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Ever tried. Ever failed. No
matter. Try Again. Fail again.
Fail better.
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Abstract

Hyperbolic Coxeter groups, which arise as isometry groups generated by
reflections in the facets of polyhedra in the hyperbolic space Hn, give rise to
numerous questions many of which are still unresolved. Among these questions,
we can mention:
(Q1) Creation of cofinite groups

What are the tools to create new hyperbolic Coxeter groups of finite
covolume?

(Q2) Computations of invariants
Is it possible to efficiently compute the invariants of a given hyper-
bolic Coxeter group (Euler characteristic, growth series, growth rate)
and of its associated polyhedron (volume, compactness, f -vector)?

(Q3) Classification
What methods do we have to classify groups up to commensurability?

Regarding question (Q1), we present our implementation of Vinberg’s algo-
rithm (see [Vin72]), which can be used to find the presentation of the reflection
group associated to a quadratic form. Our work consists of a computer program
called AlVin, which is designed to carry out the algorithm. We then general-
ize an approach, due to Allcock (see [All06]), which allows to build an infinite
sequence of index two subgroups in a given Coxeter group (not necessarily hy-
perbolic or even geometric).

Our contribution to question (Q2) comes in the form of CoxIter, a computer
program whose aim is to compute the invariants of a given hyperbolic Coxeter
group. An article describing CoxIter was published in [Gug15].

Concerning question (Q3) the commensurability classification of a substan-
tial class of hyperbolic Coxeter groups was studied in a joint work with Matthieu
Jacquemet and Ruth Kellerhals and results were published in [GJK16] and
[GJKar]. In the present thesis, we explain in details a method, first described by
Maclachlan, which allows to decide the (in)commensurability of two arithmetic
hyperbolic Coxeter groups. This presentation is our contribution to [GJK16]
and [GJKar].

When studying reflections and isometries of finite-dimensional hyperbolic
spaces, a natural step towards generalization is the consideration of isometries
of infinite dimensional hyperbolic spaces. At the end of this thesis, we show that
an important class of these isometries can be obtained via Clifford matrices.



Résumé

Les groupes de Coxeter hyperboliques, qui apparaîssent comme des groupes
d’isométries engendrés par des réflexions dans les côtés d’un polyèdre de l’espace
hyperbolique Hn, donnent lieu à de nombreuses questions dont beaucoup sont
encore non-résolues. Parmi celles-ci, on peut mentionner :
(Q1) Création de groupes de covolume fini

De quelle manière peut-on créer de nouveaux groupes de Coxeter
hyperboliques de covolume fini ?

(Q2) Calcul d’invariants
Peut-on calculer de manière efficace les invariants du groupe (carac-
téristique d’Euler, série de croissance, taux de croissance) et ceux du
polyèdre associé (volume, compacité, f -vecteur) ?

(Q3) Classification
Quelles méthodes a-t-on à disposition pour classifier des groupes à
commensurabilité près ?

Concernant la question (Q1), nous présentons notre implémentation de l’al-
gorithme de Vinberg (voir [Vin72]), qui permet de déterminer la présentation
du groupe des réflexions associé à une forme quadratique, sous forme d’un pro-
gramme informatique appelé AlVin. Ensuite, nous généralisons une approche
d’Allcock (voir [All06]) qui permet de construire une suite infinie de sous-groupes
d’indices 2 dans un groupe de Coxeter donné (pas nécessairement hyperbolique).

Notre contribution à la question (Q2) est apportée par CoxIter, un pro-
gramme informatique qui a pour but de calculer les invariants d’un groupe de
Coxeter hyperbolique donné. Un article concernant CoxIter a été publié dans
[Gug15].

Concernant la question (Q3), la classification à commensurabilité près d’une
classe importante de groupes de Coxeter hyperboliques a été traitée dans un
projet commun avec Matthieu Jacquemet et Ruth Kellerhals et les résultats ont
été publiés dans [GJK16] et [GJKar]. Nous proposons une présentation détaillée
d’une méthode, exposée par Maclachlan dans [Mac11], qui permet de décider de
la commensurabilité de deux groupes de Coxeter hyperboliques arithmétiques.
Cette présentation constitue essentiellement notre contribution à [GJK16] et
[GJKar].

Lors de l’étude des réflexions et des isométries de l’espace hyperbolique Hn,
un pas naturel dans la généralisation est la considération d’isométries d’un es-
pace hyperbolique de dimension infinie. A la fin de cette thèse, nous montrons
qu’une classe importante de ces isométries peuvent être obtenues via des ma-
trices de Clifford.
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CHAPTER 1
Introduction

Let Xn denote the unit n-sphere Sn, the Euclidean n-space En or the vector
space model Hn of the hyperbolic n-space Hn. Any polyhedron P ⊂ Xn gives
rise to a subgroup Γ := Γ(P ) of the isometry group IsomXn generated by the
reflections in the facets, or sides, of P . If all dihedral angles between adja-
cent sides of P are of the form π

k for some k ∈ {2, 3, . . .} ∪ {∞}, then P is a
fundamental cell for Γ and is called a Coxeter polyhedron. In this case, Γ is a
Coxeter group, or geometric Coxeter group, and we call it spherical, Euclidean,
or hyperbolic, depending on Xn.

Although finite Coxeter groups -which correspond to the spherical case- and
the Euclidean ones have been fully classified (see [Cox35] and [Bou68a]), we are
far from a classification in the hyperbolic setting. Moreover, we do not have
many examples of cofinite hyperbolic Coxeter groups when n is bigger than
12 and none when n > 21. We are therefore interested in the following three
questions:
(Q1) How can we create new cofinite hyperbolic Coxeter groups?

(Q2) Is there an efficient way to compute invariants of a hyperbolic Cox-
eter group Γ (Euler characteristic, growth series and growth rate)
and of its associated polyhedron (finiteness, compactness, volume,
f -vector)?

(Q3) What are the methods that can be used in order to classify hyperbolic
Coxeter groups up to commensurability?

Vinberg presented a method which gives a partial answer to question (Q1):
in [Vin72], he described an algorithm whose goal is to find the group of reflections
in PO(n, 1) associated to a given quadratic form of signature (n, 1). Many
authors used Vinberg’s algorithm with ad hoc methods for a quadratic form of
the type 〈−α, 1, . . . , 1〉. However, since the computations are tedious to carry
out, there are not many examples for other quadratic forms. In chapter 6,
we present our computer program AlVin, which is a general implementation
of the algorithm. We give the necessary theoretical background, details about
computational aspects and explain how we used AlVin to find new polyhedra.

In chapter 7, we generalize Allcock’s approach (see [All06]) in order to con-
struct infinite sequences {Γn}n≥0 of index two subgroups in a Coxeter group
Γ (which is not assumed to be hyperbolic, or even geometric). We analyse the
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ranks of the groups Γn and, in the case where Γ is a geometric Coxeter group,
we compute the f -vector of the associated polyhedra P (Γn). When the group
Γ is hyperbolic, we also describe the growth series of the groups Γn in terms of
the growth series of Γ.

Our contribution to question (Q2) consists of CoxIter, a computer program
which yields certain invariants of a given hyperbolic Coxeter group. The input
of CoxIter is the presentation of the group and the output contains the follow-
ing: cocompactness and cofiniteness, arithmeticity, f -vector of the associated
polyhedron, Euler characteristic, dimension, growth series and growth rate. An
article describing CoxIter was published in [Gug15].

Concerning question (Q3) the commensurability classification of an im-
portant class of hyperbolic Coxeter groups was studied in a joint work with
Matthieu Jacquemet and Ruth Kellerhals ([GJK16] and [GJKar]). In our joint
work, we classified up to commensurability the family of 200 Coxeter pyra-
mids groups first described by Tumarkin (see [Tum04]). In chapter 4, we
give an overview of different methods which can be used to decide the (in-
)commensurability of hyperbolic Coxeter groups. We then focus on the classifi-
cation in the arithmetic setting, which was our contribution to this joint work.
We give a detailed presentation of a method, first described by Maclachlan in
[Mac11], that can be used to compute a complete set of invariants for a given
cofinite arithmetic hyperbolic Coxeter group. These computations, which are
done in the Brauer group of the defining field using quaternion algebras, gener-
alize the invariant trace field and invariant quaternion algebra which appeared
in [MR03]. We also present the computations for some new compact polyhedra
found using AlVin.

When studying reflections and isometries of the hyperbolic space Hn, a nat-
ural step towards generalization, is the investigation of isometries of infinite-
dimensional hyperbolic spaces. The two well-known group isomorphisms

Isom+ H2 = PSL(2;R), Isom+ H3 = PSL(2;C)

are the first instances of the appearance of Clifford matrices: Ahlfors and Wa-
terman ([Ahl85] and [Wat93]) showed that the group Isom+ Hn can be described
using two-by-two matrices with coefficients in a Clifford algebra. Other authors,
such as Frunză and Li, extended this idea to the infinite-dimensional hyperbolic
spaceHℵ0 modelled on the (separable) sequence space `2 (see [Fru91] and [Li11]).
In chapter 8, we show that a similar result holds for any infinite-dimensional hy-
perbolic space H∞: we are able to describe an important subgroup of the isome-
try group IsomH∞ using Clifford matrices (see Theorem 8.3.3). Our approach,
which does not rely on a specific representation of the underlying Hilbert space
H , allows to establish a connection to the group Möb∗ of all finite composi-
tions of reflections in generalized spheres of H preserving the upper half-space
UH (see Proposition 8.2.17). This group was discussed in Das’s PhD thesis
[Das12]. We also discuss some further questions which can be addressed using
our approach.

At the end of the thesis, we present several appendices which contain some
invariants of Kaplinskaya’s infinite families of compact Coxeter prisms in H3.
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We also give the commensurability invariants of arithmetic hyperbolic Coxeter
polytopes in Hn with n+ 3 facets and one non-simple vertex, which were classi-
fied by [Rob15]. Finally, we give two Mathematica R© codes which were used in
this thesis.
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CHAPTER 2
Algebraic background

In this chapter, we provide basic material which will be used during this work.
We present both classical theoretical results together with algorithmic and com-
putational aspects.

The first two parts are dedicated to field extensions and number fields. These
notions will be particularly used when dealing with arithmetic groups and their
classification up to commensurability (see Section 4.3). We also present results
about prime elements and factorization in number fields, which will be useful to
set the computational background for the Vinberg algorithm (see Chapter 6).
Most of the material presented here is covered in the book [Gri07].

In sections 2.4 and 2.5, we are mostly interested in quaternion algebras
and their classification up to isomorphism. This last point is the key to the
classification of arithmetic hyperbolic Coxeter groups, since the invariant of the
commensurability class consists almost entirely of the isomorphism class of a
quaternion algebra over a number field (see Section 4.3.1.3). References for
quaternion algebras are [GS06], [Lam05], and [Vig80] for some technical results.

In the before last part, we give technical results about roots of polynomials
which will be used to determine the (non-)arithmeticity of some groups and
to determine the asymptotic behaviour of the growth rate of some families of
groups (see sections 4.4.1 and 3.6 for example).

Finally, we present basic properties and constructions related to Hilbert
spaces. They will be used in the chapter dedicated to isometries of the infinite-
dimensional hyperbolic space. Most of the materiel can be found in the books
[Lax02] and [Con85].

2.1 Field extensions
Let k be a field. A field extension of k is a field K such that k ⊂ K. Such an
extension is often denoted by K|k. The degree of K over k, denoted by [K : k],
is the dimension of K as a k-vector space. An element α ∈ K is algebraic over
k if there exists a polynomial f ∈ k[t] such that f(α) = 0. Among all the monic
polynomials with coefficients in k which vanish at α, the one with the smallest
degree is called the minimal polynomial of α and is denoted min(α, k). The
simple extension k[x]/min(α, k) is then denoted by k(α), or k[α].

If all the elements of K are algebraic over k, we say that K is algebraic over
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k. We will consider only algebraic field extensions. Of course, any extension of
finite degree is algebraic.

Definition 2.1.1 (Algebraically closed field)
A field k is algebraically closed if every non-constant polynomial with coefficients
in k has at least one root (and thus all its roots) in k.

Definition 2.1.2 (Algebraic closure)
Let k be a field. We say that an algebraic extension of k is an algebraic closure
of k if it is algebraically closed.

Proposition 2.1.3
Two algebraic closures F1 and F2 of a field k are k-isomorphic (i.e. there exists
a field isomorphism τ : F1 −→ F2 such that τ

∣∣
k

= idk). Moreover, Zorn’s
lemma implies the existence of at least one algebraic closure of any field.

Remark 2.1.4
Because of the previous proposition, we will often speak about the algebraic
closure of k and denote it by k.

Definition 2.1.5 (Splitting field)
Let k be a field and let F be a family of non-constant polynomials with co-
efficients in k. A splitting field for F is an algebraic extension kF of k which
satisfies the following two properties:

1. Every polynomial f ∈ F splits as a product of factors of degree 1 in kF .

2. kF is generated by all the roots of the polynomials of F (i.e. it is the
smallest algebraic extension of k enjoying property 1.).

In fact, one can easily show that two splitting fields of a family F are isomor-
phic. Also, a splitting field kF can be constructed as the subfield of k̄ generated
by all the roots of all polynomials of F . Therefore, we will speak about the
splitting field of F .

Definition 2.1.6 (Separable element, separable extension)
Le K|k be a field extension. An element α ∈ K is separable if all the roots of
its minimal polynomial, in a chosen algebraic closure k of k containing K, are
distinct. The extension K|k is separable if all the elements of K are separable.

Example 2.1.7
If the characteristic of k is zero, then all its algebraic extensions are separable.
Any algebraic extension of a finite field is separable.

Consider an algebraic field extension K|k and fix an algebraic closure k of
k which contains K. We are interested in field homomorphisms σ : K −→
k which act by identity on k. Such maps are called k-homomorphisms, k-
embeddings, or just embeddings, when there is no ambiguity on k. If K = k(α) is
a simple extension, then any k-embedding sends α to another root of min(α, k).
Conversely, a root of min(α, k) determines a k-homomorphism of k(α) into k. In
particular, the number of such embeddings is given by the number of different
roots of min(α, k). Note that if an extension K|k is separable, then the number
of k-embeddings σ : K −→ k is equal to the degree [K : k].

We remark that for a k-embedding σ, we may have σ(K) 6⊂ K. This issue
is discussed and settled in the next proposition and definition.
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Proposition 2.1.8
Let K|k be an algebraic extension and fix an algebraic closure k of k containing
K, i.e. k ⊂ K ⊂ k. Then, the following are equivalent:

• K is the splitting field of a family of polynomials with coefficients in k.

• For every k-embedding σ : K −→ k, we have σ(K) ⊂ K.

• For every k-embedding σ : K −→ k, we have σ(K) = K.

• Every irreducible polynomial with coefficients in k which has one root in
K has all its roots in K.

Definition 2.1.9 (Normal field extension)
An algebraic field extension K|k which satisfies one of the equivalent conditions
of the previous proposition is called a normal extension.

Definition 2.1.10 (Galois extension, Galois group)
An algebraic field extension K|k is called a Galois extension if it is both normal
and separable. In this setting, the Galois group is defined to be the group of all
k-homomorphisms σ : K −→ K. It is a group of order [K : k] and is denoted
by Gal(K, k).

Example 2.1.11
Let p ∈ P be an odd prime number and consider the primitive pth root of unity
ζ = e

2π i
p . The extension Q(ζ)|Q is a Galois extension of degree p − 1 whose

Galois group is cyclic. Inside this extension sits a totally real number field of
degree p−1

2 generated by cos 2π
p .

2.2 Number fields
A number field is a finite extension of Q. For a number field K of degree n,
there exist precisely n embeddings σ : K −→ C. If an embedding σ is such
that σ(K) ⊂ R, it is called a real embedding. Otherwise, we call σ a complex
embedding. Since the complex embeddings come in conjugate pairs, then n =
r+2s, where r denotes the number of real embeddings and s the number of pairs
of complex embeddings. The pair (r, s) is called the signature of the number
field. If K has no complex embedding we say that it is a totally real number
field.

2.2.1 The ring of integers
Let K be a number field. We say that an element α ∈ K is an integer of K, if
there exists a monic polynomial f ∈ Z[x] such that f(α) = 0. This is equivalent
to the fact that the minimal polynomial min(α,Q) has coefficients in Z. It can
be shown that the set of integers is a ring called the ring of integers and denoted
by OK . Although the elements of OK may fail to possess some basic arithmetic
properties (for example, we may not have a unique decomposition into a prod-
uct of prime elements) the ring of integers has good properties concerning the
factorization of its ideals (see Theorem 2.2.4).

The multiplicative group of invertible elements O∗K modulo its torsion, which
consists of roots of unity, is a group of finite rank. This is made precise by the
following theorem.
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Theorem 2.2.1 (Dirichlet’s unit theorem)
Let K be a number field and let (r, s) be its signature. Then, we have

O∗K ∼= µ(K)× Zr+s−1,

where µ(K) is the finite cyclic group of the roots of unity in OK .

Definition 2.2.2 (Fundamental unit, fundamental system of units)
If the group O∗K has rank 1, i.e. r + s − 1 = 1, then a generator is called a
fundamental unit. More generally, the set of the r + s − 1 generators of the
non-torsion part of O∗K is called a fundamental system of units.

Example 2.2.3
Let d be a positive square-free integer. For the quadratic field K = Q[

√
d],

Dirichlet’s unit theorem implies that there exists η ∈ O∗K such that

O∗K =
{
± ηm : m ∈ Z

}
.

The element η can be found by solving a Pell type equation.

2.2.1.1 Decomposition of prime ideals in a number field

If P is a prime ideal of OK , then P ∩Z is a prime ideal of Z, that is P ∩Z = 〈p〉,
for some prime number p ∈ P. In this setting we say that P is above 〈p〉 (or
above p). If there exists π ∈ OK such that P = 〈π〉, we say that π is above p.

Theorem 2.2.4 ([Coh93, Theorem 4.8.3])
If p ∈ P is a prime number, then there exist positive integers ei such that

pOK =
g∏
i=1
Peii ,

where the Pi are all the prime ideals above 〈p〉.

Definition 2.2.5 (Ramification index, residual degree)
In the setting of Theorem 2.2.4, the integer ei corresponding to Pi, which is also
written e(Pi/p), is called the ramification index. The (finite) degree of the field
extension

fi = f(Pi/p) =
[
OK/Pi : Z/pZ

]
is called the residual degree.

We have the following relation between ramification indices and residual
degrees (see [Coh93, Theorem 4.8.5]):

g∑
i=1

ei · fi = [K : Q].

If K is a Galois extension (for example when K is a quadratic field or when
K is the maximal real subfield of the pth cyclotomic field), then all the ei,
respectively all the fi, are equal (see [Coh93, Theorem 4.8.6]). This motivates
the following definition.
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Definition 2.2.6
Let K be a Galois number field (i.e. K is a number field and K|Q is a Galois
extension), p ∈ P be a prime and let pOK =

∏g
i=1 P

ei
i be its decomposition. We

say that:

• p is inert if g = 1 and e1 = 1 (meaning that pOK is a prime ideal).

• p splits completely if g = n (and thus ei = fi = 1 for all i).

• p is ramified if there exists i such that ei ≥ 2.

• p is completely ramified if g = 1 and f1 = 1. Hence, pOK is the nth power
of a prime ideal P.

• p is unramified otherwise.

The primes which ramify are exactly the rational primes which divide the
discriminant of the number field (see [Coh93, Theorem 4.8.8]). In particular, in
a real quadratic field Q[

√
d], these are the primes which divide d and 2 if d 6≡ 1

mod 4.
In some cases, we have an effective way to compute the decomposition of an

ideal, as explained in the next theorem.

Theorem 2.2.7 ([Coh93, 4.8.13])
Let Θ be a primitive element of the number field K, that is K = Q[Θ], and
suppose that OK = Z[Θ]. Let T (x) ∈ Z[x] be the minimal polynomial of Θ.
Then, for any p ∈ P, we can compute the decomposition of pOK as follows:

• Compute the decomposition in irreducible factors of T (x) in Fp[x]:

T (x) ≡
g∏
i=1

Ti(x)ei , (mod p).

• Let Pi = 〈p, Ti(Θ)〉 = pOK + Ti(Θ)OK .

Then, we have

pOK =
g∏
i=1
Peii .

Moreover, the residual degree fi = f(Pi/p) is equal to the degree of Ti.

Remarks 2.2.8 • The assumption OK = Z[Θ] can be removed but then
Theorem 2.2.7 only holds for primes p which do not divide

[
OK : Z[Θ]

]
.

When K is a quadratic extension or one of our real cyclotomic fields, the
assumption is satisfied.

• There exist efficient algorithms to factorize polynomials over finite fields.
These are for example implemented in PARI. More information can be
found in [Coh93, Section 3.4].
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2.2.2 Computing the GCD
For two rational integers a, b ∈ Z, there exist essentially two methods to compute
their greatest common divisor gcd(a, b).

The first possibility is to compute the prime decomposition of the two ele-
ments and to take the common factors. Although this is pretty inefficient from
an algorithmic point of view, it can be generalized to any number field as soon
as we are able to decompose rational prime numbers in OK (which can present
some difficulty, for example in cyclotomic fields, as it will be explained in Section
6.5.3.1).

For the second possibility, we use the fact that gcd(a, b) = gcd(a, b mod a).
Hence, we can consider the following algorithm:

Algorithm 1 gcd()
while b 6= 0 do

t← b
b← a mod b
a← t

end
return a

The approach in Algorithm 1 is based on the fact that we can perform a
Euclidean division. This can be generalized as follows.

Definition 2.2.9 (Euclidean ring)
Let R be an integral domain and let f : R \ {0} −→ N0. Then, f is to said to
be an Euclidean function, if the following properties are satisfied:

1. For every pair a, b ∈ R with b 6= 0, there exist q, r ∈ R such that a = qb+r
and either r = 0 or f(r) < f(b).

2. For every pair a, b of non-zero elements of R, then f(a) ≤ f(ab).

The domain R is Euclidean if it admits (at least) one such function.
If R = OK for some number field K, we will say that K is Euclidean if R is
Euclidean. Moreover, if the function f can be taken to be the absolute value of
the usual norm, then K is said to be norm-Euclidean.

Examples 2.2.10 • A real quadratic field K = Q[
√
d] is norm-Euclidean if

and only if d is one of the following values: 2, 3, 5, 6, 7, 11, 13, 17, 19, 21,
29, 33, 37, 41, 57, 73. Note that there also exist Euclidean quadratic fields
which are not norm-Euclidean (for example d = 69, as shown in [Cla94]).

• Let m ∈ 3, 4, 5, 7, 8, 9, 11, 12, 15, 20 and let ζn be a primitive nth root of
unity. Then, Z[ζm] is norm-Euclidean (see [Len75]).

Hence, we could, in theory, use a Euclidean function of a Euclidean number
field K in order to compute the gcd of two elements a and b. However, in
practice, we don’t know how to find the algebraic integers q and r such that
a = qb+ r, even when the field K is norm-Euclidean.

Notice that when K = Q[
√
d] with d = 2, 3, then the problem becomes easy.

We first perform the division a
b = x̃ + ỹ

√
d in K and let q = x + y

√
d, where

x and y are the nearest integers to x̃ and ỹ, respectively. Since N
(
a
b − q

)
< 1,

then r := q · b has the required property.
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Other algorithms It is worth to mention two other algorithms which have
been designed to compute gcd. The first one uses reduction of quadratic forms
and applies only to quadratic number fields and is explained in [AF06]. The
second one concerns arbitrary number fields and was developed by Wikström
(see [Wik05]) but the bounds for the computations are too big to be implemented
[Wik15].

2.2.3 Trace, norm and factorization of elements
We consider the norm and the trace of K given as follows:

N : K∗ −→ C Tr : K −→ C

α 7−→
∏
σ

σ(α) α 7−→
∑
σ

σ(α),

where σ runs through the Galois embeddings of K into C. These two homo-
morphisms enjoy the following two properties:

• For a Galois embedding σ : K −→ C and α ∈ K, both N(α) and Tr(α)
are invariant under σ. In particular, we have N(α),Tr(α) ∈ Q.

• The image of an element of OK lies in Z (when K is a quadratic extension
of Q, the converse is also true: if α ∈ OQ[

√
d] is such that N(α),Tr(α) ∈ Z,

then α ∈ OK).

Moreover, the multiplicative property of N implies the following facts:

• An element α ∈ OK is a unit if and only if N(α) = ±1.

• If α ∈ OK is such that N(α) is a rational prime, then α is prime in OK .

• A prime p ∈ P is either prime in OK or splits in a product of at most
[Knc : Q] primes of OK , where Knc is the normal closure of K.

Proposition 2.2.11
Suppose that OK is a unique factorization domain (UFD) and let π ∈ OK be a
prime. There exists a unique rational prime p ∈ P such that π | p.

Proof. Since π | N(π) ∈ Z, the set of positive rational integers which are divis-
ible by π is not empty. The least element of this set has to be a rational prime,
as required.

Corollary 2.2.12
When OK is a UFD, in order to find all prime elements of OK , it is sufficient
to find the factorization of all rational primes in OK .

Therefore, we have a procedure to find the prime decomposition of an ele-
ment α ∈ OK :

1. For each rational prime p ∈ P, find the decomposition of p in OK .

2. Compute the prime decomposition of N(α) ∈ Z in the integers.

3. For each p | N(α), decompose the prime p in a product π1 · . . . ·πr of prime
elements of OK . For each factor πi, determine the maximal power of πi
which divides α.
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2.2.4 Places of a number field
Let K be a number field. Recall that a place of K is an equivalence class
of absolute values1: two non-trivial absolute values | · |1, | · |2 : K −→ R are
equivalent if there exists some number e ∈ R such that |x|1 = |x|e2 for all x ∈ K.
We can easily create two kind of places:

Infinite places Any real Galois embedding σ : K −→ R yields a place by
composition with the usual absolute value. Similarly, any complex Galois
embedding σ : K −→ C gives rise to a place by composition with the
modulus. These places are called infinite places.
Note that in our setting, where the number fields will often supposed to
be totally real, we will only get real embeddings.

Finite places Let P be a prime ideal of OK . This defines a valuation on OK
as follows:

ηP : OK −→ Z ∪ {∞}, ηP(x) = sup{r ∈ N0 : x ∈ Pr}.

This valuation can be extended to K by setting ηP(x/y) = ηP(x)−ηP(y).
Now, we pick any 0 < λ < 1 we define an the associated absolute value

| · |P : K −→ R, |x|P = ληP(x).

Note that the place associated to this absolute value is independent of the
choice of λ. The places defined in this way are called finite places.

Using Ostrowski’s theorem and theorems about extensions of absolute values,
one gets the following standard result.

Theorem 2.2.13
Let K be a number field. The two constructions explained above give all the
places on K.

We will denote by Ω(K) (respectively Ω∞(K) and Ωf (K)) the set of all
places (respectively infinite places and finite places) of K. If v ∈ Ω(K) is a
place, we denote by Kv the completion of K with respect to v. For a quaternion
algebra B over K, we write Bv for B⊗KKv, which is a quaternion algebra over
Kv. When the place v comes from a prime ideal P of OK , we will sometimes
write KP instead of Kv and BP instead of Bv.

2.2.5 Special elements in algebraic number fields
Definition 2.2.14 (Perron number)
A real algebraic integer λ ∈ C is a Perron number if λ > 1 and if all its real
conjugates have an absolute value strictly smaller than λ.

Definition 2.2.15 (Pisot number)
A real algebraic integer λ ∈ C is a Pisot–Vijayaraghavan number, or sometimes
just a Pisot number, if λ > 1 and if all of its Galois conjugates have absolute
value strictly less than 1.

1Some authors use the word (multiplicative) valuation for what we call absolute value.
This why a place is often denoted by v.
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Definition 2.2.16 (Salem number)
A real algebraic integer λ ∈ C with λ > 1 is a Salem number if it satisfies the
following properties:

• deg λ ≥ 4;

• λ−1 is a Galois conjugate of λ;

• all conjugates of λ except λ and λ−1 lie on the unit circle S1, where
S1 = {z ∈ C : |z| = 1}.

Remark 2.2.17
Some authors also consider Salem numbers of degree 2. We will adopt this point
of view.

If λ is a Salem number, then the degree of its minimal polynomial is even.
Moreover, this polynomial is self-reciprocal (or palindromic). We have the fol-
lowing alternative definition for Salem numbers.

Proposition 2.2.18 ([Sal63, page 26])
Let λ ∈ C be a real algebraic integer greater than 1. Then, λ is a Salem number
if and only if the following condition is satisfied: every Galois conjugate of λ
lies inside the unit disk and at least one of its conjugates lies on the unit circle.

2.2.6 Maximal real subfield of the cyclotomic field
We give in this section basic properties of the maximal real subfield of the
cyclotomic field associated to a prime number. These fields will be considered
in Chapter 6 about the Vinberg algorithm.

Let q ∈ P be an odd prime number and let µ = µq be a primitive qth root
of unity. The field Q[µ] is a Galois extension of degree q − 1 of Q. The Galois
group is

(
Z/qZ

)∗ which acts on Q[µ] via

σl : Q[µ] −→ Q[µ], µa 7−→ µl·a.

Let λ = µ + µ−1 = µ + µ̄, so that λ = 2 cos 2π
q if µ = e

2πi
q , and let K = Q[λ].

We show by induction that µk + µ−k ∈ K. If k = 2m, then we have

λk =
k∑
i=0

(
k

i

)
µk−2i

=
(
µk + µ−k

)
+
m−1∑
i=1

(
k

i

)(
µ2i−k + µk−2i)+

(
k

m

)
.

Thus, by induction hypothesis µk + µ−k ∈ K. Similarly, if k = 2m+ 1, we find

λk =
(
µk + µ−k

)
+

m∑
i=1

(
i

k

)(
µ2i−k + µk−2i).

Since all the Galois conjugates of λ lie in K, then K is a Galois extension of Q.
Moreover, we note that the degree

[
K : Q

]
= (q − 1)/2. Indeed we see that the

only elements σl ∈ Gal(Q[µ],Q) that fix K pointwise are σ1 and σq−1 (or we
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can remark that (x+ µ)
(
x+ µ−1) = x2 + λ · x+ 1 is the minimal polynomial of

µ over K).
Since σq−1, which acts on the powers of µ by complex conjugation, fixes K we
have K ⊂ R. On the other hand, if we let α ∈ Q[µ] ∩ R, then we can write
α =

∑q−2
i=0 aiµ

i for some ai ∈ Q and since α ∈ R, then σq−1(α) = α, which
implies α1 = αq−1, α2 = αq−2, . . .. Hence, we can write

α = a0 +
(q−1)/2∑
i=1

ai ·
(
µi + µ−i

)
and thus α ∈ K. Therefore, K is the maximal real subfield of Q[µ].
It is known that the ring of integers ofQ[µ] is Z[µ] which implies that Z[λ] ⊂ OK .
For the reverse inclusion, we use, as above, that Z[µ] ∩ R ⊂ Z[λ]. The next
proposition summarizes theses facts.

Proposition 2.2.19
Let q ∈ P be an odd prime number and let K = Q

[
cos 2π

q

]
. Then, we have the

following:

• K is a Galois extension of Q of degree (q − 1)/2.

• K is the maximal real subfield of the qth cyclotomic field.

• The ring of integers OK of K is Z
[
µ+ µ−1].

• Q[µ] is a CM-field.

• λ and all its conjugates λi := µi + µ−i form a Z-basis of OK .

• σj(λi) = λi·j.

For an odd prime number q, it is known that OQ[µ] is a principal ideal
domain (PID) if and only if q ∈ {3, 5, 7, 11, 13, 17, 19} (see [Was82, Theorem
11.1]). Moreover, if OQ[µ] is a PID, then so is OQ[cos 2π/q] (see [Was82, Theorem
4.10]). Since we get the fields Q and Q[

√
5] for q = 3 and q = 5 respectively, we

will assume that q ∈ {7, 11, 13, 17, 19}.

The minimal polynomials of the µ+ µ−1 are the following:

q Minimal polynomial

7 x3 + x2 − 2x− 1
11 x5 + x4 − 4x3 − 3x2 + 3x+ 1
13 x6 + x5 − 5x4 − 4x3 + 6x2 + 3x− 1
17 x8 + x7 − 7x6 − 6x5 + 15x4 + 10x3 − 10x2 − 4x+ 1
19 x9 + x8 − 8x7 − 7x6 + 21x5 + 15x4 − 20x3 − 10x2 + 5x+ 1

We also notice that the discriminant of K is q(q−3)/2. In particular, q is the
only prime which ramifies in K.
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Invertible elements of OK We consider, as above, K = Q
[

cos 2π
q

]
, where

q ∈ {7, 11, 13, 19}. The elements of the multiplicative group

C = 〈±µ, 1− µa : 1 < a ≤ q − 1〉 ∩ O∗Q[µ]

are called cyclotomic units. In general (i.e. when K is the maximal real subfield
of the qmth cyclotomic field for a prime q), the group C ∩O∗K is of finite index
in O∗K . However, in our case, since m = 1 and since q = 7, 11, 13, 19, we have
C∩O∗K = O∗K (see [Was82, Theorem 8.2]). Moreover, we know a nice generating
set for O∗K (see [Was82, Lemma 8.1]):

O∗K = 〈−1, µ(1−a)/2 · 1− µa

1− µ : 1 < a ≤ q − 1
2 〉

Hence, we find that a generating set for O∗K is given the following set;

{−1, λ q−1
2
} ∪

{
− λi − λi+1 − . . .− λ(q−1)/2 : i = 2, . . . , q − 3

2

}
.

2.3 Some other results of number theory
Theorem 2.3.1
For every ε > 0, there exists N(ε) ∈ N such that for every n ≥ N(ε) there
is a prime p such that n < p < (1 + ε)n. Moreover, we have N(1) = 4 and
N
( 1

5
)

= 25.

Proof. The first part of the result is proved in [HW08, 22.19, p. 494]. The case
ε = 1 corresponds to Bertrand’s postulate, proved in 1852 by Chebyshev, while
ε = 1

5 is proved in [Nag52].

2.4 The Brauer group
Computations of commensurability invariants of arithmetic hyperbolic Coxeter
groups take place inside the so called Brauer group. We give here the definition
and a few examples. For more details, the reader can refer to [Lam05] and
[GS06].

Let K be a field and let A be a finite-dimensional central simple algebra
over K (the center of A is K and A has no proper non-trivial two-sided ideal).
By Wedderburn’s theorem, there exists a unique (up to isomorphism) division
algebra D over K and a unique integer n such that A ∼= Mat(n;D). This allows
to define an equivalence relation on the set of isomorphism classes of central
simple algebras over K: two algebras A ∼= Mat(n;D) and A′ ∼= Mat(n′;D′) are
said to be Brauer equivalent if and only if D ∼= D′. The quotient set is endowed
with the structure of an abelian group as follows:

[A] · [B] = [A⊗K B].

We remark that the neutral element is the class of Mat(·;K) and [A]−1 =
[
Aop],

where Aop denotes the opposite algebra of A, that is a ·op b = b · a. Note that
we will often write A ·B instead of [A] · [B].
The Brauer group of K is denoted by BrK. All its elements are of finite order
and the 2-torsion is generated by quaternions algebras (see [Mer82]).
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Examples 2.4.1 • If K is an algebraically closed field and if A is a simple
K-algebra of finite dimension, then there exists n ∈ N0 such that A ∼=
Mat(n;K). In particular, we have BrK = 1.

• BrR = {1,H}, where H = (−1,−1)R denotes the quaternions of Hamilton
(see below).

• BrK = 1 for every finite field K.

2.5 Quaternion algebras
Let K be a field of characteristic different of two. A quaternion algebra over
K is a four dimensional central simple algebra over K. Since the characteristic
of K is different of two, there exist a K-basis {1, i, j, k} of A and two non-zero
elements a and b of K such that the multiplication in A is given by the following
rules:

i2 = a, j2 = b, ij = −ji = k.

We then write A = (a, b)K or just (a, b) if there is no confusion about the base
field. We sometimes call (a, b)K the Hilbert symbol of the quaternion algebra.
This is kind of unfortunate because we also have the Hilbert symbol of a field
K, which is the function K∗ ×K∗ −→ {−1, 1} defined as follows:

(a, b) =
{

1 if ax2 + by2 − z2 = 0 has a non-trivial solution in K3,

−1 otherwise.

We will use this function later when speaking about the ramification of rational
quaternion algebras.
For an element q = x+ yi+ zj + tk, with x, y, z, t ∈ K, the standard involution
q = x− yi− zj − tk gives rise to the norm

N : A −→ K, q 7−→ N(q) = q · q = x2 − ay2 − bz2 + abt2.

Since an element q ∈ A is invertible if and only if N(q) 6= 0, we have the
following proposition.

Proposition 2.5.1 ([Lam05, Chapter III, Theorem 2.7])
For a quaternion algebra A = (a, b)K , the following are equivalent:

(i) A is a division algebra;

(ii) the norm N : A −→ K has no non-trivial zero;

(iii) the equation aX2 + bY 2 = 1 has no solution in K ×K;

(iv) the equation aX2 + bY 2 − Z2 = 0 has only the trivial solution.

Moreover, if A is not a division algebra, then A ∼= Mat(2;K).

Therefore, deciding whether a given quaternion algebra is a division algebra
or not reduces to a purely number theoretical question. We will come back to
this question later.
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Proposition 2.5.2
For every a, b, c ∈ K∗, we have the following isomorphisms of quaternion alge-
bras:

(a, b) ∼= (b, a), (a, c2b) ∼= (a, b), (a, a) ∼= (a,−1)
(a, 1) ∼= (a,−a) ∼= (a, 1− a) ∼= (1, 1) ∼= 1
(a, b) · (a, c) ∼= (a, bc) ·Mat(2;K), (a, b)2 ∼= Mat(4;K).

We note that the last two relations can be rewritten in the Brauer group as
follows

(a, bc) = (a, b) · (a, c), (a, b)2 = 1.

Proposition 2.5.3 ([Vig80, chapitre I, Théorème 2.9; chapitre III, Section 3])
If K is a number field, and if B1 and B2 are quaternion algebras over K, there
exists a quaternion algebra B such that B1 ·B2 = B in BrK.

2.5.1 Isomorphism classes of quaternion algebras
We will see below (see Section 4.3.1.2) that the question about the commen-
surability of two arithmetic Coxeter subgroups of IsomHn reduces almost to
deciding whether to quaternions algebras are isomorphic. Hence, we investigate
in this section the isomorphism classes of quaternion algebras.

First, it is worth to mention that the isomorphism classes of quaternion
algebras are not determined by Hilbert symbols (for example, we have (5, 3)Q ∼=
(−10, 33)Q). However, we will see that there is an efficient way to produce a set
which completely describes the quaternion algebra: the ramification set.

The fact that Bv := B⊗KKv is either a division algebra or a matrix algebra
(see Proposition 2.5.1) motivates the following definition.

Definition 2.5.4 (Ramification of a quaternion algebra)
Let B be a quaternion algebra defined over a number field K. The ramification
set of B, denoted RamB, is defined as follows:

RamB =
{
v ∈ Ω(K) : Bv := B ⊗K Kv is a division algebra

}
.

We will also write

Ramf B = RamB ∩ Ωf (K), Ram∞B = RamB ∩ Ω∞(K).

Theorem 2.5.5 ([Vig80, Chapter III, Theorem 3.1])
Let B be a quaternion algebra defined over a number field K. The ramification
set of B is a finite set of even cardinality. Conversely, if R ⊂ Ω(K) is a finite
set of even cardinality, there exists, up to isomorphism, a unique quaternion
algebra B′ over K such that RamB′ = R.

Remark 2.5.6
Using (iv) of Proposition 2.5.1 it is easy to compute the infinite ramification
Ram∞B of a quaternion algebra B = (a, b)K . Indeed, if σ : K −→ R is a Galois
embedding and if v is the corresponding absolute value, then Bv ∼=

(
σ(a), σ(b)

)
.

Thus, v ∈ Ram∞(a, b)K if and only if σ(a) < 0 and σ(b) < 0.
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Remark 2.5.7
When K = Q, the previous theorem comes from classical results such as the
Hasse-Minkowski principle (since two quaternion algebras are isomorphic if the
quadratic spaces induced by their norms are isomorphic) and Hilbert’s reci-
procity law.

Finally, let us mention a result which helps for computations.

Proposition 2.5.8 ([Vig80, Page 78])
Let B1 and B2 be two quaternion algebras over a number field K and let B be
such that B1 ·B2 = B ∈ BrK (see Proposition 2.5.3). Then, we have

RamB =
(

RamB1 ∪ RamB2
)
\
(

RamB1 ∩ RamB2
)
.

When dealing with arithmetic groups of odd dimension, we will need to
compute the ramification of quaternion algebras over a quadratic extension of
a number field.

Proposition 2.5.9
Let K be a number field and let L = K(

√
δ) be a quadratic extension of K. Let

also B be a quaternion algebra over K and A := B⊗KL. Then, the ramification
sets at finite places of A and B are related as follows:

Ramf A =
{
P1,P

′
1, . . . ,Pr,P

′
r},

where each pair Pi,P
′
i is a pair of prime ideals of OL which lie above a prime

ideal Pi of OK such that B is ramified at Pi and Pi splits completely (see
Definition 2.2.6).

Proof. Let P be a prime ideal of OL and let P := P ∩ OK . We also consider
the completions LP (respectively KP) of L (respectively K) with respect to the
valuation defined by P (respectively P). We first note that AP

∼= BP ⊗KP LP.
Indeed, we have

AP
∼= A⊗L LP = (B ⊗K L)⊗L LP

∼= B ⊗K LP
∼= BP ⊗KP LP.

By classical results, we then have three possibilities for the ideal POL:

Inert case The ideal POL is prime, meaning that POL = P.

Ramified case We have POL = P2.

Split case There exists another prime idealP′ above P such that POL = PP′.

In the first two cases, [LP : KP ] = 2 (see, for example, [CF67, Chapter I, §5,
Proposition 3]) which implies that AP is a matrix algebra (see [Vig80, Chapitre
II, théorème 1.3]). In the last case, we have KP ∼= LP (again by [CF67]) and
thus AP

∼= BP . Therefore, A is ramified at P if and only if B is ramified at P
if and only if A is ramified at P′, as required.
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Computing the ramification set when K = Q We consider in this section
a quaternion algebra B = (a, b) over Q and we explain how to compute its
ramification. In this setting, the finite places are the p-adic valuations and
there is exactly one infinite place, denoted by | · |∞, corresponding to the usual
absolute value. By virtue of Proposition 2.5.1(iv), it is clear that B is ramified
at ∞ if and only if a < 0 and b < 0. Moreover, using propositions 2.5.2 and
2.5.8, we see that we only have to compute the ramification set for quaternion
algebras which have one of the following form

(−1, q), (−p, q), (p, q), ∀p, q ∈ P.

Finally, the identity

(p, q) = (−p, q) · (−1, q) ∈ BrQ,

implies that the only first two cases are sufficient.

Proposition 2.5.10
We have Ram(−1, 2) = ∅ and Ram(−1,−2) = {2,∞}.

If q is a prime number different from two, then we have the following rami-
fication sets:

q ≡ 1 mod 8 q ≡ 3 mod 8 q ≡ 5 mod 8 q ≡ 7 mod 8

(−1, q) ∅ {2, q} ∅ {2, q}

(−1,−q) {2,∞} {q,∞} {2,∞} {q,∞}

(2,−q) ∅ {2, q} {2, q} ∅

(−2, q) ∅ ∅ {2, q} {2, q}

Finally, let q1, q2 ∈ P \ {2} be two distinct prime numbers. The ramification set
of the quaternion algebra (−q1, q2) is as follows:

q2 ≡ 1 (mod 4) q2 ≡ 3 (mod 4)

q1 ≡ 1 (mod 4) {q1, q2} if
(
q1
q2

)
= −1

∅ otherwise
{2, q1} if

(
q1
q2

)
= −1

{2, q2} otherwise

q1 ≡ 3 (mod 4) {q1, q2} if
(
q1
q2

)
= −1

∅ otherwise
{q1, q2} if

(
q1
q2

)
= 1

∅ otherwise

where
(
a
b

)
denotes the Legendre symbol of a and b.

Proof. For x, y ∈ Q we have the Hilbert symbol (x, y)p ∈ {−1, 1} (see, for
example, [Cas78]) and for a diagonal quadratic form f = 〈a1, . . . , an〉, we define:

c(f)p =
∏
i<j

(ai, aj)p, c(B)p = c
(
〈1,−a,−b, ab〉

)
p
.

Using a lemma (see [Cas78, Lemme 2.6, page 59]), we find:

p ∈ Ram(B)⇔ c(B)p =
{

1 p = 2,∞
−1 p odd.
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Therefore, to find the ramification set it is sufficient to compute the Hilbert
symbols c(B)p. To compute these symbols, we can use [Ser96, Part I, Chapter
III, Theorem 1]. We note that if p ∈ RamB, then we must have p = 2 or p | a
or p | b.
We compute the Hilbert symbols:

c
(
(−1, 2)

)
2 = (−1,−2)2 = −1, c

(
(−1,−2)

)
2 = (2,−1)2 = 1,

c
(
(−1, q)

)
2 = (−q,−q)2 = (−1)ε(−q), c

(
(−1, q)

)
q

= (−q,−q)q = (−1)ε(q),

c
(
(−1,−q)

)
2 = (q, q)2 = (−1)ε(q), c

(
(−1,−q)

)
q

= (q, q)q = (−1)ε(q),

c
(
(2,−q)

)
q

= (−1)ω(q), c
(
(−2, q)

)
q

= (−1)ε(q)+ω(q),

c
(
(2,−q)

)
2 = (q,−1)2 · (−2,−q)2 = (−1)1+ω(−q),

c
(
(−2, q)

)
2 = (2,−1)2 · (−q,−2)2 = (−1)ε(−q)+ω(−q),

where

ε(n) =
{

0 if n ≡ 1 (mod 4)
1 if n ≡ 3 (mod 4)

, ω(n) =
{

0 if n ≡ ±1 (mod 8)
1 if n ≡ ±3 (mod 8).

Finally, if q1, q2 ∈ P \ {2} are two distinct prime numbers, we have

c
(
(−q1, q2)

)
2 = (q1,−1)2 · (−q2,−q1)2 = (−1)ε(q1)+ε(−q1)·ε(−q2)

c
(
(−q1, q2)

)
q1

= (q1,−1)q1 · (−q2,−q1)q1 =
(
q2

q1

)
c
(
(−q1, q2)

)
q2

= (q1,−1)q2 · (−q2,−q1)q2 = (−1)ε(q2) ·
(
q1

q2

)
,

where
(
a
b

)
denotes the Legendre symbol of a and b.

2.6 Roots of polynomials
Definition 2.6.1 (Number of sign changes)
Let {a1, . . . , an} be an ordered sequence of real numbers. We say that a sign
change occurs between ak and al if ak ·al < 0 and if either l = k+1, or l > k+1
and ak+1 = . . . = al−1 = 0. The number of sign changes of the sequence is the
total number of sign changes.

Theorem 2.6.2 (Descartes’ rule of signs)
Let p(x) = a0 + a1x + . . . + anx

n be a real polynomial with an 6= 0. Let σ
be number of sign changes in the sequence {a0, , . . . , an−1, an}. Then, p has at
most σ positive real zeros. Moreover, if r denotes the number of positive real
zeros of p, then σ − r is even.

Proof. See [Hen74, Theorem 6.2d].

Definition 2.6.3 (Sturm’s sequence)
Let p ∈ R[x] be a square-free (i.e. without square factors) polynomial and
construct the following sequence of polynomials:
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• p0(x) = p(x);

• p1(x) = p′(x);

• for k ≥ 2, we define pk as the opposite of the remainder of the polynomial
division of pk−2 by pk−1, i.e. pk−2 = pk−1 ·qk−pk, with deg pk < deg pk−1;

The last polynomial pm of the sequence is the first constant polynomial. Then,
we call {p0, p1, . . . , pm} a Sturm sequence for p.

Remarks 2.6.4 • The constant polynomial pm is non-zero if and only if p
is square-free.

• The previous definition is in fact a particular case of a Sturm sequence.

Theorem 2.6.5 (Sturm’s theorem)
Let p ∈ R[x] be a square-free polynomial and let {p0, p1, . . . , pm} be a Sturm
sequence for p. For a real number λ ∈ R, we denote by σ(λ) the number of
sign changes in the sequence {p0(λ), . . . , pm(λ)}. Let α < β be two real numbers
which are not roots of p. Then, the number of real zeros of p in the interval
[a, b] is σ(α)− σ(β).

Proof. See [Hen74, Section 6.3].

Remark 2.6.6
If we drop the assumption p(α) · p(β) 6= 0, then the result is the following: the
number of real zeros in the interval (α, β] is given by σ(α)− σ(β).

Example 2.6.7
A Sturm sequence of the polynomial p(x) = −4 + x − x2 + x3 is given by
{−4 + x− x2 + x3, 1− 2x+ 3x2, 35

9 −
4
9x,−

3411
16 }. We compute the sequences of

signs:

• for α = 0: {−,+,+,−};

• for β = 1: {+,+,+,−}.

Therefore, p has 2− 1 = 1 real zero between 0 and 2.

Theorem 2.6.8
Let p(x) = anx

n+an−1x
n−1+. . .+a0 be a real polynomial with an 6= 0. Then, all

the real roots of p lie in the interval (−ρ, ρ), where ρ = 1+ 1
|an| max0≤k≤n−1 |ak|.

Proof. See [RS02, Theorem 8.1.7].

2.7 Hilbert spaces
Definition 2.7.1 (Hilbert space)
A Hilbert space is a real inner product space (H , 〈−,−〉) (not necessarily of
finite dimension) such that H is complete with respect to the metric induced
by the inner product.

Definition 2.7.2 (Orthonormal basis of a Hilbert space)
Let (H , 〈−,−〉) be a Hilbert space and let B = {xi} ⊂ H be a collection
of vectors of H . We say that B is an orthonormal Hilbert basis of H if the
following are satisfied:
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1. For every xi, xj ∈ B, we have 〈xi, xj〉 = δji .

2. The closure of the linear span of B is the whole space H .

Theorem 2.7.3 ([Lax02, Chapter 6, Theorem 9])
Every Hilbert space has an orthonormal Hilbert basis.

Theorem 2.7.4 ([Con85, Proposition 4.14])
Any two orthonormal bases of a Hilbert space have the same cardinality.

Definition 2.7.5 (Dimension of a Hilbert space)
The Hilbert dimension, or just dimension, of a Hilbert space is the cardinality
of one its orthonormal Hilbert bases.

Remark 2.7.6
In general, an orthonormal Hilbert basis is different from an orthonormal basis,
and the Hilbert dimension is different from the dimension of the underlying
vector space (see example 2.7.8). However, when the dimension is finite, these
notions coincide. We will use the terms algebraic basis or Hamel basis to specify
a basis of the underlying vector space.

Notation 2.7.7
For two Hilbert spaces H1,H2 we denote by L(H1; H2) the vector space of
continuous R-linear maps from H1 to H2.

Example 2.7.8 (The sequence space `2)
Let `2 be the set of sequences of real numbers (xn)n∈N such that

∑
n∈N x

2
n <∞.

It is easy to see that the form

`2 × `2 −→ R

(x, y) 7−→ 〈x, y〉 =
∑
n∈N

xnyn

is an inner product which turns `2 into a Hilbert space. The set {em}m∈N ⊂ `2
of sequences such that (em)n = δmn is an orthonormal Hilbert basis of `2 but it
obviously is not an orthonormal algebraic basis. In fact, the Hilbert dimension
of `2 is ℵ0 while the dimension of the underlying vector space is 2ℵ0 .

Definition 2.7.9 (Separable Hilbert space)
A Hilbert space is called separable if its Hilbert dimension is ℵ0.

Remark 2.7.10
Up to isomorphism, `2 is the only separable Hilbert space.

Proposition 2.7.11 ([Lax02, Chapter 6, Theorem 3])
Let H be a Hilbert space and V be a closed linear subspace of H . Then, we
have the following:

• V ⊥ is a closed linear subspace;

• we have the decomposition H = V ⊕ V ⊥.

Corollary 2.7.12
If V is a finite-dimensional linear subspace of H , then H = V ⊕ V ⊥ and both
V and V ⊥ are Hilbert spaces.
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Definition 2.7.13 (Tensor product of Hilbert spaces)
Let (Hi, 〈−,−〉i), 1 ≤ i ≤ r, be a finite family of Hilbert spaces and consider
the usual tensor product (or algebraic tensor product) H := H1⊗ . . .⊗Hr. We
have a natural bilinear form defined on simple tensors

(
ei1 ⊗ . . .⊗ eir , e′i1 ⊗ . . .⊗ e

′
ir

)
7−→

r∏
j=1
〈eij , e′ij 〉, eij , e

′
ij ∈Hj ,∀1 ≤ j ≤ r,

which extends by linearity to an inner product on H (see [Wei80, Section 3.4]).
The completion of H with respect to the norm defined by this inner product is
a Hilbert space which is denoted by H1⊗̂ . . . ⊗̂Hr.

Proposition 2.7.14
Let H ,H ′ be two Hilbert spaces with their orthonormal Hilbert bases {ei} and
{e′j}. Then, the collection {ei⊗ e′j} is an orthonormal Hilbert basis of H ⊗̂H ′.

Proof. See [Wei80, Theorem 3.12].

2.7.1 Geometry in Hilbert spaces
Let (H , 〈−,−〉) be a Hilbert space. A unit vector a ∈ H and a scalar t ∈ R
define a hyperplane

P (a, t) =
{
x ∈H : 〈a, x〉 = t

}
,

which in turn gives rise to the reflection with respect to P (a, t) given by

τ : H −→H

x 7−→ x+ 2(t− 〈a, x〉) · a.

The reflection extends naturally to a bijection of Ĥ := H ∪ {∞} by setting
τ(∞) = ∞. In a similar way, a vector a ∈ H and a positive real number r
define the sphere S(a, r) of radius r centered at a in the usual way, which in
turn leads to the inversion with respect to S(a, r),

σ : Ĥ −→ Ĥ

x 7−→ a+
(

r

d(x, a)

)2
· (x− a),

(2.1)

with the convention that σ(a) =∞ and σ(∞) = a.

Definition 2.7.15 (Generalized sphere)
A generalized sphere in Ĥ is either an extended hyperplane Ĥ = H ∪ {∞},
where H is a hyperplane of H , or a sphere as above. If we want to emphasize
on the parameters, we will write Σ(a, r) for P̂ (a, r) = P (a, r) ∪ {∞} or for
S(a, r).

Definition 2.7.16 (Reflection in a generalized sphere)
A reflection in a generalized sphere Σ is a reflection with respect to Σ if Σ is an
extended hyperplane and an inversion in Σ if Σ is a sphere.
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Definition 2.7.17
The group of transformations whose elements are finite products of reflections
in generalized spheres is denoted by Möb∗(H ).

Definition 2.7.18 (Similarity)
Let y ∈H , T ∈ O(H ) and λ ∈ R∗+. The bijection of H to itself given by

x 7−→ λ · T (x) + y,

is called a similarity. The group of all similarities is denoted by Sim(H ); it
contains O(H ) as a subgroup.

Topology of Ĥ The collection of open subsets of H together with sets of the
form {∞}∪ (H \F ), where F is a bounded subset of H , defines a topology on
Ĥ . Equipped with this topology, reflections with respect to generalized spheres
are homeomorphisms of Ĥ to itself.

2.8 Riemannian manifolds
We briefly present here the basic definitions which lead to the concept of a
Riemannian manifold. A standard reference for this topic is [Kli95]. For this
section, we fix a Hilbert space H (note that H can be finite or infinite dimen-
sional, separable or not).

Definition 2.8.1 (Topological manifold)
LetM be a topological space. We say thatM is a topological manifold modelled
on H , or just topological manifold if there is no ambiguity on H , ifM is locally
homeomorphic to H .

Remarks 2.8.2 • Some authors require the underlying topological space of
a topological manifold to be separable and Hausdorff. In this case, the
Hilbert space H is separable and thus H ∼= `2.

• A topological manifold modelled on a Hilbert space is sometimes called a
Hilbert manifold.

Definition 2.8.3 (Differentiable map)
Let U1 ⊂ H1 and U2 ⊂ H2 be two open subsets of two Hilbert spaces H1,H2
and let f : U1 −→ U2 be a continuous map. We say that f is differentiable at
u0 ∈ U1 if there exists dfu0 ∈ L(H1; H2) such that

f(u)− f(u0)− dfu0(u− u0) = o(|u− u0|).

The map is called differentiable of class C1 if it is differentiable at every u0 ∈ U1
and if the map u 7−→ dfu is continuous. A map of class Ck is defined in a
similar way by induction. If f is of class Ck for every k ∈ N, we say that f is
differentiable, or smooth.

Definition 2.8.4 (Diffeomorphism)
A map f : U1 −→ U2 between two open subsets of two Hilbert spaces is a diffeo-
morphism if it is differentiable, bijective and if its inverse is also differentiable.
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Definition 2.8.5 (Differentiable atlas)
Let M be a topological manifold modelled on H . A differentiable atlas for M
is a collection (ϕi, Ui)i∈I of charts which enjoys the following properties:

• Each Ui is an open set of M and the family {Ui}i∈I is a covering of M .

• ϕi : Ui −→ ϕi(Ui) is a homeomorphism of Ui onto an open subset ϕi(Ui)
of H .

• For every i, j ∈ I, the transition map

ϕi,j : ϕi(Ui ∩ Uj) −→ ϕj(Ui ∩ Uj), ϕi,j = ϕj ◦ ϕ−1
i ,

is a diffeomorphism.

Definition 2.8.6 (Equivalent atlases)
Two atlases of a topological manifold M are called equivalent if their union is
an atlas of M .

Definition 2.8.7 (Differentiable structure)
A differentiable structure on a topological manifold is an equivalence class of
differentiable atlases.

Definition 2.8.8 (Differentiable manifold)
A differentiable manifold is a topological manifold modelled on a Hilbert space
together with a differentiable structure.

For a given differentiable manifold M and a point p ∈M , one can define the
tangent space TpM at p as in the finite-dimensional case. This gives rise to the
tangent bundle TM and leads to the definition of vector field. All the details
are presented in [Kli95].

Definition 2.8.9 (Riemannian metric)
A Riemannian metric g on a differentiable manifold M is a family of inner
products

gp : TpM × TpM −→ R,
such that for every pair of differentiable vector fields X,Y on M , the map

M −→ R
p 7−→ gp(Xp, Yp),

is differentiable.

Definition 2.8.10 (Riemannian manifold)
A Riemannian manifold is a pair (M, g), where M is a differentiable manifold
and g is a Riemannian metric on M .

Remark 2.8.11
We will often consider the Riemannian metric of a given Riemannian manifold as
implicitly given and write 〈v, w〉 for two vectors v, w ∈ TpM instead of gp(v, w).

Definition 2.8.12 (Conformal map)
Let f : M −→ N be a diffeomorphism between two Riemannian manifolds. The
map f is called conformal, if there exists a differentiable map α : M −→ R∗+
such that

〈dfp(v), dfp(w)〉 = α(p)2 · 〈v, w〉, ∀p ∈M, ∀v, w ∈ TpM.
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Remark 2.8.13
The above definition means that a conformal map should preserve angles be-
tween curves meeting at a given point.

Example 2.8.14
Reflections in generalized spheres and similarities are conformal maps.

In fact, the converse is also true: similarities, eventually composed with a
sphere inversion, are the only conformal maps of a real Hilbert space.

Theorem 2.8.15 (Liouville’s theorem)
Let U ⊂ H be a connected open subset of a Hilbert space of dimension at
least 3 and let f : U −→ H be a conformal map. Then, one of the following
cases holds:

• There exist λ > 0, y ∈H and T ∈ O(H ) such that

f(z) = λ · T (z) + y, ∀z ∈ U.

• There exist λ > 0, x, y ∈H and T ∈ O(H ) such that

f(z) = λ · T
(
ιx(z)

)
+ y, ∀z ∈ U,

where ιx is the inversion with respect to the sphere S(x, 1), as given by
equation (2.1) of page 25.

Proof. See [Huf76].

The previous theorem implies that every conformal map f : U −→ H ,
where U is an open connected subset of H , can be extended in a unique way
to a homeomorphism f̂ : Ĥ −→ Ĥ , where Ĥ := H ∪ {∞}.

Definition 2.8.16 (Möbius transformation, Möbius group)
The map f̂ is called a Möbius transformation. The group of all Möbius transfor-
mations of a Hilbert space H is called the Möbius group of H and is denoted
by Möb(H ).

Remark 2.8.17
When the dimension of the Hilbert space is finite, a Möbius transformation is the
composition of a finite number of reflections in generalized spheres (see [Rat06,
§4.3] for example). However, when the dimension of the space is infinite, some
elements of Möb(H ) cannot be written as a finite composition of inversions.
Indeed, a map of type f(z) = λ · T

(
ιx(z)

)
+ y or f(z) = λ · T (z) + y can be

written as a finite product of reflections in generalized spheres if and only if the
space of fixed points of T has finite codimension. In other words, Möb∗(H ) (see
Definition 2.7.17) is a proper subgroup of Möb(H ) if H is infinite-dimensional.
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CHAPTER 3
Hyperbolic space, Coxeter groups and Coxeter

polyhedra

In this chapter, we present the theoretical background related to hyperbolic
space, reflection groups and polyhedra. In the first section, we introduce dif-
ferent models for the three simply connected complete Riemannian manifolds
Xn of constant sectional curvature +1, 0, and −1. Concerning the hyperbolic
space, we also explain how the classical models can be extended to the infinite-
dimensional setting. The finite-dimensional case is treated in details in [Rat06]
while its infinite-dimensional counterpart is presented in [Das12]1. Finally, we
also present well-known general facts about isometries of the hyperbolic space,
especially in the upper half-space model.

Concerning Coxeter groups, we first give the abstract definition before re-
stricting ourselves to geometric Coxeter groups, that is, Coxeter groups which
are realized as discrete subgroups generated by finitely many reflections in hy-
perplanes of Xn.

Finally, we present various invariants of hyperbolic Coxeter groups (growth
series and growth rate, Euler characteristic, cocompactness and cofiniteness, f -
vector, arithmeticity) and explain how we can compute these invariants. All
these computations are implemented in my computer program CoxIter, which
is presented in Chapter 5.

3.1 Three geometries and their models

It is well known that there exist only three simply connected complete Rieman-
nian manifolds of constant sectional curvature of dimension n ≥ 2: the spheres
Sn, the Euclidean spaces En and the hyperbolic spaces Hn. Up to a rescaling of
the metric, we can suppose that the curvatures are respectively +1, 0 and −1.
We will write X, or Xn if we want to emphasize on the dimension, for one of the
three spaces.

For ε = +1, 0,−1, we consider Rn+1 equipped with the bilinear form given

1Although only the separable case is treated in [Das12], the results we need also work for
any infinite-dimensional hyperbolic space (i.e. not necessarily separable).
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by

〈−,−〉ε : Rn+1 × Rn+1 −→ R

(x, y) 7−→
n∑
i=1

xiyi + ε · xn+1yn+1.

Recall that the form 〈−,−〉−1 is often called Lorentzian form. We can now
define the models for our geometries. The n-dimensional sphere Sn is defined
to be the set

Sn = {x ∈ Rn+1 : 〈x, x〉1 = 1},

together with the distance function d = dSn given by

cos d(x, y) = 〈x, y〉1, ∀x, y ∈ Sn.

The n-Euclidean space En can be identified with the set

En = {x ∈ Rn+1 : xn+1 = 0},

endowed with the metric given by

d(x, y) = dEn(x, y) =
√
〈x, y〉0, ∀x, y ∈ Rn+1.

The hyperboloid model, or vector space model, of the hyperbolic n-space Hn
arises as the set

Hn = {x ∈ Rn+1 : 〈x, x〉−1 = −1, xn+1 > 0}, (3.1)

together with the distance defined by the relation

d(x, y) = dHn(x, y) = arcosh(−〈x, y〉−1), ∀x, y ∈ Hn.

The volume element is given by

dx1 · . . . · dxn√
1 + x2

1 + . . .+ x2
n

,

as shown in [Rat06, Theorem 3.4.1]. The boundary of Hn can be identified with
the set

∂Hn =
{
x ∈ Rn+1 : 〈x, x〉−1 = 0,

n+1∑
i=1

x2
i = 1, xn+1 ≥ 0

}
,

and we let Hn := ∂Hn∪Hn. A hyperplane of Hn is given by the intersection of
the orthogonal complement (with respect to the Lorentzian product) of a vector
v of Lorentzian norm 1 and Hn. We denote such a hyperplane by Hv. Remark
that such a hyperplane splits Hn into two half-spaces H+

v :=
{
x ∈ Hn : 〈v, x〉 ≥

0
}
and H−v :=

{
x ∈ Hn : 〈v, x〉 ≤ 0

}
whose intersection is Hv. The relative

behaviour of two distinct hyperplanes Hv and Hw can be described by means of
the Lorentzian product of v and w (see [Rat06, Theorems 3.2.6, 3.2.7 and 3.2.9]
or [Vin85, Section 1.1]):

• The hyperplanes intersect if and only if |〈v, w〉| < 1. In this case, the
acute dihedral angle in

(
0, π2

]
between them is given by arccos(|〈v, w〉|).
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• The hyperplanes are parallel if and only if |〈v, w〉| = 1. In this case their
dihedral angle is 0.

• The hyperplanes are ultraparallel if and only if |〈v, w〉| > 1. In this
setting, the two hyperplanes admit a common perpendicular of length
arcosh(|〈v, w|〉).

3.2 Models of the hyperbolic space
In this section, we present two other models of the hyperbolic space, the upper
half-space model and the Poincaré ball model, together with a different version
of the hyperboloid model. We adopt an approach that allows us to define models
which are both finite and infinite-dimensional. We use the notation Hn to denote
any of the three models Un, Hn and Bn. We also describe the isometries of the
upper half-space model.

We consider a Hilbert space (H , 〈−,−〉H ) of Hilbert dimension n (see Def-
inition 2.7.5) and some unit vector u ∈ H . By Corollary 2.7.12, we have a
decomposition of H as a direct sum of Hilbert space, that is H = 〈u〉⊥ ⊕ 〈u〉
and this decomposition comes with the projection π〈u〉⊥ of H onto 〈u〉⊥ and
the functional lu defined as follows:

lu : H −→ R
x 7−→ 〈x, u〉H .

3.2.1 The upper half-space model
We consider the set

Un = UH = {x ∈H : lu(x) > 0},

together with the distance function given by

d(x, y) = dUn(x, y) = arcosh
(

1 + dH (x, y)
2 · lu(x) · lu(y)

)
, ∀x, y ∈ Un.

We call Un the upper half-space model of the hyperbolic n-space. The boundary
Un is given by

∂Un =
{
x ∈H : lu(x) = 0

}
∪ {∞}.

Remarks 3.2.1 • The upper half-space model is suitable to get isometries
from 2× 2 Clifford matrices. We will come back to this question in Chap-
ter 8.

• If H = Rn and u = en, the above construction gives the usual upper
half-space model Un (see [Rat06, §4.6]).

• When H = `2 (see Example 2.7.8), we usually take u = (1, 0, . . .).

• If the dimension of H is infinite, we will often discard the cardinal n and
only write U∞.
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3.2.2 The hyperboloid model
We define on the product R×H the bilinear form

B
(
(λ, x), (µ, y)

)
= 〈x, y〉H − λµ,

and we consider its associated quadratic form q. Then
Hn = HH =

{
(λ, x) ∈ R×H : q(λ, x) = ‖x‖2H − λ2 = −1, λ > 0

}
,

together with the distance function defined by
d = dHn = arcosh

(
−B

(
(λ, x), (µ, y)

))
, ∀(λ, x), (µ, y) ∈ Hn.

We call Hn the hyperboloid model, or the vector space model, of the hyperbolic
n-space in R×H .
Remarks 3.2.2 • The hyperboloid model is suitable to define and treat hy-

perplanes in terms of linear subspaces.

• If H = Rn, the above construction gives the classical hyperboloid model
Hn presented above (see equation (3.1) on page 63 and [Rat06, §3.2]).

• As for the upper half-space model, if the dimension of H is infinite, we
will often discard the cardinal n and write only H∞.

• Another standard way to construct Hn is to look at the quotient C/R∗,
where C is the cone

{
(λ, x) ∈ Hn : q(λ, x) < 0

}
. Then, the distance d on

C given by

cosh2 d(x, y) = B(x, y)2

q(x) · q(y) , ∀x, y ∈ C,

induces a distance on C/R∗.

• The space R×H , together with the quadratic form (λ, x) 7−→ ‖x‖2−λ2,
is a quadratic space of index 1 (see [BIM05] for the definition). Moreover,
the space Hn is a geodesic CAT(−1) space (see [BIM05, Proposition 4.2]).

3.2.3 Poincaré ball model
We consider the set

Bn = BH =
{
x ∈H : ‖x‖H < 1

}
,

together with the distance function given by

dBn(x, y) = arcosh
(

1 + 2 · dH (x, y)(
1− ‖x‖2H

)
·
(
1− ‖y‖2H

)) , ∀x, y ∈ Bn.

We call Bn the Poincaré ball model of the hyperbolic n-space. Its boundary is
given by

∂Bn = {x ∈H : ‖x‖H = 1}.
Remarks 3.2.3 • When the dimension of H is finite, the Poincaré ball

model is suitable to visualize non-compact polyhedra.

• If H = Rn, the above construction gives the usual Poincaré ball model
(see [Rat06, §4.5]).

• If the dimension of H is infinite, we will often discard the cardinal n and
write only B∞.
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3.2.4 Models of the hyperbolic space as Riemannian man-
ifolds

As in the finite dimensional case, the models Un and Hn of the hyperbolic space
can be viewed as Riemannian manifolds (see Definition 2.8.10). The Riemannian
metric at a point p ∈ Hn are given in the next table.

Model Riemannian metric

Un gp(v, w) = 〈v, w〉H
lu(p)2 , ∀v, w ∈ Tp Un ∼= H

Hn gp
(
(λ, x), (µ, y)

)
= −λ · µ+ 〈x, y〉H , ∀(λ, x), (µ, y) ∈ TpHn

Bn gp(v, w) = 4 · 〈v, w〉H(
1− ‖x‖2H

)2 , ∀v, w ∈ TpBn ∼= H

Note that the tangent space TpHn at a point p = (ν, z) ∈ Hn is given by

TpHn =
{

(λ, x) ∈ R×H : B
(
(ν, z), (λ, x))

)
= 〈z, x〉H − νλ = 0

}
.

3.2.5 Isometries of the upper half-space
Reflections in generalized spheres and similarities (see Section 2.7.1) of a codi-
mension 1 subspace in H can be used to define isometries of the hyperbolic space
as follows. We consider the decomposition H = 〈u〉⊥ ⊕ 〈u〉, where u ∈ H is
a unit vector, and the associated upper half-space model U = UH = {x ∈ H :
lu(x) > 0}. Now, if Σ(a, r) is a generalized sphere in the Hilbert space 〈u〉⊥
with associated reflection σ, then Σ(a+ 0, r) is a generalized sphere of H with
associated reflection σ̃ in a natural way. On the other hand, if

η : 〈u〉⊥ −→ 〈u〉⊥, x 7−→ λ · T (x) + y

is a similarity (see Definition 2.7.18) of 〈u〉⊥, then we have an induced similarity
η̃ of H given by

η̃ : H −→H , x 7−→ λ ·
(
T (π〈u〉⊥(x)) + π〈u〉(x)

)
+ y,

where πV denotes the projection onto the subspace V of H . It is easily shown
that these induced maps are isometries of the space Un.

Definition 3.2.4 (Poincaré extension)
For a reflection σ in a generalized sphere of 〈u〉⊥ (respectively a similarity η ∈
Sim(〈u〉⊥)), the induced bijection σ̃ (respectively η̃) of H is called the Poincaré
extension of σ (respectively η).

Remark 3.2.5
In a similar way, if V is any subspace of H and if ϕ is an element of Möb(V ),
then ϕ can be extended via Poincaré extension to an element of Möb(H ).

The following result provides an important characterisation of isometries of
the upper half-space.
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Theorem 3.2.6
Let g : Un −→ Un be a diffeomorphism. Then, the following are equivalent:

1. g is a conformal isomorphism of Un.

2. g extends to a Möbius transformation ĝ ∈ Möb(H ) which preserves Un.

3. g preserves the Riemannian metric of Un.

4. g is an isometry of Un, that is,

dUn

(
g(x), g(y)

)
= dUn(x, y), ∀x, y ∈ Un.

Proof. The proof given in [Das12, Theorem 2.15] also works in the non-separable
case.

Remark 3.2.7
To avoid cumbersome notations, we will often use the same notation for an
isometry g : Un −→ Un and its Möbius extension ĝ : H −→H .

If V is any closed subspace of 〈u〉⊥ and if g is a similarity of V , then the
Poincaré extension ĝ : H −→ H will preserve the upper half-space Un, which
means that the restriction of ĝ to Un is an isometry. Reciprocally, if g is an
isometry of Un, then the extension ĝ : H −→H preserves ∂Un = 〈u〉⊥ ∪ {∞}.
Therefore, ĝ

∣∣
∂Un is an element of Möb(∂Un) whose Poincaré extension is ĝ. In

other words, we have the following corollary.

Corollary 3.2.8
The group of isometries Isom(Un) is isomorphic to the group Möb(〈u〉⊥).

We have the following analogous result for the group Möb∗.

Corollary 3.2.9
If g : Un −→ Un is an isometry of Un whose Möbius extension ĝ can be written
as a composition of a finite number of reflections in generalized spheres (i.e. we
have ĝ ∈ Möb∗(H )), then there exists a finite-dimensional subspace V of 〈u〉⊥
and an element ϕ ∈ Möb(V ) such that the Poincaré extension of ϕ to H is
equal to ĝ.

Remark 3.2.10
We will see in Chapter 8 that the isometries arising as a finite composition of
reflections in generalized spheres are exactly the isometries coming from Clifford
matrices.

3.2.5.1 Classification of isometries

Any isometry of Hn can be represented as an isometry of the ball model g :
Bn −→ Bn and this isometry can be extended in a unique way to a continuous
bijective map g : Bn −→ Bn. This extension has (at least) one fixed point by
the Brouwer fixed point theorem (or the Schauder fixed point theorem in the
infinite-dimensional setting). Then, the isometry g is said to be

1. elliptic if g has a fixed point in Bn;

2. parabolic if g has exactly one fixed point in ∂Bn and no fixed point in Bn;
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3. loxodromic, if g has exactly two fixed points in ∂Bn and no fixed point in
Bn.

We notice that this definition is independent of the conjugacy class of g. More-
over, the same classification can be done independently of the model. Therefore,
we will call an isometry g : Hn −→ Hn

1. elliptic if g has a fixed point in Hn;

2. parabolic if g has exactly one fixed point in ∂Hn and no fixed point in Hn;

3. loxodromic, or hyperbolic, if g has exactly two fixed points in ∂Hn and no
fixed point in Hn.

There is some work to be done to show that these three possibilities are mutually
exclusive and that any isometry of Hn falls into precisely one of this three cases;
we refer to [Das12, §2.7] for the proof and some details. Finally, we have the
following explicit characterization of isometries.

Proposition 3.2.11 ([Das12, Proposition 2.30])
Let g ∈ IsomHn be an isometry of the hyperbolic space Hn. Then, g is conjugate
to exactly one of the following:

• An isometry of Bn coming from an isometry T of O(H ). This is the
elliptic case.

• An isometry of Un coming from a Möbius transformation x 7→ T (x) + y,
with y 6= 0 and T ∈ O(H ). This corresponds to the parabolic case.

• An isometry of Un coming from a Möbius transformation x 7→ λT (x), with
T ∈ O(H ) and λ > 0, λ 6= 1. This corresponds to the loxodromic case.

Proposition 3.2.12
Let g be a parabolic isometry of the hyperbolic space Un and suppose that g is
conjugate to the map ϕ : x 7−→ T (x) + y, with T ∈ O(H ) (see Proposition
3.2.11) and some y ∈ H . If the space Fix T of fixed points of T has finite
codimension (or equivalently if T can be written as a finite composition of re-
flections), then one can suppose that y ∈ Fix T .

Proof. Since T is continuous, the set Fix T is a closed subspace of H . Thus,
Proposition 2.7.11 implies that we have the decomposition H = Fix T ⊕ C,
with C := (Fix T )⊥. Now, we can write y = f + c with f ∈ Fix T and c ∈
C. Moreover, since the restriction of T − id to C is injective, and since C is
finite dimensional, then there exists c′ ∈ C such that (T − id)(c′) = c. As a
consequence, the conjugate τ ◦ϕ ◦ τ−1, with τ(x) = x+ c′, sends x to T (x) + f ,
as required.

3.3 Abstract Coxeter groups
Definition 3.3.1 (Coxeter group)
A Coxeter group is a finitely presented group generated by elements s1, . . . , sd
and such that

〈s1, . . . , sd : (si sj)mij = 1〉,
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where mij = 1 if and only if i = j, and mij = mji ∈ {2, 3, . . .} ∪ {∞} if i 6= j.
By mij =∞, we mean that there is no relation between si and sj . If Γ is such
a group and S := {s1, . . . , sd} is the set of generators, we will refer to the group
as (Γ, S), or just Γ if there is no ambiguity on S. When it is convenient, we use
the notation m(si, sj) := mij .
If S′ is a subset of S, we denote by ΓS′ the subgroup of Γ generated by the
elements of S′.

Definition 3.3.2 (Coxeter graph of a Coxeter group)
An easy way to represent a Coxeter group

(
Γ, S = {s1, . . . , sd}

)
is by its Coxeter

diagram, or Coxeter graph. The Coxeter diagram of Γ is the graph whose vertices
correspond to the elements of S. Moreover, there is an edge between the vertices
si and sj if and only if m(si, sj) ≥ 3. We label such an edge with m(si, sj) if
m(si, sj) ≥ 4. Sometimes, instead of labelling the edge, we use a double edge if
m(si, sj) = 4 and a bold (or heavy) edge if m(si, sj) =∞.

Examples 3.3.3 • It is well known that the symmetric group Sn is isomor-
phic to the Coxeter group An−1 (see Figure 3.1): the ith node of An−1
corresponds to the transposition (i, i+ 1) of Sn.

• The dihedral group of 2m elements is isomorphic to G(m)
2 (see Figure 3.1).

• If P is a polyhedron (see Definition 3.4.1) in the affine space Rn whose
dihedral angles are integer submultiples of π and if Γ < IsomRn is the
(discrete) group generated by the reflections in the facets of P , then Γ is
a Coxeter group.

Definition 3.3.4 (Irreducible Coxeter group)
A Coxeter group is said to be irreducible if its Coxeter diagram is connected.

It is easy to see that a Coxeter group is the product of the groups corre-
sponding to the connected components of its Coxeter diagram. Moreover, the
finite irreducible Coxeter groups were classified by Coxeter [Cox35] by means of
their Coxeter diagrams. The classification is presented in Figure 3.1.

Figure 3.1 – Irreducible finite Coxeter groups

3.4 Geometric Coxeter groups
In this section, we present the connection between abstract Coxeter groups and
discrete reflection groups in the facets (sides of codimension 1) of convex finite-
sided polyhedra. The main reference is [Rat06, §7.1]. In what follows, X denotes
the unit n-sphere Sn, the Euclidean n-space En or Hn.

36



A vector v ∈ En and a real number t ∈ R determine an (affine) hyperplane
Hv,t := {x ∈ En : 〈x, v〉 = t}, denoted Hv if t = 0, and such a hyperplane splits
En in two half-spaces H+

v,t :=
{
x ∈ En : 〈v, x〉 ≥ t

}
and H−v,t :=

{
x ∈ En :

〈v, x〉 ≤ t
}
whose intersection is Hv,t. A hyperplane in Sn is the intersection

of a hyperplane Hv of En+1 with Sn. Similarly, we saw in Section 3.1 that a
hyperplane of Hn is the intersection of a hyperplane of En with Hn.

Definition 3.4.1 (Polyhedron)
A polyhedron P in X is a subset of X which is the intersection of finitely many
half-spaces, each one bounded by a hyperplane. Moreover, we require that P
has non-empty interior and that no half-space contains the intersection of the
others.

Definition 3.4.2 (Reflection with respect to a hyperplane)
Let Hv be a hyperplane of X. The reflection rv = rHv associated to the hyper-
plane Hv is defined as follows (recall that we choose v with norm 1):

rHv : X −→ X

x 7−→ x− 2〈x, v〉v.

Definition 3.4.3 (Reflection group associated to a polyhedron)
Let P =

⋂d
i=1H

−
vi be a polyhedron in X and Γ ≤ IsomX. We say that Γ is the

reflection group associated to P if Γ is generated by the reflections in the facets
of P , that is Γ = 〈rHv1 , . . . , rHvd 〉.

Definition 3.4.4 (Cell of a group generated by reflections)
Let Γ < IsomX be a discrete group generated by reflections. The hyperplanes
corresponding to all reflections of Γ decompose X into convex polyhedra called
cells of Γ.

Remark 3.4.5
Of course, Γ acts transitively on the set of its cells. Moreover, each cell is the
closure of a fundamental region for Γ.

Let Γ ≤ IsomX be a discrete reflection group with respect to a polyhedron
P ⊂ X (i.e. P is a cell for Γ, Γ is generated by reflections in the sides of P
and Γ is discrete). Then, all the dihedral angles of P are submultiples of π (i.e.
0 or of the form π/k where k ∈ N, k ≥ 2). For any facet Si of P , we let Hvi

be the hyperplane containing Si such that P ⊂ H−vi . Now, if the dihedral angle
between two adjacent facets Si and Sj of P is π/θ(Si, Sj), then the order of
rvi ◦ rvj in Γ is θ(Si, Sj) (see [Rat06, Theorem 7.1.2]). Suppose now that P is
of finite volume and has facets S = {S1, . . . , Sd}. Then, by [Rat06, Theorem
7.1.4] we have

〈r1, . . . , rd|r2
i = 1, (ri · rj)θ(Si,Sj) = 1〉 ∼= Γ.

This motivates the following definition.

Definition 3.4.6 (Geometric Coxeter group)
A Coxeter group Γ is a geometric Coxeter group if there exists a polyhedron
P ⊂ X, where X = Sn, En,Hn, such that Γ is the associated reflection group
of P .
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Definition 3.4.7 (Gram matrix)
Let Γ < IsomX be a geometric Coxeter group and let P =

⋂r
i=1H

−
vi be its

corresponding polyhedron. The Gram matrix of the polyhedron P ⊂ X, or the
Gram matrix of the geometric Coxeter group Γ, is the matrix G = G(P ) =
G(Γ) ∈ Mat(r;R) defined as G =

(
〈vi, vj〉

)
1≤i,j≤r.

If we are given the matrix G = G(Γ) of a geometric Coxeter group Γ, we
can find the space on which Γ acts as follows. The matrix G = G(Γ) induces
a quadratic form called the Tits form on Rd, where d = |S|, via x 7−→ xtGx.
If the matrix G is indecomposable (meaning that we cannot transform G to
a block diagonal matrix with permutations of the rows and columns of G) or,
equivalently, if the graph of the group is connected, then we get information
about the group by looking at the signature (n, p, q) of the quadratic form,
where n (respectively p, q) is the number of positive (respectively negative,
zero) eigenvalues of G. For positive n, we are interested in the following cases:

p = q = 0 (the quadratic form is positive definite) In this case, the group is finite
(see the classification of irreducible finite Coxeter groups in Figure 3.1).
It can be shown that Γ can be realized as a discrete group of isometries
of the n-sphere Sn. Thus, Γ is called spherical.

p = 0, q > 0 (the quadratic form is positive semidefinite) The group can be re-
alized as a discrete subgroup of IsomEn. Hence, it is said to be affine
(or Euclidean or parabolic). The classification of irreducible affine Coxeter
groups is given in Figure 3.2 (see, for example, [Bou68a, Chapter 6, §4.3,
Theorem 4]).

p = 1, q ≥ 0 The group can be realized as a discrete subgroup of IsomHn (see
details in Section 3.5). Thus, it is called hyperbolic.

Now, if the matrix G is decomposable to a diagonal block matrix with blocks
G1, . . . , Gl, we say that the group is spherical (respectively affine) if each block
Gi is spherical (respectively affine). If the matrix G has signature (n, 1, q) for
some n and q, we say that the group is hyperbolic.
If G is the Coxeter diagram of Γ, then a subdiagram of G is called spherical
(respectively affine, hyperbolic) if the corresponding subgroup of Γ is spherical
(respectively affine, hyperbolic).

3.5 Hyperbolic Coxeter groups and hyperbolic
Coxeter polyhedra

In this section, we present some concepts related to hyperbolic Coxeter groups
and polyhedra. Let P ⊂ Hn be a polyhedron. Hence, there exist vectors
v1, . . . , vr of Lorentzian norm 1 and hyperplanes Hi = 〈vi〉⊥ such that P =⋂r
i=1H

−
i , where H−i is the half-space delimited by Hi and given by H−i :=

{x ∈ Hn : 〈x, vi〉 ≤ 0}.

Remark 3.5.1
Unlike in the Euclidean space, there exist unbounded hyperbolic Coxeter poly-
hedra of finite volume. Such a polyhedron is the convex hull of a finite set of
points x1, . . . , xk ∈ Hn with at least one xi ∈ ∂Hn. Such a vertex is called a
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Figure 3.2 – Irreducible affine Coxeter groups

vertex at infinity, or an ideal vertex, of the polyhedron (see [Rat06, 6.4] for more
details).

Definition 3.5.2 (Coxeter graph)
Suppose now that P is a hyperbolic Coxeter polyhedron, i.e. the dihedral angles
are either 0 or submultiples of π. The Coxeter diagram, or Coxeter graph,
of P is the graph whose vertices si correspond to the hyperplanes Hi. For two
hyperplanes Hi and Hj , the vertices si and sj are joined as follows:

• A dotted line if Hi and Hj are ultraparallel, sometimes labelled by lij =
dH(Hi, Hj) > 0.

• A line labelled with∞ if Hi and Hj are parallel (we use sometimes a bold,
or heavy, edge with no labelling).

• A line with label mij ≥ 3 if the dihedral angle is π
mij

; the line is simple if
mij = 3 and is labelled by mij if mij > 3. Notice that sometimes, instead
of labelling the edge, we use a double edge if mij = 4.

Remark 3.5.3
The previous definition implies that the Coxeter graph of a hyperbolic Cox-
eter group encodes more information than the Coxeter graph of the underlying
abstract Coxeter group.

Note that we don’t distinguish between the Gram matrix of a hyperbolic
Coxeter polyhedron, the corresponding Coxeter diagram and the associated hy-
perbolic Coxeter group. We will make an exception for the rank, as explained
in the following definition.

Definition 3.5.4 (Rank)
Let P ⊂ X be a polyhedron and Γ its associated Coxeter group. The rank is
the number of reflection generators (which correspond to the number of facets
of the polyhedron P ) of Γ. Let G be a Coxeter graph which is either spherical
or Euclidean. We will define the rank of G as the rank of the associated Gram
matrix. For example, a spherical Coxeter graph with n vertices has rank n while
an irreducible Euclidean graph with n vertices has rank n− 1.

39



There is the following natural question: given a Coxeter graph, is it possible
to find a hyperbolic Coxeter polyhedron whose graph is the given one? The
answer is yes if the Gram matrix of the graph has the correct signature, as
explained in the next theorem.

Theorem 3.5.5 ([Vin85, Theorem 2.1])
Let G = (Gij) be an indecomposable symmetric real matrix of signature (n, 1, k)
such that

• Gii = 1 for every i;

• Gij ≤ 0 for every i 6= j.

Then, there exists a convex polyhedron P in Hn whose Gram matrix is equal to
G. Moreover, P is unique up to isometry. We will refer to P as the polyhedron
associated to G.

Therefore, given a hyperbolic Coxeter group Γ we can speak of geometrical
properties of its associated polyhedron P ⊂ Hn. If the polyhedron P is compact,
then the group Γ is called cocompact. Note that there is a criterion to decide
if Γ is cocompact or not (see Section 3.8). In a similar way, if P is of finite
volume (with respect to the hyperbolic metric), we say that Γ is cofinite or of
finite covolume. In this case, the covolume of Γ is the volume of P . As before,
there is a nice criterion to decide whether the group is of finite covolume or not
(see Section 3.8).

It has been shown that hyperbolic Coxeter groups of finite covolume do not
exist in dimensions above 995 (see [Pro87, Theorem C]) but examples of such
groups are known only up to dimension 21 (see [Bor87, Example 5]). In the
cocompact case, it is known that such groups do not exist if the dimension is
greater than 29 (see [Vin81, Theorem 1]). However, examples of such groups
are known only up to dimension 8 (see [Bug92] for the arithmetic cocompact
hyperbolic Coxeter group in dimension 8 and [Per09] for a list of cocompact
groups in dimensions 5 to 8).

3.6 Growth series and growth rate
We present here basic information about the growth series and the growth rate
of a finitely generated group. A more detailed account of these notions can be
found in [Per09] and [Kel13].

Notation 3.6.1
Let Γ be a finitely generated group with generating set S. We denote by lS the
length function of Γ with respect to S: for an element g ∈ Γ, we have

lS(g) = min
{
k ∈ N0 : ∃g1, . . . , gk ∈ S ∪ S−1 such that g = g1 · . . . · gk

}
.

Definition 3.6.2 (Growth series)
Let Γ be a finitely generated group with generating set S. The growth series of
Γ is the formal power series f(Γ,S) = fS(x) =

∑
g∈Γ x

lS(g). This series is also
called the Poincaré series of Γ.
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When Γ is a geometric Coxeter group, the growth series is a rational function
(see [Ste68, 1.27]). Moreover, Steinberg’s formula (see [Ste68, 1.29]) allows
to compute this rational function using only the growth series of the finite
subgroups as follows:

1
fS
(
x−1

) =
∑
T∈F

(−1)|T |

fT (x) , (3.2)

where F = {T ⊂ S : ΓT is finite}. If (Γ1, S1), (Γ2, S2) are two finitely generated
groups, then the growth series of Γ1 × Γ2 with respect to the generating set
S := S1 × {e2} ∪ {e1} × S2 is given by

f(Γ1×Γ2,S)(x) = f(Γ1,S1)(x) · f(Γ2,S2)(x).

A convenient way to encode the series of the finite group is the following symbol.

Definition 3.6.3 (Symbol)
For k ∈ N, we write [k](x), or sometimes just [k], for the polynomial 1+x+ . . .+
xk−1. Moreover, for integers k1, . . . , kr ∈ N, we adopt the following convention:
[k1, . . . , kr] := [k1] · . . . · [kr]. We will call [k] a symbol.

With this notation, the growth series of the finite irreducible Coxeter groups
are presented in Table 3.1 (see [CM72, Table 10, page 141]).

Group Growth series

An [2, 3, . . . , n, n+ 1]

Bn [2, 4, . . . , 2n− 2, 2n]

Dn [2, 4, . . . , 2n− 2] · [n]

G
(m)
2 [2,m]

F4 [2, 6, 8, 12]

E6 [2, 5, 6, 8, 9, 12]

E7 [2, 6, 8, 10, 12, 14, 18]

E8 [2, 8, 12, 14, 18, 20, 24, 30]

H3 [2, 6, 10]

H4 [2, 12, 20, 30]

Table 3.1 – Growth series of the finite irreducible Coxeter groups

Using Steinberg’s formula, we can write the growth series fS as the rational
function fS(x) = p(x)

q(x) , where p(x), q(x) ∈ Z[x] are two coprime polynomials.
The series has a certain radius of convergence R ∈ R which is smaller than 1 if
Γ is a hyperbolic group of finite covolume. Moreover, R is equal to the smallest
positive root of q(x).

Definition 3.6.4 (Growth rate)
Let (Γ, S) be a geometric Coxeter group and let R be the radius of convergence
of its growth series fS(x). Then, the growth rate of Γ is τ := R−1.
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Remark 3.6.5
By Steinberg’s formula, the growth rate is an algebraic integer.

Algebraic properties of the growth rate of hyperbolic Coxeter groups have
attracted much attention in recent years although we don’t have results which
are independent of the dimension. For cocompact Coxeter groups Γ in dimension
2 and 3, it has been shown that the growth rate τ is a Salem number (see [CW92]
and [Par93]). In [Flo92], Floyd showed that the growth rate of any cofinite,
non-cocompact, planar, two dimensional hyperbolic Coxeter group is a Pisot
number. Finally, Kellerhals and Perren conjectured that the growth rate of any
cocompact (or even cofinite) hyperbolic Coxeter group is a Perron number. We
will come back to this question later (see Section 5.3.5).

Before computing the growth rate for an infinite family of prisms, we need
the following lemma.
Lemma 3.6.6
For m ∈ N, consider the following polynomial

fm(x) = −1 + x+ 2x3 + x4 + 2x5 + x6 + x7

− x1+m − x2+m − 2x3+m − x4+m − 2x5+m − x7+m + x8+m.

When m is even, f ′m has exactly three real zeros. Moreover, there is one zero in
each of the following intervals: (−1, 0), (0, 1) and (1, 2).
Proof. Since the degree of f ′m is unbounded, we will proceed by induction on m.
The relative behaviour of f ′2m and f ′2m+2 is depicted in Figure 3.3. The first

Figure 3.3 – Relative behaviour of f ′2m and f ′2m+2

step is to show that for m ≥ 1, the function gm := f ′2m+2 − f ′2m has only three
zeros, all of them in the interval (−1, 2). First, we remark that by Theorem
2.6.8, all the real roots of gm lie in the interval (−2, 2). Now, if we let

hm(x) = 1 + 2m+ 2x(1 +m) + x2(3 + 2m)− 2x5(3 +m)− x6(7 + 2m)
− 2x7(4 +m)− x8(9 + 2m) + 2x9(5 +m),
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then we have gm(x) = x2m ·hm(x). Using Mathematica R© (see Section B.1.1), we
can compute a Sturm sequence (see Definition 2.6.3) {p0 = hm, p1 = h′m, . . . , p9}
for each m. Moreover, since we have p0(−2) = −6647− 1338m, p0(−1) = −10,
p0(0) = 1 + 2m, p0(1) = −14 and p0(2) = 1169 + 78m, we can use Sturm’s
theorem (see Theorem 2.6.5) to count the zeros of hm(x) in the intervals (−1, 0),
(0, 1) and (1, 2). We compute the signs of pi(αi) for αi = −2,−1, 0, 1, 2 and the
number σ(αi) of sign changes:

αi 0 1 2 3 4 5 6 7 8 9 σ(αi)
−2 − + − + + + − + + − 6
−1 − + − + + + − − + − 6
0 + + − + + + − + + − 5
1 − − − + + − + + − − 4
2 + + + − − − + + − − 3

Since the number of zeros in (αi, αi+1) is given by σ(αi)−σ(αi+1), the first step
is done. We compute some values of f ′2m and f ′2m+2:

f ′2m+2(−1) = −2(11 + 5m) < f ′2m(−1) = −2(6 + 5m) < 0
f ′2m(0) = 1
f ′2m+2(1) = −2(1 + 7m) < f ′2m(1) = −2(7m− 6) < 0
f ′2m+2(2) = 4m+1(26m+ 381) + 857 > f ′2m(2) = 4m(26m+ 355) + 857.

(3.3)

We found numerically that the roots of f ′2 are −0.740856, 0.880032 and 1.25209.
Suppose now that f ′2m has the prescribed zeros (i.e. f ′2m has exactly three real
zeros and there is exactly one in each of the three intervals (−1, 0), (0, 1) and
(1, 2)). Since f ′2+2m has (at least) one change of sign in each of the interval
(−1, 0), (0, 1) and (1, 2) (see equations (3.3)), then f ′2m+2 has at least the pre-
scribed zeros. Now, since f ′2m+2 < f ′2m on (−∞,−1), f ′2m+2 has no zero on
this interval. To prove that f ′2m+2 has no zero on (2,∞) we use the fact that
f ′2m+2(x) > f ′2m(x) > 0 when x ∈ (2,∞). If f ′2m+2 has a second zero on (−1, 0),
then so must have f ′2m (since gm has exactly one zero on (−1, 0)) and that is
not possible by the induction hypothesis. Hence, f ′2m+2 has exactly one zero on
(−1, 0). We proceed in a similar way for the intervals (0, 1) and (1, 2).

Example 3.6.7
We want to compute the growth series and the growth rate of the family of
3-dimensional compact Coxeter prisms Γm whose graphs Gm are given in Fig-
ure 3.4 (see [Kap74]). More precisely, we show that the sequence of growth

Figure 3.4 – A family of compact Coxeter prisms in H3

rates {τm} of Γm (which are Salem numbers since the groups are cocompact)
converges to the Pisot number τ∞ ∼= 1.90648 which is the only real root of the
polynomial x7 − x6 − 2x4 − x3 − 2x2 − x− 1.
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We see that each graph Gm contains the following irreducible finite sub-
graphs:

5×A1 1×A2 1×G(4)
2

1×G(m)
2 1×B3

Hence, the spherical subgraphs of Gm are the following:

5×A1 1×G(m)
2 1×G(4)

2 1×A2

6×A1 ×A1 2×A1 ×G(m)
2 1×A1 ×G(4)

2 1×A1 ×A2

1×A1 ×A1 ×A1 1×B3

Using Steinberg’s formula (see equation (3.2) page 41 and Table 3.1 page
41), we can compute the growth series of the Γm as follows:

1
fΓm(x) = 1 + −5x

[2] + xm

[2,m] + x4

[2, 4] + x3

[2, 3]

+ 6x2

[2, 2] + −2xm+1

[2, 2,m] + −x5

[2, 2, 4] + −1x4

[2, 2, 3]

+ −x3

[2, 2, 2] + −x9

[2, 4, 6] .

Hence, we find

fΓm(x) = − (x+ 1)3 · (x2 + 1) · (x2 − x+ 1) · (x2 + x+ 1) · (xm − 1)
(−1 + x) · q̃(x) ,

where

q̃(x) = −xm+1 − xm+2 − 2xm+3 − xm+4 − 2xm+5 − xm+7 + xm+8

+ x7 + x6 + 2x5 + x4 + 2x3 + x− 1.

The polynomial q̃(x) is divisible by x − 1 and if m > 5 the quotient can be
written as follows

qm(x) = 1−2x3 −3x4 −5x5 −6x6 −7
m∑
i=7

xi−6xm+1 −5xm+2 −3xm+3 −2xm+4 +xm+7,

which means

fΓm(x) = − (x+ 1)3 · (x2 + 1) · (x2 − x+ 1) · (x2 + x+ 1) · (xm − 1)
(−1 + x)2 · qm(x) , m ≥ 6.

Since the polynomial qm(x) is palindromic, it implies that the growth rate τm
is the biggest positive real root of qm. We remark that in general the polynomial
qm(x) is not irreducible: for example, qm(x) is divisible by x+1 when m is even.
However, we can show for small values of m that qm(x) can be factored in a
product of cyclotomic polynomials and a polynomial which only has two positive
real roots (since qm(x) is palindromic, these two roots are of course inverse of
each other); the only real root bigger than 1 is thus the growth rate. The graphs
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0
240.392

1 1.90648

q6(x)

q7(x)

q8(x)

Figure 3.5 – Factors of the denominator of the growth series of Kaplinskaya
prisms for m = 6, 7, 8

of the polynomials q6, q7 and q8 are depicted in Figure 3.5. The picture suggests
that qm+1(x) ≤ qm(x) ≤ q6(α) ≈ 240.392 on [1, α] for some α ∼= 1.90648 and
then qm+1(x) > qm(x) on (α,∞). If this is true, then we will have that τm < α,
and {τm} is an increasing sequence. We compute the difference

qm+1(x)− qm(x) = −xm+1 − xm+2 − 2xm+3 − xm+4 − 2xm+5 − xm+7 + xm+8

= xm+1 · (x7 − x6 − 2x4 − x3 − 2x2 − x− 1).

The polynomial x7−x6−2x4−x3−2x2−x−1 has only one real root β ∼= 1.90648,
is negative on (−∞, β) and positive on (β,∞). Hence, we see using induction
that the qm have no real root bigger than β. Therefore, τm is an increasing
sequence bounded above by β, which means that sequence converges to a number
β̃ ≤ β.

We present first some analytical facts that strongly support the fact that
β̃ = β. Then, we conclude using a geometrical argument.

First notice that the equality β̃ = β is equivalent to the fact that the subse-
quence τ2m converges to β. We have:

1. Using Lemma 3.6.6, since fm(x) = (x − 1) · qm(x), we see that each q2m
has a unique minima bigger than 1 at α2m (and we have 1 < α2m < τ2m).
Then, each q2m is strictly increasing on (α2m,∞).

2. Moreover, we can check numerically that

q′2m(β) ∼= 1.21697 (389.322 + 190.168 · 1.90648m) m→∞−→ ∞.

The last two points strongly support our claim.

We now present the geometrical argument. The polyhedra associated to
the groups Γm are examples of polyhedra with a ridge of type 〈2, 2,m, 2, 2〉
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(see [Kol12, Section 3]) and they converge to the non-compact polyhedron P∞
associated to the group Γ∞ given by the Coxeter symbol [∞, 3, 4,∞]. Now,
[Kol12, Theorem 5] implies that the sequence τm converges to the growth rate
τ∞ of Γ∞. This group has a growth series given by

fΓ∞(x) =
(x+ 1)3 ·

(
x2 + 1

)
·
(
x2 − x+ 1

)
·
(
x2 + x+ 1

)
(x− 1) · (x7 + x6 + 2x5 + x4 + 2x3 + x− 1) .

Now, the polynomial x7 + x6 + 2x5 + x4 + 2x3 + x − 1 is irreducible and has
reciprocal polynomial x7−x6−2x4−x3−2x2−x−1 which implies τm

m→∞−→ τ∞,
as required.

3.7 Euler characteristic, f-vector and volume
In what follows, unless stated otherwise, Γ < IsomHn denotes a hyperbolic
Coxeter group with finite set of natural generators S. Let P be its associated
fundamental convex polyhedron.

The next proposition gives the key tool which is used by CoxIter (see Chap-
ter 5) to compute the orbifold Euler characteristic χ(Γ) of Hn/Γ.
Proposition 3.7.1 ([KP11, (1.2) and (1.3)])
Let (Γ, S) be an abstract Coxeter group and let F = {T ⊂ S : ΓT is finite}. We
have

χ(Γ) =
∑
T∈F

(−1)|T |

fT (1) ,

where fT is the growth series of the group ΓT ≤ Γ generated by T (see Defini-
tion 3.3.1).

In order to compute χ(Γ), we see by using the classification of finite Coxeter
groups (see Figure 3.1) that it is sufficient to know the value fT (1) for all
irreducible finite Coxeter groups. With the growth series (see Table 3.1), we
find the values given in Table 3.2.

Group fS(1)

Am (m+ 1)!

Bm 2m ·m!

Dm 2m−1 ·m!
Gm 2m
F4 1152

Group fS(1)

E6 51840
E7 2903040
E8 696729600
H3 120
H4 14400

Table 3.2 – Orders of finite Coxeter groups

The next result relates the Euler characteristic of a hyperbolic Coxeter group
Γ < IsomHn to its covolume when n is even.
Proposition 3.7.2 ([KP11, (1.4)])
When n is even, we have:

covolume(Γ) = (−1)n/2 · π
n/2 · 2n · (n/2)!

n! · χ(Γ).
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Remark 3.7.3
When n is odd, we have χ(Γ) = 0.

We are also interested in the combinatorial properties of the Coxeter poly-
hedron P associated to Γ.

Definition 3.7.4 (f -vector)
The vector (f0, . . . , fn−1, 1) ∈ Zn+1, where fi is the number of faces of dimen-
sion i of P , is called the f -vector of P (or f -vector of Γ)

To compute the f -vector, we will use the following results:

Theorem 3.7.5 ([Vin85, Theorem 3.1])
Let G be the Coxeter diagram of Γ. There is a bijective correspondence between
spherical subdiagrams of rank k of G and faces of codimension k of P .

Theorem 3.7.6 ([Vin85, Theorem 3.2])
Let G be the Coxeter diagram of Γ. There is a bijective correspondence between
parabolic subdiagrams of rank n− 1 of G and vertices at infinity of P .

As a test for the output of the program we also use the following classical
result of Euler-Schläfli.

Proposition 3.7.7 ([Poi93])
For a polyhedron in Xn, we have the following equality:

n−1∑
i=0

(−1)i · fi = 1− (−1)n.

3.8 Compactness and finite volume criterion
Since a polyhedron P is compact if and only if it is the convex hull of a finite
number of vertices in Hn (also called ordinary vertices), we have the following
result.

Proposition 3.8.1 ([Vin85, Proposition 4.2])
The polyhedron P is compact if and only if the following conditions are satisfied:

• P contains at least one vertex (i.e. face of dimension 0) in Hn.

• For every vertex of P and every edge of P emanating from it there is
precisely one other vertex of P on that edge.

Since a polyhedron P is of finite volume if and only if it is the convex hull
of a finite number of vertices in Hn, we have the following result.

Proposition 3.8.2 ([Vin85, Proposition 4.2])
The polyhedron P has finite volume if and only if the following conditions are
satisfied:

• P contains at least one vertex (ordinary or at infinity).

• For every vertex (ordinary or at infinity) of P and every edge of P em-
anating from it there is another vertex of P (ordinary or at infinity) on
that edge.
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Using theorems 3.7.5 and 3.7.6 we deduce the following two criteria.

Proposition 3.8.3 (Cocompactness criterion in CoxIter)
Let Γ < IsomHn be a Coxeter group and G be its Coxeter diagram. The group
Γ is cocompact if and only if the following conditions hold:

• G contains at least one spherical subdiagram of rank n.

• Each spherical subdiagram of rank n − 1 of G can be extended in exactly
two ways to a spherical subdiagram of rank n of G.

Proposition 3.8.4 (Finite covolume criterion in CoxIter)
Let Γ < IsomHn be a Coxeter group and G be its Coxeter diagram. The group
Γ has finite covolume if and only if the following conditions hold:

• G contains at least one spherical subdiagram of rank n or one parabolic
subdiagram of rank n− 1.

• Each spherical subdiagram of rank n − 1 of G can be extended in exactly
two ways to one of the following type of subdiagrams of G:

– a spherical diagram of rank n;
– a parabolic diagram of rank n− 1.

3.9 Arithmetic groups

3.9.1 Definition
Before we give the precise definition of an arithmetic group (of the simplest
type), we start with an example. Let fn(x) = −x0

2 + x1
2 + . . . + xn

2 be the
standard Lorentzian quadratic form and consider the cone C = {x ∈ Rn+1 :
fn(x) < 0}. We denote by O(fn,Z) ⊂ GL(n + 1,R) the group of linear trans-
formations of Rn+1 with coefficients in Z which preserve the quadratic form
fn. The index two subgroup O+(fn,Z) consisting of elements of O(fn,Z) which
preserve each of the two connected components of the cone C is the prototype
of an arithmetic group. Moreover, it is well known that this discrete group
has finite covolume in O+(n, 1), which is related to hyperbolic isometries via
SO+(n, 1) = Isom+ Hn. Notice that the condition that the transformation has
coefficients in Z is equivalent to ask the preservation of the standard Z-lattice
in Rn+1. Now, let K be any totally real number field, OK its ring of integers,
and let V be an (n+ 1)-dimensional vector space over K endowed with an ad-
missible quadratic form f of signature (n, 1), that is: all conjugates fσ of f by
the non-trivial Galois embeddings σ : K −→ R are positive definite. The cone
Cf = {x ∈ V ⊗R : f(x) < 0} has two connected components C±f and gives rise
to the vector space model C+

f /R∗ of the hyperbolic n-space Hn (see Remarks
3.2.2). We now let

O(f) =
{
T ∈ GL(V ⊗ R) : f ◦ T (x) = f(x), ∀x ∈ V ⊗ R

}
.

Finally, for a full OK-lattice L in V , we consider the group

O(f, L) :=
{
T ∈ O(f)K : T (C+

f ) = C+
f , T (L) = L

}
.

It is a discrete subgroup of IsomHn of finite covolume (see [Bor62]).
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Definition 3.9.1 (Arithmetic group (of the simplest type))
A discrete group Γ < IsomHn is an arithmetic group of the simplest type if
there exist K, f and L as above such that Γ is commensurable to O(f, L). In
this setting, we say that Γ is defined over K and that f is the quadratic form
associated to Γ.

Remarks 3.9.2 1. In particular, an arithmetic group is cofinite.

2. If such a group is non-cocompact, then it must be defined over Q (see
[Vin88, Chapter 6]).

3. If Γ is defined over Q, then it is non-cocompact if and only if the lattice is
isotropic2 (see also [GP87, Section 2.3]). In particular, Γ is non-cocompact
if n ≥ 4 (this follows from [Cas78, Chapter 4, Lemma 2.7] and the Hasse-
Minkowski theorem).

4. There is a slightly more general definition of discrete arithmetic subgroups
of IsomHn. However, when a discrete subgroup of IsomHn is arith-
metic and contains reflections, then it is of the simplest type (see [Vin67,
Lemma 7]). In other words, an arithmetic hyperbolic Coxeter group is
not only commensurable to some O(f, L) but actually contained in some
O(f, L). Since we focus in this work on Coxeter groups, we will refer to
arithmetic of groups of the simplest type as arithmetic groups.

5. If OK is a PID, then the condition that the transformations T preserve
a lattice can be replaced by the condition that T has coefficients in OK .
Indeed, in this setting, the lattice L is a free OK-module of rank n + 1
with basis v1, . . . , vn+1. Now, the transformation X : ei 7−→ vi induces an
isomorphism

O(f, L)
∼=−→ O

(
g,On+1

K

)
φ 7−→ X−1 ◦ φ ◦X,

where g := f ◦X−1.

Reflective quadratic forms Consider, as above, an admissible quadratic
form f of signature (n, 1) given by

f(x0, . . . , xn) =
∑
i,j

ai,j · xi xj , ai,j ∈ OK ,

with respect to some basis {v0, . . . , vn}, and consider L = spanOK{v0, . . . , vn}.
As said above, the group O(f, L) is a discrete subgroup of IsomHn of finite
covolume. Moreover, we have the decomposition O(f, L) = Γ oH, where Γ is
the subgroup of O(f, L) generated by all the reflections in O(f, L) and H is a
subgroup of the symmetry group of a cell of Γ.

Definition 3.9.3 (Reflective quadratic form)
The quadratic form f is reflective if the group Γ in the decomposition O(f, L) =
ΓoH has finite index in O(f, L). We note that it is equivalent to the fact that
P is finite sided and of finite covolume.

2In this setting, it means that there exists v ∈ V \ {0} such that f(v) = 0.
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Example 3.9.4
The Lorentzian quadratic form 〈−1, 1, . . . , 1〉 is reflective if and only if n ≤ 19
(see [Vin72] and [KV78])

The next result allows to deal with the reflectivity of families of quadratic
forms.

Proposition 3.9.5
Let f be an admissible quadratic form of signature (n, 1) with n ≥ 3. If the
quadratic form f ⊕ 〈1〉 is reflective, then so is f .

Proof. See [Bug90, Corollary 2].

We will come back to the question of reflectivity in the chapter 6), which
dedicated to Vinberg’s algorithm.

3.9.2 Criterion for arithmeticity
In [Vin67] and [Vin88], Vinberg presented a criterion to decide whether a dis-
crete subgroup of IsomHn is arithmetic or not. In order to present the criterion,
we need the following definition.

Definition 3.9.6 (Cycle in a matrix)
Let A := (Ai,j) ∈ Mat(n;K) be a square matrix with coefficients in a field K. A
cycle of length k, or k-cycle, in A is a product Ai1,i2 ·Ai2,i3 · . . . ·Aik−1,ik ·Aik,i1 .
Such a cycle is denoted by A(i1,...,ik). If the ij are all distinct, the cycle is called
irreducible.

Theorem 3.9.7 (Arithmeticity criterion)
Let Γ be a cofinite discrete subgroup of IsomHn generated by reflections and let
G be its Gram matrix. Let K̃ be the field generated by the entries of G and
let K ⊂ K̃ be the field generated by the (irreducible) cycles in 2G. Then, Γ is
arithmetic if and only if:

(i) K̃ is a totally real number field;

(ii) for each Galois embedding σ : K̃ −→ R which is not the identity on K,
the matrix Gσ is positive semi-definite;

(iii) the cycles in 2G are algebraic integers in K.

In this case, the field of definition, or defining field, of Γ is K.

Proof. See [Vin88, Chapter 6, §3, Theorem 3.1].

Remark 3.9.8
Observe that each cycle is a product of irreducible cycles. In particular, it is
sufficient to check condition (iii) only on irreducible cycles.

For a discrete subgroup of IsomHn generated by reflections, there is a weaker
property called quasi-arithmeticity3. The precise definition of a quasi-arithmetic
group, together with the proof of the next theorem, can be found in [Vin67].

3In fact, both arithmetic and quasi-arithmetic group can be defined in the more general
context of Lie groups and algebraic groups. More information can be found in [Vin67]
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Theorem 3.9.9 (Quasi-arithmeticity criterion)
Let Γ be a cofinite discrete subgroup of IsomHn generated by reflections and let
G be its Gram matrix. Let K̃ be the field generated by the entries of G and let
K ⊂ K̃ be the field generated by the (irreducible) cycles in 2G. Then, the group
Γ is quasi-arithmetic if and only if the two following conditions are satisfied:

(i) K̃ is a totally real number field;

(ii) for each Galois embedding σ : K̃ −→ R which is not the identity on K,
the matrix Gσ is positive semi-definite.

Moreover, a quasi-arithmetic group is arithmetic if and only if all the elements
2Gi,j are algebraic integers. In this case, the field of definition of the arithmetic
group Γ is K.

Proof. See [Vin67, Theorem 2].

Remark 3.9.10
A matrix is positive semi-definite if and only if all its principal submatrices
are positive semi-definite. In particular, a necessary condition for the group
Γ to be (quasi-)arithmetic is that all conjugates of all principal minors of G
are non-negative (for the Galois embeddings which are not trivial on K̃). Or,
equivalently, the necessary condition is that all principal minors of Gσ, for any
Galois embedding σ which is not the identity on K̃, are non-negative.

For a non-cocompact (quasi-)arithmetic group, the field of definition K has
to be Q. Hence, the condition (ii) of the two previous theorems is automatically
satisfied. In particular, the criterion can be simplified as follows.

Theorem 3.9.11 ([Vin88])
Let Γ be a non-cocompact hyperbolic Coxeter group of finite covolume and let G
be its Gram matrix. Then, Γ is arithmetic if and only if all the cycles of the
matrix 2 ·G are rational integers.

Corollary 3.9.12
Let Γ = (W,S) be a non-cocompact hyperbolic Coxeter group of finite covolume
and let G′ = 2 · G, where G is its Gram matrix. If the Coxeter graph of Γ
contains no dotted edges, then we have the following result:
Γ is arithmetic if and only if the two following conditions are satisfied

(i) For every s, t ∈ S, we have m(s, t) ∈ {∞, 2, 3, 4, 6}.

(ii) Every irreducible cycle G′(i1,...,ik) of length at least 3 in G′ lies in Z.

In particular, a necessary condition for Γ to be arithmetic is that the matrix G
has coefficients in Q[

√
2,
√

3].

Definition 3.9.13 (Cycle in a graph)
Let G be an undirected graph. A cycle, or closed walk, in G is a sequence
(vi1 , . . . , vim , vi1) of adjacent vertices of G. We say that the cycle is simple if all
the vij are different.

From now on, we suppose that Γ = (W,S) is a non-cocompact hyperbolic
Coxeter group of finite covolume which satisfies condition (i) of Corollary 3.9.12
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and we let G′ = 2 · G. If s ∈ S is a leaf of the Coxeter graph (meaning that
m(s, t) = 2 for every t ∈ S \ {s} except for one vertex), then it is clear that s
cannot be a member of a non-zero irreducible cycle. Therefore, we can forget
this vertex for the test. Also, any edge which is not part of a closed simple
cycle can be dropped without changing the result of the test. Applying this
idea recursively until the graph does not change any more, in a process we
will call recursively deleting separating edges, lead to a simpler graph we can
test. For example, the two Coxeter graphs of Figure 3.6 are equivalent for the
arithmeticity criterion.

Figure 3.6 – Two equivalent graphs for the arithmeticity criterion

Now, if G′(i1,...,ik) is an irreducible k-cycle, then it corresponds to a simple
cycle in the Coxeter graph (see Definition 3.9.13) if and only if it is non-zero.
Thus, it is sufficient to consider simple cycles in the Coxeter graph. This can
be summarized in the next proposition.

Proposition 3.9.14 (Arithmetic criterion in CoxIter ([Gug15]))
Let Γ =

(
W,S = {s1, . . . , sd}

)
be a non-cocompact hyperbolic Coxeter group of

finite covolume and let G be its Coxeter graph. We suppose that G contains no
dotted line. Then, Γ is arithmetic if and only if the two following conditions are
satisfied

1. For every s, t ∈ S, we have m(s, t) ∈ {∞, 2, 3, 4, 6}.

2. For every simple cycle (si1 , . . . , sik , si1) in G, the product

2k ·
k−1∏
j=1

cos π

m(sij , sij+1) · cos π

m(sik , si1)

is an integer. Moreover, it is sufficient to test this condition in the graph
obtained by recursively deleting separating edges.

Remark 3.9.15
If the graph G contains dotted lines, we cannot decide the arithmeticity of the
group only by looking at the weights m(s, t) in the graph. In order to extend
Proposition 3.9.14, we need to know the all values in the Gram matrix (Gij).
If there is a dotted line between vertices i and j in G, a necessary condition for
arithmeticity is that 4 ·G2

ij ∈ Z.

Remark 3.9.16
For cocompact groups, the application of the criterion can be tricky. Examples
can be found in Section 4.4.1 which are based on Kaplinskaya’s 3-dimensional
prisms.
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CHAPTER 4
Commensurability

The aim of this chapter is to introduce the notion and to study the concept
of commensurability as well as to present a few methods which can be used
to decide the (non-)commensurability of two hyperbolic Coxeter groups. These
tools are extensively used in a joint work with Matthieu Jacquemet and Ruth
Kellerhals, where we classified a family of hyperbolic Coxeter pyramids with
n+ 2 facets (see [GJK16]).

The first two sections are dedicated to the basic material and to an overview
of some of the methods used in our article. The details for the analytical, geo-
metric and combinatorial methods can be found in [GJK16]. Then, a systematic
treatment of the arithmetic case will be presented, which was my main contri-
bution in our joint work. In particular, we explain in detail a method, first
described by Maclachlan in [Mac11], to decide the commensurability for arith-
metic groups of hyperbolic isometries. We also illustrate this method for new
arithmetic cocompact hyperbolic Coxeter groups in IsomH4 and for the infinite
families of 3-dimensional prisms found by Kaplinskaya. Finally, we compute the
invariants for arithmetic hyperbolic Coxeter groups with underlying quadratic
forms 〈−p, 1, . . . , 1〉 and 〈−1, p, 1, . . . , 1〉.

Before we start with the first definitions, let us make some general comments.
First, since only very few families of hyperbolic Coxeter groups are entirely
characterized, there are only very few families classified up to commensurability.
Among them, we can cite:

1. Takeuchi gave a characterization of arithmetic Fuchsian groups in [Tak75]
(see also [Tak77a] for the particular case of triangle groups). He then
classified arithmetic triangle groups up to commensurability in [Tak77b].

2. The cofinite hyperbolic Coxeter n-simplex groups (i.e. groups associated
to Coxeter polyhedra in Hn bounded by n+1 hyperplanes), which exist up
to dimension 9, have been classified up to commensurability in [Joh+02].

3. The hyperbolic Coxeter groups in IsomHn, n ≥ 3, whose fundamental
polyhedra are pyramids over a product of two simplices of positive dimen-
sions, have been classified by Tumarkin in [Tum04]. These 200 pyramid
Coxeter groups, which exists up to dimension 17, are classified up to com-
mensurability in [GJK16] (see also theorems 4.0.1 and 4.0.2).
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The classification presented in [Joh+02] relies heavily on the fact the Gram
matrices of the Coxeter n-simplices are invertible, which is not true anymore
when the groups are of higher rank. This is why, in [GJK16], we had to use and
to develop a lot of different techniques.

Using the same techniques as for the above three families, the classification
for cofinite non-cocompact Coxeter groups in IsomHn with n + 2 generators
seems within reach. However, passing to families with n + k generators for
arbitrary k seems unrealistic at the moment.

Our classification of Tumarkin’s pyramid Coxeter groups can be summarized
in the following two theorems.

Theorem 4.0.1 (See [GJK16])
Among the 200 pyramid Coxeter groups given by Tumarkin in [Tum04], 162
of them are arithmetic. Moreover, from dimension 7 to dimension 17, with
one exception in dimension 10, all the considered groups are arithmetic. The
following table summarizes the commensurability classes and contains, for each
of them, the Coxeter symbol of a representative as well as the number of groups
in the class.

n A1
n ÷ α1

n A2
n ÷ α2

n A3
n ÷ α3

n A4
n ÷ α4

n

3 [(3,∞, 3), (4,∞, 4)] [(3,∞, 3), (6,∞, 6)] [(3,∞, 3), (3,∞, 3)]
4 4 6

4 [6, 3, 3, 3,∞] [4, 4, 3, 3,∞]
4 20

5 [(3, 42, 3), (3, 42, 3)] [3[4], 3, (3,∞, 3)] [(3, 42, 3), 3, 3[3]] [3[3], 32, 3[3]]
20 4 6 3

6 [3[5], 3, (3,∞, 3)] [3[4], 32, 3[3]] [3[4], 3, (3, 42, 3)]
2 4 18

7 [3[5], 32, 3[3]] [31,1, 31,2, (3,∞, 3)] [3[6], 3, (3,∞, 3)] [3[4], 32, 3[4]]
2 4 8 12

8 [32,2, 33, (3,∞, 3)]
16

9 [32,2, 34, 3[3]]
10

10 [32,1, 36, (3,∞, 3)]
4

11 [32,1, 37, (3,∞, 3)] [32,1, 36, (3, 42, 3)]
2 3

12 [32,1, 36, 3[4]]
2

13 [32,1, 38, 31,1,1]
3

Continued on next page
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n A1
n ÷ α1

n A2
n ÷ α2

n A3
n ÷ α3

n A4
n ÷ α4

n

17 [32,1, 312, 31,2]
1

Theorem 4.0.2 (See [GJK16])
Among the 200 pyramid Coxeter groups given by Tumarkin in [Tum04], 38 of
them are not arithmetic. The following table summarizes the commensurability
classes and contains, for each of them, the Coxeter symbol of a representative of
the class. The header of the columns gives the number of elements in the class.

n |Nn| = 1 |Nn| = 2 |Nn| = 3 |Nn| = 4

3 [(3,∞, 4), (3,∞, 4)] [∞, 3, (3,∞, k)] [∞, 3, 5,∞]

k = 4, 5, 6

[∞, 3, (l,∞,m)]
4 ≤ l < m ≤ 6

[∞, 4, (3,∞, 4)]

4 [6, 32, (k,∞, l)] [42, 3, (3,∞, 4)] [6, 32, 5,∞]

3 ≤ k < l ≤ 5

5 [4, 32,1, (3,∞, 4)]

6 [3, 4, 33, (3,∞, 4)]

10 [32,1, 36, (3,∞, 4)]

4.1 Generalities
Definition 4.1.1 (Commensurable groups)
Let Γ be a group and let Γ1 and Γ2 be two subgroups of Γ. We say that Γ1
and Γ2 are commensurable if and only if the intersection Γ1∩Γ2 has finite index
both in Γ1 and Γ2. They are said to be commensurable in the wide sense if Γ1 is
commensurable to a conjugate of Γ2. In this work, we will always use the term
commensurable to designate commensurable in the wide sense.

Definition 4.1.2 (Commensurable topological spaces)
Two topological spaces X1 and X2 are said to be commensurable if they admit
homeomorphic finite-sheeted coverings.

Proposition 4.1.3
Two discrete subgroups Γ1,Γ2 of IsomHn are commensurable if and only if the
two orbifolds Hn/Γ1 and Hn/Γ2 are commensurable.

The previous proposition implies in particular the following facts.

Proposition 4.1.4
The ratio of the volumes of the associated polyhedra of two commensurable dis-
crete hyperbolic Coxeter groups is a rational number. Moreover, for subgroups
of IsomHn, the following properties are stable by commensurability:
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• being discrete;

• being cofinite;

• begin cocompact;

• being arithmetic.

The converse of the previous proposition is not true. In particular, there
exist incommensurable cofinite hyperbolic Coxeter groups of the same volume.

4.2 Different methods to test commensurability
In this section, we consider only cofinite hyperbolic Coxeter groups.

4.2.1 Subgroup relations
The first trivial and most natural example of commensurability relation is the
one of a finite index subgroup: every finite index subgroup is commensurable
with the bigger group. Some index two subgroups are easy to find by looking
at the Coxeter graph. It is the case, for example, when a vertex of the graph
is connected to precisely one other vertex by a even weight. In this setting, the
group contain an index two subgroup as shown in Figure 4.1 (see Proposition
7.1.9, with I = {s}). Note that if ms,t =∞ in the situation depicted in Figure

Figure 4.1 – An index two subgroup

4.1, then ms′,t′ = ∞ as well (and the same holds when s and t are connected
by a dotted edge). More information and examples about index two subgroups
of Coxeter groups can be found in Chapter 7.

4.2.2 Invariant trace field and invariant quaternion alge-
bra

Let Γ be a Kleinian group, that is, Γ is a cofinite discrete subgroup of Isom+ H3,
which means that every element γ ∈ Γ is orientation preserving and has a
representative γ ∈ SL(2;C). Let Γ(2) be the subgroup of Γ generated by squares
of elements of Γ.

Definition 4.2.1 (Invariant trace field)
The field Q

(
Tr γ : γ ∈ Γ(2)) generated by the traces of representatives of ele-

ments in SL(2;C) is called the invariant trace field and is denoted by K(Γ).

Proposition 4.2.2
The invariant trace field K(Γ) is a finite extension of Q and is an invariant of
the commensurability class of Γ.
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Proof. See Theorems 3.1.2 and 3.3.4 of [MR03].

Let AΓ be the subring of Mat(2;C) generated by K(Γ) and by the represen-
tatives γ ∈ SL(2;C) of the elements of Γ(2).

Proposition 4.2.3
The ring AΓ is a quaternion algebra over K(Γ) and is an invariant of the com-
mensurability class of Γ. Moreover, if Γ is non-cocompact, then the quaternion
algebra is trivial, that is AΓ ∼= Mat(2;K(Γ)).

Proof. See Theorem 3.2.1, Corollary 3.3.5 and Theorem 3.3.8 of [MR03].

Definition 4.2.4 (Invariant quaternion algebra)
The quaternion algebra AΓ is called the invariant quaternion algebra.

Remarks 4.2.5 • In Section 4.3.2, we will see an effective way to compute
the invariant trace field and the invariant quaternion algebra.

• For 3-dimensional cofinite arithmetic Coxeter groups, the pair (K(Γ), AΓ)
is a complete invariant for the commensurability class.

4.2.3 Covolumes
As explained above, in order for two groups Γ1,Γ2 < IsomHn to be commen-
surable, one must have covol Γ1

covol Γ2
∈ Q. Of course, because of the Gauss-Bonnet

theorem, this condition is not interesting when the dimension n is even since the
covolume is a rational multiple of the volume of the n-sphere. More precisely,
for n even and a cofinite Coxeter group Γ < IsomHn, we have

covolume(Γ) = (−1)n/2 · π
n/2 · 2n · (n/2)!

n! · χ(Γ).

However, for n = 3 and n = 5 volume considerations can help to exclude
the commensurability. As an example, consider the two arithmetic hyperbolic
Coxeter pyramids depicted in Figure 4.2. These two groups have the same
invariant trace field, K(Γ) = Q[

√
2, i], and invariant quaternion algebra (which

is trivial, since the groups are non-cocompact, as indicated in Proposition 4.2.3).
Moreover, one can show (see [GJK16]) that the volumes are given by

covol Γ1 = L
(π

4

)
, covol Γ2 = 1

8 L
(π

6

)
+ L

(
5π
24

)
−L

( π
24

)
,

where L is the Lobachevsky function, defined by

L(x) = −
∫ x

0
log |2 sin t|dt, x ∈ R.

Then, one can show that the quotient covol Γ1
covol Γ2

is irrational (see [GJK16, pp
158-159]), which implies that Γ1 is not commensurable to Γ2.
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Figure 4.2 – Three dimensional pyramids

4.3 Arithmetical aspects
In [Mac11], Maclachlan described an effective way to decide the commensurabil-
ity of two discrete arithmetic subgroups of IsomHn. The key point is that the
classification of arithmetic hyperbolic groups is equivalent to the classification
of their underlying quadratic forms up to similarity. In turn, the classification of
these quadratic forms can be achieved using a complete set of invariants based
on quaternion algebras.

In this section, we present the result of Maclachlan and a few examples. We
first describe the general ideas behind the classification and then explain how
to compute the complete set of invariants of an arithmetic hyperbolic Coxeter
groups. We illustrate the method with examples in dimension 4 and 6 and then
consider some infinite families described by Kaplinskaya. Other examples can
be found in [GJK16], where we classified 168 arithmetic pyramid groups.

4.3.1 Classification
Let Γ1,Γ2 < IsomHn be two arithmetic Coxeter groups defined over the number
fields K1 and K2 respectively and let f1 and f2 be their underlying quadratic
forms. A result of Gromov and Piatetski-Shapiro (see [GP87, Section 2.6])
implies the following result:

Γ1 ∼ Γ2 ⇔ K1 = K2 and f1 ∼ f2,

where f1 ∼ f2 means that the two quadratic forms are similar (meaning that
there exists c ∈ K1 = K2 such that c·f1 is isomorphic to f2). Therefore, deciding
whether Γ1 is commensurable to Γ2 can be done in two steps. First, we have to
find the defining fields and the underlying quadratic forms (see [Vin67, Part II,
Theorem 2]). Secondly, we have to detect the similarity of the forms. The main
references for this section are [Mac11] and [Vin67].

Remark 4.3.1
An immediate consequence of the result of Gromov and Piatetski-Shapiro is the
following: when n is odd, a necessary condition for Γ1 and Γ2 to be commen-
surable is that K1 = K2 and that the quotient det f1/ det f2 is a square in K1.
Indeed, if the forms are similar it means that there exists λ ∈ K∗1 such that
f1 ∼= λ · f2 and thus det f1 = λn+1 · det f2.

We will present the two points separately and illustrate them with an exam-
ple: the goal is to decide whether the two subgroups Γ6

1,Γ6
2 < IsomH6 presented

in Figure 4.3 are commensurable or not. We first remark that these two groups
are arithmetic by virtue of Proposition 3.9.14:
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• The Gram matrix of the first one has entries in Z
[ 1

2
]
.

• The graph of the second group contains only weights 3, 4 and 6 and no
cycles.

The group Γ6
1 is the simplex group P 6 and has covolume 13

1360800 ·π
3 (see Chap-

ter 5 or [Joh+99]). The group Γ6
2 is one of the pyramids given by Tumarkin in

[Tum04] and has covolume 13
604800 ·π

3 (see Chapter 5); the ratio of their volumes
is 4

9 . Since both groups are non-cocompact, the fields of definition are Q.

Figure 4.3 – Two arithmetic Coxeter subgroups of IsomH6

4.3.1.1 Finding the defining field and the underlying quadratic form

Let Γ < IsomHn be an arithmetic Coxeter group of rank d. We want to find
the defining field K and the underlying quadratic form f of Γ. We consider the
associated fundamental polyhedron P (Γ) and the outward-pointing normal unit
vectors ei ∈ En,1 of the bounding hyperplanes Hi of P (Γ), which means that
P (Γ) =

⋂d
i=1H

−
ei . Finally, we denote by G(Γ) = (ai,j) ∈ Mat(R; d) the Gram

matrix of Γ, meaning that ai,j = 〈ei, ej〉, for the Lorentzian product.
Using Vinberg’s arithmeticity criterion (see Theorem 3.9.7), we can determine
the defining field K of Γ (recall that in this setting K is a totally real number
field) by computing cycles in 2 ·G(Γ). Now, consider the K-subvector space V
of Rn+1 spanned by all the vectors

vi1,...,ik = 2k · a1,i1 · ai1,i2 · . . . · aik−1,ikeik , {i1, . . . , ik} ⊂ {1, . . . , d}. (4.1)

The restriction of the Lorentzian form f0 to V is an admissible quadratic space
of dimension n+ 1 over K. Moreover, Γ is commensurable to O(f, L), where L
is the lattice spanned over K by a basis v1, . . . , vn+1 of V and f is the quadratic
form of signature (n, 1) defined by the symmetric matrix whose entries are the
Lorentzian products 〈vi, vj〉.

Hence, we have an explicit method to find the defining field K and the
underlying quadratic form f of an arithmetic hyperbolic Coxeter group Γ.
Remark 4.3.2
The task of finding the outward-pointing normal vectors of the polyhedron P (Γ)
is difficult: one has to find the vectors e1, . . . , ed of En,1 such that 〈ei, ej〉 = ai,j .
This basically is equivalent to solve a system of d(d+1)

2 quadratic equations
with d · (n + 1) unknowns. Assuming that e1 = (0, . . . , 0, 1) and that the first
vectors contain a lot of zeroes, we can guess the remaining vectors using software
such as Mathematica R©. Another possibility is to compute sufficiently good
approximations of the vectors ei using numerical methods and then use the
LLL algorithm to find the exact components. This approach is described in
[AMR09] for hyperbolic Coxeter groups in IsomH3. However, it seems that
extending this method to groups of higher ranks would be difficult.
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The normal vectors of the polyhedra P (Γ6
1) and P (Γ6

2) associated to the
groups Γ6

1 and Γ6
2 (see Figure 4.3) are presented in Figure 4.4. We know that

the normal vectors of the simplex Γ6
1 are linearly independent and they all

appear on the right hand side of (4.1), up to a rescaling by a rational number.
Therefore, we can take e1, . . . , e7 as a Q-basis of the space V . Hence, in this
case, the underlying quadratic form is the form induced by the Gram matrix of
Γ6

1. In the case of the group Γ6
2, we find the following vectors:

e1, . . . , e8,
√

2 · e2, . . . ,
√

2 · e7,
√

6 · e8.

We see that the vectors v1 := e1, v2 :=
√

2 · e2, . . . , v7 :=
√

2 · e7 are linearly
independent over Q. We thus find the matrix of the quadratic form

(
〈vi, vj〉

)
i,j

=



1 0 −1 0 0 0 0
0 2 −1 0 0 0 0
−1 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


.

Finally, we consider the diagonal forms of these two quadratic forms (this can
be done using a software such as SageMath or by hand):

f6
1 = 〈1, 3, 6, 10, 15, 21,−21〉
f6

2 = 〈1, 1, 2, 2, 2, 6,−1〉.

Here, q = 〈a1, . . . , am〉, with ai ∈ K, denotes the diagonal quadratic form with
coefficients a1, . . . , am, that is q is the quadratic form on Km defined by

q(x1, . . . , xm) =
m∑
i=1

ai · x2
i , ∀(x1, . . . , xm) ∈ Km.

4.3.1.2 Constructing the invariants

Before we present the construction of the invariants, we briefly introduce its
ingredients. The reader only interested in computations can skip this section.

For a quadratic space (V, f) we will consider the associated Clifford algebra
Cl(V, f) and its even subalgebra Cl0(V, f) (see Chapter 8 for more information).
While Maclachlan requires that v2 = f(v) in Cl(V, q), we assume in Chapter 8
that v2 = −f(v). This does not change the theory but simplifies our computa-
tions.

Since the commensurability classes of arithmetic hyperbolic Coxeter groups
are determined by similarity classes of quadratic forms (see [GP87, §2.6]), we
define, for a totally real number field1 K, the following map:

Θ : SimQF(K,n+ 1) −→ IsomAlg(K, 2n)[
(V, f)

]
7−→ Cl0(V, f),

1Recall that the field of definition of an arithmetic hyperbolic Coxeter group is a totally
real number field.
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e1 = (1, 0, 0, 0, 0, 0, 0)

e2 =
(
−

1
2
,

1
6
(
6−
√

6
)
,

1
8
(
− 5 + 3

√
6
)
,

1
24
(
− 15

√
2 + 22

√
3
)
,

1
24
(
− 9 + 11

√
6
)
,

1
2
,

1
12
(
15− 11

√
6
))

e3 = (0,−1, 2, 2
√

2, 2, 0,−4)

e4 =
(

0, 0,−
11
8
,−

3
4
√

2
,−

5
8
, 0,

5
4

)
e5 = (0, 0, 0,−

√
2, 0, 0, 1)

e6 =
(

0, 0, 0, 0,−1,
1
2
,

1
2

)
e7 = (0, 0, 0, 0, 0,−1, 0)

(a) Normal vectors of P (Γ6
1)

e1 = (1, 0, 0, 0, 0, 0, 0)

e2 =
(

0,−
1
√

2
,

1
√

2
, 0, 0, 0, 0

)
e3 =

(
−

1
√

2
,

1
√

2
, 0, 0, 0, 0, 0

)
e4 =

(
0,−

1
√

2
,−

1
√

2
,−
√

3
2
,−

1
2
, 0,−1

)
e5 =

(
0, 0, 0,

√
3

2
,−

1
2
, 0, 0

)
e6 =

(
0, 0, 0, 0, 1,

1
2
,

1
2

)
e7 = (0, 0, 0, 0, 0,−1, 0)

e8 =
(

0, 0, 0,−
1
2
,−
√

3
2
,

√
3

2
,−
√

3
2

)
(b) Normal vectors of P (Γ6

2)

Figure 4.4 – Outward-pointing normal vectors of the Coxeter polyhedra associ-
ated to the groups Γ6

1,Γ6
2 < IsomH6

where SimQF(K,n + 1) is the set of similarity classes of quadratic spaces over
K of dimension n + 1 and IsomAlg(K, 2n) is the set of isomorphism classes of
algebras overK of dimension 2n. If we restrict the map Θ to the quadratic forms
f of signature (n, 1) whose conjugates fσ under non-trivial Galois embeddings
σ : K −→ R are positive definite, then we get an injective map (see [Mac11,
Theorems 6.1 and 6.2]). Hence, we have to be able to decide whether the
even parts of the Clifford algebras (see Chapter 8) associated to the underlying
quadratic forms are isomorphic as algebras. Luckily for us, there is an efficient
way to decide that using the Witt invariants and the Hasse invariants.

Definition 4.3.3 (Witt invariant)
Let (V, f) be a quadratic space over a field K. The Witt invariant of (V, f),
denoted by c(V, f), or only c(f), is the element of BrK defined as follows:

c(f) = c(V, f) :=
{[

Cl0(V, f)
]

if dimV is odd,[
Cl(V, f)

]
if dimV is even.

Definition 4.3.4 (Hasse invariant)
The Hasse invariant of a diagonal quadratic form 〈a1, . . . , an〉 over K is the
element of the Brauer group defined as follows:

s(〈a1, . . . , an〉) =
⊗
i<j

(ai, aj)K .

It can be shown (see [Lam05, Chapter V, Proposition 3.18]) that two isomorphic
diagonal quadratic forms have the same Hasse invariant. Therefore, we can
define the Hasse invariant of quadratic space (V, f) over K, or a quadratic form
f over K, to be the Hasse invariant of any diagonalization of f . It will be
denoted by s(V, f) or just s(f).
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Proposition 4.3.5 ([Lam05, Proposition 3.20])
For a quadratic space (V, f), the Hasse invariant and the Witt invariant are
related as follows:

c(f) =


s(f) dimV ≡ 1, 2 (mod 8)
s(f) · (−1,−det f) dimV ≡ 3, 4 (mod 8)
s(f) · (−1,−1) dimV ≡ 5, 6 (mod 8)
s(f) · (−1,det f) dimV ≡ 7, 8 (mod 8)

Remark 4.3.6
Recall from Proposition 2.5.3 that if K is a number field and if (ai, bi), i = 1, 2,
are two quaternion algebras overK, then there exists a quaternion algebra (x, y)
over K such that the following equality holds in the Brauer group Br(K):

(a1, b1) · (a2, b2) = (x, y).

In particular, it implies that we can choose a representative of s(f) and c(f)
which is a quaternion algebra. However, in some cases, finding such a quaternion
algebra may be difficult.

The even case We suppose that n is even. Let Γ be an arithmetic group
defined over a totally real number field K with underlying quadratic form f .
Consider the Witt invariant c(f) and a quaternion algebra B which represents
c(f). Then, we have

Θ(f) = Cl0(f) ∼= Mat
(
2(n−2)/2;B

)
,

where the last isomorphism comes from [Mac11, Theorem 7.1]. Hence, Θ(f) is
a central simple algebra over K whose class in the Brauer group is B (and thus
it is completely determined by B). In particular, we get the following theorem.

Theorem 4.3.7 ([Mac11, Theorem 7.2])
When n is even, the commensurability class of an arithmetic group of the sim-
plest type in IsomHn is completely determined by the isomorphism class of a
quaternion algebra which represents the Witt invariant of its underlying quadra-
tic form.

The odd case When n is odd, the situation is more complicated. We consider,
as before, Γ, f , c(f) and B. We also consider the signed determinant δ =
(−1)n(n+1)/2 · det f of f . Since f is admissible, det f = δ · (−1)n(n+1)/2 is
negative but all is non-trivial conjugates are positive. We distinguish now two
cases (details can be found in [Mac11]):

• δ is a square in K∗:
Then, δ cannot have any non-trivial conjugates which implies K = Q.
Moreover, we must have n ≡ 1 (mod 4). We finally have Cl0(f) ∼=
Mat

(
2(n−3)/2;B

)2.
• δ is not a square in K∗:
In this case, we have Cl0(f) ∼= Mat

(
2(n−3)/2;B ⊗K K(

√
δ)
)
.
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About the ramification at infinite places As we saw above, commensu-
rability classes are in fact determined by the ramification of certain quaternion
algebra (either the Witt invariant or the Witt invariant over a quadratic exten-
sion of the base field). However, the ramification at infinite places is completely
independent of the Witt invariant. Indeed, using admissibility of the quadratic
form f , propositions 2.5.1 and 4.3.5 and the fact that σ(det f) > 0 for every
σ : K −→ R with σ 6= id, we find

Ram∞ c(f) =


∅ dimV ≡ 1, 2 (mod 8)
Ω∞(K) \ {id} dimV ≡ 3, 4 (mod 8)
Ω∞(K) dimV ≡ 5, 6 (mod 8)
{id} dimV ≡ 7, 8 (mod 8)

(4.2)

4.3.1.3 Computing the invariants

We explain in this section how to compute the invariants which completely de-
termine the commensurability class of an arithmetic hyperbolic Coxeter group.

Let Γ < IsomHn be an arithmetic Coxeter group defined over the totally real
number field K and let f be the underlying quadratic form (see Section 4.3.1.1).
As above, let δ = (−1)n(n+1)/2 ·det f be the signed determinant of f . From a di-
agonalized form of f compute the Hasse invariant s(f) of f (see Definition 4.3.4)
and the Witt invariant c(f) (see Proposition 4.3.5). Finally, choose a represen-
tative B of c(f) which is a quaternion algebra (see remarks below). Then, a
complete invariant for the commensurability class of Γ is given in Table 4.3.

n Complete invariant

even
{
K,Ramf B

}
odd δ is a square in K∗:

{
Q,Ramf

(
B
)}

δ not a square in K∗:
{
K, δ,Ramf

(
B ⊗K K(

√
δ)
)}

Table 4.3 – Complete invariant for an arithmetic hyperbolic Coxeter group

Remarks 4.3.8 • In certain cases, finding a representative of c(f) which
is a quaternion algebra can be tricky. However, this step is not really
important as we are only interested in the ramification of c(f) (see Propo-
sition 2.5.8).

• When n is odd and when δ is not a square in K∗, one can use Proposi-
tion 2.5.9 to compute the ramification of B ⊗K K(

√
δ) (as a quaternion

algebra over K(
√
δ)).

If K = Q and if the associated diagonal quadratic form f is known, then
AlVin (see Chapter 6) can be used to compute the invariant. For example,
to compute the invariant of a group associated to the quadratic form f6

1 =
〈1, 3, 6, 10, 15, 21,−21〉 of the example given in Section 4.3.1.1, one can do

63



./ alvin -maxv 1 -iqf -qf 1 ,3 ,6 ,10 ,15 ,21 , -21

The "-maxv 1" option indicates not to compute normal vectors and the "-iqf"
parameter (for invariant of the quadratic form) asks the program to display the
invariant. Then, the output is the following:
Commensurability invariant :

{Q,{ infinity ,3}}

Therefore, the commensurability invariant of the group Γ6
1 is

{
Q, {∞, 3}

}
.

4.3.1.4 Finishing the analysis for the examples in dimension 6

We come back to our two examples in dimension 6 defined over Q and with
quadratic forms

f6
1 = 〈1, 3, 6, 10, 15, 21,−21〉
f6

2 = 〈1, 1, 2, 2, 2, 6,−1〉.

We first compute the Hasse invariants s(f6
i ) for i = 1, 2. Recall that for a

diagonal quadratic form f = 〈a1, . . . , am〉, we have s(f) =
⊗

i<j(ai, aj) ∈ BrK.
Using the properties of Proposition 2.5.2, we compute:

s(f6
1 ) = (3, 6) · (3, 10) · (3, 15) ·

(3,−1)︷ ︸︸ ︷
(3, 21) · (3,−21)

· (6, 10) · (6, 15) · (6,−1)
· (10, 15) · (10,−1)
· (15,−1)

= (5,−1).

Similarly, we find s(f6
2 ) = 1. Using Proposition 4.3.5 we find c(f6

1 ) = (5,−1) ·
(−1,−3) = (−1,−15) and c(f6

2 ) = 1 ·(−1,−3). By Proposition 2.5.10 we obtain
the following ramification sets:

Ram(−1,−3) = {3,∞}, Ram(−1, 5) = ∅.

Finally, using Proposition 2.5.8 we get Ramf c(f6
1 ) = {3,∞} = Ramf c(f6

2 ),
which implies that the groups Γ6

1 and Γ6
2 are commensurable.

4.3.1.5 New cocompact examples worked out in detail

We study the commensurability of three cocompact arithmetic Coxeter sub-
groups Γ4

i , i = 1, 2, 3, of IsomH4. These groups correspond to maximal sub-
groups generated by reflections in the groups of units O(fi,OK5) of three (reflec-
tive) quadratic forms fi with base field K = Q[

√
5] and they were found using

Vinberg’s algorithm (see Chapter 6). For simplicity, we write Θ = 1+
√

5
2 for the

generator of the ring of integers of OK = Z[Θ]. The first group is the simplex
group [5, 3, 3, 4] and is associated to the quadratic form f1 = 〈−Θ, 1, 1, 1, 1〉
(see [Bug84]) while the last two correspond to new Coxeter polyhedra P (Γ4

i ),
i = 2, 3, I discovered (see Section 6.8.3) and are associated to the quadratic
forms f2 = 〈−Θ, 1, 1, 1, 2 + Θ〉 and f3 = 〈−Θ, 1, 1, 2 + Θ, 2 + Θ〉 respectively.
The Coxeter graphs of the first two groups are presented in Figure 4.5.
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Figure 4.5 – Γ4
1,Γ4

2 < IsomH4

The Coxeter graph of the third group is more complicated: it has 16 vertices
and 72 edges. We depict in Figure 4.6 the non-dotted edges of the graph and
the dotted edges can be computed using the normal vectors given in Figure 4.7.
The invariants of the three groups are presented in Figure 4.8 page 67.

Figure 4.6 – Γ4
3 < IsomH4

e1 = (0,−1, 1, 0, 0), e4 = (0, 0, 0, 0,−1),
e2 = (0, 0,−1, 0, 0), e5 = (−1 + 1 ·Θ, 1 ·Θ, 0, 0, 0),
e3 = (0, 0, 0,−1, 1), e6 = (1, 0, 0, 1, 0),

e7 = (1 + 3 ·Θ, 2 + 1 ·Θ, 0, 1 + 1 ·Θ, 1 + 1 ·Θ),
e8 = (2 + 3 ·Θ, 1 + 2 ·Θ, 2 ·Θ, 1 + 1 ·Θ, 1 + 1 ·Θ),
e9 = (4 + 7 ·Θ, 3 + 4 ·Θ, 3 + 4 ·Θ, 2 + 3 ·Θ, 2 ·Θ),
e10 = (2 + 5 ·Θ, 1 + 2 ·Θ, 1 + 2 ·Θ, 1 + 2 ·Θ, 1 + 2 ·Θ),
e11 = (9 + 12 ·Θ, 4 + 7 ·Θ, 4 + 7 ·Θ, 3 + 6 ·Θ, 2 + 4 ·Θ),
e12 = (10 + 15 ·Θ, 4 + 7 ·Θ, 4 + 7 ·Θ, 4 + 7 ·Θ, 3 + 6 ·Θ),
e13 = (11 + 18 ·Θ, 7 + 11 ·Θ, 7 + 11 ·Θ, 4 + 7 ·Θ, 4 + 5 ·Θ),
e14 = (7 + 10 ·Θ, 4 + 6 ·Θ, 4 + 6 ·Θ, 3 + 4 ·Θ, 2 + 3 ·Θ),
e15 = (7 + 11 ·Θ, 4 + 7 ·Θ, 4 + 5 ·Θ, 3 + 5 ·Θ, 2 + 3 ·Θ),
e16 = (15 + 25 ·Θ, 10 + 15 ·Θ, 7 + 11 ·Θ, 7 + 11 ·Θ, 5 + 7 ·Θ).

Figure 4.7 – Normal unit vectors for P (Γ4
3)

Since the dimension of the space is even, the commensurability class is com-
pletely determined by the ramification set of the Witt invariant c(fi), i = 1, 2, 3,
as indicated in Theorem 4.3.7. Direct computations (see Figure 4.8) show that
the Witt invariants are given by

c(f1) = (−1,−1), c(f2) = (−Θ, 2 + Θ) · (−1,−1), c(f3) = (−1,−2−Θ).
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Therefore, in order to decide about the commensurability of our groups, we
have to compute the finite ramification of the quaternion algebras (−1,−1)K ,
(−Θ, 2 + Θ)K and (−1, 2 + Θ)K .

Using Proposition 2.5.9 we see that Ramf (−1,−1) = ∅. Since NK/Q(−Θ) =
−1, then −Θ is invertible, while NK/Q(2 + Θ) = 5 implies that 2 + Θ is a
prime element of OK lying over 5. For a quaternion algebra (a, b)K , a necessary
condition for a prime ideal P ⊂ OK to belong to the ramification set is that P |
〈2ab〉 = (2ab)OK . In our case, since 2 remains prime in OK , the only candidates
are 2 and

√
5. Moreover, since the ramification set has even cardinality (see

Theorem 2.5.5) and since |Ram∞Bi| = 2 (see equation (4.2) page 63), then
either Ramf Bi = ∅ or Ramf Bi = {2,

√
5}. To compute the ramification, we

will use the following theorem.

Theorem 4.3.9 ([AMR09, Theorem 16])
Let K be a number field. Let P be a prime ideal of OK and let a, b ∈ OK be such
that the valuations of these elements satisfy ηP(a), ηP(b) ∈ {0, 1}. We define an
integer m as follows:

• if P | 〈2〉, m = 2ηP(2) + 3;

• if P - 〈2〉, then m = 1 if ηP(a) = ηP(b) = 0 and m = 3 otherwise.

We also let S be a finite set of representatives for the ring OK/Pm.
Then, P /∈ Ramf (a, b)K , i.e. (a, b) splits at P, if and only if there exists a triple
(X,Y, Z) ∈ S3 such that the two following conditions are satisfied:

• aX2 + bY 2 − Z2 = 0 or m ≤ ηP(aX2 + bY 2 − Z2);

• ηP(X) = 0 or ηP(Y ) = 0 or ηP(Z) = 0.

Remark 4.3.10
Since (ac2, b) ∼= (a, b), the condition ηP(a), ηP(b) ∈ {0, 1} is not a restriction.

We start with the group Γ4
2. We take P = 〈

√
5〉 and a = −Θ, b = 2 + Θ,

which gives ηP(a) = 0 and ηP(b) = 1 and thus m = 3. The quotient OK/P3

has 125 elements which can be described as follows (see [EIR11, Theorem 1]):

OK/P3 =
{

(x+ y
√

5)P3 : 0 ≤ x < 25, 0 ≤ y < 5
}
.

Using a computer, we can check by means of Theorem 4.3.9 that
√

5 belongs
to Ramf (−Θ, 2 + Θ) and thus

√
5 ∈ Ramf B2. Therefore, we have Ramf B2 =

{2,
√

5}. On the other hand, since the equation (2 + Θ)X2 − Y 2 − Z2 = 0
is satisfied with X = Y = −1 + Θ and Z = 1 (and thus ηP(X) = ηP(Y ) =
ηP(Z) = 0), then

√
5 6∈ Ramf (−1, 2 + Θ) which implies that Ramf B3 = ∅.

Hence, the simplex group Γ4
1 is commensurable to the group Γ4

3 but not to Γ4
2.

4.3.2 Case n = 3 (arithmetic and non-arithmetic)
When n = 3, we have two interesting features concerning (in-)commensurable
groups in IsomH3:

• the computation of the invariants is easier;

• some of the results are true even when the groups are not arithmetic.
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invariant Γ4
1 Γ4

2 Γ4
3

fi 〈−Θ, 1, 1, 1, 1〉 〈−Θ, 1, 1, 1, 2 + Θ〉 〈−Θ, 1, 1, 2 + Θ, 2 + Θ〉

f -vector (5, 10, 10, 5, 1) (14, 28, 22, 8, 1) (48, 96, 64, 16, 1)

covol. 17
21600 · π

2 1
60 · π

2 221
900 · π

2

s(fi) 1 (−Θ, 2 + Θ) (−1, 2 + Θ)

c(fi) (−1,−1) (−Θ, 2 + Θ) · (−1,−1) (−1,−2−Θ)

Ramf Bi ∅ {2,
√

5} ∅

Figure 4.8 – Invariants of the three 4-dimensional cocompact groups Γ4
i

A standard reference for the three dimensional case is [MR03]. Let Γ < IsomH3

be a cofinite Coxeter group (not necessarily arithmetic) of rank d. As above,
we denote by G(Γ) = (ai,j) the Gram matrix of Γ and by ei the normal vectors
unit of the bounding hyperplanes Hei of the fundamental polyhedron P (Γ) of
Γ. We let K be the field generated by the cycles in G(Γ):

K = Q
(
ai1,i2 · . . . · aik−1,ik · aik,i1 : ij ∈ {1, . . . , d}

)
.

We also consider the K-vector space M(Γ) spanned by the vectors

a1,i1 · ai1,i2 · . . . · aik−1,ik · eik , ij ∈ {1, . . . , d}.

This space, endowed with the restriction of the Lorentzian form, is a quadratic
space of signature (3, 1). If we let δ be the determinant of this quadratic space
we then have the following results.

Proposition 4.3.11 ([MR98, Theorem 3.1])
The field K(

√
δ) is equal to the invariant trace field.

Let 〈−a1, a2, a3, a4〉, ai > 0, be a diagonal form of the quadratic form corre-
sponding to M(P ).

Proposition 4.3.12 ([MR98, Theorem 3.1])
The invariant quaternion algebra AΓ is given by (a1 · a2, a1 · a3)K(Γ).

Theorem 4.3.13 ([MR03, Theorem 3.3.8])
If Γ is non-cocompact, then AΓ = 1.

Remark 4.3.14
If Γ is arithmetic, then the invariant trace field and the invariant quaternion
algebra correspond to what we get using the Witt invariant (and thus form a
complete set of invariants). Indeed, since we are only interested in the similarity
class of the quadratic form, we can suppose that it can be written in the form
〈1, b̃, c̃,−d̃〉, with b̃, c̃, d̃ > 0. We then let δ = −bcd be the determinant of the
form which gives

〈1, b̃, c̃, d̃〉 ∼= 〈1,−δc̃d̃,−δb̃d̃, δb̃c̃〉 = 〈1,−δc,−δd, δcd〉,

with c := c̃d̃, d := b̃d̃. Then, a direct computation shows that the Witt invariant
of this last quadratic form is (c, d) = (c̃d̃, b̃d̃).
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4.4 Examples

4.4.1 Kaplinskaya’s 3-dimensional families
In this section, we present the computations of the commensurability invariants
for some families of Coxeter prisms in H3 given by Kaplinskaya in [Kap74]. The
summary of the invariants for these families can be found in the appendices
A.1.1 and A.1.2. The infinite families of Kaplinskaya are of special interest since
they are the among the very few known infinite families of hyperbolic Coxeter
groups not arising as sequences of doublings (see Chapter 7 for examples of such
sequences).

Example 4.4.1
We continue to study the family of 3-dimensional cocompact groups Γm shown in
Figure 4.9 (see Example 3.6.7 for the growth series and the growth rates of these
groups). Our aim is to decide which groups of the family are (quasi-)arithmetic
and to compute the invariant trace field and the invariant quaternion algebra.
The Gram matrix of such a group is given by Gm and has the following form

Figure 4.9 – A family of 3-dimensional compact Coxeter prisms

Gm =



1 −
√

3 cos( 2π
m )+1

2
√

cos( 2π
m )

0 0 0

−
√

3 cos( 2π
m )+1

2
√

cos( 2π
m )

1 − 1
2 0 0

0 − 1
2 1 − 1√

2 0
0 0 − 1√

2 1 − cos
(
π
m

)
0 0 0 − cos

(
π
m

)
1


.

In order for Γm to be (quasi-)arithmetic, it is necessary that all the entries
of Gm are totally real algebraic numbers. Since cos π

m is always a totally real
algebraic number we will see for which value of m there is at least one conjugate
of αm := 3 cos( 2π

m )+1
cos( 2π

m ) which is negative. Thus, if there exists an integer k < m

which is coprime with m and such that the image 3 cos( 2kπ
m )+1

cos( 2kπ
m ) of αm by the

Galois automorphism corresponding to k is negative, then Γm is not quasi-
arithmetic. This happens when k lies between 1

4m and arccos
(
− 1

3
)
· 1

2π ·m ∼=
0.304087 · m. Therefore, we see using Theorem 2.3.1 with ε = 1

5 that Γm
is not quasi-arithmetic if m ≥ 100. Direct computations show that the only
possibilities are m ∈ {5, 6, 8, 9, 12, 13, 14, 16, 20, 21, 22, 28, 30, 36,
54}. Since the minimal polynomial of

(
2 ·Gm

)
1,2 = −√αm is not monic when

m ∈ {12, 20, 28, 36}, then Γm cannot be arithmetic for these values.
Now, the field K generated by the cycles in 2Gm is Q

[
cos 2π

m

]
and the field

K̃ generated by the entries of Gm is Q
[
cos π

m ,
√
αm,
√

2
]
. For m ∈ {5, 6, 8, 9,

12, 13, 14, 16, 20, 21, 22, 28, 30, 36, 54}, the group Γm will be quasi-arithmetic if
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and only if the matrix Gσm is positive semi-definite for every Galois embedding
σ of K̃ which is not the identity on K.

For m = 5, we have cos π5 = 1
4
(
1 +
√

5
)
, and the minimal polynomial of

− 1
2
√
α5 = −

√
3 cos( 2π

m )+1

2
√

cos( 2π
m )

= − 1
2

√
4 +
√

5 is equal to 11 − 32x2 + 16x4, whose

roots are
−1

2

√
4−
√

5, 1
2

√
4−
√

5,−1
2

√
4 +
√

5, 1
2

√
4 +
√

5.

Now, a Galois embedding σ : K̃ −→ R cannot send − 1
2

√
4 +
√

5 to one of the
two last roots for otherwise it would act trivially on K = Q[

√
5]. Therefore, we

have to consider the four Galois embeddings corresponding to

−1
2

√
4 +
√

5 7−→ ±1
2

√
4−
√

5,
√

2 7−→ ±
√

2,

and cos π5 = 1
4
(
1 +
√

5
)
to 1

4
(
1−
√

5
)
. The four matrices Gσ5 are positive

semidefinite, as required.
For m = 6, we have K = Q and there is nothing to check.
For m = 8, the degree of K̃ over Q is 8 and the four embeddings do not act

by identity on K = Q[
√

2]. For each of these embeddings, the conjugate of G8
is positive semi-definite.

For m = 12, the degree of K̃ over Q is 16 and eight embeddings do not act
by identity on K = Q[

√
3]. For each of these embeddings, the conjugate of G12

is positive semi-definite.
For the remaining m, we can show that Γm is not quasi-arithmetic (see

Appendix B.1.2 for details).
In summary, Γm is arithmetic if m ∈ {5, 6, 8}, quasi-arithmetic if m = 12

and not quasi-arithmetic for any other value of m. We now want to compute
the invariant trace field and invariant quaternion algebra. The normal vectors
{e1, . . . , e5} of the associated polyhedron Pm are given by

1 0 0 0

−
√

3 cos( 2π
m )+1

2
√

cos( 2π
m )

0 0 − 1
2

√
cos
( 2π
m

)−1 − 1

0 0 1√
1−cos( 2π

m )
−
√

cot2( πm )−1
√

2

0 − cos
(
π
m

)
− sin

(
π
m

)
0

0 1 0 0


.

With the notation of Section 4.3.2, a basis for the space M(Γm) is given by

e1,
√
αm · e2,

√
αm · e3,

√
αm
2 · e4,

and the Gram matrix of these vectors is

Mm =


1 −αm2 0 0
−αm2 αm −αm2 0

0 −αm2 αm −αm2
0 0 −αm2

αm
2

 .
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Now, if we let Pm :=


1 0 0 0
αm
2 1 1 1
0 0 1 1
0 0 0 1

, then Pm ·Mm · Pmt is the diagonal

matrix with entries equivalent (i.e. equal up to a square factor) to

−
(

1 + sec 2π
m

)
αm, 1, 2αm, 2αm.

This implies that the invariant trace field K(Γ) is given by

K(Γ) = Q

[
cos 2π

m
,

√
−
(

3 cos 2π
m

+ 1
)(

cos 2π
m

+ 1
)]

.

Finally, the invariant quaternion algebra is

AΓ =
(
−2
(

1 + sec 2π
m

)
,−2

(
1 + sec 2π

m

))
K(Γ)

.

These results enable us to quickly decide the (in)commensurability of two spe-
cific groups of the sequence. Moreover, let us notice that besides a few values
of m, the degree of the field extension [K(Γ) : Q] is ϕ(m). In particular, the
sequence contains an infinite number of incommensurable groups.

Example 4.4.2
We present the main steps for the computations of some invariants of the
family of prisms Γm given in Figure 4.10. The methods and results used
will be quite similar to the ones used in the previous example. We have

Figure 4.10 – A family of 3-dimensional compact Coxeter prisms

K̃ = Q
[
cos π

m ,
√

5,√αm
]
, where αm = 3 cos( 2π

m )+
√

5
4 cos( 2π

m )+
√

5−1
, andK = Q

[
cos 2π

m ,
√

5
]
.

The fifth minor of the Gram matrix (i.e. the determinant of submatrix of the
Gram matrix obtained by deleting the last row and last column) is equivalent
(i.e. equal up to a square factor) to − 3+

√
5

4 cos( 2π
m )+

√
5−1

which has, for k coprime
with m, Galois conjugates

am,k = − 3 +
√

5
4 cos

( 2kπ
m

)
+
√

5− 1
and bm,k = − 3−

√
5

4 cos
( 2kπ
m

)
−
√

5− 1

(depending on the value of m, cos
( 2kπ
m

)
and
√

5 may be dependant over Q). If
m > 300, then there exists a prime number p such that m

12 < p < m
12 ·

6
5 and

thus both am,p and bm,p are negative. Therefore, these groups can be (quasi-
)arithmetic only if m ≤ 300. Now, if 11 < m ≤ 300, we can check that it is
always possible to find k < m coprime with m such that both am,k and bm,k
are negative. For m = 8, 9, the number

√
αm is not totally real. Hence, we still

have to consider the cases m = 4, 5, 6, 7, 10.
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For m = 4, we have K̃ = Q
[√

2,
√

5,
√

5 +
√

5
]
and G4 is positive semi-

definite for the four embeddings which do not fix K = Q
[√

5
]
. For m = 5, 6, 10,

similar computations give the same results. For m = 7, the Galois embed-
ding which sends cos π7 to the single negative root of 1 − 4x − 4x2 + 8x3 =
min

(
cos π7 ,Q

)
and

√
5 to itself gives a negative first minor. Therefore, the

group is not quasi-arithmetic.
In summary, the group is arithmetic if m = 4, 6 and quasi-arithmetic if

m = 5, 10.
The normal vectors {e1, . . . , e5} of the polyhedron Pm are given by the line

vectors of the matrix

1 0 0 0
−√αm 0 0 1√

1
2 (3+

√
5) csc2 π

m−4

0 0 − 1
4
(
1 +
√

5
)

csc
(
π
m

) 1
4

√
2
(
3 +
√

5
)

csc2 π
m − 16

0 − cos π
m sin π

m 0
0 1 0 0

 ,

and a basis for the space M(Γm) is given by

e1,
√
αm · e2,

√
αm · e3, (1 +

√
5)
√
αm · e4.

If we denote by Mm the Gram matrix of these vectors, and if we let Pm be the
matrix 

1 0 0 0
αm 1 1 + 1√

5
1
20
(
5 +
√

5
)

0 0 1 0
0 0 1

2
(
3 +
√

5
)

1

 ,

then Pm ·Mm · Pmt is the diagonal matrix with entries

−
2
(
5 + 2

√
5
)

cos2 π
m(

4 cos
( 2π
m

)
+
√

5− 1
)αm, 1, αm, 2(5 +

√
5
)
αm

and with signed determinant δ = − (7+3
√

5) cos2 π
m

4 cos( 2π
m )+

√
5−1

αm. From this, it is easy to
check the (in)commensurability of two given members of this family.

Example 4.4.3
We present the main steps for the computation of some invariants of the family
of Coxeter prisms Γk,m given in Figure 4.11. As before, by considering the fifth

Figure 4.11 – A family of 3-dimensional compact Coxeter prisms

minor of the Gram matrix, we see that Γk,m can be quasi-arithmetic only if
m ∈ {7, 8, 9, 10, 11, 12, 14, 16, 18, 24, 30}.

For k = 3, we see that Γ3,m is arithmetic if and only if m = 7, 8, 9, 10, 14
and quasi-arithmetic when m = 12, 18, 24, 30. This is coherent with [Vin67].

For k = 4, we see that Γ4,m is arithmetic if and only if m = 7, 8, 10, 12 and
quasi-arithmetic when m = 18.

The other invariants of the family can be found in Appendix A.1.1.
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4.4.2 Forms 〈−p, 1, . . . , 1〉 and 〈−1, 1, . . . , 1, p〉
The aim of this section is to give the commensurability invariants of the two
quadratic forms 〈−p, 1, . . . , 1〉 and 〈−1, 1, . . . , 1, p〉. These forms are of par-
ticular interest because they are the first natural candidates for the Vinberg
algorithm (see Chapter 6) after the standard quadratic form of signature (n, 1).
The investigation of the reflectivity of these quadratic forms for primes p < 30
is presented in Section 6.8.1.3. The tables 4.4 and 4.5 present the commensu-
rability invariants for groups related to the two quadratic forms. In view of
the tables, we note that groups corresponding to the forms 〈−p, 1, . . . , 1〉 and
〈−1, 1, . . . , 1, p〉 are not commensurable if and only if:

• n ≡ 0, 2, 4, 6 (8) and p ≡ 3 (4);

• n ≡ 3, 7 (8) and p ≡ 7 (8).

The first column of the tables contains the value of n modulo 8. We first note
that s(〈−p, 1, . . . , 1〉) = 1 and s(〈−1, p, . . . , 1〉) = (−1, p).

n c(V ) Ramf c(V ) Invariant

0 1 ∅ {Q, ∅}

1 1 ∅ {Q, p, ∅}

2 (−1, p)
{
∅ p = 2, p ≡ 1 (4)
{2, p} p ≡ 3 (4)

{
{Q, ∅} p = 2, p ≡ 1 (4)
{Q, {2, p}} p ≡ 3 (4)

3 (−1, p)
{
∅ p = 2, p ≡ 1 (4)
{2, p} p ≡ 3 (4)

{
{Q,−p, {2}} p ≡ 7 (8)
{Q,−p, ∅} p 6≡ 7 (8)

4 (−1,−1) {2} {Q, {2}}

5 (−1,−1) {2}
{
{Q, p, {2}} p ≡ 1 (8)
{Q, p, ∅} p 6≡ 1 (8)

6 (−1,−p)
{
{p} p ≡ 3 (4)
{2} p = 2, p ≡ 1 (4)

{
{Q, {p}} p ≡ 3 (4)
{Q, {2}} p = 2, p ≡ 1 (4)

7 (−1,−p)
{
{p} p ≡ 3 (4)
{2} p = 2, p ≡ 1 (4)

{Q,−p, ∅}

Table 4.4 – Commensurability invariants for groups related to the quadratic
form 〈−p, 1, . . . , 1〉
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n c(V ) Ramf c(V ) Invariant

0 (−1, p)
{
∅ p = 2, p ≡ 1 (4)
{2, p} p ≡ 3 (4)

{
{Q, ∅} p = 2, p ≡ 1 (4)
{Q, {2, p}} p ≡ 3 (4)

1 (−1, p)
{
∅ p = 2, p ≡ 1 (4)
{2, p} p ≡ 3 (4)

{Q, p, ∅}

2 1 ∅ {Q, ∅}

3 1 ∅ {Q,−p, ∅}

4 (−1,−p)
{
{p} p ≡ 3 (4)
{2} p = 2, p ≡ 1 (4)

{
{Q, {p}} p ≡ 3 (4)
{Q, {2}} p = 2, p ≡ 1 (4)

5 (−1,−p)
{
{p} p ≡ 3 (4)
{2} p = 2, p ≡ 1 (4)

{
{Q, p, {2}} p ≡ 1 (8)
{Q, p, ∅} p 6≡ 1 (8)

6 (−1,−1) {2} {2}

7 (−1,−1) {2}
{
{Q,−p, ∅} p 6≡ 7 (8)
{Q,−p, {2}} p ≡ 7 (8)

Table 4.5 – Commensurability invariants for groups related to the quadratic
form 〈−1, p, 1, . . . , 1〉
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CHAPTER 5
CoxIter

The aim of this chapter is to present CoxIter, a computer program which we
developed, whose purpose is to compute the invariants of hyperbolic Coxeter
groups (for the theory, see sections 3.6 to 3.9). Most of the material presented
in this chapter was published in [Gug15]. The additional material consists of
the following:

• Section 5.1 containing general information about the program.

• Some details and figures in Section 5.2, explaining the implementations of
the algorithms.

• All information relating to the growth series and to the growth rate (in
particular in Section 5.2 and the part about the conjecture of Kellerhals
and Perren).

Consider the Coxeter subgroup Γ(14,1) of IsomH14 whose graph G is given
in Figure 5.1. If one wants to compute the covolume (or, equivalently, the Euler
characteristic), the growth series and growth rate, the first step is to find the
number of connected spherical subgraphs G. A careful (and painful) analysis of
the graph shows that there exist 182 of them. The list of spherical subgraphs
of G, which correspond to all faces of the polyhedron associated to Γ (except
the vertices at infinity), is too big to be determined by hand (there are 96001
of them).

Figure 5.1 – The hyperbolic Coxeter group Γ(14,1) < IsomH14

The input of the program CoxIter is the graph of some hyperbolic Coxeter
group (see for example Section 5.4.1 for our group Γ(14,1)) together with some
options. The output of CoxIter consists then of the following elements:
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• Cocompactness
Whether the group is cocompact or not.

• Cofiniteness
Whether the group has finite covolume or not.

• Arithmeticity
If the group is non-cocompact and has no dotted edge, we can decide if
the group is arithmetic or not. If the group is non-cocompact and the
graph has dotted edges, it is necessary to know the weights of the dotted
edges (i.e. the length of the common perpendicular of the corresponding
hyperplanes) to decide whether the group is arithmetic or not. In this
setting CoxIter prints the tests to decide the arithmeticity. If the group is
cocompact, it is much more complicated to decide about the arithmeticity
(see examples 4.4.1, 4.4.2 and 4.4.3) and the program does not handle this
case.

• f -vector

• Euler characteristic

• Signature
If the graph contains no dotted edge or if the weight of the dotted edges
are given, the signature is computed numerically1 using PARI.

• Dimension
For the cocompactness and cofiniteness tests, it is necessary to know the
dimension of the hyperbolic space where the corresponding polyhedron
lives. If this dimension is not provided, then the program will guess it2.

• Growth series
The rational expansion p(x)

q(x) of the growth series is given, where p(x) is a
product of cyclotomic polynomials.

• Growth rate
An approximation of the growth rate is given. It is also checked if it is a
Perron, a Pisot, or a Salem number.

For the group Γ(14,1), the output of CoxIter is the following (the denomi-
nator of the growth series, which is a polynomial of degree 246 is not written
here for the sake of space):
Reading file: ../ graphs /14- vinb85 . coxiter

Number of vertices : 17
Dimension : 14
Vertices : 1, 2, 3, 4, ..., 17
Field generated by the entries of the Gram matrix : Q[

sqrt (2)]
File read

1First, we compute numerical approximations of the roots and then we decide which are
negative, zero and positive.

2More precisely, it will assume that the dimension correspond to the maximal rank of a
spherical or Euclidean subgraph.
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Finding connected subgraphs ......
Finding graphs products ......
Computations ......

Computation time: 4.09233 s

Information
Cocompact : no
Finite covolume : yes
Arithmetic : yes
f- vector : (94, 704, 2695 , 6825 , 12579 , 17633 , 19215 ,

16425 , 11009 , 5733 , 2275 , 665, 135, 17, 1)
Number of vertices at infinity : 5
Alternating sum of the components of the f- vector : 0
Euler characteristic : -87757/289236647411712000
Covolume : pi^7 * 87757/305359330843607040000
Signature ( numerically ): 14,1,2

Growth series :
f(x) = C(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3,

3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6,
6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 12, 12, 12, 13,
14, 14, 15, 16, 18, 18, 20, 22, 24, 26, 28, 30) /(...)

Growth rate: 2.3365920620831499457950462497773311312
Perron number : yes
Pisot number : no
Salem number : no

In the next section, we provide general information about the program. In
the second section, we explain how the well-know classical results can be im-
plemented in algorithms. The two following parts are dedicated to the use of
CoxIter: we use the program to compute the invariants of a few Coxeter graphs
in higher dimensions, including recently found groups of Vinberg in dimension
18. In the last part, we explain how the program was tested.

5.1 General information about the program
The program CoxIter is written in C++ and is free/open source. More precisely,
it is published under a free license, the GPLv3 (the GNU General Public License
v3) and can be used freely in various projects3. CoxIter and its documentation
(to build and use the program) is available on the website https://coxiter.
rgug.ch and on GitHub: https://github.com/rgugliel/CoxIter

In addition to the main program, there are two other possibilities to use
CoxIter:

• GAP package
I created a GAP package called CoxIterGAP which gives the possibility to
use CoxIter inside of GAP. For more information, see Section 5.3.6

3More information about the license can be found here: https://www.gnu.org/
licenses/gpl.html A short guide is also available here: https://www.gnu.org/licenses/
quick-guide-gplv3.html
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• CoxIterWeb
A web version of CoxIter, which can be used via any web-browser, can
be downloaded and installed on any server. The source code is on my
GitHub account: https://github.com/rgugliel/CoxIterWeb
Alternatively, a demo version can be found here: https://coxiter.
rafaelguglielmetti.ch/ Hence, you can use CoxIter from anywhere
for small groups (generated by at most 20 reflections).

5.1.1 Versions
The first version of the program, CoxIter 1.0.0, was published in [Gug15]. After
that, more versions were released:

• 1.0.1
Correction of a small bug.

• 1.0.2
Correction of a bug causing incorrect answer in the cofiniteness test.

• 1.1
This version added the following features:

– growth series and growth rate;
– test for the growth rate (Perron, Pisot and Salem numbers);
– numerical computation of the signature;
– more formats for the output (LATEX, PARI);
– guess the dimension if it is not specified;
– speed-up of some computations.

• 1.1.1
This function brought the following features:

– ability to read a file directly;
– ability to export the graph;
– GAP format for the output;
– display some help at start-up if no file is given.

• 1.2
This function brought the following features:

– correction of a bug;
– fully functional Windows and OSX versions.

5.1.2 External libraries used
CoxIter is developed in C++11. Moreover, it requires the following external
libraries:

GMP (or GNU Multiple Precision Arithmetic Library) is a free library for
arbitrary precision arithmetic with integers.
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OpenMP This API allows CoxIter to parallelize some parts of the computa-
tions and speed-up the execution. It is not mandatory.

PARI We use the C library PARI to compute the signature of the group, the
growth rate and to determine whether it is a Perron, Pisot or Salem num-
bers. It is not mandatory but if it is not available, then CoxIter will
compute only the growth series and not the growth rate (and won’t be
able to compute the signature).

PCRE The PCRE library (PCRE - Perl Compatible Regular Expressions) is
used to parse the user input (parameters of the program and CoxIter
files).

5.1.3 Design description
We briefly explain the main steps of the working flow of CoxIter. Depending
on the given parameters, some steps may be skipped.

• Reading the parameters
When the program is launched, it first lists all the given parameters (the
file to read and the options for the computations). This is done in the
App::bReadMainParameters function.

• Reading the graph
The Coxeter graph is read from the file (CoxIter::bReadGraphFromFile)
and some initializations are made (memory allocation, field generated by
the entries of the Gram matrix, some vertices may be removed).

• First outputs
Before the computations, we may have to print the first informations:
Gram matrix, Coxeter matrix, writing the graph in a file, drawing of the
Coxeter graph.

• Finding connected spherical and Euclidean subgraphs
We find all connected spherical and Euclidean subgraphs of the given
Coxeter graph (see Section 5.2.1 for more information).

• Partial non-cofiniteness test
A partial non-cofiniteness test4 has been implemented, mostly for its use
inside the Vinberg algorithm (see Section 6.3.3.1 for more information),
and can be thousand times faster than the complete cofiniteness test.

• Graph products
All the possible products (spherical and Euclidean) are computed and
counted. If CoxIter has to perform the cocompactness and cofiniteness
tests, some of them are stored (for each component of the product we keep
the type of the graph and the list of the vertices).

• Cofiniteness test

• Euler characteristic and f -vector
4If the output of the test is "true", then it is certain that the group is not cofinite. If the

answer is "false", then we cannot say anything and have to perform the complete cofinite test.
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• Compactness and arithmeticity tests

• Other computations
The following are computed: growth series, growth rate (and Perron, Pisot
and Salem tests) and signature.

• Output
The results of the computations and tests are printed.

5.1.3.1 Different files

We list all the files in the project and their main features.

app Main file for the execution of the program.

arithmeticity Function to recursively delete separating edges the queues of
the graph (see Proposition 3.9.14) and to test the arithmeticity.

coxiter All global functions to do the input/output, manage the graph and
most of the computations.

graph To describe one graph: list of its vertices, adjacent vertices of the graph,
test of inclusion.

graphs.list Allows to store and browse all graphs of one type (spherical or
Euclidean).

graph.list.iterator Allows to go through the list of graphs in a sequential
order.

graphs.list.n All graphs of a given rank.

graphs.product & graphs.product.set Store one product of graphs.

growthrate The compute the growth rate and do the Perron, Pisot and Salem
tests (the PARI library is needed).

index2 To create the index two subgroup (see Proposition 7.1.9).

signature Numerical computation of the signature.

lib/maths_tools Some mathematical functions: integer square root, list of
divisors, prime factors and prime decomposition, ...

lib/numbers/number_rational To handle computations with rational num-
bers.

lib/polynomials Divisibility and division of polynomials, product by symbols5

and list of cyclotomic polynomials.

5.2 Algorithms
Let (Γ, S) be a hyperbolic Coxeter group of rank r. In what follows, we use the
notations of the program. In particular, the r vertices of the Coxeter graph are
labelled 0, . . . , r − 1 instead of 1, . . . , r.

5Recall that, for a positive integer k, the symbol [k] is the polynomial 1 + x+ . . .+ xk−1.
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5.2.1 Euler characteristic and f-vector
We present here the main steps for the computation of the Euler characteristic
χ (see Section 3.7) and the f -vector. These steps are the following:

(1) We find all paths (simple walks with all edges labelled with a 3) starting
from every vertex, that is, every Am. Note that a single vertex is such a
path.

(2) We extend these paths in order to find the finite and affine irreducible
Coxeter subgroups.

(3) We compute all the possible products of groups.

(4) We count these products with their orders and multiplicities. The Euler
characteristic is then computed with Proposition 3.7.1 (by taking into ac-
count the orders of finite irreducible spherical Coxeter groups in Table 3.2).

Note that using (1)− (3), and by theorems 3.7.5 and 3.7.6, we can compute the
f -vector of Γ.

First, we use a depth-first search algorithm to explore the graph from every
vertex and to find any subgraph of type Am (function CoxIter::DFS). For each
such Am, we try to extend it to other connected spherical and Euclidean graphs
(function CoxIter::addGraphsFromPath).
Once the connected graphs are found, we compute all the possible products.
Counting them with their multiplicities gives the f -vector and the Euler char-
acteristic.

Figure 5.2 – Extending paths to graphs

5.2.2 Growth series and growth rate
We want to compute the growth series fΓ of Γ. Using Steinberg’s formula, we
can write

1
fΓ(x) =

∑
T∈F

(−1)|T |

fT (x−1) ,

where F =
{
T ⊂ S : |ΓT | < ∞

}
. If T ⊂ S corresponds to the finite subgroup

ΓT , then we can write ΓT =
∏l
i=1 Γi, where each Γi is a finite and irreducible
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Input: void
Output: void
Result: Find connected spherical and parabolic graphs from iPath
for every vertex v in iPath do

v is added to iPathTemp
Add an An, corresponding to iPathTemp
If the two ends of iPathTemp can be connected, there is a Ãn
if iPathTemp has at least 4 vertices then // Look for: Dn, B̃n, D̃n

for every vertex j do
if j is a neighbour of the next to last vertex of iPath (and only
of this one) then

Add Dn

Look for a B̃n
Look for a D̃n

end
Look for a B̃3

end
end
if iPathTemp has between 5 and 8 vertices then

Look for: E6, E7, E8, Ẽ6, Ẽ7 and Ẽ8
end
if iPathTemp has at least two vertices then

for each vertex j of iPathTemp do
if we can find Bn, F4 and Hn, G̃2, C̃n or F̃4 with j (see
Figure 5.2) then
if m(v, j) < 6 then

Bn or H4
else

G̃2
end

end
if m(v, j

)
= 4 then

Try to find a C̃n
end
if we have a B3 or a B4 then

Try to extend it to F4 or F̃4 with B3ToF4_B4ToTF4
end

end
end

end
Function addGraphsFromPath

82



subgroup with generating set Si. We then have (−1)|T |

fT (x−1) =
∏l
i=1

(−1)|Si|

fSi(x−1) and

each fSi(x) is a product of symbols (see Definition 3.6.3), as indicated in Table

3.1. We can rewrite each fraction (−1)|Si|

fSi(x−1) as (−1)|Si| · xkSi
fSi(x) , where the power

kSi is as in Figure 5.3.

Group Power kSi

An
n(n+1)

2

Bn n2

Dn n(n− 1)

G
(m)
2 m

F4 24
E6 36
E7 63
E8 120
H3 15
H4 60

Figure 5.3 – Exponents for the growth series of finite irreducible Coxeter groups

Based on these computations, we get fΓ(x) = p̃(x)
q̃(x) , where p̃(x) is a product of

symbols, say p̃(x) = [n1] · . . . · [ns]. For a positive integer n, we have [n] ·(x−1) =∏
d|n Φd, where Φd denotes the dth cyclotomic polynomial. Therefore, we can

split each [ni] into a product of irreducible factors. Finally, we get fΓ(x) = p(x)
q(x) ,

with p and q coprime and p is a product of cyclotomic polynomials.

Growth rate As explained in Section 3.6, the growth rate τ of Γ = (Γ, S) is
given by R−1, where R is the radius of convergence of the series fS(x). This
radius is equal the smallest positive root of the polynomial q(x) and must be
smaller than 1, if Γ is cofinite. For these computations (and to check whether τ
is a Perron, a Pisot or a Salem number) we use the PARI library. We will mostly
use the two following functions:

• roots(f, prec)
This function computes numerical approximations of the roots of the poly-
nomial f with a precision given by prec.

• sturm(f) and sturmpart(f, a, b)
These two functions compute the number of real roots6 of the polyno-
mial f . The latter one only computes the number of roots which lie in the
interval ]a, b].

6For the computations, PARI uses Sturm’s theorem (see Theorem 2.6.5 and Example 3.6.7).
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For the computations, we fix a small number ε > 0 (typically, ε = 10−50)
which should be big compared to the precision used to compute the roots (typ-
ically we do the computations with 57 decimals on 32 bits computers and 115
decimals on 64 bits computers). For each root, we decide that the root is real
if its imaginary part is smaller than ε. Notice that since we know the exact
number of real roots, approximation errors are not a problem: if we detect too
many real roots, then we increase the precision and choose a smaller ε and do
again the computations. We then can pick the smallest positive root R and its
inverse τ (again, we do not have to worry about approximation errors: if two
roots r1 and r2 are such that |r1 − r2| < ε, then we can increase the precision
and choose a smaller ε). We also pick the corresponding irreducible factor g̃(x)
of q(x) and we let g(x) = xdeg g̃ ·g

(
x−1). Observe that g is monic and irreducible

which mean that g is the minimal polynomial of the algebraic integer τ .

Properties of the growth rate Once we get the growth rate and its minimal
polynomial we try to determine whether it is a Perron, a Salem or a Pisot
number.

To decide whether τ is a Perron number or not, we only have to check if
every negative root r of g satisfies |r| < τ . We then have the following three
possibilities:

• For every such root r we have |r|+ ε < τ
Then we know that τ is a Perron number.

• There exists r such that |r| − ε < τ < |r|+ ε
We have to increase the precision in order to conclude.

• Otherwise
τ is not a Perron number.

As pointed out above, checking whether λ is a Pisot number is easy and, as
usual, we display a warning if we cannot decide (up to ε) whether a root have
absolute value smaller than one or not.

We now come to the last point: deciding whether τ is a Salem number or
not. A necessary condition for τ to be a Salem number is that its minimal
polynomial g is a self-reciprocal polynomial with deg g even. If it is the case,
it remains to verify that (deg g − 2) roots of g lie on S1, the unit circle. We
use the Möbius transformation h(t) = t−i

t+i of C to send R ∪ {∞} to S1 and we
consider g̃(t) := g ◦ h(t) and the polynomial G(t) := (t+ i)deg g · g̃(t). Since g is
irreducible, we have |Rg∩S1| = |Rg̃∩R| = |RG∩R|, where Rp denotes the set of
complex roots of the polynomial (or rational function) p. We remark that since
g is self-reciprocal, then G(t) is a real polynomial and we can use the sturm
function of PARI to compute the number of its real roots. For computational
purpose, we give an explicit description of G(t). For that, we will need the
following two identities:

(t+ i)2l + (t− i)2l = 2 ·
l∑

k=0

(
2l
2k

)
· t2k · (−1)l−k,

(t+ i)2l+1 + (t− i)2l+1 = 2 ·
l∑

k=0

(
2l + 1
2k + 1

)
· t2k+1 · (−1)l−k.
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We write G(t) =
∑m
j=0 ajt

j and we distinguish two cases. When m is even, we
have

G(t) = am/2 · (t2 + 1)m2 +
m
2 −1∑
j=0

aj ·
(
(z − i)j(z + i)m−j + (z − i)m−j(z + i)j

)
= am/2 · (t2 + 1)m2 +

m
2 −1∑
j=0

aj(z2 + 1)j ·
(
(z + i)m−2j + (z − i)m−2j)

= am/2 · (t2 + 1)m2 + 2
m
2 −1∑
j=0

aj(z2 + 1)j ·
m
2 −j∑
k=0

(
m− 2j

2k

)
t2k · (−1)m2 −j−k.

When m is odd, we find

G(t) = 2 ·
m−1

2∑
j=0

aj(z2 + 1)j ·
m−1

2 −j∑
k=0

(
m− 2j
2k + 1

)
· t2k+1 · (−1)

m−1
2 −j−k.

5.2.3 Arithmeticity
To check the arithmeticity of a given Coxeter group, we use Proposition 3.9.14.
The code for the test is in the Arithmeticity class.

First, we check if the graph contains no dotted edge, if it is non-cocompact
and if all the edge labels m(s, t) lie in the set {∞, 2, 3, 4, 6}. These verifica-
tions are done in the beginning of the Arithmeticity::test function. At
this point, we know that the coefficients of the matrix 2 · G can take the
values

{
0,−1,−2, 2,−

√
2,−
√

3
}
. We then use multiple calls to the function

Arithmeticity::collapseQueues to recursively delete separating edges of the
graph (regardless of the labels which appear in these paths) to reduce the com-
putation time of the determination of the cycles.
For each vertex v, we look for simple cycles passing through v (note that we only
look at cycles which contain vertices j with v ≤ j to avoid multiple counting of
the graphs). This is done by calling Arithmeticity::findCycles(v,v). For
each cycle, we check whether the number of edges labeled with 4 and 6 respec-
tively along the cycle is even (labels 3 and∞ are not an obstacle to arithmeticity
at this point).

As explained in Remark 3.9.15, if the graph contains dotted lines, we need to
determine all the relevant entries of the Gram matrix in order to decide about
the arithmeticity of the group. In this case, CoxIter will indicate what are the
conditions for the group to be arithmetic. The program would give conditions
in the following way:
l1m3: weight of the dotted line between hyperplanes 2 and 4
l0m5: weight of the dotted line between hyperplanes 1 and 6

The group is arithmetic if and only if all the following
values lie in Z:

4 * l1m3 ^2
4 * l0m5 ^2
2^3 * l1m3 * l0m5
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Input: iRoot: starting vertex for the search
iFrom: previous vertex (or iRoot if it is a non-recursive call of the
function)

Output: void
Result: Look for simple cycles passing through iPath[0]
Add the vertex iRoot to the path
for every neighbour i of iRoot with i ≥ iPath[0] do

if the edge ( i,iFrom) was not visited then
if i == iPath[0] then

This is a simple cycle. Use testCycle to test it.
end
else if i is not a vertex of iPath then

Mark the edge (iRoot,i) as visited
Call findCycles(i,iRoot)

end
end

Function findCycles

5.2.4 Linearization of a (sparse) symmetric matrix
It is possible to give the values of the dotted lines (i.e. the corresponding entries
of the Gram matrix) to CoxIter. These values will be used for the output (for
example when printing the Gram matrix), the results of the arithmeticity test
or for the computation of the signature. Since the Gram matrix is symmetric
and because these values are not always given and are rarely used, we want to
store them in a vector instead. We start with an r × r matrix with rows and
columns labelled 0, . . . , r − 1 and we want to induce a bijection

ι : {0, . . . , r − 1}2 −→
{

0, . . . , r(r + 1)
2 − 1

}
.

We will enumerate the elements of the first row 0, . . . , r − 1, the ones of the
second row r, . . . , 2r − 2, etc. Now, if the pair (i, j), where 0 ≤ i < j ≤ r − 1,
designates an element of the matrix, its index ι(i, j) in the vector is given by

ι(i, j) = i(2r − 1− i)
2 + j.

Conversely, if k ∈
{

0, . . . , r(r+1)
2 − 1

}
is the index of an element of the vector,

then the corresponding entry of the matrix is on the row

row(k) = floor
(2r + 1)−

√
(2r + 1)2 − 8k
2 ,

and column

col(k) = k −
row(k) ·

(
2r − 1− row(k)

)
2

Finally, note that with this process, we can then use a map[int, String]
to store only the existing values.
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5.3 Using CoxIter - Some examples
In this section we present some worked examples in dimensions 13, 16, 17, 18
and 19. In dimension 18 we compute the invariants for three groups given by
Vinberg in a recent article [Vin15]. The complete documentation of the program
can be found online at https://coxiter.rgug.ch.

5.3.1 Two arithmetic groups of Vinberg
We start with the arithmetic Coxeter groups Γi < IsomHi, i = 16, 17, with
Coxeter graphs Σ16 and Σ17 and ranks 20 and 22 (see Figure 5.4 and [Vin85]).

Figure 5.4 – Σ16 and Γ17

The program is called with parameters "-full" (we want to get all the invari-
ants) and the output is given in Table 5.1. The growth series are not given in
the table because of the space needed. Moreover, the running time is decom-
posed in two: the first part measure the time needed for all the computations
except the growth rate while the second part concerns only the computation of
the growth rate.

We see that the values match the theoretical results. For the Euler char-
acteristic, see [RT97, Theorem 22] up to a correction factor 2k, where k is the
number of symmetry axis of the graph (see [RT13, Section 6]). In our case,
k = 2.

5.3.2 An arithmetic group of McLeod
In his paper [Mcl11], McLeod constructs the maximal reflection groups in the
automorphism groups of the quadratic forms −3x0 +x2

1 + . . .+x2
n for 2 ≤ n ≤ 13

using Vinberg’s algorithm. In Figure 5.5 we present the graph of the group for
n = 13 and its invariants are given in Table 5.2.

5.3.3 A free product with amalgamation in dimension 18
In [Vin15], Vinberg explains how to construct a non-arithmetic group Γ in di-
mension 18 as a mixture (in the sense of Gromov–Piatetski-Shapiro) of two
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Invariant Σ16 Σ17

Cocompact no no
Finite covolume yes yes
Arithmetic yes yes
f -vector (325, 2804, 11914, 33164,

67410, 105462, 130646,
130062, 104670, 68042,
35490, 14658, 4690, 1122,
189, 20, 1)

(807, 7586, 33960, 98184,
206120, 332982, 427584,
444428, 377232, 262050,
148500, 68076, 24884, 7089,
1518, 230, 22, 1)

Euler charact. 642332179
2360171042879569920000 0

Growth rate τ 2.70239585907681598724 3.26561859868532761547
Is τ Perron yes yes
Running time 0.6s + 10.5s 2.7s + 15s

Table 5.1 – Output of CoxIter for Σ16 and Σ17

Invariant Value
Cocompact no
Finite covolume yes
f -vector (413, 2964, 10238, 22761, 36024, 42265, 37380, 25005,

12556, 4641, 1218, 213, 22, 1)
Euler characteristic 0
Growth rate τ 7.0978514419211704695935654214851191548
Is τ Perron yes
Running time 0.18s + 7s

Table 5.2 – Output of CoxIter for the reflection group corresponding to the
automorphism group of the quadratic form −3x0 + x2

1 + . . . + x2
13 (see Figure

5.5)

non-commensurable arithmetic hyperbolic Coxeter groups Γ1 and Γ2. Geomet-
rically, the two associated polyhedra P1 and P2 of the groups Γ1,Γ2 < IsomH18

have an isometric facet P0. In this setting, the associated polyhedron P of Γ
is the gluing of P1 and P2 along their common facet P0. From an algebraic
point of view, the group Γ is the free product with amalgamation given by
Γ = ∆1 ?Γ0 ∆2, where ∆i is the subgroup of Γi generated by all the generators
of Γi except the one corresponding to the hyperplane containing the facet P0.

We use CoxIter to compute the invariants of the groups Γ1,Γ2 and Γ and
we check that the covolume of Γ is indeed the sum of the covolumes of the two
components. We also compute the growth series of ∆1 and ∆2 and we check
that 1

fΓ
= 1

f∆1
+ 1

f∆2
− 1

fΓ0
(see [Alo91, Theorem 2]).

Remark 5.3.1
The polyhedron P obtained by glueing (or, equivalently the free product with
amalgamation Γ = ∆1 ?Γ0 ∆2) is not necessarily Coxeter. However, if the facet
P0 is perpendicular to every adjacent facet, then the result will be of Coxeter
type.
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Figure 5.5 – Group of reflections related to automorphism group of the quadratic
form −3x0 + x2

1 + . . .+ x2
13

5.3.3.1 First component of the product

Information for the construction of the first component Γ1 of the product are
given in [KV78] and [Vin15]. The generators {s1, . . . , s37} of Γ1 are given by the
roots of a certain integral lattice L1 (in fact, L1 is the unique odd unimodular
quadratic lattice of signature (18, 1)).

Figure 5.6 – Construction of Γ1 < IsomH18 - First component of the product

We use the terminology and present the results of [KV78]. There are 22 long
roots (i.e. roots of norm 2) and 15 short roots (i.e. roots of norm 1). The action
of the symmetry group of the graph (which is isomorphic to S4, see below) splits
the short roots into two orbits of size 3 and 12. The 3 roots are called roots of
the first kind while the 12 other elements are called roots of the second kind. The
diagram Σ∗ of the long roots is presented in Figure 5.6(a). If we consider the 6
"long edges" (or "tetrahedral edges") of Figure 5.6(b), then each pair of opposite
edges gives rise to a root of the first kind. Hence, we get the three vertices of the
first kind 18, 25, 26 connected respectively to vertices (17, 22), (1, 9) and (5, 13)
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by a double edge. The figure 5.6(c) depicts the connection of one vertex of the
second kind with the graph Σ∗. We then let the symmetry group of Σ∗ (see be-
low) act on the triple of vertices (1, 20, 24) and find 11 other triples, correspond-
ing to the 11 others vertices of the second kind. The 12 triples of vertices are
the following: (1, 20, 24), (1, 6, 12), (5, 16, 20), (5, 10, 21), (9, 16, 19), (9, 4, 14),
(13, 2, 8), (13, 19, 24), (17, 2, 10), (17, 4, 12), (22, 8, 21), (22, 6, 14). Now, vertices
of the first kind are connected among themselves by lines labelled with an ∞
while vertices of the second kind are connected among themselves by dotted
edges. Each vertex of the first kind is connected to each vertex of the second
kind either by an ∞ or by a dotted edge according to the rule explained in
[KV78, Section 2]. We finally found a Coxeter graph Σ(Γ1) with 37 vertices and
171 edges. When given to CoxIter, it produces the output given in Table 5.3.

Invariant Value
Cocompact no
Finite covolume yes
f -vector (3839, 37842, 177812, 540624, 1197240, 2050008,

2807602, 3135528, 2883540, 2189924, 1369854, 700352,
288801, 94113, 23497, 4282, 525, 37, 1)

Euler characteristic − 109638854849
22028263066875985920000

Volume 109638854849
1482580623111880900608000000 · π

9

Growth rate τ 16.976062922983291305757316760341665593
Is τ Perron yes
Running time 55s + 20s

Table 5.3 – Output of CoxIter for Γ1

Remark 5.3.2
Using AlVin (see Chapter 6) it is also possible to compute directly the 37 normal
vectors of polyhedron P1 and the presentation of its reflection group Γ1. The
computations take approximatively 2-3 minutes on a desktop computer.

Lemma 5.3.3 ([KV78])
The symmetry group of the graph Σ(Γ1) is isomorphic to S4.

Proof. To determine the symmetry group of the graph of the group Γ1 we first
compute the group of symmetries sym Σ∗ of the graph Σ∗, presented in Fig-
ure 5.6. It is easy to see that any automorphism σ ∈ sym Σ∗ is completely
determined by the images of the middle-points of two adjacent long edges (for
example the images of the vertices 22 and 1). There are 6 possibilities for the
images of 22 and four possibilities for the vertex 1, corresponding to the four
adjacent long edges of the image of 22. Hence, the group sym Σ∗ has order 24.
We consider the automorphisms

σ1 = (22 9) (1 17)
σ2 = (1 5) (9 13)
σ3 = (22 1) (9 17)
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and we see that σ1 ◦ σ2 has order 3, σ2 ◦ σ3 has order 3 and σ1 ◦ σ3 has order 2.
Therefore, sym Σ∗ = S4.
By a lemma of [KV78], every element of sym Σ∗ can be extended to an element
of sym Σ, where Σ denotes the graph of the group Γ1. Conversely, since Σ \Σ∗
contains two complete graphs K12 and K3 (here, Kl denotes the complete graph
with l vertices and

(
l
2
)
edges), any element of sym Σ must preserve the subgraph

Σ∗. We thus have a surjective restriction map res : sym Σ −→ sym Σ∗. Since
this map is also injective we have sym Σ = S4.

5.3.3.2 Second component of the product

The lattice for the second group is L2 = L0 ⊕ Ze ⊂ R18,1, where:

• L0 is the unique even unimodular quadratic lattice of signature (17, 1).
Its maximal subgroup generated by reflections is Γ0, the hyperbolic Cox-
eter group whose associated fundamental polyhedron is P0, which is the
common facet of P1 and P2.

• e is a long root of square norm 2.

The graph of the group Γ2 < IsomH18 is presented in Figure 5.7 and its
resulting invariants in Table 5.4.

Figure 5.7 – Γ2 < IsomH18 - Second component of the product

5.3.3.3 Amalgamated product

As described above, we want to construct the amalgamated product of the
groups ∆1 and ∆2. We see that they have a common hyperbolic subgroup Γ0
of signature (17, 1, 1) (see Figure 5.8). The hyperplane in H18 which contains
the associated polyhedron P0 is the one corresponding to the black dot in the
graphs of Γ1 and Γ2.

A presentation for the product Γ = ∆1 ?Γ0 ∆2 is obtained as follows.

• Start with the presentation of Γ1 = 〈s1, . . . , s37|(si · sj)mij 〉.
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Invariant Value
Cocompact no
Finite covolume yes
f -vector (535, 5160, 24876, 79590, 188352, 348012, 517247,

628599, 629544, 520631, 354651, 197676, 89148, 31977,
8892, 1843, 267, 24, 1)

Euler characteristic − 109638854849
22600997906614761553920000

Volume 109638854849
1521127719312789804023808000000 · π

9

Growth rate τ 4.4381437732572741094606253388221388290
Is τ Perron yes
Running time 3.2s + 20s

Table 5.4 – Output of CoxIter for Γ2

Figure 5.8 – Γ0 < IsomH17

• Remove the vertex 23, corresponding to the hyperplanes containing P0.

• Add four generators s38, s39, s40, s41 corresponding to the four crossed ver-
tices of Γ2 (vertices 38, 39, 40, 41 in Figure 5.7).

• The relations between these four new generators and the generators s2,
s3, . . . , s17, s19, s21, s22 are according to Figure 5.7.

• There is no relation between any of the generators s38, s39, s40, s41 and
any of s1, s18, s20, s24, . . . , s37, meaning that the correspondingmij are∞.
Note that at this point we do not know if the corresponding hyperplanes
are parallel or ultraparallel (or, equivalently, if in the graph we have dotted
or bold edges). This means that we cannot fully determine the f -vector
(i.e. the number f0 of vertices is unknown). However, this does not
influence the computation for the Euler characteristic.

The output of CoxIter for the product Γ is given in Table 5.5. As expected,
we find the equality χ(Γ) = χ(Γ1) + χ(Γ2). Moreover, using Proposition 3.7.7,
we find that the number f0 of vertices of the polyhedron is 4212.

Using CoxIter, we also check that 1
fΓ

= 1
f∆1

+ 1
f∆2
− 1

fΓ0
(the growth series

are too big to be written here).

5.3.4 An arithmetic group in dimension 19
Kaplinskaya and Vinberg described in [KV78] the construction of an arithmetic
hyperbolic Coxeter group Γ19 in IsomH19 related to the standard quadratic
form −x2

0 + x2
1 + . . . + x2

19. This construction is similar to the first component
of the free amalgamated product in Section 5.3.3.1.
We use in this section the terminology of [KV78]. There are 25 long roots
(depicted in the diagram Σ∗ of Figure 5.9), 5 roots of the first kind (such as the
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Invariant Value
f -vector (4212, 41464, 195047, 594510, 1321044, 2271012,

3123717, 3503919, 3235974, 2467015, 1548147, 793376,
327561, 106710, 26575, 4814, 583, 40, 1)

Euler characteristic − 8661469533071
1738538300508827811840000

Volume 8661469533071
117009824562522292617216000000 · π

9

Growth rate τ 20.082709777287151523318262297132352789
Is τ Perron yes
Running time 74s + 29s

Table 5.5 – Output of CoxIter for Γ

vertex 19 in Figure 5.9(b)) and 20 roots of the second kind (such as the vertex
24 in Figure 5.9(c)). In order to explain how to connect the vertices of the first
and second kind to the graph Σ∗ we first compute the automorphism group of
the graph Σ∗.

Figure 5.9 – Construction of Γ19 < IsomH19

Lemma 5.3.4 ([KV78])
The automorphism group of Σ∗ is isomorphic to S5.

Proof. Using the same method as in Lemma 5.3.3 we find the four generators
of sym Σ∗ in order to conclude:

σ1 = (27 4) (14 20) (16 18) (2 12) (21 22) (26 10)
σ2 = (4 6) (8 20) (2 25) (10 21) (16 22) (18 26)
σ3 = (6 25) (4 16) (14 20) (2 22) (12 21) (18 27)
σ4 = (2 20) (18 26) (8 25) (21 22) (12 14) (10 16).

Each element σi has order two, each of the three products σi ◦ σi+1 has order
3 and every other product σi ◦ σj with i 6= j has order two. Therefore, sym Σ∗
has a subgroup isomorphic to S5 and thus sym Σ∗ ∼= S5.
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5.3.4.1 Vertices of the first and second kind

In order to determine the vertices of the first kind and their connections to
the graph Σ∗ we consider the triple of vertices (27, 26, 18) (see Figure 5.9(b))
and look at its images under action of sym Σ∗ ∼= S5. We find 5 triples which
correspond to 5 vertices of the first kind:

(27, 26, 18), (2, 12, 25), (21, 22, 6), (16, 10, 4), (8, 14, 20).

The vertices of the first kind are connected among themselves by bold edges.

To determine the vertices of the second kind and their connections to the
graph Σ∗ we consider the quadruple of vertices (27, 1, 21, 25) (see Figure 5.9(c))
and look at its images under the action of sym Σ∗. We find 20 quadruples which
correspond to the 20 vertices of the second kind:

(1, 21, 25, 27), (8, 22, 23, 27), (4, 8, 15, 21), (4, 11, 22, 25), (2, 10, 17, 27)
(9, 16, 20, 27), (4, 9, 14, 18), (4, 12, 17, 26), (2, 8, 13, 18), (13, 20, 25, 26)
(3, 10, 14, 25), (3, 8, 12, 16), (1, 6, 12, 18), (6, 14, 23, 26), (2, 6, 11, 16)
(6, 10, 15, 20), (2, 7, 14, 21), (7, 12, 20, 22), (5, 16, 21, 26), (5, 10, 18, 22).

The vertices of the second kind are connected among themselves by dotted
edges.

A vertex of the first kind and a vertex of the second kind are connected by a
double edge or a dotted edge according to the rule described in [KV78, Section
2, page 196].

Remark 5.3.5
As in the case of the first component of the product of Section 5.3.3.1, it is
also possible to use AlVin (see Chapter 6) to compute directly the complete
presentation of the group.

5.3.4.2 Summary and computations

Finally, the connections between the 50 vertices of the group Γ19 are as follows:

• 30 simple edges in Σ∗;

• a complete graph with 5 vertices (vertices of the first kind, bold edges);

• 15 double edges (vertices of the first kind and Σ∗);

• a complete graph with 20 vertices (vertices of the second kind, dotted
edges);

• 80 bold edges (vertices of the second kind and Σ∗);

• 100 edges between vertices of the first and second kind.

The output of CoxIter for the group Γ19 is presented in Table 5.6.
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Invariant Value
Cocompact no
Finite covolume yes
f -vector (27841, 292340, 1429615, 4465955, 10081519, 17518035,

24310230, 27542850, 25791030, 20062168, 12956240,
6908365, 3009960, 1054645, 290315, 60660, 9125, 905, 50, 1)

Growth rate τ 27.90472928162717219034651
Is τ Perron yes

Table 5.6 – Output of CoxIter for Γ19

5.3.5 A conjecture of Kellerhals and Perren
Kellerhals and Perren conjectured that the growth rate of a (cofinite) hyper-
bolic Coxeter group is always a Perron number. For cofinite hyperbolic Coxeter
groups in dimension 2, the claim has been proved. More recently, Yukita an-
nounced that he proved the case n = 3 (see [Yuk16b] and [Yuk16a]). We used
CoxIter to check the conjecture on large number of groups (see Table 5.7).

Reference Groups

[FTZ07] 13 compact simplicial prisms in H4

[Im 85] 134 doubly truncated orthoschemes

[Joh+99] all simplices

[Per09, Appendix C] all groups

[Rob15] all groups

[Tum04] all 200 groups

[Tum04] all the derived non-cofinite simplices

Vinberg algorithm Γn1 , 2 ≤ n ≤ 18

Vinberg algorithm Γn3 , 2 ≤ n ≤ 13

Vinberg algorithm Γn5 , 2 ≤ n ≤ 8

Doublings see Section 7.2.1

Using the procedure described in Section 7.2, more than 3000 thousands
groups were created on which the conjecture was tested.

Table 5.7 – Groups for which the conjecture of Kellerhals and Perren was checked

5.3.6 The GAP package CoxIterGAP

We present here a short example to illustrate the use of the package CoxIterGAP.
More examples and installation instructions are available on the webpage of the
package: https://github.com/rgugliel/CoxIterGAP
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The goal is to compute the invariants of the cocompact hyperbolic Coxeter
group Γ < IsomH8 found by Bugaenko (see [Bug92] and Figure 5.10). First, we
have to load the package and give the presentation of the group Γ inside GAP.
This can be achieved with the following commands:

LoadPackage (" coxiter ");
ci8 := CreateCoxIterFromCoxeterGraph ( [[1 ,[2 ,5]] , [2 ,[3 ,3]] ,

[3 ,[4 ,3]] , [4 ,[5 ,3] ,[10 ,3]] , [5 ,[6 ,3]] ,
[6 ,[7 ,3] ,[11 ,3]] , [7 ,[8 ,3]] , [8 ,[9 ,5]] , [10 ,[11 ,1]]] , 8);

At this point, we have a variable, called ci8, which contains the CoxIter object.
The first argument of the function CreateCoxIterFromCoxeterGraph is a

description of the Coxeter graph of Γ: we create a list containing the neighbours
of every vertex, together with the weights (as in CoxIter, we use "0" for a bold
edge and "1" for a dotted edge). The second parameter is the dimension of the
space (0 can be specified if we don’t know the dimension).

Figure 5.10 – Bugaenko’s 8-dimensional compact hyperbolic Coxeter polyhedron

Then, we can call certain specific functions in order to compute the invari-
ants. The following list presents the available functions and the value they
return:

• FVector: f -vector

• Cocompact: 1 (yes), 0 (no), -1 (unable to decide)

• Cofinite: 1 (yes), 0 (no), -1 (unable to decide)

• EulerCharacteristic: rational number

• GrowthSeries: list [f, g] of numerator and denominator of the rational
function

For our example, the GAP session could be:

gap > FVector (ci8);
[ 41, 164 , 316, 374, 294, 156, 54, 11, 1 ]
gap > Cocompact (ci8);
1
gap > Cofinite (ci8);
1
gap > EulerCharacteristic (ci8);
24187/8709120000
gap > g := GrowthSeries (ci8);;
gap > Value(g[2] ,1)/Value(g[1] ,1) - EulerCharacteristic (ci8);
0
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5.4 Encoding a graph
To give a Coxeter graph to CoxIter, it is sufficient to create a text file to
describe the graph. The file contains the following:

• Number of vertices and dimension
The first line contains the number of vertices of the graph and the dimen-
sion n such that the associated polyhedron lives in Hn. Remark that the
dimension is optional: it is needed only for the compactness and cofinite-
ness tests and CoxIter will try to guess it if it is not given.

• Name of the vertices
By default, the vertices are labelled 1, 2, . . . , r. It is however possible to
specify other labels. In order to do this, the second line has to be of the
form

vertices labels: label1 label2 label3 ...

Each label can contains letters, digits, -, _ but not space.

• Edges of the graph
Then, we have to add one line to describe each edge of the graph. The
syntax is the following:

vertex1 vertex2 weight

Remarks:

– 0 is used to specify the weight infinity and 1 is used to specify a
dotted edge.

– The weight 2 doesn’t have to be specified.

For example, the 2-dimensional hyperbolic Coxeter group whose graph is
given in Figure 5.11 could be described for CoxIter in the two following equiv-
alent ways:

4 2
1 2 1
2 3 4
3 4 1

4 2
vertices labels: s1 s2 s3 t
s1 s2 1
s2 s3 4
s3 t 1

Figure 5.11 – The group of units of the quadratic form 〈−6, 1, 1〉

Note that it is possible (although not mandatory) to indicate the weight of
a dotted line after a #. If all these weights are specified, then CoxIter will
be able to numerically compute the signature as well as improve some outputs.
The example of Figure 5.11 then becomes:

4 2
1 2 1 # -sqrt(2)
2 3 4
3 4 1 # -sqrt(3/2)
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5.4.1 Example of the introduction of this chapter
The output for the group presented in the introduction of this chapter is the
group Γ(14,1) generated by reflections in the group of units of the Lorentzian
quadratic form −x2

0 + x2
1 + . . . + x2

14 of signature (14, 1) described in [Vin72].
We describe the group Γ by means of the text file "14-vinb85.coxiter" as shown
in Figure 5.12.

17 14
1 2 3
2 3 3
3 4 3
4 5 3
5 6 3
6 7 3
7 8 3
8 9 3
9 10 3
10 11 3
11 12 3
12 13 3
13 14 4
14 17 0
17 1 4
11 16 3
3 15 3

Content of the text file Corresponding Coxeter diagram

Figure 5.12 – 14-vinb85.coxiter

Remarks:

• The first line indicates that the Coxeter group Γ has 17 generators and
that it is a subgroup of IsomH14.

• Each of the remaining 17 lines describes one edge of the Coxeter diagram:
the first two numbers are the labels of the generators and the third one is
the label of the edge (a "0" indicates a bold edge).

5.5 Program testing and some values

To test the accuracy of the program, we ran it on a collection of (around 1200)
groups for which some of the invariants were known. These graphs can be found
in the graphs/ folder of the source code. Except for a few graphs, the name of
each file goes as follows:

dimension− reference_page number− name or number of the graph.

The reference is as given in Table 5.8.
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5.5.1 Euler characteristic
For d a positive square-free integer, we consider the reflection subgroup Γnd in the
automorphism group O(fnd ,Zn+1)+ of the quadratic form −dx2

0 + x2
1 + . . .+ x2

n

(see Section 3.9). When d is odd, the Euler characteristic of Γnd can easily be
computed (see [RT13, Corollary 4]). For other groups, we give the reference
where another computation of the Euler characteristic can be found.

All the groups of Table 5.9 were tested.

5.5.2 Growth series and growth rate
The growth series and growth rate of the following simplices (see [Joh+99]) were
computed and compared with the values given in [Ter15]: BH3, J3, DH3, ÂB3,
H4, DH4, BH4, ÂF 4, P 3, R3, V 3, O3, R4, S4, O4, P 4, M4, U5, X5, O5, S5,
Q5, L5, P 5, S6, Q6, P 6, S7, Q7, T 7, P 7, T 8, S8, Q8, T 9, Q9, S9.

The growth series of all cocompact Coxeter groups in IsomH4 generated by
at most 6 reflections (simplices and groups found by Esselmann and Kaplin-
skaja) were compared with the results found in [Per09].

We checked that 1
fΓ

= 1
f∆1

+ 1
f∆2
− 1
fΓ0

for the free product with amalgamation
in dimension 18 (see Section 5.3.3).

For each group of Table 5.9, we checked that the denominator of the growth
function vanishes when n is odd and that 1

fΓ(1) = χΓ when n is even.

The following errors in the literature were found:

Group Paper

BH4 [Per09]

DH4 [Per09]

[8, 3, 4, 3, 8] [Per09]

5.5.3 f-vector
The f -vectors of the groups of Table 5.10 were tested. The alternating sum
of the components of the f -vectors of the groups [Tum04], [Joh+99], [Per09,
Appendix C] and [Vin85] were tested (see Proposition 3.7.7).

5.5.4 Cocompactness and finite covolume criterion
The groups of Table 5.11 were tested for cocompactness and the ones of Table
5.12 were tested for the finite covolume.

5.5.5 Arithmeticity
The groups of Table 5.13 were tested.
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5.5.6 Some more complicated Coxeter graphs
Using groups mentioned in this section, we created more than 3000 thousands
groups (small sequences of index two subgroups, as explained in Section 7.2)
and these groups allowed us to test CoxIter and the conjecture of Kellerhals
and Perren on more complicated graphs (the number of nodes ranges from 7 to
775).
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5.6 Tables

Reference in the paper Name of the file

[Ess96] ess96

[FTZ07] felikson2007

[Joh+99] jkrt

[Im 85] imhof85

[Mcl11] mcl11

[Per09] per09

[Rob15] roberts15

[Tum04] tum04

Table 5.8 – Correspondence between bibliography and file names
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Reference Group Theoretical result

[Joh+99], [Tum04], [Vin85], [Im 85], [Per09, Appendix C],
[Rob15]

all groups of odd dimension Remark 3.7.3

[FTZ07] 13 compact simplicial prisms in H4, page 117 [FTZ07]

[Joh+99] 14 groups in IsomH4 [Joh+99]

[Joh+99] 3 groups in IsomH6 [Joh+99]

[Per09, Appendix C] Bugaenko P6 ⊂ H6, Bugaenko P8 ⊂ H8 [Kel14]

[Joh+99] 4 groups in IsomH8 [Joh+99]

[Vin85] Σ10 and a subgroup [RT97, Theorem 22]

[Hil07] P 10
1 [Hil07]

Vinberg algorithm Γn1 , 2 ≤ n ≤ 19 [RT97, Theorem 22]

Vinberg algorithm Γn3 , 2 ≤ n ≤ 13 [RT13, Corollary 4]

Vinberg algorithm Γn5 , 2 ≤ n ≤ 8 [RT13, Corollary 4]

Table 5.9 – Euler characteristic of some groups
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Group Theoretical result

all groups of [Joh+99] simplices

all pyramids in H3 of [Tum04] pyramids

Bugaenko P6 [Kel14]

Bugaenko P8 [Zeh09]

Birectified 5-simplex http://en.wikipedia.org/wiki/Rectified_5-simplexes

Table 5.10 – f -vector of some groups
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Reference Cocompact Groups
[Ess96] yes groups in IsomH4

[Per09, Appendix C] yes all groups

[FTZ07] yes 13 compact simplicial prisms in H4, page 117

[Joh+02] yes BH3, J̄3, DH3, ÂB3, K̄3, ÂH3 B̂B3, B̂H3, ĤH3, H̄4, BH4, DH4, K̄4, ÂF 4

[Rob15] no all groups

[Tum04] no all groups

[Tum04] no all groups obtained by removing a polar

[Vin85] no
{

Σn : 10 ≤ n ≤ 17
}

[Joh+02] no V̄3, R̄3, P̄3, BV 3, Ō3, Ȳ3, HV 3, BP 3, DV 3, N̄3, Z̄3, B̂R3, HP3, ÂV 3, DP3, M̄3, V P 3, B̂V 3, ĈR3,
ĤV 3, V̂ V 3, R̂R3, P̂P 3, S̄4, R̄4, P̄4, Ō4, N̄4, M̄4, BP 4, F̂R4, DP 4, Ū5, S̄5, X̄5, Q̄5, R̄5, P̄5, Ō5, N̄5,
ÂU5, M̄5, L̄5, ÛR5, S̄6, Q̄6, P̄6, T̄7, S̄7, Q̄7, P̄7, T̄8, S̄8, Q̄8, P̄8

Table 5.11 – Cocompactness
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Reference Finite covolume Groups

[FTZ07] yes 13 compact simplicial prisms in H4, page 117

[Im 85] yes all groups

[Joh+99] yes all groups

[Per09, Appendix C] yes all groups

[Rob15] yes all groups

[Tum04] yes all groups

[Vin85] yes
{

Σn : 10 ≤ n ≤ 19
}

[Tum04] no every polar was removed to create 387 non-cofinite groups

Table 5.12 – Finite covolume

Reference Arithmetic groups

[Joh+99] yes (see [Joh+02]) S̄6, Q̄6, P̄6, T̄7, S̄7, Q̄7, P̄7, T̄8, S̄8, Q̄8, P̄8

[Vin85] yes
{

Σn : 10 ≤ n ≤ 17
}

[Tum04] all groups

Table 5.13 – Arithmeticity
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CHAPTER 6
The Vinberg algorithm and AlVin

In this chapter, we present Vinberg’s algorithm and study it from an algorithmic
point of view. The goal is to explain the key ingredients which are used in AlVin
(for Algorithm of Vinberg), a C++ program which we design to carry on the
computations of the algorithm for diagonal quadratic forms with K = Q (non-
cocompact case) and with K = Q[

√
d],Q

[
cos 2π

7
]
(cocompact cases). Since we

also want the program to be able in some cases to decide the non-reflectivity of
a quadratic form, we present two methods for achieving this goal.

In the first section, we give an overview of the algorithm and present an
exhaustive list of computations done with the algorithms by other authors. In
the second section, we present in details the theoretical background needed to
understand the algorithm.

In sections 6.3 to 6.5, we give more information about the implementations
into the computer program AlVin: we explain how the solutions of the equations
can be parametrized for each of our three fields. Finally, we show in details how
to use AlVin and we present some results: new polyhedra (compacts and non-
compacts, in dimensions 2 to 9), classification of diagonal quadratic form of
signature (3, 1) with small coefficients, non-reflectivity of some forms, etc.

The program, together with its documentation, can be found here: https:
//github.com/rgugliel/AlVin

6.1 Introduction
In [Vin72], Vinberg presented an algorithm to create hyperbolic Coxeter groups1

in the arithmetic context. The starting point is a totally real number field K,
together with an admissible (we will be more precise below) quadratic form f of
signature (n, 1) which is given, with respect to some basis {v0, . . . , vn} of Kn+1

by
f(x0, . . . , xn) =

∑
i,j

ai,j · xi xj ,

1Strictly speaking, the algorithm is more general: its goal is to find, for any discrete
subgroup Θ of IsomHn, the maximal subgroup of Θ generated by reflections. However, if we
don’t take Θ to be the group of units of some quadratic form, then finding the reflections is
much more difficult.
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where ai,j ∈ OK . We also consider a lattice L in Kn+1 (i.e. L is the OK-span
of n+ 1 linearly independent vectors, where OK denotes the ring of integers of
K).

We now consider the group Θf,L of isomorphisms of the quadratic form f ,
which preserves the lattice L and the two sheets of the hyperboloid defined
by f (see Section 3.9.1) and we know that Θf,L is a discrete group of finite
covolume (again, see Section 3.9.1). We recall from Section 3.9, that we have
the decomposition Θf,L = Γf,LoH, as a semi-direct product, where Γf,L is the
subgroup of Θf,L generated by all the reflections in Θf,L and H is a subgroup
of the symmetry group of a cell P of Γf,L. Vinberg’s algorithm describes a way
to find successively the normal vectors of the polyhedron2 P (and of course a
presentation of the group Γf,L):

1. First, we start with a set of n vectors V = {e1, . . . , en} whose correspond-
ing hyperplanes go through a specified point (for example the point p0
corresponding to the vector v0, which is chosen such that f(v0) < 0).
These vectors give rise to a polyhedron

⋂
ei∈V H

−
ei of infinite volume.

2. We look for a vector en+1 which stabilizes the lattice spanned by the
v0, . . . , vn and which satisfies some relations with the previous found vec-
tors (again, we will be more precise below) and we add en+1 to our col-
lection V. If the polyhedron

⋂
ei∈V H

−
ei is of finite volume, we stop.

3. As long as the polyhedron defined by the vectors in V is not of finite
volume, we continue to look for another vector and we add it to the col-
lection V.

At this point, it is worth to mention that we cannot say a priori if Γf,L is of
finite index in Θf,L or, what is equivalent, if the covolume of Γf,L is finite (in
this setting, we say that the form f is reflective). In terms of the algorithm it
means the following: if the polyhedron

⋂
ei∈V H

−
ei is not of finite volume, there

is no way to know whether we have to continue to add vectors to the list V or
whether P is not finite sided. If the algorithm stops, then we have found a cell
P of the group Γf,L (see [Vin72, Proposition 4]).

Remark 6.1.1
Although the choice of the base point p0 (corresponding to the vector v0) is ir-
relevant, considering only diagonal quadratic forms (and to the lattice spanned
over the ring of integers by a diagonalizing basis) is a limitation. Indeed, even
if every quadratic form can be transformed into a diagonal form over its defin-
ing field, it is not true that we can do the same with a transformation with
coefficients in the ring of integers. For example, the 8 dimensional compact
Coxeter polyhedron found by Bugaenko (see [Bug92]) is based on the lattice
[−(
√

5 + 1)]⊕E8, which does not correspond to a diagonal quadratic form over
OQ[
√

5].

Remark 6.1.2
In this work, we will always take f to be a diagonal quadratic form with respect

2The word polyhedron is used here in a wide sense since we do not know whether it is
finite sided or not and whether if it has finite volume. We will allow this generalization for
the whole chapter.
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to a basis {v0, . . . , vn} and take L to be the lattice spanned over OK by the
vi (this choice regarding the lattice is not a restriction, as indicated in Remark
3.9.2). In this setting, we will write Θf for Θf,L and Γf for Γf,L. Moreover, the
group Θf is then called the group of units of f and we will sometimes refer to Γf
(respectively P ) as the reflection group (respectively the polyhedron) associated
to f .

Before our work, the algorithm has mostly been used for diagonal quadratic
forms of the type fnα = 〈−α, 1, . . . , 1〉 (see Section 6.6 for more complicated and
new examples):

• α = 1 (standard Lorentzian form)
In [Vin72], Vinberg found groups for 2 ≤ n ≤ 17. Together with Kaplin-
skaya, they applied the algorithm for n = 18, 19 and proved that the form
fn1 is not reflective if n > 19 (see [KV78]).

• α = 2
The form is reflective for 2 ≤ n ≤ 14 (see [Vin72]).

• α = 3
McLeod studied in [Mcl11] the form for α = 3 and showed that it is
reflective for 2 ≤ n ≤ 13. In his thesis (see [Mcl13]) he also performed
some other applications of the algorithm, with some errors (see Remark
6.2.3 and sections 6.8.1.3 and 6.8.3.3).

• α = 5
The form is reflective for 2 ≤ n ≤ 8 (see [Mar12]).

• α = 7, 11, 13, 17, 19, 23
Mark showed in [Mar12] that the forms with α = 7, 17 are reflective only
if n = 2, 3; the forms α = 13, 19, 23 are reflective only if n = 2 and the
form with α = 11 is reflective if n = 2, 3, 4.

• α = 1+
√

5
2

The form is reflective for 2 ≤ n ≤ 7 (see [Bug84]).

• α = 1 +
√

2
The form is reflective for 2 ≤ n ≤ 6 (see [Bug90]).

• α = 2 cos 2π
7

The form is reflective for n = 2, 3, 4 (see [Bug92]).

In [Gro08], Grosek applied the algorithm to the forms 〈−1, 1,m〉, withm = 1,
2, . . . , 14, 16, 18, 20 and to the forms 〈−1,m,m〉 for m = 1, 2, . . . , 12.

In [Sch89], R. Scharlau classified all reflective quadratic forms of signature
(3, 1) such that the group Γf is non-cocompact (meaning that f is defined over
Z and is isotropic, as indicated in Remark 3.9.2)3. There are 49 of such forms.
Whenever it is possible, we will give the corresponding diagonal quadratic form
(see Section 6.8.1.1).

3Note that the forms given by Scharlau are not in diagonal form.
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6.2 Theoretical part
Let K be a totally real number field such that the ring of integers OK of K is a
unique factorization domain4. Let V be aK-vector space of dimension n+1 with
basis {v0, . . . , vn} and let L be the lattice generated by {v0, . . . , vn}, that is L is
the OK-span of the basis {vi}. As in Section 3.9, we consider a quadratic form
f of signature (n, 1) which is diagonal with respect to the basis {v0, . . . , vn}:
f = 〈−α0, α1, . . . , αn〉, where each αi ∈ OK is positive and does not have any
square factor. We suppose moreover that f is admissible, which means that fσ
is positive definite for every non-identity Galois embedding σ : K −→ R. In
this setting, we will write Θf for the group O(f, L). Finally, we suppose that
if 1 ≤ i < j ≤ n are such that αi 6= αj then the ratio αi/αj is not the square
of an invertible element in OK : in other words, we fix once and for all one
representative of each class of the quotient OK/(O∗K)2.

Given such a quadratic form f , we also consider its associated bilinear form

(x, y) := 1
2
(
f(x+ y)− f(x)− f(y)

)
= −α0 · x0y0 +

n∑
i=1

αi · xiyi,

where the xi (respectively yi) denote the components of x (respectively y) with
respect to the basis {v0, . . . , vn}. Any vector e gives rise to a reflection

Re : V −→ V

x 7−→ x− 2(x, e)
(e, e) e.

By a root of f , or simply a root, we mean a vector e in V such that the
reflection Re with respect to the hyperplane He orthogonal to e preserves the
lattice generated by v0, . . . , vn. If e is such a root, then we can suppose that the
coefficients k0, . . . , kn of e with respect to the basis {v0, . . . , vn} lie in OK and
don’t have any common factor. Indeed, since K is the field of fractions of OK ,
each component ki can be written ai

bi
. Then, the vector m · e, where m is the

least common multiple b0, b1, . . . , bn, which exists since OK is supposed to be
a unique factorization domain, satisfies Rm·e = Re and has coefficients in OK .
Moreover, if the gcd g of the ki is not 1, then can we can consider e′ = e

g in
order to get an irreducible, or primitive, root.

Finally, notice that preservation of the lattice is equivalent to the crystallo-
graphic condition

(e, e) | 2αi ki, ∀ 0 ≤ i ≤ n. (6.1)

Indeed, applying Re to the basis {vi}, we see that the preservation of the lattice
is equivalent to

−2 αi ki(e, e)kj , ∀i 6= j.

Since the the root e is supposed to be primitive (i.e. the ki don’t have any
common factor), then we must have (e, e) | 2αi ki for every i, as required.

4This assumption, although not theoretically necessary, is needed for computations in the
ring of the integers OK
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Remark 6.2.1
When working with the algorithm, we will use the vector space model Hn in-
duced by the quadratic form f : we consider the cone Cf = {x ∈ Kn+1 ⊗ R :
f(x) < 0} and its two connected components C±f and we let Hn be C+

f /R∗.

6.2.1 Description of the algorithm
We fix an admissible quadratic form f and we let Θf = O(f, L) and Γf as above.

The first step is to fix a point p0 ∈ Hn. For the sake of simplicity, we will
always consider p0 corresponding to the basis vector v0. The subgroup Γ0 of
the discrete group Γf generated by the reflections which fix p0 is a finite group
of rank k at most n. We consider one cell P0 of Γ0 (it is a polyhedral cone
emanating from p0) and its normal vectors e1, . . . , en (see Section 6.2.3 about
finding these vectors and the reason why k = n when p0 corresponds to v0).
Among all the cells of Γf , we choose the unique cell P which is the same as P0
in a sufficiently small neighbourhood of p0.

At this point, we have P0 =
⋂n
i=1H

−
ei and we want to construct a (hopefully

finite) sequence e1, . . . , en, en+1, . . . such that Rei ∈ Γf and P :=
⋂
iH
−
ei has

finite volume. We proceed inductively. Suppose we have the finite sequence
e1, . . . , er, r ≥ n. Among all the vectors e such that Re ∈ Γf , we choose er+1
such that:

• (er+1, ei) ≤ 0 for all 1 ≤ i ≤ r;

• the distance d(p0, Her+1) is minimal.

Moreover, we choose the orientation of er+1 such that p0 ∈ H−er+1
(i.e. we want

p0 to lie inside P ). As long as the polyhedron given by the ei is of infinite
volume, we continue to look for new vectors5.

A result of Vinberg (see [Vin72, Proposition 4]) ensures that the vectors ei
indeed give rise to the required polyhedron P which is a cell of the group Γf .

Remarks 6.2.2 • The distance d(p0, Her+1) is given by

sinh2 d
(
p0, Her+1

)
= − (er+1, v0)2

(er+1, er+1) · (v0, v0) .

Hence, since (v0, v0) = −α0 < 0, minimizing this distance is equivalent
to minimizing the value (er+1,v0)2

(er+1,er+1) . With our assumption, this in turn

reduces to minimizing the value k2
0

(er+1,er+1) , where k0 is the first component
of er+1.

• The condition p0 ∈ H−er+1
is equivalent to (v0, er+1) ≤ 0.

6.2.2 Possible values for (e, e)
Let e be a root and suppose that (e, e) ∈ OK is not invertible. Let π ∈ OK
be a prime factor of (e, e). Since the coefficients of e don’t have any common

5As we will see later, the more we go on, the more complicated the computations become.
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factor by assumption, there exists 0 ≤ j ≤ n such that π | 2 · αj . If we denote
by P the set of prime elements of OK which divide at least one coefficient of
the quadratic form f and by ρ1, . . . , ρk ∈ OK the prime factors of 2, then we
see that (e, e) can be written as follows:

(e, e) = u · ρ0,1
1 · . . . · ρ0,1

k ·
r∏
i=1

πi, πi ∈ P, u ∈ O∗K , (6.2)

where x0,1 means x0 or x1. Moreover, since the coefficients of f don’t have any
square factor, we can suppose that that the πi are distinct. Finally, since f is
admissible, all the conjugates of (e, e) must be positive.

Finally, equation (6.2) implies that in order to find the possible norms (e, e)
it is sufficient to find the primes dividing the coefficients of the quadratic form,
the decomposition of 2 and the invertible elements of OK (see Theorem 2.2.1)
and to list all the possible products, omitting the ones which have some negative
conjugate.
Remark 6.2.3
Our description of the possible values of (e, e) is in contradiction with [Mcl13,
Lemma 3.1.5], where only a smaller number of values is considered. This will
lead us to some differences in the set of normal vectors of certain polytopes.

6.2.3 First set of vectors
First, we consider the group Γ0 generated by reflections in Γ stabilizing p0. If
e is a root such that Re ∈ Γ0, then the angle between e and any vi is 0, π2 or π

4
(see [Bug92, Lemma 2.2]). Now, if there exists 1 ≤ i ≤ n such that ](e, vi) = π

4 ,
then there exists precisely another j 6= i such that ](e, vj) = π

4 . Hence, we have

e = kivi + kjvj .

The crystallographic condition (6.1) implies that ki, kj ∈ O∗K and thus the
quotient αi

αj
is a square in O∗K . By hypothesis on f , we thus have αi = αj and

finally ki = ±kj . Therefore, the reflections in Γ0 are precisely the following

R±vi , 1 ≤ i ≤ n, R±vi±vj , 1 ≤ i < j ≤ n, when αi = αj .

Suppose now that f = 〈−α0, α
′
1, . . . , α

′
1, . . . , α

′
r, . . . , α

′
r〉, where the α′i are dis-

tinct, and that the coefficient α′i appears ni times. We can now use the well-
known classification of irreducible finite Coxeter groups to see that

Γ0 ∼=
r∏
i=1

Cni ,

with the convention that C1 = A1 and C2 = G4
2 (see also Figure 3.1, page 36).

Therefore, we form the initial set of vectors as follows:

− v1 + v2, . . . ,−vn1−1 + vn1 ,−vn1 n1 vectors
− vn1+1 + vn1+2, . . . ,−vn1+n2−1 + vn1+n2 ,−vn1+n2 n2 vectors

...
...

− vn1+...+nr−1+1 + vn1+...+nr−1+2, . . . ,−vn−1 + vn,−vn nr vectors

Hence, we have n1 + . . .+ nr = n vectors and if we label them e1, . . . , en, then
we have P0 =

⋂n
i=1H

−
ei , as required.
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6.2.4 Solving the norm equation
We want to find another root e = (k0, . . . , kn). Since the first component and
the norm are prescribed by the fraction (e,v0)2

(e,e) which we have to minimize, we
only need to find the n remaining components. We do that inductively and by
a "brute-force" search: if the components k0, . . . , kj−1 are chosen, then we have

∑
i≥j

αik
2
i = (e, e) + α0k

2
0 −

j−1∑
i=1

αik
2
i .

If σ : K −→ R denotes any non-trivial Galois embedding, then the fact that fσ
is positive definite implies

σ

αjk2
j +

∑
i>j

αik
2
i

 = σ

(
(e, e) + α0k

2
0 −

j−1∑
i=1

αik
2
i

)
≥ 0,

which easily yields the condition

|σ(kj)| ≤

√√√√σ

(
(e, e) + α0k2

0 −
∑j−1
i=1 αik

2
i

αj

)
.

If we let Sj = (e, e) + α0k
2
0 −

∑j−1
i=1 αik

2
i , then we get the system

0 ≤ kj ≤
√

Sj
αj

−
√
σ
(
Sj
αj

)
≤ σ(kj) ≤

√
σ
(
Sj
αj

)
, ∀σ 6= id .

(6.3)

For each possible value of kj , we check if the crystallographic condition (6.1) is
satisfied, and if it is the case, we try to find possible values for kj+1.

Remark 6.2.4 (i) Let e′ = (k′0, . . . , k′n) be a root of the quadratic form f .
Since the coefficients α1, . . . , αn of the quadratic form are positive, the
"partial product" between e′ and the candidate e

O∗K −→ O∗K

kj+1 7−→
j+1∑
i=0

αik
′
iki

is increasing. Therefore, the condition (e, ei) ≤ 0 for each found root ei
gives a stronger condition in the first inequality of the system (6.3).

(ii) When k = Q, the crystallographic condition (6.1) allows us to replace 0
by (e,e)

gcd
(

(e,e),2αj
) in the first inequality of the system (6.3).

6.2.5 A first example

Let f = 〈−1, 2, 6, 6〉. Using Section 6.2.3, we see that Γ0 ∼= A1 ×G(4)
2 , and that

the normal vectors of P0 are

e1 = (0,−1, 0, 0), e2 = (0, 0,−1, 1), e3 = (0, 0, 0,−1).
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For a root e, the possible values for (e, e) are 1, 2, 3, 4, 6, 12. Moreover, we have
the conditions

(e, v0) < 0, (e, ei) ≤ 0, ∀1 ≤ i ≤ 3. (6.4)

If the components of e with respect to the basis v0, . . . , v3 are denoted by
k0, k1, k2, k3, the conditions (6.4) give

k0 > 0, k1 ≥ 0, 0 ≤ k3 ≤ k2.

The vector e4 should thus satisfy these conditions and minimize the value k2
0

(e,e) .
For k0 = 1 and (e, e) = 12, 6, 4, 3, 2 we don’t find any vector. For (e, e) = 1, so
that k2

0
(e,e) = 1, we find the vector e4 = (1, 1, 0, 0). The value 1 of the quotient

can also be obtained with the values k0 = 2 and (e, e) = 4 which gives the vector
e5 = (2, 1, 1, 0) (we also check that (e4, e5) ≤ 0). The polyhedron P5 =

⋂5
i=1H

−
ei

defined by these 5 vectors has infinite volume. For k0 = 2 and (e, e) = 2 we
find a vector which is not compatible with e5. Finally, we find the vector
e6 = (3, 0, 1, 1) for k0 = 3 and (e, e) = 3. The polyhedron P defined by these
6 vectors is of finite volume and is moreover compact (see Figure 6.1 for its
Coxeter graph). This Napier cycle appears in [Im 90].

Figure 6.1 – Algorithm for the form 〈−1, 2, 6, 6〉

6.2.6 Non-reflectivity of the quadratic forms
As mentioned above, the major issue with the algorithm is that there is no
way to know a priori if the algorithm will stop or not. Also, since there is
no bound on the rank of hyperbolic Coxeter groups and on the combinatorial
complexity of hyperbolic Coxeter polyhedra (see the polyhedra in Section 6.8.1.6
and Chapter 7), it is not clear at all when it is reasonable to stop the algorithm
and try to prove that the form is not reflective. Among all the methods that can
be used to prove the non-reflectivity of a quadratic form, we will focus on two
of them. It is worth to mention that these methods are "ad hoc" and tedious
to use: there is probably no way to have a unique method to prove the non-
reflectivity of a given non-reflective form. However, in some cases, AlVin can
be used to handle these forms.

For the next two sections, we suppose that we found by the algorithm the
vectors e1, . . . , er with the algorithm and that the polyhedron Pr :=

⋂r
i=1H

−
ei

has not finite volume. We also let Er be the Coxeter graph induced by the
vectors e1, . . . , er.

6.2.6.1 First method: the finite volume condition

The aim of the first method, which is presented by McLeod in [Mcl11], is to
show that it is not possible to find another root er+1 of the quadratic form
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f such that Pr ∩H−er+1
is of finite volume or such that there exist other roots

er+2, . . . , er+d with the property that Pr∩H−er+1
∩
⋂d
i=2H

−
er+i is of finite volume.

Since Pr has infinite volume, and in view of Proposition 6.3.1, it is possible6

that Er contains a Euclidean graph E ′ which cannot be extended to a Euclidean
subgraph of rank n− 1 of Er. In order for f to be reflective, we have to find (at
least) one new root er+1 = (k0, . . . , kn) such that in the new Coxeter graph Er+1,
the graph E ′ can be extended correctly. Suppose that the vectors corresponding
to the vertices of E ′ are ei1 , . . . , eik , eik+1 , . . . , eim , with ij < ij+1 for every
1 ≤ j ≤ m and ik ≤ n < ik+1. Since a connected Euclidean graph cannot be
extended to another connected Euclidean graph, the new vector er+1 has to be
perpendicular to the vectors ei1 , . . . , eik . Because each ei is of the form −vl
or −vl + vl+1 for some l by Section 6.2.3, this gives strong conditions on the
coefficients ki of er+1.

Example 6.2.5
We consider the quadratic form f = 〈−11, 1, 1, 1, 1, 1〉. Using the algorithm we
find the first 8 vectors:

e1 = (0,−1, 1, 0, 0, 0), e2 = (0, 0,−1, 1, 0, 0), e3 = (0, 0, 0,−1, 1, 0),
e4 = (0, 0, 0, 0,−1, 1), e5 = (0, 0, 0, 0, 0,−1), e6 = (3, 11, 0, 0, 0, 0),
e7 = (1, 2, 2, 2, 1, 0), e8 = (1, 3, 1, 1, 1, 1).

The corresponding Coxeter graph E8 is presented in Figure 6.2. The subgraph

Figure 6.2 – Graph E8 - 8 first vectors for the form 〈−11, 1, 1, 1, 1, 1〉

Ã1×Ã2, associated to e1, e8 and e3, e4, e7, cannot be extended to a graph of rank
4. The new vector e9 = (x0, . . . , x5) should be perpendicular to e1, e3, e4, e7 and
e8. Therefore, we have x1 = x2 and x3 = x4 = x5. Finally, we have to solve the
system (e9, e9) ∈ {1, 2, 11, 22}

(e9, e7) = 0
(e9, e8) = 0

⇔

 −11x2
0 + 2x2

1 + 3x2
3 ∈ {1, 2, 11, 22}

−11x0 + 4x1 + 3x3 = 0
−11x0 + 4x1 + 3x3 = 0

with the additional constraints x0 > 0, x1 ≥ x3. Since the system has no
solution, the quadratic form 〈−11, 1, 1, 1, 1, 1〉 is not reflective.

Remark 6.2.6
Depending on the value of the norm of the root, we may get extra constraints
from the crystallographic condition (6.1). In the above example, if −11x2

0 +
2x2

1 + 3x2
3 = 11 or 22, then we must have 11 | x2 and 11 | x3.

6In fact, tests show that it is almost always the case.
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Remark 6.2.7
This first approach only works well when working over Q: for other fields, the
resolution of the system of equations is quite difficult. Moreover, programs such
as Mathematica R© don’t handle equations solving in number fields. One can
write every element in a integral basis and write a system with more equations
but then the computations become too complicated.

6.2.6.2 Second method: symmetries of the polyhedron

Recall that we have the decomposition Θf = Γf oH, where H is a subgroup of
the symmetry group symP of the fundamental polyhedron P . Here, we will try
directly to show that P is not finite sided by showing that its symmetry group
is infinite. The steps are the following:

1. Create symmetries η1, . . . , ηm of Pr which extend to integral symmetries
of P (see Lemma 6.2.8).

2. Show that the group ∆ := 〈η1, . . . , ηm〉 ≤ symP has no fixed point in Hn
(see lemmas 6.2.10 and 6.2.11). Usually, two or three involutions will be
sufficient.

We will provide an example of this method in Section 6.6.5.

Lemma 6.2.8 (See also [Bug92, Lemma 3.3])
Let G be a subgraph of the Coxeter graph of P , such that:

• The R-span of the vectors corresponding to the vertices of G has dimension
n+ 1.

• The graph G contains a spherical or Euclidean subgraph of maximal rank.

Then, any symmetry of G extends to a symmetry of P .

Remark 6.2.9
In contrast to what the original lemma [Bug92, Lemma 3.3] says, the above
lemma only gives us a linear transformation of the space which preserves P .
We still have to check that this involution preserves the quadratic form and the
lattice spanned over OK by the canonical basis.

Lemma 6.2.10 (See [Bug92, Lemma 3.1])
Let H be a discrete subgroup of IsomHn. Then, H is infinite if and only if there
exists a subgroup ∆ of H with Fix(∆) ∩ Hn = ∅, where Fix(∆) denotes the set
of vectors fixed by every transformation on ∆.

Lemma 6.2.11 (See [Bug92, Lemma 3.2])
Let η be an involutive transformation of an arbitrary real vector space V . Then,
Fix η is generated by the vectors wi + η(wi), where {wi} is a R-basis of V .

Remark 6.2.12
This method becomes more difficult to apply when the dimension of Hn in-
creases because we have to find symmetric subgraphs with more and more ver-
tices. Also, when the set of possible values for the norm of a root (which grows
exponentially with the number of prime number dividing at least one coefficient
of the quadratic form) is big, many symmetries of subgraphs do not preserve the
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quadratic form. In both cases, it is necessary to compute more normal vectors
before trying this method. However, one advantage of this second approach
compared to the first one is to be independent7 of the base field K.

6.3 Towards the implementations

6.3.1 Global description of the implementation of the al-
gorithm

Here are the main steps of the implementation of the algorithm for a given
quadratic form:

• We check that the quadratic form is admissible, has appropriate signature
and satisfies the condition on the ratios of its coefficients (see Section 6.2).

• We find a first set of n vectors, corresponding to roots of the lattice whose
reflections generate the stabilizer Γ0 of v0 (see Section 6.2.3).

• We find the possible values for the norm of a root e (see Section 6.2.2).

• For given integersm < M we find all the possible fractionsm < k0
(e,e) ≤M ,

where e = (k0, . . . , kn) is a root. We start with m = 0, M = 1 and we
continue until the algorithm terminates (or when the maximal number of
vectors is achieved). We choose the fraction which has minimal value.

• For each fraction k2
0

(e,e) we try to find the remaining components k1, . . . , kn
of the root e. If we succeed, we add the vector e to the list and we check
if the polyhedron which is bounded by the hyperplanes perpendicular to
the vectors is of finite volume. If it is not the case, we try to find another
root from the next fraction.

6.3.2 Couples (k0, (e, e))
Let m < M be two positive integers and let e = (k0, . . . , kn) and ε = (e, e). We
want to determine all the fractions such that m <

k2
0
ε ≤M . Since the quadratic

form fσ is positive definite for all non-trivial Galois embeddings σ : K −→ R,
we have σ

(
ε+ α0 · k0

2) > 0, with σ(α0) < 0, which gives the equations m · ε < k0
2 ≤M · ε

|σ(k0)| ≤
√
σ
(

ε
−α0

)
, ∀σ 6= id .

(6.5)

We will describe the solutions of this system when K = Q[
√
d] and K =

Q[cos 2π
7 ] (see sections 6.5.2.3 and 6.5.3.3).

7This is not completely true since arithmetic computations in Q[cos 2π
7 ] and Q[

√
d] are

slower than in Q but the difference is acceptable.
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6.3.3 Some optimizations
Most of the computation time is dedicated to one of the two following tasks:

1. Solving the norm equation.

2. Once a candidate has been found, checking whether the polyhedron is of
finite volume.

6.3.3.1 Testing the volume finiteness

Besides the finite volume criterion (see Proposition 3.8.4), we have a partial
criterion from [Vin72, Proposition 1].

Proposition 6.3.1
Let Γ < IsomHn be a Coxeter group and let G be the Coxeter graph of Γ. If
Γ is of finite covolume, then for each Euclidean subgraph E of G there exists a
Euclidean subgraph E ′ of G of rank n−1 (see Definition 3.5.4) such that E ⊂ E ′.

If the condition of the Proposition 6.3.1 is satisfied, then it is possible that
Γ is of finite covolume. Since the number of Euclidean subgraphs is usually
much smaller than the number of spherical subgraphs, the test is faster than
the complete criterion (more than 10000 faster for big graphs). If the partial
test succeeds, then we try again with the complete test.

6.4 General information about the program
The program AlVin is written in C++ and is free/open source. More precisely, it
is published under a free license, the GPLv3 (the GNU General Public License
v3) and can be used freely in various projects8. AlVin and its documentation (to
build and use the program) is available on the website https://alvin.rgug.ch
and on GitHub: https://github.com/rgugliel/AlVin

6.4.1 External libraries used
AlVin requires the following external libraries:

CoxIter It is used as a library to check at each step if the polyhedron is of finite
volume or not. When the form is reflective, we use CoxIter to compute
the invariants of the final polyhedron.

Eigen It is a C++ template library for linear algebra which is used for the non-
reflective test.

Gaol This library is used to perform interval arithmetic.

GMP (or GNU Multiple Precision Arithmetic Library) is a free library for
arbitrary precision arithmetic with integers.

8More information about the license can be found here: https://www.gnu.org/
licenses/gpl.html A short guide is also available here: https://www.gnu.org/licenses/
quick-guide-gplv3.html
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igraph It is a C/C++ package designed to manipulate graphs and do network
analysis used for the non-reflective test.

OpenMP Via CoxIter and for the non-reflective test.

PARI We use the C library PARI to factor the minimal polynomial of 2 cos 2π
7

over Fp[x]. This library is also used through CoxIter to compute the
growth rate of the final Coxeter group.

PCRE The PCRE library (PCRE - Perl Compatible Regular Expressions) is
used to parse the user input.

6.4.2 Design description
We briefly explain the main steps of the working flow of AlVin.

• Reading the parameters
When the program is launched, it first lists all the given parameters (the
file to read and the options for the computations). This is done in the
App::bReadMainParameters function.

• First tests and initializations
We test that the form is admissible, remove the square factors of the coef-
ficients and check whether the gcd of the coefficients is invertible. Then,
we compute the possible values for the norm of a root (AlVin::AlVin,
AlVin::initializations and AlVin::findPossibleNorms2).

• First set of vectors
We list the first n vectors, as explained in Section 6.2.3 (see function
AlVin::findFirstVectors).

• Computing the vectors
We go through pairs (k0, (e, e)) by increasing value of k2

0
(e,e) (AlVin::Run).

Once a vector is found, we check whether the polyhedron has finite volume
or not. We continue as long as the polyhedron does not have finite volume
or the number of vectors is less than the value "-maxv".

• Non-reflective test
If the algorithm did not succeed and if it was specified in the parameters,
we try to determine if the form is not reflective (InfiniteNSymetries).

• Displaying final information
Finally, we display the information about the execution.

6.5 Implementations
In this section, we provide some details about computations in the different
implementations of the algorithm. Mostly, this consists of the following:

• decompositions into prime numbers;

• parametrization of the solutions of systems (6.3) and (6.5) on pages 113
and 117.
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6.5.1 Rational integers
6.5.1.1 Operations

For a real number x ∈ R, we have the respective functions floor(x) and ceil(x)
which return respectively the largest integer not greater than x and smallest
integer not less than x.
For a positive real number x, we define the integral square root SQRTinf(x)
of x and the supremal integral square root SQRTsup(x) of x to be the integers
such that

SQRTinf(x) ≤
√
x < SQRTinf(x) + 1, SQRTsup(x)−1 <

√
x ≤ SQRTsup(x).

Note that we have the following equality for every positive integer n ∈ N

SQRTsup(n) = SQRTinf(n− 1) + 1.

6.5.1.2 Computations

The solutions of systems (6.3) and (6.5) are then parametrized as follows:
SQRTsup(m · ε) ≤ k0 ≤ SQRTsup(M · ε)

0 ≤ kj ≤ SQRTinf
(

ceil Sjαj
)
.

6.5.1.3 Some optimizations

Solving the norm equation Suppose that all but two components of a root
have been found. Then, we have to solve the equation

αn−1k
2
n−1 + αnk

2
n = Sn−2, kn−1, kn ∈ N0.

In order for this equation to have a solution, the following quadratic form must
be isotropic over Z:

αn−1k
2
n−1 + αnk

2
n − Sn−2k

2. (6.6)

To check whether this quadratic form is isotropic or not, we use the following
result, due to Legendre.

Theorem 6.5.1 (Legendre, see [Lam05, Chapter IV, exercise 19])
Let a, b, c ∈ N be three square-free and pairwise coprime integers. Then, the
ternary quadratic form q(x, y, z) = ax2 +by2−cz2 is isotropic if and only if −bc
is a square modulo a, −ac is a square modulo b and −ab is a square modulo c.

In order to use the previous result, we have the following useful lemma.

Lemma 6.5.2
Let a, b, c be three positive square-free integers and let d be a divisor of a and b.
Then, the equation ax2 + by2 − cz2 = 0 has a non-trivial solution if and only if
the equation a

dx
2 + b

dy
2 − (cd)z2 = 0 has a non-trivial solution.

We consider equation (6.6) and use the reduction of Lemma 6.5.2 to get an
equation ax2 + by2 − cz2 = 0 as in Theorem 6.5.1. Let p ∈ P be a prime factor
of c such that p2 - c. If −ab is not a square mod p, then the equation does not
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admit a non-trivial solution. By implementing the Legendre symbol and doing
this test with a few primes (for example p = 3, 5, 7, 11, 13) we can reduce the
computation time by 5-10%.

Also, since the sum of two squares is always 0 or 1 mod 4, if αn−1 ≡ αn ≡ 1
mod n and Sn−2 ≡ 3, then the equation cannot have a solution.

With these two simple tricks we reduce the computation time by 20-25%.

6.5.2 Quadratic integers

In this section, we consider the quadratic field K = Q[
√
d], with d ∈ N square-

free. We will restrict (both for the theoretical part and for the program) to the
case where K is a principal ideal domain. Moreover, for the computations, we
will assume that d < 100. In this case, we must have d ∈ {2, 3, 5, 6, 7, 11, 13, 14,
17, 19, 21, 22, 23, 29, 31, 33, 37, 38, 41, 43, 46, 47, 51, 53, 57, 58, 59, 61, 62, 67, 69,
71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 89, 91, 93, 94, 95, 97} (see [Neu99, Chapter
I, §6, page 37]). In this setting, an integral basis for the ring of integers OK is
{1,Θ}, with Θ =

√
d if d ≡ 2, 3 mod 4 and Θ = 1+

√
d

2 if d ≡ 1 mod 4.

In this section, we write x for the non-trivial Galois conjugate of an element
x ∈ K.

6.5.2.1 Operations

Unlike the rational case, computations with quadratic fields are non-trivial.
First, the decomposition of integers relies on solutions of the Pell equations.
Also, computations of the gcd have to be done using the decomposition into
prime numbers (and not with the Euclidean algorithm). This leads of course to
less efficient computations. Finally, all the equations have to be solved for the
two components of the integers.

Decomposition of rational primes As explained in Section 2.2.1, each
prime number p ∈ P either remains prime in OK or splits into a product of
two primes. The following theorem describes which primes split.

Theorem 6.5.3 ([NZM08, Theorem 9.28])
When O√d := OQ[

√
d] is a unique factorization domain, then:

1. If p ∈ P is odd and p - d, then p is a product of two primes π1, π2 ∈ O√d
if and only if

(
d
p

)
= 1, where

(
d
p

)
denotes the usual Legendre symbol. In

this case, the primes π1 and π2 are not associate but π1 and the Galois
conjugate of π2 are.

2. If d is odd, then:

• 2 is the associate of the square of a prime if d ≡ 3 (4).
• 2 remains prime if d ≡ 5 (8).
• 2 is the product of two distinct primes if (i.e. non-associates) primes
if d ≡ 1 (8).

3. Any prime p ∈ P which divides d is the associate of the square of a prime.
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If p ∈ P is a rational prime which is not a prime in OK , we want to find
its prime factor(s). If d is 2 or 3 mod 4, we have to find one solution to the
generalized Pell equation

x2 − dy2 = ±p.

In [Rob04], Robertson provides different algorithms to find solutions to this
equation as well as information to derive a solution from the minimal solution
of x2 − dy2 = 1.
If d is 1 mod 4, then we look for a solution of the equation

x2 − dy2 = ±4p.

Such a solution has x ≡ y (2) and we can write π = x−y
2 + y ·Θ.

Remark 6.5.4
In the program, we store, for each value of d mentioned in the beginning of the
section, a minimal solution of the equation x2 − dy2 = 1. From that, we find
the factors.

Integer square roots of a quotient Let λ, µ ∈ OK be two quadratic integers
of the same sign. We want to compute the integer square root s, and the
supremal integer square root s′, of the quotient λ

µ . These are rational integers
such that:

s2 ≤ λ

µ
< (s+ 1)2, (s′ − 1)2 <

λ

µ
≤ s′2.

First, we write λ
µ = x

z + y
z

√
d. If λ = a+b·Θ, µ = α+β ·Θ, with a, b, α, β ∈ Z,

we have

x = aα− bβd, y = bα− aβ, z = N(µ), if d ≡ 2, 3 (4),
x = Tr(λ) · Tr(µ)− bβd, y = bTr(λ)− β Tr(µ), z = 4 ·N(µ), if d ≡ 1 (4).

Up to a sign change, we can suppose that z ≥ 0. We consider now separately
the integer square root and the supremal integer square root.

For the integer square root s, we distinguish two cases:

y ≥ 0 Let t := SQRTinf x+SQRTinf(y2d)
z . Note that t may be smaller than the

required value s. While (t+1)2 ≤ λ
µ (or equivalently z(t+1)2−x)2 ≤ y2d),

we add 1 to t.

y < 0 We consider t := SQRTsup x−SQRTinf(y2d)
z which may be bigger than the

required value s. While λ
µ < t2, we subtract one to t. Note that, again, we

can perform this test without risking any approximation error as follows:
while zt2 − x > 0 or zt2 − x ≤ 0 and (zt2 − x)2 < y2d, subtract 1 from t.

For the supremal integer square root s′, we distinguish two cases:

y ≥ 0 Let t := SQRTsup x+SQRTsup(y2d)
z . Note that t may be greater than the

required value s′. While y2d ≤
(
(t− 1)2z − x

)2, subtract 1 from t.

y < 0 We consider t := SQRTsup x−SQRTinf(y2d)
z . Note that t may be greater

than the required value s′. While x − (t − 1)2z ≤
√
y2d, subtract one

from t.
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6.5.2.2 Possible values for (e, e)

It is known (see the Dirichlet’s unit theorem, Theorem 2.2.1) that units of OK
are given by ±ηn, n ∈ N0, for some η ∈ O∗K . The element η is called the
fundamental unit of OK and can be deduced from the minimal solution of the
Pell equation; alternatively, a list of all fundamental units can be found here:
http://mathworld.wolfram.com/FundamentalUnit.html. Using this fact, we
can see that the possible values for (e, e) are of the following form:

(e, e) = ηn · ρ0,1
1 · . . . · ρ0,1

k ·
r∏
i=1

πi, n ∈ N0, k = 1, 2, πi ∈ P,

where ρ1, . . . , ρk ∈ OK , k = 1, 2, are the prime factors of 2 (see also Section
6.2.2). Moreover, up to a rescaling, we can suppose that

(e, e) = η0,1 · ρ0,1
1 · . . . · ρ0,1

k ·
r∏
i=1

πi, k = 1, 2, πi ∈ P.

As before, we must also have (e, e) > 0, where (e, e) denotes the non-trivial
Galois conjugate of (e, e).

6.5.2.3 Couples (k0, (e, e))

As explained in Section 6.3.2, in order to determine all the fractions satisfying
m <

k2
0
ε ≤M for some integers m < M , we have to solve the following system:

m · ε < k2
0 ≤M · ε∣∣k0

∣∣ ≤√ ε
−α0

.

We write k0 = x0 + y0 · Θ and distinguish the following two possible cases,
depending on d.

d ≡ 2, 3 (4) We have the system
√
mε < x0 + y0 ·Θ ≤

√
Mε∣∣x0 − y0 ·Θ

∣∣ ≤√ ε
−α0

,

and a parametrizations of the solutions is given by
√
mε−

√
ε
−α0

2 < x0 ≤
√
Mε+

√
ε
−α0

2√
mε
d −

x0√
d
< y0 ≤

√
Mε−x0√

d
.

We look for solutions in the following domain
ceil

SQRTinfmε−SQRTsup ε
−α0

2 ≤ x0 ≤ floor
SQRTsupMε+SQRTsup ε

−α0
2

SQRTinf mεd − SQRTinf x
2
0
d ≤ y0 ≤ SQRTinf Mε

d − SQRTinf x
2
0
d .
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d ≡ 1 (4) We have the system
√
mε < x0 + y0 ·Θ ≤

√
Mε∣∣(x0 + y0)− y0 ·Θ

∣∣ ≤√ ε
−α0

,

and a parametrizations of the solutions is given by
√

mε
d −

√
ε

−d·α0
< y0 ≤

√
Mε
d +

√
ε

−d·α0

√
mε− y0 ·Θ < x0 ≤

√
Mε− y0 ·Θ.

We look for solutions in the following domain

SQRTinf
(
mε
d

)
− SQRTinf

(
ε

−d·α0

)
≤ y0

SQRTinf
(
Mε
d

)
+ SQRTinf

(
ε

−d·α0

)
+ 1 ≥ y0

ceil
(

SQRTinf(4mε)−y0−SQRTinf(y2
0 d)−1

2

)
≤ x0

SQRTinf(Mε) + 1− floor y0+SQRTinf(y2
0 d)

2 ≥ x0.

6.5.2.4 Solving the norm equation

We solve the system (6.3) of Section 6.2.4 depending on d.

d ≡ 2, 3 (4) We find
−
√

Sj
2·αj ≤ x ≤

√
Sj

2·αj +
√

Sj
2·αj

−SQRTinf x
2

d − 1 ≤ y ≤ SQRTinf Sj
d·αj − SQRTinf x

2

d .

d ≡ 1 (4) We find 
−
√

Sj
d·αj ≤ y ≤

√
Sj
d·αj +

√
Sj
d·αj

−y ·Θ ≤ x ≤
√

Sj
αj
− y ·Θ,

and 
− floor y+SQRTinf(y2d)+1

2 ≤ x

SQRTinf Sjαj + 1− ceil y+SQRTinf(y2d)+1
2 ≥ x.

124



6.5.3 Maximal real subfield of the 7-cyclotomic field
Although we presented in Section 2.2.6 information about the maximal real
subfield K = Q

[
cos 2π

q

]
of the cyclotomic extension Q[µq] with q = 7, 11, 13, 17

and 19, we only focus here on the case q = 7. The methods presented in this
section could be generalized to the other cases but the resolution of the different
equations becomes overly complicated.

In our setting, the ring of integers of K has Z-basis λi = 2 cos 2iπ
7 , for

i = 1, 2, 3, and we sometimes write [a1, a2, a3] instead of a1λ1 + a2λ2 + a3λ3.

6.5.3.1 Operations

The two main operations we need to perform are comparisons of elements and
decomposition of rational primes. The latter is the starting point for gcd com-
putations and finding the list of possible values for the norm (e, e) of a root
e.

Comparisons of elements During the process of the algorithm, we often
have to compare different elements of OK . This reduces to be able to decide
whether a given x = [a1, a2, a3] ∈ OK is smaller than zero or not. Of course,
we want to conclude without worrying about approximation errors which occur
during the computation of a1 · cos 2π

7 + a2 · cos 4π
7 + a3 · cos 6π

7 . One solution is
to find rational numbers qi, q′i, 1 ≤ i ≤ 3, such that qi < cos 2πi

7 < q′. Hence,
we want to find some rationals q, q′ such that q < x < q′. If both q and q′ are
of the same sign, then we can decide whether x is smaller than zero or not. If
they are of different sign, then we have to improve the precision of our rational
approximations of the numbers cos 2πi

7 and do the test again.

Luckily for us, there exist libraries which implement interval arithmetic:
every number is represented as an interval and all the operations take intervals as
parameters and return an interval (hence, the final result is completely reliable).
We chose to use the library Gaol9 in our project. This library, written in C++
by Frederic Goualard, allows us to do all the operations we need: comparisons,
arithmetic operations, trigonometric functions and square roots.

Decomposition of rational primes: first remarks Let p ∈ P be a rational
prime and let π ∈ OK be a prime above p. In order to find π, we could solve
the equation N(π) = p, as we did with the Pell equation for a quadratic field
(see Section 6.5.2.1). Although feasible (see [HS04], for example), this approach
requires more advanced tools and is not suitable for an integration inside our
computer program. Thus, it may be better to use Theorem 2.2.7 instead. To
find the prime factors πi of p, we proceed as follows:

1. We first factor the minimal polynomial T of λ = 2 cos 2π
7 over Fp[x]:

T (x) ≡
g∏
i=1

Ti(x)ei , (mod p).

9Gaol: NOT Just Another Interval Library, http://gaol.sourceforge.net/. Licence:
GNU Library or Lesser General Public License version 2.0 (LGPLv2)
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2. We choose πi as a generator of the ideal 〈p, Ti(λ)〉 = pOK + Ti(λ)OK
(recall that OK is a PID).

Remark 6.5.5
We can use the C++ library PARI to do the factorization of the minimal polyno-
mial T over Fp[x].

Unfortunately, πi is the gcd of p and Ti(λ) in OK but in order to compute
the gcd we need the decomposition in primes (see Section 2.2.2). If the norm
N(Ti(λ)) is a power of p, then gcd(p, Ti(λ)) = Ti(λ) and we are done. If it is
not the case, we can try to remove the others factors of the norm, as shown in
the next example.

Example 6.5.6
Suppose we want to find the decomposition of 13. We have T (x) = x3+x2−2x−1
and we find the factorization

T (x) ≡ (x+ 5)(x+ 3)(x+ 6) ∈ F13[x],

and we see that N(λ+5) = 13·7. Therefore, if we know the prime decomposition
of 7, we will be able to compute the gcd. Hence, we can construct a table of the
decomposition of small rational prime numbers to help to find the decomposition
of bigger primes.

Another possibility is to choose other lifts of Ti(x) in Z[x], as shown in the
next example.

Example 6.5.7
For p = 19, we find the factorization

T (x) ≡ (x+ 11)(x+ 22)(x+ 26) ∈ F29[x],

and we find the following values

N(λ+ 11) = 29 · 41, N(λ+ 22) = 29 · 349, N(λ+ 26) = 29 · 581.

Since the "residual factor" is always bigger than 29, we cannot use the same
trick as in Example 6.5.6. However, if we consider the lift x − 7 ∈ Z[x] of
x+ 22 ∈ F29[x], we see that N(λ− 7) = −29, which means that λ− 7 is a prime
above 29, as desired. We will formalize this below.

Decomposition of rational primes: formalization To find the decompo-
sition of a rational prime p, we first compute the factorization of the polynomial
T (x) = x3 + x2 − 2x− 1 in Fp[x]:

T (x) ≡
g∏
i=1

Ti(x)e (mod p),

where each Ti has degree f . We then have the following three possibilities:

g = e = 1, f = 3: p is prime in OK (p is the inert).

e = f = 1, g = 3: p decomposes as a product of three different primes (p splits
completely).
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g = f = 1, e = 3: p is associate to π3 for some prime π. Note that this ramified
case happens if and only if p = 7, since the discriminant of the field is 49.

As explained above, we have to find a generator πi of the ideal 〈p, Ti(λ)〉 if p
splits completely or is ramified. If N(Ti(λ)) = p, then πi = Ti(λ). Otherwise, we
have to cancel the other prime factors which appear in Ti(λ). This can be made
easier if we manage to get the norm as small as possible, which can be achieved
by choosing a suitable lift of Ti(x) in Z[x]. Since Ti(x) is of degree 1, we write
Ti(x) = x+ ai ∈ Fp[x] with 0 ≤ ai < p. For a lift Ti(x) = x+ ai + k · p ∈ Z[x],
we have

f(k) := N
(
λ+ ai + k · p

)
= k3p3 + k2 · p2(3ai − 1) + k · (3a2

i p− 2p− 2aip) + 1− 2ai − a2
i + a3

i .

The zeroes of this polynomial are

k1 = − 1
3p

(
3ai − 1 + 2

√
7 · cos θ3

)
∈
[
−1− 0.24698

p
,−1.24698

p

]
,

k2 = − 1
3q

(
3ai − 1−

√
7
(
cos

θ

3 −
√

3 · sin θ3

))
∈
[
−1 + 1.44504

p
,

0.445042
p

]
,

k3 = − 1
3q

(
3ai − 1−

√
7
(
cos

θ

3 +
√

3 · sin θ3

))
∈
[
−1 + 2.80194

p
,

1.80194
q

]
,

where θ = arctan(3
√

3). In particular, the zeroes are between −2 and 1, so
we can consider the elements λ + ai + k · p with k ∈ {−2,−1, 0, 1}. With
this technique, we can find the factorization of all rational primes below 10000.
These factorizations, computed once and for all, are used by AlVin for the
computations.

6.5.3.2 Possible values for (e, e)

In K = Q
[
cos 2π

7
]
, the rational prime 2 is a prime element. Moreover, the

group of positive units is generated by −λ3 and −λ2 − λ3 (see Section 2.2.6).
Therefore, if e is a root, the its norm (e, e) can be written as follows:

(e, e) = 20,1 · (−λ3)0,1 · (−λ2 − λ3)0,1 ·
r∏
i=1

πi, πi ∈ P,

where P denotes the set of prime elements of OK which divide at least one
coefficient of the quadratic form. As before, in order for (e, e) to be admissible,
we must have σ(e, e) > 0 for the two non-trivial Galois embeddings.

6.5.3.3 Couples (k0, (e, e))

Let m < M be two positive integers. In order to parametrize the fractions
m <

k2
0
ε ≤M , where e = (k0, . . . , kn) is a root such that ε = (e, e) is admissible,

we have to consider the following system (see Section 6.3.2)
m <

k2
0
ε ≤M

|σi(k0)| ≤
√
σi

(
ε
−α0

)
, i = 2, 3.

127



We write k0 = aλ1 + bλ2 + cλ3 for some a, b, c ∈ Z, Ri =
√
σi

(
ε
−α0

)
and

m′ =
√
mε, M ′ =

√
Mε which gives the system

m′ < aλ1 + bλ2 + cλ3 ≤M ′ (6.7)−R2 ≤ cλ1 + aλ2 + bλ3 ≤ R2 (6.8)
−R3 ≤ bλ1 + cλ2 + aλ3 ≤ R3. (6.9)

Taking the sum of the three equations and multiplying (6.8) by λ2λ3 and
(6.9) by λ1λ3 leads to

−R2 −R3 +m′ < −a− b− c ≤ R2 +R3 +M ′

−R2λ2λ3 ≤ a · λ2
2λ3 + b · λ2λ

2
3 + c ≤ R2λ2λ3

R3λ1λ3 ≤ a · λ1λ
2
3 + b · λ2

1λ3 + c ≤ −R3λ1λ3.

And thus

−R2 −R3 +m′ < −a− b− c ≤ R2 +R3 +M ′ (6.10)
λ3R2 −R3 +m′ < a · (λ2

2λ3 − 1) + b · (λ2λ
2
3 − 1)


≤ −λ3R2 +R3 +M ′ (6.11)

−R2 + (λ1λ3 − 1)R3 + m′ < a · (λ1λ
2
3 − 1) + b · (λ2

1λ3 − 1)
≤ R2 − (λ1λ3 − 1)R3 +M ′. (6.12)

Multiplying equation (6.12) by 1−λ2
2λ3

λ1λ2
3−1 and adding it to (6.11) yields the two

inequalities

R2(λ2 + λ3) +R3(λ2 − 2) +m′(1− λ2) < b · (3λ2 + λ3 − 1)
−R2(λ2 + λ3)−R3(λ2 − 2) +M ′(1− λ2) ≥ b · (3λ2 + λ3 − 1).

And finally

7b ≥ R2(2λ1 + 2λ2 + 3λ3) +R3(λ1 + 4λ2 + 2λ3) +M ′(2λ1 + 3λ2 + 2λ3)
7b < −R2(2λ1 + 2λ2 + 3λ3)−R3(λ1 + 4λ2 + 2λ3) +m′(2λ1 + 3λ2 + 2λ3).

Using equation (6.11), we get

a ≥ (1− λ2
2λ3)−1 ·

(
b · (λ2λ

2
3 − 1) + λ3R2 −R3 −M ′

)
a < (1− λ2

2λ3)−1 ·
(
b · (λ2λ

2
3 − 1)− λ3R2 +R3 −m′

)
.

Finally, we have
M ′ − aλ1 − bλ2

λ3
≤ c < m′ − aλ1 − bλ2

λ3
.

6.5.3.4 Solving the norm equation

Suppose the first j components of a root e = (k0, . . . , kn) have been chosen. We
write kj = aλ1 + bλ2 + cλ3 and Sj = (e, e) + α0k

2
0 −

∑j−1
i=1 αik

2
i . Bounds for kj

are obtained by solving the system (6.3) of Section 6.2.4. We write

Ri :=

√
σi

(
Sj
αj

)
, i = 1, 2, 3,
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and we proceed as in Section 6.5.3.3 to get:

7b ≥ R2(2λ1 + 2λ2 + 3λ3) +R3(λ1 + 4λ2 + 2λ3) +R1(2λ1 + 3λ2 + 2λ3)
7b ≤ −R2(2λ1 + 2λ2 + 3λ3)−R3(λ1 + 4λ2 + 2λ3)
a ≥ (1− λ2

2λ3)−1 ·
(
b · (λ2λ

2
3 − 1) + λ3R2 −R3 −R1

)
a < (1− λ2

2λ3)−1 ·
(
b · (λ2λ

2
3 − 1)− λ3R2 +R3

)
.

Finally, we have

R1 − aλ1 − bλ2

λ3
≤ c < −aλ1 − bλ2

λ3
=
[
2a− 2b,−b, a− b].

Note that when R1, R2 and R3 are integers, then the solutions reduce to the
following:

7b ≥
[
2R2 +R3 + 2R1, 2R2 + 4R3 + 3R1, 3R2 + 2R3 + 2R1

]
7b ≤ −

[
2R2 +R3, 2R2 + 4R3, 3R2 + 2R3

]
a ≥ 1

7 ·
[
2R1 + 3R2 + 2R3, R1 + 5R2 +R3, 7b+ 4R1 + 6R2 + 4R3

]
a ≤ −1

7 ·
[
3R2 + 2R3, 5R2 +R3,−7b+ 6R2 + 4R3

]
.

6.5.4 Non-reflectivity of a quadratic form
As explained in Section 6.2.6.2, one way to prove that a quadratic form is non-
reflective is to exhibit integral symmetries of the fundamental polyhedron (i.e.
symmetries of the polyhedron which preserve the quadratic form and the lattice
spanned over OK by the canonical basis) which generate a subgroup whose
action on Hn has no fixed points. This method has been implemented into
AlVin and can be used for a quadratic form of small dimension (see Section
6.8.1.2 and Appendix A.3 for some examples).

Suppose that the algorithm AlVin finds the roots e1, . . . , er, and let T ⊂
{1, . . . , r} and GT be the Coxeter graph corresponding to the vectors {et}t∈T .
In order for an involution of the graph GT to define an integral symmetry of the
fundamental polyhedron, we need the following:

1. Since the set {et}t∈T has to contain a basis of the space Kn+1, and since
ΓT has to contain a maximal spherical or Euclidean subgraph, we must
have |T | ≥ n. Moreover, tests suggest that good sizes of T are n + 1 ≤
|T | ≤ n + 3. For this step, we use the library Eigen to extract n + 1
linearly independent vectors from the list {et}t∈T . The second condition
is checked with CoxIter: the f -vector of the polyhedron associated to the
group ΓT is computed.

2. Using the library igraph, we can then find involutions of the graph GT .
Since the isometry η of the space should preserve the quadratic form, two
vertices of GT can be swapped only if the corresponding vectors have the
same norm. We use a colouring of the vertices to limit the number of false
candidates10.

10In fact, we assign to each vertex a weight equal to b(e, e)c, where e is its corresponding
vector.
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3. For each candidate η found in step 2., we check whether the corresponding
map indeed preserves the products of the vectors as well as the lattice
generated by the canonical basis or not. This last condition is satisfied
if and only if the matrix of η with respect to the canonical basis has
coefficients in OK . Again, computations are done using Eigen.

Once different transformations η are found (corresponding to different sub-
sets T ) we compute the space F of fixed points. If the dimension of F is zero,
or if F is spanned by a single vector of positive norm or by two perpendicular
vectors of positive norm, then the form is non-reflective. Otherwise, we continue
looking for other involutions.

6.6 Using AlVin

The goal of this section is to provide examples illustrating the use of AlVin.
We also explain how we can use it to help deciding whether a quadratic form is
reflective or not. If the algorithm terminates for a given quadratic form, then
the program displays the complete list of normal vectors, saves the Coxeter
graph in a file and, if possible, creates an image to help visualize the graph.

The parameters which can be given to the program AlVin are the following:

qf quadratic form (mandatory)
The coefficients of the diagonal quadratic form, separated by commas.

k field of definition (optional)
It can take the following values: "Q[sqrt d]", where d is a positive square-
free integer or "RC7", for the maximal real subfield of the cyclotomic field.
If omitted, AlVin assumes that the quadratic form is defined over the
rationals.

ip invariants of the polyhedron (optional)
If the algorithm terminates, the invariants of the polyhedron are computed
(Euler characteristic, f -vector, number of vertices at infinity, growth series
and growth rate).

iqf commensurability invariant of the quadratic form
If the quadratic form is defined over Q, the program will compute the
commensurability invariants of the group (see Section 4.3.1.3).

oformat output format
Can be used to write the normal vectors in another format (for example:
"-oformat mathematica"). Possible values: mathematica, latex, pari.

maxv maximal number of vectors (optional)
If specified, the program will stop after finding a specific number of vector,
regardless whether the polyhedron is of finite volume or not.

minv minimal number of vectors (optional)
If specified, the program will not test whether the polyhedron has finite
volume as long as the number of computed vectors is smaller than the
given value.
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nr non-reflectivity (optional)
If given, then AlVin will try to determine if the quadratic form is non-
reflective (see Section 6.6.5 for an example).

nrequations non-reflectivity (optional)
If given and if K = Q, AlVin will try to print the system of equations
which can be used to prove that the form is not reflective (see Section
6.2.6.1).

6.6.1 A first example over the rationals
As a first example, we apply the algorithm to the quadratic form 〈−2, 3, 1, 1, 1〉.
We call the program as follows:

./ alvin -qf -2,3,1,1,1

and the output is then the following:

Quadratic form (4 ,1): -2, 1, 1, 1, 3
Field of definition : Q

Vectors :
e1 = (0, -1, 1, 0, 0)
e2 = (0, 0, -1, 1, 0)
e3 = (0, 0, 0, -1, 0)
e4 = (0, 0, 0, 0, -1)
e5 = (1, 1, 0, 0, 1)
e6 = (1, 2, 0, 0, 0)
e7 = (1, 1, 1, 1, 0)
e8 = (3, 3, 3, 0, 1)

Algorithm ended

Graph written in the file:
../ output /4 -2 ,1 ,1 ,1 ,3. coxiter

Computation time: 0.00305064 s

The normal vectors of the 8 facets of the polyhedron are displayed. The
name of the file containing the Coxeter graph (which can be given to CoxIter)
is written. If the number of found vectors is smaller than 25, then an image
containing the Coxeter graph is created.

The group for this quadratic form is the same as the one associated to the
quadratic form 〈−6, 1, 1, 1, 1〉 (for the Coxeter graph, see Figure 6.4 page 144).

6.6.2 A cocompact group defined over Q[
√

2]

We consider now the quadratic form 〈−5− 4
√

2, 1, 1, 1, 1, 1〉 defined over Q[
√

2].
Recall that an integer basis for the ring OQ[

√
d] is given by {1, T}, with T =

√
d

if d ≡ 2, 3 mod 4, and with T = 1+
√
d

2 if d ≡ 1 mod 4. We call AlVin as follows
(the last parameter makes the invariants of the fundamental polyhedron to be
displayed):

./ alvin -k=Q[sqrt 2] -qf -5-4T,1,1,1,1,1 -ip
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The algorithm ends after finding the normal vectors of the 20 bounding hyper-
planes. The end of the output is then
---------------------------------
Information about the polyhedron :
---------------------------------
Euler characteristic : 0
f- vector : (96, 240, 228, 102, 20, 1)
Number of vertices at infinity : 0

Growth series :
f(x) = C(2 ,2 ,2 ,2 ,2 ,3 ,3 ,4 ,4 ,5 ,6 ,6 ,8 ,10 ,12) /(1 - 15 * x + 12 *

x^2 + 39 * x^4 + 3 * x^5 + 67 * x^6 + 27 * x^7 + 126 * x
^8 - 2 * x^9 + 152 * x^10 + 12 * x^11 + 185 * x^12 - 47 *

x^13 + 159 * x^14 - 77 * x^15 + 152 * x^16 - 152 * x^17
+ 77 * x^18 - 159 * x^19 + 47 * x^20 - 185 * x^21 - 12 *
x^22 - 152 * x^23 + 2 * x^24 - 126 * x^25 - 27 * x^26 -
67 * x^27 - 3 * x^28 - 39 * x^29 - 12 * x^31 + 15 * x^32
- x^33)

Growth rate: 14.137172610056932590629682183699363504
Perron number : yes
Pisot number : no
Salem number : no

Computation time: 1.10686 s

6.6.3 Quadratic forms over Q[cos 2π
7 ]

An integral basis of OQ[cos 2π
7 ] is λi = 2 cos 2π i

7 , i = 1, 2, 3. An element x of this
ring is given by specifying its three components into the basis λ1, λ2 and λ3 into
brackets, that is

x = [x1, x2, x3] := x1λ1 + x2λ2 + x3λ3, x1, x2, x3 ∈ Z.

For example, to execute the program with the quadratic form 〈−2 cos 2π
7 , 1,

−4 cos 2π
7 − 10 cos 4π

7 − 14 cos 6π
7 〉, we use

./ alvin -k=RC7 -qf [-1,0,0],1,[-2,-5,-7]

and the output is given by
Quadratic form (2 ,1): [-1,0,0], 1, [-2,-5,-7]
Field of definition : RC7

Vectors :
e1 = (0, -1, 0)
e2 = (0, 0, -1)
e3 = (1, [0,0,-1], 0)
e4 = ([0,-1,-2], [0,0,-1], [1 ,0 ,0])
e5 = ([-1,-2,-4], 0, [0,-1,-1])

Algorithm ended

Graph written in the file:
output /2 -[1 ,0 ,0] ,1 ,[ -2 , -5 , -7]. coxiter
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Computation time: 1.0383 s

The corresponding Coxeter graph is shown in Figure 6.3.

Figure 6.3 – Maximal reflection groups associated to the quadratic form
〈−2 cos 2π

7 , 1,−4 cos 2π
7 − 10 cos 4π

7 − 14 cos 6π
7 〉

6.6.4 Non-reflectivity of the form 〈−1, 1, . . . , 1, 3〉 for n = 11
Using AlVin, we see that the quadratic form 〈−1, 1, . . . , 1, 3〉 is reflective for
n ≤ 10. The corresponding polyhedra are different from the ones found by
McLeod for the form 〈−3, 1 . . . , 1〉 but they are commensurable when n = 3, 5, 7
and 9 (see Section 4.4.2). The ranks of the groups Γnf are the following:

n 2 3 4 5 6 7 8 9 10
rank 4 6 7 8 9 10 12 13 16

For n = 11, the associated polyhedron is not of finite volume when the first
25 vectors are found, which indicates that the form may not be reflective. We
launch again the program with the following command:

./alvin -qf -1,3,1,1,1,1,1,1,1,1,1,1 -maxv 14 -nrequations

The parameter "-maxv 14" makes the program stop after the first 14 vectors
while the "-nrequations" option specifies that AlVin will try to find a Euclidean
subgraph which cannot be extended and derive the system of equations from
it (see Proposition 6.3.1 and Section 6.2.6.1). At the end of the computations,
the program outputs two systems of equations. Unfortunately, both of them
have solutions, which means that we cannot decide about the non-reflectivity of
the quadratic form. We start again but with the first 15 vectors and this time,
among the three systems of equations, one of them has no solution. Therefore,
the form is not reflective. It follows that it is not reflective for every n ≥ 11 (see
Proposition 3.9.5).

Remark 6.6.1
For n = 3, the group Γ corresponding to the quadratic form 〈−1, 1, 1, 3〉 is the
following:
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Using [Kel91, Theorem 14.6], we can compute

covol Γ = L
(π

6

)
+ 1

2 L
( π

12

)
+ 1

2 L
(

7π
12

)
' 0.634338504006034,

where L is the Lobachevsky function, defined by

L(x) = −
∫ x

0
log |2 sin t|dt, x ∈ R.

According to Scharlau’s classification, our group Γ is a subgroup of one of the
following groups in his list: Γ1, Γ6, Γ27, Γ38, Γ44, Γ47, Γ48 (see [Sch89, p. 21]).
The group Γ1, corresponds to the group of units of the form 〈−3, 1, 1, 1〉 as
shown by McLeod. It preserves a lattice of the same discriminant as the lattice
preserved by Γ, which suggest that Γ ≤ Γ1. Moreover, using [RT13], we see that

covol Γ1 = 5
√

3
64 · L(2,−3) ' 0.105723084010027,

where L(s,D) is the Dirichlet L-series given by

L(s, d) =
∞∑
k=1

(
D

k

)
k−s, s > 1,

where
(
D
k

)
is a Kronecker symbol. Numerical computations show that the

quotient covol Γ/ covol Γ1 is equal to 6, up to machine precision. This strongly
indicates that Γ is a subgroup of index 6 in Γ1.

6.6.5 Non-reflectivity of the form 〈−1, 1, 1, 13〉
The quadratic form 〈−1, 1, 13〉 is reflective and the rank of the associated reflec-
tion group is 8. When running the algorithm with 〈−1, 1, 1, 13〉 we see that the
components of the vectors grow quickly and that more of 20 vectors are com-
puted without the polyhedron

⋂
iH
−
ei becoming of finite volume. The method

used for the example of Section 6.6.4 does not seem to work here: for a few
numbers of vectors, we see that among the Euclidean subgraphs, there is none
which cannot we extended to a Euclidean graph of rank 2. We will thus see
that the form is not reflective by showing that the fundamental polyhedron P
has an infinite number of symmetries.

We again call the program as follows:
./ alvin -qf -1,1,1,13 -maxv 15 -nr [5 ,6]

The option "-maxv 15" is to limit the search to the first 15 vectors. The last
option indicates that AlVin will try to find integral symmetries of the funda-
mental polyhedron by looking at involutions of subgraphs of sizes 5 and 6 (see
Section 6.2.6.2). The output is then the following:
Quadratic form (3 ,1): -1, 1, 1, 13
Field of definition : Q

Vectors :
e1 = (0, -1, 1, 0)
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e2 = (0, 0, -1, 0)
e3 = (0, 0, 0, -1)
e4 = (1, 1, 1, 0)
e5 = (4, 2, 1, 1)
e6 = (13, 13, 0, 1)
e7 = (6, 5, 0, 1)
e8 = (11, 2, 1, 3)
e9 = (18, 1, 0, 5)
e10 = (52, 13, 0, 14)
e11 = (91, 13, 0, 25)
e12 = (34, 25, 8, 6)
e13 = (143 , 104, 39, 25)
e14 = (72, 55, 17, 12)
e15 = (312 , 234, 78, 53)

The algorithm did not terminate ; the polyhedron may be of
infinite volume

Checking if the form is non - reflective ...
The form is non - reflective

If we add the parameter "-debug" to get more information, we get at the end
the following additional data:
Checking if the form is non - reflective ...

The form is non - reflective
List of used involutions :

e2 <-> e4 , e3 <-> e6 , e5
e1 <-> e5 , e2 , e3 <-> e10

It means that the two given permutations of vectors extend to two integral
symmetries of the polyhedron which don’t have common fixed points inside H3.
Hence, the form is non-reflective.

Remark 6.6.2
When trying to exploit this method to show that a quadratic form is not reflec-
tive, there are two parameters:

1. the bounds for the size of the subgraphs;

2. the number "-maxv" of vectors to compute.

It is advised to start with small parameters to avoid long computations and
then gradually increase them. Usually, the bounds for the size of the subgraphs
can be taken to be [n+ 1, n+ 2], [n+ 1, n+ 3] or [n+ 1, n+ 4]. If AlVin cannot
conclude (this often happens when the roots can have many possible norms) but
the quadratic form is thought to be non-reflective, one can increase the number
of "maxv" vectors by small steps.

6.6.6 Running time for some well-known examples
The following table gives some typical running time of AlVin. In some cases, a
large part of the computation time is allocated to check that the final polyhedron
of the sequence has indeed finite volume.
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n K form time (s)

18 Q 〈−1, 1, . . . , 1〉 170

14 Q 〈−2, 1, . . . , 1〉 0.3

13 Q 〈−3, 1, . . . , 1〉 0.2

6 Q[
√

2] 〈−1−Θ2, 1, . . . , 1〉 16.8

7 Q[
√

5] −Θ5, 1, . . . , 1 0.1

4 Q
[
cos 2π

7
]
〈−2 cos 2π

7 , 1, 1, 1, 1〉 9.5

6.7 Program testing
Consider the quadratic form fnα = 〈−α, 1, . . . , 1〉 of signature (n, 1). We tested
our program for the following quadratic form:

α n Reference
1 2→ 19 [Vin72],[KV78]

2 2→ 14 [Vin72]

3 2→ 13 [Mcl11]

5 2→ 8 [Mar12]
1+
√

5
2 2→ 7 [Bug84]

1 +
√

2 2→ 6 [Bug90]

2 cos 2π
7 2→ 4 [Bug92]

The two-dimensional forms without square factors of [Gro08] were also com-
pared. This corresponds to the following quadratic forms:

• 〈−1, 1, α〉 for α ∈ {1, 2, 3, 5, 6, 7, 10, 11, 13, 14};

• 〈−1, α, α〉 for α ∈ {1, 2, 3, 5, 6, 7, 10, 11}.

6.8 Applications of the algorithm
In this section, we present numerous applications of the Vinberg algorithm,
including new polyhedra and a classification of diagonal quadratic forms of
signature (3, 1) with small coefficients. The applications are distributed in three
parts, according to the defining field of their quadratic form.
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6.8.1 Rational integers
6.8.1.1 Scharlau’s quadratic forms

In [Sch89], Scharlau classified the 49 reflective quadratic forms f of signature
(3, 1) such that the group Γf are non-cocompact. For some of these quadratic
forms, we were able to find a diagonal quadratic form with the same group of
units. We list them in the following table, together with some properties of the
associated Coxeter polyhedra:

• "No." is the number in Scharlau’s list

• "v, e, f" corresponds to the number of vertices, edges and facets.

• "cu." (cusp) denotes the number of vertices at infinity.

• The last columns gives the numbers of faces with 3 vertices, 4 vertices,
etc. For example, "4, 1" indicate that the associated polyhedron has 4
triangular facets and 1 facet which is a 4-gon.

No. Quad. form δ v, e, f cu. facets with x vertices

1 〈−3, 1, 1, 1〉 −3 4, 6, 4 1 4

2 〈−1, 1, 1, 1〉 −1 4, 6, 4 1 4

4 〈−1, 1, 1, 2〉 −2 5, 8, 5 1 4, 1

11 〈−1, 1, 1, 5〉 −5 7, 11, 6 1 2, 4

12 〈−1, 1, 2, 3〉 −6 7, 11, 6 1 2, 4

13 〈−1, 1, 1, 6〉 −6 7, 11, 6 1 3, 2, 1

14 〈−1, 1, 1, 7〉 −7 10, 16, 8 2 4, 0, 4

16 〈−1, 1, 3, 3〉 −1 6, 9, 5 1 2, 3

18 〈−1, 1, 2, 5〉 −10 12, 19, 9 2 4, 2, 0, 3

19 〈−1, 1, 1, 10〉 −10 9, 14, 7 1 1, 5, 1

20 〈−11, 1, 1, 1〉 −11 9, 14, 7 1 2, 3, 2

22 〈−1, 1, 1, 14〉 −14 12, 19, 9 2 3, 2, 3, 1

23 〈−1, 1, 1, 15〉 −15 14, 22, 10 2 2, 4, 2, 2

25 〈−1, 1, 1, 17〉 −17 19, 30, 13 3 6, 2, 0, 2, 2, 1

26 〈−1, 1, 3, 6〉 −2 10, 16, 8 2 2, 4, 2

29 〈−21, 1, 1, 1〉 −21 11, 17, 8 1 2, 3, 2, 1

30 〈−1, 1, 3, 7〉 −21 17, 26, 11 1 0, 4, 6, 1

31 〈−1, 1, 5, 5〉 −1 8, 12, 6 2 0, 6

32 〈−1, 1, 2, 15〉 −30 17, 26, 11 1 3, 2, 3, 2, 0, 1
Continued on next page
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No. Quad. form δ v, e, f cu. facets with x vertices

33 〈−1, 1, 1, 30〉 −30 22, 34, 14 2 2, 4, 2, 6

34 〈−1, 1, 5, 6〉 −30 20, 31, 13 2 2, 6, 2, 0, 2, 1

35 〈−1, 1, 3, 10〉 −30 22, 34, 14 2 0, 8, 2, 2, 2

37 〈−35, 1, 1, 1〉 −35 17, 26, 11 1 0, 4, 6, 1

39 〈−1, 1, 6, 7〉 −42 30, 46, 18 2 4, 2, 6, 0, 6

40 〈−1, 1, 3, 14〉 −42 30, 46, 18 2 0, 6, 8, 1, 2, 1

41 〈−1, 1, 3, 15〉 −5 23, 36, 15 3 2, 6, 0, 7

42 〈−1, 1, 7, 7〉 −1 14, 21, 9 2 0, 3, 6

43 〈−1, 1, 5, 10〉 −2 20, 31, 13 2 0, 8, 0, 5

45 〈−1, 1, 6, 15〉 −10 34, 52, 20 2 4, 2, 6, 6, 0, 0, 2

46 〈−1, 1, 3, 30〉 −10 34, 52, 20 2 0, 10, 4, 3, 2, 0, 0, 0, 0, 1

49 〈−1, 1, 15, 15〉 −1 32, 48, 18 4 0, 4, 4, 10

6.8.1.2 Classification of diagonal quadratic forms of signature (3, 1)
with small coefficients

We consider diagonal quadratic forms 〈−α0, α1, α2, α3〉 where αi ∈ {1, 2, 3, 5,
6, 7, 10}. Up to the ordering of the coefficients α1, α2 and α3, there are 543
of them. For each such quadratic form, we test whether it is reflective or not
and we classify the associated maximal subgroup generated by reflections up to
commensurability and isomorphism.

Among the 543 forms, 248 of them are non-reflective and 295 are reflective.
The latter ones give rise to groups which fall into 20 commensurability classes
and 49 isomorphism classes. In the tables below, we omit the form brackets 〈 〉
for brevity.

Non-reflective forms The 248 non-reflective are the following:

−10, 1, 1, 7 −10, 1, 2, 5 −10, 1, 2, 7 −10, 1, 3, 6 −10, 1, 3, 7
−10, 1, 5, 7 −10, 1, 6, 7 −10, 1, 6, 10 −10, 1, 7, 7 −10, 1, 7, 10
−10, 2, 2, 7 −10, 2, 3, 7 −10, 2, 3, 10 −10, 2, 5, 7 −10, 2, 6, 7
−10, 2, 7, 7 −10, 2, 7, 10 −10, 3, 3, 7 −10, 3, 3, 10 −10, 3, 5, 6
−10, 3, 5, 7 −10, 3, 6, 7 −10, 3, 6, 10 −10, 3, 7, 7 −10, 3, 7, 10
−10, 5, 5, 7 −10, 5, 6, 7 −10, 5, 7, 7 −10, 5, 7, 10 −10, 6, 6, 7
−10, 6, 7, 7 −10, 6, 7, 10 −10, 7, 7, 7 −10, 7, 7, 10 −10, 7, 10, 10
−7, 1, 1, 2 −7, 1, 1, 3 −7, 1, 1, 5 −7, 1, 1, 6 −7, 1, 1, 10

Continued on next page
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−7, 1, 2, 2 −7, 1, 2, 3 −7, 1, 2, 5 −7, 1, 2, 6 −7, 1, 2, 7
−7, 1, 2, 10 −7, 1, 3, 3 −7, 1, 3, 5 −7, 1, 3, 6 −7, 1, 3, 7
−7, 1, 3, 10 −7, 1, 5, 5 −7, 1, 5, 6 −7, 1, 5, 7 −7, 1, 5, 10
−7, 1, 6, 6 −7, 1, 6, 7 −7, 1, 6, 10 −7, 1, 7, 10 −7, 1, 10, 10
−7, 2, 2, 2 −7, 2, 2, 3 −7, 2, 2, 5 −7, 2, 2, 6 −7, 2, 2, 7
−7, 2, 2, 10 −7, 2, 3, 5 −7, 2, 3, 6 −7, 2, 3, 7 −7, 2, 3, 10
−7, 2, 5, 5 −7, 2, 5, 6 −7, 2, 5, 7 −7, 2, 5, 10 −7, 2, 6, 7
−7, 2, 6, 10 −7, 2, 7, 10 −7, 2, 10, 10 −7, 3, 3, 5 −7, 3, 3, 7
−7, 3, 3, 10 −7, 3, 5, 5 −7, 3, 5, 6 −7, 3, 5, 7 −7, 3, 5, 10
−7, 3, 6, 6 −7, 3, 6, 7 −7, 3, 6, 10 −7, 3, 7, 7 −7, 3, 7, 10
−7, 3, 10, 10 −7, 5, 5, 6 −7, 5, 5, 7 −7, 5, 5, 10 −7, 5, 6, 6
−7, 5, 6, 7 −7, 5, 6, 10 −7, 5, 7, 7 −7, 5, 7, 10 −7, 5, 10, 10
−7, 6, 6, 7 −7, 6, 6, 10 −7, 6, 7, 7 −7, 6, 7, 10 −7, 6, 10, 10
−7, 7, 7, 10 −7, 7, 10, 10 −7, 10, 10, 10 −6, 1, 2, 7 −6, 1, 5, 5
−6, 1, 5, 6 −6, 1, 5, 7 −6, 1, 6, 7 −6, 1, 7, 7 −6, 1, 7, 10
−6, 1, 10, 10 −6, 2, 3, 7 −6, 2, 5, 7 −6, 2, 6, 7 −6, 2, 7, 7
−6, 2, 7, 10 −6, 3, 3, 7 −6, 3, 5, 7 −6, 3, 5, 10 −6, 3, 6, 7
−6, 3, 7, 7 −6, 3, 7, 10 −6, 5, 5, 6 −6, 5, 5, 7 −6, 5, 6, 7
−6, 5, 6, 10 −6, 5, 7, 7 −6, 5, 7, 10 −6, 6, 6, 7 −6, 6, 7, 7
−6, 6, 7, 10 −6, 7, 7, 10 −6, 7, 10, 10 −5, 1, 1, 7 −5, 1, 2, 7
−5, 1, 2, 10 −5, 1, 3, 7 −5, 1, 5, 6 −5, 1, 5, 7 −5, 1, 6, 7
−5, 1, 7, 7 −5, 1, 7, 10 −5, 2, 2, 7 −5, 2, 3, 5 −5, 2, 3, 6
−5, 2, 3, 7 −5, 2, 5, 7 −5, 2, 6, 7 −5, 2, 7, 7 −5, 2, 7, 10
−5, 3, 5, 6 −5, 3, 5, 7 −5, 3, 6, 7 −5, 3, 6, 10 −5, 3, 7, 7
−5, 3, 7, 10 −5, 5, 5, 7 −5, 5, 6, 6 −5, 5, 6, 7 −5, 5, 7, 7
−5, 5, 7, 10 −5, 6, 6, 7 −5, 6, 7, 7 −5, 6, 7, 10 −5, 7, 7, 10
−5, 7, 10, 10 −3, 1, 3, 7 −3, 1, 5, 7 −3, 1, 7, 7 −3, 1, 7, 10
−3, 2, 2, 7 −3, 2, 3, 7 −3, 2, 3, 10 −3, 2, 5, 5 −3, 2, 5, 7
−3, 2, 6, 7 −3, 2, 7, 7 −3, 2, 7, 10 −3, 2, 10, 10 −3, 3, 3, 7
−3, 3, 5, 7 −3, 3, 5, 10 −3, 3, 6, 7 −3, 3, 7, 7 −3, 3, 7, 10
−3, 3, 10, 10 −3, 5, 5, 7 −3, 5, 6, 7 −3, 5, 6, 10 −3, 5, 7, 7
−3, 5, 7, 10 −3, 6, 6, 7 −3, 6, 7, 7 −3, 6, 7, 10 −3, 7, 7, 10
−3, 7, 10, 10 −2, 1, 5, 7 −2, 1, 5, 10 −2, 1, 6, 7 −2, 1, 7, 7
−2, 1, 7, 10 −2, 2, 3, 7 −2, 2, 5, 7 −2, 2, 7, 7 −2, 2, 7, 10
−2, 3, 5, 5 −2, 3, 5, 6 −2, 3, 5, 7 −2, 3, 6, 7 −2, 3, 7, 7
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−2, 3, 7, 10 −2, 3, 10, 10 −2, 5, 5, 7 −2, 5, 6, 7 −2, 5, 7, 7
−2, 5, 7, 10 −2, 6, 7, 7 −2, 6, 7, 10 −2, 7, 7, 7 −2, 7, 7, 10
−2, 7, 10, 10 −1, 1, 5, 7 −1, 1, 7, 10 −1, 2, 5, 7 −1, 2, 5, 10
−1, 2, 6, 7 −1, 2, 7, 7 −1, 2, 7, 10 −1, 3, 5, 7 −1, 3, 6, 7
−1, 3, 6, 10 −1, 3, 7, 10 −1, 5, 5, 6 −1, 5, 5, 7 −1, 5, 6, 7
−1, 5, 7, 7 −1, 5, 7, 10 −1, 6, 6, 7 −1, 6, 7, 7 −1, 6, 7, 10
−1, 6, 10, 10 −1, 7, 7, 10 −1, 7, 10, 10

Reflective forms The reflective forms are presented by their commensurabil-
ity invariants and isomorphism classes. The rank of the groups ranges between
4 and 22. The following table presents the number of groups with a given rank.

4 5 6 7 8 9 10 11 13 14 15 18 19 20 22
5 8 58 12 15 30 19 14 22 48 1 19 8 20 16

The classification of the reflective forms is presented in the following tables.

{Q,−1, {}} −1, 1, 1, 1
−2, 1, 1, 2 −1, 1, 2, 2
−3, 1, 1, 3 −1, 1, 3, 3
−5, 1, 1, 5 −1, 1, 5, 5
−7, 1, 1, 7 −1, 1, 7, 7
−5, 3, 3, 5 −3, 3, 5, 5
−10, 1, 1, 10 −5, 2, 2, 5 −2, 2, 5, 5 −1, 1, 10, 10
−6, 1, 1, 6 −6, 1, 2, 3 −3, 1, 2, 6 −3, 2, 2, 3
−2, 1, 3, 6 −2, 2, 3, 3 −1, 1, 6, 6 −1, 2, 3, 6

{Q,−10, {}} −10, 1, 1, 1 −10, 1, 10, 10 −5, 2, 2, 2 −5, 2, 5, 5
−2, 2, 2, 5 −2, 5, 5, 5 −1, 1, 1, 10 −1, 10, 10, 10
−10, 1, 3, 3 −10, 2, 3, 6 −6, 1, 6, 10 −5, 1, 3, 6
−5, 2, 6, 6 −3, 2, 3, 5 −2, 3, 6, 10 −2, 5, 6, 6
−1, 3, 3, 10 −1, 3, 5, 6
−10, 1, 6, 6 −6, 1, 3, 5 −6, 2, 3, 10 −6, 2, 5, 6
−5, 2, 3, 3 −3, 1, 3, 10 −3, 1, 5, 6 −3, 2, 6, 10
−2, 3, 3, 5 −1, 6, 6, 10
−10, 1, 2, 2 −10, 1, 5, 5 −10, 2, 5, 10 −5, 1, 1, 2
−5, 1, 5, 10 −5, 2, 10, 10 −2, 1, 1, 5 −2, 1, 2, 10

Continued on next page

140



−2, 5, 10, 10 −1, 1, 2, 5 −1, 2, 2, 10 −1, 5, 5, 10

{Q,−14, {3}} −7, 2, 3, 3 −7, 2, 6, 6 −6, 1, 3, 7 −3, 1, 6, 7
−2, 3, 3, 7 −2, 6, 6, 7

{Q,−14, {}} −7, 2, 7, 7 −2, 1, 1, 7 −2, 2, 2, 7 −1, 1, 2, 7

{Q,−15, {2}} −3, 1, 1, 5
−5, 3, 3, 3 −3, 5, 5, 5
−10, 1, 2, 3 −10, 3, 3, 6 −6, 1, 1, 10 −6, 5, 5, 10
−5, 1, 2, 6 −5, 3, 6, 6 −3, 2, 2, 5 −3, 5, 10, 10
−2, 1, 3, 10 −2, 1, 5, 6 −1, 2, 3, 10 −1, 2, 5, 6

{Q,−15, {}} −10, 1, 1, 6 −10, 3, 5, 10 −10, 5, 5, 6 −6, 1, 2, 5
−6, 3, 3, 10 −6, 3, 5, 6 −5, 1, 1, 3 −5, 2, 2, 3
−5, 3, 5, 5 −5, 3, 10, 10 −5, 5, 6, 10 −3, 1, 2, 10
−3, 3, 3, 5 −3, 3, 6, 10 −3, 5, 6, 6 −2, 2, 3, 5
−1, 1, 3, 5 −1, 1, 6, 10

{Q,−2, {3}} −6, 1, 1, 3 −6, 2, 2, 3 −3, 1, 1, 6 −3, 2, 2, 6
−2, 1, 3, 3 −2, 1, 6, 6 −1, 2, 3, 3 −1, 2, 6, 6
−10, 3, 3, 5 −10, 5, 6, 6 −6, 3, 5, 5 −6, 3, 10, 10
−5, 3, 3, 10 −5, 6, 6, 10 −3, 5, 5, 6 −3, 6, 10, 10

{Q,−2, {}} −2, 1, 1, 1 −2, 1, 2, 2 −1, 1, 1, 2 −1, 2, 2, 2
−6, 1, 2, 6 −3, 1, 2, 3 −2, 2, 3, 6 −1, 1, 3, 6
−10, 1, 1, 5 −10, 1, 2, 10 −10, 2, 2, 5 −5, 1, 1, 10
−5, 1, 2, 5 −5, 2, 2, 10 −2, 1, 5, 5 −2, 1, 10, 10
−2, 2, 5, 10 −1, 1, 5, 10 −1, 2, 5, 5 −1, 2, 10, 10

{Q,−21, {}} −1, 1, 3, 7
−7, 3, 3, 3 −3, 1, 1, 7 −3, 7, 7, 7

{Q,−3, {7}} −1, 3, 7, 7

{Q,−3, {}} −3, 1, 5, 5
−3, 1, 1, 1 −1, 3, 3, 3
−6, 1, 1, 2 −6, 1, 3, 6 −6, 2, 3, 3 −3, 1, 2, 2
−3, 1, 3, 3 −3, 1, 6, 6 −3, 2, 3, 6 −2, 1, 1, 6
−2, 1, 2, 3 −2, 3, 3, 6 −1, 1, 1, 3 −1, 1, 2, 6
−1, 2, 2, 3 −1, 3, 6, 6
−10, 1, 3, 10 −10, 1, 5, 6 −10, 2, 3, 5 −6, 1, 5, 10
−6, 2, 5, 5 −5, 1, 3, 5 −5, 1, 6, 10 −5, 2, 3, 10
−5, 2, 5, 6 −3, 1, 10, 10 −3, 2, 5, 10 −2, 3, 5, 10

Continued on next page
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−2, 5, 5, 6 −1, 3, 5, 5 −1, 3, 10, 10 −1, 5, 6, 10

{Q,−30, {}} −10, 1, 1, 3 −10, 3, 6, 6 −6, 5, 10, 10 −5, 2, 2, 6
−5, 3, 3, 6 −3, 5, 5, 10 −2, 2, 5, 6 −1, 1, 3, 10
−10, 2, 2, 3 −10, 3, 3, 3 −6, 1, 2, 10 −6, 5, 5, 5
−5, 1, 1, 6 −5, 6, 6, 6 −3, 1, 2, 5 −3, 10, 10, 10
−2, 2, 3, 10 −1, 1, 5, 6
−10, 3, 5, 5 −10, 5, 6, 10 −6, 2, 2, 5 −6, 3, 3, 5
−6, 3, 6, 10 −5, 3, 5, 10 −5, 6, 10, 10 −3, 1, 1, 10
−3, 3, 5, 6 −3, 6, 6, 10
−10, 1, 2, 6 −10, 3, 10, 10 −6, 1, 1, 5 −6, 5, 6, 6
−5, 1, 2, 3 −5, 5, 5, 6 −3, 2, 2, 10 −3, 3, 3, 10
−2, 1, 3, 5 −2, 1, 6, 10 −1, 2, 3, 5 −1, 2, 6, 10

{Q,−35, {3}} −5, 3, 3, 7

{Q,−35, {}} −7, 5, 5, 5 −5, 7, 7, 7

{Q,−42, {}} −7, 3, 3, 6 −6, 2, 2, 7 −3, 1, 2, 7 −1, 1, 6, 7
−7, 6, 6, 6 −6, 1, 1, 7 −6, 7, 7, 7 −2, 1, 3, 7
−2, 2, 6, 7 −1, 2, 3, 7

{Q,−5, {3}} −5, 1, 3, 3 −1, 3, 3, 5
−10, 2, 3, 3 −6, 1, 3, 10 −6, 2, 3, 5 −5, 1, 6, 6
−3, 1, 6, 10 −3, 2, 5, 6 −2, 3, 3, 10 −1, 5, 6, 6

{Q,−5, {}} −3, 1, 3, 5
−5, 1, 1, 1 −5, 1, 5, 5 −1, 1, 1, 5 −1, 5, 5, 5
−10, 1, 1, 2 −10, 1, 5, 10 −10, 2, 5, 5 −5, 1, 2, 2
−5, 1, 10, 10 −5, 2, 5, 10 −2, 1, 1, 10 −2, 1, 2, 5
−2, 5, 5, 10 −1, 1, 2, 10 −1, 2, 2, 5 −1, 5, 10, 10

{Q,−6, {}} −6, 1, 2, 2 −6, 1, 6, 6 −3, 1, 1, 2 −3, 2, 3, 3
−2, 2, 2, 3 −2, 3, 6, 6 −1, 1, 1, 6 −1, 3, 3, 6
−10, 1, 3, 5 −10, 2, 5, 6 −6, 2, 5, 10 −5, 1, 3, 10
−5, 2, 6, 10 −3, 1, 5, 10 −2, 5, 6, 10 −1, 3, 5, 10
−6, 1, 1, 1 −6, 1, 3, 3 −6, 2, 3, 6 −3, 1, 3, 6
−3, 2, 2, 2 −3, 2, 6, 6 −2, 1, 1, 3 −2, 1, 2, 6
−2, 3, 3, 3 −1, 1, 2, 3 −1, 2, 2, 6 −1, 6, 6, 6

{Q,−7, {2}} −1, 3, 3, 7
−7, 1, 1, 1 −1, 7, 7, 7

Continued on next page
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{Q,−7, {}} −7, 1, 7, 7 −2, 1, 2, 7 −1, 1, 1, 7 −1, 2, 2, 7

6.8.1.3 Reflectivity of the forms 〈−d, 1, . . . , 1〉 and 〈−1, d, 1, . . . , 1〉

Using the program AlVin, we investigate the reflectivity of the two quadratic
forms 〈−d, 1, . . . , 1〉 and 〈−1, d, 1, . . . , 1〉, where 1 ≤ d ≤ 30 is a square-free
integer. The first collection of forms was already studied by McLeod in [Mcl11]
but a systematic study of the quadratic forms 〈−1, d, 1, . . . , 1〉 is new.

The table below provides the maximal dimension nmax (see Proposition
3.9.5) for which each of the quadratic form is reflective. The non-reflective
forms marked with a ∗ have been tested with the method presented in Section
6.2.6.1. For the other forms, we used the method explained in Section 6.2.6.2
and the involutions used are given in Appendix A.3. A sign "?" in the column
concerning the non-reflectivity indicates that we were not able to prove the non-
reflectivity. The columns labelled "new" indicate which quadratic forms lead to
previously unknown polyhedra.

d
〈−d, 1, . . . , 1〉 〈−1, d, 1, . . . , 1〉

nmax non-ref new nmax non-ref new
1 19 20∗ 19 20∗
2 14 15∗ 14 15∗
3 13 14∗ 10 11∗ 3− 10
5 8 9∗ 8 9∗
6 9 10∗ 4− 9 10 11∗ 4− 10
7 3 4∗ 6 7∗ 3− 6
10 6 7∗ 3− 6 6 7∗ 3− 6
11 4 5∗ 2 3
13 2 3 2 3
14 2 3 5 ? 3− 5
15 5 6∗ 5 ? 3− 5
17 3 4 3 4
19 2 3 − 2
21 4 5 2 3
22 2 3 2 3
23 2 3 − 2
26 2 3 2 3
29 − 2 − 2
30 3 ? 3 3 4 3
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6.8.1.4 Some new Coxeter polyhedra

Some new Coxeter polyhedra were found by studying the quadratic forms 〈−d,
1, . . . , 1〉 and 〈−1, d, 1, . . . , 1〉 and when doing the classification of the quadratic
forms of signature (n, 1) with small coefficients. We present now some other of
these polyhedra.

The form 〈−6, 1, . . . , 1〉 The form 〈−6, 1, . . . , 1〉 is reflective for 3 ≤ n ≤ 9
and not reflective for n = 10. These new polyhedra, which have a symmetry
group of order 2 when n ≥ 4, are presented in figures 6.4, 6.5 and 6.6. The
f -vectors of the polyhedra are the following:

n f -vector

2 (4, 4, 1)

3 (7, 11, 6, 1)

4 (13, 28, 23, 8, 1)

5 (19, 51, 57, 32, 9, 1)

6 (25, 80, 114, 90, 41, 10, 1)

7 (36, 135, 235, 240, 152, 58, 12, 1)

8 (46, 200, 411, 511, 413, 217, 71, 13, 1)

Figure 6.4 – Maximal reflection groups associated to the quadratic form
〈−6, 1, . . . , 1〉 for n = 3, 4, 5, 6

Figure 6.5 – Maximal reflection groups associated to the quadratic form
〈−6, 1, . . . , 1〉 for n = 7, 8
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Figure 6.6 – Maximal reflection group associated to the quadratic form 〈−6, 1,
1, . . . , 1〉 of signature (9, 1)

6.8.1.5 Cocompact groups with k = Q

The following quadratic forms are reflective and anisotropic, which implies that
the associated polyhedra are compact (see Remark 3.9.2). For each form, we
give the p-adic field Qp over which the form is anisotropic, together with the
f -vector of the associated Coxeter polyhedron in H3.

Quad. form anis. over f − vector

〈−1, 2, 3, 3〉 Q3 (8, 12, 6, 1)

〈−1, 2, 6, 6〉 Q3 (8, 12, 6, 1)

〈−7, 1, 1, 1〉 Q2 (6, 9, 5, 1)

〈−1, 3, 3, 5〉 Q3 (10, 15, 7, 1)

〈−15, 1, 1, 1〉 Q2 (8, 12, 6, 1)

〈−6, 2, 2, 3〉 Q3 (8, 12, 6, 1)

6.8.1.6 About the combinatorics

For a reflective quadratic form, it seems impossible to predict the f -vector f(P )
of the associated Coxeter polyhedron P ⊂ Hn, or even the rank of the group
Γf , which can be big when compared with the dimension n, as shown in Table
6.7.

6.8.1.7 Errors in literature

As mentioned above, Lemma 3.1.5 of [Mcl13] is true only if d is prime. This
leads in particular to incorrect groups when d = 6, 15, 30, 33, 39. Moreover, the
form 〈−d, 1, . . . , 1〉 is reflective at least until n = 6 when d = 6 and is reflective
exactly when n ≤ 6 for d = 10 (compare to [Mcl13, Table 3.1]).
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n Quad. form cusps invariant f(P )

3 〈−1, 2, 2, 3〉 1 {Q,−3, {}} (7, 11, 6, 1)

4 〈−1, 2, 2, 3, 3〉 2 {Q, {3,∞}} (18, 38, 29, 9, 1)

5 〈−1, 2, 2, 3, 3, 3〉 10 {Q, 3, {}} (66, 188, 193, 85, 16, 1)

6 〈−1, 2, 2, 3, 3, 3, 3〉 57 {Q, {2,∞}} (653, 2286, 2896, 1660, 444,
47, 1)

7 〈−1, 2, 2, 3, 3, 3, 3, 3〉 328 {Q,−3, {}} (4536, 19136, 29816, 22364,
8684, 1654, 120, 1)

Table 6.7 – The forms 〈−1, 2, 2, 3, . . . , 3〉

6.8.2 Maximal real subfield of the 7-cyclotomic field
Unfortunately, it seems that our implementation of the algorithm for the field
K = Q[cos 2π

7 ] does not lead to new polyhedra in dimensions above 3. One
of the reason is that our method for solving the norm equation is not suitable
when the degree of the number field increases.

We give here two quadratic forms of signature (2, 1) which are reflective
(recall that the integers between the brackets give the decomposition of the
element in the standard Z-basis, as indicated in Section 6.5.3):

• 〈[−1, 0, 0], 1, [−2,−4,−4]〉

• 〈[−1, 0, 0], 1, [−2,−5,−7]〉

6.8.3 Quadratic integers

6.8.3.1 Some reflective forms

We present some reflective quadratic forms over the first quadratic fields. It
follows from equation (6.2) page 112 that the number of possibilities for the
norm (e, e) of a root grows exponentially with the number of prime factors
which divide one of the factor of the quadratic form. Therefore, we consider
only quadratic forms with a few prime factors. As above, we denote by fα the
quadratic form 〈−α, 1, . . . , 1〉.

In what follows, we denote by Θd the generator of the ring of integers of
Q[
√
d], that is, Θd =

√
d if d ≡ 2, 3 mod 4 and Θd = 1+

√
d

2 if d ≡ 1 mod 4.

Over Q[
√

2] The following quadratic forms are reflective:

• 〈−Θ2, 3 + Θ2, 1, 1〉

• 〈−Θ2, 2 + Θ2, 1, 1, 1, 1〉

• 〈1− 2Θ2, 1, 1, 1, 1〉

• 〈1− 2Θ2, 3 + Θ2, 1〉
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Over Q[
√

5] The quadratic form 〈−Θ5, 2+Θ5, 1, . . . , 1〉 is reflective if and only
if n ≤ 5. In the following table, we present the commensurability invariants of
this quadratic form together with the ones of the form 〈−Θ5, 1, . . . , 1〉. Note
that since 1 + Θ5 is a square in Q[

√
5], then the invariants are the same and the

groups are commensurable.

n 〈−Θ5, 2 + Θ5, 1, . . . , 1〉 〈−Θ5, 1, . . . , 1〉

2 Q[
√

5], {2} Q[
√

5], {
√

5}

3 Q[
√

5],−Θ5, ∅ Q[
√

5],−Θ5(1 + Θ5), ∅

4 Q[
√

5], ∅ Q[
√

5], {2,
√

5}

5 Q[
√

5],Θ5, ∅ Q[
√

5],Θ5(1 + Θ5), ∅

6.8.3.2 Quadratic Salem numbers

In [ERT15], Emery, Ratcliffe and Tschantz show that for every Salem number
λ and every positive integer n, there exists an arithmetic group of the simplest
type Γ < IsomHn containing an hyperbolic element whose translation length is
equal to lnλ. In this setting, the group Γ is defined over Q[λ+λ−1]. Moreover,
they provide an interesting way to create admissible quadratic forms over a
totally real number field K:

• Since K is a totally real number field, there exists a Pisot number α such
that K = Q[α].

• The solution of the equation x + x−1 = 2α which is bigger than 1 is a
Salem number λ.

• The quadratic form fα = 〈−(λ− λ−1)2, 1 . . . , 1〉 defined over K is admis-
sible.

In the next table, we present the reflectivity of the form fα for small qua-
dratic Pisot numbers α. It turns out that among the groups of units of these
quadratic forms, we find the groups of Bugaenko (see [Bug84] and [Bug90]) as
well as some new compact polyhedra in dimensions 3, 4 and 5 (the last columns
indicates the dimension of the new groups).

α λ quad. form ref reflective new
1+
√

5
2 2(1 +

√
5) 〈−Θ5, 1 . . . , 1〉 [Bug84] n ≤ 7

1 +
√

2 8(1 +
√

2) 〈−1−Θ2, 1 . . . , 1〉 [Bug90] n ≤ 6
3+
√

5
2 10 + 6

√
5 〈−1− 3Θ5, 1, . . . , 1〉 n ≤ 5 5

1 +
√

3 12 + 8
√

3 〈−3− 2Θ3, 1 . . . , 1〉 n ≤ 4 4
3+
√

13
2 6(3 +

√
13) 〈−3− 3Θ13, 1 . . . , 1〉 n ≤ 2

2 +
√

2 4(5 + 4
√

2) 〈−5− 4Θ2, 1 . . . , 1〉 n ≤ 5 4, 5
Continued on next page
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α λ quad. form ref reflective new
3+
√

17
2 22 + 6

√
17 〈2−Θ17, 1, . . . , 1〉 n ≤ 3 3

2 +
√

3 8(3 + 2
√

3) 〈−Θ3, 1, . . . , 1〉 n ≤ 3 3
3+
√

21
2 26 + 6

√
21 〈−5− 3Θ21, 1, . . . , 1〉 ?

2 +
√

5 16(2 +
√

5) 〈−1− 2Θ5, 1 . . . , 1〉 [Bug84] n ≤ 7

Remarks:

• When the considered quadratic forms are reflective, the associated group
Γ often has a small rank n + k, k ≥ 1, compared to the dimension n.
However, this is not always the case. For example, for α = 2 +

√
2 and

n = 5 we find a polyhedron whose f -vector is (96, 240, 228, 102, 20, 1), so
that the rank of Γ equals 20.

• The values α = 1 +
√

3, 3+
√

5
2 , 2 +

√
2, 3+

√
17

2 and 2 +
√

3 lead to new
polyhedra. The value α = 2 +

√
3 gives rise to Coxeter diagrams with

weight 12.

• For α = 3+
√

21
2 and n = 2, we were not able to decide whether the qua-

dratic form is reflective or not.

6.8.3.3 Errors in literature

In [Mcl13], the vector e4 for the quadratic form 〈−1−4·Θ5, 1, 1〉 is (2+4·Θ5, 7+
10 · Θ5, 1). However, the vector (1 + Θ5, 1 + 4 · Θ5, 0) seems to be admissible
and have a smaller fraction (1.5 compared to 35.9). It seems that non-integer
possible values for (e, e) were forgotten. The same issue seems to apply to the
form 〈5−4 ·Θ5, 1, 1〉. This leads to incorrect polytopes (i.e. some of the normal
vectors he found contain errors).
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CHAPTER 7
Index two subgroups and an infinite sequence

In [Gal05], Gal explains when a Coxeter group arises as a semi-direct product of
two Coxeter subgroups, with one of them being a standard parabolic subgroup,
and gives the presentation of the two subgroups. We will present his result and
then study the situation when one of the two subgroups is of index two. We
will see that under certain conditions, this construction gives rise to an infinite
sequence of index two subgroups. Our sequence of abstract Coxeter groups
generalizes the geometric approach described by Allcock : in [All06], he gave a
condition under which a hyperbolic Coxeter polyhedron gives rise to an infinite
sequence of polyhedra called "doublings".

In the first section, we will describe a way to construct an index two Coxeter
subgroup Γ1 of a given abstract Coxeter group Γ and give the explicit presen-
tation of the subgroup. In the second section, we will see that under a simple
assumption this process may be repeated to give rise to an infinite sequence of
index two subgroups

Γ > Γ1 > Γ2 > . . .

The explicit presentation of the subgroups allows us to give a formula for the
rank of any member of this sequence. Then, we restrict ourselves to geometric
Coxeter groups (see Definition 3.4.6) and compute the f -vector of the associated
polyhedron Pn of Γn. Finally, we will see how the growth series of the group
Γn is related to the growth series of the first group of the sequence and address
the question of the evolution of the growth rate τn.

7.1 Description of the construction
In this section, we will consider an abstract Coxeter group Γ with generating
set S = {s1, . . . , sn}.
Definition 7.1.1 (Standard parabolic subgroup)
We say that Γ′ < Γ is a standard parabolic subgroup of Γ if there exists I ⊂ S
such that Γ′ = ΓI , where ΓI denotes the subgroup generated by the elements
in I.
Definition 7.1.2 (Admissible subset, admissible vertex)
A subset I ⊂ S is called admissible if m(si, sj) is even1 for every si ∈ I and

1We will consider ∞ as an even number.
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every sj ∈ S \ I. If I = {s} ⊂ S is an admissible subset, then we call s an
admissible element or admissible vertex2.

Remark 7.1.3
A subset I of S is admissible if and only if no element of I is conjugate to an
element of S \ I. Indeed, if m(si, sj) = 2k + 1, then we have

(si · sj)k · si · (si · sj)−k = sj ,

and thus si and sj are conjugate. For the converse, see [Bou68b, Chapter IV,
§1, Proposition 3].

Proposition 7.1.4 ([Gal05, Proposition 2.1])
Let I ⊂ S be an admissible set and let J = S \ I.Then

1. We have the decomposition Γ = ΓJ o ΓI , where ΓJ is the normal closure
of ΓJ in Γ.

2. The group ΓJ is a Coxeter group. Moreover, we have ΓJ = (ΓJ̃ , J̃), where
J̃ consists of all the ΓI-conjugates of J .

Proposition 7.1.5 ([Bou68b, Chapter IV, §1, Exercise 3])
Let (Γ, S) be a Coxeter group and let S1, S2 ⊂ S. Then, for every g ∈ Γ there
exists a unique element of minimal length in the double coset ΓS1 · g ·ΓS2 , where
ΓS1 and ΓS2 are the two standard parabolic subgroups associated to S1 and S2
respectively.

Notation 7.1.6
For T ⊂ S, we will write

T⊥ = {s ∈ S : m(s, t) = 2,∀t ∈ T}.

Moreover, for t ∈ S, we write t⊥ instead of {t}⊥. Let I ⊂ S and t1, t2 ∈ S. For
every g ∈ Γ, we will denote by shortt1,t2,I(g) the unique (exists by Proposition
7.1.5) shortest element in the set Γt⊥1 ∩I · g · Γt⊥2 ∩I .

We are now able to describe the presentation of the normal closure ΓJ̃ of ΓJ .

Proposition 7.1.7 ([Gal05, Corollary 3.3])
Let τi = wi ti w

−1
i , i = 1, 2, be two elements of J̃ , that is wi ∈ ΓI and ti ∈ J .

Then:

1. We have τ1 = τ2 if and only if t1 = t2 and shortt1,t2,I(w−1
1 w2) = 1.

2. It τ1 6= τ2, we have:

m(τ1, τ2) =


m(t1, t2) if t1 6= t2 and shortt1,t2,I(w−1

1 w2) = 1.
m(t1,s)

2 if t1 = t2 and shortt1,t2,I(w−1
1 w2) = s ∈ I,

∞ otherwise.

Remark 7.1.8
In the case where Γ < IsomHn and m(τ1, τ2) = ∞, the Proposition 7.1.7 does
not tell us whether the hyperplanes corresponding to τ1 and τ2 are parallel or
ultra-parallel. We will discuss that in the next proposition.

2Recall that we make no distinction between the presentation of the Coxeter group and
the Coxeter graph.
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We consider now the case where the induced subgroup is of index two.

Proposition 7.1.9
Let I = {t0} ⊂ S be an admissible subset, J = S \ I and let τi = wi ti w

−1
i ,

i = 1, 2, be two elements of J̃ , that is wi ∈ {1, t0} and ti ∈ J . Then, the weight
m(τ1, τ2) is given as follows:

Moreover, if Γ is a hyperbolic Coxeter group, then the "nature" of the ∞ is
preserved in the following sense:

• In the first and in the third case, the hyperplanes Hτ1 and Hτ2 correspond-
ing to τ1 and τ2 respectively are ultra-parallel if and only if the hyperplanes
Ht1 and Ht2 are ultra-parallel.

• In the second case, the hyperplanes Hτ1 and Hτ2 are ultra-parallel if and
only if the hyperplanes Ht1 and Ht0 are ultra-parallel.

Finally, in the last case, Hτ1 is ultra-parallel to Hτ2 except when t1 ⊥ t2 and
m(t0, t1) = m(t0, t2) = 4.

Proof. We prove only the second part since the first is a direct consequence of
Proposition 7.1.7. For an element τ ∈ J̃ ∪ {t0}, we denote by vτ the outward
unit normal vector to the corresponding facet of the associated polyhedron.
The first case is trivial. Suppose now that w1 = 1, w2 = t0 and t1 = t2. Then,
we have

〈vτ1 , vτ2〉 = 〈vt1 , rt0(vt2)〉 = 1− 2 · 〈vt0 , vt1〉2.

The last term is less than −1 if and only if so is 〈vt0 , vt1〉, as required. In the
second case, we have 〈vτ1 , vτ2〉 = 〈vt1 , vt2〉. Finally, in the last case, we get

〈vτ1 , vτ2〉 = 〈rt0(vt1), vt2〉 = 〈vt1 , vt2〉 − 2 · 〈vt0 , vt1〉 · 〈vt0 , vt2〉.

Since vt0 6⊥ vti and since t0 is admissible, then m(t0, ti) ≥ 4 and the result
follows.

Implementation in CoxIter The computation of the presentation of ΓJ̃ ,
when the admissible subset is of the form I = {t0}, as in Proposition 7.1.9,
have been implemented in CoxIter. For example, if we want to read the graph
"input.coxiter", then do the computations for the admissible vertex "5" and write
the result in the file "subgroup.output", then we would call CoxIter as follows
(the "wg", write graph, option is for CoxIter to write the resulting presentation
in a file):
./ coxiter -i input. coxiter -o subgroup -wg -index2 5
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7.2 An infinite sequence

The aim of this section is to present the construction of an infinite sequence of
index two subgroups in a Coxeter group (Γ, S). In what follows, when consid-
ering an element τ = w tw−1 ∈ J̃ , with t ∈ J , it will be assumed that t does
not commute with w.

Proposition 7.2.1
Let (W0, S0) be a Coxeter system. If s0 and t0 are two admissible elements
of S with m(s0, t0) = ∞, then there exists an infinite sequence W of groups
W0 ≥W1 ≥W2 ≥ . . . where each Wi+1 is of index two in Wi.

Proof. For n ≥ 1 define tn = tn−1s0tn−1 =
(
t0s0)2n−1 t0. We construct a

subgroup W1 of W0 as above:

I1 := {t0}, J1 := S \ I1, J̃1 := J1 ∪ t0 · J1 · t0, W1 = 〈J̃1〉.

We want to show that t1 and s0 are admissible in J̃1. Let t̃ = w · t · w, with
with w ∈ {1, t0} and t ∈ J1. If w = t0, then m(t1, t̃) = m(s0, t) which is even by
hypothesis. If w = 1, then we getm(t1, t) = m(s0, t) orm(t1, t) =∞, depending
on the fact that t0 commutes with t or not. Hence, t1 is admissible. Similarly,
s0 is admissible. Thus, we can apply again the process with

I2 := {t1}, J2 := S \ I2, J̃2 := J2 ∪ t1 · J2 · t1, W2 = 〈J̃2〉,

to get a subgroup W2 of W1 of index 2.
Suppose now we are given a sequence (W0, S0) ≥ (W1, J̃1) ≥ . . . ≥ (Wn, J̃n)
which satisfies:

• The involutions s0 and ti are admissible in J̃i for every 0 ≤ i ≤ n− 1.

• The group Wi+1 is obtained from Wi by removing ti−1 from Ii and apply-
ing the process.

To see that this sequence can be extended with a subgroup (Wn+1, J̃n+1) of index
2 inW0, we show that s0, tn are admissible in J̃n = Jn ∪ tn−1 ·Jn ·tn−1. We start
with s0. By induction hypothesis, we only need to consider the weights m(s0, t̃)
where t̃ ∈ tn−1·Jn·tn−1. Moreover, if t̃ = tn−1·t·tn−1, we can suppose that t does
not commute with tn−1, because otherwise t̃ = t ∈ Jn. Since m(s0, t0) = ∞,
then s0 does not commute with tn−1 and thus m(s0, tn−1 · t · tn−1) =∞, which
implies that s0 is admissible. It remains to compute the weights m(tn, w · t ·w)
to show that tn is admissible. By induction hypothesis, the only case to consider
is when w = 1. In this, setting we get m(tn, t) =∞, since t does not commute
with tn−1. Hence, tn is admissible, as required. Thus, the sequence can be
extended.

Remark 7.2.2
The construction of the sequence W is purely algebraic and can be done for
Coxeter groups which are not hyperbolic Coxeter groups.
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7.2.1 Tests of CoxIter and the conjecture about Perron
numbers

Using the different graphs encoded for CoxIter (see Section 5.5), we created
more than three thousands groups. The goal was to test the output of CoxIter
(cocompactness, cofiniteness, f -vector) and that the growth rate of all these
groups was a Perron number (see Section 5.3.5).

7.2.2 Rank of the groups of the sequence W
As before, we consider two admissible vertices t0 and s0 such thatm(t0, s0) =∞
and the corresponding sequence W given by

(W0, S0) ≥ (W1, J̃1) ≥ (W2, J̃2) ≥ ...

For a vertex s ∈ J̃i, we consider the neighbours of s:

N i(s) =
{
t ∈ J̃i : t 6⊥ s

}
.

We also consider
N i
∞(s) =

{
t ∈ J̃i : m(s, t) =∞

}
.

Using Proposition 7.1.9, we get the following result.

Proposition 7.2.3
Let n ≥ 1. The neighbours Nn(s0) of s0 in the Coxeter graph of Wn consist of
the following:

• Nn−1(s0);

• tn−1 ·Nn−1(tn−1) · tn−1 ⊂ Nn
∞(s0).

The neighbours Nn(tn) of tn consist of the following:

• Nn−1(tn−1) ⊂ Nn
∞(tn);

• Nn−1(s0)

• tn−1 ·Nn−1(s0) · tn−1.

For n ≥ 0, consider the counting functions an =
∣∣Nn(s0)

∣∣, bn =
∣∣Nn(tn)

∣∣
and cn =

∣∣Nn(s0) ∩ Nn(t0)
∣∣. Using Proposition 7.2.3, we easily deduce the

following recurrence relations:

an =
(
an−1 − 1

)
+ bn−1

bn =
(
an−1 + bn−1 − cn−1 − 1

)
+ cn−1

= an−1 + bn−1 − 1
cn = an−1 + cn−1 − 1.

Hence, we get the following proposition.

Proposition 7.2.4
For an, bn and cn as above, we have for n ≥ 1

an = bn = 2n−1(a0 + b0 − 2) + 1, cn = 2n−1(a0 + b0 − 2)− b0 + c0 + 1.
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In particular, we have

|J̃n| = 2n−1(a0 + b0 − 2) + 1 + b0 − c0 + ι

= 2n−1(a0 + b0 − 2) + 1 + |J0| − a0,

where ι is the number of vertices which commute with both s0 and tn; the number
ι is constant. Finally, we get

|J̃n+1| − |J̃n| = 2n+1(a0 + b0 − 2).

7.2.3 f-vector of the polyhedra of the sequence

We suppose now that (Γ0, S0) is a geometric Coxeter group3 (i.e. Γ0 is a discrete
group generated by finitely many reflections in hyperplanes of Sn,Hn,En) and,
as before, we fix two admissible vertices t0, s0 ∈ S0 such that the corresponding
hyperplanes are (ultra-)parallel. The goal is then to describe the f -vector of the
polyhedron Pn which arises after n doublings (the n here is independent of the
dimension of the space).

Let F be a face of Pn−1 and denote by T ⊂ J̃n−1 the corresponding spher-
ical/Euclidean subgraph of the Coxeter graph Gn−1 of Γn−1. We then have
the following three possibilities when creating the doubling Pn of Pn−1 (for
illustration see Figure 7.1):

F is deleted This is the case when F is contained in Htn−1 and all facets of
Pn−1 going through F except Htn−1 are perpendicular to Htn−1 (edges
AB and AC and vertex A of the figure). In terms of the graph, this is
equivalent to tn−1 ∈ T and T \ {tn−1} ⊂ t⊥n−1.

F is duplicated This happens when F has no intersection with Htn−1 (for
example all facets of the triangle A′B′C ′ in Figure 7.1) or when F is con-
tained in an hyperplane which is not perpendicular to Htn−1 (for example
edges BB′, C,C ′ and vertices B and C). The former is equivalent to
tn−1 /∈ T while the later is equivalent to T \ {tn−1} 6⊂ t⊥n−1.

F is kept In the other cases (edge BC and vertices B and C of the Figure).
Note that in this case, the corresponding figure around the face in Pn may
be different.

Hence, a face F0 of P0 can be deleted, can give rise to many faces or can
contribute only to one face in Pn. We summarize this in the next proposition.

Proposition 7.2.5
Let F ⊂ P0 be a face of the first polyhedron and consider the associated subgraph
T ⊂ S0. For n ≥ 1, the number of faces of the polyhedron Pn arising from F
after n doublings is the following:

1. t0 /∈ T, s0 /∈ T :

3In this context, the bijection of Theorem 3.7.5 in Chapter 3 is still true (see for example
[Vin67, Page 431] for the Euclidean case).
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Figure 7.1 – First polyhedron of the sequence

Condition Number of faces
T ⊂ t⊥0 , T ⊂ s⊥0 1

T 6⊂ t⊥0 , T 6⊂ s⊥0 2n

T 6⊂ t⊥0 , T ⊂ s⊥0 1 + 2n−1

T ⊂ t⊥0 , T 6⊂ s⊥0 2n−1

2. s0 ∈ T, t0 /∈ T :

Condition Number of faces
T \ {s0} ⊂ s⊥0 2

T \ {s0} 6⊂ s⊥0 1 + 2n−1

3. s0 /∈ T, t0 ∈ T :

Condition Number of faces
T \ {t0} ⊂ t⊥0 0

T \ {t0} 6⊂ t⊥0 2n−1

4. s0 ∈ T, t0 ∈ T : 2 faces.

Proof. We consider all the possibilities:

1. t0 /∈ T, s0 /∈ T

(a) T ⊂ t⊥0 , T ⊂ s⊥0 : F stays the same and t1 /∈ T , T ⊂ t⊥1 . Inductively,
we get tn /∈ T and T ⊂ t⊥n .

(b) T 6⊂ t⊥0 , T 6⊂ s⊥0 : The face F is duplicated and this new face F (1)

will also satisfy t1 /∈ T̃ (1), s0 /∈ T (1) and T (1) 6⊂ t⊥1 , T
(1) 6⊂ s⊥0 .

Inductively, we see that this will yield to 2n faces.
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(c) T 6⊂ t⊥0 , T ⊂ s⊥0 : The face F is duplicated and this new face F (1)

will be such that T (1) ⊂ t⊥1 and T (1) ⊂ N1
∞(s0). Hence, the new

face F (1) won’t be duplicated during the second doubling but will be
duplicated during each doubling after (see 1.(d)).

(d) T ⊂ t⊥0 , T 6⊂ s⊥0 : We have T 6⊂ t⊥1 and T 6⊂ s⊥0 . Hence, this face
is not duplicated during the first doubling but is during all the next
doublings.

2. s0 ∈ T, t0 /∈ T : The face is duplicated into F (1) ⊂ Ht1 .

(a) T \{s0} ⊂ s⊥0 : The new face F (1) is not duplicated nor removed after
this first step.

(b) T \{s0} 6⊂ s⊥0 : F (1) is not duplicated during the second doubling but
is afterwards.

3. s0 /∈ T, t0 ∈ T

(a) T \ {t0} ⊂ t⊥0 : The face is removed.
(b) T \ {t0} 6⊂ t⊥0 : Is not duplicated during the first doubling but is

afterwards.

4. We have F ⊂ Htn for for every n.

Remark 7.2.6
In all cases except 3(b), the type of the graph corresponding to the face F is
preserved. In the latter case, the corresponding graph GT is modified according
to Proposition 7.1.9 once and then remains unchanged.

Example 7.2.7
We consider again the family of cocompact Coxeter prisms Γm := Γ3

4,m (see
Example 4.4.3) and we choose s0, t0 as in Figure 7.2. The spherical subgraphs

Figure 7.2 – The family of prisms Γm0 := Γ3
4,m

of GΓm0 together with their multiplicities are the following:

5 ∗A1 1 ∗G(m)
2 1 ∗G(4)

2

1 ∗A2 6 ∗A1 ×A1 1 ∗B3

2 ∗A1 ×G(m)
2 2 ∗A1 ×G(4)

2 1 ∗A1 ×A2

1 ∗A1 ×A1 ×A1.

Using Proposition 7.2.5 and Remark 7.2.6, we compute the contribution of each
of these graphs in the graph GΓmn obtained after n doublings:

• G(m)
2 : 1 ∗G(m)

2 ;

• G(4)
2 : 2n−1 ∗A1 ×A1;
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• A2: (1 + 2n−1) ∗A2;

• 6 ∗A1 ×A1: (7 + 2n−1) ∗A1 ×A1;

• B3: 2n−1 ∗A3;

• 2 ∗A1 ×G(m)
2 : 2 ∗A1 ×G(m)

2 ;

• A1 ×G(4)
2 : 2n−1 ∗A1 ×A1 ×A1;

• A1 ×A2: 2 ∗A1 ×A2;

• A1 ×A1 ×A1 : 2 ∗A1 ×A1 ×A1.

In particular, the f -vector of Γmn is given by
(
2n + 6, 9 + 3 · 2n−1, 5 + 2n−1, 1

)
.

Implementation in CoxIter The computation of the f -vector after n dou-
blings has been implemented in CoxIter. To use this feature, one should use
the option "is" (for infinite sequence), together with the name of the vertices
t0 and s0. For example, for the group Γ3

4,7 of the previous example, we call
CoxIter as follows:
./ coxiter -i ../ graphs /3-Gamma -4 ,7. coxiter -is =[4 ,5]

And the output is then the following:
Reading graph:

Number of vertices : 5
Dimension : 3
Vertices : 1, 2, 3, 4, 5
Field generated by the entries of the Gram matrix : ?

File read

Infinite sequence :
f- vector after n doubling :
(6, 9, 5, 1) + 2^(n -1) *(2, 3, 1, 0)
Number of new hyperplanes after first doubling : 1

7.2.4 Evolution of the growth rate
Example 7.2.8
We continue the investigation of the properties of the groups Γmn (see Example
7.2.7). Using the list of spherical subgroups, we see that the growth series is
given by

fΓmn (x) =
2(x+ 1)3 (x2 + 1

) (
x2 + x+ 1

)
(xm − 1)

(x+ 1) · qnm(x) ,

with

qmn (x) = −2 + 2nx+ 21+nx2 + 2x3 + 3 · 2nx3 + 2x4 + 21+nx4 + 2x5 + 2nx5

− 2x1+m − 2nx1+m − 2x2+m − 21+nx2+m − 2x3+m − 3 · 2nx3+m

− 21+nx4+m − 2nx5+m + 2x6+m,

which factors as x − 1 times a palindromic polynomial. Therefore, finding the
growth rate τmn of Γmn is equivalent as finding the biggest positive real root
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of qmn . Luckily for us, by Descartes’ rule of signs (see Theorem 2.6.2), each qmn
has only 3 positive real roots (and thus only one root bigger than 1).

We see that the difference qm+1
n (x)− qmn (x) is equal to

(x− 1)xm+1 (2x5 − 2nx4 − 2n+1x3 − 3 · 2nx2 − 2n+1x− 2n − 2x2 − 2x− 2
)
.

Theorem 2.6.8 implies that all the real roots of the polynomial hn(x) = 2x5 −
2nx4−2n+1x3−3·2nx2−2n+1x−2n−2x2−2x−2 lie in the interval

(
−2n+2, 2n+2).

Hence, we can use Sturm’s theorem (see Theorem 2.6.5) to determine the num-
ber of positive real roots bigger than 1 of hn. The signs of the Sturm sequence
are the following:

αi 0 1 2 3 4 5 σ(αi)
1 − − + − + + 3

2n+2 + + + − + + 2

If we denote by βn the unique root of hn bigger than 1, then we have qmn (βn) =
q7
n(βn) for every m ≥ 7. If q7

n(βn) ≥ 0, then {τmn }m is an increasing sequence
bounded above by βn. On the other hand, if q7

n(βn) < 0, then {τmn }m is a
decreasing sequence bounded below by βn. In both cases, {τmn }m≥7 converges
to some value τn∞ depending on n. We will see that

τmn ∈
(

2n−1 + 2− 1
2n−1 , 2

n−1 + 2− 1
2n+1

)
, ∀n ≥ 1,m ≥ 7.

In particular, for every m ≥ 7, the ratio τmn+1
τmn

goes to 2 as n goes to infinity. We
show separately that qmn

(
2n−1 + 2− 1

2n−1

)
< 0 and qmn

(
2n−1 + 2− 1

2n+1

)
> 0.

First, remark that the last 5 monomials of qmn (x) where m arises in the power
factors as follows when evaluated in 2n−1 + 2− 1

2n−1 :

− 2−6n−2 (22n + 2n+2 − 4
) (
−21−n + 2n−1 + 2

)m
·
(
27n − 5 · 2n+7 + 9 · 22n+7 − 49 · 23n+4 + 33 · 25n+2 + 3 · 26n+3 + 128

)
.

Since this expression is negative and decreasing in m, we only have to show that
q7
n

(
2n−1 + 2− 1

2n−1

)
< 0. Now, we have

q7
n

(
2n−1 + 2− 1

2n−1

)
= −2−13n−9 (22n + 2n+1 − 4

)
· pn(2),

where p(x) ∈ Z[x] is an integer polynomial whose exponents depend on n. Now,
to prove that pn(2) is positive for every n ≥ 1, we replace each positive coefficient
ai of p by the biggest power of 2 which is smaller than ai and each negative
coefficient −ai by −2mi where mi is the smallest integer such that 2mi > ai.
Hence, we find

pn(2) > −2097152− 22n+28 − 24n+30 − 26n+30 − 29n+27 − 210n+26 − 213n+23

− 214n+22 + 221n + 2n+24 + 23n+28 + 25n+30 + 27n+23 + 28n+28

+ 211n+25 + 212n+23 + 215n+17 + 216n+18 + 217n+16 + 218n+13

+ 219n+10 + 220n+5

> −2097152− 7 · 214n+22 + 220n+5,
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which is bigger than 0 if n > 2. For n = 1 and n = 2, a direct computation
shows that pn(2) > 0, as required. With the same kind of comparisons, we can
show that qmn

(
2n−1 + 2− 1

2n+1

)
> 0, as required.

We saw in the previous example that for a fixed m, the quotient τn+1
τn

goes to
2 as n goes to infinity when the considered sequence is built from one family of
Kaplinskaya prisms. Next proposition relates the growth series of two successive
terms in the sequence.

Proposition 7.2.9
Let (Γ0, S0) be a hyperbolic Coxeter group and let t0, s0 ∈ S0 be two admissible
vertices with m(t0, s0) =∞. Then, there exists a polynomial q ∈ Z[x] such that
the rational expansion of the growth series fΓn of the group after n doublings
can be written

fΓn(x) = q(x)
gn(x) , gn(x) ∈ Z[x].

Moreover, there exists r ∈ N such that the gn are related as follows:

gn+1(x) = (2n − 1) · xr · g(x) + g1(x)

Proof. We know from Steinberg’s formula that the growth series is given by

1
f(Γn,Sn)(x) =

∑
T∈Fn

(−1)|T | · xmT
fT (x) ,

where Fn is the collection of subsets T of Sn such that the subgroup generated
by T is finite, and where mT is some exponent depending on the type of T
(see Figure 5.3 on page 83). Since the list of spherical subgroups of Γn remains
unchanged if n ≥ 1 (see Remark 7.2.6), we can regroup terms corresponding to
the same subgroups and write

1
f(Γn,Sn)(x) =

∑
T∈F

(−1)|T | · xmT
fT (x) · αT,n,

where F is the list of representatives of distinct finite subgroups of Γ1. Moreover,
Proposition 7.2.5 implies that αT,n ∈ {1, 2, 1 + 2n−1, 2n−1, 2n}. We now have

1
f(Γn,Sn)(x) = gn(x)

q(x) ,

where gn(x) has constant coefficient 1, a degree independent of n, and where
q(x) is independent of n. Now, each coefficient of gn(x) splits as a sum of a term
which is independent of n and a term which is divisible by 2n−1. Therefore, we
have

gn+1(x)− gn(x) = 2n−1 · xd · g(x),

for some positive integer r and some polynomial g ∈ Z[x] and thus

gn+1(x) = (2n − 1) · xr · g(x) + g1(x).
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Corollary 7.2.10
Consider the gn as in Proposition 7.2.9 and let r ∈ N and g ∈ Z[x] be such that

gn+1(x) = (2n − 1) · xr · g(x) + g1(x).

If there exists an index m such that the smallest positive root of gm is strictly
less than the smallest positive root of g, then

lim
n→∞

τn+1

τn
= 2r.

As indicated above, we constructed the first terms of all possible sequences of
known cofinite hyperbolic Coxeter groups (see all groups mentioned in Section
5.5). For all these sequences (more than 500), we checked numerically that the
situation of the Corollary 7.2.10 applies; more precisely:

• we have τn+1
τ −→ 2;

• often, the smallest positive root of g1 is smaller than the smallest positive
root of g.

These experimental observations lead us to state the following.

Conjecture
Let (Γ0, S0) be a hyperbolic Coxeter group and let t0, s0 ∈ S0 be two admissible
vertices with m(t0, s0) = ∞. Then, the growth rate τn of the group Γn arising
after n doublings satisfies

lim
n→∞

τn+1

τn
= 2.
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CHAPTER 8
Clifford algebras and isometries of (infinite

dimensional) hyperbolic spaces

Clifford algebras are unitary associative algebras which provide a way to gen-
eralize complex numbers and quaternions. Moreover, by considering a certain
group of two-by-two matrices with coefficients in a subset Γn ∪{0} of a Clifford
algebra, one gets a way to describe the group of orientation preserving isometries
of the hyperbolic n-space, i.e. we have an isomorphism

PSL(2; Γn) ∼= Isom+ Hn+2.

In low dimensions, this result gives the well know isomorphisms

PSL(2;R) ∼= Isom+ H2, PSL(2;C) ∼= Isom+ H3.

The construction of the group PSL(2; Γn), its basic properties and its action
by isometries on the hyperbolic (n+ 2)-space via Poincaré extension have been
extensively studied over the last decades (see [Ahl85] and [Wat93] for example).

The goal of this chapter is to explain how we can generalize the construction
of the group PSL(2; Γn) to the infinite-dimensional setting. For a given infinite-
dimensional Hilbert space H , we will be able to give a description of the group
Möb∗(H ) (see Definition 2.7.17) in terms of Clifford matrices. Then, we will
see that this group induces isometries of the associated upper half-space model
UH (see Section 3.2.1). Other authors studied Clifford matrices induced Möbius
transformations in the infinite-dimensional setting (see [Li11] and [Fru91], for
example) but they considered only the case H = `2. Our approach, which is
more canonical, allows to consider any Hilbert space and its induced hyperbolic
space. In this way, we are able to use the work of [Das12].

In the first section, we will present the construction of the Clifford algebra
associated to any quadratic space (V, q) and study its basic properties. In the
second part, we will determine under which conditions a two-by-two matrix with
coefficients in the Clifford group induces a bijection of the ambient space and
see how the usual transformations (reflections, translations, sphere inversions,
etc.) can be rewritten by means of Clifford matrices. Most results of this
part are adaptations of Waterman’s results to the infinite-dimensional setting.
Finally, we will show that Clifford matrices induce isometries of the associated
hyperbolic space and discuss the classification of the isometries in this setting.
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In this chapter, any field will be supposed to have characteristic different
from 2. Moreover, we will denote invertible elements of a ring R by R× instead
of R∗ in order to avoid confusion with the involution ∗ of the Clifford algebra.

8.1 Construction and basic properties

8.1.1 Clifford algebras
Let (V, q) be a quadratic space defined over some field K. A Clifford algebra
associated to (V, q) is a unitary associative algebra over K denoted by Cl(V, q),
together with a K-linear map i : V −→ Cl(V, q) which satisfies the following
two properties:

• Clifford identity
We have i(v)2 = −q(v) · 1Cl(V,q) for every v ∈ V .

• Universal property
If A is another unitary associative K-algebra together with a K-linear
function iA : V −→ A such that iA(v)2 = −q(v) · 1A for every v ∈ V , then
there exists a unique morphism of K-algebras ψ : Cl(V, f) −→ A such
that the following diagram commutes:

V
iA //

i

��

A

Cl(V, q)
ψ

;;

The universal property implies that if the algebra Cl(V, q) exists, then it is
unique up to isomorphism. In fact, the Clifford algebra can be constructed
explicitly as follows. We start with the tensor algebra T (V ) =

⊕
i∈N0

V ⊗n,
where V ⊗n = V ⊗ . . .⊗V , n times, and V ⊗0 = K. Then, we consider the ideal I
in T (V ) generated by the elements v2 +q(v). It follows that the quotient T (V )/I
satisfies the universal property, as required. Thus, we have Cl(V, q) = T (V )/I.
Since the composition

V �
� // T (V ) // // T (V )/I

is injective, we will write v instead of i(v) for the image of a vector in Cl(V, q).
Moreover, when working in Cl(V, f) we will write the product a · b instead of
a⊗ b.

Let {vi}i∈I be an algebraic basis of V (see Remark 2.7.6) and consider some
well-order on I. A multi-index I will denote a finite ordered subset of I. If
I = (i1, . . . , ik), we will say that I has length k and write |I| = k. Any element
a ∈ Cl(V, q) can be written as a =

∑
I aI · vI , where the finite sum is taken over

multi-indices I = (i1, . . . , ik), aI ∈ K, and vI := vi1 · . . . ·vik , with the additional
convention that v∅ := 1 = 1K .

The natural N0-grading on the tensor algebra T (V ) induces a
(
Z/2Z

)
-grading

on Cl(V, f) which is compatible with the algebra structure. In other words, the
vector space

Cl0(V, f) := spanK
{
vi1 · . . . · vik : 1 ≤ i1 < i2 < . . . < ik ≤ n, k even

}
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is a sub-algebra of Cl(V, f) called the even part of Cl(V, f). More canonically,
Cl0(V, f) is the image of

⊕
i∈N0

V ⊗2i by the corresponding quotient map.

Notice, that Cl(V, q), when viewed as a vector space, also has a Z-grading.
However, this grading is not compatible with the algebra structure.

8.1.1.1 Functoriality and three involutions

If (V ′, q′) is another quadratic space over K and φ : V −→ V ′ is a morphism
of quadratic spaces (i.e. a linear map preserving the quadratic forms), then the
composition iv′ ◦φ satisfies the condition of the universal property, which means
that there exists a morphism of K-algebras, again denoted φ, from Cl(V, q) to
Cl(V ′, q′). With the explicit construction of the Clifford algebra, the map φ can
be described as follows:

φ : Cl(V, q) −→ Cl(V ′, q′)
v1 · . . . · vm 7−→ φ(v1) · . . . · φ(vm).

Therefore, Cl is a functor from the category of quadratic spaces over a field K
to the category of unitary associative algebras over K.

The automorphism of (V, q) which sends a vector v to −v then induces an
automorphism ′ : Cl(V, q) −→ Cl(V, q) which sends an element v1 · . . . · vm to
(−1)m · v1 · . . . · vm. The inclusion of Cl(V, q) in its opposite algebra Cl(V, q)op

gives rise to an anti-automorphism ∗ : Cl(V, q) −→ Cl(V, q) which sends an
element v1 · . . . ·vm to vm · . . . ·v1. Since these two maps commute, we can define
the following anti-automorphism

: Cl(V, q) −→ Cl(V, q)
a 7−→ ā = (a′)∗ = (a∗)′.

Example 8.1.1 (Standard Clifford algebra)
For a field K of characteristic different from two, and for n ∈ N0, we let Vn =
Kn, with the convention that K0 is the null space {0}. Any orthonormal basis
{e1, . . . , en} of Vn gives rise to the diagonal quadratic form qn = 〈1, . . . , 1〉. In
the Clifford algebra Cl(Vn, qn), we have the identities e2

i = −1 and eiej = −ejei,
when i 6= j. Moreover, it is easy to see that{

ei1 · . . . · eik : 1 ≤ i1 < i2 < . . . < ik ≤ n
}

is a K-basis of Cl(Vn, qn) and in particular dimK Cl(Vn, qn) = 2dimK Vn = 2n.
We will denote this Clifford algebra by Cln(K), or Cln if K = R. For n = 0, 1
and 2 we get successively Cln = R, C and H, with the standard basis {1}, {1, i}
and {1, i, j, ij}. Moreover, the anti-automorphism coincides with the usual
conjugation in C and H.

8.1.1.2 Center of the algebra

Proposition 8.1.2 (Center of Cl, finite-dimensional case)
Let (V, q) be an n-dimensional quadratic space over K with orthogonal basis
{v1, . . . , vn}. Then, the center of Cl(V, q) is K if n is even, and it equals
span{1, v1 · . . . · vn} if n is odd.
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Proof. First, we remark that the following two equalities hold for every multi-
index I:

vj · vI = (−1)|I| · vI · vj , j /∈ I
vj · vI = (−1)|I|+1 · vI · vj , j ∈ I.

(8.1)

Let a ∈ Cl(V, q) and write a =
∑
aI ·vI , where all the multi-indices I are distinct

and totally ordered, that is I = (i1, . . . , ik) for some 1 ≤ i1 < i2 < . . . < ik ≤ n.
If J is any multi-index, then we have vI · vJ ∈ R · vI∆J , where I∆J denotes the
symmetric difference between I and J , that is I∆J = (I \ J) ∪ (J \ I). Since
I∆J = I ′∆J implies I = I ′, it follows that a is in the center of the Clifford
algebra if and only if every vI such that aI 6= 0 is also in the center. Moreover,
this last condition is equivalent to vI · vj = vj · vI for every 1 ≤ j ≤ n. We
conclude using equations (8.1).

Proposition 8.1.3 (Center of Cl, infinite-dimensional case)
Let (V, ‖·‖) be an infinite-dimensional Hilbert space, let λ ∈ R\{0} and consider
the quadratic form q : V −→ R defined by q(v) = λ · ‖v‖2. Then, the center of
Cl(V, q) is R.

Proof. First, we pick a Hilbert orthonormal basis {ei}i∈I of V (see Definition
2.7.2). We thus have the following relations:

e2
i = −λ, ei · ej = −ej · ei, ∀i 6= j ∈ I.

We know (see Proposition 2.7.14) that the set of products

ei1 ⊗ . . .⊗ eik , i1, . . . , ik ∈ I

is an orthonormal Hilbert basis of V ⊗̂k (see Definition 2.7.13). Hence, the
closure of the linear span of the family of vectors

C =
{
ei1 · . . . · eik : k ∈ N, i1, . . . , ik ∈ I}

is Cl(V, q). Let x ∈ Z
(
Cl(V, q)

)
and write

x =
∑
J∈J

aJeJ , aJ 6= 0,∀J ∈ J ,

where {eJ}J∈J is a finite or countable subset of C consisting of linearly indepen-
dent vectors. If x /∈ R, then there exists a non-empty J ∈ J such that aJ 6= 0.
Moreover, we must have eieJ = eJei for every i ∈ I (see proof of Proposition
8.1.2). If |J | is odd this is possible only for i ∈ J , and only for i /∈ J if |J | is
even (see equations (8.1) of Proposition 8.1.2). Therefore, we must have x ∈ R,
as required.

8.1.1.3 The Clifford algebra as a quadratic space

The vector space Cl(V, q) has a natural grading given by the one on the tensor
algebra and the projection T (V ) −→ T (V )0 = K gives rise to the linear map

< : Cl(V, q) −→ K

x 7−→ x0.
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This map yields a quadratic form q on Cl(V, q) and its associated bilinear form

q : Cl(V, q) −→ K B : Cl(V, q)× Cl(V, q) −→ K

x 7−→ <(xx) (x, y) 7−→ 1
2<(xy + yx) = <(xy).

We note that the quadratic form q, when restricted to V , agrees with the initial
one. Moreover, if φ : (V, q) −→ (V ′, q′) is a morphism of quadratic spaces,
then the induced map φ : Cl(V, q) −→ Cl(V ′, q′) preserves the bilinear forms on
Cl(V, q) and Cl(V ′, q′).
Proposition 8.1.4
Let x1, . . . , xk, x, y ∈ K ⊕ V , v, ṽ ∈ V , α, α̃ ∈ K and z ∈ Cl(V, q). Then, we
have the following properties:
(i) B(α+ v, α̃+ ṽ) = αα̃+B(v, ṽ);

(ii) q(α+ v) = α2 + q(v);

(iii) q(x1 · . . . · xk) =
∏k
i=1 q(xi);

(iv) q(xz) = q(x) · q(z);

(v) xx = q(x);

(vi) xy + yx = 2 · b(x, y).
Proof. For the sake of clarity, we will write q for the quadratic form defined on
V (respectively b for its associated bilinear form) and Q for the one defined on
Cl(V, q) (respectively B for its associated bilinear form).

(i) We will prove the equality B(α+v, α̃+ ṽ) = αα̃+ b(v, ṽ). First we remark
that by definition of b, we have

b(v, ṽ) = 1
2
(
q(v + ṽ)− q(v)− q(ṽ)

)
= 1

2
(
−(v + ṽ)2 + v2 + ṽ2)

= −1
2(vṽ + ṽv) = −<(vṽ).

Then, we get

B(α+ v, α̃+ ṽ) = < ((α+ v)(α̃+ ṽ)) = < (αα̃− α̃v + αṽ − vṽ)
= αα̃−< (vṽ) = αα̃+ b(v, ṽ),

as required.

(ii) Follows directly from (i).

(iii) We write x1 = α1 + v1 and we get

Q(x1x2) = <
(
x2x1x1x2

)
= <

(
x2(α2

1 − v2
1)x2

)
= Q(x1) · <

(
x2x2

)
= Q(x1) ·Q(x2).

(iv)-(vi) Follow easily from direct computations.

Remark 8.1.5
The points (v) and (vi) are not true for arbitrary elements of Cl(V, q). For
example, xx may fail to be an element of K.
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8.1.2 Vectors and the Clifford group
Definition 8.1.6 (Vectors)
The elements of the subspace K ⊕ V will be called vectors. We will denote the
set K ⊕ V ∪ {∞} by V̂ext, and its elements will be called extended vectors.

As we saw before, the quadratic form is multiplicative when restricted to
vectors. Moreover, vectors lead to the construction of a multiplicative subgroup
of Cl(V, q) called the Clifford group as follows.

Proposition 8.1.7
Let x ∈ Cl(V, q) be a product of vectors. Then, x is invertible if and only if
q(x) 6= 0, and its inverse is then given by x−1 = 1

q(x)x. In particular, the
inverse of a product of vectors is again a product of vectors.

Definition 8.1.8 (Clifford group)
The group of all products of invertible vectors is called the Clifford group of
Cl(V, q) and is denoted by ΓCl(V,q), or just by Γ. For the standard Clifford
algebras (see Example 8.1.1), we will denote the Clifford group by Γn(K) or
just Γn if K = R.

Remark 8.1.9
Later on we will restrict ourselves to an anisotropic quadratic form, so that the
Clifford group consists of all products of non-zero vectors.

Example 8.1.10
We have Γ0 = R×, Γ1 = C× and Γ2 = H×. In higher dimensions, it is not true
that Γn = Cln \{0}.

Any invertible element x ∈ Cl(V, q) gives rise to a linear automorphism

ρx : Cl(V, q) −→ Cl(V, q)

y 7−→ xyx′
−1
.

Lemma 8.1.11
For any x ∈ Γ, then ρx ∈ O(K ⊕ V, q).

Proof. First, we prove that ρx(y) ∈ K ⊕ V for any y ∈ K ⊕ V . If x is a vector,
then the equality xy+yx = 2 · b(x, y) implies xyx = 2 · b(x, y)x−q(x)y and thus

xyx∗ = xyx = 2 · b(x, y)x− q(x)y ∈ K ⊕ V.

Hence, we have xyx′−1 ∈ K ⊕V . Now, proceed by induction for finite products
of vectors. Finally, we obtain:

q
(
ρx(y)

)
= xyx′

−1 · xyx′−1 = xy q
(
x−1) y x

= 1
q(x)xyy x = q(y).

Remark 8.1.12
The map ρx corresponds to Rx ◦ R1, where Rx, respectively R1, denotes the
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reflection with respect to the hyperplane perpendicular to x, respectively to 1.
Indeed, we see that the two reflections are given by

Rx(y) = y − 2b(x, y)
q(x) · x

R1(y) = y − 2<(y)
1 1 = −y.

Then, an easy computation gives Rx ◦R1 = ρx.
Lemma 8.1.13
If a and b are two elements of Γ, then

ab−1 ∈ K ⊕ V ⇔ a∗b ∈ K ⊕ V.

Proof. We have

ab−1 ∈ K ⊕ V ⇔ b∗−1a∗ ∈ K ⊕ V

⇔ ρb∗
(
b∗−1a∗

)
∈ K ⊕ V

⇔ a∗b
1
q(b) ∈ K ⊕ V.

Lemma 8.1.14
For x, y ∈ Γ, then we have <(x · y · x−1) = <y.
Proof. First, notice that if the claim is true when x is a vector, then the general
case follows by induction. Hence, we suppose that we have x = x0 +xv ∈ K⊕V
with x0 ∈ K and xv ∈ V . We also write y =

∑
I yI · vI , where yI ∈ K are

the components of y with respect to the basis {vI} of Cl(V, q). Now, using the
K-linearity of <, we get

<(x · y · x−1) =
∑
I

yI · <
(
x · vI · x−1)

=
∑
I

yI · <
(

(x0 + xv) · vI ·
1

q(x) (x0 − xv)
)

= <(y) + 1
q(x)

∑
I 6=∅

<
(
x2

0 · vI − x0 · vI xv + x0 · xv vI − xv vI xv
)

= <(y) + 1
q(x)

∑
I 6=∅

< (−x0 · vI xv + x0 · xv vI − xv vI xv) .

If |I| = 1, then <(x0 · vI xv) = <(x0 · xv vI) and <(xv vI xv) = 0. On the other
hand, if |I| ≥ 2, then all three terms are zero. Therefore, we have <(x ·y ·x−1) =
<(y), as required.

8.2 Clifford matrices and their action on the am-
bient space

Consider g =
(
a b
c d

)
∈ Mat(2; ΓCl(V,q) ∪ {0}). We want to determine the

conditions under which g induces a bijection g : V̂ext −→ V̂ext (see Definition
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8.1.6) via x 7−→ (ax+ b)(cx+ d)−1. First, we remark that we must have

g(0), g(∞), g−1(0), g−1(∞) ∈ V̂ext,

which gives the following.

Proposition 8.2.1

If g =
(
a b
c d

)
∈ Mat(2; ΓCl(V,q)∪{0}) induces a bijection V̂ext −→ V̂ext, then

we must have
bd−1, ac−1,−a−1b,−c−1d ∈ V̂ext

or equivalently (see Lemma 8.1.13)

b∗d, a∗c, ab∗, cd∗ ∈ V̂ext.

Another obvious condition is that cx+d has to be either zero or invertible (see
Proposition 8.1.7). This is automatically fulfilled if V is a normed vector space
and q is a non-zero multiple of the norm or, more generally, if q is anisotropic.
Also, we don’t want ax + b and cx + d to be zero at the same time. If this
happens, then a and c must be different from zero which gives a−1b = c−1d and
thus

ad∗ = a
(
b∗a−1∗c∗

)
= a

(
a−1b

)∗
c∗

8.2.1= aa−1bc∗ = bc∗.

Definition 8.2.2 (Determinant of a Clifford matrix)

Let g =
(
a b
c d

)
∈ Mat(2; ΓCl(V,q) ∪ {0}). The determinant of g is ∆(g) =

ad∗ − bc∗.

Proposition 8.2.3

If g =
(
a b
c d

)
∈ Mat(2; ΓCl(V,q)∪{0}) induces a bijection V̂ext −→ V̂ext, then

we must have ∆(g) 6= 0.

Proposition 8.2.4
The composition of applications is induced by the composition of matrices.

Proof. For g =
(
a b
c d

)
, g̃ =

(
α β
γ δ

)
∈ Mat(2; ΓCl(V,q) ∪ {0}), we com-

pute:

g
(
g̃(x)

)
=
(
a(αx+ β)(γx+ δ)−1 + b

)(
c(αx+ β)(γx+ δ)−1 + d

)−1

=
(
a(αx+ β) + b(γx+ δ)

)
(γx+ δ)−1(c(αx+ β)(γx+ δ)−1 + d

)−1

=
(
a(αx+ β) + b(γx+ δ)

)((
c(αx+ β)(γx+ δ)−1 + d

)
(γx+ δ)

)−1

=
(
(aα+ bγ)x+ aβ + bδ

)(
c(αx+ β) + d(γx+ δ)

)−1

=
(
(aα+ bγ)x+ (aβ + bδ)

)(
(cα+ dγ)x+ (cβ + dδ)

)−1

= (g · g̃)(x).
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In general, ∆ is not a multiplicative function from the group of matrices
inducing a bijection V̂ext −→ V̂ext to Cl(V, q). However, we have the following
result.

Proposition 8.2.5

Let g =
(
a b
c d

)
, g̃ =

(
α β
γ δ

)
∈ Mat(2; ΓCl(V,q) ∪ {0}) inducing bijections

such that ∆(g̃) = ∆(g̃)∗. Then, ∆(g · g̃) = ∆(g) ·∆(g̃).

Proof. We compute

∆(gg̃) = aαβ∗c∗ + aαδ∗d∗ + bγβ∗c∗ + bγδ∗d∗

− aβγ∗d∗ − aβα∗c∗ − bδγ∗d∗ − bδα∗c∗

8.2.1= aαδ∗d∗ + bγβ∗c∗ − aβγ∗d∗ − bδα∗c∗

= a∆(g̃) d∗ − b∆(g̃)∗ c∗

= ∆(g) ·∆(g̃).

Proposition 8.2.6

Let g =
(
a b
c d

)
∈ Mat(2; ΓCl(V,q) ∪ {0}). Then, g induces the identity if and

only if g is a diagonal matrix with a = d ∈ Z(Cl(V, q))×.

Proof. Suppose that g induces the identity. Substituting x = 0,∞ and 1 gives
b = 0, c = 0 and a = d. Now, we have ax = xa for every x ∈ V which means
ax = xa for every x ∈ Cl(V, q), as required. The converse is obvious.

We want to determine the inverse of the matrix g =
(
a b
c d

)
. If we write

y = (ax+b)(cx+d)−1, then we have (yc−a)x = b−yd. Except when y = ac−1,
which happens when x =∞, the term (yc− a) is invertible, which yields

x = (yc− a)−1(b− yd) = (d∗y − b∗) (−c∗y + a∗)−1.

This motivates to look at g∗ =
(

d∗ −b∗
−c∗ a∗

)
, and we find the products

g · g∗ =
(

∆(g) 0
0 ∆(g)∗

)
g∗ · g =

(
∆
(
g∗
)

0
0 ∆

(
g∗
)∗ ) . (8.2)

A necessary condition for the invertibility of the map induced by g is that
∆(g) ∈ Z(Cl(V, q))×, ∆(g) = ∆(g)∗ and ∆(g∗) = ∆(g∗)∗.

Definition 8.2.7 (Clifford matrices)
We define GL(ΓCl(V,q)), or just GL(Γ), to be the set of matrices of the form

g =
(
a b
c d

)
∈ Mat(2; Cl(V, q)) which satisfy the following conditions:

• a, b, c, d ∈ Γ ∪ {0};
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• ∆(g) = ad∗ − bc∗ ∈ K×;

• ab∗, cd∗, c∗a, d∗b ∈ K ⊕ V .

We also define SL(Γ) = {g ∈ GL(Γ) : ∆(g) = 1} and PSL(Γ) = SL(Γ)/{±I}.

Remarks 8.2.8 • Using Theorem 8.2.11 below, we will see that GL(Γ) is a
group.

• If ∆(g),∆(g∗) ∈ K, then equations (8.2) imply that g = ∆(g) · g∗−1 and
g∗ = ∆(g∗) · g−1 which gives ∆(g) = ∆(g∗).

• Scaling all the coefficients of a matrix by an element of K× does not
change the induced application. Therefore, if K = R, we can suppose
that ∆(g) = ±1.

Definition 8.2.9 (Trace of a matrix)

Let g ∈
(
a b
c d

)
∈ Mat(2; ΓCl(V,q) ∪ {0}). Then, the trace of g, denoted by

Tr g, is defined to be Tr(g) = a+ d∗.

Following [Li11], we also have the following definition.

Definition 8.2.10 (Vectorial element)

A non-trivial Clifford matrix g ∈
(
a b
c d

)
∈ GL(Γ) is called vectorial if b∗ = b,

c∗ = c and Tr g ∈ R.

8.2.1 Algebraic characterization
From now on, we suppose that the quadratic form q is anisotropic. In this
setting, every non-zero vector v ∈ V is invertible and in particular, Γ consists
of all products of non-zero vectors. We also request that the only matrices
inducing the identity map are multiples of the identity matrix by an element of
K×. This is the case in the following two situations:

1. The center of the Clifford algebra is trivial.
This happens when dimK V is even (see Proposition 8.1.2) or whenK = R,
V is an infinite-dimensional Hilbert space with norm ‖ · ‖2 and q(v) =
λ · ‖v‖2 for some fixed λ ∈ R× (see Proposition 8.1.3).

2. The Clifford algebra is a standard Clifford algebra (see Example 8.1.1).
Then, a matrix g ∈ Mat(2; Γn(K) ∪ {0}) induces a map on both K̂n

ext
and K̂n+1

ext . Hence, we can consider matrices g ∈ Mat(2,Cl(Vn, qn)) which
induce bijections on K̂n

ext −→ K̂n
ext and K̂n+1

ext −→ K̂n+1
ext . If such a matrix

induces the identity on both K̂n
ext and K̂n+1

ext , then g is the multiple of the
identity matrix by an element of K× (see Proposition 8.1.3). This second
instance is used by [Ahl85] and [Wat93].

Theorem 8.2.11
Let (V, q) be an anisotropic quadratic space over a field K such that the center of

the Clifford algebra Cl(V, q) is K, and let g =
(
a b
c d

)
∈ Mat(2; ΓCl(V,q)∪{0}).

Then, g induces a bijection on V̂ext if and only if g ∈ GL(Γ).
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Theorem 8.2.12
Let n ∈ N0 and g =

(
a b
c d

)
∈ Mat(2; Γn(K) ∪ {0}). Then, g induces a

bijection on K̂n
ext and K̂n+1

ext if and only if g ∈ GL(Γ).

Proof. We already saw that these algebraic conditions are necessary.
Suppose now that g ∈ GL(Γ). First, we want to check whether the expression
(cx+d)−1 actually makes sense. If c = 0, then d is non-zero and thus is invertible.
On the other hand, if c 6= 0, then we have cx+d = c(x+c−1d), where the second
term is either zero or an element of K ⊕V (and thus invertible). We now prove
that the image of g lies in V̂ext. For x, y ∈ K ⊕ V , a direct computation gives

(yc∗ + d∗)(ax+ b)− (ya∗ + b∗)(cx+ d) = −y ·∆(g) + ∆(g−1)x
= ∆(g) (x− y)

which leads to

gx− (gy)∗ = ∆(g) (yc∗ + d∗)−1(x− y)(cx+ d)−1. (8.3)

Letting y = 0 gives

(gx− g0)−1 = ∆(g) ·
(
cd∗ + dx−1d∗

)
,

which is a vector (or∞) by Proposition 8.2.1 and Lemma 8.1.11. Hence, gx−g0
is a vector (or∞) and so is gx, as required. Now, equation (8.3) can be rewritten

gx− gy = ∆(g) (yc∗ + d∗)−1(x− y)(cx+ d)−1,

which implies the injectivity of g. Now, the matrix g∗ =
(

d∗ −b∗
−c∗ a∗

)
satisfies

the algebraic conditions which insure that g∗ induces a map from V̂ext to V̂ext,
and this map is the inverse to the one induced by g.

8.2.2 Typical transformations of a Hilbert space
In this section, we suppose that V is a real Hilbert space and q = λ · ‖ · ‖2, for
some λ ∈ R×. We express the typical transformations of the space V by means
of Clifford matrices as follows. First, we write the inversion ι with respect to
the unit sphere S(0, 1):

ι =
(

0 −λ
1 0

)
∈ GL(Γ).

The inversion with respect to the sphere with center a ∈ V and radius r, is
written

ιS(a,r) = f ◦ ι ◦ f−1, f =
(
r a
0 1

)
∈ GL(Γ).

The reflection with respect to the hyperplane P (a, α) = {v ∈ V : 〈v, a〉 = α} is
given by:

• For α 6= 0: f ◦ ι ◦ f−1, with f = ι ◦ ϕ, where

ϕ(x) =
∥∥∥ a2α∥∥∥ · x+ a

2α.
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• For α = 0: g ◦ ι ◦ g with g = ψ ◦ ι ◦ ϕ, where

ϕ(x) = ‖a‖ · x+ a, ψ(x) = x− a

2 · ‖a‖2 .

We know present a lemma which will have many important consequences.
Lemma 8.2.13
Any Clifford matrix g induces an application g : V̂ext −→ V̂ext which is a com-
position of the following transformations:

translation Tµ =
(

1 µ
0 1

)
x 7−→ x+ µ, µ ∈ K ⊕ V

inversion ι =
(

0 −λ
1 0

)
x 7−→ −λx−1

dilatation Dr =
(
r 0
0 1/r

)
x 7−→ r2 x, r ∈ R×+

orthogonal Sa =
(
a 0
0 a′

)
x 7−→ axa∗, a ∈ Γ, Q(a) = 1

reflection R =
(

1 0
0 −1

)
x 7−→ −x.

In the sequel, we use the function

ε : R× −→ {0, 1}, x 7−→
{

0 if x > 0
1 otherwise.

Remarks 8.2.14 (i) If Q(a) 6= 1, then the transformation x 7−→ axa∗ can be
written as follows:

Sa = D√|Q(a)| · Sa/Q(a) ·Rε(Q(a)).

Hence, we can assume without loss of generality that Q(a) is equal to 1.

(ii) If a is a vector, then Sa corresponds to the map ρa, which consists of
the reflection with respect to the hyperplane perpendicular to 1, followed
by the reflection with respect to the hyperplane perpendicular to a (see
Remark 8.1.12).

(iii) In particular, the lemma implies that every Clifford matrix induced map
is in Möb∗. The reverse inclusion follows from (ii).

(iv) If x ∈ V , then ι(x) = x
‖x‖2 . More generally, if x = α + v with v ∈ V and

α ∈ R, then
ι(x) = −λ

Q(α+ v)α+ λ

Q(α+ v)v.

Proof. We distinguish the cases where c = 0 and c 6= 0.
• Let c = 0. In this setting, we have

gx = 1
∆(g)axa

∗ + bd−1,

that is,

g = Tbd−1 ◦
(
D√

|∆(g)|
−1 ◦Rε(∆(g))

)
︸ ︷︷ ︸

1/∆(g)

◦
(
D√|Q(a)| ◦ Sa/Q(a) ◦Rε(Q(a))

)
︸ ︷︷ ︸

Sa

.
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• Let c 6= 0. First, we see that b = ac−1d−∆(g) · c∗−1. Then, we compute

gx =
(
ac−1(cx+ d)−∆(g) · c∗−1

)
(cx+ d)−1

= ac−1 −∆(g) · c∗−1(x+ c−1d)−1c−1.

Furthermore, we can write

x−1 = Rε(λ) ◦D1/
√
|λ| ◦ ι(x).

Since ac−1, c−1d ∈ V , we can combine the different transformations above,
and conclude.

Using the decomposition provided by the Lemma 8.2.13, we get the following
result.

Proposition 8.2.15
Let W be a subspace of the vector space V and let g : Ŵext −→ Ŵext be a
map induced by a Clifford matrix. Then, the trivial extension g : V̂ext −→ V̂ext
corresponds to the Poincaré extension of g (see Definition 3.2.4).

Since the group of Möbius transformations of Rn+1 is generated by reflections
in spheres and hyperplanes, we have the following corollary.

Corollary 8.2.16
The map which sends a Clifford matrix g ∈ GL(Γn) to the induced map g :
R̂n+1

ext −→ R̂n+1
ext yields a group isomorphism GL(Γn)/R× ∼= Möb(Rn+1).

The Lemma 8.2.13, together with Remark 8.2.14, also give the analogue of
the Corollary 8.2.16 in the infinite-dimensional setting.

Proposition 8.2.17
Let H be a Hilbert space, of finite or infinite dimension, and consider a codi-
mension one subspace H ′ of H . If we let Γ′ be the Clifford group associated
to Cl(H ′, q′), where q′ is the restriction of ‖ · ‖2 to H ′, then we get

GL(Γ′)/R∗ ∼= Möb∗(H ).

Themotto behind the result is the following: any map coming from a Clifford
matrix can be written as the Poincaré extension of a map coming from a Clifford
matrix g ∈ GL(ΓVf ), where Vf is a finite-dimensional subspace of H . This will
be made more precise by Proposition 8.2.18 below. Before that, let us recall the
definition of a direct system and a direct limit of groups1. The starting point is
a directed, or filtered, set (I,≤). It means that ≤ is a preorder on I such that
any pair of elements i, j ∈ I has an upper bound (i.e. there exists k ∈ I such
that i ≤ k and j ≤ k). Then, we consider a collection of groups {Gi}i∈I and
we suppose that for every i ≤ j we have a homomorphism ϕi,j : Gi −→ Gj .
Finally, it is required that the morphisms ϕi,j enjoy the following properties:

• For every i ∈ I, we have ϕi,i = idGi .
1More generally, the notion of direct limit can be defined using a universal property in any

category.
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• For every i ≤ j ≤ k in I, we have ϕj,k ◦ ϕi,j = ϕi,k.

The collection (Gi, ϕi,j) is called a direct system.
Now, we consider on the disjoint union

⊔
iGi the equivalence relation ∼

defined as follows: for g ∈ Gi and h ∈ Gj , we have g ∼ h if and only if
there exists k ∈ I such that ϕi,k(g) = ϕj,k(h) in Gk. We can endow the set
lim−→i∈I Gi :=

⊔
i∈I Gi/∼ with a group structure as follows: for g ∈ Gi and

h ∈ Gj , we consider an upper bound k of i and j and we define

[g] · [h] :=
[
ϕi,k(g) · ϕj,k(h)

]
,

where [−] denotes the equivalence class of an element. It is easily shown that this
definition is independent of the choice of the upper bound and indeed defines a
group structure on lim−→i∈I Gi. The group lim−→i∈I Gi is called the direct limit of
the system

(
Gi, ϕi,j

)
. A typical direct system is given by the lattice of finite-

dimensional subspaces of a given vector space and the morphisms are just the
inclusions. We are now ready to present the proposition.

Proposition 8.2.18
For (H , ‖ · ‖) a Hilbert space, we denote by V the set of all finite-dimensional
subspaces of H . For every V ∈ V, we denote by GL(ΓV ) the group of Clifford
matrices corresponding to the quadratic space (V, ‖ · ‖2). Then, we have

lim−→
V ∈V

GL(ΓV ) ∼= GL(Γ),

where GL(Γ) is the group of Clifford matrices corresponding to (H , ‖ · ‖2).

Proof. First, we notice that the direct limit is well-defined: the inclusion of finite
subspaces of H induces an order on V and the upper bound of two elements
in V is given by the direct sum. Moreover, if V ⊂ V ′ are two elements of V,
then the map ϕV,V ′ : GL(ΓV ) −→ GL(ΓV ′) is given by the Poincaré extension.
Therefore, (GL(ΓV ), ϕV,V ′) is a direct system.

Now, the collection of group homomorphisms GL(ΓV ) −→ GL(Γ) given by
Poincaré extensions is compatible with the direct system, which means that we
get an injective homomorphism ψ : lim−→V ∈V GL(ΓV ) −→ GL(Γ). The surjectiv-
ity of ψ is given by Lemma 8.2.13.

Lemma 8.2.13 is at the basis of the following result.

Proposition 8.2.19

Let g ∈
(
a b
c d

)
∈ Mat(2; ΓCl(V,q) ∪ {0}). Then, <(Tr(g)) is invariant under

conjugation by an element of GL(Γ).

Proof. Let h ∈ GL(Γ). In order to show that <
(
Tr(h · g · h−1)

)
= <(Tr(g)), it

is sufficient to prove the equality for h = Tµ, ι,Dr, Sa and R of Lemma 8.2.13.
We consider these cases separately.

• For h = Tµ: We have h =
(

1 µ
0 1

)
, for some µ ∈ K ⊕ V , which gives

Tr(h · g · h−1) = a+ µ c− µ∗ c∗ + d∗ = Tr(g)− µ(c− c∗).

Now, since µ is an element of K ⊕ V and since both the real and the
1-graded part of c− c∗ are zero, then we have < (µ(c− c∗)) = 0.
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• For h = ι: A direct computation shows that Tr(h ·g ·h−1) = d+a∗, which
proves the claim.

• For h = Sα: We first get

Tr(h · g · h−1) = α · (a+ d∗) · ᾱ = α · (a+ d∗) · α−1.

Lemma 8.1.14 allows us to conclude.

The two remaining cases are very easy.

8.3 Isometries of the hyperbolic space

In this section, we suppose that (H , ‖ · ‖) is a Hilbert space of Hilbert dimen-
sion n and we let q = ‖ · ‖2, i.e. λ = 1 in the above notations. We consider two
orthogonal unit vectors e0, u ∈H which lead to the orthogonal decomposition

H = 〈e0〉 ⊕ V ⊕ 〈u〉. (8.4)

As we saw in Section 3.2.1, the set

Un = UH = {x ∈H : lu(x) > 0},

together with the distance function given by

d = dUn = arcosh
(

1 + dH (x, y)
2 · lu(x) · lu(y)

)
, ∀x, y ∈ Un,

is a model of the hyperbolic space of dimension n. If we identify 〈e0〉 ⊕ V

with R ⊕ V , then GL(Γ(V⊕〈u〉,q)) acts on Ĥ . Moreover, since GL(Γ(V,q)) is
a subgroup of GL(Γ(V⊕〈u〉,q)), it also acts on Ĥ . In fact, we will show that
matrices of positive determinant ∆ in GL(Γ(V,q)) preserve U .

Lemma 8.3.1
With the above decomposition, we have:

1. xu = −xu, for every x ∈ R⊕ V ;

2. u · x = x∗ · u, for every x ∈ ΓR⊕V .

Proof. The first property comes from a direct computation using (vi) of Propo-
sition 8.1.4. The second property follows from the first. Indeed, if x is an
element of R⊕ V , then we have

u · x = −u · x = −x · u = xu = x∗ u.

The general case follows by induction.

Proposition 8.3.2

Let g =
(
a b
c d

)
∈ GL(Γ(V,q)) such that ∆(g) > 0. Then, g preserves U .
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Proof. We write y = x+ µu with x ∈ R⊕ V and µ > 0. We then compute

gy = (ay + b)(cy + d)−1

= 1
q(cy + d) · (ay + b) ·

(
y c+ d

)
= 1
q(cy + d) ·

(
q(y)ac+ bd+ axd+ bx c+ µ(aud− buc)

)
8.3.1= 1

q(cy + d) ·
(
q(y)ac+ bd+ axd+ bx c

)
+ ∆(g)
q(cy + d)µ · u.

Now, the first term is an element of V̂ext and the coefficient of u in the second
term is positive, as required.

Theorem 8.3.3
Let (H , ‖ · ‖) be a Hilbert space of finite or infinite dimension. Let U = UH be
the upper half-space model of the hyperbolic space of Hilbert dimension dim H
defined by H . If V is a codimension 2 subspace of H , with the decomposition
of H as in (8.4), then SL(ΓCl(V,‖·‖)) acts by isometries on U via Poincaré
extension.

Remark 8.3.4
Combined with Corollary 8.2.16, the theorem gives the following well-known
result: for every n ∈ N, we have Isom+ Hn+2 ∼= PSL(Γn).

Proof. We use the orthogonal decomposition

H = 〈e0〉 ⊕ V ⊕ 〈u〉,

where e0 and u are two unit vector and we identify 〈e0〉⊕V with R⊕V . Because

of Proposition 8.3.2, we only need to show that g =
(
a b
c d

)
∈ SL(Γ) preserves

the hyperbolic distance. For two elements y, ỹ ∈ U , we write y = x + µu and
ỹ = x̃+ µ̃u, with µ, µ̃ > 0. Recall from the proof of Theorem 8.2.11

gy − gỹ = (ỹc∗ + d∗)−1(y − ỹ)(cy + d)−1.

Now, we compute:

dH (gy, gỹ)
2 · lu(gy) · lu(gỹ) = q(ỹc∗ + d∗)−1 · q(y − ỹ) · q(cy + d)−1

2 · q(cy + d)−1 · µ · q(cỹ + d)−1 · µ̃

=
q
(
(cỹ + d)∗

)−1 · q(y − ỹ)
2 · µ · q(cỹ + d)−1 · µ̃

= dH(y, ỹ)
2 · lu(y) · lu(ỹ) .

This implies that dU (gy, gỹ) = dU (y, ỹ), as required.

Now that we have proved that Clifford matrices act by isometries of hyper-
bolic spaces, we can use Proposition 3.2.11 and Lemma 8.2.13 to distinguish the
type of an isometry. In particular, we have the two following propositions.
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Proposition 8.3.5 (Loxodromic Clifford isometries)
Let g ∈ SL(ΓCl(V,‖·‖)) be a Clifford matrix. Then, g is loxodromic if and only

if g is conjugate to a Clifford matrix of the type
(
r · a 0

0 1
r · a

′

)
, with r ∈ R,

r > 0 and r 6= 1, and a ∈ Γ with q(a) = 1.

Proof. Follows from Proposition 3.2.11 and Lemma 8.2.13.

Proposition 8.3.6 (Parabolic Clifford isometries)
Let g ∈ SL(ΓCl(V,‖·‖)) be a Clifford matrix. Then, g is parabolic if and only if g

is conjugate to a Clifford matrix of the type
(
a b
0 a′

)
, where a ∈ Γ, q(a) = 1,

and b ∈ 〈e0〉 ⊕ V is such that a · b = b · a′.

Proof. Follows from Proposition 3.2.11 and Lemma 8.2.13. The fact that b can
be chosen such that a · b = b ·a′ is a consequence of from Proposition 3.2.12.

8.4 Final remarks and further questions
The machinery we have built up allows one to generalize directly several re-
sults known in the finite-dimensional setting as well as some results known in
the separable infinite-dimensional case due to [Li11] to the arbitrary infinite-
dimensional setting. We will mention a few of these generalizations without
providing details and indicate some further interesting questions.

For a Hilbert space H with norm ‖ · ‖, the quadratic form

q : Cl(H , ‖ · ‖2) −→ R, q(x) = <(xx)

as presented in Section 8.1.1.3 naturally defines a norm ‖ · ‖ on the Clifford
algebra Cl(V, q) via ‖x‖2 = q(x) which coincides with the "natural" norm on the
tensor algebra in the following sense:

• It is multiplicative on (extended) vectors:

q(v · v′) = q(v) · q(v′) = ‖v‖2 · ‖v′‖2, ∀v, v′ ∈H .

• If {vi}i∈I is an algebraic basis of H and if I, J ⊂ I are two different
multi-indices (see Section 8.1.1), then one easily checks that

q(aI vI + aJ vJ) = q(aI vI) + q(aJ vJ), ∀aI , aJ ∈ R.

This allows to define the norm of a Clifford matrix g =
(
a b
c d

)
∈ GL(Γ) via

‖g‖2 = ‖a‖2 + ‖b‖2 + ‖c‖2 + ‖d‖2.

In this setting, we have the following definition.

Definition 8.4.1 (Discrete subgroup of GL(Γ))
A subgroup G of GL(Γ) is discrete if for every convergent sequence {gn} ⊂ G
such that limn→∞ gn = g ∈ G, one has gn = g for all sufficiently large n.
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We have now a direct generalization of Li’s result (see [Li11, Theorem 3.1])
to the non-separable case.

Theorem 8.4.2 (A generalization of Jørgensen’s trace inequality)
Let f, g ∈ SL(ΓV ) be such that f is loxodromic, the commutator [f, g] is vecto-
rial (see Definition 8.2.10) and such that the group 〈f, g〉 is discrete and non-
elementary (i.e. every 〈f, g〉-orbit is infinite). Then, we have∣∣Tr(f)2 − 4

∣∣+ |Tr([f, g])− 2| ≥ 1.

Since any isometry induced from a Clifford matrix in GL(ΓV ) comes from an
element in GL(ΓVf ) for a finite-dimensional subspace Vf of H by Proposition
8.2.18, we can also derive generalizations of classical results. For example, we
obtain the following description of elliptic elements.

Lemma 8.4.3 ([Wat93, Lemma 13])
Let g ∈ SL(ΓV ) be a matrix inducing an elliptic isometry. Then, there exist an
even positive integer n = 2k, real numbers θ0, . . . , θk ∈ [0, 2π) and an orthonor-
mal family of vectors {v0, . . . , vn−1} ⊂ V such that g is conjugate to the Clifford

matrix
(
λ 0
0 λ′

)
, where λ =

∏k−1
i=0 ri, with

ri = cos θi + v2i v2i+1 sin θi, ∀0 ≤ i ≤ k − 1.

Moreover, the ri commute, and so do λ, λ′, λ∗, λ.

In a different context, isometries of infinite-dimensional hyperbolic spaces
can be constructed with tools from algebraic geometry and more specifically by
means of the Cremona group. For a field k and a positive integer n, the Cremona
group Crn(k) is the group of k-automorphisms of the k-algebra k(x1, . . . , xn).
This group can also be viewed as the group Bir(Ank ) of birational maps2 of
the affine space Ank , which is in turn equal to Bir(Pnk ). Now, it can be shown
that the second Cremona group Cr2(k) acts by isometries on a certain infinite-
dimensional hyperbolic space H∞(P2

k) associated to the projective surface P2
k.

The construction of the space H∞(P2
k) is not immediate at all and relies on

a direct limit of groups associated to blow ups. References are [CL13] and
[Can15], for example, wherein many typical results are shown to remain valid.
In particular, there exists a way to detect if an isometry obtained in such an
algebro-geometrical way is elliptic, parabolic or loxodromic (see [Can15, Theo-
rem 4.6]). It would be interesting to study the relation between our group of
isometries PSL(ΓCl(V,‖·‖)) and the Cremona group Cr2(k).

2For two algebraic varietiesX and Y , a rational map f : X 99K Y is a morphism of algebraic
varieties defined on a dense open subset of X. We identify two rational maps f, f ′ : X 99K Y
if they coincide on a dense open subset of X. If a rational map f : X 99K Y is dominant (i.e.
if its image is dense in Y ) and if there exists another dominant rational map f ′ : Y 99K X
such that f ◦ f ′ and f ′ ◦ f are equivalent to the identity, then f is called birational. For a
given algebraic variety X, the set Bir(X) is a group.
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APPENDIXA
Data

A.1 Kaplinskaya’s prisms in dimension 3

A.1.1 The compact case
We present in this section the invariants of the compact Coxeter prisms given in
Figure A.1 (see [Kap74]). Some details regarding the groups Γ1

m, Γ2
m and Γ3

k,m

can be found in Section 4.4.1.

Figure A.1 – Families of 3-dimensional compact prisms

Arithmeticity The following table contains the values for which the group is
(quasi-)arithmetic (arithmetic groups are indeed also quasi-arithmetic).

Group Quasi-arithmetic (Quasi-)Arithmetic

Γ1
m m = 5, 10 m = 4, 6

Γ2
m m = 12 m = 5, 6, 8

Γ3
3,m m = 12, 18, 24, 30 m = 7, 8, 9, 10, 14

Γ3
4,m m = 18 m = 7, 8, 10, 12

Continued on next page
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Group Quasi-arithmetic (Quasi-)Arithmetic

Γ3
5,m m = 30 m = 10

Γ4
4,4,m m = 6 m = 3, 4

Γ4
4,5,m m = 4 ∅

Γ4
5,5,m m = 3, 5 ∅

Γ5
k ∅ m = 4, 5

Some constants We give in the next table the value αm, which are used to
simplify some computations.

Group αm

Γ1
m

3 cos 2π
m +
√

5
4 cos 2π

m +
√

5−1

Γ2
m

3 cos 2π
m +1

cos 2π
m

Γ3
3,m

3 cos( 2π
m )−1

4 cos( 2π
m )−2

Γ3
4,m

cos( 2π
m )

2 cos( 2π
m )−1

Γ3
5,m

−(√5−5) cos2( πm )+
√

5−3
4 cos( 2π

m )−2

Coefficients of the diagonal quadratic form The following table contains
the coefficients of a diagonal form 〈a0, a1, a2, a3〉 of the associated quadratic
forms of signature (3, 1), with the convention that a0 < 0 and a1, a2, a3 > 0.
We omit the form brackets 〈 〉 for brevity.

Group Coefficients a0, a1, a2, a3

Γ1
m −2

(
5 + 2

√
5
)

cos2 ( π
m

)
·
(
3 cos 2π

m +
√

5
)
, 1, αm, 2

(
5 +
√

5
)
αm

Γ2
m −

(
1 + sec 2π

m

)
αm, 2αm, 2αm,

(
sec
( 2π
m

)
+ 3
)
αm

Γ3
3,m − cos

( 2π
m

)
− cos

( 4π
m

)
, αm, 3αm, 6αm

Γ3
4,m −

(
1 + sec 2π

m

)
αm, 2αm, 3αm, 6αm

Γ3
5,m

(7+3
√

5) cos2( πm )
2−4 cos( 2π

m ) , αm, 3αm, 3αm

Γ4
4,4,m −6 cos

(
π
m

)
− 2, 2, 3, 6

Continued on next page
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Group Coefficients a0, a1, a2, a3

Γ4
4,5,m 2

(√
5− 5

) (
8
√

10 cos π
m − 3

(√
5− 5

)
cos 2π

m +
√

5 + 15
)
, 1, 3, 6

Γ4
5,5,m −

(
cos π

m + 1
) (

3 cos π
m +

√
5
)
, 1, 3, 3

Γ5
4 −2−

√
5, 2, 2, 2

Γ5
5 −10− 6

√
5, 1, 1, 1

Determinant δ of the quadratic form

Group δ

Γ1
m −

(
5 + 2

√
5
)

cos2 ( π
m

)
·
(
3
(
5 +
√

5
)

cos
( 2π
m

)
+ 5

(
1 +
√

5
))

Γ2
m −2 cos2 ( π

m

)
·
(
3 cos

( 2π
m

)
+ 1
)

Γ3
3,m cos2 ( π

m

)
·
(
1− 2 cos

( 2π
m

))
αm

Γ3
4,m −

(
cos 2π

m + cos 4π
m

)
αm

Γ3
5,m − cos2 ( π

m

)
·
((

25 + 11
√

5
)

cos
( 2π
m

)
+ 5
√

5 + 11
)

Γ4
4,4,m −6 cos

(
π
m

)
− 2

Γ4
4,5,m −2 cos2 ( π

m

) (
4
√

3 +
√

5 cos π
m + 3 cos 2π

m +
√

5 + 4
)

Γ4
5,5,m −2

(
3 cos

(
π
m

)
+
√

5
)

Γ5
4 −2

(
2 +
√

5
)

Γ5
5 −10− 6

√
5

Invariant trace field

Group K(Γ)

Γ1
m Q

[
cos 2π

m ,
√

5,
√
δ
]

Γ2
m Q

[
cos 2π

m ,
√
δ
]

Γ3
3,m Q

[
cos 2π

m ,
√
δ
]

Γ3
4,m Q

[
cos 2π

m ,
√
δ
]

Γ3
5,m Q

[
cos 2π

m ,
√

5,
√
δ
]

Continued on next page
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Group K(Γ)

Γ4
4,4,m Q

[
cos π

m ,
√
δ
]

Γ4
4,5,m Q

[√
5,
√

3 +
√

5 · cos π
m ,
√

2 · cos π
m

]
Γ4

5,5,m Q
[
cos π

m ,
√

5,
√
δ
]

Γ5
m Q

[√
5,
√
δ
]

Growth rate (limit value) For each family of groups, we give all the coeffi-
cients γk, k ≥ 0, of a polynomial

∑
γk x

k whose biggest positive real root is the
limit of the growth rate τ and an approximate value for τ .

Group γ0, γ1, . . . lim τm '

Γ1
m −1,−1,−2,−2,−3,−2,−3,−2,−3,−1,−2, 0,−1, 1 1.982497369

Γ2
m −1,−1,−2,−1,−2, 0,−1, 1 1.906484762

Γ3
3,m −1,−2,−2,−1, 0, 1 1.734691346

Γ3
4,m −1,−1,−2,−1,−2, 0,−1, 1 1.906484762

Γ3
5,m −1,−1,−2,−2,−3,−2,−3,−2,−3,−1,−2, 0,−1, 1 1.982497369

Γ4
4,4,m −1,−1,−1, 0,−2, 1 2.305223929

Γ4
4,5,m −1,−1,−2,−2,−3,−2,−3,−2,−3,−1,−3, 1,−2, 1 2.349133213

Γ4
5,5,m −1,−1,−1,−2,−1,−2,−1,−2,−1, 0,−2, 1 2.389464732

Γ5
4 1,−2, 2,−4, 2,−5, 2,−5, 2,−5, 2,−4, 2,−2, 1 2.045214041

Γ5
5 1,−2, 0, 0, 0,−2, 0, 0, 0,−2, 1 2.105678915

A.1.2 The non-compact case

In this section, we present the invariants of the non-compact prisms given in
Figure A.2 (see [Kap74]).

Arithmeticity The following table contains the values for which the group is
(quasi-)arithmetic (arithmetic groups are indeed also quasi-arithmetic).
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Figure A.2 – Families 3-dimensional non-compact prisms

Group Quasi-arithmetic (Quasi-)Arithmetic

Γ6
m m = 6 m = 4

Γ7
m ∅ m = 6

Γ8
m ∅ ∅

Γ9
3,m m = 4 ∅

Γ9
4,m ∅ m = 3

Γ10
m ∅ ∅

Γ11
k1,k2

∅ k1 = k2 = 4, 6

Determinant δ of the quadratic form

Group δ Group δ

Γ6
m -3 Γ9

3,m,Γ9
4,m -1

Γ7
m -1 Γ10

m -3

Γ8
m -3 Γ11

k1,k2
-3

Invariant trace field

Group K(Γ) Group K(Γ)

Γ6
m Q

[
i
√

3, cos 2π
m

]
Γ11

3,6 Q
[
i,
√

3
]

Γ7
m Q

[
i, cos 2π

m

]
Γ11

4,4 Q
[
i
√

3
]

Γ8
m Q

[
i
√

3, cos 2π
m

]
Γ11

4,5 Q
[
i
√

3,
√

2,
√

5
]

Continued on next page
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Group K(Γ) Group K(Γ)

Γ9
3,m Q

[
i,
√

2 · cos π
m

]
Γ11

4,6 Q
[
i
√

3,
√

6
]

Γ9
4,m Q

[
i, cos π

m

]
Γ11

5,5 Q
[
i
√

3,
√

5
]

Γ10
m Q

[
i
√

3, cos π
m

]
Γ11

5,6 Q
[
i,
√

3,
√

5
]

Γ11
3,4 Q

[
i
√

3,
√

2
]

Γ11
6,6 Q

[
i
√

3
]

Γ11
3,5 Q

[
i
√

3,
√

5
]

Growth rate (limit value) For each infinite family of groups, we give all
the coefficients γk, k ≥ 0, of a polynomial

∑
γk x

k whose biggest positive real
root is the limit of the growth rate τ and an approximate value for τ .

Group γ0, γ1, . . . lim τm '

Γ6
m −1,−2,−1,−1,−1,−1, 1 2.015614858

Γ7
m −1,−2,−1,−1, 1 2.065994892

Γ8
m −1,−2,−1,−1,−1,−1, 1 2.015614858

Γ9
3,m −1,−2,−3,−3,−3,−3,−1,−1, 1 2.352041123

Γ9
4,m −2,−3,−2,−1, 1 2.451109537

Γ10
m −2,−1,−1, 0,−2, 1 2.330809311

We now give the growth rate of the remaining 9 prisms Γ11
k1,k2.

Group Coefficients γ0, γ1, . . . and growth rate

Γ11
3,4

−2,−2,−3,−3,−2,−2,−1, 1
2.459101131

Γ11
3,5

−2,−2,−5,−6,−7,−9,−8,−9,−8,−8,−6,−5,−3,−1,−1, 1
2.496678489

Γ11
3,6

−1,−3,−3,−4,−4,−2,−2,−1, 1
2.510800457

Γ11
4,4

−2,−2,−4,−3,−3,−2,−1, 1
2.548573757

Γ11
4,5

−2,−2,−6,−6,−9,−9,−10,−9,−10,−8,−8,−5,−4,−1,−1, 1
2.581500889

Γ11
4,6

−1,−3,−3,−5,−4,−3,−2,−1, 1
2.593583812

Continued on next page
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Group Coefficients γ0, γ1, . . . and growth rate

Γ11
5,5

−2,−2,−4,−5,−5,−6,−5,−6,−5,−4,−3,−2,−1, 1
2.612522099

Γ11
5,6

−1,−3,−3,−5,−6,−6,−6,−6,−6,−6,−4,−3,−2,−1, 1
2.623816333

Γ11
6,6

−2,−4,−2,−2,−3,−1, 1
2.634795548

A.2 Polytopes with n + 3 facets and one non-
simple vertex

In [Rob15, v3], Roberts presents the classification of hyperbolic Coxeter poly-
topes in Hn with n + 3 facets and one non-simple vertex. We present the
invariants of the commensurability class for the arithmetic groups of his list (38
groups among 144). We omit the brackets in the notation of the quadratic form.
The invariants were found using a computer and AlVin.

n Group Quadratic form c(V ) δ Invariant

4 8 (a) −6, 1, 3, 6, 6 (−1,−1) −2 {Q, {0, 2}}

4 12(a) −6, 1, 2, 3, 6 (−2,−1) −6 {Q, {0, 2}}

5 13(a) −6, 1, 3, 3, 3, 6 (−3,−1) 3 {Q, 3, {}}

5 13(b) −10, 1, 5, 5, 5, 10 (−5,−1) 5 {Q, 5, {}}

5 15(a) −5, 1, 5, 10, 15, 30 (−5,−1) 5 {Q, 5, {}}

5 15(b) −5, 1, 2, 3, 5, 6 (−2,−1) 1 {Q, {0, 2}}

5 15(d) −3, 1, 2, 3, 3, 6 (−2,−1) 1 {Q, {0, 2}}

5 15(f) −3, 1, 2, 3, 3, 6 (−2,−1) 2 {Q, {0, 2}}

5 16(a) −3, 1, 3, 3, 3, 3 (−3,−1) 3 {Q, 3, {}}

5 16(b) −15, 1, 5, 5, 5, 15 (−1,−1) 5 {Q, 5, {}}

5 18(a) −2, 1, 1, 2, 2, 2 (−2,−1) 1 {Q, {0, 2}}

5 18(d) −7, 1, 1, 2, 2, 7 (−2,−1) 1 {Q, {0, 2}}

5 18(f) −2, 1, 1, 2, 2, 2 (−2,−1) 1 {Q, {0, 2}}

5 20(a) −1, 1, 1, 1, 2, 2 (−2,−1) 1 {Q, {0, 2}}

5 20(d) −2, 1, 1, 2, 2, 2 (−2,−1) 1 {Q, {0, 2}}

5 20(f) −1, 1, 1, 1, 2, 2 (−2,−1) 1 {Q, {0, 2}}
Continued on next page
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n Group Quadratic form c(V ) δ Invariant

5 21(c) −5, 1, 2, 3, 5, 6 (−2,−1) 1 {Q, {0, 2}}

5 21(e) −21, 1, 2, 3, 6, 21 (−2,−1) 1 {Q, {0, 2}}

5 22(b) −1, 1, 2, 3, 10, 15 (−5,−1) 1 {Q, {0, 2}}

5 22(c) −2, 1, 1, 1, 3, 6 (−1,−1) 1 {Q, {0, 2}}

5 22(d) −3, 1, 1, 1, 1, 3 (−1,−1) 1 {Q, {0, 2}}

5 22(e) −3, 1, 1, 1, 1, 3 (−1,−1) 1 {Q, {0, 2}}

5 22(f) −1, 1, 2, 3, 10, 15 (−5,−1) 1 {Q, {0, 2}}

5 22(g) −1, 1, 1, 2, 3, 6 (−2,−1) 1 {Q, {0, 2}}

6 23(a) −3, 1, 2, 2, 2, 2, 2 (−2,−1) 6 {Q, {0, 2}}

6 24(a) −1, 1, 1, 1, 2, 2, 2 (−2,−1) 2 {Q, {0, 2}}

6 24(d) −2, 1, 1, 1, 3, 6, 6 (−2,−1) 6 {Q, {0, 2}}

6 25(b) −1, 1, 1, 1, 2, 2, 2 (−2,−1) 2 {Q, {0, 2}}

6 25(e) −1, 1, 1, 2, 2, 3, 6 (−2,−1) 2 {Q, {0, 2}}

7 28(a) −3, 1, 2, 2, 2, 2, 2, 2 (−1,−6) −3 {Q,−3, {}}

7 28(d) −5, 1, 1, 1, 3, 6, 10, 15 (−3,−15) −15 {Q,−15, {}}

7 29(a) −3, 1, 2, 2, 2, 2, 2, 2 (−1,−3) −3 {Q,−3, {}}

8 30(a) −5, 1, 1, 1, 3, 3, 6, 10, 15 (−1, 10) −5 {Q, {}}

9 32(a) −5, 1, 1, 1, 3, 6, 7, 10, 15, 21 1 5 {Q, 5, {}}

9 32(e) −5, 1, 1, 3, 5, 6, 7, 10, 15, 21 1 1 {Q, {}}

9 32(f) −3, 1, 1, 3, 3, 6, 7, 10, 15, 21 1 1 {Q, {}}

9 32(g) −3, 1, 1, 3, 3, 6, 7, 10, 15, 21 1 1 {Q, {}}

10 33(a) −1, 1, 1, 1, 1, 2, 3, 3, 6, 10, 15 1 2 {Q, {}}

A.3 Non-reflectivity of quadratic forms
The method presented in Section 6.2.3 to prove the non-reflectivity of quadratic
forms requires to produce involutions of subgraphs with some properties. Since
finding these transformations can be tricky, we describe them explicitly below.

Quadratic form Involution

〈−1, 1, 19〉 e4 ↔ e8, e6 ↔ e7
e1 ↔ e6, e5 ↔ e8

Continued on next page
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Quadratic form Involution

〈−1, 1, 23〉 e5 ↔ e9, e6 ↔ e8
e5 ↔ e13, e6 ↔ e7

〈−1, 1, 1, 11〉 e1 ↔ e8, e4, e7 ↔ e9
e1 ↔ e10, e2, e5 ↔ e7

〈−1, 1, 1, 13〉 e1 ↔ e7, e2 ↔ e4, e3 ↔ e6, e5
e1 ↔ e5, e2, e3 ↔ e10, e4 ↔ e8

〈−1, 1, 1, 21〉 e2 ↔ e4, e3 ↔ e7, e6
e1 ↔ e6, e4 ↔ e8, e5

〈−1, 1, 1, 22〉 e1 ↔ e6, e2, e7 ↔ e9
e1 ↔ e8, e6, e7 ↔ e10

〈−1, 1, 1, 26〉 e1, e2 ↔ e11, e6 ↔ e7
e1 ↔ e14, e2, e6 ↔ e8

〈−13, 1, 1, 1〉 e3 ↔ e4, e5 ↔ e7, e8 ↔ e10
e1 ↔ e2, e3 ↔ e8, e5 ↔ e11

〈−14, 1, 1, 1〉 e1 ↔ e2, e3 ↔ e6, e4 ↔ e10
e1 ↔ e5, e2 ↔ e9, e3, e4 ↔ e8

〈−19, 1, 1, 1〉 e1 ↔ e4, e2, e3 ↔ e6
e2 ↔ e4, e3, e5 ↔ e8

〈−22, 1, 1, 1〉 e1 ↔ e7, e2 ↔ e6, e3, e4
e1 ↔ e6, e3 ↔ e8, e4 ↔ e12

〈−23, 1, 1, 1〉 e2 ↔ e11, e3, e4 ↔ e5
e1 ↔ e8, e2 ↔ e4, e3 ↔ e6

〈−26, 1, 1, 1〉 e1 ↔ e7, e2, e3 ↔ e10
e1 ↔ e8, e3, e9 ↔ e15

〈−1, 1, 1, 1, 17〉 e1, e2 ↔ e6, e3 ↔ e20
e2 ↔ e5, e3, e4 ↔ e8, e7

〈−1, 1, 1, 1, 30〉 e2 ↔ e10, e8, e15 ↔ e20
e1 ↔ e2, e9 ↔ e24, e14, e16

〈−17, 1, 1, 1, 1〉 e3 ↔ e6, e4, e5, e7 ↔ e13
e1 ↔ e6, e2 ↔ e5, e3, e4 ↔ e8

〈−21, 1, 1, 1, 1, 1〉 e1 ↔ e8, e2, e3, e4, e5 ↔ e10
e2 ↔ e3, e4 ↔ e8, e5, e12 ↔ e15
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Quadratic form Involution

〈−Θ13, 1, 1, 1〉
e4, e5 ↔ e8, e6 ↔ e10
e4 ↔ e13, e6 ↔ e7, e8

〈−Θ3, 1, 1, 1, 1〉
e1 ↔ e3, e2, e4 ↔ e16
e1 ↔ e2, e4 ↔ e17, e13 ↔ e14

〈2−Θ17, 1, 1, 1, 1〉
e1 ↔ e11, e3 ↔ e15, e6
e1, e2 ↔ e10, e3, e15 ↔ e20

〈−3− 2Θ3, 1, 1, 1, 1, 1〉
e1 ↔ e3, e5, e6 ↔ e9, e7
e2 ↔ e4, e6, e7 ↔ e10, e8
e9, e12 ↔ e15, e18 ↔ e29, e27

〈−1− 3Θ5, 1, 1, 1, 1, 1, 1〉
e2 ↔ e14, e3 ↔ e5, e7, e8 ↔ e9
e2 ↔ e14, e3 ↔ e5, e4, e7, e8 ↔ e9

〈−Θ5, 2 + Θ5, 1, 1, 1, 1, 1〉
e1 ↔ e3, e2, e4 ↔ e13, e5, e8
e1 ↔ e10, e2, e3, e4, e7 ↔ e9
e2 ↔ e8, e3 ↔ e7, e4 ↔ e13, e5
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APPENDIXB
Codes

B.1 Mathematica R© codes

B.1.1 Lemma 3.6.6
The following code shows how to compute the Sturm sequence and the signs of
Lemma 3.6.6.

1 f [ x_,m_] :=x^(m+8)−x^(m+7)−2x^(m+5)−x^(m+4)−2x^(m+3)−x^(m+2)−x^(m+1)
+x^7+x^6+2x^5+x^4+2x^3+x−1;

2 Df [ x_,m_]:=1+6∗x^2+4∗x^3+10∗x^4+6∗x^5+7∗x^6−(1+m) ∗x^m−(2+m) ∗x^(1+m)
−2∗(3+m) ∗x^(2+m)−(4+m) ∗x^(3+m)−2(5+m) ∗x^(4+m)−(7+m) ∗x^(6+m)+(8+
m) x^(7+m) ;

3 Df [ x , 2m+2]−Df [ x , 2m]//Factor
4
5 (∗ We have Df [ x ,2m+2]−Df [ x ,2m]=x ^(2m)∗hm[ x ] and we want to count

the zeros o f hm[ x ] us ing Sturm ’ s theorem ∗)
6 hm[x_]:=1+2m+2(1+m)x+x^2(3+2m)−6∗x^5−2m∗x^5−7∗x^6−2m∗x^6−8∗x^7−2m∗x

^7−9∗x^8−2m∗x^8+10∗x^9+2m∗x ^9 ;
7 S:={hm[ x ] , D[hm[ x ] , x ] } (∗ F i r s t two elements o f the Sturm sequence

∗)
8
9 (∗ We c o n s t r u c t the Sturm sequence ∗)

10 For [ i =1, i <=8, i++,
11 S=Join [ S,{−FullSimplify [PolynomialRemainder [ S [ [ i ] ] , S [ [ i +1 ] ] , x

] ] } ] ;
12 ]
13
14 (∗ Some v e r i f i c a t i o n s ∗)
15 Length [ S ]
16 Exponent [ S [ [ Length [ S ] ] ] , x ]
17 NSolve [ { S [ [ 10 ] ]==0} ,Reals ]
18
19 (∗ Computing the s i g n s ∗)
20 For [ va l=−2,val <=2,va l++, (∗ For v a l =−2,−1,0,1,2 ∗)
21 Print [ " Val : " , va l ] ;
22 For [ i =1, i<=Length [ S ] , i++,
23 ExprM1=S [ [ i ] ] / . { x−>val } ;
24 SolPos :=Reduce [ {ExprM1>0&&m>=2}];
25 SolNeg :=Reduce [ {ExprM1<0&&m>=2}];
26 Print [ i −1] ;
27 Print [ " −: " , SolNeg ] ;
28 Print [ " +: " , SolPos ] ;
29 ]
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30 Print [ " " ] ;
31 ]

The output of the lines 15-17 is the following:
10
0
{{m−>−6.78853}, {m−>−6.78853}, {m−>−5.1517}, {m−>−4.59411},

{m−>−2.35966}, {m−>−2.35966}, {m−>−1.10695},
{m−>−1.10695}, {m−>0.790002} , {m−>0.790002} ,
{m−>−0.709781}, {m−>−0.639181}, {m−>−0.425418}}

This means that the sequence contains 10 terms, the last term is a constant
polynomial which is non-zero if m is an integer number. Thus, the sequence is
indeed a Sturm sequence.

B.1.2 Example 4.4.1
For m ∈ {9, 13, 14, 16, 20, 21, 22, 28, 30, 36, 54}, we consider the Gram matrix

Gm =



1 −
√

3 cos( 2π
m )+1

2
√

cos( 2π
m )

0 0 0

−
√

3 cos( 2π
m )+1

2
√

cos( 2π
m )

1 − 1
2 0 0

0 − 1
2 1 − 1√

2 0
0 0 − 1√

2 1 − cos
(
π
m

)
0 0 0 − cos

(
π
m

)
1


,

whose first non-trivial minor is 1
8
(
2− 6 cos2 ( π

m

))
. For each root α of the min-

imal polynomial of cos π
m such that the induced embedding is not the identity

on cos 2π
m (i.e. such that 2α2 − 1 6= cos 2π

m ), we check whether 1
8
(
2− 6α2) is

negative. If it is the case, then the group is not quasi-arithmetic (see Theorem
3.9.7). Numerical computations show that we can always find such an α. The
code to achieve this is the following.
S := {9 , 13 , 14 , 16 , 20 , 21 , 22 , 28 , 30 , 36 , 54}
For [ i = 1 , i ≤ 11 , i++,

m := S [ [ i ] ] ;
Print [ "m = " , m] ;
f [ x ] = MinimalPolynomial [Cos [π/m] , x ] ;

Rf := x / . NSolve [ f [ x ] == 0 , 5 0 ] ; (∗ Roots o f the minimal
polynomial with high p r e c i s i o n ∗)

For [ r = 1 , r ≤ Length [ Rf ] , r++, (∗ For each root ∗)
I f [Abs [ 2∗Rf [ [ r ] ] ^ 2 − 1 − Cos [ 2π/m] ] < 10^−20 , Continue [ ] ] ; (∗

I f the corresponding Galois embedding i s the i d e n t i t y on K,
we s k i p to the next root ∗)

I f [ 1/8∗ (2 − 6∗Rf [ [ r ] ] ^ 2 ) < 0 , Print [ " NOT quasi−a r i thmet i c " ] ;
Break [ ] ; ]

]
]
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