that the ombinatorial invariants �2j , onstruted in the last setion,are uniquely determined.Theorem 12.2.1 The rational ombinatorial invariants�2j : P2j �! Qare uniquely determined for all 0 � j < 1 in the following sense: If there are ombinatorialinvariants �2j : P2j �! Q for all 0 � j � m suh that for all m with 0 � m <1 and all P inP2m we havemXj=0 XP 2j2
2j(P ) �2j(P 2j) �2m�2j�1(P 2j) = mXj=0 XP 2j2
2j(P ) �2j(P 2j) �2m�2j�1(P 2j)then �2j = �2j for all 0 � j � m.Proof: For all 0 � m <1 and all polytopes P in P2m letmXj=0 XP 2j2
2j(P )�2j(P 2j) �2m�2j�1(P 2j) = mXj=0 XP 2j2
2j(P ) �2j(P 2j) �2m�2j�1(P 2j):Let k be the smallest number with 0 � k � m suh that �2k 6= �2k, that means there is at leastone polytope R in P2k with �2k(R) 6= �2k(R). By assumption we have for all 2k-dimensionalpolytopes Q the identity k�1Xj=0 XP 2j2
2j(Q)�2j(Q2j) �2m�2j�1(Q2j) + �2k(Q)= k�1Xj=0 XP 2j2
2j(Q)�2j(Q2j) �2m�2j�1(Q2j) + �2k(Q)and of ourse we an onlude immediately that �2k(Q) = �2k(Q) for all polytopes Q in P2k.But this ontradits the fat that we have �2k(R) 6= �2k(R) for the polytope R. So the invariantsare uniquely determined. 2De�nition 12.2.1 Let P = P 2m be a 2m-dimensional polytope in X2m. Then we all thenumber �2m(P ) the 2m-dimensional Shl�ai invariant of the polytope P .12.3 Another Desription of Shl�ai's InvariantsLet P be an n-dimensional polytope in Xn = Sn, En or H n . We will derive another generaldesription of Shl�ai's invariants, where this time we won't use deomposition methods. Forthis we introdue ombinatorial numbers whih are generalizations of the numbers ak(P ).



76De�nition 12.3.1 Let P be an n-dimensional polytope in Xn and (l�); l��1); : : : ; l1; k) a (�+1)-tupel of integers with n > l� > l��1 > ::: > l1 > k � 0 and � � 1. Then the positive integerA(l�; l��1; :::; l1; k)(P ) is de�ned asA(; )(P ) := 1A(; k)(P ) := ak(P )A(l�; l��1; :::; l1; k)(P ) := XP l�2
l� (P ) XP l��12
l��1 (P l� ) ::::: XP l22
l2 (P l3) XP l12
l1(P l2 ) ak(P l1):For all other (�+ 1)-tupel of positive integers let the ombinatorial invariant be equal to zero.For instane, we have A(j; k)(P ) = XP j2
j(P ) ak(P j)= aj(P )Xi=1 ak(P ji )for all j > k � 0, where 
j(P ) = fP j1 ; : : : ; P jaj(P )g is the set of k-dimensional faes of P . Witha simple omputation we get the following result.Lemma 12.3.1 Then we haveA(; k)(P ) = XP k2
k(P )A(; )(P k)A(l�; l��1; :::; l1; k)(P ) = XP l�2
l� (P )A(l��1; :::; l1; k)(P l�):De�nition 12.3.2 Let P = P 2m be an 2m-dimensional polytope in X2m = S2m, E2m or H 2m .The ombinatorial invariant Ai(P ) is de�ned asA0(P ) = 1A1(P ) = X0�k<mA(; 2k)(P )Ai(P ) = X0�k<f1<:::<fi�1<mA (2fi�1; :::; 2f1; 2k) (P )for all 2 � i �m. For all other i let Ai(P ) be equal to zero.Example 12.3.1 For an 2m-dimensional polytope P = P 2m and the values m = 0; 1; 2; 3 wehave



77A0(P 0) = 1A0(P 2) = 1A1(P 2) = X0�k<1A(; 2k)(P )= a0(P 2)A0(P 4) = 1A1(P 4) = X0�k<2A(; 2k)(P )= a0(P 4) + a2(P 4)A2(P 4) = X0�k<f1<2A(2f1; 2k)(P ) = A(2; 0)(P )= XP 22
2(P 4) a0(P 2)A0(P 6) = 1A1(P 6) = X0�k<3A(; 2k)(P )= a0(P 6) + a2(P 6) + a4(P 6)A2(P 6) = X0�k<f1<3A(2f1; 2k) = A(2; 0)(P ) +A(4; 0)(P ) +A(4; 2)(P )= XP 22
2(P 6) a0(P 2) + XP 42
4(P 6) a0(P 4) + XP 42
4(P 6) a2(P 4)A3(P 6) = X0�k<f1<f2<3A(2f2; 2f1; 2k) = A(4; 2; 0)(P )= XP 42
4(P 6) XP 22
2(P 4) a0(P 2):Lemma 12.3.2 Let P = P 2m be a 2m-dimensional polytope in X2m. Thenm�1Xj=0 XP 2j2
2j(P ) Ai(P 2j) = Ai+1(P )for all 0 � i �m� 1.



78Proof: Let i = 0. Then we have by de�nitionA1(P ) = X0�k<mA(; 2k)(P )= m�1Xj=0 XP 2j2
2j(P ) A0(P 2j);where we have used Lemma 12.3.1 in the seond step. Now let i be a natural number with1 � i � m� 1. Then it follows by Lemma 12.3.1Ai+1(P ) = X0�k<f1<:::<fi<mA (2fi; :::; 2f1; 2k) (P )= X0�k<f1<:::<fi<m XP 2fi2
2fi (P )A (2fi�1; :::; 2f1; 2k) (P 2fi)= X0�k<f1<:::<fi�1<fifi�1<fi<m XP 2fi2
2fi(P )A (2fi�1; :::; 2f1; 2k) (P 2fi)= m�1Xj=fi�1+1 XP 2j2
2j(P ) X0�k<f1<:::<fi�1fi�1<j A (2fi�1; :::; 2f1; 2k) (P 2j)= m�1Xj=0 XP 2j2
2j(P ) X0�k<f1<:::<fi�1fi�1<j A (2fi�1; :::; 2f1; 2k) (P 2j);beause A (2fi�1; :::; 2f1; 2k) (P 2j) is equal to zero for all j with 2j � 2fi�1 by de�nition. So weget Ai+1(P ) = m�1Xj=0 XP 2j2
2j(P ) Ai(P 2j)and this ompletes the proof. 2The following theorem follows an idea of Shl�ai (ompare [Sh℄, page 280).Theorem 12.3.1 Let P = P 2m be a 2m-dimensional polytope in X2m = S2m or H 2m . Then2 �12m Km volX2m(P ) = mXj=0 XP 2j2
2j(P ) �2j(P 2j) �2m�2j�1(P 2j)where the Shl�ai invariant �2j an be written as�2j(P 2j) = jXp=0 (�1)p 12p Ap(P ):



79Proof:Firstly, we know that a redution formula of the type above must exist. We observe that theombinatorial numbers �2j depend only on the ombinatorial struture of the fae P 2j of P .This means that �2j is independent of the geometry of the spae X2m and therefore it suÆesto prove the theorem only for the ase X2m = S2m.Let P = P 2m be a 2m-dimensional polytope in S2m. Now we want to assign to P a nierepresentative PS in the equivalene lass of ombinatorially isomorphi polytopes Cl(P ). Wedo this by mapping the boundary of P onto the sphere S2m�1 � S2m suh that the onstrutedtesselation of S2m�1 is geodesi and has the same ombinatorial struture like the boundaryof P . This tesselation of S2m�1 an be viewed as the boundary of a 2m-dimensional spherialpolytope PS whih is an element in the set Cl(P ).Thus all angles of PS are of measure 1=2 and PS is the nie representatative in the equivalenelass Cl(P ) .Now we an use the polytope PS to develop a reursion formula for the Shl�ai invariants. LetP be an element in Cl(PS). Then we have2 �12m Km volX2m(PS) = 1= 12 m�1Xj=0 XP 2j2
2j(PS) �2j(P 2j) + �2m(PS);where we have used that �2m�2j�1(P 2j) = 1=2 for j = 0; 1; � � � ;m� 1 and ��1(PS) = 1. Now Phas the same ombinatorial struture like PS. So we get the reursion�2m(P ) = 1� 12 m�1Xj=0 XP 2j2
2j(P ) �2j(P 2j); �0(P ) = 1We see that the Shl�ai invariantes takes the laimed form (ompare Corollary 11.3.2):�0(P 0) = 1�2(P 2) = 1� 12a0(P 2)�4(P 4) = 1� 12 � a0(P ) + a2(P ) �+ 14 XP 22
2(P ) a0(P 2):Next we assume that for all j with 0 � j � m� 1 we have�2j(P 2j) = jXp=0 (�1)p 12p Ap(P ):We use the above reursion formula and get for a 2m-dimensional polytope P�2m(P ) = 1� 12 m�1Xj=0 XP 2j2
2j(P ) �2j(P 2j)



80 = 1� 12 m�1Xj=0 XP 2j2
2j(P ) jXp=0 (�1)p 12p Ap(P 2j)= 1 + m�1Xp=0 (�1)p+1 12p+1 m�1Xj=0 XP 2j2
2j(P ) Ap(P 2j)= 1 + m�1Xp=0 (�1)p+1 12p+1 Ap+1(P )= mXp=0 (�1)p 12p Ap(P );where we have used that Ap(P 2j) is equal to zero if p is greater as j in the third step and Lemma12.3.2 in the forth step. 2Example 12.3.2 For a 2m-dimensional polytope P = P 2m and the values m = 0; 1; 2 we have�0(P 0) = 1�2(P 2) = 1Xp=0 (�1)p 12p Ap(P 2)= A0(P 2)� 12A1(P 2)= 1� 12a0(P 2)�4(P 4) = 2Xp=0 (�1)p 12p Ap(P 4)= A0(P 4)� 12A1(P 4) + 14A2(P 4)= 1� 12 �a0(P 4) + a2(P 4)�+ 14 XP 22
2(P 4) a0(P 2):



8113 The Volume of a Fundamental PolytopeThe set of faes of a fundamental polytope for a disrete group � < Iso (Xn) splits into subsetsof �-equivalent faes. The yle ondition, proved in the �rst part of this setion, onnets theangles in these subsets. In the seond part of this setion we ombine our knowledge aboutthe volume of polytopes with the yle ondition. Hene we an develop some speial volumeformulas for (normal) fundamental polytopes.13.1 The Cyle Condition for Fundamental Polytopes�-equivalene Let Xn = Sn; En or H n and � < Iso (Xn) be a disrete subgroup, suh thatthere exists an n-dimensional normal fundamental polytope P = P (�) for � (ompare setion7). This means that � is of �nite ovolume, ovol (�) = volXn (P ) <1, and P has �nitely manyfaes in eah dimension.Now we want to establish an equivalene relation on the set of faes of a �xed dimension. Inthe following let d always be an integer with 0 � d � n� 1. For all P di ; P dj 2 
d (P ) letP di �� P dj :, 9 2 � : P di = P dj ;and for all p0i ; p0j 2 �0 (P ) let p0i �� p0j :, 9 2 � : p0i = p0j :In fat this is an equivalene relation on the set of faes of P of a �xed dimension and eah set
d (P ) for 0 � d � n� 1 and �0 (P ) deompose in equivalene lasses, whih we denote by 
d(i)and �0(i).Furthermore let �d be the number of equivalene lasses in 
d (P ) and m0 be the number ofequivalene lasses in �0 (P ).Eah equivalene lass 
d(i) or �0(i) ontains only �nitely many elements from 
d (P ) or �0 (P )and we denote these numbers by ldi or f0i respetively.We will use the following notation for the elements in a �xed equivalene lass:
d = nP d(1)1; : : : ; P d(1)ld1| {z }
d(1) ; : : : ; P d(i)1; : : : ; P d(i)ldi| {z }
d(i) ; : : : ; P d(�d)1; : : : ; P d(�d)ld�d| {z }
d(�d) o= 
d(1) [ 
d(2) [ : : : [ 
d(�d)�0 = np0(1)1; : : : ; p0(1)f01| {z }�0(1) ; : : : ; p0(i)1; : : : ; p0(i)f0i| {z }�0(i) ; : : : ; p0(m0)1; : : : ; p0(m0)f0m0| {z }�0(m0) o= �0(1) [�0(2) [ : : : [�0(m0)and all unions are disjoint. Of ourse we havef01 + � � �+ f0i + � � �+ f0m0 = a0inf (P ) ;l01 + � � � + l0i + � � �+ l0�0 = a0ord (P ) and (1)ld1 + � � �+ ldi + � � � + ld�d = ad (P )



82for all d with 1 � d � n� 1.Furthermore, for all i = 1; :::; �d the d-dimensional polytopes P d(i) 2 
d(i) of P are equivalentunder the ation of � and they have equal ombinatorial struture (in fat, they are isometri).So we an de�ne: ak �
d(i)� := ak �P d(i)�for all k < d and for an arbitrary P d(i) 2 
d(i), or more generally: If �d is a ombinatoriald-invariant in the family of d-dimensional polytopes, we an de�ne�d �
d(i)� := �d �P d(i)�for an arbitrary P d(i) 2 
d(i).Lemma 13.1.1 Let P be a normal fundamental polytope for a disrete subgroup � of isometriesin Xn and let F be an element in 
d(P ) for some d with 0 � d � n� 1. Then �F = Stab(F;�)and �0F = Stabp(F;�) are onjugated to �nite subgroups of O(n).Proof: Let Xn = En or Sn. Then F is an ordinary ompat set in Xn and the result followswith Lemma 7.1.1.Let Xn = H n and let F 2 
d(P ) be an arbitrary fae of P (not a vertex at in�nity). The set� = fP :  2 �gis a loally �nite family of subsets in H n and for all elements  2 � we have ri(P ) \ ri(P ) = ;(ompare setion 7.3). We suppose that �F is an in�nite group. Then the setfP :  2 �F g � �is also an in�nite set and all elements in it share the fae F in ontradition to the loal �nitenessof the olletion �. Hene �F (and also �0F as a subgroup) is a �nite and disrete group and soonjugated to a �nite subgroup of O(n). 2The group � < Iso (Xn) may have �xed points and there may exist elements in �, whih �x faes(not neessarily pointwise!) of P . It is easy to see that the stabilizer subgroups of equivalentd-dimensional ordinary faes are onjugated, also isomorphi:Stab �P d(i)j ;�� =  Stab �P d(i)k;�� �1for all i = 1; : : : ; �d, j; k = 1; : : : ; ldi and for some  in �. So we see that d-dimensional faes inthe same equivalene lass (whih means �-equivalent) are �xed by the same number of elementsin �. So we de�ne for all i = 1; :::; �dgdi := gdi �
d(i)� = ℄Stab �P d(i)j ;��gn1 := 1for an arbitrary P d(i)j in 
d(i) and for all d = 0; : : : ; n� 1.



83The Cyle Conditions The following theorem an be viewed as a generalization of Theorem9.3.4. in [Be℄ or of the seond part of Theorem 6.7.7 in [R℄.Theorem 13.1.1 (Cyle Condition) Let Xn = Sn, En or H n and P = P (�) be a normal(n-dimensional) fundamental polytope for a disrete subgroup � < Iso (Xn). For all d with0 � d � n � 1 let �d be a ombinatorial d-invariant on the set Pd of d-dimensional polytopes.Then XP d(i)2
d(i) �d �P d(i)��n�d�1 �P d(i)� = �d �
d(i)� 1gdifor all i = 1; : : : ; �d and j = 1; : : : ; ldi .Proof: To simplify the notation: For a �xed d with 0 � d � n� 1 and a �xed i 2 f1; :::; �dg let
d(i) = f P1; : : : ; Pv gbe a yle of �-equivalent d-dimensional faes of P . This means, we have a set of elementsf 1 = id; 2; : : : ; v g � �suh that jPj = P1 for all j = 1; : : : ; v. Furthermore, let �1 := Stab (P1;�) denote the stabilizerof the fae P1 (all elements in �1 leave the set P1 invariant). The group �1 is �nite by Lemma13.1.1 and we have gdi = ℄�1 <1.Sine we have �d �
d(i)� = �d (Pj) for all Pj, it is enough to show thatXP d(i)2
d(i) �n�d�1 �P d(i)� = vXj=1 �n�d�1 (Pj jP )= 1gdi :Of ourse, the polytope jP has P1 = jPj as a d-fae and for the (n�d�1)-dimensional anglesof P and jP in the apex P1 we get�n�d�1 (P1jjP ) = �n�d�1 ��1j P1jP�for all j = 1; :::; v.Furthermore, let h be an arbitrary element in � and onsider the element P1 = jPj 2 
d(P ).Then we have the following properties:� We have P1 2 
d(hP ) if and only if there exists some j suh that h�1P1 = Pj .) Let P1 2 
d(hP ) for some h 2 �. Then h�1P1(2 
d(P )) is a d-dimensional faeof P whih is �-equivalent to P1. So there exists Pj 2 
d(i) with h�1P1 = Pj .( Let h�1P1 = Pj . Then P1 = hPj 2 
d(hP ).� We have h�1P1 = Pj if and only if the element h�1j �xes the fae P1, whih means thath�1j 2 �1.) Let h�1P1 = Pj = �1j P1. It follows that h�1j 2 �1.



84 ( Let h�1j 2 �1 with �1j P1 = Pj . This means h�1j P1 = P1 and �1j P1 = h�1P1 =Pj .� The element h�1j �xes the fae P1 (not neesarily pointwise) if and only if h 2 �1j.Thus we have P1 2 
d(hP ) () h 2 �1jfor some j = 1; : : : ; v.Now let H := f h1; : : : ; ht g � � be the �nite set of all elements in � with P1 2 
d(hiP ) fori = 1; : : : ; t. With the above observations we derive thatH = �11 [ : : : [ �1v;and this union is pairwise disjoint.We know that the set � = f P :  2 � gis a normal tesselation by Theorem 7.3.1. Of ourse, � an be viewed as a (generalized) puren-dimensional polytopal omplex in Xn and the omplex angle ��n�d�1 (P1) of this omplex inthe fae P1 is of measure 1. Furthermore, the elements in �1 are onformal maps and so preservethe measure of an angle. So we get1 = ��n�d�1 (P1)= X2H �n�d�1 (P1jP )= X2�11 �n�d�1 (P1jP ) + : : : + X2�1v �n�d�1 (P1jP )= ℄�1 �n�d�1 (P1j1P ) + : : :+ ℄�1 �n�d�1 (P1jvP )= ℄�1 � �n�d�1 ��11 P1jP �+ : : : + �n�d�1 ��1v P1jP � �= gdi vXj=1 �n�d�1 (Pj jP ) : 2Example 13.1.1 Let Pm be the (anonial) normal fundamental polytope for the modular groupPSL(2;Z) < Iso(IU2) (see Figures 4 or 13). We use the following notations: p01 =1, P 01 = A,P 02 = B, P 11 = onv(A;1), P 12 = onv(B;1) and P 13 = onv(A;B).Furthermore, we have P 01 �PSL(2;Z) P 02 and P 11 �PSL(2;Z) P 12 and we an write p0(1)1 = 1and �0(1) = f1g; P 0(1)1 = P 01 , P 0(1)2 = P 02 and 
0(1) = fP 01 ; P 02 g; P 1(1)1 = P 11 , P 1(1)2 = P 12 ,
1(1) = fP 11 ; P 12 g and 
1(2) = fP 13 g.



85For the orders of the stabilizers we getg01 = g01(
0(1)) = 3g11 = g11(
1(1)) = 1g12 = g12(
1(2)) = 2(you may ount it in the tesselation). Furthermore, we have l01 = 2, l11 = 2, l12 = 1, �0 = 1 and�1 = 2 . So we get with the trivial ombinatorial invariants:XP 0(1)2
0(1) �1(P 0(1)) = �1(P 01 ) + �1(P 02 ) = 13XP 1(1)2
1(1) �0(P 1(1)) = �0(P 11 ) + �0(P 12 ) = 1XP 1(2)2
1(2) �0(P 1(2)) = �0(P 13 ) = 12 :

A B

0 1−1Figure 13: A Fundamental Polytope for PSL(2;Z)13.2 General ResultsIn this setion we will ombine the volume formulas for polytopes with the yle onditions toget volume formulas for fundamental polytopes of disrete groups.Theorem 13.2.1 Let P be a n-dimensional normal fundamental polytope for a disrete group� < Iso(Xn). Then we havenXd=0(�1)d 0� �dXi=1 1gdi 1A = � 2 Km �12m volXn(P ) ; n = 2m even0 ; n = 2m+ 1 odd :



86Proof: We use Poinar�e's Formula for polytopes (ompare Corollary 11.2.1) and the yleonditions (ompare Theorem 13.1.1) and get� 2 Km �12m volXn(P ) ; n = 2m even0 ; n = 2m+ 1 odd= nXd=0 XP d2
d(P )(�1)d �n�d�1(P d)= nXd=0 �dXi=1 XP d(i)2
d(i) (�1)d �n�d�1(P d(i))= nXd=0 �dXi=1 (�1)d 1gdi= nXd=0 (�1)d 0� �dXi=1 1gdi 1A ;and the theorem follows immediately. 2In the speial ase where � is torsionfree we get the following result, whih is the well-knownTheorem of Gau� and Bonnet.Corollary 13.2.1 Let P be a n-dimensional normal fundamental polytope for a disrete andtorsionfree group � < Iso(Xn) and let �d be the number of �-equivalene lasses in 
d(P ) ford = 0: : : : ; n. ThennXd=0(�1)d �d = �(Xn=�) = � 2 Km �12m volXn(P ) ; n = 2m even0 ; n = 2m+ 1 odd :Now we will ombine the General Shl�ai Redution Formula (ompare 12.3.1) with the yleonditions.Theorem 13.2.2 Let P = P 2m be a 2m-dimensional normal fundamental polytope for a disretegroup � < Iso(X2m). Then we have2 Km �12m volX2m(P ) = mXd=0 �2dXi=1 �2d �
2d(i)� 1g2di ;where �2d denotes the Shl�ai invariant.Proof: We use the General Shl�ai Redution Formula 12.3.1 and the yle onditions 13.1.1.By a simple omputation we getmXd=0 XP 2d2
2d �2d(P 2d) �2m�2d�1 �P 2d� = mXd=0 �2dXi=1 XP 2d(i)2
2d(i) �2d(P 2d(i) )�2m�2d�1(P 2d(i) )= mXd=0 �2dXi=1 �2d �
2d(i)� 1g2di :



872The following volume formula was onstruted by C. L. Siegel (ompare [S℄) for fundamentalpolygones in the hyperboli plane. He used this formula to determine the disrete subgroup ofIso(H 2) of minimal ovolume.Corollary 13.2.2 Let P = P 2 be a 2-dimensional normal fundamental polytope for a disretegroup �. Then 2 K �12 volX2(P ) = �0Xi=1 � 1g0i � 12 l0i �+ 1� 12a0inf (P ):Proof:The Shl�ai invariants are given by�0 �
0(i)� = 1�2 �
2(i)� = 1� 12a0 �
2(i)�= 1� 12a0ord(P )� 12a0inf (P );(ompare Example 12.3.2) and for the volume of P follows2 K �12 volX2(P ) = �0Xi=1 �0 �
0(i)� 1g0i + 1� 12a0(P )= �0Xi=1 1g0i + 1� 12 �0Xi=1 l0i � 12a0inf (P ):So the result follows immediately. 2If the group � is also torsionfree we get2 K �12 volX2(P ) = 1 + �0 � 12a0(P ):Example 13.2.1 For the normal fundamental polytope Pm for the modular group PSL(2;Z)(see Example 13.1.1) we get (with �0 = 1, g01 = 3, l01 = 2 and a0inf (Pm) = 1)volH2 (Pm) = �2�0� �0Xi=1 � 1g0i � 12 l0i �+ 1� 12a0inf (Pm)1A = 13�:Corollary 13.2.3 Let P = P 4 be a 4-dimensional normal fundamental polytope for a disretegroup �. Then2 �14 volX4(P ) = �0Xi=1 � 1g0i � 12 l0i �+ �2Xi=1 � 1� 12a0 �
2(i)� � � 1g2i � 12 l2i �+ 1� 12a0inf (P )



88Proof: The Shl�ai invariants are given by�0 �
0(i)� = 1�2 �
2(i)� = 1� 12a0 �
2(i)��4 �
4(i)� = �4 (P )= 1� 12 � a0(P ) + a2(P ) �+ 14 XP 22
2(P ) a0(P 2);(ompare Example 12.3.2) and for the volume of P follows:2 �14 volX4(P ) = 2Xd=0 �2dXi=1 �2d �
2d(i)� 1g2di= �0Xi=1 1g0i + �2Xi=1 �1� 12a0 �
2(i)�� 1g2i+1� 12 � a0(P ) + a2(P ) �+ 14 XP 22
2(P ) a0(P 2):Now we use the identities a0(P ) = �0Xi=1 l0i + a0inf (P )a2(P ) = �2Xi=1 l2iXP 22
2(P ) a0(P 2) = �2Xi=1 XP 2(i)2
2(i)(P ) a0(P 2(i))= �2Xi=1 l2i a0 �
2(i)� ;and the result follows immediately. 2If the group � is also torsionfree we get g0i = 1 and g2i = 1 for all i � 1. We have2 �14 volX4(P ) = 1� 12 � a0(P ) + a2(P ) �+ �0 + �2 � 12 �2Xi=1 a0 �
2(i)�� 1� 12 l2i � :13.3 Simple Fundamental PolytopesIn this setion we will onsider disrete groups with simple polytopes.



89Theorem 13.3.1 Let P be a simple 2m-dimensional normal fundamental polytope for a disretegroup � < Iso(X2m). Then2 Km �12m volX2m(P ) = m�1Xd=0 �2dXi=1 � (�1)m�d 2 a2m�2d+1 l2di + �d �
2d(i)� 1g2di �+1 + (�1)m 2 a2m+1 a0inf (P )with �d �
2d(i)� = 2 dXk=0(�1)k a2k+1 a2d�2k �
2d(i)� :Proof: We use the redution formula for simple polytopes 11.3.3 and the yle onditions 13.1.1and get by a simple omputation2 Km �12m volX2m(P ) = mXd=0 XP 2d2
2d(P ) �d �P 2d��2m�2d�1(P 2d)= mXd=0 �2dXi=1 XP 2d(i)2
2d(i) �d �P 2d(i)� �2m�2d�1(P 2d(i) )= mXd=0 �2dXi=1 �d �
2d(i)� 1g2di= m�1Xd=0 �2dXi=1 �d �
2d(i)� 1g2di + 2 mXk=0(�1)k a2k+1 a2m�2k(P );where we use the de�nitions of the invariants �d in Corollary 11.3.3. Now we will onsider thelast summand and getmXk=0(�1)k a2k+1 a2m�2k(P ) = (�1)m a2m+1 (a0inf (P ) + a0ord(P )) + a1+m�1Xk=1 (�1)k a2k+1 a2m�2k(P )= (�1)m a2m+1 (a0inf (P ) + a0ord(P )) + a1+m�1Xk=1 (�1)m�k a2m�2k+1 a2k(P )= 12 + (�1)m a2m+1 a0inf (P ) + (�1)m a2m+1 0� �0Xi=1 l0i 1A+m�1Xk=1 (�1)m�k a2m�2k+1 0� �2kXi=1 l2ki 1A ;



90where we have reversed the order of summation in the seond step. In the third step we haveused the equations 1. If we ombine both formulas we get2 Km �12m volX2m(P ) = m�1Xd=0 �2dXi=1 �d �
2d(i)� 1g2di + 1 + (�1)m 2 a2m+1 a0inf (P )+(�1)m 2 a2m+1 �0Xi=1 l0i + m�1Xd=1 (�1)m�d 2 a2m�2d+1 0� �2dXi=1 l2di 1A= 1 + (�1)m 2 a2m+1 a0inf (P )+(�1)m 2 a2m+1 �0Xi=1 l0i + �0Xi=1 �0 �
0(i)� 1g0i+m�1Xd=1 �2dXi=1 �d �
2d(i)� 1g2di + m�1Xd=1 (�1)m�d 2 a2m�2d+1 0� �2dXi=1 l2di 1A= m�1Xd=0 �2dXi=1 � (�1)m�d 2 a2m�2d+1 l2di + �d �
2d(i)� 1g2di �+1 + (�1)m 2 a2m+1 a0inf (P ): 2Corollary 13.3.1 Let P be a 2-dimensional (trivially simple) normal fundamental polytope inX2 = S2 or H 2 . Then2 K �12 volX2(P ) = �0Xi=1 � 1g0i � 12 l0i �+ 1� 12a0inf (P ):Corollary 13.3.2 Let P be a 4-dimensional simple normal fundamental polytope in X4 = S4or H 4 . Then2 �14 volX4(P ) = �0Xi=1 � 1g0i + l0i �+ �2Xi=1 �� 1� 12a0 �
2(i)� � 1g2i � 12 l2i � + 1 + a0inf (P ):Proof: We have �0 �
0(i)� = 1�1 �
2(i)� = 1� 12a2 �
2(i)� ;and the orollary follows immediately. 2Example 13.3.1 We will ompute the volumes of the normal fundamental simplies P = P (�)with shemes



91Æ 5 Æ Æ Æ k Æfor k = 3; 4; 5, where � is the orresponding reetion group. We have a0inf (P ) = 0, a0 �
2(i)� =3, �0 = 5, �2 = 10, l0i = 1 for i = 1; : : : ; 5 and l2i = 1 for i = 1; : : : ; 10. To ompute all thenumbers g0i and g2i we pik out all ellipti subshemes � of order 4 and 2 with their multipliities℄(�) and determine the orders of the orresponding (�nite) groups.� ℄(�) k OrderÆ 5 Æ Æ Æ 1 14400Æ Æ Æ 5 Æ 1 240Æ 5 Æ Æ k Æ 1 3 604 805 100Æ Æ Æ k Æ 1 3 484 965 240Æ kÆ Æ Æ 1 3 1204 3845 14400Æ 5 Æ 1 10Æ Æ 2 6Æ Æ 6 4Æ k Æ 1 3 64 85 10Hene we get
volH4 (P ) = 8>>>>>>>><>>>>>>>>:

110800 �2 ; k = 31721600 �2 ; k = 4135400 �2 ; k = 5 :



9214 Examples: Volumes of PolytopesIn this setion we will apply the redution formulas to ompute the volume of some 4-dimensionalpolytopes. The main problem of this omputation is the deoding of the ombinatorial strutureof the polytopes. For polytopes with known Gram matrix or graph (and with few faets) we anuse the GIA or the SIA, desribed in the Setions 5.3 and 6. For polytopes with many faetswe use our geometrial imagination.A nie tool to desribe the ombinatoris of a 4-dimensional polytope is a so-alled Shlegeldiagram. A Shlegel diagram an be onstruted in the following way. We hoose a point poutside an n-dimensional polytope P and in some way "near" an arbitrary faet F . Then weprojet the whole polytope from the point p into the faet F . We get an (n � 1)-dimensionalpolytopal omplex whih is alled a Shlegel diagram of P . A Shlegel diagram determines theomplete ombinatoris of P (ompare [Z℄, setion 5).Let P be a 4-dimensional Coxeter polytope in X4 = S4 or H 4 with sheme S = S(P ) and Grammatrix G = G(P ). The group � generated by the reetions in the faets of P is disrete andP is a fundamental polytope for �. So we have ovol(�) = volX4(P ) and for the volume of P weget with Corollary 11.3.2volX4(P ) = �23 � �4(P )� 2 XP 22
2(P )�a0(P 2)� 2� �1(P 2) + 4 XP 02
0(P ) �3(P 0) �with �4(P ) := 4� 2�a0(P ) + a2(P )�+ XP 22
2(P ) a0(P 2):14.1 Volumes of the Tumarkin PyramidsWe want to ompute the volumes of the 4-dimensional hyperboli Coxeter polytopes, lassi�edby P. Tumarkin [T℄. From the ombinatorial point of view eah of these polytopes P is a pyramidover a 3-dimensional simpliial prism. All ombinatorial datas an be read o� from the Shlegel

Figure 14: Pyramid over a Prismdiagram (see Figure 14) and we �nd: a0(P ) = 7, a1(P ) = 15, a2(P ) = 14 and a3(P ) = 6.The set of 2-dimensional faes onsists of 11 triangles and 3 retangles; so we get �4(P ) = 7.If we deode the onnetion between angles and ombinatoris we get the results stated in theAppendix (ompare Setion 16.6). For the volume of the 3-dimensional angles use the Appendix16.4.



9314.2 Volumes of the Kaplinskaja PrismsWe want to ompute the volumes of the 4-dimensional hyperboli Coxeter polytopes, lassi�edby Kaplinskaja [Kapl℄. From the ombinatorial point of view eah of these polytopes P is a prismover a 3-dimensional simplex. All ombinatorial datas an be read o� from the Shlegel diagram

Figure 15: Prism over a Simplex(see Figure 15) and we �nd: a0(P ) = 6, a1(P ) = 16, a2(P ) = 14 and a3(P ) = 6. We havetwo simpliial faets and four faets whih are prisms over a triangle. The set of 2-dimensionalfaes onsists of 8 triangles and 6 retangles; so we get �4(P ) = 8. If we deode the onnetionbetween angles and ombinatoris we get the results stated in the Appendix (ompare Setion16.6).14.3 Volumes of the Esselmann PolytopesWe want to ompute the volumes of the ompat hyperboli Coxeter polytopes with 6 faetsin H 4 , lassi�ed by F. Esselmann [Es℄. From the ombinatorial point of view eah of thesepolytopes P is a produt of two 2-dimensional simplies and so is simple. Furthermore, all

Figure 16: The Produt of two 2-simpliesombinatorial datas an be read o� from the Shlegel diagram (see Figure 16) and we �nd:a0(P ) = 9, a1(P ) = 18, a2(P ) = 15 and a3(P ) = 6. All faets are simpliial prisms and theset of 2-dimensional faes onsists of 6 triangles and 9 retangles; so we get �4(P ) = 10. Ifwe deode the onnetion between angles and ombinatoris we get the results stated in theAppendix (ompare Setion 16.6).



9414.4 Volumes of Regular PolytopesLet R = Rp1p2p3 be a regular polytope in X4 = S4 or X4 with the Shl�ai symbol fp1; p2; p3g.This means that pi = pi(R) is the number of i-dimensional faes of R ontaining an (i � 2)-dimensional fae Ri�2 and ontained in an (i + 1)-dimensional fae Ri+1 for all i � 1. Let�1 = �1(R2) and �3 = �3(R0) be the 1- and 3-dimensional angle of R. There are only sixombinatorially di�erent regular polytopes in X4. We desribe them in Table 2 where�4(R) = 4� 2�a0(R) + a2(R)�+ XR22
2(R) a0(R2)= 4 + �p1 � 2�a2(R)� 2a0(R):
Name Notation p1 p2 p3 a0 a1 a2 a3 �45-ell R333 3 3 3 5 10 10 5 48-ell R433 4 3 3 16 32 24 8 2016-ell R334 3 3 4 8 24 32 16 2024-ell R343 3 4 3 24 96 96 24 52120-ell R533 5 3 3 600 1200 720 120 964600-ell R335 3 3 5 120 720 1200 600 964Table 2: Regular PolytopesThe general volume formula redues tovolX4(R) = �23 "4 + a2(R) �p1 � 2� �1� 2�1�� 2a0(R) �1� 2�3�#:If R is an ideal regular a3(R)-ell in H 4 , whih implies that all 3-angles �3 are zero, the volumeformula simpli�es tovolX4(R) = �23 "4 + a2(R) �p1 � 2� �1� 2�1�� 2a0(R)#:For the dihedral angles in the Eulidean and in the ideal hyperboli ase, as well as for thevolumes of the ideal hyperboli regular polytopes see the results in Table 3.



95�1Polytope Ideal VolumeIdeal EulideanR333 12� aros(13) aros(14 ) 23� � 2� � 5 aros(13 ) �R433 12� aros(13) 14 43� � 5� � 4 aros(13 ) �R334 1� aros( 1p3) 13 43� � 5� � 16 aros( 1p3) �R343 14 13 43�2R533 12� aros(13) 25 43� � 241� � 180 aros(13) �R335 12 � 12� aros(p53 ) 1� 12� aros(3p5+18 ) 83� � 83� � 75 arsin(p53 ) �Table 3: Hyperboli Regular Polytopes14.5 A Fundamental Polytope for PSL (2;Z[i1; i2℄)Let H 4 be the hyperboli spae in the upper half-spae modelIU4 = f x0 + x1i1 + x2i2 + x3i3 : xi > 0 for all i = 0; : : : ; 3 g :We follow C. Malahlan, P.L. Waterman and N.J.Wielenberg [MWW℄ and onstrut a polytopeP as the onvex hull of the following set of pointsS = �i3; 12 + p32 i3; 12 + 12 i1 + p22 i3; 12 i1 + p32 i3; 12 i2 + p32 i3; 12 + 12 i2 + p22 i3;12 + 12 i1 + 12 i2 + 12 i3; 12 i1 + 12 i2 + p22 i3; 1�:Now onv(S�1) is a ube (see Figure 17), lying on the hyperplaneH3 = fx0+x1i1+x2i2+x3i3 :Px2i = 1; x3 > 0g and P := onv(S) an be viewed as a one with basis onv(S � 1) andenter 1. The sheme of P is
 11  1 whih we denote by h1; 3; 3;13;1i. We obtain a0ord(P ) = 8, a0inf (P ) = 1, a1(P ) = 20, a2(P ) = 18and a3(P ) = 7. The set of 2-dimensional faes of P splits into a set of 12 triangles with dihedral
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������� �������

��������������i3 12 + p32 i3
12 + 12 i1 + p22 i312 i1 + p32 i3

12 i2 + p32 i3 12 + 12 i2 + p22 i3
12 + 12 i1 + 12 i2 + 12 i312 i1 + 12 i2 + p22 i3

Figure 17: onv(S�1)angles 1=4, a set of 3 retangles with dihedral angles 1=4 and a set of 3 retangles with dihedralangles 1=6. Furthermore we have Pa2(P )i=1 a0(P 2i ) = 60 and �4(P ) = 10.The vertex at in�nity of P has a Eulidean vertex �gure of type [1; 2;1; 2;1℄ (ube). In theset of the 8 ordinary verties of P we �nd the following types of vertex �gures: one vertex �gureof type [2; 2; 2℄ whih represents an angle of 1=16, three vertex �gures of type [2; 2; 3℄ (angle1=24), three vertex �gures of type [2; 3; 3℄ (angle 1=48), and one vertex �gure of type �3; 31;1�(angle 1=192) (ompare 16.4). Therefore we obtainvolH4 (P ) = �23 "10� 2�1214 + 614 + 616�+ 4� 116 + 3 124 + 3 148 + 1192�#= 1144�2:From the results of N.W. Johnson and A.I. Weiss [JW℄ we know that the group h1; 3; 3;13;1i+ oforientation preserving elements in h1; 3; 3;13;1i is isomorphi to the group PSL (2;Z[i1; i2℄). Itfollows that ovol (PSL (2;Z[i1; i2℄)) = 2 ovol �h1; 3; 3;13;1i�= 172�2:14.6 The Ivan�si� PolytopeThe following onstrution is opied quite diretly from the paper of D. Ivan�si� [I℄. Considerthe planes that bound the retangular box R � IR3, R = [�2; 2℄ � [�2; 2℄ � [�2p2; 2p2℄. Add
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Figure 18: The Boundary Spheresto them the 12 spheres of radius p2 with enters (�1;�1; j2p2) for j = �1; 0; 1 and the 18spheres of the same radius with enters (j; k;�p2) for j; k = �2; 0; 2 (Figure 18).Eah of the 6 planes that omprise the boundary of the retangular box and eah of the 30spheres determine a hyperplane in H 4 = f(x; y; z; t) 2 IR4 : t > 0g that divides H 4 into twohalf-spaes. For the spheres we hoose the half-spaes whose boundary at in�nity is unboundedin IR3, for the planes the half-spaes so that the intersetion of their boundaries at in�nity isthe retangular box R . The polytope P is de�ned as the intersetion of those half-spaes. Ithas the following ombinatorial data: a0inf (P ) = 36; a0ord(P ) = 48; a1(P ) = 216; a2(P ) = 168and a3(P ) = 36.The set of 2-dimensional faes of P splits into a set of 16 triangles with dihedral angles 1=8,a set of 8 retangles with dihedral angles 1=8, a set of 24 triangles with dihedral angle 1=4, aset of 112 retangles with dihedral angles 1=4 and a set of 6 hexagons with dihedral angles 1=4.Furthermore we have Pa2(P )i=1 a0(P 2i ) = 648 and �4(P ) = 148.In the set of the 48 ordinary vertex �gures of P we have 16 vertex �gures of type [2; 2; 2℄ whihrepresent an angle of 1=32 and 32 vertex �gures of type [4; 2; 2℄ also representing an angle of1=32 (ompare 16.4). Thus we get for the volume of PvolH4 (P ) = �23 "148 � 2�1618 + 1618 + 12414 + 2414 + 3214�+ 4�16 116 + 32 132�#= 83�2:Furthermore, we have the following types of 3-faes (with the notations from the paper [I℄):For instane, the hexagonal 2-fae in the 3-fae C1 is the intersetion of C1 with Y 01 .
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D1

C1

A1

Z1Figure 19: The 3-dimensional Faes of P15 Examples: Volumes of OrbifoldsLet M = X2m=� be a geometri orbifold of dimension 2m with X2m = S2m or H 2m suh thatthere exists a normal fundamental polytope P for the disrete group �. Then we have byTheorem 13.2.2 volX2m(M) = ovolX2m(�) = volX2m(P )= mXd=0 �2dXi=1 �2d �
2d(i)� 1g2di :In the speial ase where M = H 4=� is a 4-dimensional hyperboli manifold with a normalfundamental polytope P for the disrete group � we have with Corollary 13.2.3 resp. 13.2.1volH4 (M) = volH4 (P )= 13 �2 24 4� 2 � a0(P ) + a2(P ) �+ 2 � �0 + �2 �� 2 �2Xi=1 a0 �
2(i)�� 1� 12 l2i � 35= 43 �2 nXd=0(�1)d �d:



9915.1 The 24-ell ManifoldLet M = H 4=� be the ideal 24-ell manifold. Then M an be onstruted from the ideal regularhyperboli 24-ell P with dihedral angles 1=4 by pairing opposite sides. Of ourse, we ould usethe result from Setion 14.4, where we have omputed the volume of this polytope. However,we will go the way desribed above. Eah faet of P is a otahedron and eah 2-dimensionalfae is a triangle, so a0 �
2(i)� = 3for all i = 1; : : : ; �2. For the details of the onstution see [R℄ (page 509). Of ourse, P is afundamental polytope for �. The group � is torsionfree and so all stabilizers are trivial. Wehave a0(P ) = a0inf (P ) = 24, a2(P ) = 96, �0 = 0 (all verties are at in�nity), �2 = 96 and l2i = 4for all i = 1; : : : ; �2. So we get volH4 (M) = 43 �2:Furthermore, we remark that �(M) = 1.15.2 The Davis ManifoldLet M = H 4=� be the (ompat) Davis manifold. Then M an be onstruted from the regularhyperboli 120-ell P with dihedral angles 1=5 by pairing opposite sides. Eah faet of P is adodeahedron and eah 2-dimensional fae is a pentagon, soa0 �
2(i)� = 5for all i = 1; : : : ; �2. For the details of the onstution see [D℄ or [R℄ (page 505). Clearly,P is a fundamental polytope for the torsionfree group �. We have a0(P ) = a0ord(P ) = 600,a2(P ) = 720, �0 = 1 (all verties are ordinary and will be paired), �2 = 144 and l01 = 600 andl2i = 5 for all i = 1; : : : ; �2. So we getvolH4 (M) = 1043 �2 = 43 �2 �(M);where �(M) = 26 is the Euler-Poinar�e harateristi of the Davis manifold.15.3 Ivan�si�'s ManifoldsLet Mi = H 4=�i (i = 1; 2) be the 4-dimensional manifolds, desribed by D. Ivan�si� [I℄. Both M1and M2 an be onstruted by pairing sides of the Ivan�si� polytope (ompare Setion 14.6) andso in priniple we know the volume of these manifolds. However, we will go another way. Fromthe onstrutions (ompare [I℄, Lemma 5.1) we an read o� the numbers�0 = 2�1 = 17 + 5 = 22�2 = 36 + 3 = 39�3 = 18�4 = 1:



100We remark that the two manifolds di�er in the number of usps (we have m0 = 7 for M1 andm0 = 8 for M2). Hene we an use Corollary 13.2.1 and getvolH4 (M) = volH4 (P )= 43 �2 4Xd=0(�1)d �d= 83 �2:
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16Appendix
16.1TheCombinatorialNumbers

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14qm 1 12 �18 116 � 5128 7256 � 211024 332048 � 42932768 71565536 � 2431262144 4199524288 � 293934194304 520038388608 � 18572533554432Bm 1 �12 16 0 � 130 0 142 0 � 130 0 566 0 � 6912730 0 76am - 12 - 14 - 12 - 178 - 312 - 6914 - 54612 -Gm - 1 - 1 - 3 - 17 - 155 - 2073 - 38227 -Tm - 1 - 2 - 16 - 272 - 7936 - 353792 - 22368256 -Em 1 - 1 - 5 - 61 - 1385 - 50521 - 2702765 - 199360981Z(m) - 1 2 4 10 32 122 544 2770 15872 101042 707584 5405530 44736512 398721962



10216.2TDAforSimplies

1. step 2. step 3. step 4. step!2m�1 !2m�1 !2m�1 !2m�1 !2m�1�!2m�2!2m�3 �12�32�!2m�3 = �12 !2m�3 �12 !2m�3 �12 !2m�3 �12 !2m�3�!2m�4 +12�42�!2m�4 = 2 !2m�4!2m�5 �12�52�!2m�5 = �4 !2m�5 +�54�!2m�5 = !2m�5 !2m�5 !2m�5�!2m�6 +12�62�!2m�6 = 132 !2m�6 ��64�!2m�6 = �172 !2m�6!2m�7 �12�72�!2m�7 = �192 !2m�7 +�74�!2m�7 = 512 !2m�7 �174 �76�!2m�7 = �174 !2m�7 �174 !2m�7�!2m�8 �12�82�!2m�8 = 13 !2m�8 ��84�!2m�8 = �57 !2m�8 +174 �86�!2m�8 = 62 !2m�8!2m�9 �12�92�!2m�9 = �17 !2m�9 +�94�!2m�9 = 109 !2m�9 �174 �96�!2m�9 = �248 !2m�9 +31 �98�!2m�9 = 31 !2m�9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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16.3TDAforCubes

1. step 2. step 3. step!2m�1 !2m�1 !2m�1 !2m�1�!2m�2!2m�3 �122�21�!2m�3 = �!2m�3 �!2m�3 �!2m�3�!2m�4 +1222�31�!2m�4 = 5 !2m�4!2m�5 �1223�41�!2m�5 = �15 !2m�5 +522�43�!2m�5 = 5 !2m�5 5 !2m�5�!2m�6 +1224�51�!2m�6 = 39 !2m�6 �5222�53�!2m�6 = �61 !2m�6!2m�7 �1225�61�!2m�7 = �95 !2m�7 +5223�63�!2m�7 = 305 !2m�7 �612 2�65�!2m�7 = �61 !2m�7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



10416.4 Coxeter Simplies in S3Sheme Denoting Volume Value Order of the groupeÆ k Æ Æ l Æ [k; 2; l℄ 12kl�2 4klÆ 5 Æ Æ Æ [5; 3; 3℄ 17200�2 0:00137078 14400Æ Æ 4 Æ Æ [3; 4; 3℄ 1576�2 0:01713473 1152Æ 4 Æ Æ Æ [4; 3; 3℄ 1192�2 0:05140419 384Æ Æ Æ 5 Æ [2; 3; 5℄ 1120�2 0:08224670 240Æ Æ Æ Æ [3; 3; 3℄ 160�2 0:16449341 120Æ Æ Æ 4 Æ [2; 3; 4℄ 148�2 0:20561676 96Æ Æ Æ Æ [2; 3; 3℄ 124�2 0:41123352 48Æ Æ ÆÆ �3; 31;1� 124�2 0:41123352 192



10516.5 Coxeter Polytopes in E 3Sheme Denoting Type 1   1   1  [1; 2;1; 2;1℄ ube 1   4  4  [1; 2; 4; 4℄ prism 1    6  [1; 2; 3; 6℄ prism
 1    �1; 2; 3[3℄� prism
 4   4  [4; 3; 4℄ simplex
  4  �4; 31;1� simplex
   �(34)� simplex



10616.6 Coxeter Polytopes in H 4Tumarkin Pyramids (Non-Compat, �4 = 7)Sheme Denoting k l Volume Value
  lk 144 h4;3;(k;1;l)4 i 2 3 1144�2 0:06853891952 4 172�2 0:13707783903 3 172�2 0:13707783903 4 148�2 0:20561675844 4 136�2 0:2741556779
    44 1 kl [(k;1; l); 3; 4; 4℄ 2 3 1288�2 0:03426945972 4 1144�2 0:06853891953 3 1144�2 0:06853891953 4 196�2 0:10280837924 4 172�2 0:1370778390
    64 1 k [(k;1; 3); 4; 3; 6℄ 2 5864�2 0:05711576623 5432�2 0:1142315324
  4 1 k [(k;1; 3); 4; (3; 3; 3)℄ 2 5432�2 0:11423153243 5216�2 0:2284630649



107
Sheme Denoting k l Volume Value

    6 1 kl [(k;1; l); 3; 3; 6℄ 2 3 1540�2 0:01827704522 4 1288�2 0:03426945982 5 6110800�2 0:05574498793 3 1270�2 0:03655409043 4 234320�2 0:05254650503 5 3400�2 0:07402203304 4 1144�2 0:06853891954 5 19721600�2 0:09001444765 5 615400�2 0:1114899757
  1 lk [(k;1; l); 3; (3; 3; 3)℄ 2 3 1270�2 0:03655409042 4 1144�2 0:06853891952 5 615400�2 0:11148997573 3 1135�2 0:07310818083 4 232160�2 0:10509300993 5 3200�2 0:14804406614 4 172�2 0:13707783904 5 19710800�2 0:18002889515 5 612700�2 0:2229799513



108
Sheme Denoting k l Volume Value

  44 kl 1 [(3; 4; 4; 3); (k;1; l)℄ 2 3 172�2 0:13707783902 4 136�2 0:27415567793 3 136�2 0:27415567793 4 124�2 0:41123351694 4 118�2 0:5483113558



109Kaplinskaja prisms (Compat, �4 = 8)Sheme Denoting Volume Value
    5   [::; 3; 3; 5; 3℄ 4110800�2 0:037467943
   4   5  [::; 3; 4; 3; 5℄ 174320�2 0:038838721
 5    �::; 3; 3;35 � 6110800�2 0:0557449878 4  [::; (3; 3; 4; 3; 3)℄ 615400�2 0:1114899757
  4   [::; 3; (3; 4; 3; 3)℄ 7480�2 0:1439317309
  5   [::; 3; (3; 5; 3; 3)℄ 21110800�2 0:1928228268



110Kaplinskaja prisms (Non-ompat, �4 = 8)Sheme Denoting Volume Value
   4   [::; 3; (3; 3; 3; 4)℄ 534320�2 0:1210854244
   44   [::; 3; (3; 4; 3; 4)℄ 154�2 0:1827704519
   45   [::; 3; (3; 5; 3; 4)℄ 1697200�2 0:2316615478
  4 4   [::; 4; (3; 3; 4; 3)℄ 5288�2 0:1713472987

Æ 5 Æ Æ ÆÆ4 Æ h::; 3;3;54 i 9110800�2 0:08316055563
    5 [::; (3; 3; 3; 3); 5℄ 915400�2 0:1663211112



111Esselmann Polytopes (ompat, �4 = 10)Sheme Denoting Volume Value
 8   4   8  [8; 3; 4; 3; 8℄ 111728�2 0:062827343
 45   10  h4;3;3;105 i 22121600�2 0:10098067
  4   8 4 [8; 3; 4; (3; 4; 3)℄ 11864�2 0:12565469
 45  5 h4;3;(3;5;3)5 i 22110800�2 0:20196135
  55  10 [(3; 5; 5; 3); 3; 10℄ 22110800�2 0:20196135
  4 4 4 [(3; 4; 3); 4; (3; 4; 3)℄ 11432�2 0:25130937
  55 5 [(3; 5; 5; 3); (3; 5; 3)℄ 2215400�2 0:4039227



11217 NotationsSn n-dimensional spherial spaeEn n-dimensional Eulidean spaeH n n-dimensional hyperboli spaeXn one of the spaes Sn, En or H nIHn vetor spae model of H nIBn ball model of H nIDn projetive dis model of H nIUn upper half-spae model of H nonv onvex hull of a pointsetP polytopePn set of n-dimensional polytopes in XnPn� set of ombinatorial equivalene lassesCl(P ) set of polytopes, ombinatorial equivalent to P� polytopal omplex�n set of n-dimensional polytopal omplexes in XnF (P ) fae poset of PF(P ) omplex of the polytope P�F(P ) extended omplex of the polytope PG(P ) Gram matrix of PM(P ) inidene matrix of PL(P k) fae �gure or link in P k(P k fae of P )S(P k) sheme of L(P k)T simplexC oneW ubeW � dual ube (ross polytope)Rp1p2p3 regular polytope in X4 with Shl�ai symbol fp1p2p3g
d( ) set of d-dimensional ordinary faes�0( ) set of verties at in�nity℄ number of elements of a setad ℄
d( ) number of d-dimensional faesa0ord ℄
0( ) number of ordinary vertiesa0inf ℄�0( ) number of verties at in�nity� ombinatorial Euler-Poinar�e harateristi�g geometrial Euler-Poinar�e harateristi�n�k�1(P kjP ) (n� k � 1)-dimensional angle of P with apex P k for k = 0; : : : ; n�n�k�1(P kjP ) := 12 � �n�k�1(P kjP ) for k = 0; : : : ; n��n�k�1(P k) omplex angle with apex P k!n�k�1(P ) :=PP k2
k(P ) �n�k�1(P kjP ) for k = 0; : : : ; n!n(P ) := �1n vol(P )W (P ) Pnk=0(�1)k!n�k�1(P )



113Gd( ) d-dimensional skeletonD( ) polytopal deompositionK(P ) (anonial) deomposition of P in onesS(C) deomposition of a one C in simpliesB( ) baryentri deompositionb( ) baryenter
kl (�;D(�)) k-dimensional elements in D in the l-skeleton of �Zkl (�;D(�)) number of elements in 
kl (�;D(�))z(k; P l;D(�)) := Zkl (P l;D(�) \ P l) for all P l 2 
l(�)Bkl (�) := Zkl (�;B(�))b(k; P l) := Bkl (P l)b(k; l) := b(k; T l) where T l is a l-simplexIso(Xn) group of isometries of Xn� disrete subgroup of Iso(Xn)Stab(K;�) = �K f 2 � : K = KgStabp(K;�) = �0K f 2 � : k = k for all k 2 Kg� tesselation�� boundary omplex of �j�j underlying topologial spaeri relative interiorl losurerb relative boundaryK setional urvaturen(�) volume of the n-sphere of radius �n := n(1)Smn Stirling number of the seond kindqm square-root numberBm Bernoulli numberTm tangent numberEm Euler numberam 2�m TmZ(m) number of zik-zak permutations of m elements
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