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Introduction

The basic objects of study in this thesis are even-dimensional polytopes and polytopal complexes
in spaces of constant curvature. The connections between combinatorics, angles and volume are
in the center of the investigations.

More precisely, we will develop volume formulas for polytopes in the spherical space S?™ and
hyperbolic space H?™ of even dimension which only depend on the combinatorics and the odd-
dimensional angles of the polytope. These types of formulas are usually called reduction formulas
because they reduce the volume problem in spherical and hyperbolic space of even dimension
to the determination of odd-dimensional spherical volumes. The general reduction formula for
a 2m-dimensional polytope P in X*™ = S?™ with constant curvature K = 1, F?™ with K =0
or H?™ with K = —1 can be written as

2 ¢yt K™ volyom(P) = Z 0% (P g —aj1(P%) (%)

P2j €02 (P)
7j=0,..., m

where cg,, denotes the volume of the 2m-dimensional unit sphere, Q% (P) is the set of all 2j-
dimensional ordinary faces of P, agp—2j—1(P%) is the (2m — 2j — 1)-dimensional (normalized)
angle in the apex P% and 0% (P%) are rational numbers which only depend on the combinatorics
of the face P%. If we fix a combinatorial type, the main problem is the explicit determination of
these rational numbers which reflect in a yet mysterious way the combinatorics of the polytope
P. These coefficients 0% (P%) can also be viewed as combinatorial invariants which map the
set of all 2j-dimensional polytopes P2 into the rational numbers

o PH — Q
PY s g% (PY).
In honour to Ludwig Schlifli these invariants are called Schldfli invariants.

We point out that little is known about volume functions for odd-dimensional polytopes in the
spherical and hyperbolic space. About 1935 Coxeter [C] introduced the function

Sta ) = S )

(cos2ra — cos2rf + cos2ry — 1) —a2+ﬂ2—’)’2

where
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X = with D = y/cos? acos?y — cos? 3.
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Coxeter combined results of Schlafli [Sch] for spherical and Lobatschewsky [L] for hyperbolic
orthoschemes and proved that the volume of an orthoscheme R = R(a, 3,7) in S? or H? can be
written as )
™ s
_ - - X?) — Q3
4S<2 03 1) 5
V01x3(R) = )
i v s
- o - X3 — H3
25(F-aBg-)
The reduction formula (x) arises in two different ways. The first way was followed by Schlafli
[Sch]. He used the so-called Schldfii Differential Formula to prove (x) by induction. Furthermore,



he identified the numbers 02/ (T'%) for a simplex 7% as the modified tangent numbers. Therefore
the reduction formula for simplices is often called Schlafli’s Reduction Formula. Moreover,
Schlifli noticed that the numbers 0% (P%) can always be determined by recursion formulas.

The second way was followed by E. Peschl [Pe]. He used the so-called Poincaré Formula [Po] to
prove (%) for simplices by combinatorial methods. Poincaré’s Formula can be written as

[ 2K™cy) volgam(P) , m=2m  even
W(P)_{O , n=2m+1 odd

where W (P) denotes the generalized (alternating) angle sum of the polytope P. This formula
can be viewed as an angle analog of Fulers Polyhedron Theorem and it gives a volume formula
for even-dimensional polytopes in spherical and hyperbolic space.

A first aim of this thesis is the determination of the numbers 0% (P?%) for the class of simple
and simplicial polytopes. These polytopes have an easy combinatorial structure and the duality
allows us to transfer results from one class to the other. The method of the determination of the
numbers 0% (P%) can be described as follows. We decompose P%/ suitably into simplices. Then
we use Schlafli’s Reduction Formula and add all the volumes and the decomposition angles.

In dimension two this is quite easy. We see that the sum of the decomposition angles are angles
of the decomposed polygon.

Of course, we also see that we can simplify our lives by choosing a suitable decomposition. For
dimensions bigger or equal to three the connections between the decomposition angles and the
angles of the polytope are no longer obvious.

Hence the general problem here is to understand how angles in the decomposition add to angles
in the polytope.

We will solve this problem by developing a general combinatorial calculus. This calculus allows
us to transfer linear relations between angles and combinatorial values of polytopes to polytopal
complexes which are decomposable into such ”bricks”. In more details, let II be an n-dimensional
polytopal complex in X" and D = D(II) a polytopal decomposition of II. Furthermore, let

0=Fp = > $D) ap_i—1(D") + K(D) volx»(D)

DieQi(D)
1=0,..., n



be a linear relation for each element D € D. Here ¢(D?) and (D) denote arbitrary real numbers
which depend on the face D’ or D. Then this calculus allows us to combine all these relations
to a relation for the complex II of the form

0=Fy = > &P ay; (P +r volxn(II),
PieQi(II)
1=0,..., n
where ol ;| (P?) denotes the complex angle of II in the apex P’. The main problem is to see

that a sum of decomposition angles in D with the same apex gives a complex angle of a certain
dimension. This dimension depends on the dimension of the face of II, which contains the (open)
apex in the relative interior. This gives us a reduction formula and the determination of the
coefficients 0%/ (P?%7) is then a purely combinatorial problem. We find out that

J

2 Z(—l)k aopy1 a?FH(PY) | P% simplicial
o2 (p2j) — k];O :
2 Z(—l)k aopy1 ¥ 2K (PY) | P% simple
k=0

where agg 41 (k > 0) is a modified tangent number and a!(P%) the number of I-dimensional faces
of P%. By using combinatorial relations the facevectors of particular (well-known) polytopes
wee see that

o 2 (=1) agj41 , P simplex
0¥ (P¥) = ;
(=1) Ey;j ., P?% cube or cross polytope

where Fs; is a Euler number. This method is only successful here because the combinatorial
structure of P% is not too complicated and applied to arbitrary polytopes it supplies a volume
formula which depends also on even-dimensional angles.

So for the description of the Schlafli invariants for arbitrary polytopes we must go another way.
We take up the idea of Schléfli that all invariants 02 (P%) can be determined by recursion
formulas. A second aim of this thesis is to work out this idea. These recursion formulas can be
constructed by mapping a spherical polytope to a hyperplane. We thus get a tesselation of this
hyperplane which has the same combinatorics as the boundary of the polytope. Furthermore,
this tesselation can be viewed as the boundary of a degenerated spherical polytope and all angles
of this polytope are of measure one half. Hence all angles disappear in the recursion formula
and we get a relations between the Schlifli invariants of different dimensions

Polytopes in spaces of constant curvature have connections with discrete groups I' of isometries
and with geometric orbifolds. In more details, we can construct (generalized) polytopes for
each discrete group. These polytopes are closures of fundamental domains and the simplest
construction method is the Dirichlet construction. If these (generalized) polytopes have only
finitely many faces, they are called fundamental polytopes and the important invariant of the
group I, the covolume covol(T"), can be computed as the volume of these fundamental polytopes.



Furthermore, the faces (of a fixed dimension) of a fundamental polytope can be arranged in
pairwise disjoint sets of I'-equivalent faces

Qd(P) :ClUCQU...UCk(d)

for 0 < d < n —1. The angles with apexes at the faces of one of these subsets C; add up to a
rational number

where g¢ is the number of elements in the (setwise) stabilizer subgroup of the face P¢ for
i =1,...,k(d). This condition is usually called the cycle condition. The stabilizer subgroups
can be viewed as discrete subgroups of O(d), so they are finite. Of course, all elements in C; are
[-equivalent and all stabilizer subgroups of elements in C; are conjugated to each other.

A third aim of this thesis is to construct volume formulas for fundamental polytopes which
depend on orders of stabilizer subgroups instead of angles by using the cycle condition. A
two-dimensional formula of this type was constructed by Carl Ludwig Siegel [S]

1
_ 11 1
2 K ¢, voly»(P) = E:(g—o—§l§>+1—§a2nf(13)
=1 3

where .° denotes the number of equivalence classes of ordinary vertices, l? the number of vertices
in an equivalence class C; and agn f(P) the number of vertices at infinity of P. Siegel used this
formula to determine a lower bound for the covolumes of discrete subgroups I' of hyperbolic
isometries. Furthermore, he showed that this minimum is realized by the Coxeter group (2,3, 7]

o ).

In the last part of this thesis we will try to show the utility of the constructed formulas by
exhibiting explicit examples. So we compute the covolume of Coxeter groups, classified by 1. M.
Kaplinskaja [Kapl], F. Esselmann [Es] and P. Tumarkin [T], and of the group PSL (2,Z[iy,i2])
(in a quite natural way) by computing the volume of a fundamental polytope. Here the group
PSL(2,7Z]i1,i2]) can be viewed as the 4-dimensional generalization of the well-known discrete

. . 2
subgroup PSL (2,Z) < Iso(H?) and its covolume is equal to Z;.

VAV

Also by computing the volume of a fundamental polytope we establish the volumes of the ideal
24-cell manifold, the Davis manifold [D] and the Ivansi¢ manifolds [I].

O

covol (T') > % = covol ( o
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1 Three Metric Spaces

In this section we will define the Euclidean space E", the spherical space S™ and the hyperbolic
space H™® as metric spaces. Especially in the case of the hyperbolic space it is very helpful to
use several models. To avoid confusion we will use the following notations. We shall denote by
H™ “the” hyperbolic space without interpretation in one of the models, by IH™ the hyperbolic
space in the vector-space model, by IB™ the hyperbolic space in the ball model, by D™ the
hyperbolic space in the projective model and by IU" the hyperbolic space in the upper half-
space model. Furthermore, we have bijective (and by construction isometric) maps between the
different models.

Iz 1 ¢
H*: D" — H" <+— B" <+— IU"
For the details of all notions in this section see for instance [R], sections 1 - 5.

From the viewpoint of differential geometry the three spaces E", S™ and H" are the only complete,
connected and simply-connected Riemannian manifolds with constant sectional curvature K =
0,1 or —1 (up to an isometry of Riemannian manifolds).

For more details you may use [V2].

1.1 The Euclidean Space E"

Denoting the coordinates in the space IR" by zi,...,z,, we define the scalar product, the
(induced) norm and the (induced) metric by the formulae

(T, y)n == w1y +...+Tpyn
zlln = V{(z,2)n
d(z,y) = |lz—ylln

for all z,y € IR™. The metric space (IR",d), or simply E", is called the FEuclidean space. The
notions plane, hyperplane, etc. in the space E" are defined in the well-known way.

From the viewpoint of differential geometry the space E" can be viewed as a complete, connected
and simply-connected Riemannian manifolds with constant sectional curvature K = 0.

1.2 The Spherical Space S”

We define
Xr o= §7(0,1)
= {x e R : (z,2)py1 = 1}

as the set of all points in JR" ™! with distance 1 from the origin. Now we can define an intrinsic
metric on X7 by

dg: X! x X! — IR
(z,y) — 0(z,y),

where 0(x,y) is the Euclidean angle between z and y, defined in the well-known way by

cosds(z,y) = (T,Y)nt1-



The metric space (X]',dg), or simply S™, is called the spherical space.

From the viewpoint of differential geometry the space S™ can be viewed as a complete, connected
and simply-connected Riemannian manifolds with constant sectional curvature K = 1.

1.3 The Vector Space Model of H"

The Lorentz-Minkowski Space Denote the coordinates in the space IR"*! by zg, z1,. .., z,.
We introduce another bilinear form and a pseudonorm on IR"*! by the formulae

(T, )10 = —xoYo+21y1 + ...+ TnYn
lelha = @), ec
for all z,y € IR"*'. The (n + 1)—dimensional vector space IR"*! with the bilinear form (, )1,
is called the (n + 1)-dimensional Lorentz-Minkowski space, denoted by IR'™. With reference to
this pseudonorm, the space IR""™ decomposes into three parts:
1. The light cone is the set
on o= {x € R : ||z = o}
= {xEIRnH:x% :x%—l—...—i-xi}
and all vectors z € C" are called light-like or parabolic.
2. The exterior of the light cone is the set
EC" = {s€R": |lalli, € R and ||zl > 0}
= {:L‘EIR"'H L1 <$%+...+(I}i}
and all vectors z € AC™ are called space-like or elliptic.
3. The interior of the light cone is the set
Ic* = {:c € R : ||z||1,, positive imaginary }
= {xE]RnH:x% >II}%+...+(I}%}
and all vectors © € IC" are called time-like or hyperbolic. A time-like vector x € IC™ is
called positive (resp. negative), if zp > 0 (resp. xyp < 0).

The connected component of IC™ consisting of all positive (resp. negative) vectors is
denoted by IC? (resp. IC™).

A vector subspace V of IRY™ is called time-like if V has a time-like vector, space-like if every
nonzero vector in V' is space-like and [light-like otherwise.
If z and y are two positive time-like vektors in IR"" then we have

(@ yhn < Izl - 1yl
—— ——

pos. im.  pos. im.
-

TV
neg. real

with equality if and only if  and y are linearly dependent. Hence, there is an uniqu real number
n(z,y), the space-like Lorentzian angle between z and y, such that

(@ y)1n = [lzll1n - [[ylln - coshn (e, y).



The Hyperbolic Space in the Vector Space Model IH" We define
Xt = {x € R"": (v.a)y, = —1}
H" = {x e X" tx9> 0}.
Now we can understand the hyperbolic space in the vector-space model as the (metric) space
(H™,dy), or simply IH", with
dy :H"x H" — R
(z,y) — n(z,y).

Indeed, dj is a metric on the set H™ and for all z,y € H" we have the identity

coshdy(z,y) = —<$ay>l,n-

From the viewpoint of differential geometry the space IH" can be viewed as a complete, connected
and simply-connected Riemannian manifolds with constant sectional curvature K = —1.

1.4 Planes in S” and IH"

To simplify the notations we write

<a>n+1 ) Xn =8"
<7>X": <7>n ) Xt =FE"
(; in >, X0=H"

Let X = S™ or IH". A k-dimensional plane F in X" is a non-empty intersection of X" with
a (k + 1)-dimensional vector subspace Up of IR"t!, called the defining subspace of the plane
F. An (n — 1)-dimensional plane in X" is called a hyperplane. Every hyperplane H in X" is
determined by an n-dimensional vector subspace Ug in IR"*! and divides the whole space X"
into two closed half-spaces, denoted by H* and H . In particular, the hyperplane H and the
closed half-spaces H™ and H~ are given by

H = {.’E € R (z,e)xn = 0} nx",
Ht = {.’E € R (z,e)xn > 0} nx",
H = {x € R""™: (z,e)xn < 0} nx",

where e is a unit normal vector of the defining subspace Uy of H. For any set K C X" we denote
by < K > the intersection of all planes in X" which contain the set K. Of course, < K > itself
is a plane.

1.5 Other Models of H"

The Ball Model We denote by ( the stereographic projection from the point —eq, which
maps the n-dimensional unit ball B" := {z € R""! : ||z||,+1 < 1 and 2y = 0} (embedded in
the space IR"*!), bijectively on the set H" by:

n:B" — H"

1
(0,$1,...,$n) — 72<1+||$||3L+172$1332$n)
L= lz][5 41



The inverse of 7 is the map:

n':H" — B"
1
I +yo

(yoayla"'7yn) L (yla"'ayn)-

We can define the so-called Poincaré metric on B™ by

dp(z,y) = du(n(z),ny))

for all z,y € B™. The metric space (B",dg), or simply IB", is called the (conformal) ball model
of the hyperbolic space. The closure IB" of IB" is the natural compactification of IB" and points
in 0IB" := IB" — IB™ are called points at infinity. Of course, 9IB™ is homeomorphic to S"1(0,1).
Furthermore, for the metric dg we have the following result (see [R] Theorem 4.5.1.).

Theorem 1.5.1 The metric dg is given by

2|z —yll7

coshdp(z,y) = 1+ .
(L= {ll[Z) (1 = lyl]7)

The Projective Disk Model In this case we denote the n-dimensional unit ball by D" :=
{z € R" : ||z||lns1 < 1 and x5 = 0} (embedded in the space IR"*!). The gnonomic projection
1 maps the set D" bijectively on the set H":

p:D" — H"
T+ ey

r r— .
| M|z 4 eollLnl

The inverse of u is the map:

p~tHY — D"
1
(s X1y vy Tpn) —> —(T1,...,Tp).
T
The map p is a decomposition of a vertical translation of D™ by eg and a radial projection with
center 0. We can define a metric on D" by

dp(z,y) = dg(p(z),p(y))

for all 2,y € D™. The metric space (D", dp), or simply D", is called the projective disk model
of the hyperbolic space. The closure of ID™ is denoted by ID"™ and 9ID™ := ID™ — ID" is
homeomorphic to S"1(0,1).

The Upper Half-Space Model We denote by U" the n-dimensional upper half-space U™ :=
{z € R™ : z,, > 0}. Let ¢ be the standard transformation from the upper half-space U" to the
unit ball B™. This means that { = op where p is the reflection of IR™ in the hyperplane IR" !
and ¢ is the reflection of IR" in the sphere S(e,, V2):

p:U" — —U"
(1,29, .., Zn) —> (—x1,T2,...,%y)
o:=U" B"

—
r — e+ (x —eq).

|z — el



As usual, we can define a metric on U™ by

du(z,y) = dp(C(z),((y))

for all z,y € U™. The metric space (U™, dy), or simply IU", is called the upper half-space
model of the hyperbolic space. The closure of IU" is denoted by IU™ and 0IU™ := IU™ — IU™
is homeomorphic to IR"~! U {co}. Furthermore, for the metric dy we have the following result
(see [R] Theorem 4.6.1.).

Theorem 1.5.2 The metric dy is given by

Iz — yll2

coshdy(z,y) = 1+ .
(=) 2 %0 yo



2 The Groups of Isometries

In this section we will study the groups of isometries of the three spaces E", S and H". Fur-
thermore, we will describe several representations of the group of isometries of the hyperbolic
space in the different models by so-called M6bius transformations.

2.1 The Group of Isometries of E”

Let O(n) be the group of orthogonal transformations and 7;, the group of translations in R".
Then the group of isometries Iso(E") of the space E" is the semidirect product

Iso(E") = T, AO(n).

2.2 The Group of Isometries of S”

The group O(n + 1) of all orthogonal transformations of IR"*! maps the sphere X! bijectively
on itself. Then the group of isometries Iso(S™) of the space S™ is the restriction of the action of
O(n + 1) on the sphere

Iso(S™) = O(n+1)[gn.

2.3 The Group of Isometries of IH"

Let O(1,n) be the group of all linear transformations in IR" "' which preserve the bilinear form
(, )1,n- Of course, this group maps the set X", bijectively on itself but the elements may
exchange the two connected components. Let O(1,n)" be the subgroup of O(1,n) (of index 2)
which maps H"(C X",) bijectively on itself. Then the group of isometries Iso(IH") of the space
H" is

Iso(H™) = O(1,n)|mn.

2.4 The Group of Isometries of IU"

Clearly, we can define the groups of isometries in the several models of the hyperbolic space by
conjugation with the isometric maps pu, n or {, respectively. Another direct way to define the
groups of isometries for the upper half-space model and the ball model is the use of the so-called
Mobius transformations. Since we only make use of the upper half-space model in this thesis we
will explain it in this case. For more details see [R].

Mébius Transformations of IR° Let IR" be the Euclidean space with the canonical bilinear
. . T . . .
form (and induced metric) and IR = IR" U {oco} the one-point compactification of IR".

A sphere Y in IR" is defined as either a Euclidean sphere
S(a,r) = {ze€R" : ||z —al||l, =71}
or an extended hyperplane

P(a,t) = P(a,t)U{oo}
{r e R" : (z,a), =t} U{oc0}.



A reflection p = p,; in an extended hyperplane P(a,t) is defined as

ooy ={ e

x+2(t—(r,a)p)a , otherwise

A reflection (or inversion) o = 04, in a sphere S(a,r) is defined as

00 , T=a
U($) — a ) , T =00
a+—"— (r—a) , otherwise
||z — all;,

Definition 2.4.1 The composition of finitely many reflections in extended hyperplanes and
spheres is called a Mobius transformation.

Reflections in hyperplanes as well as reflections in spheres are conformal maps, which means
that they preserve angles. So every Mobius transformation is a conformal map.

Mobius transformations form a topological group, which is called the general Mobius group
G M (n), and we denote the subgroup of orientation preserving elements in GM (n) by GM ™ (n).
Of course, Iso(E™) and Sim(E") are subgroups of GM (n) (each element is a decomposition of
finitely many reflections in hyperplanes).

Let u, v, x,y be points in R" with u # v and = # y. The cross ratio [u,v,z,y] is defined as

de(u,z) de(v,y)
de(u,v) do(x,y)

[u7 ,U’ "'E’ y]

where d. denotes the chordal metric on R". A map ¢ : IR" — IR" is a Mébius transformation
if and only if it preserves cross ratios.

If ¢ is in GM (n) with ¢(c0) = oo, then it can be written as
p(x) = b+ kAzx

with b € R™, k > 0 and A € O(n), which means that ¢ is a Euclidean similarity.

Let ¢ € GM (n) with ¢(c0) # o0 and @ = ¢ *(c0). Then the composition ¢o,, of ¢ with the
reflection o, , in the sphere S(a,r) satisfies the equality ¢o, ,(c0) = co and so we get

d(z) = b+kAoy,(x)
with b € IR, k > 0 and A € O(n). Furthermore, ¢ acts on S(a,Vk) as a Euclidean isometry:

kr? lz —ylln

|z = alln [ly = alln

lp(z) = ¢ (y)lln

= [z =yl

for all z,y € S(a,rvk). This sphere is uniquely determined by this property and it is called the
isometric sphere of ¢. We get

pz) = b+ Ao, /().

Let ¢ € GM(n) be a Mébius transformation. The map ¢ is a composition of finitely many
reflections p(a,t) in extended hyperplanes P(a,t) and reflections o, in spheres S(b,r). It is



possible to extend ¢ to an element ¢ € GM (n 4+ 1) in a canonical way and it is enough to
- 41
define the extension of the following two types of transformations: We embed R" into R"" by
A 1 N
z+— Z = (z,0) and define p = p; as the reflection of R in the extended hyperplane P(a,t)

L~ n+1 ~
and & = ;. as the reflection of R""" in the sphere S(b, 7).

Definition 2.4.2 Let ¢ € GM (n) be a Mdébius transformation. Then the so-called Poincaré
extension ¢ € GM(n + 1) is defined as the composition of the canonical extensions of the
reflections in ¢.

Mobius Transformations of IU"

Definition 2.4.3 A Mdbius transformation of the upper half-space IU™ is a Mdbius transfor-
~ N
mation of IR, that leaves IU™ invariant.

Let GM (IU™) be the set of all Mobius transformations of the upper half-space IU™. Of course,
GM(IU™) is a subgroup of GM(n). Furthermore, GM (IU™) is isomorphic to GM(n — 1) (by
Poincaré extension) and every Mdbius transformation of IU™ is a composition of reflections of
R" in spheres orthogonal to IR" L.

Let IU" be the closed upper half-space. We see that each elerr_lent in GM(IU™) leaves the
closed upper half-space IU" invariant and so has a fixed point in IU" by Brouwer’s Fixed Point
Theorem. Now we will classify the elements of GM (IU™) by their fixed points.

Definition 2.4.4 Let ¢ be an element in GM (IU™). Then ¢ is said to be

1. elliptic if ¢ fizes a point of IU™,
. . . . . oan—l
2. parabolic if ¢ fizes no point of IU™ and fixes a unique point in R or

3. hyperbolic if ¢ fizes no point of IU™ and fizes two points of ]Rnil.

Of course, these properties depend only on the conjugacy class of ¢ in GM (IU™). Now we have
the following important results (see [R] Theorems 4.7.1 , 4.7.2 and 4.7.4).

Theorem 2.4.1 Let ¢ be an element in GM (IU™).

1. ¢ is elliptic if and only if ¢ is conjugated in GM (IU™) to an orthogonal transformation of
E".

2. ¢ is parabolic if and only if ¢ is conjugated in GM (IU™) to the Poincaré extension of a
fized point free isometry 1 of E*=1 of the form 1(x) = b+ Az with b # 0 and A € O(n—1).

3. ¢ is hyperbolic if and only if ¢ is conjugated in GM (IU™) to the Poincaré extension of a
similarity ¢ of "1 of the form (z) = kAz with k > 1 and A € O(n —1).



Elementary Groups Let G be a subgroup of C_?M(IU”) Then G is called elementary if G
has a finite orbit in the closed upper half-space IU". We divide the elementary subgroups of
GM (IU™) into three different types.

Definition 2.4.5 Let G be an elementary subgroup of GM(IU™). Then G is said to be of

1. elliptic type if G has o finite orbit in IU™,

A n—1 _
2. parabolic type if G fizes a point in IR"™" and has no other finite orbit in IU" or

3. hyperbolic type if G is neither of elliptic nor of parabolic type.
Now we have the following important results (see [R], Theorems 5.5.2, 5.5.5 and 5.5.7).
Theorem 2.4.2 Let G be an elementary discrete subgroup of GM (IU™). Then G is of

1. elliptic type if and only if G is conjugated in GM (IU™) to a finite subgroup of O(n).

2. parabolic type if and only if G is conjugated in GM (IU™) to an infinite discrete subgroup
of Iso(E").

3. hyperbolic type if and only if G is conjugated in GM (IU™) to an infinite discrete subgroup
of Sim(E"), that leaves the set {0,00} invariant.

We have the following result (see [R], Paragraph 12.1, Lemma 2).

Lemma 2.4.1 If G is a discrete subgroup of GM (IU™) all of whose elements are elliptic, then
G is elementary of elliptic type and so conjugated to a finite subgroup of O(n).

The Group of Isometries of IU™ Now we can describe the group of isometries of the (metric)
upper half-space IU" in terms of Mobius transformations of IU™. We have the following result
(see [R], Theorem 4.6.2.).

Theorem 2.4.3 Every element in GM (IU™) restricts to an isometry of the upper half-space
U™ and every isometry of IU™ extends to a unique Mobius transformation of IU™.

So the groups Iso(H") and GM (IU™) are isomorphic and the two spaces (IHH",Iso(IH™)) and
(IU™,GM(IU™)) can be viewed as isomorphic homogeneous spaces.

2.5 Clifford Matrices and Mobius Transformations

There is another way to describe hyperbolic isometries in the upper half-space model. We do
this by using Clifford matrices, which are strongly related to the Mobius transformations. In
the following we record results of L. Ahlfors [A] and P.L. Waterman [W].



The Clifford Algebra Let C), be the Clifford algebra which is the real associative algebra,
generated by n elements 41,19, ...,7, subjected to the relations

il = —ilg
9
Zk) = _1,

for all £ # [. Furthermore, let 79 = 1. Every element ¢ in C, can be expressed uniquely in the
form

a = Zall

where I = 4,4y, == -1y, With 1 < v < vy < ... < < nand ar € IR. We define the Euclidean

norm |a| of a € Cy, by |a| = /Y a%. As with complex numbers we distinguish the real and the

purely imaginary parts a = a + ac with ap = ag. An element a in C), is called pure if ap = 0.
We define

Sl = {a€C, : |a| =1},

the unit sphere of C,,. Let C}: be the group of units in C, (this is the set of invertible elements).

There are three involutions of C,,:

1. *: replaces each I = 4y, %y, ...0, Withiy, 4y, | ...5,,. This map determines an anti-automorphism

of Cp:
(a+b)* = a" +b"
(ab)* = b a™.
2. ' : replaces each i with —ij for £ > 0. This map determines an automorphism of C,:
(a+b) = d +0b
(ab) = da'b.
3. ~:a=(a)" = (a*). This map determines an anti-automorphism of C,,:
(a+b) = a+b
(ab) = ba.

Clifford numbers of the form =z = zy + z1%1 + ... + z,%, are called vectors. Clearly, they form
an (n + 1)-dimensional subspace of the 2"-dimensional real vector space C,, which we identify
with IR"*!. For vectors we have #* = z, Z = ' and % = Zz = |z|?>. So nonzero vectors z are
invertible with z ! = z/|x|%.

Thus products of nonzero vectors are also invertible and form a multiplicative group, which we
call the Clifford group T',.

Clifford Multiplication and Orthogonal Maps Now we have the following connection
between orthogonal maps and multiplication with invertible Clifford numbers (see [W], Theorems
2 and 3).



Theorem 2.5.1 If a € C), is invertible and axa —* € R" ' for all z € IR"!, then

po: R —  R"T!

’7
r +—— axra !

is orthogonal. Furthermore, if a is in IR" ' — {0}, then p, is the decomposition of the reflection
Ry in the perpendicular through 0 to 1 and the reflection R, in the perpendicular through O to a.

Theorem 2.5.2 The map

¢p: Ty — O(n+1)

a — pq
is onto SO(n + 1) with kernel IR — {0}.
Clifford Matrices
Definition 2.5.1 We define by
GL(2,C,) = { T= < Z Z ) 2 a,b,c,d € C, and T induces a bijection from

Rn—l—Q Rn—i—Q

z+— (ax +b)(cx +d) }

the general linear group of 2 x 2 matrices with entries in the Clifford algebra Cy,. Furthermore,
let T be an element in GL(2,Cy,). Then the pseudo-determinant A of T is defined by

A(T) = ad" —bc".

We can show (compare [W], Lemma 10) that any 7' € GL(2,C,,) is a decomposition of a:

translation ( (1) /f ) T T+ p p € IR
inversion 01 e x
-1 0 |72
dilatation A0 T = Nz AeR
0 1/A *
. A0
trivial map 0 ) Tz A e R —{0}
a 0
orthogonal map ( 0 4 ) z = ara’ a€clp,lal=1
. 1 0
reflection ( 0 -1 ) T = —x



Since the Mobius group GM (n + 1) of the space IR™ 1 is generated by transformations of the
above types we have the following result (see [W], Theorem 4).

Theorem 2.5.3 The group GL(2,C,) acts on IR"*! by

T: R — R
z +— (az+b)(cx +d)~"

as the group of Mébius transformations with kernel {\I : A € IR — {0}}.

Thus with
PGL(2,C,) = GL(2,Cp)/ { A : Ne R—{0}}
SL(2,C,) = {Te€GL(2,Cp) : A(T)=1}
PSL(2,C,) := SL(2,C,)/ {£l}

we have the following result (see [W], Theorem 5).

Theorem 2.5.4 The group PGL(2,C},) is isomorphic to the full group of Mobius transforma-
tions and PSL(2,C,) to the group of orientation preserving Mébius transformations of IR™ ! :
PGL(2,C,) = GM(n+1)
PSL(2,Cy) GM™(n+1).

1

Furthermore, the group SL(2,C,) preserves hyperbolic (n + 2)-space IU""2 = { z € IR"*?
Tpi1 > 0} in the upper half-space model and the metric in IU™*2 (compare L. Ahlfors [A],
section 2.5).

Theorem 2.5.5 The group PSL(2,C,) acts on the hyperbolic space IU™2 as the group of
orientation preserving isometries.



3 Polytopal Complexes

In this section we will define polytopes and polytopal complexes. For the combinatorial point of
view the classical book [AH] and the modern book [Z] are good references. For the geometrical
point of view see [R] or [V2] and for more information about algebraic topology (CW-complexes,
Euler-Poincaré Characteristic) see [Ma).

3.1 Combinatorics

Polytopes and Polytopal Complexes Throughout this chapter let X" be S”, E" or H", if
not specified otherwise.

Let U be a X"-convex set in X" and < U > the intersection of all hyperplanes in X", containing
the set U. Then the relative interior of U, denoted by ri(U), is the interior of U in the plane
< U >. The closure of the set U is denoted by cl(U) and the set rb(U) := cl(U) —ri(U) is called
relative boundary of U.

Definition 3.1.1 An n-dimensional (convex and generalized) polytope P in X" is

e the S™-convex hull of finitely many points for X = S™ which are contained in an open
hemisphere,

e the E"-convex hull of finitely many points for X" =E" and

e the H"-convex hull of finitely many ordinary points and points at infinity for X* = H"

which containes an open set of X",

Then P may not be compact but it is always of finite volume. It turns out that P is the
intersection of finitely many half-spaces (see [Z], Theorem 1.1)

r = (H;.

el

An n-dimensional simplez T in X" is an n-dimensional polytope X", which is the convex hull of
(n+ 1) points. A supporting hyperplane H of P is a hyperplane in X" such that P is contained
in H~ or H" and PN H # (. The intersection of a supporting hyperplane H of P with P is
called a face of P. The dimension of a face is the minimal dimension of a plane in X", which
contains this face.

Definition 3.1.2 A generalized polytopal complex 11 in X" is a set of polytopes in X" such that

1. if a polytope belongs to 11 then so do all its faces,
2. the intersection of two polytopes in Il is a face of both polytopes and

3. the complex 11 is locally finite.

A polytopal complex 11 in X" is a generalized polytopal complex 11 in X™, consisting of finitely
many polytopes.



A simplicial compler in X" is a polytopal complex in X" which consists only of simplices. Further
|IT| denotes the underlying topological space of I1. The dimension of II is the maximal dimension
of an element in II. The complex IT is called pure if all elements of II are included in an element
of the dimension of II.

The boundary OIl of a pure n-complex is the pure (n — 1)-complex consisting of all (n — 1)-
dimensional faces of II (and their faces), which are not contained in exactly two n-dimensional
faces of II.

Let II be a pure polytopal complex of dimension n in X" with more than one maximally di-
mensional element and 0 < k < n. Then II is called k-connected if for each pair P, @ in II of
maximal dimension n there is a finite sequence P, ..., P, in II with

1. dim(P;) = n for each i = 1,...,m;
2. P,=P,P, =Q and

3. P, 1 and P; share a common side of dimension = & for each 7 > 0.

If IT is (n — 1)-connected we call I connected.

Let IT be a polytopal complex in X”. For all d with 0 < d < n we denote by gd(H) the d-skeleton
of II, which is the polytopal complex consisting of all elements in IT of dimension < d:

Gl = {P €11 dim(P) < d}.

Let II be a polytopal complex in X". A polytopal decomposition D = D(II) is a polytopal
complex, such that |D| = II and each element of D is contained in an element of II. If II is pure
(for instance if IT is a polytope) then D is pure and it includes only finitely many decomposition
polytopes of each dimension.

One of the simplest and most symmetrical decompositions is the barycentric decomposition B(I1)
of a polytopal complex II.

Example 3.1.1 Let P be the 2-dimensional polytope in Figure 1. The polytope P is a pure
polytopal complex with four 0-dimensional elements P, PY, PY, PY; four 1-dimensional elements
Pl = conv(PY, PY), Py = conv(PY,PY), Py = conv(PY,PY), Pl = conv(P),P); and one
mazimally dimensional element P? = conv(P), PY, Py, P).

Figure 1: A 2-dimensional Polytope



Example 3.1.2 Let II be the 2-dimensional polytopal complex in Figure 2. The complex con-
sists of eight 0-dimensional elements P, P, P:?, P, P50, Pé), P70, Pg; ten 1-dimensional ele-
ments Pl = conv (PP, PY), P} = conv (P, PY), P} = conv(P{,P}), P} = conv(P),P}), P} =
conv (P, PY), P = conv(P?, PY), P} = conv(PY, PY), Pi = conv(P{, P?), P} = conv(P?, PY),
Py = conv(PY, PY) and three mazimally dimensional elements P? = conv (PP, PY, PY), P =
conv(PY, PY, PY) and P? = conv(PY, P9, P?, P{).

Furthermore, each element in 11 is included in an element of the dimension of I1; so 11 is pure
and 0-connected.

0
Py
0
PY Py
Py

0
Pg

0

Py

Py P

Figure 2: Polytopal Complex

For all d with 1 < d < n let a?(II) be the number of d-dimensional faces, a® _(II) the number of

ord
ordinary 0-dimensional faces and agn f(H) the number of points at infinity, which are contained

in II. Clearly for II C S™ we have a?nf(H) = 0. Futhermore let a®(II) := a?® (II) + a?nf(H).

ord

Every polytope can be viewed as a polytopal complex. For example, we have the following
well-known result (compare [G], chapter 4).

Lemma 3.1.1 Let T' be an n-dimensional simplex, W an n-dimensional cube and W* an n-
dimensional cross polytope (dual cube). Then we have

k n+1 k ntk (T [ k1 [T
¢ = (11 o (7). o (1)
for all k with 0 < k <n.

For all d with 1 < d < n let

be the set of d-dimensional ordinary faces

QO = {PP,PS,...,P{?SM(H)}



the set of ordinary vertices and
TU(H) = {p?,pg, - ,pggnf(n)}

the set of points at infinity in II. Furthermore, we define by Q(II) the set of all ordinary faces
of the complex II.

If we consider geometrical properties of the polytopal complexes there are great differences
between ordinary vertices and vertices at infinity. So the above notation indicates clearly the
distinction of the two types of points. However, if we consider combinatorial properties there is
no difference between these two types of vertices.

The Face Poset

Definition 3.1.3 We denote by II™ (resp. P™) the set of all pure n-dimensional polytopal
complezes (resp. n-dimensional polytopes) in the spaces S™, E" and H".

Let II be an element of ITI™. The face poset F(II) of IT is the set of all faces of II, partially ordered
by inclusion. Let II; and Il be elements in II™. Then II; and Ils are called combinatorially
isomorphic, if the two face posets F(II;) and F(IIy) are isomorphic (as partially ordered sets).
Two elements P; and P, in P™ are said to be combinatorially isomorphic, denoted by P; ~ Ps,
if they are combinatorially isomorphic as polytopal complexes. These are equivalence relations
on the sets IT™ and P™, respectively.

For all P € P™ we denote by CI(P) the combinatorial equivalence class, to which the polytope
P belongs. The set of all equivalence classes is denoted by P? and 7 : P* — P2 is the quotient
map.

Let P = (,c; H; C X" be an n-dimensional polytope. For all d-faces P¢ of Q(P) with
0 <d<n we put

1(PY = {z er:Plc HZ}

The family of all subsets of I of this form can be partially ordered by inclusion. We denote this
partially ordered set by F(P) and call it the complez of the polytope P. If P is in H", then the
vertices at infinity of P are of special interest. For all p° € TO(P) let

") = {iGI:pOCFIZ}.

We denote by F(P) the collection of all subsets of I obtained by adding all subsets of the form
I(p°), for p° € YO(P), to F(P). Also F(P) can be partially ordered by inclusion and it is called

the extended complex of the polytope P. It is easy to see that F(P) is anti-isomorphic to the
face poset F(P) of P.

Combinatorial Invariants for Polytopes

Definition 3.1.4 Let J be a set. A map j : P®™ — J is called a combinatorial n-invariant if
there exists a map j, : P — J such that j, om = j. A combinatorial invariant j is called
complete if 7. is injective.



The numbers a’(P) for 0 < i < n — 1 are of course incomplete combinatorial invariants (for
n > 2). The isomorphism class of the face poset F'(P) is, by definition, a complete combinatorial
invariant.

Another complete combinatorial invariant arises by considering the incidence matriz M (P) of a
polytope P € P™, defined as follows. Let P be an element in P™,

Py ur(P) = { P Pl }
ey = { Pl g b

(we do not distinguish between ordinary vertices and vertices at infinity). The matrix
M(P) = (mi)

is defined by
S 1 , PPisa face of P;‘fl
" 0 , otherwise

Then the map j : P®* — Mat, P — M(P) from P" in the set of all matrices Mat, is a
complete combinatorial invariant and so the structure of F'(P) can be deduced from the matrix
M(P).

3.2 The Euler-Poincaré Characteristic

Definition 3.2.1 Let 11 be a pure n-dimensional polytopal complex in X"™. We define the combi-
natorial Euler-Poincaré characteristic x.(I1) and the geometrical Euler-Poincaré characteristic

Xg(II) of IT by
Xe(ID) = Y (=" a"(ID)

X)) = Y (=1)" a”(ID) + agyg(1D).
v=1

In the cases where there is no difference between . and x, we will write simply x. Of course, for
polytopal complexes without vertices at infinity we have x(II) = x.(II) = x4(II) and in general
we have the relation x.(IT) = x4(IT) + a?nf(H).

If IT is a compact polytopal complex in X" then the pair (|II|,II) can be viewed as a finite
CW-complex. For details see [Ma], section IV.2. Especially, the Euler-Poincaré characteristic
x(II) is a topological invariant of the space |II| and so is independent of the decomposition of
the topological space |II|. Hence we have the following result (see [Ma], Theorem IV.3.6).

Theorem 3.2.1 Let I and II' be n-dimensional pure compact polytopal complezes in X" such
that |TI| is homeomorphic to |IT |. Then

Furthermore, we can deduce the following lemma.



Lemma 3.2.1 Let II be an n-dimensional pure polytopal compler in X" and I a polytopal
decomposition of II. Then

xe(Il) = x.(II')

!

xg(I) = xu(I1).

Proof: If IT is compact the result follows immediately from Theorem 3.2.1. Hence we only have
to consider the case where Il is a noncompact polytopal complex in H”. We work in the model
ID" of the hyperbolic space and we denote by II the compactification of IT in the ambient space
IR"® > D". Then II and II' can be viewed as a Euclidean polytopal complex where II" is a
polytopal decomposition of TI with x(II) = x.(II) and x.(II') = x.(II'). With Theorem 3.2.1

we have x.(IT) = x.(IT') and the first equation follows.

Furthermore, the number a?n f(H) does not change under an arbitrary decomposition and so we
find with the first part of the proof

Xg(I) = xe(ID) — af, ¢(I0)
= Xe(Il') —ad, (1)
= Xg(H,)

a

In the special case where the polytopal complex is a polytope with all of its faces we can deduce
the following lemma (compare [Ma], section IV.3).

Lemma 3.2.2 Let P be an n-dimensional polytope in X", D = D(P) a polytopal decomposition
of P and 9D = D(P) N JP the decomposition complex of the boundary of P. Then

Xe(D) = xy(D) +af (P) =1
Xe(dD) = x4(8D) +ag,((P) =1+ (=1)""".

Proof: If P is a compact polytope in X" then |D| is homeomorphic to the closed n-dimensional
unit ball and x.(D) = 1. Furthermore, |0D| is homeomorphic to the (n — 1)-dimensional sphere
and x.(0D) =1+ (—=1)""L.

Let P be a noncompact hyperbolic polytope in the model D" of the hyperbolic space. We
denote by D (resp. 0D) the compactification of D (resp. dD). These two complexes can be
viewed as Euclidean polytopal complexes. We get x.(D) = x¢(D), xc(0D) = x.(0D) and with
the first part of the proof the lemma follows. O

The Euler Polyhedron Theorem In the proof of the previous lemma we have used the
equation x.(D) = 1 for a polytopal decomposition D = D(P) of a polytope P in X". This is a
generalization of the well-known Fuler Polyhedron Theorem.

This Theorem was discovered by L. Euler for 3-dimensional polytopes (polyhedrons) in 1752.
It is interesting that this result was known to R. Descartes about hundred years earlier. In
the middle of the nineteenth century L. Schlafli generalized Euler’s Polyhedron Theorem to
polytopes of all dimensions (compare [Sch], page 190).

There are many different proofs for this nice theorem. For instance, we can use the fact that
the boundary of all polytopes is a so-called shellable polytopal complex (see [Z], Corollary 8.17).
For another proof which works with intersections of the polytope with hyperplanes see [Br],
Theorem 16.1.



Theorem 3.2.2 (Euler Polyhedron Theorem) Let P be an n-dimensional polytope in X".
Then

Xe(P) = ahp(P) + ag(P) —a'(P) + -+ (=1)"Ha"H(P) + (-1)" = L.

3.3 Angles

Normalized Angles Let P be an n-dimensional polytope in X". In the following we will
define the notion of an (n — k — 1)-dimensional angle of P at a face P*. So let P* be an element
in QF(P) for 0 < k < n — 1; this means it has no vertex at infinity of P. Further let z be an
interior point of P* and K the (n — k)-dimensional plane passing through z and orthogonal
to the plane < P* >. It is possible to find an € > 0, such that the sphere S"!(z,¢) C X»
with center z and radius € > 0 only intersects faces of P that are incident with P¥. Then the
(n —k — 1)-dimensional sphere S *~1(z, €) C K intersects also only faces of P that are incident
with P*.

Definition 3.3.1 The (n — k — 1)-dimensional (normalized) angle of P at a face P* is defined

as

a_(PIP)= a_i(P) =1
k1 (PFIP) = an i 1(P*) = cnsp1(e)"" vol (S”_k_l(x,e)ﬂP)

a,(0|P) = an(P) := ¢, ' volxn(P)
for 0 <k <n—1, where the constant c,,(€) denotes the volume of the m-dimensional sphere of

radius € and ¢y, = ¢ (1). A 1-dimensional angle of P is also called a dihedral angle.

Remark 3.3.1 All angles of an n-dimensional polytope P can also be measured (n — 1)-dimen-
sionally. Let P* € QF(P) for 0 < k <n. We use the same notations as above. The real number
€ > 0 is chosen in such a way that the sphere S™ 1(x,¢) only intersects faces of P that are
incident with P*. Then we have

n_p—1(P*) = ¢, 1(e) "t vol (8™ (z,€) N P)
for all0 <k <n—1 (compare [Pe]).
The face P¥ of P is called the apez of the angle a,,_j_i(P*|P). This angle does not depend

on the choice of z and € > 0, and it is normed in such a way, that the whole sphere will be
measured as 1. Furthermore, we define by

1
Bu—k-1(P*|P) = 3~ ap 1 (PF|P)

the exterior angle of P with apex P* for 0 <k <n — 1.



Face Figures The intersection S"*~!(z,e)NP is an (n—k—1)-dimensional spherical polytope
in S"*=1(z,€) (see [R]). By simple radial projection pr we can map it on the unit sphere
Sn=k=1(z,1) = S»*~1 and get an (n — k — 1)-dimensional spherical polytope in the sense of our
definition. We define the face figure or the link L(P¥) as

L(P*) = pr (Sn_k_l(x, €) N P)

for all P* in QF(P) with 0 <k <n — 1.

Let p° be an element in T°(P) and Y a horosphere with basepoint p° such that Y meets only
the sides of P incident with p°. The intersection

LY = YnpP

is also called face figure or link of P in p°. The Euclidean geometry of L(p°) is uniquely
determined by p° up to a similarity (induced by a radial projection from p®). So L(p®) can be
viewed as an (n — 1)-dimensional Euclidean polytope.

Angle Sums Let P be a polytope in X"”. Then the (n — k — 1)-dimensional angle sum of P
is defined as the sum of all (n — k — 1)-dimensional angles of P for all 0 < k < n. This means:

Wp—k—1(P) = Z p_p_1(PF|P) for k=0,...,n;
PkeQk(P)
wn(P) = ¢, volxn(P).

So we get for instance wy(P) = aﬂi;(P) and w_;(P) = 1. Furthermore, we define the generalized
angle sum W (P) of P as

n

W(P) = Y (1) wyi1(P)
1=0
= wnfl(P) - wn,Q(P) + ...+ (-1)” wfl(P).

Complex Angles The notion of an angle of P at a face P* can be generalized to pure
polytopal complexes II of dimension n in X" as follows. Let P* be an element in QF(II) for
0 < k < n. Then P* is included in a finite number of elements PJ, ..., Py in Q™(II) of maximal
dimension such that P¥ = PN ... N PP, Furthermore, the number A is maximal which means
that there are no other elements in Q" (IT) containing P¥.

Definition 3.3.2 The (n — k — 1)-dimensional complex angle of I at a face P* is defined as

h

ay_ 1 (P*) = Zanfkfl(PﬂPin)
i=1

for 0 <k <n.

Defining v,_j_1(P¥|P") = 0 if P* is not a face of the polytope P" we can write the above
equation as

ap_j_1(P*) = Z an——1(P*|P").
PreQr(II)



We can also speak of the exterior complex angle and define

1
Efkq(Pk) = 9~ agfkf1(Pk|P)

for 0 <k <n—1. A simple computation shows that for all pure polytopal complexes IT and for
all £ with 0 < k <n we have

Z S aaPHPY) = 3 ol (PR

PreQn(Il) PkeQk(Pn) PkeQk(II)
Example 3.3.1 Let II be the 2-dimensional polytopal complex in Example 3.1.2 (see Figures

2 and 8). We use the same notations P} = conv(P), P, PY), P? = conv(P?, P, PY) and
P? = conv(P), P, PY, PY). For exzample we have

S a@®) =Y a@P)t Y @)

P2eQ?(Il) PYeno(P?) POcQO(P2) POe0O(P2)

+ Y (PP

POeQO(P2)

= o (P)|PY) + e (PSIPE) + ar (P51 PY)
+ar (PP + a1 (PY1P5) + oo (5 |175)

+an (PL|PS) + oy (PG| P5) + o (PP 1P§) + on (P P§)

8

= Y a®)
=1

= > oY)

POcQO(1)

where we use that oi'(PY) = a1 (PY|P?) + a1 (PP|P) + oy (PP P2).



0 0
P7 Pﬁ

Figure 3: The Complex Angle in P

4 Combinatorial Numbers

The combinatorial numbers described in this section are coefficients in the Taylor series of
analytic functions. The tangent numbers 75,41 will appear in Schlifli’s Reduction Formula for
simplices if we normalize the angles in such a way, that the generalized octand is measured as 1
(compare L. Schlifli [Sch]; here denoted as a, ) and the modified tangent numbers agp 1 if we
normalize the angles in such a way, that the whole sphere is measured as 1 (compare E. Peschl
[Pe]). The Euler numbers will appear in the Reduction Formula for cubes.

For the study of number series the book [S] and on line version [OL] are very helpfull.

The Bernoulli numbers, the tangent numbers and the Euler numbers play also an important role
in algebraic geometry. For instance, they are used to describe topological invariants of oriented
(even-dimensional) manifolds (compare [Hir|, chapter 8.9).

Thus we will recall some definitions. A complex or real function f is called analytic in a point
zo in C or IR if f can be expanded as a power series in z, which converges to the function in a
neighborhood of zy. If f is analytic in a point 2y then the power series is the Taylor series and
so f can be written as

o pn)(,
o) = 3 T o
n=0

(n) . . . .
The complex number ! n(’zo) is called the n-th coefficient of the Taylor series for f in zy and the

number (™ (z) is called the n-th reduced coefficient of the Taylor series for f in zg.

4.1 The Stirling Numbers

Let X be a finite set with n elements. A family of subsets Ay, ..., A, of X is called a partition
of X if

o A; # () for all 4;



o A;NA; =0 for all 4,5 with i # j;
° U:’ilAZ:X

The sets A; are called the classes of the partition.

For all m < n the number S} of partitions of a set of n objects into m classes is called Stirling
number (of the second kind). We have (see [Bc]):

1. St =8"=1;
2. S =St mS for all 1 <m < m;

3. the number of surjections of X into a set A with |A| = m is equal to m! S} and

4.

v=0 v
- L Ufjo(—l)” () om =y

4.2 The Square-Root Numbers

The real function f(z) = /14 z is analytic in the point z = 0. The square-root numbers gy,
(n > 0) are defined as the coefficients of the Taylor series of f at x =0

o0
Vid+z = Z qn "
n=0

with
@0 = 1
1
qQ = 2
o = (Lpp L3sem=3

2-4-6---2n

By a direct calculation we get the following result.

Lemma 4.2.1 We have

_ 2n —1
dn+1 = o + 2 qn
(=D 2n) 1

for all n with 1 <n < oco.

For instance, we have the following values:



infoj1] 23] 4 | 5] 6 | 7 ] 8 | 9 10 | 11
e 1 5 7 21 33 429 715 2431 4199
n 21 8|16 | 128 | 256 | 1024 | 2048 | 32768 | 65536 | 262144 | 524288

4.3 The Bernoulli Numbers

The complex function f(z)

Bernoulli numbers B,, (n >0

)

z
expz—1

z
expz — 1

o0

B
-y o,

n=0

Comparing this with the series of the exponential function we get the recursion:

has a removable singularity in the point z = 0. The
are defined as the reduced coefficients of the Taylor series of f(z)

By = 1
n—1 n
0 - ()g
v=0 v
For instance, we have the following values:
n JJO] 1 [2[3] 4 [5]6[7] 8 |9]10]11] 12 [13]14]|15] 16
1|1 1 1 1 5 691 7 3617
Bod U206 1% 730 |22 || 730 |66 | ° | 270 6| %] 510

4.4 The Tangent Numbers

The complex functions f(z) = tan(z) and g(z) = tanh(z) are analytic in the point z = 0. The
tangent numbers Toy,+1 (n > 0) are defined as the reduced coefficients of the Taylor series of

tan(z) (or tanh(z) )

Comparing these series with those of sin(z) and cos(z) we get the recursion

tan(z) =

tanh(z) =

(=1)" Ty

T, =

(] L[

3

Il
<)

Il
o

(="

Ton 1

(2n +1)!

Ton+1 2+l
(2n+1)!

2n+1

1
= 2 + 1

1-— —1)? T .
> (ol ) T

It follows by induction that all tangent numbers are integers. For instance, we have the following

values:



|m [[1[3][5] 7] 9 | 11 13 15 17

To || 1] 216|272 | 7936 | 353792 | 22368256 | 1903757312 | 209865342976

Furthermore, we have the following relations between tangent and Bernoulli numbers (see [Sch],
page 243).

Theorem 4.4.1 For all integers n > 0 we have

" 22n+1 (22n+2 _ 1)

Tony1 = (— N2

n+1

4.5 The Euler Numbers

The complex functions f(z) = cos !(z) and g(z) = cosh™!(z) are analytic in the point z = 0.
The Euler numbers Eg, (n > 0) are defined as the reduced coefficients of the Taylor series of
cos 1(z) (or cosh™!(z)) in 0

!
COs z — (2n)
1 - By
— 1) n 2n.
cosh z Z( ) (2n)! ?
n=0
We get the recursion
Ey =1
= 2n
(=1)" Byp = (=" ( > For
20
v=0
For instance, we have the following values:
| m JJo]2[4]6[ 8 [ 10 | 12 | 14 | 16 \ 18 |

En||111]5 611385 | 50521 | 2702765 | 199360981 | 19391512145 | 2404879675441

Furthermore, we have the following relation between the Euler and the tangent numbers (see
[N], page 52):

Lemma 4.5.1 We have

0 B = 3 0 (3 T

v=0

for all n > 0.



4.6 Related Numbers

For all intergers n > 0 we define the rational numbers ay,4+1 (n > 0) by

a2n+1

Gont1

1

92n+1 Tont1

n—+1

o Lont1

22

The numbers Ga,11 are called the Genocchi numbers. The numbers a9, are the coefficients

of the Taylor series of the function tan(z/2). We have

z
tan (

2

)

= Z(
n=0

:Z(

n=0

o0

a2n+1
2n +1)!

Gon+t1
2n +2)!

2n+1

Z2n+1

Thus we can easily modify the recursion formula for the tangent numbers to obtain

a

(—1)" agn+1

N —

N —

Furthermore, by a direct calculation we get

Lemma 4.6.1 We have

(=1)" agn+1

| =

-1

S

<

(1)
0

2n+1
2041

a2y+1-

20
=
1 = 2n + 1
(_l)n a2p+1 = _% Z(_l)u( % >a2v+1
v=0

for alln > 1.
For instance, we have the following values:
lm [1[3]5] 7[99 | 11 | BB ] 15 [ 17 19 21

1(1]1] 17| 31 691 5461 | 929569 | 3202291 2219305681 4722116521
“millg |28 1 2 16 2 1 2
Gm || 1| 1|3 | 17 | 155 | 2073 | 38227 | 929569 | 28820619 | 11096552905 | 51943281731




4.7 Zick-Zack Permutations

The Euler numbers Fs, and tangent numbers 75,1 play an essential role for counting the num-
ber of zick-zack permutations. Thus they have a pure combinatorial description. A permutation

1---m
ki km
of m elements is called a zick-zack permutation if
(kv — kufl) (ku+1 — ku) < 0

for all 2 < v < m—1. We denote the number of zick-zack permutations of m elements by Z(m).
We have the following result (compare [En]).

Lemma 4.7.1 We have for all m > 1

2o = L5 (") 20 2m -0y
m) = 7 2 ; v m—v
and furthermore
2FE, , meven
Z(m) = { 2T, , m odd



5 The Gram Matrix and Acute-Angled Polytopes

In this section we record well-known facts about Gram matrices and the connection of the Gram
matrix of acute-angled polytopes with their combinatorial structure. For more details see [V1]
and [V2].

5.1 General Facts

Let P = Nje H,; be an n-dimensional polytope in X", where we use the vector-space model IH"
in the hyperbolic case. Let e; be the unit normal vector of the defining subspace Ug,, directed
inwards with respect to P for all + € I. The Gram matriz of P is the matrix

@) = (o),
Clearly, G(P) is symmetric with 1's along the diagonal.
For X" = S” the matrix G(P) is positive semidefinite of rank < n + 1, and G(P) defines the
polytope P up to an isometry. For all 4,5 € I with ¢ # j we have (e;,ej)sn = — cos(a;;) with
a;j = Z(H;, Hj) equal to the intersection angle formed by H; and H;.

For X" = E" the matrix G(P) is positive semidefinite of rank < n. For all 4, j € I with i # j we

have
(i, e = —cos(wij) , Hj, Hj intersect with angle «;;
Cir /B = —1 , H;, Hj parallel

For X® = H" the matrix G(P) is indefinite of rank n + 1 and signature (1,n); and G(P) defines
the polytope P up to an isometry. The entries (e;, e;)m» for i # j have the following geometrical
meaning:

—cos(a;;) , H;, H; intersect with angle «;;
j j j
(€i,ej)mn = -1 , H;, Hj parallel
—cosh(l;;) , H;, Hj ultraparallel with common perpendicular of length [;;

5.2 The Gram Matrix of an Acute-Angled Polytope

An n-dimensional polytope P in X" is called acute-angled if all dihedral angles of P are of
measure less than or equal to 1/4. In this case P is simple, which means that each ordinary
(n — k)-dimensional face of P is contained in exactly & distinct (n — 1)-faces.

A polytope P is called a Cozeter polytope if all its dihedral angles have measure ﬁ forpe IN

with p > 2. Any acute-angled polytope in S™ is a simplex. The Gram matrix G(P) of P is
positive definite of rank = n + 1, and it has only non-positive entries off the diagonal.

Any acute-angled polytope in E" is a direct product of simplices. The Gram matrix G(P) of
P is positive semidefinite of rank 7, and it has only non-positive entries off the diagonal. In
particular G(P) is parabolic, which means that by permutating of the rows and columns G(P)
can be brought into the form
Ay 0
Az

0 Ay

where Aj, Ag, ..., A, 1 < k <n are degenerate indecomposable positive-semidefinite matrices.



For an acute-angled polytope P in H" there is in general no simple combinatorial description.
The Gram matrix G(P) of P is indecomposable of signature (1,7) and it has only non-positive
entries off the diagonal. The order of G(P) can be arbitrarily large.

Let P be a polytope in X*. Then P is called a Coxzeter polytope if all its dihedral angles
(1-dimensional angles) are of the form ﬁ for p € IN with p > 2.

5.3 Gram Matrix and Combinatorial Structure

Let P = \;c; H; C X" be an n-dimensional acute-angled polytope, G = G(P) its Gram matrix,
F(P) the complex of P and F(P) the extended complex of P. For each subset J C I we use the
following notation: G'j is the principal submatrix of G formed by the rows and columns whose
indices belong to J. The following results are due to E. Vinberg ([V1], Theorems 3.1. and 3.2.).

Theorem 5.3.1 Let J be a subset of I. Then J € F(P) if and only if the matriz G ; is positive
definite.

Theorem 5.3.2 Let J be a subset of I. Then J € F(P) — F(P) if and only if the matriz G ;
is parabolic of rank n — 1.

With these two results we are able to reconstruct the combinatorial structure of the polytope
P in terms of the incidence matrix (which is a complete combinatorial invariant) from its Gram
matrix. Let P = N;crH; be an n-dimensional acute-angled polytope in X" and G = G(P)
its Gram matrix. We use the following algorithm, called the Gram matrix-Incidence matrix
Algorithm (GIA), defined as follows:

1. Determination of the set of all positive definite and parabolic submatrices of rank n — 1 of

G

{Gy, :j=1,....a(P) },

where J; C I are the corresponding subsets of I for j = 1,...,a"(P). This set is bijective
to the set of all vertices (ordinary and at infinity) of the polytope P.

2. Of course, the set
{H :i=1,...,a""(P)}.
is bijective to the set of all (n — 1)-dimensional faces of P.

3. Now we can derive the incidence matrix M (P) = (m;;) of P by

— 1, 1€eJj
7771 0, otherwise

forall 1 <i<a" Y(P)and 1 <j <a’(P).



6 Schemes

Let S be a graph with vertices {v; };cr. Then S is called a scheme if each edge v;v; has a positive
weight ¢;;. If there is no edge between two vertices we speak of an edge with zero weight. A
subscheme of S is a subgraph of S in which every edge carries the same weight as S.

The number of vertices of S is the order of S. If {v;};cr is the set of vertives of S, we denote by
S the subscheme of S with vertex set {v; };c; for all subsets J C I. Of course, we have Sy = S.

To each scheme S one can associate a symmetric matrix A(S) = (a;j)i,jer with a;; = 1 and a;j =
—c;j for all 4,5 € I with ¢ # j. A scheme S is connected if and only if A(S) is indecomposable.

The rank, determinant and signature of S can be transferred from A(S) to S and vice versa.
Then S is called elliptic, if A(S) is positive definite, parabolic if A(S) is parabolic or hyperbolic
if A(S) has index of inertia —1.

Definition 6.0.1 The scheme S of an acute-angled polytope P in X" is the scheme correspond-
ing to its Gram-matriz G(P).

Let S be the scheme of an n-dimensional acute-angled polytope in X". The Theorems 5.3.1 and
5.3.2 can be translated in the language of schemes.

Theorem 6.0.3 Let J be a subset of I. Then J is in F(P) if and only if the subscheme Sy is
elliptic. Furthermore, J is in F(P) — F(P) if and only if Sy is parabolic of rank n — 1.

Of course, the Gram matrix-Incidence-Algorithm (GIA) can be modified easily to a Scheme-
Incidence matrix-Algorithm (SIA). The advantage of using schemes instead of the Gram matrix
is reflected in the case of Coxeter polytopes, because we can use the classification results of elliptic
and parabolic schemes.

If P (or pY) is an arbitrary face of P with 0 < k& < n — 1 we denote by S(P¥) (or S(p°)) the
scheme of the face figure L(P*) (or L(p°)) of P. This is an elliptic scheme in the first case (P*

is an ordinary face of P) and a parabolic scheme in the second case (p” is a vertex at infinity of
pP).



7 Discrete Subgroups of Iso(X")

The groups which are generated by the reflections in the facets of a Coxeter polytope are
simple cases of discrete subgroups of Iso(X"). In this section we give an introduction to discrete
subgroups of Iso(X") for X" = S™, E" or H". Furthermore, we define the notion of a fundamental
polytope of a discrete group and the connections with tesselations.

7.1 General Facts

A family of subsets of X" is called locally finite, if for each point there is a neighbourhood
intersecting only finitely many subsets of this family. A subgroup I' < Iso(X") is called discrete
if the family {yK : € I'} is locally finite for each compact set K C X".

In the following let I" < Iso(X™) always be a discrete group. Of course, I' acts on the space X"
via

IxX' — X"
(v,z) = oz = ().

Now [ is a discrete group if and only if I' acts discontinously on X™: for all compact sets K C X",
the set K N~y K is nonempty for at most finitely many v € I'.

Let us extend the notion of compact sets. A generalized compact set of X" is either an ordinary
compact set or for X" = H", interpreted in the model ID", a set K in ID™ such that

e 0ID" N K is a finite set of points

e KU{0ID" N K} is an ordinary compact set in E".

Let K C X" be an generalized compact set. We define by
'k = Stab(K,T)
= {7 el : yK = K}

the stabilizer of K in I'.

We prefer the second notation in the cases where the the symbol of the set K ,,carries,, many
indices.

Then ' is a subgroup of I'. Furthermore, we define the subgroup Iy < T’k of all elements in
I'k, which fix the set K pointwise:

I = Stab,(K,T)
= {7€F : 'yk:kforallkEK}.

Of course, 'k and I are discrete groups. The family of subsets

K ::{71( : ’)/EF}

of X" is called the I'-orbit through K or the cycle through K. The elements in 'K are called
I'-equivalent.



The map

r — I'K
v = 9K

is surjective with kernel I'x and thus induces a bijection
)’y — TIK.
It follows that
ord(F’'K) = [I':T'k]

ord(T)
ord(T'k)’

Lemma 7.1.1 For all discrete subgroups of T' < Iso(X™) and all ordinary compact sets K in
X" each of the groups Iy, and I' is conjugated to a finite subgroup of O(n).

Proof:

e I is a subgroup of O(n). This is clear for X" = S™ or E". For X" = H" the group I'}
is an elementary group of elliptic type (I, has at least one fixed point). Hence Iy is
isomorphic (conjugated) to a subgroup of O(n). Clearly I, is finite, because it is discrete.

e Let v be an element in I'. Then v maps the compact set K onto itself and has a fixed
point in K (by Browers Fixed Point Theorem). Hence + is conjugated to an orthogonal
map and we see that each element in Ik is elliptic and of finite order (I'x is discrete).
Then I'k is conjugated to a finite subgroup of O(n) (compare Lemma 2.4.1).

a

If K is a compact set in X" then also vK is a compact set in X" for all elements v € I and the
stabilizer ['yx is conjugated to I'k:

nyK = vI'k 7_1'

It is often enough to consider compact sets K = {z} consisting of one point only. In this case
we have I'x =TI} =:T'; and the following important result ([R], Theorem 5.3.4).

Theorem 7.1.1 Let X" =S" or H" and I' < Iso(X") an arbitrary subgroup. Then T is discrete
if and only if

e cach stabilizer subgroup of I' is finite, and

e 'z is a closed and discrete subset of X" for all x € X".

Let I' < Iso(X™) be discrete. Then there exists at least one point z € X" such that ['; is trivial.
If the group I'y is trivial for all x € X", the action of I' on X" is called fized point free.



7.2 Fundamental Regions of Discrete Groups

Let I' < Iso(X™) be a discrete subgroup of isometries in X". A subset R C X" is called a (locally
finite) fundamental region for I" if

1. R is closed in X"

2. the elements in {y ri(R) : v € I'} are mutually disjoint;

3. X" = Uyer vR;

4. the family {yR : v € I'} is a locally finite family of subsets in X".
If R is connected, then R is called a fundamental domain for I'. A fundamental domain R for I"
is called a fundamental polytope for I' if R is an n-dimensional polytope in X"”. A fundamental

polytope P for I is called normal, if there exists v € I' with P"~! = PN~P for each (n —1)-face
Pl of P.

A fundamental region R for I' is called proper, if OR is a set of measure zero. All proper
fundamental regions R for I' have the same volume. So we can define the covolume of I' as

covol(T') :=  volx=(R)

for any proper fundamental region R for I (if there exists one). Of course fundamental polytopes
for T are proper fundamental domains for I'. Discrete groups I' < Iso(X"™) with covol (T") < oo
are called of finite covolume or crystallographic. 1If one fundamental region for I' is compact,
then so are all other fundamental regions for I'. In this case I' is called cocompact or uniform.

Example 7.2.1 The modular group PSL(2,7) can be viewed as a discrete subgroup of Iso(H?),
generated (for instance) by the elements

L1 oz z+1
0 1 A

U
-1 0 ' z

In Picture 4 one can see a (canonical) proper fundamental polytope P, = conv(A, B, o) for
PSL(2,7Z), where A = —1/2 +i\/3/2 and B = 1/2 + i\/3/2. The polytope Py, is a triangle
with one vertex at infinity and the three 1-dimensional angles ai(c0) = 0, a1(A) = 1/6 and
a1 (B) = 1/6; so Py, is a Cozeter polytope. Furthermore, PSL(2,7) can be viewed as the subgroup
of orientation preserving elements of the Coxeter group I', generated by the reflections in the
faces of the polytope Pt = conv(A,C,00) (compare Picture 5). We have [G : PSL(2,Z)] = 2
and volge (Py,) = 2volg (P).

7.3 Tesselations and Discrete Groups

A tesselation of the space X" is a collection ® of n-dimensional polytopes in X" such that

1. the interiors of the polytopes in ® are mutually disjoint;

2. X = |d);



-1 0 1

Figure 4: The Fundamental Polytope P, of PSL(2,7Z)

-1 0 1

Figure 5: The Polytope P}

3. @ is a locally finite family of subsets in X".

A tesselation @ of X" is called normal if each (n — 1)-dimensional face of a polytope in ® is
contained in exactly two polytopes of ®.

Now we have the following important connection between tesselations and discrete groups (com-
pare [R], Theorem 6.7.1.).

Theorem 7.3.1 Let P be an n-dimensional polytope in X" and let I be a group of isometries
of X™. Then T is discrete and P is a (normal) fundamental polytope for T if and only if

® = {yP :yel}

is a (normal) tesselation.

Of course, each normal tesselation of X" is connected. Furthermore, we have the following result
(see [R], Theorem 6.7.3. and 6.7.4.).



Theorem 7.3.2 Let P be a normal fundamental polytope for a discrete group T' of isometries
of X, Then I' is finitely generated by the set

UV = {yel' : PNyP is a face of P }.

Example 7.3.1 Let P, be the (“canonical”) fundamental polytope for the discrete group PSL(2,7Z)
< Iso(IU?) described in Example 7.2.1 (see Figure 4). Then the set

& = {yP : yePSL(2,Z)}

is a normal tesselation of the upper half-space IU? (see Figure 6).

-1 0 1

Figure 6: A PSL(2,7Z)-Tesselation

Furthermore, the group PSL(2,7) is finitely generated by the set

U = {vye€PSL(2,Z) : Pp,NvP,, is a face of P}
= {z—2z+l,z— 21,2~ —1/2}.



8 Geometric Orbifolds

In this section we will develop the theory of geometric orbifolds and explain the connections
with discrete groups. For the details see [R], section 13 or [Kapo], section 6. Especially, we show
that geometric orbifolds can be viewed as geometrical interpretations of discrete subgroups of
Iso(X™).

8.1 Definitions

In the following let X" = S, E"™ or H", G < Iso(X") an arbitrary subgroup of the group of
isometries of X” and M a Hausdorff space.

An (X", G)-orbifold atlas for M is a collection
o = {(Ul-,@-) Qe I}
of sets U; C M and maps ¢; : U; — X" /T"; which are called charts, such that for all i € I:

1. The set U;, which is called coordinate neighbourhood, is an open connected subset of M
and I'; is a discrete subgroup of Iso(X").

2. The chart ¢; maps the coordinate neighbourhood U; homeomorphically onto an open
subset of X" /I;.

3. M =Uc; Ui
4. If U; and U; overlap, the map
giodi' + di(UiNU;) — ¢;(Us NUy),
called coordinate change, has the following property: If z,y are in X" with
¢jo¢; (Liw) = Ty,

then there exists an element g € G with gz = y and which lifts ¢;o0¢; ! in a neighbourhood
of x. More precisely, we have

pjo¢; '(liw) = TIjgw

for all w in a neighbourhood of z (see Figure 7).

An (X", G)-orbifold structure for a Hausdorff space M is a maximal (X", G)-orbifold atlas for M
(for each (X", G)-orbifold atlas for M there exists a unique maximal (X", G)-orbifold atlas for M,
which contains this atlas). An (X", G)-orbifold M is a Hausdorff space M with a (X", G)-orbifold
structure for M. An (X", Iso(X"))-orbifold is called

spherical orbifold <= X" =S8",
Euclidean orbifold < X" =E";
hyperbolic orbifold <= X" =H".

Let M be an (X", G)-orbifold and uw € M. A chart for (M,u) is a chart ¢ : U — X"/I" for M
with uw € U. If

¢;: Uj — X"JT;  with  ¢;(u)

i(x) and
i (y)



X" /T

bi Y ue
U; gbl(UZ N Uj) X"
bjod;! g
b; T
Uj (ﬁ](Ui N Uj) X"
N
X" [T

Figure 7: The Coordinate Change

are charts for (M, u), then the stabilizer groups I'; < I'; and I'y < I'; are conjugated. This
means that there exists g € G with gI',¢™" = I'y and gz = y, lifting qﬁjqﬁ;l to a neighbourhood
of z. In particular, we have ord(I';) =ord(I'y). So we can define the order of a point u € M as
the order of the stabilizer group I'; for any chart ¢ : U — X" /I" for (M, u) with ¢(u) = w(z).

We call

Myq = {ué€ M : ord(u) =1}
Myin {u€e M : ord(u) > 1}

the ordinary and the singular set of M. Of course, M is the disjoint union of M,,.q and Mg;,; Mg
is open and dense and Mj;, is closed and nowhere dense in M. In the special case My, = {0},
M is called a geometric manifold .

Let ¢ : [a,b] = M be a curve in an (X", G)-orbifold M. We can define the X"-length ||c|| of ¢
via charts in a canonical way. A curve c in M is called X"-rectifiable if ||c|| < co. Then the
function

d:MxM — IR
(u,v) +—— inf|||,

where ¢ varies over all X"*-rectifiable curves from w to v, is a metric on M. Hence M is a metric

space with an inner length metric. An (X", G)-orbifold M is called complete if M is a complete
metric space.

8.2 (X",(G)-Equivalences
Let M and N be two (X", G)-orbifolds. A map
n:M — N

is called an (X", G)-map if the following holds:

1. n is continous and



2. for all charts ¢ : U — X*/T for M and ¢ : V — X" /A for N with U Nnn Y(V) # 0 , the
map

ponod™ i p(UNY (V) — p(n(U)NV)

has the following properties: If z,y are in X" with 1) ono ¢~ (I'z) = Ay, then there exists
an element g € G such that

e gr =y and
e g lifts 1y ono ¢! to a neighbourhood of z (Figure 8).

An (X", G)-map is called an (X", G)-equivalence, if it is a homeomorphism.

X /T
¢ - ™
U qs(Umn—l(V)) X
7 Pponog! g
v v ¢(me(U)) ! X
N
X7 /A

Figure 8: A (X", G)-map
Now we have the following result (compare [R], Theorem 13.3.10.).

Theorem 8.2.1 Let X" = S™ E" or H" and G < Iso(X"). Furthermore let M be a complete
connected (X", G)-orbifold. Then there exists a discrete group T' < Iso(X"™) such that M and
XTI are (X", G)-equivalent.

Hence we can view a complete connected (X", Iso(X™))-orbifold as another interpretation of a
discrete subgroup of Iso(X").

Let I" < Iso(X") be discrete. Then the projection map 7 : X" — X" /T" induces an isometry
from B(z,r)/Ty onto B(m(z),r) for all r such that 0 < r < idist (z,I'z — {z}) (compare [R],
Theorem 13.1.1.). Furthermore, the group I'; is a discrete subgroup of Iso(X") with a fixed
point in X”. It is easy to see that I'; is a finite subgroup of O(n) for each space X" = S™, E" or
H™. In order to understand the local structure of an orbifold near a point z = w(z) it is enough
to investigate the quotient space B(xz,r)/I', for a suitable r > 0.

8.3 Local Structure of Hyperbolic 2-Orbifolds

We describe the local structure of a hyperbolic 2-orbifold M near a singular point z of M
(compare [Kapo]). A finite group of O(2) is conjugated to the group Z, generated by a reflection,
a cyclic group Cj generated by a rotation of order ¢ > 2 or a dihedral group D, generated by
two reflections whose product has order ¢ > 2. Let U be a neighbourhood of z. Then we have
the following types of local structures near z (Table 1).



Local stucture near z

U=MH/T

Boundary (Reflector)

H2 /7y : 7o =17/2Z

Cone Point

H?/C, : C, cyclic group

Cone Reflector

H?/D, :

D,, dihedral group (p > 2)

Table 1: The Local Structures of a 2-Orbifold

Cone point

Cone point

Cone reflector

; Cusp

Boundary

Cone reflector

Cusp

Figure 9: Hyperbolic 2-Orbifold




9 Combinatorics and Angles

9.1 The Combinatorics of Polytopal Complexes

In this section we will develop some connections between the combinatorics of polytopal com-
plexes and their decompositions. Particularly we decompose the set of all decomposition poly-
topes of a polytopal complex IT into subsets. Fach subset consists of all decomposition polytopes
(of several dimensions), which are included in a skeleton of fixed dimension but not in a lower-
dimensional skeleton of II.

Definition 9.1.1 Let I be an n-dimensional polytopal complex in X", I an integer with 0 <1 <
n, D = D(P) a decomposition of Il and D € Q(D) an element of D. Then D is called element

in gl(H), if |D| C |Ql(H)| and |D| ¢ |gl71(H)|. We will denote this inclusion by D < gl(H).
In the special case II = D the fact D < gl(H) means that D is an [-dimensional polytope in II.

Lemma 9.1.1 Let II be an n-dimensional polytopal complez in X", D = D(P) a decomposition
of II and D € Q¥(D) for 0 < k < n. Then D € gl(H) for an l with k <1 < n if and only if
there is a uniquely determined P' € Q!(II) such that ri(D) C ri(P).

Proof:

e Let D € QF(D) with D < gl(H). Then |D| C |gl(H)| and of course, there is an element
P! € QY(TI) with |D| C |P!|. We have to show that ri(D) C ri(P'). But the condition
ID| C |P!| means either that ri(D) C ri(P!), or that [D| c |0P! c |G *(IT)| which is
impossible.

Furthermore, the element P! is uniquely determined. Let Q' € Q!(II) be a second element
different from P! with ri(D) C ri(Q'). Then we have |D| C [P'n Q| C |G~ (I1)| and this
is impossible.

e Let D € QF(D) such that there exists a uniquely determined P' € Q!(II) with ri(D) C
ri(P'). Then we have |D| C |P'| and so |D| C |gl(1'[)| Now we assume that |D| C
|G '(IT)|. Then we have |[D| C [P} for an element P! € Q" !(IT) which implies
ri(D) ¢ ri(P') for all P! € Q!(IT) in contradiction to the given conditions.

|

Of course, the decomposition D of a polytopal complex IT induces (canonically) a decomposition
of each of the polytopes in this complex. Let P! be an element in Q'(II). Then we denote by
DN P! the decomposition of the polytope P! induced by D.

Lemma 9.1.2 Let II be an n-dimensional polytopal complex in X", D = D(II) a decomposition
of I, D € QF(D) with 0 < k < n and P' € QY1) with k <1 <n. Then we have:

{DeoiD) i ri)critP) } = {Deo*@nP): D<GP)}

Proof:



o Let D € QF(D) with ri(D) C ri(P'). Then D is also a decomposition polytope in the
decomposition D N P! of P! and |D| C |gl(Pl)| = |PY. Now we assume that |D| C
|G~ (P1)| = |0P!|. Then this implies that ri(D) ¢ ri(P!).

e Let D € QDN P, and D < gl(Pl). Then of course D € QF(D). Furthermore,
D < GYP") means |D| ¢ |gl_1(Pl)|, and so D is not a decomposition polytope in the
boundary of P'. Thus ri(D) C ri(P').

a

Let IT be an n-dimensional polytopal complex in X" and D = D(II) a decomposition of II. The
set (D) of all faces of the polytopal complex D splits into disjoint subsets

QD) = Q(ILD)UQILD)U ... UQ,(IL,D)

where the set ;(II, D) is defined as:

(I, D) = {DeD : D<gl(n)}

for all [ = 0,1,...,n. In the same way the set QF(D) splits into (n — k + 1) pairwise disjoint
subsets

for all 0 < k < n. The set QF(IL, D) is defined by

QF (11, D) :{Dem(D) : D<gl(n)}

forall kK <1 <mn.

Lemma 9.1.3 The sets Qf(H,D) are disjoint unions according to
o) = |J {D € Q%(D) : 1i(D) er(Pl)}
Pleqi(II)

for all k with 0 <k <n and all I with k <[ <n.

Proof:

It is clear that the union on the right-hand side is disjoint.

o Let D € QF(II, D). Then there exists a unique face P! € Q!(Il) such that ri(D) C ri(P")
(with Lemma 9.1.1) and we have the first inclusion.

o Let D € Q¥(D) and P! € QI(IT) with ri(D) C ri(P!). Tt is clear that |D| C |G'(IT)| and
ID| ¢ |G" *(I1)| with Lemma 9.1.1.



Example 9.1.1 Let I = conv(PY, PY, P, P)) be the 2-dimensional polytope in Ezample 5.1.1
and D = D(P) the polytopal decomposition in Figure 10. We use the notation AB := conv(A, B)
for a pair of points A and B. Then

W(LD) = { PP, PP}

M(ILD) = {QR}

Qy(I,D) = 0

ola,p) = { PPy, FJQ, QFY, F{F], P{R, RF} |
0%(ILD) = {QR}

O3(ILD) = { conv(Q, R, P, P), conv(Q, R, P, F5) }.

Figure 10: Decomposition of a Polytope

Example 9.1.2 The Cone-Decomposition and the Decomposition of a Cone

An n-dimensional cone C in X" is a special kind of a polytope. It can be written as the X" -convez
hull of an (n — 1)-dimensional polytope C' and a point m with m & C; so C' = conv(m,C). For
all d with 0 < d < n — 1 we can divide the set Q4(C) into two subsets as follows: Q(C)'
the set of d-dimensional faces of C' which are contained in C and Q%(C)" := Q4(C) — Q(C)'.
Clearly, we have Q°(C)" = {m} and Q"~1(C) = {C}.

Now we will describe two special kinds of polytopal decompositions. Let P be a polytope in X™.
Then we denote by K = K(P) the pure polytopal complex we get from P by cone decomposition.
All mazimally dimensional elements in K are of the form conv(b(P), P" '), where b(P) is the
barycenter and P! is an (n — 1)-dimensional face of P. For the sets of faces in K we have:

(k) = Q%P)u {b(P)}
QIK) = Q(P)U {conv(b(P),Pi—l) . pivle Qi—l(P)}
a(K) = {conv(b(P),Pn—l) . prleQri(p) }

If C = conv(m,C) is a cone in X", we denote by S = S(C) the pure_simplicial complez that
can be constructed from C in the following way. Firstly we decompose C' barycentrically without
decomposition of the 1-dimensional faces. Secondly we construct all cones with basis equal to



one of the decomposition simplices in C and center m. If C is a cone in X%, then for the sets
of faces in § we obviously have:

N(C,s) = 0

0%(C,S) = {b(02) : 02692(0)'}

2.8 = {0}

23(C,S) = 0

Qie,s) = Qo)

0l(c,S) = {conv(b(c*?),oo) O e '(Cy, e 92(0)’}

0l(C,S) = {conv(b(é),co) . OO EQO(C)'} U
{conv(b(é),b(c2)) 2 692(0)'} U
{conv(b(o2),m) . o2 692(0)'}

Qlc,S) = {conv(b(é),m)}

04C,S) = Q2(C)" U {conv(b(o2),01) L Ol e Ql(o)'}

040, S) = {conv(b(é),cl) . O te(o)'} U
{ conv(b(C),b(C2),C%) : C° e QO(C), C2 € Q2(C) , |C°| C |C? } U
{ conv(b(C?),C%m) : C° e QU(C) , C% € QX(C), |C°] C |02 }
040, S) = {conv(b(é),co,m) s EQO(C)'} U
{ conv(b(C),b(C2),m) : C% € Q*(C) }
030, S) = {conv(b(c2),cl,m) cle Qo) , Cte ), |CY C |C? } U
{ conv(b(C),b(C2),CY) = Ct e QY)Y , C2 € Q2(C) , |CY| C |7 }
030, S) = {conv(b(é),cl,m) o te(o)'} U
{ conv(b(C),b(C2),C%m) = C° e QO(C), C? e Q2(C) , |C°| C |C? }

040, S) = {conv(b(é),b(o2),01,m) L Ol e Q) , e QXO), |CY C |02 }

Definition 9.1.2 Let IT be an n-dimensional polytopal complex in X", D = D(II) a polytopal
decomposition and k and | integers with 0 < k <1 < n. Then we define the non-negative integer
ZF(IL, D) as:

ZF(ILD) = ﬁ{D cQ¥D) : D< gl(n)}
— 1O, D),



In particular we have ZF(IL, D) = 0 for all k > I.

This means that Zlk(H, D) is the number of k-dimensional decomposition polytopes in D which
are elements in the [-skeleton gl(H) of II.

Theorem 9.1.1 Let IT be an n-dimensional polytopal complex in X" and D = D(II) a polytopal
decomposition of I1. Then we have

n
agrd(D) = ZZIO(HaD)a
=0

a*(D) = Y Z[(I,D) and
=k

ZrLD) = Y ZHP,DNPY
PLeQl(11)
for all k with 1 < k <n and all |l with k <1 <n. The notation DN P! means the decomposition
of the polytope P' induced by D.

Proof: The second (and also the first) equation follows from the observation that
a*(D) = 0"(D)
- ﬁ{Q’,j(H,D)U...UQ’fL(H,D)}
and that the union is disjoint. For the third equation we note that

ZF(IL,D) = 4O/ (11, D)

= Y Dot nn) crie) )

PleQi(1n)
- ¥ ﬁ{ DeQ¥DnPY) : D<G (P }
PleQ!(IT)
= ) Z@pnp,
PLeQl(1D)
where we have used Lemma 9.1.3 in the second step and Lemma 9.1.2 in the third step. O

For a shorter description we write in the polytopal case (with the same notations):

z(k, P!, D) := zF(P', D n P

this is the number of k-dimensional decomposition polytopes in D, whose relative interior is
contained in the relative interior of P!

Example 9.1.3 Consider the decomposition of the polytope P in Example 9.1.1. For instance
we have




Lemma 9.1.4 Let P C X" be a polytope and D = D(P) a polytopal decomposition of P. Then
for all k with 0 < k < n and for all I-dimensional faces P € Q'(P) of P with 0 <1 < n we have

2k, P'D) = ]j{D € QF(IL D) : ri(D) C n'(Pl)}.

Proof: We have
2(k,P', D) = ZFP,DnP)

_ ]j{ DeQ¥DNPY . D<G(P) }
- u{ D € QD) : 1i(D) C ri(P)) }

- u{ D € QF(ILD) : 1i(D) C ri(P) };
where we have used Lemma 9.1.2 in the third step. O
Now we will consider the first barycentric decomposition B(II) of a polytopal complex II Of
course, 3(II) has the nice property that B(II) N P! = B(P') for all elements P' € Q'(IT)!
Definition 9.1.3 Let II be an n-dimensional polytopal complez in X" and k and | integers with
0 <k <I1<n. Then we define the positive integer Blk(H) as:

B = zf (1L B).

This means that Bf(II) is the number of k-dimensional decomposition polytopes in B(II) which
lie in the [-skeleton G(IT) of TI.

Proposition 9.1.1 Let II be an n-dimensional polytopal complex in X™. Then

a(o)rd(B(H)) = ZBIO(H)a
=0
a*(B(I)) = Y Bf(I) and
=k

Bf() = Y Bi(P
PleQl(1D)
for all k with 1 <k <n and all |l with k <[ <n.

Proof: The first and the second equation is a simple conclusion of Theorem 9.1.1. For the third
equation we have:

Bf(I) = Z}(IL,B()

= > (P, BN
PLeQ!(IT)

= Y Zf(PLB(PY)
PLeQl(1n)

= > BfPY.

PleQl(IT)



Definition 9.1.4 Let P" be an n-dimensional polytope in X" and k an integer with 0 < k < n.
Then we define

b(k,P") := BFP")
= z(k,P",B(P")).

Now we develop an important property of the decompositions.

Theorem 9.1.2 Let I be a pure n-dimensional polytopal complex in X", D = D(II) a decom-
position of IT and P' an arbitrary element in Q'(I1) for 0 <1 < n. Then

l
Y (-1F 2k, P, D) = (-1).

k=0

Proof: Let P! be an arbitrary element in Q'(IT) with 0 < [ < n. The number z(k, P', D) of
k-dimensional polytopes in D whose relative interiors are contained in the relative interior of P!
is equal to the number (DN P') —a¥ (0D N P for all k = 0,...,1. We get

-1

[ [
S (=1)Fz(k, PLD) = Y (-D)FdF(DnP) =D (-1)F aF(oDN P

k=0 k=0 k=0

= x(DNPY) = x, (9PN P')
= 1=af(P) — (1+ (=)' = ad,;(P))

= (-1}

where we have used Lemma 3.2.2 in the third step. O

Theorem 9.1.3 Let P = P" be an n-dimensional polytope in X"™. Then we have
b(0,P) = 1 and

bk, P) = > > bk-1,P

v=0 PUcQU(P)
=k—1+v

for all k with 1 <k <n.

Proof: Each of the k-dimensional decomposition simplices of QF(B3(P™)) in the interior of P is
a pyramide with base equal to a uniquely determined decomposition simplex of Q¥~1(B(P")).
In contrast, each (k — 1)-dimensional decomposition simplex in the interior of a proper face of
P determines a uniquely determined k-dimensional decomposition simplex in the interior of P.
a

For an n-dimensional polytope P = P" in X" we define a new combinatorial number f(k, P) for
all kK with 1 <k <n:

ZZ b(k, PY).

1=k Plte

It is easy to see that f(k,P) is the number of all k-dimensional decomposition simplices in
B'(P™). For all k > n we put f(k, P) = b(k, P) = 0.



Special Cases:

1. Let P =T be an n-dimensional simplex and for all k£ with 0 < k < n we define b(k,n) :=
b(k,T) and f(k,n) := f(k,T). All faces of T' are simplices of lower dimensions and the
number of k-dimensional faces of T is equal to a¥(T) = (Zﬂ) (compare Lemma 3.1.1). So
we get with Theorem 9.1.3

n—k

bkon) = (Zi}) bk — 1,k —1+1)

=0
n—k

- Z(Zj) b(k—1,n—1—1).

=0

2. Let P = W be an n-dimensional cube. All faces of W are cubes of lower dimensions and
the number of k-dimensional faces of W is equal to a*(W) = 2"%(}) (compare Lemma
3.1.1). So we get with Theorem 9.1.3

n—k
n— — n —
b(k,W) — 22 k+1 l<k_1+l> b(k—l,Wk 1+l).
(=0

9.2 The Numbers f(k,n) and b(k,n)

In this section we will determine the numbers f(k,n) and b(k,n) by translation of combinatorial-
geometrical questions into combinatorial-stochastical questions, which are easier to solve.

Let T = T" be an n-dimensional simplex in X" with vertices Q°(T) = {T7,...,T%}, P :=
P (Q0(T)) the power set of Q°(T') and BB := B(T') the barycentric subdivision of 7. Then the
map
p:UT) — P
conV(T-0 T-O) — {T-0 ...,Ti?c}

R i0?

is bijective and each element in /3 can be written as the convex hull of barycenters of faces of
T. This means that

conv (b (T-n(io)) ,...,b (Tn(i’“))) e QFB)

0 Tk

if and only if there exists a permutation o € Si4; with

p (T006D) o (1) L e (T).

a(io) a(i1) o (ir)
Now we can extend the results of D. G. Hoel (compare [Hoe]).

Theorem 9.2.1 Let T be an n-dimensional simplex in X and k in IN with 0 < k <n. Then

k+1
fm) = S (T w2
=0
k+1
btk = S0 (5T i
=0
= (k+1)!Sh

where Sﬁﬂ is a Stirling number of the second order.



Proof: We will use a simpler notation. We find out that f(k,n) is equal to the number of
different collections {fo,..., fr} with

o f; € P for all s
o fi# fjforalli# j and
e foC...C fr.
The set of these collections will be denoted by L.
Furthermore, b(k,n) is equal to the number of different collections {fo,..., fr} with
e f; € P for all i;
o fi # fj for all i # j;
e fo C...C fr and
o fr={1),...,T°}.
The set of these collections will be denoted by L. Of course, Ly C Ly.
Let {fo,..., fr} be a collection. Then we define inductively the following sets:

Ey == fo
Ei = fi—fz',lfOI"iZL...,k
Ep1 = V= fi
The sets Ey, F, ..., Exy1 are pairwise disjoint.

Let {fo,..., fx} be a subset of L,. The assigned sets Ey, E1, ..., E are not empty and neither
the set Ex.1 (fx = (vo,...,vn) = V). This means, that b(k,n) = L, is equal to the number
of possibilities of arranging (n + 1) balls (the elements of V') in (k + 1) cells (Ey, E1, ..., Ey) in
such a way that no cell is empty.

Let {fo,...,fr} be a subset of L;. The assigned sets Ey, E1,...,E}; are not empty but the
set Ejyq is empty if and only if {fo,..., fx} C L. This means that f(k,n) = #§L; is equal
to the number of possibilities of arranging (n + 1) balls (the elements of V') in (k + 2) cells
(Eo, E1, ..., Egy1) in such a way that the first (k + 1) cells (Ep, E1, ..., Ej) are not-empty.

We denote the number of possibilities of arranging n balls in £ cells in such a way that no cell
is empty by N(k,n). Then with ([F]) we get:

k k
N(k,n) = Z(—w(i)(k—i)".
i=0
We deduce that
f(k,n) = N(k+1n+1)+NEk+2,n+1),

b(k,n) = N(k+1,n+1);
and the theorem follows. O

Let T be a regular n-dimensional simplex in X", b(T") the barycenter of T" and {H,...,Hy}
the hyperplanes of symmetry of 7. The (from these planes) induced decomposition of 7" is the
barycentric decomposition and this decomposition can be extended to a decomposition of the
whole space X" into k-dimensional open cones with apex b(T"). Let h(k,n) be the number of
k-dimensional cones in this decomposition of X". Then we have



Corollary 9.2.1
h(k,n) = b(k,n)

(k + 1) Sy

for all k with 0 < k <n.

Lemma 9.2.1 For all numbers n € IN and all k with 0 < k < n we have

bk,n) = (k+1) (b(k—l,n—l)—irb(k,n—l) )

Proof: We have
(k+1)(b(k—l,n—1)+b(k,n—1)) - (k+1)<k!S,’§+(k+1)!S,’§*1)
- (k+1)!(s’°+(k+1)s,’§—1)
= (k+1)! Skt

= b(k,n),

where we have used a slight modification of equation (2) in Section 4.1. O

9.3 Angles and Combinatorics

In this section we will develop some connections between the combinatorics and the angles of a
polytopal complex.

Theorem 9.3.1 Let IT be a pure n-dimensional complez, k an integer with 0 < k <n and * a
combinatorial k-invariant. Then we have

S AP eI = B P (P

PreQr(Il) PkeQk(pPn) PkeQk(II)

Proof: Let II be a pure n-dimensional complex and k¥ a combinatorial k-invariant for all &
with 0 < k < n. Then by definition we have:

REPF) i (PR) = WM(PY) YT anka(PRIPT).
PreqQn(II)
Summing over all k-dimensional elements in QF(IT) we get

> AP (P = > > f’vk(P’“) -1 (PF|P")

PkeQk(1D) PkeQk(IT) PreQr (Il

— Z Z K" (P*) a1 (P*|P™)

PreQn(Il) pPkeak)
Pkecak(pn)

+ Y > E(PY) g (PFIPY)

PreQnr(Il) pkeak(m)
Pkgak(pn)

— Z Z KF(PR) oy, g1 (PF|P™),

PreQn(Il) pPkeak)
Pkecak(pn)



because a;, 1 (P¥|P") =0 for P¥ ¢ QF(P"). This completes the proof. O

The following two theorems will show how the angles of the decomposition polytopes are related
to the angles of the basic n-dimensional polytope. In particular, we cannot expect that the sum
of all angles (of a fixed dimension) with the same apex in the decomposition will give an angle of
the same dimension in the polytope. In the following we use the fact that all angles of arbitrary
dimension can be measured as the volume of a part of an (n — 1)-dimensional sphere S" !(z, ¢)
with center in an inner point x of the apex of this angle.

Theorem 9.3.2 Let P be an n-dimensional polytope in X™, D = D(P) a polytopal decomposition
of P, D € QF(P,D) with 0 < k <1 <mn and P' = P/(D) the face of P with ri(D) C ri(P').
Then we have

02 (D) = ani(P).
Proof: For D € QF(P,D) where 0 < k <1 < n, let P! = P/(D) be the uniquely determined

face of P with ri(D) C ri(P') (compare Lemma 9.1.1). We can find an inner point # in D and
€ > 0 such that the sphere S"~!(z, €) only intersects elements in (D) which are incident with

D. Hence there are finitely many maximally dimensional elements DY, ..., D} € Q7 (P, D) such
that
h
al (D) = > o1 (D|D}).
=1

Here we have used that every angle of arbitrary dimension can be measured (n—1)-dimensionally.

Figure 11: A Decomposition of a Cube

Of course, = € ri(D) C ri(P') is an inner point of P! and the sphere S"~!(x, €) intersects only
elements in (P) which are incident with P!. Furthermore, the set {D N S" Y(z,e) : i =
1,...,1} can be viewed as a polytopal decomposition of P N S™ !(z,¢) and

k1 (DID?) = cp_1(e)™t vol(DP N S" Lz, €)).
We denote by ¢, _1(€) := vol(S" ! (z,€)) the volume of the (n — 1)-dimensional sphere S™ ! (z, €)
of radius €. It follows that

21 (D) = cor(© Y vol(D} NS5 (z,€))

=1



= cp_1(e) L vol(P" N S™" L(x,€))

= a,1(P.

a

Theorem 9.3.3 Let I1 be a pure n-dimensional polytopal complex in X", D = D(II) a polytopal
decomposition of II, D € QF(I,D) with 0 < k <1 < n and P' = P'(D) the face of II with
ri(D) C ri(P"). Then we have

a,) k—1(D) = a, —1(Pl)-

Proof: Let D € QF(IL,D) with 0 < k <1 < n and P' = PY(D) be the uniquely determined
face of I with ri(D) C ri(P') (compare Lemma 9.1.1). Then there are finitely many maximally
dimensional elements D7,..., D} € Q(IL, D) such that

ap p(D) = Zan—k—l(D|Dzn)'

Furthermore, there exist finitely many elements P, ..., Py € Q"(II) and an arrangement
DY, DYy ...y DYy
Dy, D3y s Dy g
n n
Dg1, Dga s, Dy g(0)
of the elements DY,..., Dy such that P} is the union of D"y, ... ,DZQ(Z.) which means
9(2)
U piy
j=1

for alli = 1,...,q. Of course, P! is a face of each P"". We have

Z an—k-1(D|Djs) = ank1(D|F")

DNPr
= anfkil (D)

for all 4 = 1,...,q, where D N P;* denotes the decomposition of P* induced by D. We follow
that

h

al (D) = > on_—1(D|D})
i=1

g 9()

= > Y a1 (DID})

=1 1

@

W
Il



q
DAPR
- Z an—kil(D)
i=1
q
= Z an_1-1(P'|P]")
i=1

- O[TrL[—l—l(Pl)a
where we have used Theorem 9.3.1 in the forth step. O

Furthermore we have the following generalization of the latest theorem.

Theorem 9.3.4 Let 11 be a pure n-dimensional complex in X" and D = D(II) a polytopal
decomposition of I1. Then we have for all k with 0 < k <n and all [ with k <[ < n:

Z ¢(D) agfkfl(D) = Z Z ¢(D) 057171(#),
DeQk(I1,D) Plei(ml) | peakarp)
ri(D)Cri( Pl)

where all $(D) are arbitrary real numbers, which only depend on the polytope D (for instance,
they are combinatorial k-invariants).

Proof: Let II C X" be a pure n-dimensional complex and D = D(II) be an arbitrary polytopal
decomposition of II. Then we have |D(II)| = |II|. Furthermore let

¢: D(II) — IR
D — (D)

be an arbitrary map. For example, ¢ may be a combinatorial k-invariant (but in general ¢ is
allowed to map combinatorially equal decomposition polytopes to different natural numbers) or
the k-dimensional volume of the decomposition polytope D. Now let k and [ be natural numbers
with 0 < k <n and k <[ < n. It is clear that for each D € Qf(H,D) there exists a uniquely
determined [-dimensional face P! = P!(D) € Q!(TI) such that |D| C |P'| and there exists no
lower-dimensional face of II which also contains D (compare Lemma 9.1.1). Now we sum over
all elements D in Qf(H,D) and with with Theorem 9.3.3 in the first step and Lemma 9.1.3 in
the second step we get

Yo $(D) a4 (D)

DeQF(11,D)

DeQF(11,D)

= | X o | el Phrr| X e | ol (Pl

DeQk(11,D) peaf(11,p)
n'(D)Cn'(P{) ri(D)Cri(P‘il(H)>

= > S ¢D) |k, (P

PleQi(ID) DeQk(1,D)
ri(D)Cri( P1)



where Q/(IT) = {P}, ..., Pé,(n)} is the set of all [-dimensional faces of the complex II as usual. O

In the special case where all the numbers ¢(D) are 1 we have the following result.

Corollary 9.3.1 With the same notations as in Theorem 9.3.4 we have for all pure dimensional
complexes 11 and decompositions D:

S a2, = Y a2k PLD) ol (PY.

DeQk(11,D) PleQl(P)
Proof: We have

> 1 = e{pestu) ;) cai(r))

Deaf(11,p)
ri(D)Cri( Pl)
= z(k, P, D),
with Lemma 9.1.4, and the Corollary follows immediately. O

In the special case where the pure complex II is a polytope P, the complex angle agflfl(Pl) is
equal to the ordinary angle a,,_;_1(P') of P in the face P'. So we get the following result.

Corollary 9.3.2 Let P be an n-polytope in X™ and D = D(P) a polytopal decomposition of P.
Then we have for all k with 0 < k <n and all | with k <1 <mn:

Yo ¢ ef (D) = ) Y ¢D) | ana(PY,
DeQ(P,D) Ple!(P) | peakrp)
ri(D)Cri( Pl)

where all $(D) are arbitrary natural numbers, which only depend on the polytope D (for instance,
they are combinatorial k-invariants).

Example 9.3.1 Let P = conv(P}, PY), P, PY) be a 2-dimensional polytope and D = D(P)
the polytopal decomposition in Figur 12. We denote by D? = conv(Q, R, PP, PY) and D3 =
conv(Q, R, P:?,Pf) the two decomposition polytopes of mazximal dimension in D. Then we have

Yo aP(D%) = o (P)+ ol (PY) +al (PY) + o (PY)
DOeQd(P,D)

= Y 2(0,P°, D) oy (P);
POcQO(P)

Y. (D) = ol (R)+a7(@Q)
DOeQ?(P,D)
= a1(R|D}) 4+ a1(R|D3) + a1 (Q|D7) + cu (Q|D3);

N —

+

N —

= 040(P20P39|P) +040(P10P£|P)



>

DOeQY(P,D)

D'eQl(P,D)

>

ag (D'

DleQl(P,D)

>

D2e0%(P,D)

a?l (Dz)

> 2(0,PY,D) ag(PY);
PlcQl(P)

0;
ag (PYPY) + of (PYQ) + of (QPY)
+a (PYP)) + o (PJR) + of (RPD)
6 1
2
ag(PYPY|P) + 2 af (PYPY|P) + ag(PYPY|P) + 2 of (P PY|P)

> 2(1L,P,D) ag(P);

PleQl(P)
g (QR)

1

Z Z(17P27D) aU(PQ)
P2eQ?(P)

z(1, P,D) a_1(P);
aP (D?) + o®,(D3)

2

> 2(2,P?,D) a_y(P?)

P2eQ?(P)

z(2,P,D) a_1(P).



Figure 12: A Polytopal Decomposition

10 Simplices and Volume

In this section we will recall some well-known facts about simplices in the spaces X" = S" or
H™.

10.1 Schlafli’s Differential Formula for Simplices

This formula was established by L. Schléfli for spherical simplices [Sch]. Much later, H. Kneser
[Kn] gave a second proof for both spherical and hyperbolic simplices. This proof was worked
out by J. Bohm (compare [BH]). Another functional analytic proof due to J. Milnor (compare
[Mi]).

Theorem 10.1.1 (Schlédfli’s Differential Formula) Let T be an n-dimensional simplez in
the space X" = S™ or H" (n > 2). If the simplex T is deformed differentially in such a way that
its combinatorial stucture does not change, then the volume of T changes differentially and we
have
1
Kdvolgn(T) = > volxn(T"?) day (T™?) volyo(T°) = 1.

n—1
Tn72€Qn72(T)

10.2 The Volume Function of a Simplex in X"

Let T' = T™ be an n-dimensional simplex in the space X" = S§™ or H". The Gram matrix
G = G(T) of T, which is defined by the dihedral angles of the simplex, defines 7" up to an
isometry. Therefore, the volume volx«(T') is a function of the dihedral angles.

Let N = n(n+ 1)/2 and agree to number the coordinates of vectors in CV by unordered pairs
of integers i, j, where 4,5 = 0,1,...,n; i # j. For each vector o € (0,7)Y C CV we denote by
G («) the symmetric matrix of order (n + 1) with 1’s on the main diagonal and — cos(cv;;) off it.
Now we denote by M, (respectively My and M_) the family of all sets of dihedral angles for
simplices in S™ (E", H"). Furthermore, let M = M, U My U M_ and for each &« € M denote by
T'(«) the simplex whose dihedral angles are the entries of . Now we have the following result
(compare [V1], Theorem 2.1, page 117).



Theorem 10.2.1 For each even integer n > 0 there exists an analytic function v which is
defined on an open subset of the space CN containing the set M and assumes the following
values on M :
volgnT (x) , ae M,
via)=¢ 0 , € My
(=) 2volgnT'(a) , «€ M_

For each odd integer n > 0 there exists a two-valued function v which is defined on an open
subset of the space CN containing the set M, ramifies on the set of o with det G(a) = 0 and
assumes the following values on M :

+ volsnT(a) , a€ My
v(a) =< 0 , a€ M
tivolpnT(a) , a€ M_

10.3 Angle Sums and Poincaré’s Formula

Let T' be an n-dimensional simplex in S” and for all —1 < k < n let w,,_;_1 be the sum of all
(n — k — 1)-dimensional angles and let W (T') be the generalized angle sum of P. H. Poincaré
[Po] proved in 1905 that

[ 2¢y) volyom(T) , n=2m  even
W(T)_{O , n=2m+1 odd

For the proof we can use the fact that the volume of a spherical simplex T is equal to the volume
of its antipodal simplex T%. By expressing these volumes by the integrals of the characteristic
functions we get the result (compare [V2], page 120). This result was generalized by H. Hopf
to simplices in all spaces X" of constant sectional curvature K (compare [Hop], Theorem III) in
the following way.

Theorem 10.3.1 (Poincaré’s Formula for Simplices) Let T be an n-dimensional simplex
in the space X® = S™, E" or H". Then we have

2 K™ ¢yt volyom(T) n =2m even
T) = 2m X )
W(T) { 0 , n=2m+1 odd

Remark: If we use Theorem 10.2.1 we can follow the first equation (for even n = 2m) in
Theorem 10.3.1 from Poincaré’s result in the spherical case. The function v can be written as

V(T(@) =0(0) = 5 (~1)" o W (T(0).

10.4 Schlafli’s Reduction Formula and Peschl’s Relations for Simplices

Let T be an n-dimensional simplex in X". Each angle of T is equal to the (normalized) volume of
a spherical simplex. We can use Poincaré’s Formula to eliminate the volumes of even-dimensional
angles. So we get a volume formula for 7" which depends only on the odd-dimensional angles and
the combinatorics of T'. This formula is called Schliafii’s Reduction Formula, first proved by L.
Schlafli [Sch] in 1901 by using his differential formula. E. Peschl proved this formula and other
linear relations between the angle sums, called Peschl’s Relations, in a purely combinatorial way
(compare [Pe]) in 1955 by using Poincaré’s Formula.



Theorem 10.4.1 (Schlédfli-Peschl Relations) LetT be an n-dimensional simplex in X". Then
we have the following relations between the angle sums of T':

l

n—20+2k+1
wu(T) = D (=DF agrpr ( 2% 1 > war—2k—1(T)
k=0

for all l with 0 <1 < [n/2] and

m

2 (=1)* agpi1 wom—ok—1(T) , n=2m even
k=0

0 , n=2m+1 odd

W(T) =

Furthermore, these relations are a complete system of linearly independent linear relations be-
tween the w;’s.

Remark: In the special case of a 2m-dimensional Euclidian simplex 7" in E” (this means K = 0)
we get

m
wom—1(T) = > (=D agpp1 wom—or1 (7).
k=1

10.5 The Schlafli-Kellerhals Reduction Formula for Orthoschemes

Let R be an orthoscheme (of degree 0) in the space X2 = S2™ or H?™. We define Q%(R)* as the
set of all elements R? € Q¢(R) such that the scheme S(RY) is elliptic and all of its components
are of even order.

The special geometric properties of orthoschemes can be used to get a simpler reduction formula.
This formula was proved by L. Schlafli [Sch] in 1901 for spherical orthoschemes and generalized
by R. Kellerhals [Ke] in 1991 to hyperbolic orthoschemes of all degrees. Both proofs use Schléfli’s
Differential Formula. It is remarkable that this formula has the same structure for orthoschemes
of all degrees though they are of different combinatorial types.

Theorem 10.5.1 (Schléfli-Kellerhals Formula) Let R be a 2m-dimensional orthoscheme of
degree 0 in the space X>™ = S?*™ or H*™. Then

m
2 K™ cgnll volyom(R) = Z Th+1 Wom—2k—1(R),
k=0

with

Wom—op—1(R) = Z om—2e—1(R*).
R cQd(R)*

The numbers qx11 are the coefficients of the Taylor expansion of /1 + x (compare Lemma 4.2.1).



11 Volumes and Angle Sums of Polytopal Complexes

It is clear that all polytopes, and so all polytopal complexes, can be decomposed into simplices.
With the results of the previous section we are able to transfer facts from section 8 to polytopal
complexes. Furthermore, we will derive some well-known theorems by this machinery.

11.1 Schlafli’s Differential Formula for Polytopes

In this section we will generalize Schlafli’s Differential Formula (Theorem 10.1.1) from simplices
to polytopes. Schlafli remarked that this is possible by decomposition of a polytope into simplices
(compare [Sch], page 273). Now we will work out this idea.

Theorem 11.1.1 (Schléfli’s Differential Formula for Polytopes) Let P be an n-dimensio-
nal polytope in the space X" = H" or S™. For all P" 2 in Q" 2(P) let a1 (P" ?) be the 1-
dimensional angle of P with apex P"~2. If the polytope P is deformed differentially in such a
way that its combinatorial stucture does not change, then the volume of P changes differentially
and we have

1
Kdvolgn(P) = "—1Pn_2§9;_2(13) volyn(P"2) day (P"2) volyxo(PY) = 1.

Proof: We have proved this result in the special case where P is a simplex (see Theorem 10.1.1).
Now, let P = P™ be an n-dimensional polytope in X" and D = D(P) an arbitrary simplicial
decomposition of P. Then we have

Kdvolx«(P) = Y Kdvolx(T")
TneQn (D)
1
— - > > volen (T™2) day (T"?)
n— T”EQ”(D) Tn—ZEQn—2(Tn)
1 n— n—
= — > volyn(T™ %) daP (T ?)

Tn=2eQr—2(D)
n

= ! Z Z volg(T"™2) da? (T™?)

i=n—2 T"*2EQ?_2(P,D)

- nil ooy > volxn(T™ %) | day,_i_1(P?).

i=n—=2 PicQi(P) | Tn-2¢al~?(P,D)
ri(Tn—2)Cri(Pt)
Here we have used Theorem 9.3.1 in the third step and Theorem 9.3.4 in the forth step. Of
course, for i = n — 1 and n the differential do,, ;_1(P") is equal to zero, because the angle
ap—i—1(P") is constant during the deformation. So we get

1
Kdvolgn(P) = : > > voln (T"2) | day (P"?)
" pn=2cqn-2(Pp) Tn=2¢Q"”2(P,D)
ri(Tn—2)Cri(Pn—2)

v

Volxn(Pnfz)



— -2 -2
= — ‘Z‘ volgn(P"™2) doy (P"72).
prn=2cqn=2(p)

11.2 Generalized Poincaré Relations

Theorem 11.2.1 Let II be a pure n-dimensional polytopal complex in X™ and volxzm(I1) be the
volume of the geometric realization of I1 in X™. Then

; ; 2 K™ ¢yt volgam (1) n=2m even
1V A 7\ — X )
2. i (P) { 0 , n=2m+1 odd
PJeQI (I1)
7=0,...,n

Proof: Let IT be a pure n-dimensional polytopal complex and D = D(II) a simplicial decompo-
sition of II. We know that the generalized angle sum of each decomposition simplex is equal to
zero in odd dimensions and proportional to the volume in even dimensions (compare Theorem
10.3.1). So we get:

{ 2 K™ ¢, volyom(Il) , n=2m even

0 , n=2m+ 1 odd
= > w1
T eQn™ (D)
= Z Z wn i—1 Tn)
TreQn (D) i=0
= ¥ Z > i (THT)
TneqQn (D) i= TieQi(Tn)
- Z(—l)i > Y (T
1=0 TreQn (D) TieQi (1)
= Z Z an i— 1 TZ
i=0 TieQi(D

- Yy z oD\ (T)
1=0

J=i Ti€Qi(I1,D)

= Z Z Z (i,Pj,D) ag—j—l(Pi)

J=t PieQi (Il

2(i, P7, D) ol

nfjfl(Pi)

>
Z=0 J=0 PieQi(II)
= Z > <Z(—1>iz(z‘,Pﬂ',D)> ol (PI)
J=0 Pieqi(II) i=0

= Z ( (1) z(i, P?, D) ) O‘E—j—1(P‘j)-

PJ €QJ (IT) =0



We have used Theorem 9.3.1 in the fifth step and Theorem 9.3.4, resp. Corollary 9.3.2, in the
seventh step. Furthermore, we have z(i, P/,D) = 0 for all 4 > j and with Theorem 9.1.2 the
claim follows immediately. O

If IT is an n-dimensional polytope (with all of its faces) we get Poincaré’s formula for polytopes.

Corollary 11.2.1 (Poincaré’s Formula for Polytopes) Let P be an n-dimensional poly-
tope in X". Then

; ; 2 K™ ¢yt volyam(P) n=2m even
P) = —1y . (P = 2m X )
) Pje;(P)( ! nsm () {0 ;, n=2m+1 odd
7j=0,...,n

With Theorem 11.2.1 we can easily compute the Euler-Characteristic of the sphere S™. But this
is not an independent proof because we have used this result to deduce Theorem 11.2.1.

Corollary 11.2.2 Let Il be a tesselation of the sphere S™. Then

2 , n=2m even
X(H)_{O , n=2m+1 odd
Proof: We have volsn(IT) = ¢, and each complex angle of II is of measure 1 (S™ has no

boundary). Furthermore, the volume of S™ is equal to ¢,,. Hence we get with Theorem 11.2.1

2 , neven
0 , nodd

PJ el (IT
Jj=0,..., n

- Y W

PJeQi(P)
7j=0,..., n

= (1) — a}(ID) + ... + (—1)"a"(II)

= x(II)
O

Furthermore, from Corollary 11.2.1 we can derive the Gram-Sommerville Formula for Euclidean
polytopes. In 1874 Gram proved it for polytopes in E>. A similar formula for n-dimensional
polytopes was proved by Sommerville in 1927 (his proof contained a gap, which was removed
by Griinbaum 1967). For a direct proof see for instance at [PT], page 143, Theorem 4 or [G],
chapter 14.1.

Proposition 11.2.1 (Gram-Sommerville Formula) Let P be an n-dimensional polytope in
E™. Then



Proof: We know that K = 0 because P is a Euclidean polytope. Furthermore, we have

> (Wan (P = (1Y wnja(P)

PieQi(P)

for all 7 =0,1,...,n and the proposition follows immediately. O

Moreover, we can prove the Theorem of Gaufl and Bonnet for polytopal X"-manifolds with or
without boundary. The following proposition can be viewed as a generalization of results of H.
Hopf (compare [Hop], equations (10) and (12)), but we focus our attention to the very special
case of pure n-dimensional polytopal complexes in X".

Proposition 11.2.2 (Gauf3-Bonnet for Polytopal Complexes) LetIl be a pure n-dimensio-
nal polytopal complex in X" with boundary complex Ol. Then we have

1 [ 2K™ ;) volgam(Il) , n=2m even
xg(H)—ixg(aﬂ)—T—{o . n=2m+1odd

where the number r is defined as

roi= Z (_1)jﬁ71;l—j—1(Pj)'
PJ Qi (811)
j=0,...,n—2

Proof: Let II be a pure n-dimensional polytopal complex in X" with boundary complex OII. If
Pl e QJ(IT) — Q/(011) for some j =0,...,n then the complex angle agfjfl(PJ) is equal to one
and we get

n

Yo (D= (-1 (e () - @ (am)

PJeQi (11)—QJ (811) 7=0
7j=0,..., n

n

= Y (=1 (/ (1) — o' (01D))

7=0

3
|
—

- (—1)7a? (IT) — 3 (—1)’d’ (om)
7=0

= xg(II) — xq(O1).

<.
I
<)

Then we have

Z (—1)7 ag,j,l(Pj) = Z (—1) ag,j,l(Pj) + Z (—1)/ agfj—l(Pj)

PJ Qi (IT) PJ el (I1)—QJ (811) PJ QI (811)
Jj=0,..., n Jj=0,..., n 7j=0,..., n—1
S .
= xo(M) = xo (M) + Y (1) gl (PY)

PJ €QJ (011)

j=0,...,n—1

= xg(I) = x I + (1" > (P
pr—leQn—1(a1I)

" .
+ Y () ol (P)
PJ QI (811)
j=0,...,n—2



= xo(IT) — X, 011) + 5 (1) e 21)

+ Y () el (P
PJ QI (811)

§=0,...,n—2

We have exert with Lemma 3.2.1 in the second step and with off (P"7!) = % for all P*~! €
Q"~1(9II) in the third step. Now we use the exterior angles 57137];1(13‘7) = % — agfjfl(Pj) and
develop the last sum. We find that

> Cyale) = X (o)

PJ eQJ (811) PJ eQJ (811)
j=0,...,n—2 j=0,...,n—2
1 o . .
= 5 (x0m = (=1)" tam Hom) ) = 3 (=17 AL (P,
PJ Qi (811)
7=0,...,n—2

So we get

S (1P el (P = (I — x0T 7

PJ eQ (1I)
7j=0,...,n

and with Theorem 11.2.1 the desired result follows immediately. Furthermore, we remark that
1 1 1
Xo(TD) = 3X(011) = xe(IT) = Sxe(OT1) — Sl (11).

a

Example 11.2.1 Let IT be the 2-dimensional polytopal complex in Ezample 3.1.2 (see Figure
2). We can easily see that

x(II) = 8—-10+3=1
x(0Il) = 8—-10= -2
8 8
ro= D AP =4-) al(R),
=1 i=1
and so we get for the volume of I1:

8
2K ¢;' voleo(TT) = > ofl(P)) —2.
i=1

Example 11.2.2 Let IT be the 2-dimensional polytopal complex in Ezample 9.1.1 (see Figure
10). We can easily see that

x(II) = 6-7+2=1
X@I) = 6-6=0

8 4
ro= ) Bl =2-) o (),
i=1 i=1
and so we get for the volume of I1:
4
2K ¢;' voleo(TT) = D ofl(P)) - 1.



Proposition 11.2.3 (Gauf3-Bonnet for Polytopes) Let P be an n-dimensional polytope in
X", Then

2 K™ ¢y volyam(P) n=2m even
_1\y _ 40 S 2m X )
(1+ 0 —abge) - = 2 o ametedd

| =

where the number r is defined as

ro= Z (=1) Bp—jr (P7).

PJeQi (0P)
j=0,...,n—2

Proof: The polytope P in X" is an n-dimensional polytopal complex with boundary complex
OP. Thus we have with Lemma 3.2.2

Xg(P) = xc(P)— ag,;(P)
= 1_a?nf(P)

Xg(OP) = xc(OP) — ag,(P)
= 1+ (=1)" — ag,s(P).
Hence, by a simple computation we get

1

Xg(P) + EXy(ap) =

and the claim follows with Proposition 11.2.2. O

Remark 11.2.1 Let P be an n-dimensional polytope in X". For even dimensions n = 2m
Proposition 11.2.3 can be written as

1
1—T_§az0nf(P) = 2 K™y} volgsm(P),

and for odd dimensions n = 2m + 1 we get

1

If P is an n-dimensional polytope in the Euclidean space E* (K=0) Proposition 11.2.3 can be

written as
.= 1 , neven
1 0 , nodd

This is a generalization of the well-known fact that the sum of all exterior angles of a Euclidean
polygone (n=2) is equal to 1 (or 2w without normalization).

11.3 The Generalized Schlafli-Peschl Relations

Next we generalize Theorem 10.4.1 to polytopal complexes by decomposing the complex into
simplices.



Theorem 11.3.1 (Generalized Schlédfli-Peschl Relations I) Let I be a 2m-dimensional
pure polytopal complex in X*™ and D = D(I1) a simplicial decomposition of IL. Then we have:

2 K™ ¢y} volyom (1) = > E(P1,D) oy, j 1 (P7)
PJeqi ()
7=0,...,.2m
with B, D) =2 Y (-1)* any z(2k,P9,D).
k=0

Proof: Let II be a 2m-dimensional pure polytopal complex in X?” and D = D(II) a simplicial
decomposition of II. Then with Theorem 10.3.1 and 10.4.1 we get

K™ ¢y} volgn(IT) = K™ ¢yt Z volscn (T?™)
T2me§22m(D)

= Z Z )¥aok 11 Z om—ak—1 (T?F|T*™)
TZmEQZm Tzkeﬂzk(T2m)
m

= Z(_l)ka2k+1 > Y comoak 1 (TFITP)
k=0 T2m EQ2m(D) T2kcQ2k (T2m)
m

= Z(—l)ka%ﬂ Z a2Dm—2k—1(T2k)

T2k cQ2k (D)

k=0
m
= Z )eaze1 Z Z g op 1 (T7F)
k=0
m
> (-1

J=2k T2k €3k (11, D)

T Z Z 2(2k, P?, D) a1 (P7)

k=0 J=2k PieQi(I1
m
= Z )tk 11 Z Z z(2k, P, D) ag[m—j—l(PJ)
k=0 J=0 PieQi(1I)
m
= Y [ (—1)Fagkr1 2(2k, P1, D) | off, ; 1(P7)
piei(m) L k=0
j=0,...,2m
m
= Z [Z(—l)ka%ﬂ Z(Qk,]ﬂj,D) ] a2Hm—2j—1(P2j)
pj:%f)ﬁi(nn) k=0

(=1 age41 Z(2k,P2‘j+1aD)] o (PP,

pP2itlec2j+1(m) L k=0

Jj=0,....,m—1

The fourth step follows from Theorem 9.3.1 and the sixth step from Theorem 9.3.4 and Corollary
9.3.2. In the seventh step we have used that z(2k, P7, D) = 0 for all j < 2k. O

Corollary 11.3.1 (Reduction Formula for a 4-dimensional Cone) Let C = conv(m,C)
be a 4-dimensional cone in X* = S* or HY. Furthermore, for all integers d with 0 < d g 4
let Q4(C)' be the set of d-dimensional faces of C which are contained in C and QC)"
Q4UC) - Q4C). Then



2eilvola(C) = 3 as(@+ Y (1 - %a0(02)> o (C2) —% o (C?)
Ccoe0(C) cze?(Cy czeq?(Ccy”
1L 17 44 2/ A 1 02
+3 2(a(C)+a(C))+4 3 W),

Proof: Let C' = conv(m,C) be a 4-dimensional cone in X* = S* or H* and § = S(C) the
decomposition of ', described in Example 9.1.2. We remark that

Yood(eh) = > d(Y)

c2e02(C) c2e2(C)
= 24'(0)
because we count all edges of C' twice. Then we have

z(2k,01,s) — 0 for C'e QYC) and k =0,1,2

z(o,c,s -1 for C*=C

z(O, 03,8) = 0 for C® e Q3C)"

z<2,C3,S = O(C% =1 for C® € Q3(C)" with C3 = conv(m, C?)

z<2,C’3,S = a'(C*+ Z a(C?) = g Z a®(C?) for C* =C
C2e02?(C3) C2e02(C)

= 0 forall C® € Q%)

= 1 forall C° € Q%0)

= 0 forall C* € Q*C)"
= 1 forall C* € Q*C)"

= a}(C* =d°(C?) forall C%c Q*(C)

)
)
)
)
)
)
2(0,6%8) = 1 forall C? € Q*(C)
)
)
)
)
)
)



Since a1 = 1/2,a3 = 1/4 and a5 = 1/2 we get

1
E(C"S) = 5
E(CYS) = 0

2 1 1 0 2 2 2 !
E(C%,B) = 5 —7a’(C?) forall C* € 0*(C)
E(C%S) = —i for all C? € Q*(C)"

E(C,S) = 2738 Z a (C7)
C2e2(C)
E(C38) = —i a’(C?) for C® = conv(m, C?)
1
= _Z (GO(O3)—1)
BC.8) = — (a0 +a20)) 45 Y oY)
’ 4 2 '

P2e02(C)

Thus we find for the volume of C' (compare Theorem 11.3.1) that

Fta©) = 3 ¥ w@r 5 (3o Jalc-; T alc?)

CoeQO(C) Cc2en2(C) czeq2(Cy!
1 0(3 L1 3 0(2
: > (d(c?) 1)+2(2 : ~a(o)
cieqs(e)y” C2e02(C)
L oA 2(A 1 0(2
—Z<a(0)+a(0)>+§ > a0,
Cc2eQ2(C)
Finally, we use the identity
Z (a®(C*)—1) = Z a®(C?)
C3eQ3 (e c2e2(C)
and the theorem follows immediately. O

The following volume formula for 4-dimensional spherical polytopes P is due to L. Schléafli (see
[Sch], page 276) who proved it by a decomposition of P into cones.

Corollary 11.3.2 (Reduction Formula for a 4-dimensional Polytope) Let P be a 4-di-
mensional polytope in X* = S* or H*. Then

2 ¢, ! volga(P) = Z az(P%) + Z ( 1- %aO(Pz) ) oy (P?)

POeQO(P) P2eQ?(P)

- % (°(P) +a*(P)) +i (P2,



Proof:

Let P be a 4-dimensional polytope in X* = S*or H* and B = B(P) the barycentric decomposition
of P where 1-dimensional faces of P are not dissected. We remark that

Z aO(P2) — Z al(P2)

P2eQ2(P?) P2eQ2(P?)
= 24" (P?)

for all P3 € Q3(P), because we count all edges of P3 twice. Furthermore, each 2-dimensional
face P? of P is contained in exactly two 3-dimensional faces of P and so it intersects 2a'(P?) =
2a°(P?) different decomposition simplices. Hence

z(4,P,B) =2 Y P

P2eQ?(P)
=2 Y (P
P2eQ2(P)

Then we have

= 0 for P! € QY(P) and k=0,1,2

= 1 for P> € Q3(P)

= o(P?)+ | Z a®(P?) = % | Z a’(P?) for P? € Q3(P)
P2eQ?(P3) P2eQ2(P3)

= 0 for P> € Q3(P)

= 1 for P> € Q*(P)

= a’(P?) for P? € Q*(P)

)
)
)
)
0,P",B) = 1 for P’ € Q"(P)
)
)
)
)




= d'(P)+22°(P)+2 > aO(P?)

z(4,P,B) =2 Y P

P2cQ?(P)

Each 2-dimensional decomposition polytope in the interior of P is a cone with basis in a 1-
dimensional decomposition simplex in the boundary of P. The term A is the number of ele-
ments with basis equal to an edge of P, B is the number of elements with basis in a simplex
conv( (midpoint of a 3-face) , (midpoint of a 2-face) ), C is the number of elements with basis
in a simplex conv( (midpoint of a 2-face), (vertex of a 2-face) ) and D is the number of elements
with basis in a simplex conv( (midpoint of a 3-face), (vertex of a 3-face) ). Furthermore we use
that

E = > d(PH= Y d@PH= > P

P3eQ3(P) P2eQ2(P) P2eQ2(P)
F = Y d(P)=24*P)=B.
P3eQ3(P)
So we get
E(P° B) = L
’ 2
E(P',B) = 0
1 1
E(P? = - —-a(P?
(P%,B) 5~ 2% (P)
E(PB) = -2 3 aop?)
’ 2 8
P2cQ?(P3)
E(P.B) = +—~d(P)—sd®(P) 4+ S a®(P?)
’ 2 4 2 2
P2eQ?(P)

and it follows for the volume of P (compare Theorem 11.3.1) that

1 1 1
;! volga(P) = 5 YooY+ Y (5 - Zaf’(1ﬂ)> o1 (P?)
POcQO(P) P2eQ?(P)
+= Y 5% a’(P?)
P3eQ3(P) P2eQ2(pP3)



Finally, we use the two identities

Y Q) =2 Y L)

P3cQ3(P) P2eQ2(P3) P2c02(P)
a'(P)+a*(P) = d°(P)+d*(P)
and the theorem follows immediately. O

Now we will generalize the remaining Schlifli-Peschl Relations (compare Theorem 10.4.1) from
simplices to n-dimensional pure polytopal complexes.

Theorem 11.3.2 (Generalized Schléifli-Peschl Relations II) Let II be an n-dimensional
pure polytopal complex in X™. Then

i 3y [z(q— 1,P",D>

j=0 PveQv()
v=q+2j

+ i 3 [z(q—l,P“,D)

7=0 P¥eQu ()
u=q+2j—1

042Hl—2j(Pu)

j—1
+1 q+2p+1
+> (-1 a2p+1( o1 ) (20 P"D)

for all I with 0 < 2l <n and q:=n — 2I.

Proof:

Let IT be a n-dimensional pure complex in X" and D = D(II) a simplicial decomposition of II.
Then with Theorem 10.4.1 we get for all [ with 0 < 2] < n and for ¢ = g(m, 1) :=n — 2l

0 = Z wy (T™)

Tren (D)
q+2k+1
— o T'U
> g fan (13T S cwwn(@)
freanp et
= D e
TreqQn (D) TVEQ? (Th)
v=g—1
q+2k+1
— o T'U
> g fann (3T S cwwn(@)
Treqn (D) k= Ve ()
=Y A
TVeQV (D)

v=¢g—1



= q+2k+1 )
—Z(—l)k a2k+1 ( % + 1 Z a1 (T")

k=0 Tveqy (D)
v=q+2k

n

— D (v
= Z ay (T")
]:q 1TV EQU(D)
v= q 1

q+2%k+1\ <
- (—1)k an—l—l( 2% + 1 > Z Z 045721@71(71”)

—~

k=0 j=q+2k TV€QY(1L,D)
v=q+2k
n . .
= Z (q_laPJaD) ag—j—l(P])
J=q=1PieQi(
: g+2k+1) & : :
=Y ()" ag ( 2%+ 1 ) Yoo Y xq+2kPLD)ag (P
k=0 J=q+2k PicQi(II)
If we rearrange the parts of the sums skillfully, the theorem follows. O

Theorem 11.3.3 (Reduction Formula for Simplicial Polytopes) For a simplicial 2m-di-
mensional polytope P in X*™ we have

2 K™ CQ_T}L VO]sz(P) = Z j(P2j) agm_gj_l(P2j),
P2ie€Q?i (P)
7j=0,....m
with
j (—2j2a2j+1 R 0§j<m
(P2 _1\k 2k—1(p2j\ _
7P =2 ) (S o PR =0 g S ) g o P) L = m
k=0 o

forall0 <75 <m.

Proof: Let P be a simplicial 2m-dimensional polytope in X?™ and K = K(P) the cone
decomposition of P, described in Example 9.1.2. Of course, K is a simplicial complex, because
each face of P is a simplex. So we have for each PZ*! in Q¥*(P) with j =0,...,m — 1

22k, PPTL ) = 0 (k=0,...,m)

and for each P% in Q% (P) with j =0,...,m — 1

z(2k,P2j’K):{(1) ) ?f;ork>]

Furthermore, we have for all £ =0,...,m

2(2k, PP K) = =z(2k,P,K)
a2k71 (P)

with a~!(P) := 1. Each 2k-dimensional decomposition simplex is a cone with base in a (2k — 1)-
dimensional face of P. It follows with Theorem 11.3.1 that

E(PPTK) = 2 (-1)F agry1 2(2k, PP K)



o;j(P¥) = E(PY,K)
i
= 2 Z(_l)k a2k +1 Z(2k7P2]a’C)
k=0

= (-1) 2 a9

om(P) = E(P,K)
= 2 Z(_l)k a2k +1 Z(2k7Pa ’C)
k=0
m
= 2 (-1)* ageqr a®*H(P)
k=0

for all j = 0,...,m — 1. We remark that for a 2j-dimensional (decomposition) simplex T = T%
we have
J :
. 27 +1
1Y 2a3541 = 2 (-1)F
( ) a2j+1 ( ) a2k+1 ( 2% >
(-1)*

k

(=)

= 2
k

J
askr1 a?*H(T),
=0
and so we get a consistent description of the coefficients aj(P2j) as
J
aj(PQJ) = 2 Z(—l)”g aopy1 a?FH(PY)
k=0
for all 7 with 0 < j < m (compare Lemma 4.6.1). This completes the proof. O

Remark 11.3.1 (Determination of the tangent numbers) Let T be a 2m-dimensional sim-
plex in X*™. The method used in the proof of Theorem 11.3.3 allows to determine explic-
itly the combinatorial invariants o, (T) appearing in Schlifli’s Reduction Formula. Indeed, let
K = K(P) be the cone decomposition of T and let Asjyq1 (5 > 0) be rational numbers such that

2K™ CQ_T}L VOIsz(T) = Z A2j+1 agm_gj_l(TQj).

727 €Q2i (T)
7j=0,....m

Then we get in the same way as in the theorem

2 K™ CQ_T}L Volx2m(T) == Z A2j+1 a2m_2j_1(T2j)

T2J €Q2J (T)
7=0,....m

= Z ( Z Appi1 2(2k, 7% K) ) 2m—2j-1(T%)

T2J €Q2J (T) k=0
7j=0,..., m
where we have used that z(2k, T* 1K) =0 for all j = 0,...,m—1. Furthermore, the remaining
decomposition numbers are given by
| , k<
2(2k, T K)={ 1 , k=j<m

a'2kil(T) ) .7 =m



where a®*~1(T) = (2"21,?1) is the number of (2k — 1)-dimensional faces of T. So we get the
identity

> Agjr ogmo25 1((T¥) + Agmga

T2JeQZJ(T)
j=0,....m—1
m
) 2m +1
= Y Ay g (TY) + ) A2’““( 2%k )’
725 €021 (T) k=0
Jj=0,..., m—1
and so
1 = 2m + 1
Ayl = —5— Aok+1 < )
2m Pt 2k

If we use A; =1 we get Aoy = (—1)™ 2 agpm41 for all m > 1 by induction (compare Lemma

4.6.1).

2k—1

PN a2jf2k )

By using the well-known duality of simplicial and simple polytopes ( a
the following result (compare the statement in [V2], page 122).

we get

Corollary 11.3.3 (Reduction Formula for Simple Polytopes) For a simple 2m-dimensio-
nal polytope P in X*™ we have

2 K™ ¢y volon(P) = > 0j(PY) agyy 91 (PY),
P2j cQ2j (P)
j=0,...,m
with
J
o (PP) =2 Y (—1)* ageqy a® 2 (PY).

k=0
Furthermore, we can determine the coefficients for cubes (and also for their dual polytopes).

Theorem 11.3.4 Let W = W2™ be a 2m-dimensional cube in X2™. Then

m
2 K™ CQ_WIL VO]Xn(W) = Z(—l)v EQU (A)Qm_QU_l(W)
v=0
with the Euler numbers Eoy,.
Proof: We know that a 2m-dimensional cube W is simple and each 2j-dimensional face W2
of W is also a cube. Thus with Lemma 3.1.1 we get

a2j—2k(W2j) — 92 (;2)

With Corollary 11.3.3, Lemma 4.5.1 and Section 4.6 we find

j :
. 2
o (W) = 2 E " agpr 27 <2é>
k=0

2k+1 2%k

k:O
= (=1 By

and the theorem follows. O



12 General Schlafli Reduction Formula

In the previous section we have constructed reduction formulas for 4-dimensional polytopes
(compare Corollary 11.3.2) and simplicial and simple polytopes of even dimension (compare
Theorem 11.3.3 and Corollary 11.3.3) by decomposing into simplices. In the following section
we will develop a general reduction formula for arbitrary polytopes P in even-dimensional spaces
X2m = §27m or H?™ without using decompositions of P. In the first part we show that such a
formula must exist. We do this by describing a combinatorial algorithm which can be used
to eliminate all even-dimensional angles in Poincaré’s Formula. This algorithm produces a
reduction formula and in the second part we will show that the combinatorial invariants in it
are uniquely determined. Then in the third part we give a general description of these so-called
Schlafli invariants.

12.1 Existence

Let P be a 2m-dimensional polytope in X*™ = §?™ or H?™. For each element P¥ € QF(P)
(0 < k < 2m) let = 2(P*) be an interior point of the face P¥ and < P¥ >+ be the (2m — k)-
dimensional plane passing through z orthogonal to the plane < P*¥ >. Furthermore, let ¢ =
€(P*) > 0 such that the sphere S?"~1(z, €) only intersects faces of P that are incident with P*.
Then also the sphere S?™~#~1(z,¢) C < P¥ > only intersects faces of P that are incident with
Pk, We note that

vol (§%m=k=1(z,¢) N P)
vol (S2m—k=1(z ¢))

Oégm,kfl(Pk) = anlz—k—l V01S2m7k71(L(Pk)),

where L(P*) denotes the (2m — k — 1)-dimensional link in the face P* and cy,,,—_; the volume
of the (2m — k — 1)-dimensional unit sphere. The link is a (2m — k — 1)-dimensional spherical
polytope and with Poincaré’s Formula 11.2.1 we have

2K™ ¢y volgan(P) = Y (=1)F agmop_1 (PF)

Pkeak(p)
k=0,..., 2m

= > (=D gy volgemor—i (L(PF)).

Pkeak(p)
k=0,..., 2m

Let & be an odd number then L(P¥) is an even dimensional spherical polytope. So we can
eliminate the volume of this link by Poincaré’s Formula. In detail, we have

eyl volgomois (L(Pk)> :% S (1) dompojoa(QIL(PF)).

QI Qi (L(Pk))
j=0,....2m—k—1

Furthermore, each of these angles ag,,—g—j—2 (Q7|L(P¥)) of the link L(P*) is also a (2m—Fk—j—
2)-dimensional angle of the polytope P with apex P**7+! such that Q7 = PFHi+Ing2m—k=1(g ¢),

Now we can reduce all (2m — k — 1)-dimensional angles of P (k is odd) and we see that each
angle of P with the apex P¥T/*! (j =0,...,2m — k — 1) will change according to

2

j j 1 - .
Qo j—2 (PP o g g o (PRI (1 + —(—1)]ﬁ(k,Pk+J+1)> :




where r(k, PFHi+1) = ¢#(P¥+7+1) is the number of k-dimensional faces of P which are also faces
of the polytope PF+it1,

If we start with the top-dimensional angles of P and reduce, as described all even-dimensional
angles by Poincaré’s Formula in top-down fashion, we get a general reduction formula

2 K™ ¢y, volyam(P) = Z oM (P gy o1 (P?F),

P2k cq2k(p)
k=0,...,m

where o2%(P?) is a rational combinatorial invariant, depending on the combinatorial structure
of the face P?* for all 0 < k < m.

Furthermore, we call this way of angle reducing the Top to Down Algorithm (TDA). Of course,
this is a purely combinatorial method and independent of the ambient space X?™.

Description for Simplices and Cubes

Now we will describe this algorithm for the simplest 2m-dimensional polytopes. Let P be the
2m-~dimensional simplex T or the 2m-dimensional cube C. Both polytopes have the nice property
that each face is also a polytope of the same type, but of lower dimension. So we can consider
the angle sums instead of the angles and if we reduce all (2m — k — 1)-dimensional angles of P,
we see that the (2m — k — j — 2)-dimensional angle sum wyy,—;—;_2(P) will change by

2

k+j+2 P
kE+1

W(“Z“) p—c

Wom—k—j—2(P) ~ wom_k—j—2(P) (1 + l(—1)j"6(kaj)> ;

where

T
k(k, j) = a*(PFHITh) =

(compare Lemma 3.1.1). Now we start with the top even dimensional angles of P and reduce
them step by step. See the Appendix 16.2 and 16.3 for a detailed scheme for simplices and
cubes.

By induction we see that in the simplex case
(1% = 1

1 2k +1
2% 2k _ :
oN(T") = 1+ 3 jg < 2 ) 142

for all £ > 1, where the numbers p; are defined by recursion

112 /95
p2; = -1 - 5 Z (21)> M2y

v=1

for all 7 > 2 and pp = 2. So we can determine firstly all the numbers po; and secondly all the
numbers o2¥(T?%). In this way we find again that o?*(T%*) = 2(—1)*ag;_;.



12.2 Uniqueness

In this section we will prove that the combinatorial invariants 02/, constructed in the last section,
are uniquely determined.

Theorem 12.2.1 The rational combinatorial invariants
o PH Q
are um’quely determined for all 0 < 7 < oo in the following sense: If there are combinatorial

invariants k% : P2 — Q for all 0 < j < m such that for all m with 0 < m < oo and all P in
P2™ we have

Z 0% (P?) qigpm—aj—1(P*) Z Z Zj(PQj) Qo —2j-1(P¥)

Jj=0 P2 eQ?(P) J=0 P%eQ? (P

then 0% = k% for all 0 < j < m.

Proof: For all 0 < m < oo and all polytopes P in P?™ let

Z Z (P J) A2m— 25— 1 P J Z Z H2j(P2j) agm_gj_l(P2j).

Jj=0 P2 eQ2i(P) J=0 P2eQ2i(P)
Let k be the smallest number with 0 < k& < m such that 02 # x?* that means there is at least

one polytope R in P2% with 0%¥(R) # x?*(R). By assumption we have for all 2k-dimensional
polytopes Q) the identity

1 (Q¥) agm—2i—1(Q%) + 0*(Q)

= ?(Q¥) asm—2j—1(Q%) + k**(Q)

and of course we can conclude immediately that o?*(Q) = x?*(Q) for all polytopes @ in P2k,
But this contradicts the fact that we have 02*(R) # x2*(R) for the polytope R. So the invariants
are uniquely determined. O

Definition 12.2.1 Let P = P?™ be a 2m-dimensional polytope in X*™. Then we call the
number o?™(P) the 2m-dimensional Schlifli invariant of the polytope P.

12.3 Another Description of Schlafli’s Invariants

Let P be an n-dimensional polytope in X" = S", E" or H". We will derive another general
description of Schlafli’s invariants, where this time we won’t use decomposition methods. For
this we introduce combinatorial numbers which are generalizations of the numbers a”(P).



Definition 12.3.1 Let P be an n-dimensional polytope in X" and ({,),l,—1),...,l1,k) a (p+1)-
tupel of integers with n > 1, > 1, 1 > .. > 1y >k >0 and p > 1. Then the positive integer
Al ly—1, .., 115 k) (P) is defined as

AG)(P) =1
AGR)(P) = a"(P)
Al bty s lis k) (P) o= > > > > df(Ph).
PlNEQlP'(P) Pl,uflteufl(Plu) Pl2€QlZ(Pl3) Plltel(PlZ)

For all other (u + 1)-tupel of positive integers let the combinatorial invariant be equal to zero.

For instance, we have

i=1
for all j > k > 0, where Q/(P) = {Pf, e ,ij(P)} is the set of k-dimensional faces of P. With

a simple computation we get the following result.

Lemma 12.3.1 Then we have

AGR)(P) = Y A( )(PF)

PkeQk(pP

A(lﬂ’lufla"'ull;k)(P) = Z A(lu 1,- llak)( )
Plheqlu(p)

Definition 12.3.2 Let P = P> be an 2m-dimensional polytope in X*™ = S?™ [E>™ or H?™.
The combinatorial invariant A;(P) is defined as

Ao(P) = 1
A(P) = > A(2k)(P
0<k<m
A(P) = 3 A2fi1, .y 2f152K) (P)

0<k<fi<..<fi_1<m

for all 2 < i < m. For all other i let A;(P) be equal to zero.

Example 12.3.1 For an 2m-dimensional polytope P = P?>™ and the values m = 0,1,2,3 we
have



Ao(PYH = 1

A(PY) = Y AG2k)(P)

0<k<2

— (P +a2(PY)

A(PY) = ) A(2f1;2k)(P) = A(2;0)(P)
0<k<f1<2
= ) (P
P2eQ?(PY)
Ao(P% = 1

A (P%) = N A(2k)(P)

0<k<3

= a®(P®) + a*(P®) + a*(P)

Ay(P%) = D A(2f1;2k) = A(2;0)(P) + A(4;0)(P) + A(4;2)(P)
0<k<f1<3
= Y &SP+ Y &JLeh+ Y P
P2eQ?(PY) PieQt(Po) PieQi(PY)
A3(P) = > A(2f2,2f1;2k) = A(4,20)(P)
0<k< f1<f2<3

= Z Z a’ (P?).

PAcQi(PS)  P2eQ2(PY)
Lemma 12.3.2 Let P = P?™ be a 2m-dimensional polytope in X*™. Then
> APY) = Aia(P)

forall0 <7 <m-—1.



Proof: Let : = 0. Then we have by definition

A(P) = Y AG2R)(P

0<k<m

= Z Z AO(PZj)a

J=0 P2¢Q2i(P)

where we have used Lemma 12.3.1 in the second step. Now let ¢ be a natural number with
1 <4< m — 1. Then it follows by Lemma 12.3.1

A (P) = > A(2fi, ..., 2f1;2k) (P)

0<k<fi<..<fi<m

- 3 >, AQfim1, . 2f1:2k) (PP

0<k<fi<..<fi<m p2ficQ?fi(P)

— > > AQRfii1, 2615 2k) (P
0<k< f1<...<f; _1<[f; P2fiEQ2fi(P)
fi—1<fi<m

— Z Z Z A(2fi1, ... 2f1; 2k) (P¥)

J=fi—1+1 P2eQ2(P) O0<k<f1<--<fi_1
fi—1<i

- Z Z Z A(2fiz1, .., 2f152k) (P¥),

] 0 PZ]GQZJ ) 0<k<f1<...<fi—1
fi—1<i

because A (2f; 1,...,2f1;2k) (P?) is equal to zero for all j with 2j < 2f; | by definition. So we
get

A (P Z > APY)
J=0 P2%eQ?(P)

and this completes the proof. O

The following theorem follows an idea of Schlifli (compare [Sch], page 280).

Theorem 12.3.1 Let P = P>™ be a 2m-dimensional polytope in X*™ = S?™ or H?™. Then

2 ¢yt K™ volyom (P Z > o(PY) aggj 1 (PY)
7=0 PZJeQZJ )

where the Schlifli invariant 0® can be written as

Zi(p27y XJ: A,(P).

p=0



Proof:

Firstly, we know that a reduction formula of the type above must exist. We observe that the
combinatorial numbers 0% depend only on the combinatorial structure of the face P of P.
This means that 0%/ is independent of the geometry of the space X? and therefore it suffices
to prove the theorem only for the case X? = §?™,

Let P = P?™ be a 2m-dimensional polytope in S?”*. Now we want to assign to P a nice
representative Ps in the equivalence class of combinatorially isomorphic polytopes CI(P). We
do this by mapping the boundary of P onto the sphere S?~! C S?” such that the constructed
tesselation of S?™~! is geodesic and has the same combinatorial structure like the boundary
of P. This tesselation of S?™~! can be viewed as the boundary of a 2m-dimensional spherical
polytope Ps which is an element in the set CI(P).

Thus all angles of Ps are of measure 1/2 and Ps is the nice representatative in the equivalence
class CI(P) .

Now we can use the polytope Ps to develop a recursion formula for the Schlafli invariants. Let
P be an element in Cl(Ps). Then we have

2y K™ volgam(Ps) = 1

3
L

o (P¥) 4 o™ (Ps),
P2 €02 (Py)

N | =
Il
o

J

where we have used that ag,—2j—1(P¥) =1/2for j =0,1,---,m —1 and a_;(Ps) = 1. Now P
has the same combinatorial structure like Ps. So we get the recursion

o2 (P) 12 3 2J’(P?J'), A(P) =1

J=0 P2cQ2i(P

[N

We see that the Schléafli invariantes takes the claimed form (compare Corollary 11.3.2):

(P’ =1

2p2y _ 1_ L o/p2

o (P?) 1 54 (P?)

oA(PY) = 1—%(aO(P)+a2(P))+i S (P,

Next we assume that for all 7 with 0 < 7 <m — 1 we have

2Py z]: A,(P).



1= ! 1
-3 D (1) o Ap(P¥)
J=0 P2ieQ2(P) p=0
m—1 1 m—1 '
EDINCIEE= DD ST
p=0 J=0 P2iecQ2i(P)
m—1 1
1+ (=t 571 Ap+1(P)
p=0
- 1
> (17 o AP,
p=0

where we have used that Ap(sz ) is equal to zero if p is greater as j in the third step and Lemma

12.3.2 in the forth step.

|

Example 12.3.2 For a 2m-dimensional polytope P = P?>™ and the values m = 0,1,2 we have

o (PY)

o (P?)

p=0
2 1 2
Ay(P )—§A1(P)
1
1-— 5aO(P?)

2
> (- —A (P

p=0

Ao(PY) — %Al(zﬂ) + iAQ(P‘l)

1-— % (a®(P*) +a*(PY)) + i > (P

P2e2(P4)



13 The Volume of a Fundamental Polytope

The set of faces of a fundamental polytope for a discrete group I' < Iso (X™) splits into subsets
of I'-equivalent faces. The cycle condition, proved in the first part of this section, connects the
angles in these subsets. In the second part of this section we combine our knowledge about
the volume of polytopes with the cycle condition. Hence we can develop some special volume
formulas for (normal) fundamental polytopes.

13.1 The Cycle Condition for Fundamental Polytopes

I-equivalence Let X" = S™ E" or H" and I' < Iso (X") be a discrete subgroup, such that
there exists an n-dimensional normal fundamental polytope P = P (') for I' (compare section
7). This means that I is of finite covolume, covol (I') = volxr (P) < 0o, and P has finitely many
faces in each dimension.

Now we want to establish an equivalence relation on the set of faces of a fixed dimension. In
the following let d always be an integer with 0 < d < n — 1. For all P?, P]d € Q4(P) let

d d . . opd _ pd,
Pl ~p P} & Jyel P =P

2

and for all p?,p? € YO (P) let

p} ~rp) & FyeT:qyp) =p).

In fact this is an equivalence relation on the set of faces of P of a fixed dimension and each set

Q4(P) for 0 < d <n—1and Y°(P) decompose in equivalence classes, which we denote by Qé)

0
and 'I‘(i).

Furthermore let ¢ be the number of equivalence classes in Q¢ (P) and m® be the number of
equivalence classes in T (P).

d.
]

Each equivalence class {1, or T(()Z.) contains only finitely many elements from Q¢ (P) or Y° (P)

and we denote these numbers by I¢ or f? respectively.

We will use the following notation for the elements in a fixed equivalence class:

d _ d d d d d d
Qf = {fj(l)l""’P(l)l‘li""’fj(i)l"“’P(i)lgi""’P(ud)l"“’P(ud)lid}
Q((il) Q?i) Ql(;;d)
_ Od d d
0 _ 0 0 0 0 0 0
T - {p(l)la"'ap(l) ?a"'ap(i)la"'ap(i)fl!)a'--7p(m0)1a-"ap(m0) 310}
T(()l) T(()i) (()mO)
_ 0 0 0
and all unions are disjoint. Of course we have
oAt fittfpo = ags(P),
DA+l 4t = agg(P) and (1)

Wttt -+l = o'(P)



for all d with 1 <d <n —1.

Furthermore, for all i = 1,..., u? the d-dimensional polytopes P(‘f) € Q?i) of P are equivalent

under the action of I" and they have equal combinatorial structure (in fact, they are isometric).
So we can define:

o (szg.)) = g (pg))

for all £ < d and for an arbitrary P‘f) € Qé), or more generally: If k% is a combinatorial
d-invariant in the family of d-dimensional polytopes, we can define

e (Qg.)) S (pg))

for an arbitrary P(‘f) € Qé).

Lemma 13.1.1 Let P be a normal fundamental polytope for a discrete subgroup I' of isometries
in X" and let F be an element in Q4(P) for some d with 0 < d < n — 1. Then I'p = Stab(F,T)
and I, = Stab,(F,T') are conjugated to finite subgroups of O(n).

Proof: Let X* = [E" or S”. Then F' is an ordinary compact set in X" and the result follows
with Lemma 7.1.1.

Let X* = H" and let F € Q%(P) be an arbitrary face of P (not a vertex at infinity). The set
o = {yP :yeT)

is a locally finite family of subsets in H" and for all elements y € I we have ri(P) Nri(yP) =0
(compare section 7.3). We suppose that 'y is an infinite group. Then the set

{vP :vel'r} C @

is also an infinite set and all elements in it share the face F' in contradiction to the local finiteness
of the collection ®. Hence I'p (and also I, as a subgroup) is a finite and discrete group and so
conjugated to a finite subgroup of O(n). O

The group I' < Iso (X™) may have fixed points and there may exist elements in I', which fix faces
(not necessarily pointwise!) of P. It is easy to see that the stabilizer subgroups of equivalent
d-dimensional ordinary faces are conjugated, also isomorphic:

foralli=1,...,p% j,k=1,... ,l;-i and for some v in I'. So we see that d-dimensional faces in

the same equivalence class (which means I'-equivalent) are fixed by the same number of elements
in I". So we define for all i = 1,..., u¢

gt = g (9f)) = tStab (PE),.T)

g =1

for an arbitrary P(‘f)j in Q?Z.) and for alld =0,...,n — 1.



The Cycle Conditions The following theorem can be viewed as a generalization of Theorem
9.3.4. in [Be] or of the second part of Theorem 6.7.7 in [R].

Theorem 13.1.1 (Cycle Condition) Let X* = S™, E" or H"* and P = P (') be a normal
(n-dimensional) fundamental polytope for a discrete subgroup T' < Iso (X"™). For all d with

0<d<mn-—11letr? be a combinatorial d-invariant on the set P of d-dimensional polytopes.
Then

> (P) anan (P) = “(9&)-%
Py, 5

Q

foralli=1,....p% and j =1,... 1%

Proof: To simplify the notation: For a fixed d with 0 < d <n —1 and a fixed i € {1,..., u%} let
Q((iz) = {Pla"'u-P’U}

be a cycle of ['-equivalent d-dimensional faces of . This means, we have a set of elements

{VIZidanya"'a’YU} c T

such that y;P; = Py forall j = 1,...,v. Furthermore, let I'y := Stab (P,I") denote the stabilizer
of the face P, (all elements in I'y leave the set Py invariant). The group I'y is finite by Lemma
13.1.1 and we have g¢ = "} < co.

Since we have x? (Q‘é)) = k% (P;) for all P;, it is enough to show that

> anan (Ph) = Y ena (BIP)
d j=1

d
Pa)eR)

1

g

Of course, the polytope ;P has Py = v;P; as a d-face and for the (n —d — 1)-dimensional angles
of P and ;P in the apex P we get

an—d—1 (Pi|v;P) = ap_qa (7}1P1|P)

forall j =1,...,v.

Furthermore, let h be an arbitrary element in I' and consider the element P, = v;P; € Q4(P).
Then we have the following properties:

e We have P, € Q4(hP) if and only if there exists some j such that h= P, = P;.

= Let P, € Q%hP) for some h € T'. Then h~'P;(€ Q%(P)) is a d-dimensional face
of P which is I'-equivalent to P. So there exists P; € Q? with h~1 P = p;.

0)
< Let h 'P; = P;. Then P, = hP; € Q%(hP).

e We have h 1P| = P; if and only if the element hv;l fixes the face P, which means that
h’y;l el.

= Let h™'P = P; = 7;1P1. It follows that hy;l el.



< Let hfyj_l € I'y with 'yj_lPl = P;. This means hfyj_lPl = P; and 'yj_lpl =hlP =
p;.

e The element hv;l fixes the face P; (not necesarily pointwise) if and only if h € 'y ;.

Thus we have

P € QYhP) <= hely,

for some j =1,...,v.
Now let H := { hy,...,hy } C T be the finite set of all elements in ' with P, € Q¢(h;P) for
1=1,...,t. With the above observations we derive that

H = Fl’YlU...UFl’)/U,

and this union is pairwise disjoint.

We know that the set
& = {yP : yel'}

is a normal tesselation by Theorem 7.3.1. Of course, ® can be viewed as a (generalized) pure
n-dimensional polytopal complex in X" and the complex angle ag’_ d—1 (P1) of this complex in
the face P; is of measure 1. Furthermore, the elements in I'; are conformal maps and so preserve
the measure of an angle. So we get

1 = a;{;qu (Pr)

yeH
= Y g (PyP) ...+ D> oma1 (PIVP)
yelim YEl 1Y

= {1 ap_g1 (P P) + ... + i1 ap_g—1 (P17 P)

=t (a1 (W 'PUP) + ...+ a1 (7, "P1IP) )

v
= 9! Y a1 (P5|P).
j=1

Example 13.1.1 Let P, be the (canonical) normal fundamental polytope for the modular group
PSL(2,7Z) < Iso(IU?) (see Figures 4 or 13). We use the following notations: p{ = oo, P = A,
P) = B, P} = conv(A,0), P} = conv(B,00) and P} = conv(A, B).

Furthermore, we have P ~PSL(2,Z) P) and P} ~PSL(2,2) P} and we can write p?l)l = 00
and T, = {oo}; Py, = P}, Py, = P} and Q) = {P},P}}; Py, = P{, P}y, = Py,
Qpy ={Pl, Py} and Q) = {P5}.



For the orders of the stabilizers we get

g? = g?(Q(()U) =3
9% = 9%(9%1)) =1
9 = 9(Qy) =2

(you may count it in the tesselation). Furthermore, we have I =2, 1} =2, 11 =1, u® =1 and
pl'=2. So we get with the trivial combinatorial invariants:

Z a1(P(01)): ar(PY) + a1 (PY) :%

Poyet,
Y w(Phy) = P +a(Py) =1
Py ey
1
> ao(Phy) = a(Py) =3
Py €

-1 0 1

Figure 13: A Fundamental Polytope for PSL(2,7Z)

13.2 General Results

In this section we will combine the volume formulas for polytopes with the cycle conditions to
get volume formulas for fundamental polytopes of discrete groups.

Theorem 13.2.1 Let P be a n-dimensional normal fundamental polytope for a discrete group
I' < Iso(X™). Then we have

i(—l)d S 1) _ [ 2K™ ¢y volxe(P) , n=2m even
a 0 , N = 2m + 1 odd



Proof: We use Poincaré’s Formula for polytopes (compare Corollary 11.2.1) and the cycle
conditions (compare Theorem 13.1.1) and get

2 K™ ¢, volgn(P) , n=2m even
0 , n=2m+1 odd

n

=Y Y (D (P

d=0 pdeQd(p)

nop
1
_ d
- -1
d=0 i=1 9i
n ut 1
_ d
= 2 DT> 5,
d=0 i=1 Ji
and the theorem follows immediately. O

In the special case where I' is torsionfree we get the following result, which is the well-known
Theorem of Gaufl and Bonnet.

Corollary 13.2.1 Let P be a n-dimensional normal fundamental polytope for a discrete and
torsionfree group T' < Iso(X") and let pu? be the number of T'-equivalence classes in Q% (P) for
d=0....,n. Then

n

\d d n | 2K™ Volxn( ) , n=2m even
;( DT wf=x(X /F)_{ 0 , n=2m+1 odd

Now we will combine the General Schliafli Reduction Formula (compare 12.3.1) with the cycle
conditions.

Theorem 13.2.2 Let P = P?>™ be a 2m-dimensional normal fundamental polytope for a discrete
group T' < Iso(X?™). Then we have

m M
_ 1
2 Km 027% VO]sz(P) = E O'2d (Q%{g) a4
d=0 i=1 Yi

where 0% denotes the Schlifli invariant.

Proof: We use the General Schlafli Reduction Formula 12.3.1 and the cycle conditions 13.1.1.
By a simple computation we get

m m e
YooY P avmosa (P2d> = ZZ Z o (PE) com-—2a-1(P()

d=0 p2dcQ2d



a

The following volume formula was constructed by C. L. Siegel (compare [S]) for fundamental
polygones in the hyperbolic plane. He used this formula to determine the discrete subgroup of
Iso(H?) of minimal covolume.

Corollary 13.2.2 Let P = P? be a 2-dimensional normal fundamental polytope for a discrete
group I'. Then

11 1
2 K ¢, ' voly>(P) = Z<—0—§I?> +1—§a9nf(P).

Proof:

The Schlafli invariants are given by

o0 (Q[(]i)> =1
o? (Q%) = 1- %ao (Q%Z)>
1 1

= 1- Eagrd(P) - ia?nf(P)a

(compare Example 12.3.2) and for the volume of P follows

m
_ 1 1
2K ¢ volya(P) = 3o (Q?)) grie Sa'(P)
i=1
MO IJ‘O
1 1 o 1o
- Zgo—i_l_izli 2aznf(P)
i=1 7% i=1
So the result follows immediately. O
If the group I is also torsionfree we get
1
2K ;' voly>(P) = 14 pu°— =ad’(P).

2

Example 13.2.1 For the normal fundamental polytope P,, for the modular group PSL(2,7)
(see Example 13.1.1) we get (with u° =1, ¢¥ =3, 19 =2 and a?nf(Pm) =1)

oo 1 1

i=1 (

Corollary 13.2.3 Let P = P* be a 4-dimensional normal fundamental polytope for a discrete
group I'. Then

/JO 2

- 1 10 K 1§ (o 1 1, 1,
204 volxa(P (?‘T)JrZ(l_E“ (Q(Z)) _2_§li +1—§ainf(P)

=1



Proof: The Schlafli invariants are given by

P2eQ2(P)
(compare Example 12.3.2) and for the volume of P follows:
9 pd )
2c; vola(P) = Y Y o (Q%g) s
d=0 i=1 9i
0 n?
1 1
- 2 a2 (g (oh)
i1 9 o 9i
1
+1—§(a0(P)+a2(P))+— a’(P?)
P2cQ2?(P)
Now we use the identities
10
i=1
2
a?(P) = Y17
i=1
2
Yo (P = a”(P()
P2eQ?(P) =1 Pg et (P)
2
= > na(9);
i=1

and the result follows immediately.

If the group I is also torsionfree we get g) = 1 and g7 = 1 for all i > 1. We have

2

(a®(P) +a*(P) ) + p° + p* — %Zao (Q%Z)) (1— %l?).

=1

| =

2 ¢yt volga(P) = 1—

13.3 Simple Fundamental Polytopes

In this section we will consider discrete groups with simple polytopes.



Theorem 13.3.1 Let P be a simple 2m-dimensional normal fundamental polytope for a discrete
group I' < Iso(X®™). Then

2 K™

with

-1
Cop VOIc2m (P

H

M’;

m—

_ 1
( )" 2 agm—adi1 127+ 04 (Q%ﬁ) W)

+1+ (=1)™ 2 agmy1 ag, ¢ (P)

d=0 1

-
Il

o4 ( ) 2 kido agk 1 a4 (Q%%)

Proof: We use the reduction formula for simple polytopes 11.3.3 and the cycle conditions 13.1.1
and get by a simple computation

-1
2K™c,

m

VO]X 2m (P) —

NE

> o <P2d> om—2a-1(P*?)

d=0 Pp2dc2d(p)
m p2d
d d

S0 Y ou(PY) cvnse (B
i = ey
m p )

2d
Z gd (Q(i)> 2
d=0 i=1 9
m—1 pd

Od (Q2d) 2d + 2 Z agk 1a m_Qk(P),

d=0 =1

where we use the definitions of the invariants o4 in Corollary 11.3.3. Now we will consider the
last summand and get

>

k=0

a2k " a2m—2k(P)

(=)™ agm+1 (a5, (P) + ag.4(P)) + a1

+ > (=)™ " agm ok le'% ;



where we have reversed the order of summation in the second step. In the third step we have
used the equations 1. If we combine both formulas we get

2 K™ ¢y, volygem(P) = 04 (QZd) ez + 1+ (=1)" 2 agm+1 a?nf(P)
i

u° m—1 M2d
+(_1)m 2 A2m+1 Zl? + Z (—1)mid 2 A2m—2d+1 Zl?d
=1 d=1 =1

= 1+ (_1)m 2 agm+1 a?nf(P)

+(—1)" 2 agm+1 Zl +ZO’0( ) i@

m—1 pd me1l p2d
2 ym=d 2
+ > o (Q 0 ) -+ 2 dom—2as1 | D1
=1 =1 g7 d:l im1
m—1 2d

n
- 1
_ 3 ( (=1)™% 2 agm_sar1 124 + 0y (Q(Q‘f) i )
7 7
+14 (=1)™ 2 agmi1 ag,;(P).

|

Corollary 13.3.1 Let P be a 2-dimensional (trivially simple) normal fundamental polytope in
X? =S2% or H2. Then

0

I
11 1

2K ¢, volg2(P) = Y ( — - 519 ) +1-— 5ag’nf(P).
=1

9

Corollary 13.3.2 Let P be a 4-dimensional simple normal fundamental polytope in X* = S*
or H*. Then

I I
| 11
2t volr) = 30 ( )+ (13 (at) ) - g | 1)
=1 =1 4

Proof: We have

and the corollary follows immediately. O

Example 13.3.1 We will compute the volumes of the normal fundamental simplices P = P(T")
with schemes



5 k
o o)

for k =3,4,5, where I is the corresponding reflection group. We have a?nf(P) =0, a° (Q%@J =
3, n'® =5, u? =10, lZO =1fori=1,...,5 and li2 =1 fori=1,...,10. To compute all the
numbers g? and gl-2 we pick out all elliptic subschemes o of order 4 and 2 with their multiplicities
(o) and determine the orders of the corresponding (finite) groups.

o #(o) | k| Order
5
° o 1 14400
5
(@] O O——O 1 240
5 k
O O oO———0 1 3 60
4 80
5 100
k
(@] O O——O 1 3 48
4 96
5 240
k
° o 1 |3 120
4 384
5 | 14400
5
o—o0 1 10
(@] O 2 6
(@] (o] 6 4
k
o ° 1 3 6
4 8
5 10
Hence we get
/ ]_ 9
— k=3
10800 "
17
loa (P) = —— 72 =4 .
voli (P) 51600 © K
13
2 k=
( 5400 & g




14 Examples: Volumes of Polytopes

In this section we will apply the reduction formulas to compute the volume of some 4-dimensional
polytopes. The main problem of this computation is the decoding of the combinatorial structure
of the polytopes. For polytopes with known Gram matrix or graph (and with few facets) we can
use the GIA or the SIA, described in the Sections 5.3 and 6. For polytopes with many facets
we use our geometrical imagination.

A nice tool to describe the combinatorics of a 4-dimensional polytope is a so-called Schlegel
diagram. A Schlegel diagram can be constructed in the following way. We choose a point p
outside an n-dimensional polytope P and in some way "near” an arbitrary facet F. Then we
project the whole polytope from the point p into the facet F. We get an (n — 1)-dimensional
polytopal complex which is called a Schlegel diagram of P. A Schlegel diagram determines the
complete combinatorics of P (compare [Z], section 5).

Let P be a 4-dimensional Coxeter polytope in X* = S% or H* with scheme S = S(P) and Gram
matrix G = G(P). The group I' generated by the reflections in the facets of P is discrete and
P is a fundamental polytope for I'. So we have covol(I') = volx4(P) and for the volume of P we
get with Corollary 11.3.2

2
volgs(P) = = [54(P)—2 3 (GO(P2)—2) a(P)+4 ag(PO)]

3 P2eQ?(P) PO (P)
with
KY(P) = 4- 2(a°(P) + GZ(P)) + 3 QP

P2e02(P)

14.1 Volumes of the Tumarkin Pyramids

We want to compute the volumes of the 4-dimensional hyperbolic Coxeter polytopes, classified
by P. Tumarkin [T]. From the combinatorial point of view each of these polytopes P is a pyramid
over a 3-dimensional simplicial prism. All combinatorial datas can be read off from the Schlegel

Figure 14: Pyramid over a Prism

diagram (see Figure 14) and we find: a°(P) = 7, a'(P) = 15, a?(P) = 14 and a*(P) = 6.
The set of 2-dimensional faces consists of 11 triangles and 3 rectangles; so we get x*(P) = 7.
If we decode the connection between angles and combinatorics we get the results stated in the
Appendix (compare Section 16.6). For the volume of the 3-dimensional angles use the Appendix
16.4.



14.2 Volumes of the Kaplinskaja Prisms

We want to compute the volumes of the 4-dimensional hyperbolic Coxeter polytopes, classified
by Kaplinskaja [Kapl]. From the combinatorial point of view each of these polytopes P is a prism
over a 3-dimensional simplex. All combinatorial datas can be read off from the Schlegel diagram

Figure 15: Prism over a Simplex

(see Figure 15) and we find: a’(P) = 6, a'(P) = 16, a®>(P) = 14 and a*(P) = 6. We have
two simplicial facets and four facets which are prisms over a triangle. The set of 2-dimensional
faces consists of 8 triangles and 6 rectangles; so we get x*(P) = 8. If we decode the connection
between angles and combinatorics we get the results stated in the Appendix (compare Section
16.6).

14.3 Volumes of the Esselmann Polytopes

We want to compute the volumes of the compact hyperbolic Coxeter polytopes with 6 facets
in H*, classified by F. Esselmann [Es]. From the combinatorial point of view each of these
polytopes P is a product of two 2-dimensional simplices and so is simple. Furthermore, all

——————————————

Figure 16: The Product of two 2-simplices

combinatorial datas can be read off from the Schlegel diagram (see Figure 16) and we find:
a®(P) =9, a'(P) = 18, a?(P) = 15 and a*(P) = 6. All facets are simplicial prisms and the
set of 2-dimensional faces consists of 6 triangles and 9 rectangles; so we get x*(P) = 10. If
we decode the connection between angles and combinatorics we get the results stated in the
Appendix (compare Section 16.6).



14.4 Volumes of Regular Polytopes

Let R = Ry p,p, be a regular polytope in X* = S* or X* with the Schlifli symbol {p1, p2,ps}-
This means that p; = p;(R) is the number of i-dimensional faces of R containing an (i — 2)-
dimensional face R'~? and contained in an (i + 1)-dimensional face R‘*! for all i > 1. Let
a; = a1(R?) and a3 = a3(R’) be the 1- and 3-dimensional angle of R. There are only six
combinatorially different regular polytopes in X*. We describe them in Table 2 where

K4R) = 4—2(a°(R)+a2(R))+ S (R
R2€Q2(R)

= 4+ (p1 - 2>a2(R) — 2d°(R).

Name | Notation || p1 | p2 | p3 | a a a a K

5-cell R333 313 |3 ) 10 10 ) 4

8-cell Rys3 4131 3] 16 32 24 8 20

16-cell R334 313 | 4 8 24 32 16 | 20

24-cell Rs343 3143 ] 24 96 96 24 | 52

120-cell Rs33 5 | 3 | 3 ]600 | 1200 | 720 | 120 | 964

600-cell R335 313 |5 | 120 | 720 | 1200 | 600 | 964

Table 2: Regular Polytopes

The general volume formula reduces to

71.2

Vle4 (R) = 3

4+ d?(R) <p1 - 2) (1 - 2a1> — 24°(R) (1 - 2a3>] .

If R is an ideal regular a®(R)-cell in H*, which implies that all 3-angles a3 are zero, the volume
formula simplifies to

,/T2

? .

volys(R) = 4+ a*(R) (p1 - 2) (1 - 2a1) —24°(R)

For the dihedral angles in the Euclidean and in the ideal hyperbolic case, as well as for the
volumes of the ideal hyperbolic regular polytopes see the results in Table 3.



Qg
Polytope Ideal Volume
Ideal ‘ Euclidean

R333 > arccos(3) arccos(1) 2m (2 — sarccos(3) )
Ry33 > arccos(3) : %71’ (sm — 4arccos(3) )
R334 1 arccos(%) : 3 ( 5m — 16 arccos(\%) )
R3a3 i 3 3

Rs33 + arccos(3) 2 3 (241 — 180 arccos(3) )
R335 I—% arccos(é) 1— o arccos(?"/g"'l) Sw ( 83 — 75 arcsin(é) )

Table 3: Hyperbolic Regular Polytopes

14.5 A Fundamental Polytope for PSL (2,7Z]iy, i5))

Let H* be the hyperbolic space in the upper half-space model
w* = { zo + 191 + z2i2 + 393 :x; >0foralli=0,...,3}.
We follow C. Maclachlan, P.L.. Waterman and N.J.Wielenberg [MWW] and construct a polytope

P as the convex hull of the following set of points

{i31\/§.11\/§1.\/§1.\/§.11\/§

S = St 50 55l 5, St s, Sl i3, 5 o2+ s,

2 2 >2 2 272 272" 272 27 2

LONE VIS PR SRS SRUNE +\/i.
9 221 212 223, 221 212 2 23, OO .
Now conv(S—o0) is a cube (see Figure 17), lying on the hyperplane Hy = {zo+x1i; +x2io+x3is :
Sz? = 1; x3 > 0} and P := conv(S) can be viewed as a cone with basis conv(S — co) and
center co. The scheme of P is

o0
O

o0

N s
/

O

OOO

(P) =8, a},;(P) =1, a'(P) = 20, a*(P) = 18

and a®(P) = 7. The set of 2-dimensional faces of P splits into a set of 12 triangles with dihedral

» 3,00 ord

which we denote by [oo, 3 3’00]. We obtain a?



1, 1, V2 1 1, 1 1,
§l1+522+713 §+§Zl+§l2+§l3

L, 4 V3, 1, 1, 4 V2,
302 + 5713 3 T 3%2 + 5713
1. V3 1 1,
gt 5 gtttz
i3 1, V3,
2t

Figure 17: conv(S — o0)

angles 1/4, a set of 3 rectangles with dihedral angles 1/4 and a set of 3 rectangles with dihedral
2
angles 1/6. Furthermore we have Z?:(IP) a®(P?) = 60 and x*(P) = 10.

The vertex at infinity of P has a Euclidean vertex figure of type [00,2, 00,2, 00] (cube). In the
set of the 8 ordinary vertices of P we find the following types of vertex figures: one vertex figure
of type [2,2,2] which represents an angle of 1/16, three vertex figures of type [2,2,3] (angle
1/24), three vertex figures of type [2,3,3] (angle 1/48), and one vertex figure of type [3, 31’1]
(angle 1/192) (compare 16.4). Therefore we obtain

2 1 1 1 1 1 1 1
It (P) = —10—2(12— 6= 6—) 4(— 3 43— —)
volgs (P) 3 2700 T%) T T TP T 102
1 2
= m’ﬂ'.

+
From the results of N.W. Johnson and A.I. Weiss [JW] we know that the group [oo, 3 3’00] of

» 3,00

3,00
1 3,00

orientation preserving elements in [oo, 3 } is isomorphic to the group PSL (2,Z[i1,i2]). It

follows that

covol (PSL (2,Z[i1,i2])) = 200V01<[O°’3’ 3,2])
I

- ﬁﬂ—.

14.6 The Ivansi¢ Polytope

The following construction is copied quite directly from the paper of D. Ivansi¢ [I]. Consider
the planes that bound the rectangular box R C IR?, R = [-2,2] x [-2,2] x [-2v/2,2V/2]. Add
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Figure 18: The Boundary Spheres

to them the 12 spheres of radius v/2 with centers (£1,+1,52v/2) for j = —1,0,1 and the 18
spheres of the same radius with centers (j, k, =v/2) for 5,k = —2,0,2 (Figure 18).

Each of the 6 planes that comprise the boundary of the rectangular box and each of the 30

spheres determine a hyperplane in H* = {(z,y,2,t) € R*

t > 0} that divides H* into two

half-spaces. For the spheres we choose the half-spaces whose boundary at infinity is unbounded
in IR3, for the planes the half-spaces so that the intersection of their boundaries at infinity is
the rectangular box R . The polytope P is defined as the intersection of those half-spaces. It
has the following combinatorial data: a?nf(P) = 36,a ,(P) = 48,a!(P) = 216,a*(P) = 168

and a?(P) = 36.

The set of 2-dimensional faces of P splits into a set of 16 triangles with dihedral angles 1/8,
a set of 8 rectangles with dihedral angles 1/8, a set of 24 triangles with dihedral angle 1/4, a
set of 112 rectangles with dihedral angles 1/4 and a set of 6 hexagons with dihedral angles 1/4.

Furthermore we have E?i(lp) a’(P?) = 648 and x*(P) = 148.
In the set of the 48 ordinary vertex figures of P we have 16 vertex figures of type [2,2,2] which

represent an angle of 1/32 and 32 vertex figures of type [4,2,2] also representing an angle of
1/32 (compare 16.4). Thus we get for the volume of P

V01H4 (P)

2 1 1 1 1 1

™ 114 —2(1 S 4162 4+ 124- 4 24— 2—) 4(
3[8 65+ 16 +1247 247 432 ) +
8

§7T2.

1 1
16 +323—2)]

Furthermore, we have the following types of 3-faces (with the notations from the paper [I]):

For instance, the hexagonal 2-face in the 3-face C} is the intersection of C; with Y7.
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Figure 19: The 3-dimensional Faces of P

15 Examples: Volumes of Orbifolds

Let M = X?>™ /T’ be a geometric orbifold of dimension 2m with X*™ = S2™ or H?™ such that
there exists a normal fundamental polytope P for the discrete group I'. Then we have by
Theorem 13.2.2

volyem (M) = covolgamn(I') = volgem(P)
m u2d
1
2d ((2d
=)0 (%) 20
d=0 i=1 i

In the special case where M = H*/T" is a 4-dimensional hyperbolic manifold with a normal
fundamental polytope P for the discrete group I' we have with Corollary 13.2.3 resp. 13.2.1

VO][HI4 (M) = VO]IEII4 (P)



15.1 The 24-cell Manifold

Let M = H*/I" be the ideal 24-cell manifold. Then M can be constructed from the ideal regular
hyperbolic 24-cell P with dihedral angles 1/4 by pairing opposite sides. Of course, we could use
the result from Section 14.4, where we have computed the volume of this polytope. However,
we will go the way described above. Each facet of P is a octahedron and each 2-dimensional
face is a triangle, so

0 2 _
for all i = 1,...,u?. For the details of the constuction see [R] (page 509). Of course, P is a
fundamental polytope for I'. The group I is torsionfree and so all stabilizers are trivial. We
have a°(P) = af, ((P) = 24, a*(P) = 96, u° = 0 (all vertices are at infinity), u* = 96 and I} = 4
for alli =1,...,u2%. So we get

4
volyu (M) = §7r2.

Furthermore, we remark that x(M) = 1.

15.2 The Davis Manifold

Let M = H* /T be the (compact) Davis manifold. Then M can be constructed from the regular
hyperbolic 120-cell P with dihedral angles 1/5 by pairing opposite sides. Each facet of P is a
dodecahedron and each 2-dimensional face is a pentagon, so

a’ (Q%l)) =5

for all i« = 1,...,u%. For the details of the constuction see [D] or [R] (page 505). Clearly,
P is a fundamental polytope for the torsionfree group I'.  We have a°(P) = a° (P) = 600,

ord

a?(P) = 720, u° = 1 (all vertices are ordinary and will be paired), u? = 144 and ¥ = 600 and
2=5foralli=1,...,u% So we get

104 4
VO]H4 (M) = T 7T2 = g 7T2 X(M),

where x (M) = 26 is the Euler-Poincaré characteristic of the Davis manifold.

15.3 Ivansié’s Manifolds

Let M; = H*/I"; (i = 1,2) be the 4-dimensional manifolds, described by D. Ivansi¢ [I]. Both M;
and Ms can be constructed by pairing sides of the Ivansi¢ polytope (compare Section 14.6) and
so in principle we know the volume of these manifolds. However, we will go another way. From
the constructions (compare [I], Lemma 5.1) we can read off the numbers

pto= 2
pt=17+5 = 22
p?=36+3 = 39

©? 18

u4 = 1.
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We remark that the two manifolds differ in the number of cusps (we have m® = 7 for My and
m? = 8 for M5). Hence we can use Corollary 13.2.1 and get

VO]]H[4 (M) = VO]]H[4 (P)



m 112 |3/ 4 5 6 7 8 9 10 11 12 13 14
Ul on| | s | 7| 21 | 33| 420 | 7m15 | 2431 | 4199 | 29393 52003 | 185725
dm 2 8|16 | 128 | 256 | 1024 | 2048 | 32768 | 65536 | 262144 | 524288 | 4104304 | 8388608 | 33554432
1] 1 1 1 1 5 691 7
B,, 2o == o - 0 _ 0 2 0 _ 0 L
21 6 30 42 30 66 2730 6
1 1 1 17 31 691 5461
m 2 | 7|1 - 9 - 8 2 1 2
G, 1] - |1 ; 3 ; 17 ; 155 ; 2073 ; 38227 ;
T,, 1| - |2 _ 16 ] 9279 ; 7936 ; 353792 ; 99368256 ;
B, T 5 ] 61 ; 1385 ; 50521 ; 2702765 ; 199360981
Z(m) 1 2 4] 10 | 32| 122 | 544 | 2770 | 15872 | 101042 | 707584 | 5405530 | 44736512 | 398721962

T°91

SIaquINN] [e1I0YeUIquIO)) YT,

xipuaddy 9T

T™TNT



1. step 3. step 4. step
Wo2m—1 W2m—1 W2m—1 W2m—1 W2m—1
—W2m—2
1 _ 1 1 1 1
wWom-3 | —3 (2)W2m—3 = —3 W2m-3 —3 W2m-3 —3 W2m-3 —35 W2m-3
1
—Wom—4 | T3 (2)w2m—4 = 2 Wom—4
1 _ 5
wWom-5 | —3 (2)W2m—5 = —4 Wom—5 || + (4) W2m—5 Wom—5 W2m—5 Wom—5
1 _ 13 6 17
—Wom—6 | T3 (2)w2m—6 = 5 Wam—6 —(4)w2m—6 — %5 W2m—6
1 _ 19 7 51 17 (7 17 17
wWom-7 | —3 (Z)WZm—7 = T35 Wm-7 +(4)W2m—7 5 Wom-7 || — 7 (6)w2m—7 —7 W2m-7 —7 Wam-7
1 _ 8 17 (8
—Wom-8 | —3 (2)w2m—8 = 13 wom-8 || — (4)w2m—8 =57 Wom—38 || + (6)w2m—8 62 Wom—8
1 9 17 (9 9
Wam—9 | —3 (2)‘*‘)277179 = —17Twm-9 +(4)w2m79 109 wom—9 || —7F (6)w2m79 —248 Womp 9 || +31 (8)(«‘)277179 = 31 W2m—9

sooridwiiS 10} VI 291

~NT



1. step 2. step 3. step

Wam—1 Wam—1 Wam—1 Wam—1
—W2m—2

Wom-3 | — %2 (?) Wom-3 = —W2m—3 —W2m—3 —W2m—3
—W2m—4 +%22 (‘;’) Wom—4 = 5 Wom—4

Wom—5 | —32° (le)w2m—5 = -15W2m—5 +22(§)W2m—5 5 Wom—5 5 W2m—5
—Wom—6 +%24 (?)WQm—G = 39 Wom—6 —%22 (g)w2m—6 —61 Wom—6

Wom—7 | — %25 (?) wW2m—7 = 95 Won-7 +%23 (g) Wom—7 305 Wom—7 || — 62_12 (5) wWoam—7 = —6lWap-7

soqny 10} VAL €91

oNn'T
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16.4 Coxeter Simplices in S?

Scheme Denoting | Volume Value Order of the groupe
[
°o o—o [k, 2,1] 2 4kl
° 5,3,3] | =572 | 0.00137078 14400
4
° 3,4, 3] = | 0.01713473 1152
° [4,3,3] Asm? | 0.05140419 384
5
o——0—0 2,3, 5] w2 | 0.08224670 240
° [3,3,3] &2 | 0.16449341 120
4
O——0—0 2,3, 4] Lx? | 0.20561676 96
o——0——0 2,3, 3] 52| 0.41123352 48
O O
3,351 | 4m? | 0.41123352 192




16.5 Coxeter Polytopes in E?

Scheme Denoting Type
—= o —= o —= o (00,2, 00,2, 00] cube
—= o o—t ot o [00,2,4,4] prism
o—= o o o o [00,2,3, 6] prism
o
o—= o o/ 3 )
\O [oo7 2,3l ]] prism
o2 ‘5 [4,3,4] simplex
O,
\O 4 o
/ [4, 31’1] simplex
o
o
o/
\)> [(3%)] simplex
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16.6 Coxeter Polytopes in H!

Tumarkin Pyramids (Non-Compact, k! = 7)

Scheme Denoting k1 Volume Value
Q, O
4 l
\o o/ s 4,3 (ko) 2 3 L2 0.0685389195
/ \ 4 144
o 4 k " L
2 4 Lx? 01370778390
3 3  Lx?  0.1370778390
3 4  Lx?  0.2056167584
4 4 Ex? 02741556779
? l
oo>o CE [(,00,1),3,4,4] 2 3 Sla?  0.0342694597
k
1
0 2 4 w2 0.0685389195

0.0685389195

3 4 &n?  0.1028083792
4 4  Lx?  0.1370778390
O,
oo>O 4 6 [(k,00,3),4,3,6] 2 e 0.0571157662
k
° 3 o 0.1142315324
O, O
\ 4 / [(k,00,3),4,(3,3,3)] 2 Sor2 0.1142315324
o] O O ) ) ) Xy s Yy 432 :
RN

O O 3 5 2

0.2284630649
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Scheme Denoting k Volume Value

? l

50 \o [(k, 00,1),3,3,6] 2 =m? 0.0182770452

OA 2 saem? 00342694598
2 Toksm? 0.0557449879
3 s> 0.0365540904
3 BT 0.0525465050
3 s 0.0740220330
4 7 0.0685389195
4 soesm?0.0900144476
5 SLem? 0.1114899757

o o

ooxo o/ [(k,00,1),3,(3,3,3)] 2 ssm? 0.0365540904

OA \O 2 e 0.0685389195
2 Sbsm? 0.1114899757
3 +=m?  0.0731081808
3 23-m? 0.1050930099
3 sosm? 0.1480440661
4 La?  0.1370778390
4 T2 0.1800288951
5 sobm? 0.2229799513




LU0

Scheme Denoting k 1 Volume Value

o
o<>/ o0 [(3,4,4,3), (k,00,0)] 2 3  An?  0.1370778390

' N 2 4 Lx?  0.2741556779
3 3 4w 0.2741556779
3 4 Hr? 0.4112335169

4 4 fr?  0.5483113558




Kaplinskaja prisms (Compact, x* = 8)

Scheme Denoting Volume Value
o o [...3,3,5,3] o2 | 0.037467943
o o 4 [..,3,4,3,5] o2 | 0.038838721
O\
/O T [+3,32] | 18572 | 0.0557449878
5
O

1 [, (3,3,4,3,3)] | 557w? | 0.1114899757
%‘7
O\ . [3,(3,4,3,3)] | &57° | 0.1439317309
O,
N
O\/ ° [,3,(3,5,3,3)] | Tosegm> | 0.1928228268




11U

Kaplinskaja prisms (Non-compact, x* = 8)

Scheme Denoting Volume Value
/O\\)
O\A ol [,3,(3,3,3,4)] | 2572 | 0.1210854244
O,
y
°\> °e [,3,(3,4,3,4)] | Ln2 | 01827704519
%
O\) . °e [,3,(3,5,3,4)] | 48972 | 0.2316615478
O,
O/\) 4 O 0]
o .
ko/ [.,4,(3,3,4,3)] | e | 0.1713472987
5
o o . .
\ [34] on? | 0.08316055563
(o]
0_50/0 \O_. =
[, (3,3,3,3),5] | shsm? | 0.1663211112




411

Esselmann Polytopes (compact, x* = 10)

Scheme Denoting Volume Value

o2 ! 8,3,4,3,8] T | 0.062827343
OY

o) 10 [ 3,3,10 221 2

VA 4351 S2Ln2 | ().10098067
5
O
O\

4 8
4/0 8,3, 4, (3,4,3)] ALx2 | 012565469
O
Q, 4 O

\O O/ 5 37(375’3) 221 2
AN 4559 2272 | (.20196135
o 5

7

10
Ox ° 1(3,5,5,3),3,10] | 2272 | 0.20196135
O\ /
4

4/0 0\04 (3,4,3),4,(3,4,3)] | Lbw | 0.25130937
O

o) o)

o 5 221

R}/\O [(3,5,5,3),(3,5,3)] 22T 0.4039227
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Notations

STL
ETZ
H"
X’I’L
Hn
B’I’L

Rp1p2p3

Q4()
1°()

n-dimensional spherical space
n-dimensional Euclidean space
n-dimensional hyperbolic space
one of the spaces S”, E" or H"
vector space model of H"

ball model of H"

projective disc model of H"
upper half-space model of H"

convex hull of a pointset

polytope

set of n-dimensional polytopes in X"

set of combinatorial equivalence classes

set of polytopes, combinatorial equivalent to P
polytopal complex

set of n-dimensional polytopal complexes in X"
face poset of P

complex of the polytope P

extended complex of the polytope P

Gram matrix of P

incidence matrix of P

face figure or link in P¥(P* face of P)
scheme of L(P*)

simplex

cone

cube

dual cube (cross polytope)

regular polytope in X* with Schlifli symbol {p1pops}

set of d-dimensional ordinary faces

set of vertices at infinity

number of elements of a set

#Q¢( ) number of d-dimensional faces

#Q°( ) number of ordinary vertices

#7°( ) number of vertices at infinity
combinatorial Euler-Poincaré characteristic
geometrical Kuler-Poincaré characteristic

n — k — 1)-dimensional angle of P with apex P¥ for k =0,...
g

= % —ap 1 (P*|P) for k=0,...,n

complex angle with apex P¥

= ZPker(P) n g 1(P¥|P) for k=0,...,n
:= c; tvol(P)

Y ho(=1)fwn 1(P)



Iso(X™)

Stab(K,T') = 'y
Stab,(K,T) = I'
)

o1l
|

11
cl
rb

d-dimensional skeleton

polytopal decomposition

(canonical) decomposition of P in cones
decomposition of a cone C' in simplices
barycentric decomposition

barycenter

k-dimensional elements in D in the [-skeleton of 11
number of elements in QF (IT, D(IT))

= ZF(P!, D(I1) N P! for all P! € Q'(II)

= ZF(I1, B(IT))

— BH(P)

:= b(k,T") where T" is a [-simplex

group of isometries of X"
discrete subgroup of Iso(X")
{yeTl : yK =K}

{yeTl : yk=kforallk € K}
tesselation

boundary complex of 11
underlying topological space

relative interior
closure
relative boundary

sectional curvature
volume of the n-sphere of radius e

= cp(1)

Stirling number of the second kind

square-root number

Bernoulli number

tangent number

Euler number

27" T,

number of zick-zack permutations of m elements
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