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Thèse n◦ ???
Imprimerie ???

2009
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Abstract

In this thesis we study the growth of Coxeter groups G < I(Hn) acting on hyperbolic n-space
with compact fundamental polyhedron. For a fixed system of generators S, the growth series
is given by

fS(x) =
∑
i≥0

aix
i,

where ai is the number of elements in G which can be expressed as an S-word of minimal
length i. Steinberg showed that the growth series is the power series of a rational function p/q
in its convergence disk. The growth rate τ of G corresponds to the inverse of this convergence
radius. By a result of Milnor, τ is strictly larger than 1.
A main theorem is a recursion formula for the coefficients ai which depends on the presentation
of G. This result is based on a detailed analysis of a certain complete form P/Q of fS(x), by
following an idea of Chapovalov, Leites and Stekolshchik. An interesting application concerns
the family of right-angled polytopes.
By restricting the study to the dimension n = 4, we present a theorem about the growth of the
Lannér, Esselmann and Kaplinskaya groups, which are characterised by at most six generators.
An adaptation of Parry’s methods for n = 2, 3 allows to show that their growth rate is a Perron
number. More precisely, except for one group, the function fS(x) possesses exactly four poles
in R. These ones are simple and appear in pairs of algebraic integers

(
x1, x

−1
1

)
and

(
x2, x

−1
2

)
with τ = x−1

1 and 0 < x1 < x2 < 1. The non-real poles are distributed in a certain annulus
around the unit circle.
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Résumé

Dans cette thèse nous étudions la croissance des groupes de Coxeter G < I(Hn) qui opèrent
dans le n-espace hyperbolique avec polyhèdre fondamental compact. En fixant un système
générateur S pour G, la série d’accroissement est donnée par

fS(x) =
∑
i≥0

aix
i,

où ai dénote le nombre d’éléments de G pouvant s’exprimer en un S-mot de longueur minimale
i. Steinberg a prouvé que la série d’accroissement fS(x) est la série de Taylor d’une fonction
rationnelle p/q dans son disque de convergence. Le taux d’accroissement τ de G correspond
à l’inverse de ce rayon de convergence. Par un résultat de Milnor, τ est strictement supérieur
à 1.
Un théorème principal est une formule de récursion pour les coefficients ai qui dépend de
la présentation de G. Ce résultat découle d’une analyse approfondie d’une certaine forme
complétée P/Q de fS(x), en suivant une idée de Chapovalov, Leites et Stekolshchik. Une
application intéressante concerne la famille des polytopes totalement rectangulaires.
En restreignant l’étude à la dimension n = 4, nous présentons un théorème sur la croissance
des groupes de Lannér, Esselmann et Kaplinskaya, caractérisés par au plus six générateurs.
Une adaptation des méthodes de Parry pour n = 2, 3 permet de montrer que leur taux
d’accroissement est un nombre de Perron. Plus précisément, la fonction fS(x) possède dans
R - à une exception près - exactement quatre pôles. Ceux-ci sont simples et apparaissent en
paires d’entiers algébriques

(
x1, x

−1
1

)
et
(
x2, x

−1
2

)
avec τ = x−1

1 et 0 < x1 < x2 < 1. Les pôles
non-réels se trouvent dans un certain anneau autour du cercle unité.
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Zusammenfassung

In dieser Dissertation untersuchen wir das Wachstum von Coxetergruppen G < I(Hn), die auf
dem hyperbolischen n-Raum mit kompaktem Fundamentalpolyeder operieren. Für ein festes
Erzeugendensystem S ist die Wachstumsreihe gegeben durch

fS(x) =
∑
i≥0

aix
i,

wobei ai die Anzahl der Elemente von G ist, die durch ein S-Wort mit minimaler Länge i
dargestellt werden können. Steinberg bewies, dass die Wachstumsreihe fS(x) die Taylorreihe
einer rationalen Funktion p/q in ihrem Konvergenzkreis ist. Die Wachstumsrate τ von G ent-
spricht dem Inversen dieses Konvergenzradius. Nach einem Resultat von Milnor ist τ strikt
grösser als 1.
Ein Hauptsatz ist eine Rekursionsformel für die Koeffizienten ai, welche von der Präsentation
von G abhängt. Dieses Resultat basiert auf einem vertieften Studium einer bestimmten, ver-
vollständigten Form P/Q von fS(x), die einer Idee von Chapovalov, Leites et Stekolshchik
entspringt. Eine interessante Anwendung betrifft die Familie der total-rechtwinkligen Polyto-
pe.
Indem wir die Betrachtungen auf die Dimension n = 4 einschränken, gelangen wir zu einem
Theorem über das Wachstum von Lannér-, Esselmann- und Kaplinskaya-Gruppen, welche
durch höchstens sechs Spiegelungen erzeugt sind. Eine Anpassung der Methoden von Parry
für n = 2, 3 erlaubt zu zeigen, dass ihre Wachstumsrate eine Perron-Zahl ist. Genauer ausge-
drückt besitzt die Funktion fS(x) in R - bis auf eine Ausnahme - genau vier Pole. Diese sind
einfach und treten auf in Paaren von algebraischen ganzen Zahlen

(
x1, x

−1
1

)
und

(
x2, x

−1
2

)
mit τ = x−1

1 und 0 < x1 < x2 < 1. Die nicht-reellen Pole sind in einem gewissen Kreisring
um den Einheitskreis verteilt.
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1 Introduction

Consider the hyperbolic space Hn and let G be a discrete group of isometries generated by
finitely many reflections with respect to the facets of a compact polyhedron P ⊂ Hn. The
group G is called a cocompact hyperbolic Coxeter group, and its fundamental domain P is a
Coxeter polytope. Let S be the set of the above reflections. The growth of G is described by
means of the power series

fS(x) =
∑
i≥0

aix
i, (∗)

where ai denotes the number of elements of G which can be expressed as a S-word of minimal
length i. It is well-known that fS(x) is the power series of a rational function p/q, with
relatively prime integer polynomials p, q, in its convergence disk. The growth rate τ of G is
given by the inverse of the convergence radius and equals an algebraic integer bigger than 1
by a result of Milnor.

In contrast to the spherical and euclidean cases, the growth of a hyperbolic Coxeter group G
is of exponential type. Furthermore, a compact hyperbolic Coxeter polytope P is still simple,
but combinatorially much more complicated than the spherical and euclidean ones. This is
equivalent to saying that the structure of the maximal finite Coxeter subgroups of G is very
rich. It also explains why hyperbolic Coxeter groups are far from being classified.

Despite these complications, there are some structural results in the planar and the spa-
tial cases. By results of Floyd, Cannon, Wagreich and others, one has a closed formula for
the growth series of a planar hyperbolic Coxeter group which allows one to characterise their
growth rates in terms of Salem and Pisot numbers. In dimension 3, Cannon computed the
growth series and rates of all cocompact Simplex groups, identifying the latter ones with
Salem numbers.

The results above were extended by Parry who considered Coxeter groups acting cocom-
pactly on H2 and H3. The ingredients of his nice, unifying proof will be reproduced in this
work since it inspired our approach to attack growth problems in dimensions beyond 3.

We start by considering Coxeter groups in hyperbolic 4-space. Since we do not have a com-
plete survey of them, we study the ones with at most seven generators. They form finite
families comprising the Simplex, Esselmann, Kaplinskaya and Tumarkin groups. The com-
putations of some of their growth series led us, among other things, to conjecture that their
growth rate is always a Perron number. Such a number is a real algebraic integer α > 1
all of whose conjugates are of absolute value strictly smaller than α. A rigorous proof of all
our observations summarised in Conjecture 1 (see part 3.4) is very delicate. In a first step,
we prove some partial results and postpone the verification of the precise pole description of
fS(x) (see Theorem 3.7). In a second step, we extend the context and study the growth series
of an arbitrary Coxeter group in Hn as follows.

Let G denote a cocompact Coxeter group acting with generating set S in Hn. We asso-
ciate to its growth series fS(x) a certain complete form by following an idea of Chapovalov,
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Leites and Stekolshchik (see part 4.1),

fS(x) =
P (x)
Q(x)

=

m∏
i=1

[ni]

N∑
i=0

bixi
, (∗∗)

where P (x) and Q(x) are polynomials of equal degree over the integers, and where [k] :=
1 + x+ · · ·+ xk−1. The integers m and n1, . . . , nm ≥ 2 are related to the finite subgroups of
G and their exponents. For the coefficients bi, i = 0, . . . , N , of the denominator polynomial
Q, we derive a recursion formula which is presented in Theorem 4.10. In this way, for a given
group G, we control fS(x) = P (x)/Q(x) in (∗∗) in a completely explicit manner. There are
various applications of this recursion formula. Firstly, it allows to confirm Conjecture 1 as a
whole and to verify it even for the family of Tumarkin groups. Secondly, we obtain a recursion
formula for the coefficients ai in the growth series (∗). Notice that the cardinalities ai are
usually very difficult to determine since they depend on the relations between the generators.
Finally, we apply our recursion formula to the important family of right-angled hyperbolic
Coxeter polytopes (see Corollary 4.11). For such a polytope in H4, having f0 vertices and f3

facets, the associated growth series is given by

(1 + x)4

1 + (4− f3)x+ (f0 − 2f3 + 6)x2 + (4− f3)x3 + x4
.

As an example, Coxeter’s 120-cell P?(π/2) ⊂ H4 has 600 vertices, 1200 edges, 720 pentagonal
faces and 120 facets (see the picture below) and yields a growth series of the form

(1 + x)4

1− 116x+ 336x2 − 116x3 + x4
,

which has exactly two pairs of positive simple poles.

A combinatorial picture of a 120-cell.
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2 Preliminaries

In this section we present the general background of this work. Good references for it are
[19], [31] and [37]. Let Xn denote one of the standard geometric n-spaces, that is, either
the sphere Sn, the Euclidean space En or the hyperbolic space Hn. In this work we consider
mostly Xn = Hn.

2.1 Standard geometric spaces

Embed Sn ⊂ En+1 and Hn ⊂ En,1, where En,1 is Lorentz-Minkowski space of signature (n, 1).
In this way each standard geometric n-space Xn is a subset of a real vector space Yn+1,
equipped with the standard inner product (·, ·)Yn+1 . Recall that En,1 is equal to Rn+1 en-
dowed with the Lorentzian inner product (see [31, page 56]). More geometrically, we interpret
Hn =: Hn as the upper shell of the hyperboloid in Rn+1. Denote by I(Xn) the group of isome-
tries of Xn which is a Lie group. More specifically I(Hn) is isomorphic to the group of positive
Lorentzian matrices PO(n, 1), while I(Sn) is isomorphic to the orthogonal group O(n + 1).
As is well known, each isometry in I(Xn) can be written as a composition of a finite number
of reflections through hyperplanes in Yn+1.

In the non-Euclidean case a hyperplane in Xn is the intersection of an n-subspace of Yn+1

with Xn. Let H be a hyperplane in Xn and write H as orthogonal complement of a unit
vector e ∈ Yn+1. In this way H separates Xn into two oriented closed halfspaces H+ and
H−. A convex n-polyhedron P ⊂ Xn is the intersection of finitely many half-spaces having a
non-empty interior (see [37, page 28]). That is, without loss of generality,

P =
m⋂
i=1

H−i ⊂ Xn. (2.1)

It is always assumed that no half-space H−i contains the intersection of all the others. Each of
the hyperplanes Hi is said to bound the polyhedron P and gives rise to a facet Fi = Hi

⋂
P . A

convex polyhedron P is acute-angled if the interior angle formed by two intersecting distinct
hyperplanes Hi and Hj is not greater than π

2 .

By the Weyl-Minkowski theorem (see [37, page 24], for example), each compact convex poly-
hedron P ⊂ Xn is the convex hull of finitely many points or vertices in Xn. We often call such
a polyhedron a polytope. In case Xn = Sn we assume moreover that a polytope doesn’t have
antipodal vertices in order to avoid degeneracy (compare with [37, page 104]). An n-polytope
in Xn with precisely n + 1 vertices is called a (geometric) n-simplex. In general, compact
acute-angled polyhedra are simple (see [38, page 47]), that is, each face of codimension k is
contained in exactly k facets. Hence, each vertex figure is a simplex of codimension 1. Acute-
angled (compact or non-compact) polyhedra all of whose interior angles are submultiples of
π are called Coxeter polyhedra. These polyhedra are central for this work.

We associate to each convex polyhedron P =
⋂m
i=1H

−
i ⊂ Xn a symmetric matrix G(P ) =

(gij), the Gram matrix of P , in the following way. The entries of G(P ) are defined by gii = 1
and gij = −(ei, ej)Yn+1 for i 6= j. Geometrically gij is the negative of the cosine of the interior
angle formed by Hi and Hj . In the hyperbolic case, gij is the negative of the hyperbolic cosine

3



of the distance between Hi and Hj in case they don’t intersect on P . It can be shown that
G(P ) is positive definite (resp. positive semi-definite of rank n) if P ⊂ Sn (resp. P ⊂ En).
If P ⊂ Hn, the Gram matrix G(P ) is of signature (n, 1). Notice that the Gram matrix of a
hyperbolic n-polyhedron can be of arbitrary order bigger than n. By the theorem of Perron-
Frobenius for symmetric matrices (see [38, page 43]), every acute-angled spherical polytope
is a simplex, while every acute-angled euclidean one is a product of simplices. There is no
such description for hyperbolic polytopes.
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2.2 Geometric Coxeter groups, their graphs, matrices and fundamental
polyhedra

A discrete subgroup G < I(Xn) generated by finitely many reflections s1, . . . , sk is called a
discrete reflection group or a geometric Coxeter group in Xn (see [37, page 200] and [19]). Each
element si is a reflection with respect to a hyperplane or mirror Hi implying the following
(finite order) relations :

s2i = 1 and (sisj)mij = 1, where mij ∈ N≥2 (2.2)

if Hi
⋂
Hj 6= ∅. If two mirrors Hi, Hj are parallel (in the non-spherical case), or admit a

common perpendicular in Hn, then sisj is of infinite order. The images of all mirrors under
the action of G give rise to a polyhedral decomposition of Xn. The closure of each connected
component is a Coxeter polyhedron and provides a fundamental domain for G (see [37, page
200, Proposition 1.4]). Vice versa, each Coxeter polyhedron P ⊂ Xn gives rise to a geometric
Coxeter group G. In fact the reflections in the bounding hyperplanes of P serve as generators
for G. If P ⊂ Hn (En, Sn, respectively), then G is called a hyperbolic (euclidean, spherical,
respectively) Coxeter group.

A Coxeter subgroup of G is a subgroup of G generated by reflections si1 , . . . , sil such that
ij ∈ {1, . . . , k} for j = 1, . . . , l. In this thesis a subgroup of G is always understood as a
Coxeter one.

It follows from the definition that each subgroup of a (geometric) Coxeter group is itself a (ge-
ometric) Coxeter group (cf. [3, Theorem 2]). Since finite Coxeter groups can be represented
as spherical ones, a subgroup of a spherical Coxeter group is spherical as well. Subgroups of
a euclidean Coxeter group are spherical or euclidean, with at least one euclidean subgroup.
A cocompact hyperbolic Coxeter group, that is, a hyperbolic Coxeter group with compact
fundamental domain, has spherical and possibly hyperbolic subgroups (cf. with [38, The-
orem 4.1]). Notice that a cocompact hyperbolic simplex Coxeter group has only spherical
subgroups.

Geometric Coxeter groups are often more conveniently described by a graph. Let G denote
a geometric Coxeter group with fundamental polyhedron P =

⋂m
i=1H

−
i ⊂ Xn whose interior

angles formed by Hi, Hj are of the form π/mij , mij ∈ N≥2. The Coxeter graph Γ = Γ(G) con-
sists of m nodes νi corresponding to the mirrors Hi and simultaneously to the reflections si.
Each pair νi, νj is joined by an edge of weight mij if Hi, Hj intersect under the angle π/mij . If
mij = 3, a frequent case, we do not put the label 3. If mij = 2 we omit putting an edge at all.
If Xn = Hn, we join νi, νj by a dotted edge if Hi, Hj admit a common perpendicular segment l.
The weight of this dotted edge (which is usually not indicated) corresponds to the hyperbolic
distance of l. The case of parallel hyperplanes in Xn 6= Sn will not be considered in the sequel.

It is known that a (geometric) Coxeter group G is irreducible (resp. reducible) if and only if
its Coxeter graph Γ is connected (resp. disconnected), see (2.4) below. Furthermore, see [19,
page 30], a reducible geometric Coxeter group is a direct product of irreducible ones, and a
cocompact hyperbolic Coxeter group is always irreducible (cf [38]).

Let us introduce some further terminology. The graph of a hyperbolic, euclidean or spherical
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Coxeter group is called hyperbolic, parabolic or elliptic. The graph of a Coxeter polyhedron
P is the Coxeter graph of the geometric Coxeter group G with fundamental domain P . We
often do not distinguish between the geometric Coxeter group and its Coxeter polyhedron.
The Coxeter matrix is given by the Gram matrix of P (and of G).

Example 2.1 (a) For n ≥ 1,

An : • • • ······ • • (2.3)

is the graph of a spherical simplex Coxeter group which acts on Sn−1. Observe that the suffix
n means the number of nodes.

(b) The disconnected graph

• 4 • • • 4 • • 4 • • (2.4)

represents a euclidean Coxeter group which acts in E7, since its Gram matrix is positive semi-
definite of rank 7. Its irreducible components consist of a euclidean simplex group with graph
C̃4 and a spherical one with graph B3 (see Tables 1 and 2).

(c) Let us now consider cocompact Coxeter groups G which act in H7. We know that each G
possesses more than nine generators (cf [14] and [20]). Moreover Tumarkin [36, Lemma 4.2]
proved that there is no Coxeter group generated by ten elements, wherefore each G possesses
at least eleven generators. In fact, by a result of Felikson and Tumarkin [15, Theorem 3],
there exists only one Coxeter group with eleven generators in H7. This group was discovered
by Bugaenko [4]. Its graph is given by

• • •

• 5 •

~~~~~~~

////////////// • • 5

@@@@@@@

��������������
•

•
4

@@@@@@@

•

4
~~~~~~~

• .

(2.5)
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2.3 Lannér, Esselmann & Kaplinskaya groups

Spherical and Euclidean irreducible Coxeter groups were first classified by Coxeter in 1934
(see [10]). A list of the graphs of these groups is given in Tables 1 and 2. Observe that their
classification is based on the computation of certain determinants (see [10]). The classifica-
tion of hyperbolic Coxeter polyhedra, even in the compact case, is far from being complete.
Poincaré [28] and Andreev [1] characterised all compact Coxeter polyhedra in dimensions 2
and 3. The compact hyperbolic Coxeter simplices were classified by Lannér in 1950 ; we call
them and their associated groups Lannér simplices and Lannér groups. A Lannér group is
characterised by the fact that all its subgroups are spherical (see [38, page 60]). However
they exist only in dimensions n ≤ 4. Kaplinskaya [20] and Esselmann [14] classified all the
Coxeter polyhedra with n+ 2 facets, while those with n+ 3 facets were completely described
by Tumarkin [36]. Observe that there is no complete classification of Coxeter polytopes with
n + k facets, for k ≥ 4, up to now, and examples are known only for n ≤ 8. Finally, by a
fundamental result of Vinberg [39, Theorem 1], we know that Coxeter polytopes do not exist
in dimensions n ≥ 30.

Let us look now more carefully at compact Coxeter polyhedra with few facets in H4 which
are in the focus of this work. By Table 3 there are only five Lannér 4-simplices. Kaplinskaya
described the polytopes whose combinatorial type is a product of a segment and a 3-simplex,
while Esselmann described those whose combinatorial type is a product of two 2-simplices.
In this work such polytopes are termed Kaplinskaya polyhedra, respectively Esselmann poly-
hedra. Their associated groups are called Kaplinskaya groups, respectively Esselmann groups.
It is a fact that there are no Coxeter polyhedra with six facets in H4 which are neither Kaplin-
skaya nor Esselmann. Let us point out (see [14]) that Esselmann polyhedra do not exist in
dimensions bigger than 4.

7



2.4 Tables of geometric Coxeter groups with at most n + 2 nodes in Xn

In the following we present the lists of all cocompact irreducible geometric Coxeter groups in
Xn with at most n + 2 nodes. For details, see [19] or [37], [14] and [20]. Let us begin with
the elliptic case and denote by Γn a connected positive definite Coxeter graph with n nodes.
Γn describes an irreducible reflection group acting on Sn−1 and with fundamental Coxeter
n-simplex.

Graph Rank n

An : • • • ······ • • n ≥ 1

Bn : • 4 • • ······ • • n ≥ 2
Dn : •

@@@@@@@

• • ······ • •

•

~~~~~~~

n ≥ 4

E6 : • • • • •

•

n = 6

E7 : • • • • • •

•

n = 7

E8 : • • • • • • •

•

n = 8

F4 : • • 4 • • n = 4
G

(m)
2 : • m • n = 2

H3 : • 5 • • n = 3

H4 : • 5 • • • n = 4

Table 1 : The irreducible elliptic graphs
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For completeness, we present also all the irreducible parabolic graphs. We denote by Γ̃n
a graph with n + 1 nodes corresponding to a cocompact Coxeter group acting on En (and
whose fundamental polyhedron is an n-simplex). The corresponding Gram matrix is positive
semi-definite of rank n.

Graph Rank n

Ãn : •

oooooooooooooo

• • ·················· • •

OOOOOOOOOOOOOO

n ≥ 2

B̃n : •

@@@@@@@

• • ······ • • 4 •

•

�������

n ≥ 3

C̃n : • 4 • • ······ • • 4 • n ≥ 2

D̃n : •

@@@@@@@ •

�������

• • ······ • •

@@@@@@@

•

�������
•

n ≥ 4

Ẽ6 : • • • • •

•

•

n = 6

Ẽ7 : • • • • • • •

•

n = 7

Ẽ8 : • • • • • • • •

•

n = 8

F̃4 : • • 4 • • • n = 4

G̃2 : • 6 • • n = 2

Table 2 : The irreducible parabolic graphs
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The next table contains the graphs of all Lannér groups. Observe that these groups exist in
Hn only for n ≤ 4.

Graphs Dimension n

•
l

@@@@@@@

•

k
�������

•
m

with 2 ≤ k, l,m <∞

and 1
k + 1

l + 1
m < 1

n = 2

• • 5 • •

• 5 • • 4 •

• 5 • • 5 •

•

• 5 •

�������

@@@@@@@

•

• 4 •

• •

• 4 •

• •
4

• 5 •

• •

• 5 •

• •
4

• 5 •

• •
5

n = 3

• 5 • • • •
• 5 • • • 4 •
• 5 • • • 5 •

•

• 5 • •

�������

@@@@@@@

•

• 4 •

•

@@@@@@@ •

�������

•

n = 4

Table 3 : The Lannér graphs
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Let us now present the Coxeter graphs of the Esselmann groups in H4 whose combinatorial
type is a direct product of two Lannér triangles (see part 2.3).

Γ1 : •
4

@@@@@@@

•

5�������
• • 10 •

•
Γ2 : •

@@@@@@@

•

5
�������

• • 10 •

•

�������5

@@@@@@@

Γ3 : •

@@@@@@@

•

�������
4 • • 8 •

•

4

Γ4 : •
4

@@@@@@@ •

5•

5�������
•

�������

@@@@@@@

• •
Γ5 : •

@@@@@@@ •

5•

5
�������

•

�������

@@@@@@@

•
5

@@@@@@@

�������
•

Γ6 : •

@@@@@@@ •

4• 4 •

�������

@@@@@@@

•

4
�������

•
Γ7 : • 8 • • 4 • • 8 •

Table 4 : The Esselmann graphs
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Finally we list all the Kaplinskaya groups in H4 whose graphs Kij correspond to Coxeter
polyhedra which arise by gluing those of the groups described by the graphs Ki and Kj (for
more details, see [20]).

K1 : • 5 • • 4 • • • K11 : •

• 5 • • 4 •

�������

@@@@@@@

•
K2 : • • 5 • • • • K22 : •

• • 5 • •

�������

@@@@@@@

•
K3 : •

@@@@@@@

•

4
�������

@@@@@@@ • • •

•

�������

K33 : •

@@@@@@@ •

•

4
�������

@@@@@@@ •

@@@@@@@

�������

•

�������
•

K4 : •

@@@@@@@

•

5
�������

@@@@@@@ • • •

•

�������

K44 : •

@@@@@@@ •

•

5
�������

@@@@@@@ •

@@@@@@@

�������

•

�������
•

K5 : •

@@@@@@@

•

5�������
• • •

•

K55 : •

@@@@@@@ •

•

5�������
•

�������

@@@@@@@

• •
K6 : • •

@@@@@@@

• •

•

5

•

�������

K26 : • •

@@@@@@@

• •

•

5

•

�������

oooooooooooooo

K66 : • •

@@@@@@@

OOOOOOOOOOOOOO

• •

•

5

•

�������

oooooooooooooo

Table 5 : The Kaplinskaya graphs
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3 Growth series of geometric Coxeter groups

This section is devoted to the growth of geometric Coxeter groups. Well known is the growth
behaviour of the spherical and euclidean Coxeter groups as we shall see. This is in contrast
to the hyperbolic context. In fact there are some results for Coxeter groups acting on H2 and
H3, only, which are essentially due to Cannon [6], Floyd [16] and Parry [26]. All these aspects
are presented in the first three parts. In the fourth part we propose some new results for
Coxeter groups acting cocompactly and with few generators on H4. More precisely we shall
study the growth of the Simplex, Esselmann and Kaplinskaya groups which have fundamental
polytopes with at most six facets (see section 2). It turns out that a general approach as in
the case of Coxeter polyhedra in H2 and H3 is not as yet realistic. In fact we treat each family
in a similar but different way. In section 4 we consider cocompact hyperbolic Coxeter groups
in arbitrary dimensions and provide, as a highlight, a recursion formula for the coefficients of
the denominator polynomial of their growth series.

3.1 Growth - basic definitions and properties

Good references for this part are [19] and [40].

Let G denote a multiplicative group. A subset S ⊂ G with S 63 1 is a generating set of
G if each element of G can be written as a finite product of elements in S. The elements of
S are called generators of the group G. In this work we always suppose that S is finite and
we put S = {s1, s2, . . . , sm}. We assume moreover that S also contains the inverses of its
elements. In other words we have that if s ∈ S, then s−1 ∈ S. Let us remark that a generating
set for a given group G is not unique : for example, the sets S1 = {s} and S2 = {s2, s3} both
generate the cyclic group C6 = 〈s | s6 = 1〉. Thus our study of a given group G is based on a
fixed generating set.

Let us consider a group G with fixed generating set S = {s1, s2, . . . , sm}. The length function
relative to S on G is defined by

LS : G −→ N
g 7−→ LS(g),

where LS(g) is the minimal number of generators in S needed to express g. By convention,
LS(1G) = 0, and 1G is the unique element of length 0. The growth function relative to S on
G is given by

a : N −→ N
k 7−→ a(k) =: ak,

(3.1)

where ak is the number of elements g ∈ G with LS(g) = k. It follows that a0 = 1 and a1 = |S|.
Let us now introduce one of the most important notions of this work.

Definition 3.1 The (spherical) growth series fS of G relative to S is defined by the power
series

fS : C −→ C
x 7−→

∑
k≥0

akx
k.

Properties 3.1 (a) fS(0) = 1 .

13



(b) The Euler characteristic χ(G) of a Coxeter group G was studied by Serre and is related
to homology and cohomology of groups (see [33]). Moreover Serre provided the following
inductive formula.

χ(G) = (−1)|S| ·
∑
T(S

(−1)|T | · χ(GT ),

where GT is a finite subgroup of G generated by T ( S. Furthermore, (see [33, Propo-
sition 17])

χ(G) =
1

fS(1)
, (3.2)

and (see [24], for example),

1
fS(1)

= χ(G)


= |G|−1 , if G is spherical,
= 0 , if G is euclidean,
= 0 , if G acts on H2l+1,
< 0 , if G acts on H4l+2,
> 0 , if G acts on H4l.

Here is an example for a euclidean Coxeter group G with graph ΓG containing the three
components F̃4, G(7)

2 and A5 (see Tables 1 and 2). More precisely we have

ΓG : • • 4 • • • • 7 • • • • • • .

The growth series of G is given by

fS(x) =
(Φ2(x))8 · (Φ4(x))3 · (Φ6(x))3 · (Φ3(x))4 · Φ8(x) · Φ12(x)

(Φ1(x))4 · Φ11(x)
, (3.3)

where Φk(x) is the k-th cyclotomic polynomial evaluated at x. The power series fS(x) is in
fact the Taylor series of the rational function of the right hand side of (3.3).

According to Definition 3.1 it is easy to see that if G is finite, then its growth series fS(x) is
a polynomial with fS(1) = |G|. In general, fS(x) is a rational function (see [35]). Its power
series possesses a certain radius of convergence R. If G is infinite, its growth series is absolutly
convergent for all x ∈ C with |x| < R. Note that the radius of convergence R is computable
by Hadamard’s formula

R =
1

lim sup
n→∞

n
√
an
.

By means of R we define the following important notion.

Definition 3.2 The growth rate of G is given by τ = R−1.

There exist already some results about the growth rate of a group G. By a result of Milnor
[25, Theorem 2], the growth rate of a hyperbolic group is greater that 1. In fact this is a
consequence of the following theorem.

Theorem 3.1 (Milnor) If M is compact (connected) Riemannian manifold with all sec-
tional curvatures strictly less than zero, then the growth function of the fundamental group
π1(M) is at least exponential :

ak ≥ γk

for some constant γ > 1.

14



It turns out that the growth rate of a Coxeter group G is the largest (in modulus) pole of fS ,
since the growth series fS has positive coefficients (see [12, § 17.1, page 322] and [27, equation
(0.1)]).

Next we present Steinberg’s Formula [35, pages 13-14] which provides an inductive proce-
dure to compute the inverse of the growth series fS(x) in terms of the finite subgroups of G.
More precisely,

1
fS(x−1)

=
∑
GT∈F

(−1)|T |

fT (x)
, (3.4)

where F := {T ⊆ S : GT is finite}. By (3.4), we only have to deal with the spherical
subgroups of G which maybe reducible. It is an easy matter to verify the following product
formula for the growth series of reducible groups (see [13], for example).

Lemma 3.2 Let H be a direct product of the groups H1 and H2, all finitely generated. Then
the growth series of H with respect to its generating set S is given by

fS(x) = fS1(x) · fS2(x), (3.5)

where fSi is the growth series of the group Hi related to the generating set Si, for i = 1, 2,
and S = (S1 × {1G2}) ∪ ({1G1} × S2).

The above lemma can obviously be generalised to a Coxeter group G with k components
G1, . . . , Gk.

Despite the nice appearance of Steinberg’s formula (3.4) its evaluation in concrete cases can
lead to very long computations, especially when G is generated by a very large number of
elements. We will see examples later.

Finally we present the fundamental notion of (anti-)reciprocity of and some results for the
growth series of Coxeter groups. This will be a main feature in section 4.

A rational function f(x) is reciprocal if f(1/x) = f(x) and antireciprocal if f(1/x) = −f(x).
In the case of an infinite Coxeter group G with finite generating set S all of whose subgroups
GT , T ( S, are finite, Serre [33, page 112] showed that

fS(x) = (−1)|S|+1 · fS(x−1). (3.6)

In other words this equation is valid for those euclidean groups all of whose subgroups are
spherical, and for all Lannér groups. In [9], Charney and Davis extend this result as follows.

Theorem 3.3 Let G be a Coxeter group acting cocompactly on Hn. Denote by S its Coxeter
generating set. Then its growth series fS(x) is reciprocal if n is even, while it is antireciprocal
for n odd.

15



3.2 Growth series of Coxeter groups acting on Sn

In this section we present known results about the growth of spherical and euclidean Coxeter
groups. This subject is classical. In fact Solomon [34] and Bott [19, page 179] developed
formulas to compute the growth series of a spherical and of a euclidean Coxeter group. Let
us remark that these formulas are more convenient to use than Steinberg’s formula (3.4).

We start with the notion of exponents of a spherical Coxeter group G (see [34], for example).
Suppose that G is generated by S = {s1, . . . , sk}. An element g = sσ(1) · · · sσ(k) ∈ G, σ ∈ Sk,
is called a Coxeter element. One can show (see [19, page 74]) that all Coxeter elements are
conjugate in G. Denote by h the order of a Coxeter element. h is called the Coxeter number
of G. As g = sσ(1) · · · sσ(k) is a product of reflections, we can associate to g a matrix A, whose
characteristic polynomial PA(x) possesses k roots on the unit circle. These can be written as(
e

2πi
h

)mj
, where mj ∈ N, for all j = 1, . . . , k, and m1 ≤ m2 ≤ . . . ≤ mk such that m1 = 1 and

mk = h− 1. These numbers m1,m2, . . . ,mk are called the exponents of G. They are listed in
[11, page 141]. Given the exponents of G, the growth series of G can be computed by means
of Solomon’s formula [34, Corollary 2.3] according to

fS(x) =
k∏
i=1

[mi + 1], (3.7)

where [n] := 1 + x + x2 + . . . + xn−1, for all n ∈ N. Sometimes we shall also use the no-
tation [n,m] := [n]·[m] and so on. Observe that fS(x) is a polynomial of degree m1+. . .+mk.

The above formula allows to compute the growth series of any spherical Coxeter group. Below
we attach the corresponding list in the irreducible case. Let us remark that Solomon’s formula
is very useful not only for spherical Coxeter groups, but also for euclidean and hyperbolic
ones, as Steinberg’s formula (3.4) takes into account their finite subgroups.
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Graph Exponents Growth series fS(x)

An 1, 2, . . . , n− 1, n [2, 3, . . . , n, n+ 1]

Bn 1, 3, . . . , 2n− 3, 2n− 1 [2, 4, . . . , 2n− 2, 2n]

Dn 1, 3, . . . , 2n− 5, 2n− 3, n− 1 [2, 4, . . . , 2n− 2] · [n]

G
(m)
2 1,m− 1 [2,m]

F4 1, 5, 7, 11 [2, 6, 8, 12]

E6 1, 4, 5, 7, 8, 11 [2, 5, 6, 8, 9, 12]

E7 1, 5, 7, 9, 11, 13, 17 [2, 6, 8, 10, 12, 14, 18]

E8 1, 7, 11, 13, 17, 19, 23, 29 [2, 8, 12, 14, 18, 20, 24, 30]

H3 1, 5, 9 [2, 6, 10]

H4 1, 11, 19, 29 [2, 12, 20, 30]

Table 6 : The growth series of irreducible spherical Coxeter groups.

Let us recall (see part 3.1) that the growth series of a reducible Coxeter group is obtained by
multiplying the growth series of its irreducible components. For example the growth series of
the reducible spherical Coxeter group with graph

G
(4)
2 ×G

(5)
2 : • 4 • • 5 •

is given by
fS(x) = [2]2 · [4] · [5] = [2, 2, 4, 5].

Remark 3.1 For completeness let us also deal with euclidean groups. Denote by Γ̃n the graph
of a Coxeter group G acting on En. G is a semidirect product of the spherical group G′ with
graph Γn and a certain group generated by reflections. For further details, see [37, page 202].
If S denotes the finite generating set for G, then by a result of Bott (see [19, page 179], for
example), the growth series is given by

fS(x) =
fS′(x)

(1− x)(1− xm2) · · · (1− xmk)
, (3.8)

where S′ is the generating set, fS′(x) is the growth series and 1,m2, . . . ,mk are the exponents
of the related spherical group G′ (cf [37, Proposition 1.5]).
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We give explicitly the growth series of irreducible euclidean Coxeter groups in the following
table.

Graph Growth series fS(x)

Ã1
1 + x

1− x

Ãn
[2, 3, . . . , n, n+ 1]

(1− x)(1− x2) · · · (1− xn)

B̃n
[2, 4, . . . , 2n− 2, 2n]

(1− x)(1− x3) · · · (1− x2n−1)

C̃n
[2, 4, . . . , 2n− 2, 2n]

(1− x)(1− x3) · · · (1− x2n−1)

D̃n


[2, 4, . . . , 2n− 2] · [n]

(1− x)(1− x3) · · · (1− x2n−3)(1− zn−1)
if n odd

[2, 4, . . . , 2n− 2] · [n− 1]
(1− x)(1− x3) · · · (1− x2n−3)(1− xn−1)

if n even

Ẽ6
[2, 5, 6, 8, 9, 12]

(1− x)(1− x4)(1− x5)(1− x7)(1− x8)(1− x11)

Ẽ7
[2, 6, 8, 10, 12, 14, 18]

(1− x)(1− x5)(1− x7)(1− x9)(1− x11)(1− x13)(1− x17)

Ẽ8
[2, 8, 12, 14, 18, 20, 24, 30]

(1− x)(1− x7)(1− x11)(1− x13)(1− x17)(1− x19)(1− x23)(1− x29)

F̃4
[2, 6, 8, 12]

(1− x)(1− x5)(1− x7)(1− x11)

G̃2
[2,m]

(1− x)(1− xm−1)

Table 7 : The growth series of irreducible euclidean Coxeter groups.
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3.3 Growth series of Coxeter groups acting in H2 and in H3

In low dimensions there are some general results about the growth of cocompact hyperbolic
groups. More precisely there exists an explicit formula in the planar case, which is due to
Floyd. For the spatial case the only result we have, beside some case-by-case computations,
is of structural nature and due to Parry [26].

In this part we discuss the above mentioned results. The approach of Parry will be described
quite in detail, as our methods and results in dimension 4 are inspired by it (see Theorem 3.7).

Let us start with Floyd’s formula for a compact Coxeter polygon P ⊂ H2 with N ≥ 3
vertices v1, . . . , vN . Denote by π

ak
, where ak ∈ N≥2 for k = 1, . . . , N , its interior angles.

Recall that such a polygon exists if and only if

N∑
k=1

1
ak

< N − 2,

according to Poincaré’s Theorem (see [13, pages 135-145], for example). Let G be the associ-
ated Coxeter group with generating set S. Then by means of Steinberg’s formula (3.4), Floyd
derived the following formula [16, page 478].

fS(x) =
[2] · [a1] · · · [aN ]

[2] · [a1] · · · [aN ]−
N∑
k=1

x · [a1] · · · [ak−1] · [ak − 1] · · · [ak+1] · · · [aN ]
. (3.9)

Example 3.1 Let G be a hyperbolic triangle group given by the Coxeter graph

Γ : • • 7 • .

Let S denote the generating set of G. The growth series of G is given by (cf. Floyd’s formula
(3.9))

fS(x) =
[2, 2, 3, 7]

1 + x− x3 − x4 − x5 − x6 − x7 + x9 + x10
.

Observe that the denominator equals Lehmer’s polynomial, namely the minimal polynomial of
the smallest Salem number known up to now (see below). Besides G is the group with least
co-area among all discrete groups acting by isometries on H2.

Let us now extend the context and consider H3.

In [26], Parry shows that the growth series of a cocompact Coxeter group acting in H3 (and
in H2) is related to a Salem number α ∈ C, that is to say, α > 1 is an algebraic integer all of
whose conjugates have modulus at most equal to 1 and at least one is lying on the unit circle.
Let us add that Parry generalises corresponding results of Cannon and Wagreich (see [7] and
[6, §5, 6, 7]). More precisely we have the following theorem [26, Theorem 2.6 & Theorem 2.9].

Theorem 3.4 (Parry) Let G be a geometric Coxeter group acting cocompactly on H2 or H3.
Denote by S the set of its Coxeter generators. Then fS(x) can be expressed as a quotient of
relatively prime polynomials with integer coefficients for which the denominator is a product
of distinct irreducible cyclotomic polynomials and exactly one Salem polynomial.
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Figure 1: Roots of Lehmer’s polynomial.

As for the proof, Parry’s ideas consist in a study of the maximal subgroups of G associated to
the vertices of a fundamental polyhedron of G and are based on the construction of a ”nice”
function adapted to these subgroups. Unfortunately we could not find similarly nice functions
in dimensions n ≥ 4 allowing conclusions about the distribution of the zeros in the complex
plane (see part 3.4). The following detailed description of Parry’s approach will be partially
used later.

For n = 2 and 3 the proof is achieved by means of the following assertion (see [26, The-
orem 1.7]).

Proposition 3.5 Suppose given an antireciprocal rational function R(x) = P (x)
Q(x) , where P (x)

and Q(x) are relatively prime monic polynomials with integer coefficients and equal degrees.
Assume that R(x) has a zero at a positive real number other than 1 and that all poles of R(x)
are simple and occur at roots of unity ζ with the essential factor of the residue at ζ positive
if ζ 6= 1. Then P (x) is a product of distinct irreducible cyclotomic polynomials with exactly
one Salem polynomial.

By essential factor of the residue at ζ is meant the residue divided by ζ (see [26, Definition
1.3]).

The proof of Proposition 3.5 uses basically some properties of antireciprocal rational functions
and an innocent but very useful lemma about Salem numbers (see [26, Proposition 1.2] and
[26, Lemma 1.6]). In dimension 2 it is the following corollary to Proposition 3.5 which is of
help (see [26, Corollary 1.8]).
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Corollary 3.6 Suppose given an integer N ≥ 2. Let c2, . . . , cN be nonnegative integers such

that
N∑
n=2

cn · n−1
n > 2. Let R(x) be the rational function

R(x) =
x+ 1
x− 1

+
N∑
n=2

cn ·
x− xn

(x− 1) · (xn − 1)
. (3.10)

Then R(x) is an antireciprocal rational function, R(x) = P (x)
Q(x) , where P (x) and Q(x) are

relatively prime monic polynomials with integer coefficients and equal degrees, and P (x) is a
product of distinct irreducible cyclotomic polynomials with exactly one Salem polynomial.

After all these preparations we present now Parry’s proof of Theorem 3.4.

Proof of Theorem 3.4
Let G < I(Hn), n = 2, 3, be a Coxeter group with generating set S and compact fundamental
Coxeter domain P . The number of facets of P equals |S|. Let H denote a maximal finite
Coxeter subgroup of G. For n = 2, H is dihedral generated by two reflections through the
sides of P which meet under the angle π

k , say. For n = 3, each H corresponds to the stabiliser
of a vertex of P . Since P is simple, H is a spherical triangle group.

Consider first the case n = 2, that is G is a planar hyperbolic Coxeter group. For k = 2, . . . , N ,
denote by ck the number of vertices of the polygon P with interior angle π

k . Here, N = N(P )
is such that each angle of P is at least π

N . Let H be maximal in G and generated by the set
T ⊂ S, say. Hence, |T | = 2. Let us assume that H is of order 2m for some positive integer
m. Then its exponents are 1 and m− 1. By Solomon’s formula (3.7),

fT (x) = [2,m] =
(x+ 1) · (xm − 1)

x− 1
.

By means of (3.4) one deduces that

1
fS(x−1)

= 1− |S|
x+1 +

N∑
k=2

ck · x−1
(x+1)·(xk−1)

= 1 +
N∑
k=2

ck ·
(

x−1
(x+1)·(xk−1)

− 1
x+1

)
= 1 +

N∑
k=2

ck · x−xk
(x+1)·(xk−1)

.

Hence,
x+ 1

(x− 1) · fS(x−1)
=
x+ 1
x− 1

+
N∑
k=2

ck ·
x− xk

(x− 1) · (xk − 1)
. (3.11)

In order to apply Lemma 3.6, divide P into |S| triangles in a canonical way. By the angular
defect formula one deduces that

N∑
k=2

ck ·
π

k
< (|S| − 2) · π,
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and
N∑
k=2

ck ·
k − 1
k

> 2.

By Lemma 3.6 the claim of Theorem 3.4 for the planar case follows.
Let us remark that one can shorten the proof in the following way. The fundamental polygon
P of G has exactly S vertices. Each stabiliser H is dihedral of order 2m. Parry regrouped
the terms in 1/fS(x−1) accordingly by defining the following function associated to H.

gH(x) :=
x− xm

(x+ 1) · (xm − 1)
. (3.12)

Recall that the value of m depends on the group H. This is why we sometimes write m(H)
instead of m. By means of (3.4) one easily checks that

1
fS(x−1)

= 1 +
∑

H dihedral

gH(x). (3.13)

Then, by multiplying both sides of equation (3.13) by x+1
x−1 one gets

x+ 1
(x− 1) · fS(x−1)

=
x+ 1
x− 1

+
∑

H dihedral

x− xm(H)

(x− 1) · (xm(H) − 1)
, (3.14)

which is similar to (3.11).

Consider now the case n = 3. We proceed as above. Consider a maximal finite subgroup H
of G with generating set T . Recall that H is a triangular Coxeter group and observe that G
has at most

(|S|
3

)
of such subgroups. As in the planar case, one defines a function g associated

to H in order to obtain a nice structural formula for the growth series fS(x) of G. In fact,
Parry proposed (see [26, equation (2.11)])

gH(x) :=
−1
fT (x)

+
1
2
·
(

1
fU1(x)

+
1

fU2(x)
+

1
fU3(x)

)
− 1

2
· 1

(1 + x)
, (3.15)

where U1, U2, U3 are the three 2-element subsets of T . By means of (3.4) one deduces that

1
fS(x−1)

=
x− 1
x+ 1

+
∑

H triangular

gH(x). (3.16)

Observe that (3.15) and (3.16) are the 3-dimensional analogs of (3.12) and (3.13) but appear in
a more complicated way. Nevertheless, it is possible to derive a simpler shape also for n = 3.

Since H is triangular with Coxeter graph • q • r • , for 1
q + 1

r >
1
2 , its exponents

m1 = 1, m2 and m3 are of the form as in Table 8.
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Graph Type q r m1 m2 m3

• • r • A1 ×G(p)
2 , p ≥ 2 2 p 1 1 p− 1

• • • A3 3 3 1 2 3

• 4 • • B3 3 4 1 3 5

• 5 • • H3 3 5 1 5 9

Table 8 : Finite triangular Coxeter groups and their exponents

By Solomon’s formula (3.7), (3.15) turns into

gH(x) = − (x−1)3

(xm1+1−1)·(xm2+1−1)·(xm3+1−1)
+ 1

2

(
(x−1)2

(x2−1)·(x2−1)
+ (x−1)2

(x2−1)·(xq−1)
+ (x−1)2

(x2−1)·(xr−1)

)
−1

2
1

x+1

= − x−1
2·(1+x) ·

(
2·(x−1)

(xm2+1−1)·(xm3+1−1)
− 1

x2−1
− 1

xq−1 −
1

xr−1 + 1
x−1

)
,

which can be - miraculously - rewritten according to

gH(x) = −1
2
x(x− 1)

(xm1 − 1) · (xm2 − 1) · (xm3 − 1)
(xm1+1 − 1) · (xm2+1 − 1) · (xm3+1 − 1)

. (3.17)

Expression (3.17) is the nice closed formula which one was looking for (see (3.15)) ! By

multiplying both sides of (3.16) by
(
x+1
x−1

)2
, one obtains

(x+ 1)2

(x− 1)2fS(x−1)
=
x+ 1
x− 1

+
∑

H triangular

(
x+ 1
x− 1

)2

gH(x). (3.18)

The factor
(
x+1
x−1

)2
forces the function (3.18) to have only simple poles. Finally, the function

(3.18) satisfies the hypothesis of Proposition 3.5 which allows one to finish the proof of The-
orem 3.4 for the 3-dimensional case. Let us add that the result of Milnor [25] is essential in
the last step above. In fact, as G is hyperbolic, its growth rate is strictly greater than one,
implying that the function (3.18) has a positive real zero different from 1. 2

Example 3.2 Consider the Lannér group GL, with generating set S and graph

ΓL : • • 5 • • .

By means of Steinberg’s formula (3.4) one easily computes

fS(x) =
[2, 2, 2, 3] ·

(
1− 2x+ 3x2 − 3x3 + 3x4 − 2x5 + x6

)
1− 2x+ x2 − x4 + 2x5 − 2x6 + x7 − x9 + 2x10 − x11

.

The poles of fS(x) are distributed in the complex plane as follows.
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Figure 2: Poles of the growth series of a Lannér group with graph ΓL.

At the end of this part let us add a general comment about the (non-)extendability to higher
dimensions of the proof of Theorem 3.4.

Remark 3.2 The basic idea of the above proof consists in associating to each vertex stabiliser
H in G a help-function g(x) and to regroup the different terms in Steinberg’s formula such
that a very convenient, tractable expression for the growth series fS(x) arises (see (3.14) and
(3.18)). In dimensions n ≥ 4 this becomes a difficult, if not impossible, task. For example,
the variety of exponents appearing in connection with the maximal finite subgroups H of G
is huge. Furthermore, there is not even a connection between the growth series of H and its
2-generator subgroups. In this sense the appearance of 1

fS(x−1)
as in (3.14) and (3.18) together

with (3.17), and its algebraic properties for n = 2, 3, is very beautiful, but highly exceptional.
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3.4 On the growth of the Simplex, Esselmann and Kaplinskaya groups

In this part we study the growth of cocompact Coxeter groups in I(H4) generated by at most
six reflections. These are the Simplex, Esselmann and Kaplinskaya groups. Their growth
properties are different from the ones in lower dimensions. In fact, some experiments led us
to formulate the following rule.

Conjecture 1 Let G be a Simplex, an Esselmann or a Kaplinskaya group with generating
set S. Then, its growth series fS(x) can be expressed as a quotient of relatively prime, monic
and palindromic polynomials of equal degree over the integers. Furthermore,

(1) the growth series fS(x) of G possesses four distinct positive real poles appearing in
pairs (x1, x

−1
1 ) and (x2, x

−1
2 ) with x1 < x2 < 1 < x−1

2 < x−1
1 ; these poles are simple.

(2) The growth rate τ = x−1
1 is a Perron number, that is, τ > 1 is an algebraic integer

all of whose conjugates are of absolute value strictly smaller than τ .

(3) The non-real poles of fS(x) are contained in an annulus of radii x2, x−1
2 around the

unit circle.

(4) The growth series fS(x) of the Kaplinskaya group G66 with graph K66 has four
distinct negative and four distinct positive simple real poles. For G 6= G66, fS(x) has
no negative poles.

Example 3.3 Consider the Lannér group GL < I(H4), with generating set S and graph

ΓL : • 5 • • • • .

By means of Steinberg’s formula (3.4),

fS(x) =
[2, 12, 20, 30]

1− x− x7 + x8 − x9 + x10 − x11 + x14 − x15 + x16 − 2x17 + 2x18 − x19 + x20

− x21 + x22 − x23 + 2x24 − 2x25 + 2x26 − 2x27 + 2x28 − x29 + x30 − x31 + 2x32

− 2x33 + 2x34 − 2x35 + 2x36 − x37 + x38 − x39 + x40 − x41 + 2x42 − 2x43 + x44

− x45 + x46 − x49 + x50 − x51 + x52 − x53 − x59 + x60

.

The poles of fS(x) are distributed in the complex plane as follows.
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Figure 3: The poles of the growth series of the Lannér group GL.

Let us mention that the value 1
fS(1) = χ(GL) = 1

14400 is proportional to the covolume π2

10800 of
GL, a fact which follows from a result of Heckman [18]. Notice that this latter value is the
minimal covolume of all cocompact arithmetic discrete groups in I(H4), up to a factor 2 (cf.
[2]).

Let us return to our claim formulated in Conjecture 1.

By extending Parry’s methods, developed for the dimensions 2 and 3, we are not able to
prove Conjecture 1 as a whole (see Remark 3.2), but in the following restricted sense.

Theorem 3.7 Let G be a Simplex, an Esselmann or a Kaplinskaya group with generating
set S. Then, its growth series fS(x) can be expressed as a quotient of relatively prime, monic
and palindromic polynomials of equal degree over the integers. Furthermore,

(1)′ the growth series fS(x) of G possesses at most two pairs of positive real poles.

(2)′ The growth rate τ is given by the largest real root and is a Perron number.

(3)′ The non-real poles of fS(x) are contained in an annulus of radii τ−1, τ .

(4)′ The growth series of the Kaplinskaya group G66 with graph K66 has furthermore four
distinct negative poles. For G 6= G66, fS(x) has no negative poles.

In the following we give a proof of Theorem 3.7 in the case of a Simplex group and illustrate
this result by providing some instructive examples. Then, we briefly mention how to adapt
the proof for the Esselmann and Kaplinskaya groups. In the case of Tumarkin groups, gener-
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ated by seven reflexions, we will meet limitations of our approach. Some comments with an
example will be added.

Proof of Theorem 3.7
Let G be a Simplex group with generating set S such that |S| = 5. Consider a maximal, and
therefore spherical, subgroup H := GT of G with generating set T ( S. Generalising Parry’s
ideas, we define a help-function hS(x) associated to H, namely

hS(x) = hST (x) := − 1
x+ 1

+
1
3
·
∑
U

1
fU (x)

− 1
2
·
∑
V

1
fV (x)

+
1

fT (x)
, (3.19)

where U varies over the six 2-element subsets and V varies over the four 3-element subsets of
T . The superscript S refers to the term “ Simplex ”. By means of Steinberg’s formula (3.4)
we easily check that (see also Theorem 3.3)

1
fS(x)

= 1 +
∑

H<G maximal

hS(x). (3.20)

Note that there exists only a very limited number of different maximal subgroups H in G, as
the weights of the Coxeter graph of G are at most equal to 5. We list all possibilities in the
following table.
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Symbol Graph

A4 • • • •

B4 • 4 • • •

D4 •

@@@@@@@

• •

•

~~~~~~~

F4 • • 4 • •

H4 • 5 • • •

A3 ×A1 • • • •

B3 ×A1 • 4 • • •

H3 ×A1 • 5 • • •

G
(q)
2 ×G

(r)
2 • q • • r •

for 3 ≤ q ≤ 5 and 2 ≤ r ≤ 5

Table 9 : Groups arising as maximal subgroups of a Simplex group.

In contrast to the lower dimensions, we did not succeed to derive a nice closed formula for
(3.19), valid generally, as we explained in Remark 3.2. Despite of this, there exist some
special cases, by taking into account the reducibility of H, so that we are able to derive
general properties for hS(x). We say that a maximal subgroup H of G is reducible of order k
if it contains precisely k irreducible components.

Lemma 3.8 The help-function hS(x) (3.19) associated to a maximal subgroup H of a Simplex
group G in I(H4) can be written as the quotient

hS(x) = −x · n(x)
d(x)

, (3.21)
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where n(x) and d(x) are palindromic polynomials of even degrees over the integers. Moreover,
d(x) is cyclotomic with deg(d) = deg(n) + 2. Furthermore, hS(x) is negative for x > 0 and
strictly decreasing on (−1, 0).

Proof
Arrange the exponents of H so that 1 = m1 ≤ m2 ≤ m3 ≤ m4.

Suppose that H is reducible of order 3. Then its Coxeter graph ΓH is given by

ΓH : • • • q • ,

for an integer q ≥ 3 with m4 = q − 1. The help-function (3.19) associated to H equals

hS(x) = −x · 1
3 · [2, 2, 2, q]

· {3 · [q + 1] + x · [q − 1] + x2 · [q − 3]}, (3.22)

which shows that hS(x) is negative for x > 0. (3.22) transforms into

hS(x) =


−x · 1

3·[2,2,q] ·
(

3 +
k−1∑
i=0

x2i+1 + 4 ·
k−1∑
i=1

x2i + 3x2k

)
, for q = 2k + 1

−x · 1
3·[2,2,2,q] ·

(
3 + 4x+ 5x2 · [q − 3] + 4xq−1 + 3xq

)
, for q even.

(3.23)

Formula (3.23) follows by an easy induction.

Suppose that H is reducible of order 2 such that both of its components are 2-generator
subgroups. Then, its Coxeter graph ΓH is given by

ΓH : • q • • r • ,

for two integers q, r ≥ 3 and yields the exponents m3 = q − 1 and m4 = r − 1. Without loss
of generality assume that q ≤ r. Thus there exists an integer l ≥ 0 such that r = q + l. The
help-function (3.19) associated to H becomes

hS(x) =
1

3 · [2, 2, q, r]
· P ql (x), (3.24)

where

P ql (x) = 3 + [q] · {2x− 4 + [q] · (1− 3x)}+ xq · [l] · {x− 2 + [q] · (1− 3x)}. (3.25)

At the end of this section, in part 3.4.1 we shall prove in detail the following claim.

Claim 3.9 The polynomial P ql (x) (3.25) is a product of −x and a palindromic polynomial
such that the numerator of hS(x) in (3.24) is of odd degree.

For completeness, a list of the six different help-functions hS(x) associated to finite groups

with graphs ΓH : • q • • r • is appended (see Table 10 below).
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Graph ΓH hS(x)

• • • • −x · 3 + 5x+ 5x2 + 5x3 + 3x4

3 · (1 + 2x+ 2x2 + x3)2

• • • 4 • −x · 3 + 2x+ 4x2 + 2x3 + 3x4

3 · [2]2 · (1 + x+ 2x2 + x3 + x4)

• • • 5 • −x · 3 + 5x+ 6x2 + 7x3 + 6x4 + 5x5 + 3x6

3 · [2]2 · (1 + 2x+ 3x2 + 3x3 + 3x4 + 2x5 + x6)

• 4 • • 4 • −x · 3 + 5x+ 7x2 + 7x3 + 7x4 + 5x5 + 3x6

3 · [2]4 · (1 + x2)2

• 4 • • 5 • −x · 3 + 2x+ 5x2 + 3x3 + 5x4 + 2x5 + 3x6

3 · [2]2 · (1 + x+ 2x2 + 2x3 + 2x4 + x5 + x6)

• 5 • • 5 • −x · 3 + 5x+ 7x2 + 9x3 + 9x4 + 9x5 + 7x6 + 5x7 + 3x8

3 · (1 + 2x+ 2x2 + 2x3 + 2x4 + x5)2

Table 10 : The help-functions associated to ΓH .

-0.4 -0.2 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.3

0.4

Figure 4: The help-function hS(x) associated to A2 ×G(5)
2 on [−0.5, 1].
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If H factors into a product of an irreducible 3-generator subgroup H ′ and A1, the group H
is necessarily of type A3×A1, B3×A1 or H3×A1 (see Table 8 in part 3.3). In the following
table the relative help-functions are reproduced.

Graph of H ′ ×A1 hS(x)

• • • • −x · 6 + 4x+ 9x2 + 4x3 + 6x4

6 · [2, 2, 3] · (1 + x2)

• 4 • • • −x ·

(
6 + 10x+ 15x2 + 18x3 + 20x4 + 18x5 + 15x6

+ 10x7 + 6x8
)

6 · [2, 2, 2, 2, 3] · (1 + x2) · (1− x+ x2)

• 5 • • • −x ·

(
6 + 10x+ 15x2 + 20x3 + 25x4 + 28x5 + 30x6

+ 30x7 + 30x8 + 28x9 + 25x10 + 20x11 + 15x12

+ 10x13 + 6x14
)

6 · [2, 2, 2, 2, 3, 5] · (1− x+ x2) · (1− x+ x2 − x3 + x4)

Table 11 : The help-functions associated to A3 ×A1, B3 ×A1 and H3 ×A1.

-0.4 -0.2 0.2 0.4 0.6 0.8 1
-0.25

0.25

0.5

0.75

1

1.25

Figure 5: The help-function hS(x) associated to A1 ×A3 on [−0.5, 1].

Finally suppose that H is irreducible. Then there are only five possible cases which, together
with the associated help-functions, are given in the next table (see also Table 1 in part 2.4).
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Graph hS(x)

A4 −x · 1− x+ x2

[5]

B4 −x ·

(
6 + 12x+ 20x2 + 29x3 + 38x4 + 46x5 + 52x6 + 52x7 + 52x8 + 46x9

+ 38x10 + 29x11 + 20x12 + 12x13 + 6x14
)

6 · [2]4 · (1 + x2)2 · (1 + x2 + 2x4 + x6 + x8)

D4 −x · 2 + 2x+ 3x2 + 4x3 + 4x4 + 4x5 + 3x6 + 2x7 + 2x8

2 · [2]4 · (1 + x2)2 · (x2 − x+ 1)

F4 −x ·

(
3 + 6x+ 10x2 + 16x3 + 22x4 + 29x5 + 36x6 + 42x7 + 48x8 + 52x9

+ 55x10 + 55x11 + 55x12 + 52x13 + 48x14 + 42x15 + 36x16 + 29x17

+ 22x18 + 16x19 + 10x20 + 6x21 + 3x22
)

3 · [2]4 · (1 + 2x2 + 2x4 + x6)2 · (1− x2 + 2x4 − x6 + x8)

H4 −x ·

(
6 + 12x+ 20x2 + 31x3 + 43x4 + 60x5 + 77x6 + 97x7 + 119x8 + 145x9

+ 171x10 + 199x11 + 227x12 + 255x13 + 284x14 + 313x15 + 341x16

+ 369x17 + 397x18 + 423x19 + 449x20 + 471x21 + 491x22 + 508x23

+ 525x24 + 537x25 + 548x26 + 556x27 + 562x28 + 562x29 + 562x30

+ 556x31 + 548x32 + 537x33 + 525x34 + 508x35 + 491x36 + 471x37

+ 449x38 + 423x39 + 397x40 + 369x41 + 341x42 + 313x43 + 284x44

+ 255x45 + 227x46 + 199x47 + 171x48 + 145x49 + 119x50 + 97x51

+ 77x52 + 60x53 + 43x54 + 31x55 + 20x56 + 12x57 + 6x58
)

6 · [2]4 · [3]2 · [5]2 · (1 + x2)2 · (1− x+ x2)2 · (1− x2 + x4)
· (1− x+ x2 − x3 + x4)2 · (1− x2 + x4 − x6 + x8)
· (1− x+ x3 − x4 + x5 − x7 + x8) · (1 + x− x3 − x4 − x5 + x7 + x8)

Table 12 : The help-functions associated to irreducible maximal subgroups of G.

By means of (3.23), (3.24), Table 10, Table 11 and Table 12, the first part of Lemma 3.8 fol-
lows. In particular, the denominator d(x) in hS(x) = −x · n(x)/d(x) factors into cyclotomic
polynomials with deg(d) = deg(n) + 2.

As for the second part of Lemma 3.8, we have to study the behaviour of hS(x) on (−1, 0).
If H is reducible of degree 3, it is possible to show, but very technical, that hS(x) is strictly
decreasing on (−1, 0) (see part 3.4.1). If H is reducible of degree 2, we verify the claim by
means of a symbolic Mathematica computation based on the formulas (3.24) and (3.25). For
the remaining cases, with the help-functions as given in Table 11 and Table 12, we proceed
in a similar way and achieve the proof of Lemma 3.8. 2
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By means of Lemma 3.8, equation (3.20) transforms into

1
fS(x)

= 1 +
∑

GT maximal

(
−x · n

T (x)
dT (x)

)
,

where −x · nT (x) and dT (x) are the numerator and the denominator of the help-function
hS(x) associated to GT in G. Hence,

fS(x) =

∏
GT maximal

dT (x)

∏
GT maximal

dT (x)− x ·
∑

GT maximal

(
nT (x) ·

∏
GU maximal,U 6=T

dU (x)

) . (3.26)

The numerator and the denominator in (3.26) are palindromic polynomials over the integers
with equal (even) degree (see Lemma 3.8). This reproves the fact that fS(x) is a reciprocal
function (cf. [9] and [33, page 112]). Now we use Proposition D.11 (see Appendix D).

Proposition D.11 Let P be a palindromic polynomial over the integers with degree d. Then
P can be factored into a product of a constant times linear (if d is odd), quadratic and quartic
palindromic polynomials with real coefficients.

It follows that both, numerator and denominator in (3.26), can be factored into products
of a real constant, quadratic and quartic polynomials over R. Up to cancellation of common
factors, the rational function fS(x) in (3.26) is a quotient of monic polynomials over the in-
tegers (see also [35]) which are prime.

Let us now study the real poles of fS(x). As fS(x) is reciprocal, it is sufficient to con-
sider only the interval [−1, 1]. Recall that fS(1) = 1

χ(G) > 0 and fS(0) = 1 (see part 3.1). We
prove that fS(x) possesses a root in −1.

Lemma 3.10 Let G denote a Simplex, an Esselmann or a Kaplinskaya group with generating
set S. Then fS(−1) = 0.

Proof
A study of the combinatorics of G leads to the fact that it must contain at least one maximal
spherical subgroup GT , T ⊂ S, of type B4, D4, F4 or H4. Remark that the four exponents
m1, . . . ,m4 of GT are all odd (see Table 6 in part 3.2). Let ki be an integer such that
mi + 1 = 2ki, for i = 1, . . . , 4. Thus the growth series of GT is given by (see (3.7))

fT (x) =
4∏
i=1

[mi + 1] =
4∏
i=1

[2ki] =
4∏
i=1

[2] ·
ki−1∑
j=0

x2j

 = [2]4 ·
4∏
i=1

ki−1∑
j=0

x2j

 ,

Then Steinberg’s formula (3.4) yields

1
fS(x)

= 1− |S|
[2]

+
p2(x)

[2]2 · q2(x)
+

p3(x)
[2]3 · q3(x)

+
p4(x)

[2]4 · q4(x)
,
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where pi(−1) 6= 0 and qi(−1) 6= 0, for 2 ≤ i ≤ 4. Let q(x) :=
4∏
i=2

qi(x). Then we obtain

fS(x) =
[2]4 · q(x)

[2]4 · q(x)− |S| · [2]3 · q(x) + p2(x) · [2]2 · q(x)q2(x) + p3(x) · [2] · q(x)q3(x) + q(x)
q4(x)

,

hence fS(−1) = 0. 2

Remark 3.3 Observe that Lemma 3.10 is also valid for cocompact Coxeter groups which act
on H3 and for those acting on H2 with at least one maximal (dihedral) subgroup with exponents
m1 = 1 and m2 odd. This follows easily from the equations (3.12) and (3.17) for the associated
help-functions. However, a cocompact Coxeter group G acting in H2 with generating set S,
all of whose dihedral subgroups have exponents m1 = 1 and m2 even, satisfies fS(−1) > 0.

Since hS(x) is strictly decreasing on (−1, 0], by Lemma 3.8, the function fS(x), by (3.20), is
strictly increasing on (−1, 0]. Then fS(x) is positive on (−1, 0], as fS(−1) = 0 (see Lemma
3.10). Moreover, as fS(x) is reciprocal, fS(x) is non-singular on R−. Let us now study
its behaviour on the interval I := [0, 1] which necessitates the use of a computer due to the
complicated expressions for the components hS(x) (compare (3.12), (3.17) with (3.23), (3.24)).

By Theorem 3.1, we know that fS(x) =
∑
i≥0

aix
i possesses a real pole in (0, 1), which we

denote by x1. According to [12, § 17.1, page 322], x1 is given by the convergence radius of
fS(x). Its inverse x−1

1 = τ is the growth rate of G. This follows from the fact that the growth
functions ai are positive.

By exploiting the different shapes of hS(x), the following behaviour shows up.

Observation 1 The help-function hS(x) behaves as follows.

(a) Either, hS(x) is strictly decreasing on I,

(b) or, hS(x) possesses exactly one negative minimum M at a point m ∈ (0, 1). For 0 ≤
x < m, hS(x) is strictly decreasing, and for m < x ≤ 1, hS(x) is strictly increasing.

It is a remarkable fact that (b) happens only for irreducible finite subgroups H whose graphs
are different from A4, or for the reducible group H with graph G

(5)
2 ×G

(5)
2 .

Consider the simplex function related to (3.20)

HS(x) :=
5∑

k=1

hSk (x) =
1

fS(x)
− 1, (3.27)

where hSk (x) are the help-functions associated to the maximal subgroups of G (see Table 9).
Observe that HS(x) is negative on I by Lemma 3.8. By means of the above Observation, valid
for each term in (3.27), a computer evaluation of the many different possible combinations
based on Tables 10, 11, 12 allows to conclude that the sum HS(x) is either strictly decreasing
on I or possesses exactly one negative minimum in xM ∈ I. In this latter case, HS(x) is
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strictly decreasing on (0, xM ), while it is strictly increasing on (xM , 1).

Since x1 is a pole of fS(x) and 1/fS(1) > 0, HS(x1) = −1 and HS(1) > −1. Therefore,
HS(x) can not be strictly decreasing on I, but possesses exactly one negative minimum M .
That is, there is a unique xM ∈ I such that HS(xM ) = M . Obviously, xM ≥ x1, since x1 is
the radius of convergence of fS(x). Summarising, we can deduce that fS(x) possesses exactly
two simple poles in I if xM > x1, or it has a pole of (positive) even order in I if xM = x1.
This finishes the proof of Theorem 3.7 for the Simplex groups. ♦

For the proof in the cases of the Esselmann groups and the Kaplinskaya groups, we will
essentially proceed in the same way. Before we comment about their help-functions which
depend on the combinatorics of their fundamental polytopes, we illustrate the result about
Simplex groups by providing some examples.

Example 3.4 Consider the Simplex group G1, with generating set S and graph

Γ1 : • 5 • • • 4 • .

The group G1 is associated to the Coxeter simplex of a compact (regular) 120-cell P ⊂ H4 of
interior angles π/2. We shall study this polytope in Example 4.5.

By means of Steinberg’s formula (3.4), one derives

fS(x) =
[2, 12, 20, 30] · (1 + x4)

1− x− x3 + 2x4 − 2x5 + x6 − 3x7 + 3x8 − 3x9 + 3x10 − 5x11 + 5x12 − 5x13

+ 6x14 − 7x15 + 8x16 − 8x17 + 9x18 − 9x19 + 11x20 − 11x21 + 12x22 − 11x23

+ 14x24 − 13x25 + 14x26 − 13x27 + 16x28 − 14x29 + 15x30 − 14x31 + 17x32

− 14x33 + 15x34 − 14x35 + 16x36 − 13x37 + 14x38 − 13x39 + 14x40 − 11x41

+ 12x42 − 11x43 + 11x44 − 9x45 + 9x46 − 8x47 + 8x48 − 7x49 + 6x50 − 5x51

+ 5x52 − 5x53 + 3x54 − 3x55 + 3x56 − 3x57 + x58 − 2x59 + 2x60 − x61 − x63

+ x64.

0.6 0.8 1.2 1.4

-15000

-10000

-5000

5000

10000

15000

Figure 6: The growth series of G1 on [0.5, 1.5].
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Note that the maximal subgroups of G1 are characterised by the symbols B4, H4 , H3 × A1,
B3 × A1 and G

(5)
2 × G

(4)
2 . Their help-functions hS1 (x), . . . , hS5 (x) behave as follows on the

positive axis.

0.2 0.4 0.6 0.8 1

-0.19

-0.18

-0.17

-0.16

-0.15

-0.14

Figure 7: The help-functions hSi (x), 1 ≤ i ≤ 5, associated to the maximal subgroups of G1.

0.6 0.8 1.2 1.4

-1.0005

-0.9995

-0.999

-0.9985

-0.998

-0.9975

Figure 8: The function HS(x) =
5∑
i=1

hSi (x) of G1.

Example 3.5 Consider the Simplex group G2, with generating set S and graph

•

Γ2 : • 5 • •

��������

>>>>>>>>

• .
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Here,

fS(x) =
[2, 12, 20, 30]

1− x− x3 + x4 − x5 − x7 + x8 − x9 + x11 + 2x12 − x13 + x14 − x15 + 2x16

− x17 + x18 − x19 + 3x20 − x21 + 2x22 − x23 + 3x24 − x25 + 2x26 − x27 + 3x28

− x29 + 3x30 − x31 + 3x32 − x33 + 2x34 − x35 + 3x36 − x37 + 2x38 − x39 + 3x40

− x41 + x42 − x43 + 2x44 − x45 + x46 − x47 + 2x48 − x49 − x51 + x52 − x53

− x55 + x56 − x57 − x59 + x60.

The poles of fS(x) are distributed in the complex plane as follows.

-1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

Figure 9: The poles of the growth series of G2.

In the following we comment about the extendability of our proof from the Simplex groups to
the Esselmann and Kaplinskaya groups. Recall that an Esselmann group GE and a Kaplin-
skaya group GK in I(H4) are generated by six reflections. Their combinatorial structure is
given as follows (see part 2.3 and Tables 4 and 5). An Esselmann polytope has the combina-
torial type of a direct product of two triangles and possesses therefore precisely nine vertices.
The Coxeter graph ΓE of an Esselmann group GE contains two disjoint Lannér diagrams,
called L1 and L2, each of them with three nodes. Let H be one of the nine maximal finite
subgroups of GE and denote by T its generating set (see Table 13). Then we define the
following help-function for H.

hE(x) := hS(x) +
1

3 · (1 + x)
− 1

12

∑
W

1
fW (x)

, (3.28)

where hS(x) = hST (x) is the function (3.19) given by

hS(x) = − 1
x+ 1

+
1
3
·
∑
U

1
fU (x)

− 1
2
·
∑
V

1
fV (x)

+
1

fT (x)
,
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where U is a 2-element subset, V is a 3-element subset, and where W is a subset of T satisfying
the following condition. The set W consists of four pairs of generators (sp, sq) such that the
node in ΓE corresponding to sp belongs to L1, while the node corresponding to sq belongs to
L2.

Symbol Graph

B4 • 4 • • •

D4 •

@@@@@@@

• •

•

~~~~~~~

F4 • • 4 • •

H4 • 5 • • •

A3 ×A1 • • • •

B3 ×A1 • 4 • • •

H3 ×A1 • 5 • • •

G
(q)
2 ×G

(r)
2 • q • • r •

for 2 ≤ q, r ≤ 10

Table 13 : Groups arising as maximal subgroups of an Esselmann group.

A Kaplinskaya polytope has the combinatorial type of a simplicial prism and possesses there-
fore precisely eight vertices. The Coxeter graph ΓK of a Kaplinskaya group GK contains
a Lannér diagram L with four nodes which represents a tetrahedron P , and two additional
nodes which represent the reflections through the top respectively the bottom of the simplicial
prism P × [0, 1]. Let H be one of the eight maximal finite subgroups of GK and denote by T
its generating set (see Table 14). Then we define the following help-function for H.

hK(x) := hS(x) +
1

4 · (1 + x)
− 1

12

∑
W

1
fW (x)

, (3.29)
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where hS(x) is the function as above and where W is a subset of T containing three pairs
(sL1 , sb), (sL2 , sb) and (sL3 , sb) such that sLj belongs to L, for j = 1, 2, 3, while sb 6∈ L.
Now we proceed in the same spirit as in the case of Simplex groups. However, there are some
particularities which have to dealt with carefully.

Symbol Graph

A4 • • • •

B4 • 4 • • •

D4 •

@@@@@@@

• •

•

~~~~~~~

F4 • • 4 • •

H4 • 5 • • •

A3 ×A1 • • • •

B3 ×A1 • 4 • • •

H3 ×A1 • 5 • • •

G
(q)
2 ×G

(r)
2 • q • • r •

for 2 ≤ q ≤ 3 and 2 ≤ r ≤ 5

Table 14 : Groups arising as maximal subgroups of a Kaplinskaya group.

In the Esselmann case, the help-function hE(x) related to the finite group with graph H4 is
not strictly decreasing on the interval (−1, 0). This default is compensated by the other terms
in HE(x) (see 3.27) so that the growth series of GE does not have poles on the negative real
axis. In the Kaplinskaya case, the functions hK(x) related to the finite groups with graph
A4 and H4 are not strictly decreasing on (−1, 0). Again, by considering HK(x), the growth
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series of GK does not have poles on the negative real axis, with one exception : the growth
series of a Kaplinskaya group having negative poles is uniquely associated to the group with
graph K66 (see Example 3.8 and Table 5). 2

We provide now an example indicating to what extent the help-functions hS(x), hE(x) and
hK(x) related to the same group (here with symbol B4) differ.

Example 3.6 Let G be a Simplex, an Esselmann or a Kaplinskaya group which contains at
least one finite maximal subgroup H with Coxeter graph

B4 : • 4 • • • .

The help-functions hSB4
(x), hEB4

(x) and hKB4
(x) are given by

hSB4
(x) = −x ·

(
6 + 12x+ 20x2 + 29x3 + 38x4 + 46x5 + 52x6 + 52x7 + 52x8 + 46x9

+ 38x10 + 29x11 + 20x12 + 12x13 + 6x14
)

6 · [2]4 · (1 + x2)2 · (1 + x2 + 2x4 + x6 + x8)

hEB4
(x) = −x ·

(
8 + 15x+ 23x2 + 32x3 + 41x4 + 49x5 + 56x6 + 52x7 + 56x8 + 49x9

+ 41x10 + 32x11 + 23x12 + 15x13 + 8x14
)

12 · [2, 2, 2, 2, 3] · (1 + x2)2 · (1− x+ x2 + x4 − x5 + x6)

hKB4
(x) = −x ·

(
9 + 16x+ 25x2 + 35x3 + 45x4 + 54x5 + 61x6 + 58x7 + 61x8 + 54x9

+ 45x10 + 35x11 + 25x12 + 16x13 + 9x14
)

12 · [2, 2, 2, 2, 3] · (1 + x2)2 · (1 + x4) · (1− x+ x2)

These functions behave as follows.

0.2 0.4 0.6 0.8 1

-0.2

-0.15

-0.1

-0.05

Figure 10: The graph of hSB4
(x), hEB4

(x) and hKB4
(x) on [0, 1].

Let us now illustrate Theorem 3.7 by means of some examples about the Kaplinskaya groups.
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Example 3.7 Consider the Kaplinskaya group G6, with generating set S and graph

• •

>>>>>>>>

K6 : • •

•

5

•

��������
.

We compute

fS(x) =
[2, 12, 20, 30]

1− 2x− x3 − 2x7 + 2x8 − x9 + 2x10 − x11 + 2x12 + x13 + 4x14 + 4x16 − x17

+ 6x18 + x19 + 6x20 + x21 + 6x22 + 2x23 + 8x24 + 8x26 + x27 + 8x28 + 2x29

+ 8x30 + 2x31 + 8x32 + x33 + 8x34 + 8x36 + 2x37 + 6x38 + x39 + 6x40 + x41

+ 6x42 − x43 + 4x44 + 4x46 + x47 + 2x48 − x49 + 2x50 − x51 + 2x52 − 2x53

− x57 − 2x59 + x60

whose poles are distributed in the complex plane as follows.

-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

Figure 11: The poles of the growth series of the Kaplinskaya group G6.

Example 3.8 Consider the Kaplinskaya group G66, with generating set S and graph

K66 : • •

@@@@@@@

OOOOOOOOOOOOOO

• •

•

5

•

~~~~~~~

oooooooooooooo .
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Here, we derive

fS(x) =
[2, 12, 20, 30]

1− 2x− 2x2 − x4 + x5 − 2x6 − x7 + x8 + x9 + x10 + x11 + x12 + 5x13 + 5x14

+ 4x15 + 3x16 + 3x17 + 7x18 + 7x19 + 7x20 + 7x21 + 7x22 + 9x23 + 10x24 + 7x25

+ 9x26 + 8x27 + 10x28 + 10x29 + 10x30 + 10x31 + 10x32 + 8x33 + 9x34 + 7x35

+ 10x36 + 9x37 + 7x38 + 7x39 + 7x40 + 7x41 + 7x42 + 3x43 + 3x44 + 4x45 + 5x46

+ 5x47 + x48 + x49 + x50 + x51 + x52 − x53 − 2x54 + x55 − x56 − 2x58 − 2x59

+ x60

whose poles are distributed in the complex plane as follows.

-1 1 2

-1

-0.5

0.5

1

Figure 12: The poles of the growth series of the Kaplinskaya group G66.

Let us extend our setting and consider the family of 4-dimensional compact Tumarkin poly-
topes which are characterised by seven facets (see [36]). Denote by H a maximal finite
subgroup of such a Tumarkin group GTu. The theoretical variety of these subgroups can
not be restricted by combinatorial conditions (for G = GE and GK , we have a fundamental
polytope which is product of a k-simplex with an l-simplex). When trying to adapt the proof
of Theorem 3.7 to GTu, one is forced to make a fastidious and long case-by-case study. This
is the reason why we abandoned this task. However, for all the forty Tumarkin groups (see
Appendix B), one checks, by means of a computer, that their growth series satisfy Conjecture
1 !

Example 3.9 Consider a 4-dimensional Tumarkin group GTu, with generating set S and
graph

• 5

~~~~~~~
• •

5

@@@@@@@

• •

• • .
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By means of Steinberg’s formula (3.4) one computes

fS(x) =
[2, 12, 20, 30]

1− 3x+ x2 − 2x3 + x4 − 2x5 + 3x6 − 4x7 + 3x8 − x9 + 3x10 − 3x11 + 7x12

− 3x13 + 7x14 − x15 + 7x16 − 3x17 + 11x18 − 3x19 + 11x20 − x21 + 11x22

− 2x23 + 15x24 − 4x25 + 13x26 + 13x28 − 3x29 + 17x30 − 3x31 + 13x32 + 13x34

− 4x35 + 15x36 − 2x37 + 11x38 − x39 + 11x40 − 3x41 + 11x42 − 3x43 + 7x44

− x45 + 7x46 − 3x47 + 7x48 − 3x49 + 3x50 − x51 + 3x52 − 4x53 + 3x54 − 2x55

+ x56 − 2x57 + x58 − 3x59 + x60.

The poles of fS(x) are distributed in the complex plane as follows.

-1 -0.5 0.5 1 1.5 2 2.5

-1

-0.5

0.5

1

Figure 13: The poles of the growth series of GTu.

Remark 3.4 It is an interesting fact that the growth series of all known cocompact Coxeter
groups in I(H4) possess exactly four different poles 0 < x1 < x2 < 1 < x−1

2 < x−1
1 in R ;

they are moreover simple (for Coxeter garlands, see [41]). This holds apart from the single
exception of the Kaplinskaya group G66 described in Example 3.8. This group is distinguished
by the fact that its maximal finite subgroups are given by the symbols A4 and H4, only, so
that the help-function is not strictly decreasing on (−1, 0).

Before we end this part, let us briefly explain how we will achieve the proof of Conjecture 1.

The method which we adapt from Parry’s [26] in order to prove Theorem 3.7 does not allow
to determine the multiplicities of the real poles of the growth series associated to a Simplex,
Esselmann or Kaplinskaya group (see Conjecture 1). We tried to solve this problem by ex-
ploiting several different ideas. However, we always got to the conclusion that we need to
control explicitly the coefficients of the denominator polynomial Q(x) of the growth series (see
[23]). In section 4 we will present a recursion formula which provides an effective algorithm to
compute all coefficients of Q(x), and this for any cocompact Coxeter group in I(Hn), n ≥ 2.
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3.4.1 Complement on help-functions for Simplex groups ; technical proofs

In this part we present some technical proofs needed to achieve the proof of Lemma 3.8 in
part 3.4. Let G be a Lannér group with five generators and associated growth function fS(x).
For a maximal finite subgroup H of G with Coxeter graph

Γ : • q • • r •

where 3 ≤ q, r ≤ 5 with l := r − q, consider its help-function (3.24)

hS(x) =
1

3 · [2, 2, q, r]
· P ql (x),

where, by (3.25),

P ql (x) = 3 + [q] · {2x− 4 + [q] · (1− 3x)}+ xq · [l] · {x− 2 + [q] · (1− 3x)}.

We will show that the numerator of hS(x) is a product of −x and a palindromic polynomial
such that the numerator of hS(x) is of odd degree. Furthermore hS(x) will be shown to be
strictly decreasing on (−1, 0).

The numerator P q
l (x) of hS(x)

Consider the polynomial

P ql (x) = 3 + [q] · {2x− 4 + [q] · (1− 3x)}+ xq · [l] · {x− 2 + [q] · (1− 3x)}

and rewrite it by using [0] = 0 so that

P ql (x) = P q0 (x) + xq · [l] · {x− 2 + [q] · (1− 3x)}.

Furthermore, consider the polynomial

Qql (x) = xq · [l] · {x− 2 + [q] · (1− 3x)}.

Hence,
P ql (x) = P q0 (x) +Qql (x). (3.30)

In the following we rewrite P q0 (x) and Qql (x), which allows to prove the claim.

Lemma 3.11 The polynomial P q0 (x) is palindromic and of the form

P q0 (x) = −x ·

q−1∑
i=1

(2i+ 1) · xi−1 + (2q − 1) · xq−1 +
2q−1∑
i=q+1

(4q − 2i+ 1) · xi−1

 . (3.31)

Proof
Put

Rq0(x) := −x ·

q−1∑
i=1

(2i+ 1) · xi−1 + (2q − 1) · xq−1 +
2q−1∑
i=q+1

(4q − 2i+ 1) · xi−1

 .
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We have to show that P q0 ≡ Rq0. This will be done by induction with respect to q. It is easy
to verify that P 3

0 = R3
0. Since

P q+1
0 (x) = P q0 (x) + 2 · xq · [q] · (1− 3x) + xq · (2x− 4) + x2q · (1− 3x),

we derive

P q+1
0 (x) = Rq0(x) + 2 · xq · [q] · (1− 3x) + xq · (2x− 4) + x2q · (1− 3x)

= −
q−1∑
i=1

(2i+ 1) · xi − (2q − 1) · xq −
2q−1∑
i=q+1

(4q − 2i+ 1) · xi

+ 2 · xq · [q] · (1− 3x) + xq · (2x− 4) + x2q · (1− 3x).

After rearranging these terms we obtain

P q+1
0 (x) = −

q−1∑
i=1

(2i+ 1) · xi − (2q + 1) · xq − (2q + 1) · xq+1 −
2q−1∑
i=q+2

(4q − 2i+ 5) · xi

− 5x2q − 3x2q+1

= −
q∑
i=1

(2i+ 1) · xi − (2q + 1)xq+1 −
2q+1∑
i=q+2

(4q − 2i+ 5) · xi

= −x ·

(
q∑
i=1

(2i+ 1) · xi−1 + (2q + 1) · xq +
2q+1∑
i=q+2

(4q − 2i+ 5) · xi−1

)
,

which equals Rq+1
0 (x). This finishes the proof. 2

Lemma 3.12 For integers q ≥ 3 and l ≥ 1,

Qql (x) = − xq −
q+l−1∑
j=q+1

(2j − 2q)xj + (1− 2l)xq+l −
2q−1∑

j=q+l+1

2lxj − (1 + 2l)x2q

−
2q+l−2∑
j=2q+1

(2j − 4q − 2l − 1)xj − 3x2q+l−1.

Proof
The proof consists of easy but lengthy manipulations of Qql (x), based on the identity given
by Lemma D.5,

[l, q] =
l∑

j=1

j · xj−1 +
q−1∑
j=l

l · xj +
l−2∑
j=0

(l − 1− j) · xq+1.

2

Thus, Lemma 3.11 and Lemma 3.12 yield together with (3.30)

P ql (x) = −
q−1∑
j=1

(2j + 1)xj − 2qxq −
q+l−1∑
j=q+1

(2q + 1)xj − 2qxq+l

−
2q−1∑

j=q+l+1

(4q − 2j + 2l + 1)xj − (2l + 1)x2q

−
2q+l−2∑
j=2q+1

(2j − 4q − 2l − 1)xj − 3x2q+l−1.
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Hence,

P ql (x) = −x ·

(
q−2∑
j=0

(2j + 1)xj + 2qxq−1 +
q+l−2∑
j=q

(2q + 1)xj − 2qxq+l−1

+
2q−2∑
j=q+l

(4q − 2j + 2l + 1)xj + (2l + 1)x2q−1

+
2q+l−3∑
j=2q

(2j − 4q − 2l − 1)xj + 3x2q+l−2

)
,

which implies that P ql (x) is palindromic.

From this it follows that the numerator of hS(x) is of odd degree. In fact, if l is even,
the degree of P ql (x) is odd. If l is odd, the palindromic polynomial P ql (x) can be factored
according to P ql (x) = −x · [2] · r(x), where r(x) is a palindromic polynomial of even degree by
Lemma D.7. In this way, (3.24) becomes

hS(x) = −x · r(x)
3 · [2, q, q + l]

with a numerator of odd degree.

The monotonicity of hS(x)

Let H be an arbitrary spherical Coxeter group with four generators such that H is reducible
of order 3 with Coxeter graph

ΓH : • q • • • , q ≥ 3.

We show that the help-function hS(x) (3.19) associated to H is strictly decreasing on (−1, 0),
by considering the cases q = 2k + 1 and q even.

For q = 2k + 1, by (3.23),

hS(x) = −x · 1
3 · [2, 2, 2k + 1]

·

(
3 +

k−1∑
i=0

x2i+1 + 4 ·
k−1∑
i=1

x2i + 3x2k

)
.

By Lemma D.2 and Lemma D.3, the denominator is strictly increasing on (−1, 0). Hence, by
means of Lemma D.1, it remains to prove that the numerator is strictly decreasing on (−1, 0).

Lemma 3.13 The function

Nk(x) = 3 · [2, 2, 2k + 1] · hS(x) = −x ·

(
3 +

k−1∑
i=0

x2i+1 + 4 ·
k−1∑
i=1

x2i + 3x2k

)
,

is strictly decreasing on (−1, 0).
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Proof
Rewrite

Nk(x) = −x · (3 + x)− 3 · x2k+1 − (4 + x) ·
k−1∑
i=1

x2i+1

and take its derivative in order to obtain

N ′k(x) = −3− 2x− 3 · (2k + 1) · x2k −
k−1∑
i=1

(2i+ 2) · x2i+1 − 4 ·
k−1∑
i=1

(2i+ 1) · x2i

=: I1
k(x) + I2

k(x) + I3
k(x).

The term I1
k(x) = −3 − 2x − 3 · (2k + 1) · x2k is strictly negative on (−1, 0). It remains to

show that I2
k(x) + I3

k(x) is strictly negative on (−1, 0), too. Let us proceed by induction with
respect to k. If k = 2, we compute I2

2 (x) + I3
2 (x) = −4x2 · (3 − x), which is negative for

x ∈ (−1, 0). Let us now assume that I2
k(x) + I3

k(x) is strictly negative for x ∈ (−1, 0). Then,

I2
k+1(x) + I3

k+1(x) = I2
k(x)− 4 · (2k + 1) · x2k + I3

k(x)− 2 · (k + 1) · x2k+1

= I2
k(x) + I3

k(x)− x2k · (8k + 4− 2kx− 2x) < 0,

as claimed. Thus, N ′k(x) is strictly negative for x ∈ (−1, 0). 2

For q = 2k even, the function hS(x) as given by (3.23) equals

hS(x) = −x · 1
3 · [2, 2, 2, 2k]

·
(

3 + 4x+ 5x2 · [2k − 3] + 4x2k−1 + 3x2k
)
.

As above, it is sufficient to show that the numerator of hS(x) is strictly decreasing on (−1, 0).

Lemma 3.14 The function

Mk(x) := x ·
(

3 + 4x+ 5x2 · [2k − 3] + 4x2k−1 + 3x2k
)

is strictly increasing on (−1, 0).

Proof
By induction, one shows that

M ′k(x) = (1 + x) · (3 + 5x+ 2x2) + x2k−2 ·
(
(6k + 3) · x2 + (8k − 2) · x+ 5k − 2

)
+ x2 · (1 + x)2 ·

(
2 ·

k−3∑
i=0

x2i+1 +
k−3∑
i=0

(8 + 5i) · x2i

)
.

It follows easily that M ′k(x) is strictly positive on (−1, 0). 2
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4 The recursion formula for the complete form of growth

Let G denote a cocompact Coxeter group acting in Hn. We assume that G is generated by
the elements of S and has growth series fS(x). Let us recall that fS(x) can be written as a
quotient

fS(x) =
p(x)
q(x)

, (4.1)

where p(x) and q(x) are relatively prime polynomials over the integers.

In this section we present a recursion formula by means of which we are able to compute
the coefficients of the denominator of the complete form of fS(x). This complete form will
be designed in such a way that fS(x) is a rational function with a numerator factoring into
terms of type [k], only. This nice form will be crucial in the proof of Theorem 4.10.

This section is organised as follows. We start with the presentation of a new description of
fS(x), called the complete form. Then we explain in detail the method leading to our recur-
sion formula. An important and nice application concerns the family of right-angled Coxeter
groups. At the end of the section we discuss two general consequences of our formula. The
first one consists of a description of the coefficients ai of the growth series fS(x) =

∑
aix

i

of G (see Definition 3.1), while the second one allows to complete our study of the Coxeter
groups acting in H4 with at most six generators (see part 3.4).

4.1 The complete form of the growth series

The notion of complete form of fS(x) associated to (4.1) has first been defined by Chapovalov,
Leites and Stekolshchik (see [8, paragraph 5.4.2]).

We know by Steinberg’s formula (3.4) that the growth series fS(x) of any Coxeter group
is a rational function. Moreover, according to Theorem 3.3, fS(x) is reciprocal if n is even,
while it is antireciprocal if n is odd. Here p(x) corresponds obviously to the denominator (up
to the sign) of the sum ∑

T∈F

(−1)|T |

fT (x)
, (4.2)

where F = {T ( S : GT is finite}. In [8, equation (5.37)], the following natural description
of p(x) is introduced. The least common multiple

Virg(S) := LCM{fT (x) : T ∈ F} (4.3)

is called the virgin form. It is obvious that p(x) divides Virg(S). Although Virg(S) is always
a product of polynomials [k] (see part 3.2), certain factorisation properties of the latter yield
factors of the form 1 +xl. Since [l](1 +xl) = [2l], we extend, for each factor 1 +xl in Virg(S),
numerator and denominator of fS(x) by [l]. This new form of Virg(S) is called the extended
form and denoted by

Ext(S). (4.4)

Obviously, when no factor 1 + xl shows up, we have Virg(S) = Ext(S). Let

P (x) := Ext(S)
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denote the extended form of the numerator p(x), and let Q(x) be the extended form of
the denominator q(x). Then, the growth series fS(x) can be written as a rational function
P (x)/Q(x) which is called its complete form. Let us point out that P (x) and Q(x) are in
general no more relatively prime. The next example illustrates the above procedure.

Example 4.1 Consider the Lannér group GL with graph

ΓL : • 5 • • • 4 • ,

its natural generating set S and growth series fS(x) = p(x)/q(x). By means of (4.2) and
(4.3), one computes

Virg(S) = [2, 12, 20, 30] · (1 + x4). (4.5)

By (3.4), one calculates

fS(x) =
[2, 12, 20, 30] · (1 + x4)(

1− x− x3 + 2x4 − 2x5 + x6 − 3x7 + 3x8 − 3x9 + 3x10 − 5x11 + 5x12 − 5x13

+ 6x14 − 7x15 + 8x16 − 8x17 + 9x18 − 9x19 + 11x20 − 11x21 + 12x22 − 11x23

+ 14x24 − 13x25 + 14x26 − 13x27 + 16x28 − 14x29 + 15x30 − 14x31 + 17x32

− 14x33 + 15x34 − 14x35 + 16x36 − 13x37 + 14x38 − 13x39 + 14x40 − 11x41

+ 12x42 − 11x43 + 11x44 − 9x45 + 9x46 − 8x47 + 8x48 − 7x49 + 6x50 − 5x51

+ 5x52 − 5x53 + 3x54 − 3x55 + 3x56 − 3x57 + x58 − 2x59 + 2x60 − x61 − x63

+ x64
)
,

which gives rise to the extended form of p(x) by multiplying (4.5) with the polynomial [4].
Thus

P (x) = Ext(S) = [2, 8, 12, 20, 30] = [2, 12, 20, 30](1 + x4)[4].

Hence, the complete form is given by

fS(x) =
[2, 8, 12, 20, 30](

1− x3 − x5 − 2x7 − x8 − 2x9 − 2x11 − 2x13 + x14 − x15 + 2x16 − x17 + 2x18

+ 3x20 + 3x22 + x23 + 4x24 + 2x25 + 4x26 + 2x27 + 4x28 + 3x29 + 4x30 + 3x31

+ 4x32 + 4x33 + 4x34 + 4x35 + 3x36 + 4x37 + 3x38 + 4x39 + 2x40 + 4x41 + 2x42

+ 4x43 + x44 + 3x45 + 3x47 + 2x49 − x50 + 2x51 − x52 + x53 − 2x54 − 2x56

− 2x58 − x59 − 2x60 − x62 − x64 + x67
)
.

An important feature of putting a growth series into its complete form is that the number of
its real poles and their location in the complex plane are not changed. In fact the extension
of the denominator q(x) arises by multiplying it with cyclotomic polynomial(s) of the form
[l] for an integer l ≥ 2.
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4.2 Some technical tools

Before we analyse and describe recursively the coefficients of Q(x), we need some preparations.

Lemma 4.1 Let f(x) be a non-vanishing complex function such that f(0) = 1. Then, the
k-th derivative of 1/f is given by(

1
f

)(k)

(0) = −
k∑
j=1

(
k

j

)
· f (j)(0) ·

(
1
f

)(k−j)
(0), (4.6)

for each k ≥ 1.

Proof
Let us apply Leibniz’ formula to 1

f(x) · f(x), that is,

0 =
(

1
f
· f
)(k)

(x) =
k∑
j=0

(
k

j

)
· f (j)(x) ·

(
1
f

)(k−j)
(x).

Thus,

f(x) ·
(

1
f

)(k)

(x) = −
k∑
j=1

(
k

j

)
· f (j)(x) ·

(
1
f

)(k−j)
(x).

Evaluate this last expression at x = 0. As f(0) = 1, we obtain(
1
f

)(k)

(0) = −
k∑
j=1

(
k

j

)
· f (j)(0) ·

(
1
f

)(k−j)
(0).

2

Next, we study the function

gm(x) :=
m∏
i=1

[ni], (4.7)

where n1, . . . , nm ≥ 2 are integers. Our aim is to present a formula for the k-th derivative,
evaluated at 0, of the function gm(x) wherefore we express gm(x) in a more convenient,
additive way. Recall that

[k] = 1 + x+ . . .+ xk−1, for k ≥ 1, (4.8)

and, by convention, [0] := 0.

Lemma 4.2 Let k and l be integer numbers such that k ≥ 2 and l ≥ 0. Then

[k](l)(0) =
{
l!, in case l < k
0, in case l ≥ k. (4.9)
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Proof

As [k] =
k−1∑
i=0

xi is a polynomial of degree k − 1, [k](l) ≡ 0, for l ≥ k. Let us now suppose that

l < k. Then,

[k](l) =
k−1∑
i=l

i!
(i− l)!

· xi−l.

Evaluating this last equation at x = 0 finishes the proof. 2

The next auxiliary lemma is based on a well-known combinatorial trick.

Lemma 4.3 Let Jm = {n1, . . . , nm} be a set of integer numbers bigger than 1. Then,∑
∅(J(Jm

(−1)|J |+1 = 1 + (−1)m. (4.10)

Proof
Let us first remark that∑

∅(J(Jm

(−1)|J |+1 =
∑

∅⊆J⊆Jm

(−1)|J |+1 − (−1)− (−1)m+1,

and that ∑
∅⊆J⊆Jm

(−1)|J |+1 = −
∑

∅⊆J⊆Jm

(−1)|J | = −
m∑
k=0

(−1)k ·
(
m

k

)
.

Newton’s binomial formula leads to
m∑
k=0

(−1)k ·
(
m

k

)
= (1 + (−1))m = 0.

In combination, we finally get ∑
∅(J(Jm

(−1)|J |+1 = 1 + (−1)m.

2

Now we need some terminology. Consider a subset J ⊂ Jm and write J = {nj1 , . . . , nj|J|}
with j|J | ≤ m. Let k be a positive integer such that k ≤ m. For convenience define

Σk(Jm) =
∑
∅⊆J⊆Jk

(−1)|J | ·

[
m∑
i=1

ni − (nj1 + . . .+ nj|J|)

]
(4.11)

and

Σ∗k(Jm) =
∑
∅(J(Jk

(−1)|J | ·

[
m∑
i=1

ni − (nj1 + . . .+ nj|J|)

]
, (4.12)

where [l] = 1 + x+ . . .+ xl−1, as usual. It follows that

Σm(Jm) = Σ∗m(Jm) +

[
m∑
i=1

ni

]
. (4.13)
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Lemma 4.4 Let gm(x) be as in (4.7). Then

(x− 1)m−1 · gm(x) =

[
m∑
i=1

ni

]
+ Σ∗m(Jm), (4.14)

for every integer m ≥ 2.

Proof
The proof is by induction over m ≥ 2. Let us first assume that m = 2. We have to show

(x− 1) · g2(x) = [n1 + n2]− [n1]− [n2]. (4.15)

Since [k] = xk−1
x−1 , for k ≥ 2, by (4.8), we get

(x− 1) · [n1] · [n2] = (x− 1) · xn1−1
x−1 ·

xn2−1
x−1

= xn1+n2−xn1−xn2+1
x−1

= (xn1+n2−1)−(xn1−1)−(xn2−1)

x−1

= [n1 + n2]− [n1]− [n2],

which proves (4.15). Let us now assume that the claim (4.14) is valid for every integer l ≤ m.
We have to show that

(x− 1)m · gm+1(x) =

[
m+1∑
i=1

ni

]
+ Σ∗m+1(Jm+1). (4.16)

For the left hand side of (4.16) the computation (4.15) together with (4.14) and Lemma 4.3
yields

(x− 1)m · gm+1(x) = (x− 1) · [nm+1] · (x− 1)m−1 · gm(x)

= (x− 1) · [nm+1] ·
{[

m∑
i=1

ni

]
+ Σ∗m(Jm)

}
= (x− 1) · [nm+1] ·

[
m∑
i=1

ni

]
+ (x− 1) · [nm+1] · Σ∗m(Jm)

=
[
m+1∑
i=1

ni

]
− [nm+1]−

[
m∑
i=1

ni

]
−

( ∑
∅(J(Jm

(−1)|J |
)
· [nm+1]

−Σ∗m(Jm) + Σ∗m(Jm+1)

=
[
m+1∑
i=1

ni

]
−
[
m∑
i=1

ni

]
+ (−1)m · [nm+1]− Σ∗m(Jm) + Σ∗m(Jm+1).

In view of (4.16) it remains therefore to show that

Σ∗m+1(Jm+1) = −

[
m∑
i=1

ni

]
+ (−1)m · [nm+1]− Σ∗m(Jm) + Σ∗m(Jm+1). (4.17)

The definitions (4.11) and (4.12) yield

Σm(Jm+1) = Σm+1(Jm+1) +
∑

∅⊆J⊆Jm
(−1)|J | ·

[
m+1∑
i=1

ni − (nj1 + . . .+ nj|J| + nm+1)
]

= Σm+1(Jm+1) + Σm(Jm),
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hence
Σm+1(Jm+1) = Σm(Jm+1)− Σm(Jm).

Moreover, (4.13) leads to

Σm+1(Jm+1) = Σm(Jm+1)− Σ∗m(Jm)−

[
m∑
i=1

ni

]
. (4.18)

Introducing (4.18) in (see (4.13))

Σ∗m+1(Jm+1) = Σm+1(Jm+1)−

[
m+1∑
i=1

ni

]

yields to

Σ∗m+1(Jm+1) = −
[
m+1∑
i=1

ni

]
−
[
m∑
i=1

ni

]
+ Σm(Jm+1)− Σ∗m(Jm)

= −
[
m∑
i=1

ni

]
+ (−1)m · [nm+1]− Σ∗m(Jm) + Σ∗m(Jm+1),

which corresponds to (4.17) and finishes the proof. 2

Recall by (4.7) that

gm(x) =
m∏
i=1

[ni]

which is of degree

deg(gm(x)) =
m∑
i=1

ni −m. (4.19)

Before formulating the next result, consider a finite set of numbers T = {t1, . . . , tr} and put

Σ(T ) :=
r∑
i=1

ti. (4.20)

Proposition 4.5 Let k ≥ 1 be an integer such that k ≤ deg(gm(x)). Then the k-th derivative
of gm(x) at 0 is given recursively by

g
(k)
m (0) = (−1)m+1 · k!

·

(
1 +

∑
∅(J(Jm

(−1)|J | ·# {(m− |J |)−tuples T : Σ(T ) > k}

)
+

k∑
i=1

(
k
i

)
· (−1)−1−i ·

i∏
h=1

(m− h) · g(k−i)
m (0).

(4.21)

If k > deg(gm(x)), then g
(k)
m (x) ≡ 0.
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Proof
The claim is trivial if k > deg(gm(x)). Assume that k ≤ deg(gm(x)). By Lemma 4.4,

(x− 1)m−1 · gm(x) =

[
m∑
i=1

ni

]
+ Σ∗m(Jm).

Let ϕ(x) = (x− 1)m−1 · gm(x). By Leibniz’ formula,

ϕ(k)(0) =
k∑
j=0

(
k

j

)
· h(j)(0) · g(k−j)

m (0),

where
h(x) := (x− 1)m−1.

Since h(j)(0) = (−1)m−1−j ·
j∏

h=1

(m− h), for j ≥ 1, we get

ϕ(k)(0) = (−1)m−1 · g(k)
m (0) +

k∑
j=1

(
k

j

)
· (−1)m−1−j ·

j∏
h=1

(m− h) · g(k−j)
m (0),

for k ≥ 1, and finally,

g(k)
m (0) = (−1)m+1 · ϕ(k)(0) +

k∑
j=1

(
k

j

)
· (−1)−1−j ·

j∏
h=1

(m− h) · g(k−j)
m (0), (4.22)

for k ≥ 1. Let us now determine ϕ(k)(0). By definition we have

ϕ(x) =

[
m∑
i=1

ni

]
+ Σ∗m(Jm),

so that taking derivatives and using Lemma 4.2 we obtain

ϕ(l)(0) = l! +
∑

∅(J(Jm

(−1)|J | · l! ·# {(m− |J |)− tuples T : Σ(T ) > l} ,

for an arbitrary integer l <
m∑
i=1

ni. Thus, as k <
m∑
i=1

ni by (4.19), we conclude that

ϕ(k)(0) = k! ·

1 +
∑

∅(J(Jm

(−1)|J | ·# {(m− |J |)− tuples T : Σ(T ) > k}

 , (4.23)

and by (4.22) and (4.23),

g
(k)
m (0) = (−1)m+1 · k! ·

(
1 +

∑
∅(J(Jm

(−1)|J | ·# {(m− |J |)− tuples T : Σ(T ) > k}

)
+

k∑
j=1

(
k
j

)
· (−1)−1−j ·

j∏
h=1

(m− h) · g(k−j)
m (0).
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Otherwise, it is obvious that ϕ(l)(0) = 0, for l ≥
m∑
i=1

ni. 2

Despite the quite daunting form of (4.21) we get simple formulas for low order derivatives of
gm(x), that is, for k ≤ 3. We present them in the next corollary where we need the number

Nl := #{ni ∈ Jm : ni > l}, (4.24)

for an integer l.

Corollary 4.6 Let gm(x) be the function (4.7). Then,

(1) g′m(0) = m ,

(2) g′′m(0) = m · (m− 1) + 2 ·N2 ,

(3) g
(3)
m (0) = m · (m− 1) · (m− 2) + 6 ·N3 + 6 · (m− 1) ·N2 .

Proof
Let us first remark that a direct computation yields easily (1). Therefore, consider (2). By
means of (4.21), we get

g′′m(0) = (−1)m+1 · 2 ·

(
1 +

∑
∅(J(Jm

(−1)|J | ·# {(m− |J |)−tuples T : Σ(T ) > 2}

)
+2 · (m− 1) · g′m(0)− (m− 1) · (m− 2) · gm(0).

Let us now consider a j-tuple J := {ni1 , . . . , nij}. By hypothesis, Σ(J) > 2, except if j = 1
and J = {ni1 = 2}. Then, by partitionning the summation over all ∅ ( J ( Jm into partial
sums with respect to |J | < m− 1 and |J | = m− 1, we derive the equality

∑
∅(J(Jm

(−1)|J | ·# {(m− |J |)−tuples T : Σ(T ) > 2} =
m−2∑
i=1

(−1)j ·
(

m

m− j

)
+ (−1)m−1N2.

By means of
m−2∑
i=1

(−1)j ·
(

m

m− j

)
= (−1)m · (m− 1)− 1,

we get
g′′m(0) = (−1)m+1 · 2 ·

(
1 + (−1)m · (m− 1)− 1 + (−1)m−1 ·N2

)
+ 2 · (m− 1) · g′m(0)− (m− 1) · (m− 2) · gm(0)

= m · (m− 1) + 2 ·N2.

The proof of (3) is similar. 2

Let us briefly explain why we can’t get similar nice formulas for higher derivatives. Working
along the lines of the previous proof one sees that associated counting functions involve also
numbers of k-tuples such as T = {2, 2} in the case of the fourth derivative. Such a phenomenon
leads to expressions which are non-linear polynomials in Nk. This is why we prefer to use the
additive form (4.21) for the derivatives g(k)

m (x), when k ≥ 4.
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4.3 The main result

Let G denote a cocompact hyperbolic Coxeter group with generating set S. Its growth series
is denoted by fS(x) and assumed to be in its complete form P (x)/Q(x) (see part 4.1). More
precisely, by (4.4),

P (x) =
m∏
i=1

[ni], (4.25)

for some integers ni ≥ 2. Moreover, P (0) = 1 according to (4.8). The denominator Q(x) is
given by the polynomial

Q(x) =
N∑
i=0

bix
i, (4.26)

where b0 = 1. Note that P (x) and Q(x) are of equal degree N , so that N =
m∑
i=1

ni −m. It is

moreover clear that Q(x) is palindromic if n is even, while it is antipalindromic if n is odd.
Besides it satisfies

Qk(0) = k! · bk. (4.27)

Hence, the growth series of G is given by

fS(x) =

m∏
i=1

[ni]

N∑
i=0

bixi
, (4.28)

with b0 = bN and some bi are negative. By Steinberg’s formula (3.4),

1
fS(x)

= (−1)n ·
∑
T∈F

(−1)|T |

fT (x)
, (4.29)

where F = {T ⊆ S : GT is finite}, as usual.

The aim of this part is a recursion formula for the coefficients bi of the denominator Q(x).
The basic idea is to compare the derivatives in 0 of the inverse 1/fS(x) as given by Steinberg’s
formula (4.29) and by its complete form (4.28). The first coefficients are easy to obtain. We
present them in the sequel. Let us mention that the coefficient b1 has first been described in
[8, Theorem 5.4.3], but by a different method. In the proof of [8] there is furthermore a little
flaw concerning the (non-)reciprocity of fS(x) when differentiating and evaluating its inverse
at x = 0.

Lemma 4.7 Let G be a Coxeter group acting cocompactly on Hn with fS(x) given in its
complete form (4.28) with respect to the generating set S. Then, the coefficient b1 is given by

b1 = m− |S|. (4.30)

Proof
Let us recall the original definition 3.1 as given by

fS(x) =
∑
i≥0

aix
i = 1 + |S| · x+

∑
i≥2

aix
i, (4.31)
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where the ai > 0, i ≥ 2, are certain cardinalities. For example, a1 = S. Then, as
∑
i≥0

aix
i =

P (x)
Q(x) , we have (

N∑
i=0

bix
i

)
·
(
1 + |S| · x+ a2x

2 + . . .
)

=
m∏
i=1

[ni]. (4.32)

A comparison between the coefficients of both sides of (4.32) leads to

m = |S|+ b1.

2

The nice short form of (4.30) is due to the fact that a1 = |S|. The other coefficients ai can’t
be described is a similar fashion since they depend on the relations connecting the generators
in S. However, some closed formulas for b2 and b3 will be presented. Recall some nota-
tions of part 4.2. Let Jm = {n1, . . . , nm} denote a set of integers n1, . . . , nm ≥ 2. Besides,
for an integer l, we defined Nl as the number of integers ni ∈ Jm, such that ni > l (see (4.24)).

Let GT be a spherical Coxeter group with generating set T arising as a subgroup of G.
According to Solomon’s formula (3.7), its growth series is given by

fT (x) =
|T |∏
i=1

[ci], ci := 1 +mi,

where m1, . . . ,m|T | are the exponents of GT . Let C(T ) := {c1, . . . , c|T |} and define the number

Cl := #{ci : ci > l}. (4.33)

It will be convenient to consider the set

F ′ := {T ( S : 2 ≤ |T | < |S| and GT is finite}. (4.34)

We are now ready to present formulas for the coefficients b2 and b3. The proof of the following
Proposition serves as warm-up for the general case culminating in Theorem 4.10.
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Proposition 4.8 Let G be a cocompact Coxeter group acting on Hn with generating set S
and growth series fS(x) = P (x)/Q(x) in complete form (4.28). Then the coefficients b2 and
b3 satisfy

(1) 2 · b2 = (−1)n+1 · 2 · |S|+ (−1)n ·
( ∑
T∈F ′

(−1)|T | · |T | · (|T |+ 1)
)

+ (−1)n+1 · 2 ·
( ∑
T∈F ′

(−1)|T | · C2

)
− m · (m+ 1) + 2 ·N2 + 2 ·m · b1 ,

(2) 6 · b3 = (−1)n · 6 · |S|+ (−1)n+1 ·
( ∑
T∈F ′

(−1)|T | · |T | · (|T |+ 1) · (|T |+ 2)
)

+ (−1)n · 6 ·
( ∑
T∈F ′

(−1)|T | · (−C3 + (|T |+ 1) · C2)
)

+ m · (m+ 1) · (m+ 2)
+ 6 ·N3 − 6 · (m+ 1) ·N2

+ 3 · (2N2 −m(m+ 1)) · b1 + 6 ·m · b2 .

(4.35)

Proof
By means of (4.29) and (3.7), we easily compute that(

1
fS

)′′
(0) = (−1)n ·

(
−2 · |S|+

∑
T∈F ′

(−1)|T | ·
(
−f ′′T (x)·(fT (x))2−2·fT (x)·(f ′T (x))2

(fT (x))4

)∣∣∣
x=0

)
= (−1)n ·

(
−2 · |S|+

∑
T∈F ′

(−1)|T | ·
(
2 · (f ′T (0))2 − f ′′T (0)

))
.

Then Corollary 4.6 leads to(
1
fS

)′′
(0) = (−1)n ·

(
−2 · |S|+

∑
T∈F ′

(−1)|T | · {|T | · (|T |+ 1)− 2 · C2}

)
. (4.36)

By (4.28), we have furthermore that(
1
fS

)′′
(0) =

(
Q

P

)′′
(0).

Differentiating two times the quotient Q/P and using Corollary 4.6 and (4.27) yield(
Q

P

)′′
(0) = m · (m+ 1)− 2 ·N2 + 2 · b2 − 2 ·m · b1. (4.37)

It remains then to compare (4.36) and (4.37) to obtain the desired formula. We proceed in a
similar way for b3. 2

By Proposition 4.8, we also have identical formulas for the coefficients bN−2, bN−1 and bN up
to a sign, according to whether Q(x) is palindromic or antipalindromic.

Remark 4.1 In case G possesses more finite subgroups than hyperbolic ones, the formulas
in Proposition 4.8 aren’t convenient to work with. In order to bypass this disadvantage one
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shows that∑
T∈F ′

(−1)|T | · (|T |)k =
k∑
l=0

(−1)k−l · s(k, l) · jl(|S|)−
∑
T∈F∞

(−1)|T | · (|T |)k − k! · |S|, (4.38)

where F∞ := {T ⊆ S : |GT | = ∞}. Furthermore, (x)k = x · (x + 1) · . . . · (x + k) is
the Pochhammer symbol, s(k, l) is a Stirling number of first kind, and the function jl(x) is
defined by

jl(n) :=
n∑
p=0

(
n

p

)
· (−1)p · pl,

for an integer l. As for the proof of (4.38), we only mention that the study of the related sum∑
T∈F ′

(−1)|T ||T |k involves the well-known relation between the Pochhammer symbol (x)k and

the Stirling numbers s(k, l)

(x)k =
n∑
k=0

(−1)n−k · s(n, k) · xk.

Let us point out that (4.38) shows that the formulas for b2 and b3 in Proposition 4.8 depend
only on the numbers |S| and |F∞|.

In case G is a Lannér group in Hn, the formulas of Lemma 4.8 simplify as follows.

Corollary 4.9 Let G be a Lannér group with |S| = n + 1 and growth series fS(x) =
P (x)/Q(x). Then, the coefficients b1, b2 and b3 satisfy the following rules :

(1) b1 = −(n+ 1) +m ,

(2) 2 · b2 = (n+ 1) · (n+ 2)

+ (−1)n+1 · 2 ·
( ∑
T∈F ′

(−1)|T | · C2

)
− m · (m+ 1) + 2 ·N2 + 2 ·m · b1 ,

(3) 6 · b3 = −(n+ 1) · (n+ 2) · (n+ 3)

+ (−1)n · 6 ·
( ∑
T∈F ′

(−1)|T | · (−C3 + (|T |+ 1) · C2)
)

+ m · (m+ 1) · (m+ 2)
+ 6 ·N3 − 6 · (m+ 1) ·N2

+ 3 · (2N2 −m(m+ 1)) · b1 + 6 ·m · b2 .

Proof
Since all subgroups of G are finite, GT ∈ F ′ for every T ( S. Let us consider an integer k
such that 0 ≤ k ≤ 2. Then it is easy to see that

(−1)n ·

(∑
T∈F ′

(−1)|T | · |T | · (|T |+ 1) · · · · · (|T |+ k)

)
= (−1)n · (k + 1)! · (n+ 1) +

k+1∏
i=1

(n+ i).

Apply now Proposition 4.8. 2
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Example 4.2 Let G be a Lannér group given by the Coxeter graph

• • 5 • •

acting on H3. The complete form of fS(x) is given by

fS(x) =
[2, 6, 10]

1− x− x4 + x11 + x14 − x15
. (4.39)

It is easy to check that the coefficients b0 = −b15, b1 = −b14, b4 = −b11 satisfy the conclusion
of Corollary 4.9.

In what follows we present the general method to derive a recursion formula for the coeffi-
cients bk of the denominator Q(x) in (4.26). We use the same notations and terminology as
introduced for Proposition 4.8.

Let us consider an integer k ≥ 1. By means of (4.29) we obtain(
1
fS

)(k)

(0) = (−1)n+k+1 · k! · |S|+ (−1)n ·
∑
T∈F ′

(−1)|T | ·
(

1
fT

)(k)

(0), (4.40)

where F ′ = {T ⊆ S : |T | ≥ 2 and GT is finite}. On the other hand, the complete form of
fS(x) as given by (4.28), (4.27) leads to(

1
fS

)(k)

(0) =
(

1
P

)(k)

(0) +
k−1∑
j=1

((
k

j

)
· j! · bj ·

(
1
P

)(k−j)
(0)

)
+ k! · bk. (4.41)

By comparison of (4.40) and (4.41) one derives a first formula for the coefficient bk, k ≥ 1, as
follows.

k! · bk = (−1)n+k+1 · k! · |S| + (−1)n ·
∑
T∈F ′

(
(−1)|T | ·

(
1
fT

)(k)
(0)
)

−
(

1
P

)(k) (0) −
k−1∑
j=1

((
k
j

)
· j! · bj ·

(
1
P

)(k−j) (0)
)

Thus,

k! · bk = (−1)n+k+1 · k! · |S|+ (−1)n · P Tk − Pmk +Bk, for k ≥ 1,

where
Pmk :=

(
1
P

)(k) (0)

P Tk :=
∑
T∈F ′

(
(−1)|T | ·

(
1
fT

)(k)
(0)
)

Bk := −
k−1∑
j=1

((
k
j

)
· j! · bj ·

(
1
P

)(k−j) (0)
)
.

(4.42)
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Let us now study in detail the different terms in (4.42) by using the results of part 4.2.

By Lemma 4.1 and Lemma 4.5, we have

Pmk = −
k∑
j=1

(
k

j

)
· P (j)(0) · Pmk−j and

Pmk = −
k∑
j=1

(
k
j

)
·
(
(−1)m+1 · j!

·

(
1 +

∑
∅(J(Mm

(−1)|J | ·# {(m− |J |)−tuples Y : Σ(Y ) > j}

)

+
j∑
i=1

(
j
i

)
· (−1)−1−i ·

i∏
h=1

(m− h) · P (j−i)(0)

)
· Pmk−j .

(4.43)

Similarly, we get a recursion formula for P Tk in the form

P Tk =
∑
T∈F ′

(−1)|T |+1 ·

 k∑
j=1

(
k

j

)
· f (j)
T (0) ·

(
1
fT

)(k−j)
(0)

 .

Thus,

P Tk =
∑
T∈F ′

(−1)|T |+1 ·

(
k∑
j=1

(
k
j

)
·
{

(−1)|T |+1 · j!

·

(
1 +

∑
∅(J(C|T |

(−1)|J | ·# {(|T | − |J |)−tuples Y : Σ(Y ) > j}

)

+
j∑
i=1

(
j
i

)
· (−1)−1−i ·

i∏
h=1

(|T | − h) · f (j−i)
T (0)

}
·
(

1
fT

)(k−j)
(0)

)
.

(4.44)

Finally, for Bk, we easily derive the relation

Bk = −k · Pmk−1 · b1 −
k−2∑
j=2

(
k!

(k − j)!
· Pmk−j · bj

)
+ k! ·m · bk−1. (4.45)
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Then, by plugging (4.43), (4.44) and (4.45) into (4.42), we obtain the following recursion.

k! · bk = (−1)n+k+1 · k! · |S|

+ (−1)n ·

( ∑
T∈F ′

(−1)|T |+1 ·

(
k∑
j=1

(
k
j

)
·
{

(−1)|T |+1 · j!

·

(
1 +

∑
∅(J(C|T |

(−1)|J | ·# {(|T | − |J |)−tuples Y : Σ(Y ) > j}

)

+
j∑
i=1

(
j
i

)
· (−1)−1−i ·

i∏
h=1

(|T | − h) · f (j−i)
T (0)

})
·
(

1
fT

)(k−j)
(0)
)

+
k∑
j=1

(
k
j

)
·
(
(−1)m+1 · j!

·

(
1 +

∑
∅(J(Mm

(−1)|J | ·# {(m− |J |)−tuples Y : Σ(Y ) > j}

)

+
j∑
i=1

(
j
i

)
· (−1)−1−i ·

i∏
h=1

(m− h) · P (j−i)(0)

)
· Pmk−j

− k · Pmk−1 · b1 −
k−2∑
j=2

(
k!

(k−j)! · P
m
k−j · bj

)
+ k! ·m · bk−1, for k ≥ 1.

Our main result summarises the results for b0, b1, b2, b3 and for bk, k ≥ 4.
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Theorem 4.10 Let G be a Coxeter group with generating set S which acts cocompactly on

Hn. Assume that fS(x) = P (x)/Q(x) is given in its complete form with Q(x) =
N∑
k=0

bkx
k

(4.28). Then,

• b0 = 1

• b1 = m− |S|

• 2 · b2 = (−1)n+1 · 2 · |S|+ (−1)n ·
( ∑
T∈F ′

(−1)|T | · |T | · (|T |+ 1)
)

+ (−1)n+1 · 2 ·
( ∑
T∈F ′

(−1)|T | · C2

)
− m · (m+ 1) + 2 ·N2 + 2 ·m · b1

• 6 · b3 = (−1)n · 6 · |S|+ (−1)n+1 ·
( ∑
T∈F ′

(−1)|T | · |T | · (|T |+ 1) · (|T |+ 2)
)

+ (−1)n · 6 ·
( ∑
T∈F ′

(−1)|T | · (−C3 + (|T |+ 1) · C2)
)

+ m · (m+ 1) · (m+ 2)
+ 6 ·N3 − 6 · (m+ 1) ·N2

+ 3 · (2N2 −m(m+ 1)) · b1 + 6 ·m · b2

• k! · bk = (−1)n+k+1 · k! · |S|

+ (−1)n ·

( ∑
T∈F ′

(−1)|T |+1 ·

(
k∑
j=1

(
k
j

)
·
{

(−1)|T |+1 · j!

·

(
1 +

∑
∅(J(C|T |

(−1)|J | ·# {(|T | − |J |)−tuples Y : Σ(Y ) > j}

)

+
j∑
i=1

(
j
i

)
· (−1)−1−i ·

i∏
h=1

(|T | − h) · f (j−i)
T (0)

})
·
(

1
fT

)(k−j)
(0)
)

+
k∑
j=1

(
k
j

)
·
(
(−1)m+1 · j!

·

(
1 +

∑
∅(J(Mm

(−1)|J | ·# {(m− |J |)−tuples Y : Σ(Y ) > j}

)

+
j∑
i=1

(
j
i

)
· (−1)−1−i ·

i∏
h=1

(m− h) · P (j−i)(0)

)
· Pmk−j

− k · Pmk−1 · b1 −
k−2∑
j=2

(
k!

(k−j)! · P
m
k−j · bj

)
+ k! ·m · bk−1, for k ≥ 4.
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It is obvious that the formula in Theorem 4.10 depends strongly on the finite subgroups of
the group G. Thus one has first to study in detail the combinatorics of G before applying
Theorem 4.10. Let us add that the use of a computer is helpful. The next example illustrates
this.

Example 4.3 Consider the Esselmann group G7, with generating set S and graph (cf. Table
4 in part 2.4)

Γ7 : • 8 • • 4 • • 8 • .

The finite subgroups GT of G and their exponents are listed in the following table.

|T | Group GT Multiplicity Exponents

4 • • 4 • • 1 1, 5, 7, 11

• 4 • • • 2 1, 1, 3, 5

• 8 • • 8 • 1 1, 1, 7, 7

• 8 • • • 2 1, 1, 2, 7

• 8 • • • 2 1, 1, 1, 7

• 4 • • • 1 1, 1, 1, 3

3 • 4 • • 2 1, 3, 5

• 8 • • 6 1, 1, 7

• 4 • • 2 1, 1, 3
• • • 4 1, 1, 2
• • • 4 1, 1, 1

2 • 8 • 2 1, 7

• 4 • 1 1, 3
• • 2 1, 2
• • 10 1, 1

1 • 6 1

Table 15 : The finite subgroups of G7

It follows that the extended form of the numerator of fS(x) is given by

Ext(S) = [2, 6, 8, 8, 12]

which is of degree 31 and yields m = 5 (cf. (4.25)). Hence, by (4.28),

fS(x) =
[2, 6, 8, 8, 12]

Q(x)
,

where

Q(x) =
31∑
i=0

bix
i.
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Let us now determine the coefficients bi, i = 0, . . . , 31. As G7 acts cocompactly on H4, Q(x)
is palindromic so that it is sufficient to study only the coefficients bi for i = 0, . . . 15. By
means of Theorem 4.10 we get

• b0 = 1
• b1 = −1
• 2 · b2 = −2 · 6 + (2 · 3 · 15− 3 · 4 · 18 + 4 · 5 · 9)− 2 · (3− 12 + 14)

−5 · 6 + 2 · 4 + 2 · 5 · (−1) = 0 , that is,
b2 = 0

• 6 · b3 = 6 · 6− (2 · 3 · 4 · 15− 3 · 4 · 5 · 18 + 4 · 5 · 6 · 9)
+ 6 · ((−2 + 3 · 3)− (−8 + 4 · 12) + (−11 + 5 · 14))
+ 5 · 6 · 7 + 6 · 4− 6 · 6 · 4 + 3 · (2 · 4− 5 · 6) · (−1) + 0 = −12 , that is,

b3 = −2

The determination of the remaining coefficients is done with the aid of a computer and based
on (4.42). We join the Mathematica documentation below.

Finally, we obtain that

Q(x) = 1− x− 2x3 − 4x5 − 4x7 + 2x8 − 2x9 + 5x10 + x11 + 7x12 + 5x13 + 8x14 + 6x15

+ 6x16 + 8x17 + 5x18 + 7x19 + x20 + 5x21 − 2x22 + 2x23 − 4x24 − 4x26 − 2x28

− x30 + x31.

It follows that Q(x) possesses exactly two (inversive) pairs of real zeros ; they are simple and
positive. Besides, we check that its non-real roots are contained in the annulus whose interior
and exterior radii are given by the two real roots of intermediate size.

0.2 0.4 0.6 0.8 1

-1

1

2

3

4

Figure 14: The denominator Q(x) of the growth series of G7 for x > 0.
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Figure 15: The poles of the growth series fS(x), x ∈ C, of G7.
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4.4 Application for right-angled Coxeter groups

Let us consider a hyperbolic Coxeter group G with presentation (cf. (2.2))

G = 〈{s1, . . . , sk} | (sisj)mij = 1〉.

Then G is called right-angled if and only if mij ∈ {1, 2,∞}. The terminology is justified by
the fact that a fundamental polyhedron P ⊂ Hn has all interior angles equal to π/2. Notice
that each subgroup of G and all l-faces, 2 ≤ l ≤ n − 1, of P are right-angled. By results
of Vinberg [39], there exist no cocompact right-angled Coxeter groups in Hn for n ≥ 5. For
n = 2, right-angled Coxeter polygons are realisable as long as they have at least five vertices.
For n = 3, the (compact) right-angled dodecahedron is the one with the minimal number of
facets (and vertices). A beautiful example in H4 is the compact (regular) 120-cell of interior
angle π/2 whose symmetry group is generated by the reflections of the Lannér group

• 5 • • • 4 • .

For further details about right-angled Coxeter groups we refer to [29].

Let G be a cocompact right-angled Coxeter group, with generating set S, and which acts
on Hn. Hence, n ≤ 4. As usual fS(x) = P (x)/Q(x) denotes the growth series of G in its
complete form (see part 4.1).

Let GT denote a finite subgroup of G which is generated by the set T ⊂ S. Since GT is
right-angled, its growth series fT (x) is given by (3.7) as follows.

fT (x) = [2]|T |

implying that

fS(x) =
[2]n

Q(x)
, with Q(x) =

n∑
i=0

bix
i. (4.46)

In fact, the numerator in its virgin form equals [2]n since the maximal (right-angled) subgroups
in G are of rank n.
Since n ≤ 4 and since Q(x) is palindromic or antipalindromic, there are at most three non-
zero coefficients b0, b1, b2. In the next corollary we describe these coefficients by using the
same notations as in Theorem 4.10 .

Corollary 4.11 Let G be a right-angled hyperbolic Coxeter group, with generating set S,
which acts cocompactly on Hn, n ≤ 4. We assume that its growth series fS(x) is given in its
complete form (4.46). Then the coefficients bi of its denominator satisfy the following rules :

• b0 = 1 ,

• b1 = n− |S| ,

• 2 · b2 = (−1)n+1 · 2 · |S|+ (−1)n ·
∑
T∈F ′

(−1)|T | · |T | · (|T |+ 1)

− n(n+ 1) + 2nb1 .
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Proof
As G is right-angled, we obviously have that N2 = 0 (see (4.24)) and C2 = 0 (see (4.33)).
Insert this into the formulas of Theorem 4.10. 2

Example 4.4 Let GH be a planar right-angled Coxeter group whose generating set S consists
of the reflections through the edges of a compact (regular) hexagon PH , all of whose interior
angles equal π

2 . By Poincaré’s Theorem (see [13, page 135], for example), PH ⊂ H2 exists
and has area A = π, as given by the well-known defect formula.

Figure 16: A regular hyperbolic hexagon.

The growth series of GH is given by (see (4.46))

fS(x) =
[2]2

b0 + b1x+ b0x2
,

which, by means of Corollary 4.11, turns into

fS(x) =
[2]2

1− 4x+ x2
.

Finally observe that we can confirm (see [18])

1
fS(1)

= −1
2

= − 2A
area(S2)

.

Let us present a formula for b2 different from the one presented in Corollary 4.11. To this
end, consider an arbitrary geometric convex n-polytope P ⊂ Xn. Its f -vector f = f(P ) is
defined by (see [17, page 130])

f := (f0, f1, . . . , fn−1) , (4.47)

where fi denotes the number of i-faces of P . The components of f are related by Euler’s
formula (cf. [17, page 131], for example) according to

n−1∑
i=0

(−1)i · fi = 1− (−1)n. (4.48)
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Let us remark that Euler’s formula is a particular case of the famous Dehn-Sommerville
equations (cf. [17, page 146], for example). In the sequel we need these equations only for
n = 4.

Proposition 4.12 Let G be a right-angled Coxeter group, with generating set S, acting co-
compactly on H4 with fundamental polytope P . Let fS(x) denote the growth series of G in its
complete form. Then,

fS(x) =
[2]4

1 + (4− f3)x+ (f0 − 2 · f3 + 6)x2 + (4− f3)x3 + x4

Proof
It is sufficient to show that b2 = f0 − 2 · f3 + 6. The Dehn-Sommerville equations in this
case provide an important link between the subgroup structure of G and the combinatorial
f -vector of P . As P is simple (see part 2.1), we have that 4f0 = 2f1. Moreover, f3 = |S|, and
by Euler’s formula (4.48), f2 = f0 + |S|. Furthermore, the number of finite subgroups GT of
G with |T | = l equals f4−l, for l = 1, . . . , 4. Hence, by Corollary 4.11,∑

T∈F ′
(−1)|T | · |T | · (|T |+ 1) = 6f2 − 12f1 + 20f0. (4.49)

Thus, (4.49) becomes ∑
T∈F ′

(−1)|T | · |T | · (|T |+ 1) = 6 · |S|+ 2 · f0.

Introducing this last equality in Corollary 4.11 leads to

2 · b2 = 2 · |S|+ 6 · |S|+ 2 · f0 − 20 + 8 · b1. (4.50)

Since b1 = 4− |S| (see Corollary 4.11), (4.50) transforms into

2 · b2 = 2 · f0 − 4 · |S|+ 12.

2

Remark 4.2 In [12, Example 17.4.3], an analogous formula for the 3-dimensional case is
presented. More precisely, the growth series of a cocompact right-angled Coxeter group in
I(H3) is given by

fS(x) =
[2]3

1− (f0 − 3)x+ (f0 − 3)x2 − x3
,

which, for f0 ≥ 6, has the three positive real roots 1, τ , τ−1 where

τ =
(f0 − 4) +

√
(f0 − 4)2 − 4

2
.
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Example 4.5 Let G120 be the Coxeter group generated by the 120 reflections with respect to
the facets of a right-angled (compact) 120-cell P ⊂ H4. The polyhedron P has f -vector

f = (600, 1200, 720, 120)

and is the 4-dimensional analog of a right-angled dodecahedron D. In fact, all facets of P
are isometric to D. By means of (4.46) and Corollary 4.12, the growth series of G120 with
respect to the set S of the above reflections is given by

fS(x) =
[2]4

1− 116x+ 366x2 − 116x3 + x4
.

One deduces that fS(x) possesses exactly two pairs of real poles, which are simple and positive.

Figure 17: A combinatorial picture of a 120-cell.

-1 -0.5 0.5 1
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1

Figure 18: The growth series of G120 restricted to [−1, 1].
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It is an interesting question whether the growth series fS(x) of any cocompact right-angled
Coxeter group G in H4 has always exactly two pairs of positive simple poles. For this, one
has to study the discriminant behaviour of the denominator 1 + (4 − f3)x + (f0 − 2 · f3 +
6)x2 + (4 − f3)x3 + x4 in Proposition 4.12 with respect to the f -vector (f0, f1, f2, f3) of a
fundamental polytope P of G. We hope to come back to this question in [21]. Nevertheless,
we formulate a first characterisation as follows (see also Remark 4.2).

Corollary 4.13 Let G be a right-angled Coxeter group, with generating set S, acting cocom-
pactly on H4 with fundamental polytope P . Denote by f = (f0, f1, f2, f3) the f -vector of P .
If f2

3 > 4f0, then fS(x) has the four real distinct poles

x1 = 1
4

(
−a+

√
δ +

√
γ − 2a

√
δ

)
; x−1

1 = 1
4

(
−a+

√
δ −

√
γ − 2a

√
δ

)
x2 = 1

4

(
−a−

√
δ +

√
γ + 2a

√
δ

)
; x−1

2 = 1
4

(
−a−

√
δ −

√
γ + 2a

√
δ

)
,

where
a = 4− f3

δ = f2
3 − 4f0

γ = −2af3 − 4f0.

Proof
Consider the denominator Q(x) = 1 + (4 − f3)x + (f0 − 2f3 + 6)x2 + (4 − f3)x3 + x4 in
the complete form of fS(x) (cf Proposition 4.12). The polynomial Q(x) is quartic over the
integers with discriminant (see [32, Discriminants])

∆ = f0 · (16 + f0 − 4 · f3) · (f2
3 − 4 · f0)2.

Since P is simple, f0 ≥ 5f3. The condition f2
3 > 4f0 implies that ∆ > 0 and that Q(x) has

only simple, real roots. It is a standard matter to determine the explicit form of these roots.
In fact, by applying the transformation x = X + 1

X to the quartic polynomial Q(x), which
does not change the discriminant, one obtains a reduced cubic Q̃(x) with classical formulas
for its roots (see [32, Classical Formulas]). 2

Consider next the growth series of a right-angled Coxeter group G as given by Definition 3.1,
that is,

fS(x) =
∑
i≥0

aix
i = 1 + |S| · x+

∑
i≥2

aix
i, (4.51)

where ai > 0 is the number of words of length i in G. We present a recursion formula for the
coefficients ai in terms of bj as follows.

Theorem 4.14 Let G be a cocompact right-angled Coxeter group with generating set S in
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I(Hn). Then, the coefficients ai of fS(x) (4.51) satisfy the recursion formula

(1) a0 = 1 , a1 = |S|

(2) ak =


(
n
k

)
−

k∑
j=1

ak−jbj , for 2 ≤ k ≤ n,

−
n∑
j=1

ak−jbj , for k > n
,

where the coefficients bi, i = 0, . . . , n, are given in Corollary 4.11 with bi := 0, for i > n.

Proof
According to (4.28) and (4.51) we have

[2]n
n∑
j=0

bjxj
=
∑
i≥0

aix
i,

and

(1 + x)n =
∑
k≥0

 ∑
i+j=k

aibj

xk =
∑
k≥0

 k∑
j=0

ak−jbj

xk.

Apply Newton’s formula in order to obtain

n∑
k=0

(
n

k

)
xk =

∑
k≥0

 k∑
j=0

ak−jbj

xk.

Hence, for a non-negative integer k, we have(
n

k

)
=

k∑
j=0

ak−jbj ,

from which we easily derive the first part of formula (2). For the second part of (2) and k > n,
bk = 0 and

0 =
k∑
j=0

ak−jbj =
n∑
j=0

ak−jbj +
k∑

j=n+1

ak−jbj =
n∑
j=0

ak−jbj .

2

Example 4.6 Consider the hexagonal planar group GH introduced in Example 4.4 with
growth series

fS(x) =
[2]2

1− 4x+ x2
,
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which we will express as a power series. It is evident that a0 = 1 and a1 = 6. In order
to determine the remaining coefficients we use the help of a computer ; the Mathematica
documentation is attached below. Here are the first few coefficients.

• a2 = 24
• a3 = 90
• a4 = 336
• a5 = 1′254
• a6 = 4′680
• a7 = 17′466
• a8 = 65′184
• a9 = 243′270 .
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4.5 Further consequences of the recursion formula

In this part we present two further major consequences of the recursion formula in Theo-
rem 4.10. The main result is a recursion formula for the coefficients ai of the growth series∑

i≥0 aix
i of any cocompact hyperbolic Coxeter group. The second result is based on Theo-

rem 4.10 and allows to prove Conjecture 1 (see part 3.4).

Firstly consider a cocompact Coxeter group G in I(Hn), with generating set S, and with
growth series fS(x) represented by

fS(x) = 1 + |S| · x+
∑
i≥2

aix
i, (4.52)

where the ai > 0 are certain cardinalities. The complete form

fS(x) =
P (x)
Q(x)

(4.53)

consists of integer polynomials P (x) and Q(x) of equal degree. The numerator is given by
(see (4.25))

P (x) =
m∏
i=1

[ni] = gm(x)

and of degree dP =
m∑
i=1

ni −m. In what follows, we write P (x) as

P (x) =
dP∑
i=0

cix
i. (4.54)

The denominator Q(x) is given by (see (4.26))

Q(x) =
dP∑
i=0

bix
i

so that 1 + |S| · x+
∑
i≥2

aix
i

 ·
 dP∑
j=0

bjx
j

 =
dP∑
l=0

clx
l.

Hence, ∑
k≥0

(
k∑
i=0

aibk−i

)
xk =

dP∑
l=0

clx
l.

Theorem 4.15 Let G be a Coxeter group acting cocompactly on Hn with generating set S.
Then, the coefficients of its growth series

fS(x) = 1 + |S| · x+
∑
i≥2

aix
i
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satisfy the following rules.

(1) a0 = 1 , a1 = |S|

(2) ak =


ck −

k∑
j=1

ak−jbj , for 2 ≤ k ≤ dP ,

−
dP∑
j=1

ak−jbj , for k > dP ,

where the coefficients ck are given by (4.54).

Example 4.7 Consider the Lannér group G with graph (cf. Table 3 in part 2.4)

• 4 •

•

@@@@@@@ •

~~~~~~~

•

and growth series

fS(x) =
∑
i≥0

aix
i =

P (x)
Q(x)

. (4.55)

Obviously, a0 = 1 and a1 = 5. The complete form of fS(x) can be determined according to
(cf. Example 4.3 or [8, Table 7.5])

fS(x) =
[2, 5, 6, 8, 12](

1− x2 − x3 − x4 − 2x5 − 2x6 − x7 + x8 + x9 + 2x10 + 2x11 + 3x12

+ 2x13 + 3x14 + 2x15 + 3x16 + 2x17 + 2x18 + x19 + x20 − x21 − 2x22

− 2x23 − x24 − x25 − x26 + x28
)

, (4.56)

which leads, together with (4.55) and (4.56), to

[2, 5, 6, 8, 12] =

∑
i≥0

aix
i

 ·Q(x).

Comparing coefficients allows to determine ai. Theorem 4.15, implemented into a Mathemat-
ica program, yields the following values.
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• a0 = 1 • a16 = 47′511
• a1 = 5 • a17 = 77′372
• a2 = 15 • a18 = 125′879
• a3 = 36 • a19 = 204′652
• a4 = 76 • a20 = 332′551
• a5 = 148 • a21 = 540′183
• a6 = 273 • a22 = 877′221
• a7 = 486 • a23 = 1′424′278
• a8 = 843 • a24 = 2′312′177
• a9 = 1′435 • a25 = 3′753′224
• a10 = 2′410 • a26 = 6′091′955
• a11 = 4′009 • a27 = 9′887′499
• a12 = 6′623 • a28 = 16′047′226
• a13 = 10′887 • a29 = 26′043′662
• a14 = 17′833 • a30 = 42′266′383
• a15 = 29′135 • a31 = 68′593′441

Thus,

fS(x) = 1 + 5x+ 15x2 + 36x3 + 76x4 + 148x5 + 273x6 + 486x7 + 843x8 + 1435x9

+ 2410x10 + 4009x11 + 6623x12 + 10887x13 + 17833x14 + 29135x15 + 47511x16

+ 77372x17 + 125879x18 + 204652x19 + 332551x20 + 540183x21 + 877221x22

+ 1424278x23 + 2312177x24 + 3753224x25 + 6091955x26 + 9887499x27

+ 16047226x28 + 26043662x29 + 42266383x30 + 68593441x31 + . . .
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Secondly, consider the growth series fS(x) of Coxeter groups G = 〈S〉 acting cocompactly
on H4 with at most six generators. In part 3.4, Theorem 3.7, we described as precisely as
possible the growth behaviour. Furthermore, at the end of part 3.4, we pointed out that
detailed knowledge about the denominator coefficients is required in order to understand the
pole distribution of fS(x). By Theorem 4.10, we dispose of a convenient recursive tool in
order to determine explicitly the denominator of fS(x) and its poles on the (positive) real
axis and in the complex plane. In this way one can check that the positive real poles of fS(x),
for a given G, appear in two inversive pairs and that the non-real poles are distributed in a
certain thin annulus around the unit circle.
Let us point out that all these properties remain valid for the Tumarkin groups.

In the same proof, one deduces that the growth rate τ of all these Coxeter groups is a
Perron number, that is, a real algebraic integer such that all its conjugates are of absolute
value less than τ . In this context, recall that in dimensions 2 and 3, the growth rate of any
cocompact hyperbolic Coxeter group is a Salem number (see Theorem 3.4). We summarise
our results as follows.

Theorem 4.16 Let G be a Simplex, an Esselmann, a Kaplinskaya or a Tumarkin group act-
ing cocompactly on H4 with generating set S. Then,

(1) the growth series fS(x) of G possesses four distinct positive real poles appearing in
pairs (x1, x

−1
1 ) and (x2, x

−1
2 ) with x1 < x2 < 1 < x−1

2 < x−1
1 ; these poles are simple.

(2) The growth rate τ = x−1
1 is a Perron number.

(3) The non-real poles of fS(x) are contained in an annulus of radii x2, x−1
2 .

(4) The growth series fS(x) of the Kaplinskaya group with graph K66 has four distinct
negative and four distinct positive simple real poles ; for G 6= G66, fS(x) has no
negative pole.

Example 4.8 Consider the Kaplinskaya group G44 given by the graph

•

>>>>>>>> •

K44 : •

4
��������

>>>>>>>> •

>>>>>>>>

��������

•

��������
•

and with generating set S. The growth series of G44, in its complete form, is given by

fS(x) =
[2, 4, 5, 6, 8]

(1− x− 2x2 − 3x3 − 2x4 − 2x5 + x6 + 2x7 + 7x8 + 6x9 + 8x10 + 6x11 + 7x12

+ 2x13 + x14 − 2x15 − 2x16 − 3x17 − 2x18 − x19 + x20)

and has the simple poles

x1 = 0.406794 . . . , x2 = 0.787865 . . . , x−1
2 = 1.26925 . . . , τ = x−1

1 = 2.45825 . . .
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Figure 19: The poles of the growth series of G44.

For the non-real (and real) poles, Theorem 4.16 allows to draw the picture in Figure 19.

81



5 Outlook

In section 4 we analysed in a systematic way growth properties of Coxeter groups acting co-
compactly on Hn. In the sequel, we look at the higher dimensional cases n ≥ 5 and comment
about experimental evidence as well as the cofinite case of non-cocompact hyperbolic Coxeter
groups with finite volume orbit spaces.

Hyperbolic Coxeter groups in higher dimensions are not classified at all. There are still
some families, namely the Kaplinskaya groups [20] and the Tumarkin groups [36] consisting
each of a handful of examples, only. Furthermore, in dimension 7, there is a nice, arithmetical
example GB discovered by Bugaenko. Their study leads to a simple Conjecture (see below)
about the pole distribution of the growth series of any cocompact Coxeter group in Hn, n > 3.

All Coxeter graphs of this section are given in Appendix C.

Let G be a Coxeter group acting on Hn with finite generating set S and growth series fS(x).
For n odd, by Properties 3.1,

1
fS(1)

= χ(G) = 0,

so that fS(x) has a pole at x = 1.

For n = 5, we computed the growth series of all Kaplinskaya groups and Tumarkin groups
and observed that their growth series possess, beside the pole at 1, exactly two (inversive)
pairs of positive poles. Moreover, their non-real poles are contained in an annulus whose radii
are given by the intermediate real poles.

For n = 6, there are precisely three Tumarkin groups. Kaplinskaya groups, however, do
not exist anymore in dimensions beyond 5. Again, we compute the respective growth series
and remark that they possess exactly six simple real poles arising in three (inversive) pairs
(x1, x

−1
1 ), (x2, x

−1
2 ) and (x3, x

−1
3 ) with the property 0 < x1 < x2 < x3 < 1. Moreover, the

non-real poles are located in an annulus of radii x2 and x−1
2 .

For n ≥ 7, the situation simplifies drastically since there is only one Tumarkin group left
(see Appendix C) which acts on H8 with eleven generators. This group, as an arithmetic
singleton, was discovered first by Bugaenko [5]. As anticipated, it turns out that its growth
series has exactly four (inversive) pairs of poles

(
x1, x

−1
1

)
,
(
x2, x

−1
2

)
,
(
x3, x

−1
3

)
and

(
x4, x

−1
4

)
with the property 0 < x1 < x2 < x3 < x4 < 1. The non-real poles are contained in the interior
of the annulus bounded by concentric circles of radii x3 and x−1

3 . These last computations
have been performed by T. Zehrt (unpublished).

The example GB of Bugaenko, mentionned above and in (2.5) at the end of part 2.2, is
the unique cocompact Coxeter group with eleven generators acting on H7. The poles of its
growth series comprise 1 and three (inversive) pairs (x1, x

−1
1 ), (x2, x

−1
2 ) and (x3, x

−1
3 ) with

0 < x1 < x2 < x3 < 1. Its non-real poles are contained in the annulus of radii x3 and x−1
3 . A

picture of the pole distribution in the complex plane is shown below.
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Figure 20: The poles of the growth series of GB.

Example 5.1 Consider the Kaplinskaya group GK acting on H5 with generating set S and
graph

ΓK : • 5 • • • • • • .

By means of Steinberg’s formula (3.4), one computes

fS(x) =
[2, 2, 12, 20, 30]

1− 2x+ x3 − x7 + x8 + x10 − 2x11 + x12 + x13 − x15 + x16 − 2x17 + 3x18 − x19

− x21 + 2x22 − x23 + x24 − 2x25 + 2x26 − 2x27 + 3x28 − 2x29 + 2x32 − 3x33

+ 2x34 − 2x35 + 2x36 − x37 + x38 − 2x39 + x40 + x42 − 3x43 + 2x44 − x45 + x46

− x48 − x49 + 2x50 − x51 − x53 + x54 − x58 + 2x60 − x61.

Then fS(x) behaves as follows for x ∈ R.
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Figure 21: The growth series of GK restricted to R+.

We would like to add that the example GK ∈ I(H5) is conjectured to be of minimal covolume
among all discrete groups in I(H5).

Based on these experimental data, which cover all known examples of cocompact Coxeter
groups up to dimension 8, apart from garland or similar constructions, it is natural to formu-
late the following conjecture.

Conjecture 2 Let G be a cocompact Coxeter group in I(Hn) with generating set S and
growth series fS(x). Then,

(a) for n even, fS(x) has precisely n
2 pairs of poles (xi, x−1

i )
with 0 < x1 < . . . < xn

2
< 1.

(b) for n odd, fS(x) has precisely the pole 1 and n−1
2 pairs of poles (xi, x−1

i )
with 0 < x1 < . . . < xn−1

2
< 1.

In both cases, the poles are simple, and the non-real poles of fS(x) are contained in the
annulus of radii x? and x−1

? for some ? ∈ {1, . . . ,
[
n
2

]
}.

At the end of this work, we add some comments about a possible generalisation of Theorem
4.10 to the non-cocompact case. Let G be a cofinite hyperbolic Coxeter group, that is, the
quotient space Hn/G is non-compact, but of finite volume. Such cofinite groups exist at most
up to dimension 995, a result due to Vinberg, Prokhorov and Khovanskij (see [30] and [22]).
However, examples are known only up to dimension 21. In contrast to cocompact groups, a
cofinite one contains at least one euclidean subgroup. Suppose that G has finite generating set
S and growth series fS(x). For the computation of fS(x), the presence of infinite subgroups
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is of no influence (see Steinberg’s formula (3.4)). As a consequence, the complete form of
fS(x) is not affected by the presence of euclidean subgroups as well. Since all this is at the
basis of the proof, one is tempted to try to generalise Theorem 4.10 to the cofinite case right
away. But, there is a delicate point : the growth series is not reciprocal (or antireciprocal) !

The following example illustrates the differences between the cocompact and the cofinite
case.

Example 5.2 Consider the cofinite Kaplinskaya group GK , with generating set S and graph

•

>>>>>>>>

��������

ΓK : • 5 • • •

•

��������

>>>>>>>>

acting on H4. Observe that ΓK contains the euclidean subgraph Ã3. By means of Steinberg’s
formula (3.4), one gets

fS(x) =
[2, 12, 20, 30]

1− 2x− 2x3 + 2x4 − 3x5 + 3x6 − 5x7 + 7x8 − 7x9 + 9x10 − 9x11 + 14x12

− 11x13 + 18x14 − 14x15 + 22x16 − 17x17 + 26x18 − 19x19 + 30x20 − 21x21

+ 34x22 − 23x23 + 36x24 − 25x25 + 39x26 − 26x27 + 39x28 − 26x29 + 41x30

− 26x31 + 40x32 − 26x33 + 38x34 − 25x35 + 37x36 − 23x37 + 33x38 − 21x39

+ 31x40 − 19x41 + 26x42 − 17x43 + 22x44 − 14x45 + 18x46 − 11x47 + 14x48

− 9x49 + 10x50 − 7x51 + 6x52 − 5x53 + 4x54 − 3x55 + x56 − 2x57 + x58 − 2x59.

Here, the numerator and the denominator of fS(x) are of different degrees (cf. also [8, Chapter
5.4]). The poles of fS(x) are distributed in the complex plane as follows.
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Figure 22: The poles of the growth series of GK .

One sees that fS(x) possesses only three real poles, two of them form an inversive pair
(x2, x

−1
2 ). For the non-real poles, they do not come in 4-tuples anymore, but lie still in

an annulus of radii x2 and x−1
2 around the unit circle.
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A The growth series of the Simplex, Esselmann and Kaplin-
skaya groups

In this appendix we present explicitly the complete forms of the growth series of all cocompact
Coxeter groups in I(H4) generated by at most six reflections, namely the Simplex, Esselmann
and Kaplinskaya groups (see [6], [8], for example). Let us recall that the complete form is not
necessarily a reduced form.

Growth series of the Simplex groups

Graph fS(x) in complete form

• 5 • • • • [2, 12, 20, 30]
1− x− x7 + x8 − x9 + x10 − x11 + x14 − x15 + x16

− 2x17 + 2x18 − x19 + x20 − x21 + x22 − x23 + 2x24

− 2x25 + 2x26 − 2x27 + 2x28 − x29 + x30 − x31 + 2x32

− 2x33 + 2x34 − 2x35 + 2x36 − x37 + x38 − x39 + x40

− x41 + 2x42 − 2x43 + x44 − x45 + x46 − x49 + x50

− x51 + x52 − x53 − x59 + x60

• 5 • • • 4 • [2, 8, 12, 20, 30]
1− x− x3 + 2x4 − 2x5 + x6 − 3x7 + 3x8 − 3x9

+ 3x10 − 5x11 + 5x12 − 5x13 + 6x14 − 7x15 + 8x16

− 8x17 + 9x18 − 9x19 + 11x20 − 11x21 + 12x22

− 11x23 + 14x24 − 13x25 + 14x26 − 13x27 + 16x28

− 14x29 + 15x30 − 14x31 + 17x32 − 14x33 + 15x34

− 14x35 + 16x36 − 13x37 + 14x38 − 13x39 + 14x40

− 11x41 + 12x42 − 11x43 + 11x44 − 9x45 + 9x46

− 8x47 + 8x48 − 7x49 + 6x50 − 5x51 + 5x52 − 5x53

+ 3x54 − 3x55 + 3x56 − 3x57 + x58 − 2x59 + 2x60

− x61 − x63 + x64

continues on the following page

87



Graph fS(x) in complete form

• 5 • • • 5 • [2, 12, 20, 30]
1− x− x3 − x7 − x9 + 2x10 − 2x11 + 2x12 − 2x13

+ 2x14 + 2x16 − 2x17 + 2x18 − 2x19 + 6x20 − 3x21

+ 4x22 − 3x23 + 4x24 + 4x26 − 3x27 + 4x28 − 3x29

+ 8x30 − 3x31 + 4x32 − 3x33 + 4x34 + 4x36 − 3x37

+ 4x38 − 3x39 + 6x40 − 2x41 + 2x42 − 2x43 + 2x44

+ 2x46 − 2x47 + 2x48 − 2x49 + 2x50 − x51 − x53

− x57 − x59 + x60

•

• 5 • •

~~~~~~~

@@@@@@@

•

[2, 12, 20, 30]
1− x− x3 + x4 − x5 − x7 + x8 − x9 + x11 + 2x12

− x13 + x14 − x15 + 2x16 − x17 + x18 − x19 + 3x20

− x21 + 2x22 − x23 + 3x24 − x25 + 2x26 − x27

+ 3x28 − x29 + 3x30 − x31 + 3x32 − x33 + 2x34

− x35 + 3x36 − x37 + 2x38 − x39 + 3x40 − x41

+ x42 − x43 + 2x44 − x45 + x46 − x47 + 2x48 − x49

− x51 + x52 − x53 − x55 + x56 − x57 − x59 + x60

• 4 •

•

@@@@@@@ •

~~~~~~~

•

[2, 5, 6, 8, 12]
1− x2 − x3 − x4 − 2x5 − 2x6 − x7 + x8 + x9 + 2x10

+ 2x11 + 3x12 + 2x13 + 3x14 + 2x15 + 3x16 + 2x17

+ 2x18 + x19 + x20 − x21 − 2x22 − 2x23 − x24

− x25 − x26 + x28
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Growth series of the Esselmann groups

Graph fS(x) in complete form

•
4

@@@@@@@

•

5~~~~~~~
• • 10 •

•

[2, 8, 12, 20, 30]
1− x− 3x3 − 4x5 + x6 − 6x7 + 2x8 − 6x9 + 6x10

− 5x11 + 10x12 − 4x13 + 14x14 + 19x16 + 3x17

+ 22x18 + 6x19 + 27x20 + 11x21 + 30x22 + 14x23

+ 32x24 + 20x25 + 35x26 + 24x27 + 34x28 + 26x29

+ 36x30 + 31x31 + 35x32 + 32x33 + 32x34 + 35x35

+ 31x36 + 36x37 + 26x38 + 34x39 + 24x40 + 35x41

+ 20x42 + 32x43 + 14x44 + 30x45 + 11x46 + 27x47

+ 6x48 + 22x49 + 3x50 + 19x51 + 14x53 − 4x54

+ 10x55 − 5x56 + 6x57 − 6x58 + 2x59 − 6x60 + x61

− 4x62 − 3x64 − x66 + x67

•

@@@@@@@

•

5
~~~~~~~

• • 10 •

•

~~~~~~~5

@@@@@@@

[2, 12, 20, 30]
1− 2x− 2x3 + x4 − x5 + x6 − 2x7 + 3x8 − 2x9

+ 5x10 − 3x11 + 8x12 − 3x13 + 8x14 − x15 + 11x16

− 3x17 + 11x18 − 3x19 + 18x20 − 4x21 + 16x22

− 4x23 + 18x24 − x25 + 18x26 − 4x27 + 19x28

− 4x29 + 23x30 − 4x31 + 19x32 − 4x33 + 18x34

− x35 + 18x36 − 4x37 + 16x38 − 4x39 + 18x40 − 3x41

+ 11x42 − 3x43 + 11x44 − x45 + 8x46 − 3x47 + 8x48

− 3x49 + 5x50 − 2x51 + 3x52 − 2x53 + x54 − x55

+ x56 − 2x57 − 2x59 + x60

•

@@@@@@@

•

~~~~~~~
4 • • 8 •

•

4

[2, 6, 8, 12]
1− 2x− x3 + x4 − 3x5 + 3x6 − 2x7 + 6x8 − 4x9

+ 6x10 − 3x11 + 7x12 − 3x13 + 6x14 − 4x15 + 6x16

− 2x17 + 3x18 − 3x19 + x20 − x21 − 2x23 + x24

continues on the following page
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Graph fS(x) in complete form

•
4

@@@@@@@ •

5•

5~~~~~~~
•

~~~~~~~

@@@@@@@

• •

[2, 8, 12, 20, 30]
1− x− x2 − 3x3 − 2x4 − 2x5 − 2x6 − 3x7

− 2x8 + 2x10 + 4x11 + 7x12 + 8x13 + 13x14

+ 18x15 + 21x16 + 24x17 + 26x18 + 30x19

+ 36x20 + 39x21 + 42x22 + 43x23 + 48x24

+ 53x25 + 56x26 + 58x27 + 56x28 + 58x29

+ 64x30 + 65x31 + 65x32 + 63x33 + 63x34

+ 65x35 + 65x36 + 64x37 + 58x38 + 56x39

+ 58x40 + 56x41 + 53x42 + 48x43 + 43x44

+ 42x45 + 39x46 + 36x47 + 30x48 + 26x49

+ 24x50 + 21x51 + 18x52 + 13x53 + 8x54

+ 7x55 + 4x56 + 2x57 − 2x59 − 3x60 − 2x61

− 2x62 − 2x63 − 3x64 − x65 − x66 + x67

•

@@@@@@@ •

5•

5
~~~~~~~

•

~~~~~~~

@@@@@@@

•
5

@@@@@@@

~~~~~~~
•

[2, 12, 20, 30]
1− 2x− x2 − 2x3 + x4 + x5 − x6 + 2x8 + x9

+ 4x10 + x11 + 9x12 + 2x13 + 8x14 + 8x15

+ 10x16 + 6x17 + 9x18 + 7x19 + 22x20 + 7x21

+ 16x22 + 8x23 + 19x24 + 15x25 + 17x26

+ 10x27 + 19x28 + 10x29 + 28x30 + 10x31

+ 19x32 + 10x33 + 17x34 + 15x35 + 19x36

+ 8x37 + 16x38 + 7x39 + 22x40 + 7x41 + 9x42

+ 6x43 + 10x44 + 8x45 + 8x46 + 2x47 + 9x48

+ x49 + 4x50 + x51 + 2x52 − x54 + x55 + x56

− 2x57 − x58 − 2x59 + x60

•

@@@@@@@ •

4• 4 •

~~~~~~~

@@@@@@@

•

4
~~~~~~~

•

[2, 6, 8, 12]
1− 2x− x2 − 2x5 + x6 + 2x7 + 4x8 + 3x10

+ 2x11 + 6x12 + 2x13 + 3x14 + 4x16 + 2x17

+ x18 − 2x19 − x22 − 2x23 + x24

• 8 • • 4 • • 8 • [2, 6, 8, 8, 12]
1− 2x− 2x3 − 4x5 − 4x7 + 2x8 − 2x9 + 5x10

+ x11 + 7x12 + 5x13 + 8x14 + 6x15 + 6x16

+ 8x17 + 5x18 + 7x19 + x20 + 5x21 − 2x22

+ 2x23 − 4x24 − 4x26 − 2x28 − x30 + x31
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Growth series of the Kaplinskaya groups

Graph fS(x) in complete form

• 5 • • 4 • • • [4, 6, 8, 10, 12]
1− x+ x2 − 3x3 − 5x5 − 6x7 + x8 − 5x9

+ 3x10 − 2x11 + 6x12 + 3x13 + 10x14 + 8x15

+ 12x16 + 11x17 + 11x18 + 12x19 + 8x20

+ 10x21 + 3x22 + 6x23 − 2x24 + 3x25 − 5x26

+ x27 − 6x28 − 5x30 − 3x32 + x33 − x34 + x35

•

• 5 • • 4 •

~~~~~~~

@@@@@@@

•

[4, 6, 8, 10, 12]
1− x− 3x3 − 3x4 − 5x5 − 4x6 − 6x7 − 2x8

− 4x9 + 2x10 + x11 + 8x12 + 9x13 + 16x14

+ 17x15 + 21x16 + 21x17 + 21x18 + 21x19

+ 17x20 + 16x21 + 9x22 + 8x23 + x24 + 2x25

− 4x26 − 2x27 − 6x28 − 4x29 − 5x30 − 3x31

− 3x32 − x34 + x35

• • 5 • • • • [2, 12, 20, 30]
1− 2x+ x2 − x3 − x5 + 2x6 − 3x7 + 2x8 − x9

+ x10 − 2x11 + 4x12 − 3x13 + 3x14 − x15

+ 3x16 − 3x17 + 6x18 − 4x19 + 5x20 − x21

+ 4x22 − 3x23 + 8x24 − 5x25 + 6x26 − x27

+ 5x28 − 4x29 + 9x30 − 4x31 + 5x32 − x33

+ 6x34 − 5x35 + 8x36 − 3x37 + 4x38 − x39

+ 5x40 − 4x41 + 6x42 − 3x43 + 3x44 − x45

+ 3x46 − 3x47 + 4x48 − 2x49 + x50 − x51

+ 2x52 − 3x53 + 2x54 − x55 − x57 + x58 − 2x59

+ x60

continues on the following page
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Graph fS(x) in complete form

•

• • 5 • •

~~~~~~~

@@@@@@@

•

[2, 12, 20, 30]
1− 2x− x4 − x5 + 2x6 − 3x7 + x8 + x9 − x10 − x11

+ 5x12 − 3x13 + 3x14 + 2x15 + x16 − x17 + 7x18

− 3x19 + 5x20 + 3x21 + 3x22 − x23 + 10x24 − 3x25

+ 5x26 + 4x27 + 4x28 − 2x29 + 12x30 − 2x31 + 4x32

+ 4x33 + 5x34 − 3x35 + 10x36 − x37 + 3x38 + 3x39

+ 5x40 − 3x41 + 7x42 − x43 + x44 + 2x45 + 3x46

− 3x47 + 5x48 − x49 − x50 + x51 + x52 − 3x53 + 2x54

− x55 − x56 − 2x59 + x60

•

@@@@@@@

•

4
~~~~~~~

@@@@@@@ • • •

•

~~~~~~~

[2, 4, 5, 6, 8]
1− x− x2 − 2x3 − x4 − 2x5 + x6 + x7 + 4x8 + 3x9

+ 5x10 + 3x11 + 4x12 + x13 + x14 − 2x15 − x16 − 2x17

− x18 − x19 + x20

•

@@@@@@@ •

•

4
~~~~~~~

@@@@@@@ •

@@@@@@@

~~~~~~~

•

~~~~~~~
•

[2, 4, 5, 6, 8]
1− x− 2x2 − 3x3 − 2x4 − 2x5 + x6 + 2x7 + 7x8 + 6x9

+ 8x10 + 6x11 + 7x12 + 2x13 + x14 − 2x15 − 2x16

− 3x17 − 2x18 − x19 + x20

•

@@@@@@@

•

5
~~~~~~~

@@@@@@@ • • •

•

~~~~~~~

[2, 12, 20, 30]
1− 2x− x3 + x4 − x5 + x6 − 2x7 + 3x8 − 2x9 + 3x10

− 2x11 + 5x12 − x13 + 5x14 −−2x15 + 8x16 − 3x17

+ 8x18 − 2x19 + 10x20 − 2x21 + 10x22 − 2x23 + 12x24

− 3x25 + 12x26 − 3x27 + 13x28 − 2x29 + 12x30 − 2x31

+ 13x32 − 3x33 + 12x34 − 3x35 + 12x36 − 2x37

+ 10x38 − 2x39 + 10x40 − 2x41 + 8x42 − 3x43 + 8x44

− 2x45 + 5x46 − x47 + 5x48 − 2x49 + 3x50 − 2x51

+ 3x52 − 2x53 + x54 − x55 + x56 − x57 − 2x59 + x60

continues on the following page
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Graph fS(x) in complete form

•

@@@@@@@ •

•

5
~~~~~~~

@@@@@@@ •

@@@@@@@

~~~~~~~

•

~~~~~~~
•

[2, 12, 20, 30]
1− 2x− x2 − x3 + x4 − 2x7 + 4x8 − x9 + 3x10 − x11

+ 7x12 + x13 + 7x14 + 11x16 − x17 + 11x18 + x19

+ 15x20 + x21 + 14x22 + 2x23 + 18x24 + 17x26 + x27

+ 19x28 + 2x29 + 18x30 + 2x31 + 19x32 + x33 + 17x34

+ 18x36 + 2x37 + 14x38 + x39 + 15x40 + x41 + 11x42

− x43 + 11x44 + 7x46 + x47 + 7x48 − x49 + 3x50

− x51 + 4x52 − 2x53 + x56 − x57 − x58 − 2x59 + x60

•

@@@@@@@

•

5~~~~~~~
• • •

•

[2, 12, 20, 30]
1− 2x+ x2 − 2x3 + 2x4 − 3x5 + 4x6 − 6x7 + 7x8

− 8x9 + 10x10 − 11x11 + 13x12 − 13x13 + 17x14

− 17x15 + 21x16 − 21x17 + 25x18 − 23x19 + 28x20

− 26x21 + 31x22 − 28x23 + 34x24 − 31x25 + 36x26

− 32x27 + 37x28 − 32x29 + 37x30 − 32x31 + 37x32

− 32x33 + 36x34 − 31x35 + 34x36 − 28x37 + 31x38

− 26x39 + 28x40 − 23x41 + 25x42 − 21x43 + 21x44

− 17x45 + 17x46 − 13x47 + 13x48 − 11x49 + 10x50

− 8x51 + 7x52 − 6x53 + 4x54 − 3x55 + 2x56 − 2x57

+ x58 − 2x59 + x60

•

@@@@@@@ •

•

5~~~~~~~
•

~~~~~~~

@@@@@@@

• •

[2, 12, 20, 30]
1− 2x− x3 − 2x7 + 2x8 − x9 + 2x10 − x11 + 2x12

+ x13 + 4x14 + 4x16 − x17 + 6x18 + x19 + 6x20 + x21

+ 6x22 + 2x23 + 8x24 + 8x26 + x27 + 8x28 + 2x29

+ 8x30 + 2x31 + 8x32 + x33 + 8x34 + 8x36 + 2x37

+ 6x38 + x39 + 6x40 + x41 + 6x42 − x43 + 4x44

+ 4x46 + x47 + 2x48 − x49 + 2x50 − x51 + 2x52

− 2x53 − x57 − 2x59 + x60

continues on the following page
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Graph fS(x) in complete form

• •
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• •
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~~~~~~~

[2, 12, 20, 30]
1− 2x− x3 − 2x7 + 2x8 − x9 + 2x10 − x11 + 2x12 + x13

+ 4x14 + 4x16 − x17 + 6x18 + x19 + 6x20 + x21 + 6x22

+ 2x23 + 8x24 + 8x26 + x27 + 8x28 + 2x29 + 8x30 + 2x31

+ 8x32 + x33 + 8x34 + 8x36 + 2x37 + 6x38 + x39 + 6x40

+ x41 + 6x42 − x43 + 4x44 + 4x46 + x47 + 2x48 − x49

+ 2x50 − x51 + 2x52 − 2x53 − x57 − 2x59 + x60
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•

5

•

~~~~~~~

oooooooooooooo

[2, 12, 20, 30]
1− 2x− x2 − x4 − 2x7 + x8 + x9 + 3x12 + x13 + 4x14

+ 3x15 + 2x16 + x17 + 7x18 + 2x19 + 6x20 + 5x21 + 5x22

+ 4x23 + 10x24 + 2x25 + 7x26 + 6x27 + 7x28 + 4x29 + 11x30

+ 4x31 + 7x32 + 6x33 + 7x34 + 2x35 + 10x36 + 4x37 + 5x38

+ 5x39 + 6x40 + 2x41 + 7x42 + x43 + 2x44 + 3x45 + 4x46

+ x47 + 3x48 + x51 + x52 − 2x53 − x56 − x58 − 2x59 + x60

• •

@@@@@@@

OOOOOOOOOOOOOO

• •

•

5

•

~~~~~~~

oooooooooooooo

[2, 12, 20, 30]
1− 2x− 2x2 − x4 + x5 − 2x6 − x7 + x8 + x9 + x10 + x11

+ x12 + 5x13 + 5x14 + 4x15 + 3x16 + 3x17 + 7x18 + 7x19

+ 7x20 + 7x21 + 7x22 + 9x23 + 10x24 + 7x25 + 9x26 + 8x27

+ 10x28 + 10x29 + 10x30 + 10x31 + 10x32 + 8x33 + 9x34

+ 7x35 + 10x36 + 9x37 + 7x38 + 7x39 + 7x40 + 7x41 + 7x42

+ 3x43 + 3x44 + 4x45 + 5x46 + 5x47 + x48 + x49 + x50

+ x51 + x52 − x53 − 2x54 + x55 − x56 − 2x58 − 2x59 + x60
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B The 4-dimensional Tumarkin polytopes

In this appendix we list the Coxeter graphs of the 4-dimensional (compact) Tumarkin poly-
topes.
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C Compact Coxeter polytopes in dimensions beyond 4

In this appendix we list the graphs of all known compact Coxeter polytopes in Hn for n > 4,
up to garland or similar constructions.

The 5-dimensional Kaplinskaya polytopes
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The 5-dimensional Tumarkin polytopes
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The 6-dimensional Tumarkin polytopes
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The 7-dimensional Bugaenko polytope
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The 8-dimensional Bugaenko polytope

• 5 • • • • • • • 5 •

• •
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D Polynomials

This appendix is a collection of results about polynomials which we use throughout our
work. We are especially interested in palindromic polynomials. We begin with a very simple
observation which is used in part 3.4.1.

Lemma D.1 Let J be an arbitrary interval in R. Let P,Q ∈ R[x] such that P (x) ≥ 0 and
Q(x) > 0 for x ∈ J . Assume that P is strictly decreasing and Q is strictly increasing on J .
Then, the quotient P/Q is strictly decreasing over J .

The polynomial [k]

Consider the polynomial (4.8),

[k] := 1 + x+ . . .+ xk−1.

The next lemmas describe the behaviour of this function.

Lemma D.2 The polynomial [2k] is strictly increasing on R.

Proof
If x ≥ 0, the claim is trivial. Let us now assume that x < 0. Since

[2k] =
x2k − 1
x− 1

,

we easily obtain

[2k]′ =
2kx2k−1 · (x− 1)− (x2k − 1)

(x− 1)2

=
2kx2k − x2k − 2kx2k−1 + 1

(x− 1)2

=
1 + (2k − 1)x2k − 2kx2k−1

(x− 1)2

=
1 + (2k − 1)x2k−1(x− 1)− x2k−1

(x− 1)2
,

which is strictly positive for x < 0. 2

Lemma D.3 The polynomial [2, 2k + 1] is strictly increasing on R.

Proof
The proof of this lemma is due to Aleš Janka. By means of an induction we proof that

[2, 2k + 1]′ = 2 · [2] ·
k−1∑
i=1

i · x2·(i−1) + 2k · x2k−2 + 2k · x2k−1 + (2k + 1) · x2k︸ ︷︷ ︸
=:qk(x)

.
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The expression 2 · [2] ·
k−1∑
i=1

i · x2·(i−1) is obviously strictly positive on R. Moreover, we easily

check that qk(x) is strictly positive on R∗. Then [2, 2k + 1]′ is strictly positive on R. Hence
[2, 2k + 1] is strictly creasing on R. 2

Lemma D.4 The function [2k + 1] is strictly positive on (−1, 0).

Consider now the product of two polynomials [a], [b].

Lemma D.5 Let a and b be integers such that 2 ≤ a < b. Then,

[a, b] =
a∑
j=1

j · xj−1 +
b−1∑
j=a

a · xj +
a−2∑
j=0

(a− 1− j) · xb+j . (D.1)

Proof
We proceed by induction with respect to a. For a = 2, we easily compute that

[2, b] = (1 + x) ·
b−1∑
i=0

xi =
b−1∑
i=0

xi +
b−1∑
i=0

xi+1 = 1 +
b−1∑
j=1

2xj + xb = 1 + 2x+
b−1∑
j=2

2xj + xb.

Let us now deal with a > 2. Since [a+ 1] = [a] + xa, we obtain

[a+ 1, b] = [a, b] + xa · [b] = [a, b] + xa + xa+1 + . . .+ xa+b−2 + xa+b−1.

Then, by means of the induction hypothesis, we get

[a+ 1, b] =
a∑
j=1

j · xj−1 +
b−1∑
j=a

(a+ 1) · xj +
a−2∑
j=0

(a− j) · xb+j + xa+b−1.

2

Observe that (D.1) can be rewritten in

[a, b] =
a∑
j=1

j · xj−1 +
b−1∑
j=a

a · xj +
a+b−2∑
j=b

(a+ b− 1− j)xj . (D.2)

The next result is very similar to Lemma D.5.

Lemma D.6 Let a ≥ 2 be an integer. Then,

[a, a] =
a∑
j=1

j · xj−1 +
2a−2∑
j=a

(2a− 1− j) · xj . (D.3)
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Palindromic and antipalindromic polynomials

In this subsection we present some relations between palindromic and antipalindromic poly-
nomials. Recall that a polynomial p(x) of degree d is said to be palindromic if and only if
p(x) = xd · p

(
1
x

)
, for all x, while it is antipalindromic if p(x) = −xd · p

(
1
x

)
, for all x. Equiv-

alently we have that pi = pd−i, for i = 0, . . . d, if p(x) is palindromic, while pi = −pd−i, for
i = 0, . . . d, if p(x) is antipalindromic.

In this paragraph, all polynomials are defined over the real numbers.

Lemma D.7 Let P be a palindromic polynomial of degree 2k+1. Then, P (x) = (x+1)·Q(x),
where Q is a palindromic polynomial of degree 2k.

Proof
As P is palindromic of odd degree, we obviously have P (−1) = 0, and

P (x) = (x+ 1) ·Q(x),

where Q(x) is a polynomial of degree 2k. We prove now that Q(x) is palindromic, that is
Q(x) = x2k ·Q

(
1
x

)
. Let x 6= −1. Then,

Q(x) =
P (x)
x+ 1

=
1

x+ 1
· x2k+1 · P

(
1
x

)
=

1
x+ 1

· x2k+1 · x+ 1
x
·Q
(

1
x

)
= x2k ·Q

(
1
x

)
.

Finally, it is clear that (−1)2k ·Q(−1) = Q(−1). 2

Lemma D.8 Let P be an antipalindromic polynomial of degree 2k. Then P (x) = (x + 1) ·
Q(x), where Q(x) is an antipalindromic polynomial of degree 2k − 1.

Proof
Let p0, p1, . . . , p2k denote the coefficients of P . Since P is antipalindromic, pk = 0. Thus,

P (x) =
k−1∑
i=0

pi ·
(

1− x2·(k−i)
)
.

Hence, −1 is a root of P , and
P (x) = (x+ 1) ·Q(x), (D.4)

where Q(x) is a polynomial of degree 2k−1. Let q0, . . . , q2k−1 denote the coefficients of Q(x).
We determine them by solving the system of 2k + 1 equations given by (D.4). It remains to
check that Q(x) is antipalindromic which is a simple matter. 2

In a similar fashion, the following result is verified.

Lemma D.9 Let P be an antipalindromic polynomial of degree 2k + 1. Then, P (x) = (x −
1) ·Q(x), where Q(x) is a palindromic polynomial of degree 2k.

Corollary D.10 Let P be an antipalindromic polynomial of degree 2k ≥ 2. Then, P (x) =
(x+ 1) · (x− 1) ·Q(x), where Q(x) is a palindromic polynomial of degree 2k − 2.
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Proof
This result is an easy consequence of Lemma D.8 and Lemma D.9. 2

Factorisation of palindromic polynomials

This paragraph is devoted to the proof of the following result.

Theorem D.11 Let P be a palindromic polynomial of degree d over the integers. Then, P
can be factored into a product of a constant times linear (if d is odd), quadratic and quartic
palindromic polynomials with real coefficients.

Before proving Theorem D.11 we mention the well-known fundamental Theorem of Algebra
together with some implications.

Theorem D.12 (Gauss) Every non-constant polynomial with complex coefficients possesses
at least one complex root.

Corollary D.13 Let Q ∈ C[x] be a polynomial of degree d. Then, there exist a, λ1, . . . , λd ∈ C
such that

Q(x) = a · (x− λ1) · · · (x− λn) .

Corollary D.14 A polynomial over the real numbers possesses an even number of non-real
roots.

The proof of Corollary D.14 provides the following useful lemma.

Lemma D.15 Let Q ∈ R[x] be a polynomial with root z ∈ C. Then, Q(z̄) = 0.

In the following, we look at palindromic polynomials.

Lemma D.16 Let Q ∈ R[x] be a palindromic polynomial of degree d ≥ 2. Then, its roots
occur in pairs of the form (α, α−1).

Proof
Let α 6= 0 be a root of Q(x). Then Q(α) = 0. As Q(x) = xd · Q(1/x), it follows that
Q(α−1) = 0. 2

Lemma D.17 Let Q ∈ R[x] be a palindromic polynomial of degree d ≥ 4. Then, its non-real
roots of absolute value different from 1 occur in 4-tuples (β, β−1, β̄, β̄−1), while the ones on
the unit circle occur in pairs (γ, γ−1).

Proof
Let β ∈ C \ R such that |β| 6= 1 and Q(β) = 0. Then, β−1 satisfies Q(β−1) = 0 by Lemma
D.16. By means of Lemma D.15, β̄ and β̄−1 are also roots of Q. Observe that if |γ| = 1, then
γ̄ = γ−1 and γ̄−1 = γ. This finishes the proof. 2

We are now ready to prove Theorem D.11.
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Proof of Theorem D.11
Let us first assume that P is of degree d = 2k with coefficients p1, . . . , p2k ∈ Z. Suppose,
without loss of generality, that p0 6= 0. Then,

P (x) = p0 ·
2k∑
i=0

pi
p0
xi .

Let α1, α1
−1, . . . , αl, αl

−1 denote the real roots of P , while β1, β1
−1, β̄1, β̄1

−1
, . . . , βm, βm

−1,
β̄m, β̄m

−1 denote the non-real roots of absolute value different from 1, and γ1, γ
−1, . . . , γn, γn

−1

denote its non-real roots on the unit circle. Thus,

P (x) = p0 ·
l∏

i=1

(x− αi)(x− αi−1)
m∏
i=1

(x− βi)(x− βi−1)(x− β̄i)(x− β̄i
−1)

n∏
i=1

(x− γi)(x− γ̄i),

and

P (x) = p0 ·
l∏

i=1

(
x2 − αi

2 + 1
αi

+ 1
) m∏
i=1

(x4 −Aix3 +Bix
2 −Aix+ 1)

n∏
i=1

(x2 − 2Re(γi)x+ 1)

where Ai = 2
(
Re(βi−1) + Re(βi)

)
and Bi = |βi|−2 + 4Re(βi)Re(βi−1) + |βi|2.

Finally, assume that P is of degree 2k + 1. Then, Lemma D.7 implies that

P (x) = (x+ 1) ·Q(x),

where Q is a palindromic polynomial over the real of degree 2k. Now apply the preceeding
arguments to Q. 2
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