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Abstract By different scissors congruence techniques a number of dissection iden-
tities are presented between certain quasi-Coxeter polytopes, whose parameters are
related to the golden section, and an ideal regular simplex in hyperbolic 5-space. As
a consequence, several hyperbolic polyhedral 5-volumes can be computed explicitly
in terms of Apéry’s constant ζ(3) and the trilogarithmic value L3(

π
5 ).
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1 Introduction

Polytopes in hyperbolic space H
n are important objects in the study of hyperbolic

space forms and arise in various contexts ranging from geometry and topology to
mathematical physics. They serve as combinatorial models and allow us sometimes
to compute geometric-topological data such as Betti numbers, Euler characteristic,
systole and volume. These quantities are related by (in-)equalities that allow us to
concentrate on the most important quantity, the volume of a hyperbolic polytope.

In contrast to lower dimensions, polyhedral volume in hyperbolic 5-space is only
partially understood but forms the higher dimensional doorway in view of Schläfli’s
volume differential formula (see e.g. [9, 12], [16, p. 118]). In [10], we provide, for
a certain two parameter-family of doubly asymptotic orthoschemes a comparatively
simple formula in terms of their dihedral angles and the so-called trilobachevsky
function L3(ω). As a consequence, the covolume of the hyperbolic Coxeter group
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could be computed and equals 7ζ(3)/46080, allowing to identify the (arithmetic)
quotient orbifold Q = H

5/� as the (unique) cusped hyperbolic 5-space form of min-
imal volume (see [7]; the bullet indicates the occurrence of one cusp in Q). In [11],
we completely solved the volume problem for hyperbolic 5-space by deriving a vol-
ume formula for the generators of the scissors congruence group P (H5) in terms of
(many) trilogarithm expressions. In practice, however, this formula requires the dis-
section/extension of a given polytope P ⊂ H5 by doubly asymptotic orthoschemes
before its evaluation which per se is already a difficult task. In particular, such a pro-
cedure does not allow the characterisation of volumes of arithmetically defined or
other distinguished hyperbolic 5-space forms in terms of their (number theoretical)
basic data.

In this work, we describe several scissors congruence procedures in detail, provid-
ing new relations in the group P (H5) between non-compact orthoschemes and ortho-
prisms. In the case of certain quasi-Coxeter polytopes (see Sect. 2.4, (11) and (12)),
whose dihedral angles are related to the golden ratio, we are able to represent their
volumes as explicit Q-linear combinations of three fundamental constants, Apéry’s
constant ζ(3), the trilobachevsky value L3(

π
5 ) and the volume μ5 of an ideal regu-

lar hyperbolic 5-simplex (see Sect. 4, Theorems I and II). This will be achieved by
scissors congruence techniques and without analytic manipulations!

This approach may be of relevance by studying quantitative and arithmetic as-
pects of further extremal volume problems in hyperbolic 5-space. In this context,
let us point out the particular role of an ideal regular hyperbolic 5-simplex S∞

reg(2λ)

with dihedral angle 2λ satisfying cos(2λ) = 1/4. In fact, the volume of an arbitrary
hyperbolic 5-simplex is maximal if and only if it is ideal and regular. A first analyti-
cal proof, for arbitrary dimension n, is due to U. Haagerup and H.J. Munkholm [6],
a second and geometrical proof based on Steiner symmetrisation is due to N. Peyer-
imhoff [13]. This extremality property is a key, for example, in Gromov’s proof [5]
of Mostow rigidity.

Finally, let us mention that L. Schläfli considered the three-dimensional spherical
analogues of the quasi-Coxeter polytopes in (11) and (12). By applying his reduction
principle, he was able to determine their volumes and used them for the volume com-
putation of a regular spherical simplex Sreg(2λ) ⊂ S3 as rational linear combination
in terms of λπ and π2 (cf. [15, Sect. 30], and Sect. 4.3, Remark 5).

2 Cycles of Orthoschemes

2.1 Orthoschemes and Orthoprisms

Let X
n = S

n,E
n,H

n be a standard space of constant curvature K ∈ {+1,0,−1}. Put
H

n in the Lorentz–Minkowski vector space R
n,1 of signature (n,1) or identify it with

the Klein–Beltrami model in real projective space RP n. An n-orthoscheme R ⊂ X
n is

an n-simplex bounded by hyperplanes H0, . . . ,Hn in X
n which are such that Hi ⊥ Hk

for |i − k| > 1. Orthoschemes can be seen as higher dimensional analogues of right-
angled triangles and were introduced by L. Schläfli [15]. They are characterised by
many nice metrical and orthogonality relations. Apart from right dihedral angles, an
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Fig. 1 An orthoscheme
R = p0 · · ·p5 in X

5

orthoscheme R has dihedral angles αi := ∠(Hi−1,Hi), 1 ≤ i ≤ n, which—in the
hyperbolic case—are acute and form a complete system of parameters. We shall only
consider orthoschemes with non-obtuse dihedral angles. For 0 ≤ i ≤ n, consider the
vertex pi opposite to the hyperplane Hi in R and write R = p0 · · ·pn (cf. Fig. 1).

The edges p0p1, . . . , pn−1pn of R form an orthogonal polygonal path π in X
n

with the special property that, for X
n = H

n, at most the initial vertex p0 and/or the
final vertex pn of the path π may be ideal points, i.e. points belonging to the bound-
ary ∂H

n at infinity. In the latter case, we call R simply or doubly asymptotic. By
considering H

n in RP n, we may extend this process and allow the initial vertex p0
and/or the final vertex pn of π to be ultra-ideal points, that is, points lying outside the
defining quadric Qn,1 = ∂H

n of signature (n,1), as long as all edges of π emanating
from p0 and/or pn intersect non-trivially the interior H

n. We continue to call R a
hyperbolic n-orthoscheme. Notice, however, that the convex body R ∩ H

n is of infi-
nite volume. By cutting with the polar (or projectively dual) hyperplane P0 (resp. Pn)
associated with p0 (resp. pn) in RP n, the orthoscheme R will be truncated yielding
a polyhedron Rt of finite volume in H

n with boundary formed by H0, . . . ,Hn and
by the hyperplane P0 and/or Pn (for more details, compare [8, 9]). In the sequel,
we are mainly interested in simply truncated n-orthoschemes or orthoprisms Rt , that
is, in hyperbolic n-prisms with an (n − 1)-orthoscheme basis which arise by polar
truncation of R in RP n having only one ultra-ideal vertex, say p0. By construction,
the polar hyperplane P0 has a common perpendicular with the hyperplane H0 in H

n

which coincides with the hyperbolic line defined by p0 and p1. We always assume
that the distance between P0 and H0 is positive. Furthermore, since P0 intersects
orthogonally all hyperplanes through p0 of R, the orthoprism Rt has—apart from n

additional right dihedral angles—the same dihedral angles and parameters α1, . . . , αn

as R, at least for n ≥ 3. In fact, a 2-orthoprism is a Lambert quadrilateral in H
2 with

a single angular parameter α1 ∈ [0, π
2 [.

2.2 Graphs of Orthoschemes and Orthoprisms

Let R be an n-orthoscheme in X
n with vertices p0, . . . , pn lying opposite to the

bounding hyperplanes H0, . . . ,Hn, and denote by αi = ∠(Hi−1,Hi) the dihedral an-
gle formed by Hi−1,Hi . If p0 is ultra-ideal, denote by Rt the orthoprism given by
the truncation of R by means of the polar hyperplane P0.
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By discarding the hyperplane H0 from the boundary of R, the configuration
H1, . . . ,Hn yields a simplicial cone Rp0 with apex p0. If p0 is an ordinary point
in X

n (resp. an ideal point of H
n), then the apex geometry of Rp0 in X

n is given by
a spherical (resp. Euclidean) (n − 1)-orthoscheme with dihedral angles α2, . . . , αn.
If p0 is an ultra-ideal point in RP n, the apex geometry in H

n of the cone Rp0 with
apex p0 in RP n is given by a hyperbolic (n − 1)-orthoscheme with dihedral angles
α2, . . . , αn. The latter is identical with the prism basis of Rt .

Let us associate with an n-orthoscheme R (and Rt ) a graph 	 = 	(R), character-
ising R up to congruence, by assigning to each hyperplane Hi a node νi in 	. Two
nodes are joined by an edge if the corresponding hyperplanes are not orthogonal. We
attach the weight αi to the edge joining the nodes of the consecutive hyperplanes if
they intersect under the dihedral angle αi . A subgraph of a graph 	 = 	(R) arises
by discarding nodes together with their edges. Observe that 	 consists of (at most
n + 1) connected components of linear graphs. In the hyperbolic finite volume case,
it is easy to see that 	 is always connected.

To every graph 	(R) as above corresponds the (symmetric) Gram matrix G(R) =
(gik) of R which is of order n + 1, with gii = 1, gi,i+1 = − cosαi+1 ≤ 0 and gik = 0
otherwise (0 ≤ i < k ≤ n). On the other hand, if G = (gik) is an indecomposable
symmetric matrix of order n + 1 with gii = 1, gi,i+1 ≤ 0 and gik = 0 otherwise, then
G can be realised as Gram matrix G(R) for a n-orthoscheme R in X

n as follows (cf.
[16, Sect. 2] and [14, Sects. 7.2, 7.3]). Denote by Gl the principal submatrix of order
n of G arising by removing the (l + 1)-th row and the (l + 1)-th column.

(1) If G is positive definite, then G = G(R) for a spherical n-orthoscheme R defined
up to isometry. Both G(R) and the graph 	 are called elliptic.

(2) If G is positive semidefinite, then G = G(R) for a Euclidean n-orthoscheme R

defined up to similarity. Both, G(R) and the graph 	 are called parabolic.
(3) If G is of signature (n,1), then G = G(R) for a hyperbolic n-orthoscheme R (of

finite or infinite volume) defined up to isometry. The matrix G(R) and the graph
	(R) are called hyperbolic. We distinguish further the following subcases.
(a) If all principal submatrices of G are elliptic, then R is a compact or-

thoscheme. Its graph 	 = 	(R) will be drawn according to

(b) If, apart from elliptic principal submatrices of G, only G0 (and Gn) is
parabolic, then R is a simply (doubly) asymptotic orthoscheme. In partic-
ular, if R is simply (doubly) asymptotic of finite volume with G0 (and Gn)
parabolic, we blacken the node ν0 (and νn) and write

(c) If, among all principal submatrices of G, precisely G0 is hyperbolic, then R

is an orthoscheme with ultra-ideal vertex p0 and associated orthoprism Rt of
finite volume. The graph 	 = 	(Rt) of Rt is given by the graph 	(R) by
putting a diamond in place of the node ν0 (indicating that P0 is added to the
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hyperplane configuration H0, . . . ,Hn bounding R). A compact n-orthoprism
Rt is therefore described by

2.3 The Coxeter and Pseudo-Coxeter Cases

Consider a convex n-polyhedron P in X
n. If all its dihedral angles are of the form

π/k with k ≥ 2, the polyhedron P is a Coxeter polyhedron. In the theory of regular
polyhedra and regular honeycombs, the family of Coxeter orthoschemes plays an
important role. In fact, Coxeter orthoschemes provide fundamental domains for the
associated symmetry groups. They were classified by Coxeter, Lannér and Koszul-
Chein (cf. [16] for lists and references). The family of simply and doubly truncated
Coxeter orthoschemes in H

n was studied and classified by H.-C. Im Hof (cf. [8]). It
is noteworthy that hyperbolic Coxeter orthoschemes, truncated or not, exist only up
to dimension 9. In the compact case, they exist only up to dimension 5.

A convex n-polyhedron P ⊂ X
n is called a pseudo-Coxeter polyhedron if all its

dihedral angles are commensurable with π . They arise naturally in the study of reg-
ular star-polyhedra and star-honeycombs (cf. [2, p. 161 ff]). The notion of graph of
a pseudo-Coxeter orthoscheme is defined in an analogous way by a graph with edge
weigths q

p
corresponding to (non-right) dihedral angles of the form pπ/q for integers

p ≥ 1, q ≥ 3. Of interest will be, among others, the pseudo-Coxeter orthoschemes in
H

5 given by

(1)

In the sequel, by considering dissections of certain Coxeter and quasi-Coxeter poly-
hedra, new polyhedra will arise with dihedral angles of mixed type, that is, some
angles are commensurable with π , some are not. In order to keep the notations as
concise as possible, we describe these polyhedra by graphs with rational weights in
the first case and with letters such as α,λ,ω representing angular parameters in the
second case (see the examples (5), (6) below).

Remark Observe that cos2 π
3 + cos2 π

5 + cos2 2π
5 = 1 which is responsible for the

parabolicity of the subgraphs in (1). In general, the parabolicity of a graph

is equivalent to the condition that (cf. [2, p. 264])

cos2 α2

sin2 α1
+ cos2 α3

sin2 α4
= 1. (2)
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2.4 Orthoscheme Cycles

Consider a doubly asymptotic 5-orthoscheme R with graph

and define the angle α0 ∈ ]0, π
2 [ such that the graph

is parabolic according to (2). Then, by [10, Sect. 1.4, Lemma], the graphs

wherein indices i ≥ 1 are taken modulo 6, form a 	-cycle of length 6 consisting of six
different doubly asymptotic 5-orthoschemes where two neighbours share a vertex at
infinity. According to the weights, a cycle may consist of tuples of isometric members
and “collapse” to a cycle consisting of a smaller number of non-isometric members.
This phenomenon reduces the length of the cycle, accordingly. Here are the most
prominent examples for the subsequent investigations:

(3)

(4)

(5)

(6)

where the weights in (5) and (6) are given by the conditions

0 < λ,ω1,ω2 <
π

2
with

cos(2λ) = 1

4
, ω1 = π

3
− λ, ω2 = π

3
+ ω1.

(7)

Denote by τ the golden ratio given by τ = 2 cos π
5 = 1+√

5
2 satisfying the quadratic

equation τ 2 = τ + 1. Then, we deduce the following relations:

sinω1 =
√

3

8
(τ − 1), sinω2 =

√
3

8
τ. (8)

Observe that the V -cycle (4) is a realisation of the cycle of length 3 given by

(9)



Discrete Comput Geom (2012) 47:629–658 635

where 0 < α,β,γ < π
2 satisfy the equation (cf. also (1))

cos2 α + cos2 β + cos2 γ = 1. (10)

The Z-cycle (6) of length 4 is not of type (9), (10). However, its members belong
to different dissections of an ideal regular 5-simplex S∞

reg(2λ) with dihedral angle 2λ

satisfying (7) (see Sect. 3.2, Remark 2).
Closely related to the doubly asymptotic 5-orthoschemes above is the following

group of simply asymptotic 5-orthoschemes:

(11)

as well as the following group of (simply) asymptotic 5-orthoprisms:

(12)

We shall be able to determine all volumes for (11) and (12) as rational linear com-
binations of the characteristic units ζ(3), L3(

π
5 ). Then, it will be possible to relate

them to some members of (5) and to some members of the Z-cycle and therefore to
the volume μ5 := vol5(Sreg(2λ)) in hyperbolic 5-space (cf. Sect. 4).

3 Scissors Congruences in Hyperbolic 5-Space

In the hyperbolic space, asymptotic orthoschemes play a particularly important role
in the context of scissors congruence.

Let Yn be either H
n or Hn = H

n ∪ ∂H
n. Recall that the scissors congruence group

P (Y n) is the abelian group generated by [P ] for each polyhedron P in Yn equipped
with the relations (i) [P � Q] = [P ] + [Q] (� denotes disjoint interior union) and
(ii) [P ] = [Q] for P isometric to Q. For n ≥ 2, the group P (Hn) is generated by the
classes of simply asymptotic orthoschemes, while, for n > 1 odd, the group P (Hn)

is generated by the classes of doubly asymptotic orthoschemes (for references, see
for example [3]). The proof of these results is based on several cutting and past-
ing procedures for orthoschemes (cf. Sects. 3.2 and Sect. 3.3 below). By applying
the homomorphism given by the volume functional, these two scissors congruences,
combined with some more relations including the barycentric dissection for regular
simplices, will enable us to derive the volumes of all polytopes in (11) and (12) and
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Fig. 2 Bisecting the angle of
parallelism

to relate the volume of some members of the W -cycle to the volume μ5 of an ideal
regular 5-simplex. This will be achieved by elegant decomposition relations, avoid-
ing hard analytic computations. In the sequel, we present the scissors congruences in
detail for asymptotic orthoschemes and orthoprisms of dimension n = 5, only.

3.1 Bisecting the Angle of Parallelism

Let R = p0 · · ·p5 denote a doubly asymptotic 5-orthoscheme with vertices p0, . . . , p5
and with graph

The dihedral angles α1 and α5 appear as angles of parallelism in simply asymptotic
triangles. For instance, α1 is the angle of parallelism in the triangle p0p1p2 (cf. Fig. 1)
whence

sinα1 = 1

coshp1p2
. (13)

Write α1 =: 2α. In the sequel, we decompose R into 6 simply asymptotic or-
thoschemes two of which are isometric to one another with angle of parallelism
equal to α. Draw the angle bisector l of α1 in the triangle p0p1p2 and denote
by q0 := l ∩ p0p1 the intersection of l with the line defined by p0,p1. Consider
the hyperplane H through q0 which is orthogonal to the line p0p5 and define
qi := H ∩ p0pi+1 for 1 ≤ i ≤ 4 (cf. Fig. 2).

Write q5 := p0 ∈ ∂H
5 and form the convex hull

Rk := q0 · · ·qk−1pkpk+1 · · ·p5, 0 ≤ k ≤ 6. (14)

By construction, each Rk , 0 ≤ k ≤ 6, is a 5-orthoscheme with R = R0 and R6 =:
Q = q0 · · ·q5. For k �= 0, the orthoscheme Rk is simply asymptotic. Furthermore, R1
is isometric to R2, and R5 is isometric to R6 (cf. Fig. 1 and use angle parallelism).
The construction (14) yields the scissors congruence relation

[R] =
6∑

k=1

[Rk] = 2[R2] + [R3] + [R4] + 2[R5] (15)
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called the bisection of the angle of parallelism. In the following, we determine the
metric properties of the dissecting orthoschemes. Denote the graphs associated with
R2, . . . ,R5 by

(16)

where we put ω := π − 2ω. By (2), the parabolicity of the subgraph of R2 associated
with the common vertex p5 yields

cos2 u =
(

1 − cos2 α3

sin2 α4

)
sin2 α. (17)

In order to determine the remaining parameters in (16), we consider the 3-face
q0q1q2q3 in Q (cf. Fig. 2). The vertex figure associated with q3 is a right-angled
spherical triangle with angles α2, α3 so that its edge length δ opposite to α3 appears
as the planar angle opposite to the edge q1q2 in the face q1q2q3. By (13) and with
some non-Euclidean trigonometry, one easily computes δ and the lengths of the or-
thogonal edge path in q0q1q2q3 according to

coshq0q1 = 2 cos2 α√
4 cos2 α − 1

, cos δ = cosα3

sinα2
,

sinhq1q2 = tanhq0q1 · cotα2, sinhq2q3 = tanhq1q2 · cot δ.

(18)

In a similar way, by considering the vertex figures associated with q2 in the 3-faces
q2q3q4p5 of R5, q2q3p4p5 of R4 and q2p3p4p5 of R3 respectively, we obtain the
relations

tanhq2q3 = cot z cotα5 = coty cot z; sinx = cosα5 siny

cos z
. (19)

The remaining parameters v,w are determined by a parabolicity condition (2).

Example 1 For the pseudo-Coxeter orthoscheme R with graph given by (cf. (3))

one derives the relations

Hence, by (15), it follows that

[U1] = 3[A] + 3[B]. (20)
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Example 2 For the pseudo-Coxeter orthoscheme R with graph (cf. (4))

one derives the relations

Again, by (15), we obtain that

[V2] = 2[A] + 4[C]. (21)

Example 3 For the cycle neighbour R of V2 in (4) given by

one derives the relations

Here, we obtain that

[V3] = 2[B] + 4[D]. (22)

Remark 1 It is not hard to generalise the dissection (15) by dissecting the angle of
parallelism α1 = β1 + β2 for arbitrary 0 < β1, β2 < α1.

3.2 Reversing to Infinity

Let R = p0 · · ·p5 be a simply asymptotic 5-orthoscheme with vertices p0, . . . , p4 ∈
H

5 and with p5 ∈ ∂H
5 encoded by the graph

Prolong the (finite) oriented geodesic segment p0p1 from p0 to p1 in the reversed
sense to a geodesic half-line l1 with limit point q0 ∈ ∂H

5, say. In the same way,
prolong all oriented edges p0pi in the reversed sense in order to obtain geodesic
half-lines li for 2 ≤ i ≤ 5 (cf. Fig. 3). Consider the hyperplane H through q0 which is
orthogonal to l5 and define the points qi := H ∩ li+1 for i = 1, . . . ,4, and let q5 := p0.
Form the convex hull

Rk := q0 · · ·qk−1pk · · ·p5, 0 ≤ k ≤ 6.
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Fig. 3 Reversing to infinity

It follows easily (cf. also [3, Theorem (2.6), (ii)]) that R0 = R and R6 =: Q are simply
asymptotic and that Rk , 1 ≤ k ≤ 5, are doubly asymptotic orthoschemes satisfying the
relation

[R] + [Q] =
5∑

k=1

(−1)k−1[Rk]. (23)

Since Q is simply asymptotic with vertex q0 ∈ ∂H
5 and with spherical vertex figure

at q5 = p0 isometric to that one of R at p0, we deduce that its graph equals

where α6 ∈ ]0, π
2 [ is given by the parabolicity condition (2), that is,

cos2 α4

sin2 α3
+ cos2 α5

sin2 α6
= 1. (24)

For the graphs of the orthoschemes Rk , 1 ≤ k ≤ 5, write (cf. also Fig. 1)

(25)

The dihedral angles x1, u1, z3, v6 (and therefore u,v) can be determined by the
parabolicity condition (2). Then, the dihedral angles x2, z2 follow from the condi-
tions

tanu tanx2 = tanα4 tanα5, tanα2 tanα3 = tan z2 tanv, (26)
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Fig. 4 Vertex figures at q0

which reflect the bi-asymptoticity of the 5-orthoschemes R2 and R4 (cf. [10, Sect. 1.4,
Lemma]). Again, the parameters y1, y3 follow from (2). As for x3, z1, observe that

x1 + x3 = x2, z1 + z3 = z2. (27)

Indeed, for the first part of (27), consider the 3-faces q0p1p2p3 of R1, q0q1p2p3 of
R2 and q0q1q2q3 of R3, respectively. The (Euclidean) vertex figures associated with
q0 yield a picture (with obvious labellings) as drawn in Fig. 4. Now, the first relation
in (27) is the angle sum x2 = x1 + x3 at p′

3. The second relation of (27) is verified
accordingly by considering the vertex p5. Finally, the dihedral angle y2 follows from
the parabolicity condition (2).

Example 1 For the pseudo-Coxeter orthoscheme R with graph (cf. (11))

one obtains (cf. Sect. 2.3, Remark, and (3)–(5), (7))

(28)

Hence, by (23), we deduce that

[A] + [B] = [W3] − [W2] + [U1] + [V3] − [V2]. (29)

Notice that we obtain the identical relation (29) by starting with an orthoscheme R

given by the graph 	(R) = A.

Example 2 For the pseudo-Coxeter orthoscheme R with graph (cf. Sect. 3.1)
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one obtains (cf. Sect. 2.3, Remark, and (3)–(5), (7))

(30)

Hence, by (23), we deduce that

[C] + [D] = [W1] − [W4] − [U2] + [V1] + [V2]. (31)

Observe that the relations obtained so far do not allow as yet to express the elements
[A], [B], [C], [D] only in terms of members of the U - and the V -cycle (3) and (4)
whose volumes are well known (cf. Sect. 4).

Remark 2 Consider the orthoscheme R with graph

which is related to the orthoscheme cycle (6) associated with an ideal regular hy-
perbolic 5-simplex S := S∞

reg(2λ) of dihedral angle 2λ given by (7). By reversing to

infinity according to (23)–(27), we deduce easily the scissors relation

which is compatible with the well-known barycentric subdivison for S := S∞
reg(2λ).

More precisely, let c be the centre of gravity and q one of the vertices at infinity of S.
By drawing successively perpendiculars starting from c or from q , or by applying the
dissection procedure above and in Sect. 3.3 below (cf. [3, (7.4), p. 147], for example),
one obtains the scissors relations
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Fig. 5 Extending to infinity

In particular, we deduce that

μ5 := vol5(S
∞
reg(2λ)) = vol5(S) = 720 vol5(Z)

= 120 vol5(Z2) = 48 vol5(Z3) = 36 vol5(Z4). (32)

3.3 Extending to Infinity

Let us start with the easiest case and consider a doubly asymptotic 5-orthoscheme
R = p0 · · ·p5 with vertices p0, . . . , p5 and with graph

The bi-asymptoticity of R can be expressed according to (cf. (26))

tanα1 tanα2 = tanα4 tanα5. (33)

Now, prolong the geodesic half-line p0p1 defined by p0 and p1 beyond p1 in order
to obtain a geodesic line l. Denote by q0 ∈ ∂H

5 the limiting point associated with l.
Let H be the hyperplane through q0 orthogonal to the line defined by p0 and p5, and
let qi := H ∩ p0pi+1 for i = 1, . . . ,4. Set q5 := p0 and consider the convex hull

Rk := q0 · · ·qk−1pk · · ·p5, 0 ≤ k ≤ 6.

Obviously, R = R0, and write Q := R6. Then, by [3, Theorem (2.6) and Sect. 6], each
Rk is a doubly asymptotic 5-orthoscheme which takes part of the scissors congruence
relation

[R] = −
p∑

k=1

[Rk] +
6∑

k=p+1

[Rk], (34)

where the index p ∈ [1,5] depends on the measures of the dihedral angles α1, . . . , α5
of R. For example, if the dihedral angle α1 < π/4 (resp. α1 > π/4), then the foot
point q1 of the perpendicular from q0 to the half-line p0p2 lies inside of R (resp.
outside of R), a fact which we denote by q1 ∈ R (resp. q1 /∈ R); see also Fig. 5. By
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the identity (33) and the parabolicity condition (2), it is easy to see that R is isometric
to R1 and that Q is isometric to R5 (cf. dihedral angle distribution in Fig. 1). The
graph of Q is given by

where α6 ∈ ]0, π
2 [ is given by (24). Hence, if α1 < π/4 and q1 ∈ R, then p = 1, and

(34) turns into (cf. [10, (18)])

2[R] = 2[Q] + [R2] + [R3] + [R4]. (35)

Now, denote the graphs of R2,R3,R4 as follows (cf. also Fig. 1):

(36)

where the parameter ϕk ∈ ]0, π
2 [, k = 1,6, depends—by parallelism considerations—

on αk as follows:

ϕk :=
{

2αk, if αk < π
4 ;

π − 2αk, if αk > π
4 .

(37)

By the parabolicity conditions (2) and (33), the dihedral angles x1, y1, z2, y3 are easy
to determine. As for x2 ∈ ]0, π

2 [ and finally p (cf. (34)), consider the different posi-
tions of q1 and q2 relative to R inside the 3-faces q0q1p2p3 and q0q1q2p3 and the
position of q3 relative to R . It follows at once that

x2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α2 − x1, if q1 ∈ R and p = 1; (38a)

α2 + x1, if q1 /∈ R and q2 ∈ R and p = 2; (38b)

π − (α2 + x1), if q1, q2 /∈ R and q3 ∈ R and p = 3; (38c)

π − (α2 + x1), if q1, q2, q3 /∈ R and p = 4. (38d)

We illustrate these dissections by providing several useful examples connecting
members of the W -cycle with members of the V -cycle and—most importantly—the
orthoscheme Z4 (cf. (4)–(7), also Sect. 3.4 below).

Example 1 For the pseudo-Coxeter orthoscheme R with graph (cf. (5))

one obtains
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so that q1, q3 ∈ R by (37). Furthermore, by (9) and (38a), one derives that p = 1 and

Hence, by (35), we deduce that

2[W2] = 4[W1] + [V3]. (39)

Example 2 For the pseudo-Coxeter orthoscheme R with graph

one gets q1 /∈ R and

so that q3 ∈ R by (37). By (38b), we obtain p = 2 and

Hence, by (34), we deduce that

3[W3] = 3[W2] + [V2]. (40)

Example 3 For the pseudo-Coxeter orthoscheme R with graph

one gets q1 /∈ R and

so that q3 ∈ R by (37). By (38b), we obtain p = 3 and
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Hence, by (34), we obtain

4[W4] = 2[W3] + [V1]. (41)

Example 4 For the pseudo-Coxeter orthoscheme R with graph

one gets q1 /∈ R and

so that q3 /∈ R by (37). By (38d), we obtain p = 4 and, by (6) and (7),

By (34), we deduce that

2[V1] = 2[V3] + [W2] + [W3] + [Z4]. (42)

Remark 3 The extension to infinity as described by (34) can be easily generalised to
the case when the vertex p0 of R is finite (respectively ultra-ideal). The orthoschemes
Rk , 1 ≤ k ≤ 5, will be 2-asymptotic, and the orthoscheme R6 = Q will be simply
asymptotic (respectively truncated with respect to p0). More precisely, we obtain a
dissection according to (34) where the graphs of R1, . . . ,R5 are as follows:

(36′)

where the parameters ϕk ∈ ]0, π
2 [ as well as x1, y1, y2, z1, z2 are determined by the

parabolicity conditions (2) and (33), while

ψ1 =
{

α1 + ϕ1, if α1 + ϕ1 < π
2 ,

π − (α1 + ϕ1), if α1 + ϕ1 > π
2 ;

ψ2 =
{

α6 + ϕ4, if α6 + ϕ4 < π
2 ,

π − (α6 + ϕ4), if α6 + ϕ4 > π
2
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and

x2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ2 − x1, if q1 ∈ R and p = 1; (38a′)

ϕ2 + x1, if q1 /∈ R and q2 ∈ R and p = 2; (38b′)

π − (ϕ2 + x1), if q1, q2 /∈ R and q3 ∈ R and p = 3; (38c′)

π − (ϕ2 + x1), if q1, q2, q3 /∈ R and p = 4. (38d′)

We describe this case by giving some useful examples.

Example 5 For the pseudo-Coxeter orthoscheme R with graph

one gets q1 /∈ R and

so that q3 ∈ R. Furthermore, one sees that q2 ∈ R implying p = 2. It follows that

By (34), we deduce that

[A] = [B] + 3[V3] − 2[U1]. (43)

Example 6 For the pseudo-Coxeter orthoscheme R with graph

one gets q1 /∈ R and

so that q3 ∈ R. Furthermore, one sees that q2 ∈ R implying p = 2. Using (6) and (7),
one derives that
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By (34), we deduce that

[C] = [D] + [W1] + [W2] + [Z3] − 2[V2]. (44)

The next two examples serve exclusively to illustrate the differences between the
seemingly related ordinary orthoschemes belonging to (11) and satisfying (43), (44)
and the truncated counterparts belonging to (12).

Example 7 For the pseudo-Coxeter orthoprism R with graph

one gets

and p = 3. Here, one derives

[A] = [B] + [W3] − [W2] + [V1] − [V2] − [U2]. (45)

Example 8 For the pseudo-Coxeter orthoprism R with graph

one gets

so that q3 /∈ R implying p = 4. Here, one derives

[C] = [D] + [W4] − [W1] − [U1] − [V2] − [V3]. (46)

Remark 4 Another version of extending to infinity is to consider an orthoscheme R

with vertex at infinity p0 and with ultra-ideal vertex p5 which, by truncation, leads
to an asymptotic orthoprism with graph

The corresponding case with finite vertex p5 will not be considered here since the
reversion process of Sect. 3.1 applied to the group (11) provides identical dissec-
tions. By extending to infinity the half-line p0p1, the limit point q0 ∈ ∂H

5 together
with the vertices p1, . . . , p5 yields a polytope R1 isometric to R. The hyperplane
H through q0 and orthogonal to the line determined by p0,p5 provides as in (34) a
dissection of R by means of truncated orthoschemes Rk = q0 · · ·qk−1pk · · ·p5 with
qi = H ∩p0pi+1, with the exception that the member Q = R6 is a doubly asymptotic
orthoscheme with graph
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where α6 is given by (24). Hence,

2[R] +
p∑

k=2

[Rk] =
5∑

k=p+1

[Rk] + [Q], (47)

where the sum of the left-hand side is void if p = 1, and where the explicit descrip-
tion of R2, . . . ,R5 is based on standard non-Euclidean computations (see Sects. 3.1
and 3.2) yielding

(48)

The angle ϕ1 satisfies the condition (37), and the angle x2 is subject to the conditions
(38a)–(38d). The relation

tanx1 = tanα1 tanα2 cotϕ1

follows from comparing the hypotenuse of the vertex figures associated with p3 in the
3-faces q0q1p2p3 and q0p1p2p3, and the parameter y1 is determined by the parabol-
icity condition (2). As for the remaining parameters, observe that

y2 =

⎧⎪⎨
⎪⎩

π − (y1 + y3), if p = 1,4,

y1 − y3, if p = 2,

y3 − y1, if p = 3,

and z2 =

⎧⎪⎨
⎪⎩

π − (z1 + z3), if p = 1,2,

z1 − z3, if p = 3,

z3 − z1, if p = 4.

Indeed, the relation between the dihedral angles y1, y2, y3 which are attached to the
edge q1p4 in the 3-faces q1p2p3p4, q1q2p3p4, q1q2q3p4 follows by their relative
position in the cone C with apex p0 over the triangle p2p3p4. The identity be-
tween z1, z2, z3 follows by considering the edge q2p5 in C in a similar fashion. By
these identities and the parabolicity condition (2), it suffices to determine z1 and u1.
First, observe that the edge length p2p3 (resp. q2q3) in the simply asymptotic 3-face
p0p1p2p3 of R (resp. q0q1q2q3 of Q) is given by

tanhp2p3 = cotα1 cotα2 (resp. tanhq2q3 = cotα2 cotα3). (49)

Next, consider the vertex figures at p3, q2 (resp. p2) in the 3-faces q0q1q2p3,
q2p3p4p5 (resp. p2p3p4p5) of R3. For the planar angles δ := ∠(q0p3q2), σ :=
∠(p3q2p4) and ρ := ∠(p3p2p4) one easily deduces the identities

cos δ = cotα2 cotx2, sin δ = 1

sinhq2p3
,

cosσ = cos z1

sinα5
,

cosρ = cosα4

sinα5
, tanρ = tanhp3p4

sinhp2p3
,

(50)
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which together with (49) allow us to determine z1. It remains to find u1 which
we perform in a similar way. Consider the planar angles ζ := ∠(p4q2p5) and
ξ := ∠(q3q2p4) in the 3-face q2q3p4p5 of R4. We obtain the trigonometrical identi-
ties

cos ζ = cosα5

sin z1
, sinu1 = tan ζ

sin ξ
,

tanhq2q3

cos ξ
= tanhq2p4 = tanhq2p3

cosσ
,

which by means of (49) and (50) lead to u1. Here are some illustrating and important
examples.

Example 9 For the pseudo-Coxeter orthoprism R with graph

one gets p = 2 and

as well as

Therefore,

3[B] = 3[A] + [U2]. (51)

Example 10 For the pseudo-Coxeter orthoprism R with graph

one gets p = 1 and

and

Hence,

2[A] = 2[C] + [V2]. (52)

Example 11 For the pseudo-Coxeter orthoprism R with graph
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one gets p = 3 and

as well as

Therefore,

4[D] = 2[B] + [V1]. (53)

It is interesting to observe the similarity of the scissors relations (52)–(54) to the ones
in (20)–(22)!

3.4 Extension and Polar Reflection

Let R = p0 · · ·p5 ⊂ H
5 denote an asymptotic orthoscheme with ideal vertex p5 and

ultra-infinite vertex p0 which is truncated by the polar hyperplane P0 associated with
p0. Denote the graph of R by

The hyperplane P0 intersects the line determined by p0 and p1 at an ordinary point π ,
say. The two rays (of opposite orientation) πp0 and πp1 intersect the boundary ∂H

5

in the ideal points p̄0 and q0, say, which lie symmetrically with respect to π and P0.
The following scissors procedure has first been described by Debrunner in the case of
H

3 (cf. [3, p. 145]). Consider as usual the hyperplane H through q0 and orthogonal
to p0p5 providing the intersection points q1, . . . , q4 on the edges p0p2, . . . , p0p5.
In the same way, consider the hyperplane H through p̄0 and orthogonal to p0p5
providing the intersection points p̄1, . . . , p̄4 on the edges p0p2, . . . , p0p5. Since the
polar hyperplane P0 cuts orthogonally all hyperplanes passing through p0, it follows
from the construction that the prism Q =: q0 · · ·q4P0 given by the convex hull of the
set {q0, . . . , q4,P0 ∩R} is isometric to the prism R =: p̄0 · · · p̄4P0 given by the convex
hull of the set {p̄0, . . . , p̄4,P0 ∩R}. The prism R has the orthoscheme p̄0 · · · p̄4 as top
face and shares the base P0 ∩ R with Q whose top face is given by the orthoscheme
q0 · · ·q4 (cf. Fig. 6).

For their graph, we obtain

where α6 is given by the parabolicity identity (24). The following dissection is a natu-
ral consequence of our considerations. Consider the doubly asymptotic orthoschemes
Rk := p̄0 · · · p̄k−1pk · · ·p5, 1 ≤ k ≤ 5. Then,

[R] + [Q] = [R] + [R] =
5∑

k=1

[Rk], (54)
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Fig. 6 Extension and polar reflection w.r.t. the polar hyperplane P0 of p0

where the graphs of Rk , 1 ≤ k ≤ 5, are given by

(55)

subject to the relations

u1 + u2 = α1, v2 − v1 = α5,

x1 + x2 + x3 = π.
(56)

In fact, the first two identities of (56) follow from the induced decompositions in the
triangles p0p1p2 and p0p3p4, both truncated by P0. The third identity follows from
the fact that x1, x2 and x3 are attached to the edge p̄0p3 which is common to the
3-faces p̄0p1p2p3, p̄0p̄1p2p3 and p̄0p̄1p̄2p3 (cf. also Remark 4). These relations
together with the parabolicity condition (2) allow to determine all parameters in (55).
We illustrate the dissection (54) with some examples.

Example 12 For the pseudo-Coxeter orthoprism R with graph
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one gets

and

Therefore,

[A] + [B] = 2[U2] + 3[V1]. (57)

Example 13 For the pseudo-Coxeter orthoprism R with diagram

one gets

as well as

Therefore,

[C] + [D] = 2[V2] + [W3] + [W4] + [Z3]. (58)

The identities (57) and (58) should be compared with (43) and (44) of their non-
truncated counterparts. The similarities are striking but the geometric background is
mysterious.

4 Volume Computations

4.1 A Simple Volume Formula

In [11, Theorem 3], we derived an explicit formula for the volume of a doubly asymp-
totic hyperbolic 5-orthoscheme. Since the scissors congruence group P (H5) of ex-
tended hyperbolic 5-space H5 = H

5 ∪ ∂H
5 is generated by doubly asymptotic or-

thoschemes, this result solves in principle the volume problem in hyperbolic 5-space.
However, applying the formula to concrete cases such as (6) yields very complicated
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combinations of trilogarithmic values related to the weigths of (6). There is very little
hope to simplify the expression by using the few known functional equations for the
trilogarithm function involved. However, the volume formula simplifies drastically
when restricting to doubly asymptotic orthoschemes R = R(α,β, γ ) with graph of
type (9), i.e.

For this case, we proved that (cf. [10, (4)])

vol5(R) = 1

4

{
L3(α) + L3(β) − 1

2
L3

(
π

2
− γ

)}

− 1

16

{
L3

(
π

2
+ α + β

)
+ L3

(
π

2
− α + β

)}
+ 3

64
ζ(3), (59)

where the trilobachevsky function L3(ω) is related to the classical trilogarithm func-
tion

Li3(z) =
∞∑

r=1

zr

r3
, z ∈ C,

by the identity (cf. [10, Sect. 2]; for L2(ω), see (69))

L3(ω) = 1

4
�(

Li3(e
2iω)

) = 1

4

∞∑
r=1

cos(2rω)

r3
= 1

4
ζ(3) −

∫ ω

0
L2(t) dt. (60)

The function L3(ω) is even, π -periodic and satisfies the distribution law

1

m2
L3(mω) =

m−1∑
r=0

L3

(
ω + rπ

m

)
. (61)

In particular, we obtain the values

L3(0) = 1

4
ζ(3), L3

(
π

2

)
= − 3

16
ζ(3),

L3

(
π

5

)
+ L3

(
2π

5

)
= − 3

25
ζ(3).

(62)

Notice that formula (59) is a specialised 5-dimensional analogue of Lobachevsky’s
formula (see [9] and (68), for example) for a hyperbolic 3-orthoscheme R =
R(α,β, γ ) with graph

In five dimensions, as an application of (59)–(62), one can determine easily the vol-
umes of all members of the V -cycle (4), as first done in [10, Sect. 3.2]. In the sequel,
we use the following notation.
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Notation For an orthoscheme F with graph 	(F), put f = vol5(	(F )) := vol5(F ).
Therefore,

v1 = vol5(V1) = 1

144

{
L3

(
π

5

)
+ ζ(3)

5

}
≈ 0.001998,

v2 = vol5(V2) = ζ(3)

1200
≈ 0.001002, (63)

v3 = vol5(V3) = 1

144

{
− L3

(
π

5

)
+ 2ζ(3)

25

}
≈ 0.000339.

Furthermore, by using the dissection by extending to infinity as described in
Sect. 3.3, we computed in [10, Sect. 3.2] the volumes of the two members of the
U -cycle (3), and we obtained

u1 = vol5(U1) = 1

96
L3

(
π

5

)
≈ 0.000493,

u2 = vol5(U2) = 1

96
L3

(
π

5

)
+ ζ(3)

800
≈ 0.001996.

(64)

4.2 The Volumes of A,B,C,D and A,B,C,D

The simplices A,B,C,D of the group (11) are simply asymptotic orthoschemes
while the polytopes A,B,C,D of the group (12) are simply asymptotic orthoprisms
(or 1-truncated orthoschemes). For the graph 	 of each of these polytopes P , we note

(65)

where the vertex represents either an ordinary vertex ◦ or an ultra-ideal vertex .
Observe that a polytope of type (65) is described by four independent (acute) angle
parameters uniquely up to isometry. Indeed, the parameters α2, . . . , α5 satisfy the
parabolicity relation (2). By the Schläfli volume differential (see e.g. [16, p. 118]),
the volume of P is—up to constants—equal to the simple integral of the differential

(66)

where x′ := π/2 − x,

tan r tanα1 = tan s cotα2 = tan t tanα3 = tan θ1 =
√

sin2 α1 sin2 α3 − cos2 α2

cosα1 cosα3
,

tanv cotα4 = tanu tanα3 = tan θ2 =
√

sin2 α3 sin2 α5 − cos2 α4

cosα3 cosα5
,

(67)
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and where the integrands are given by the analytic expression (cf. [9, Theorem II])

(68)

with

tan θ =
√

cos2 y − sin2 x sin2 z

cosx cos z
,

and the classical Lobachevsky function

L2(ω) = 1

2
�(

Li2(e
2iω)

) = 1

2

∞∑
r=1

sin(2rω)

r2
= −

∫ ω

0
log |2 sin t |dt. (69)

In particular, in the limiting case, one obtains

Formulas (66)–(69) furnish evidence that the computation of vol5(P ) is very chal-
lenging and that the evaluation for particular examples does not provide simple ex-
pressions in the angle parameters. However, by means of the scissors relations (20)–
(57) and the elegant expressions (63), (64), we are able to determine the volumes
of all members of the groups (11) and (12), and this without painful (and possibly
unsuccessful) polylogarithmic calculations as just mentioned.

Theorem I

(a) The volumes of the simply asymptotic hyperbolic 5-orthoschemes A,B,C,D as
given by (11) are equal to

a = ζ(3)

1200
− 11

576
L3

(
π

5

)
, b = − ζ(3)

1200
+ 13

576
L3

(
π

5

)
,

c = − ζ(3)

4800
+ 11

1152
L3

(
π

5

)
, d = ζ(3)

1800
− 5

384
L3

(
π

5

)
.

(70)

(b) The volumes of the simply asymptotic hyperbolic 5-orthoprisms A,B,C,D as
given by (12) are equal to

ā = ζ(3)

320
+ 11

576
L3

(
π

5

)
, b̄ = 17ζ(3)

4800
+ 13

576
L3

(
π

5

)
,

c̄ = 13ζ(3)

9600
+ 11

1152
L3

(
π

5

)
, d̄ = 61ζ(3)

28800
+ 5

384
L3

(
π

5

)
.

(71)
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Proof In order to verify the values in (a), combine the scissors equations (20) and
(43) and derive b = 7

6u1 − 3
2v3 and a = − 5

6u1 + 3
2v3. Equation (21) allows us to

conclude that c = 5
12u1 + 1

4v2 − 3
4v3. Finally, by (22), we obtain d = − 7

12u1 + v3.
Now, plug (63) and (64) into the equations which yields (70).

For the proof of the identities (b), we proceed similarly and combine (51) and
(57) in order to derive b̄ = 7

6u2 + 3
2v1 and ā = 5

6u2 + 3
2v1. Equation (52) then yields

c̄ = 5
12u2 + 3

4v1 − 1
4v2. Together with (53), this implies that d̄ = 7

12u1 + v1. Again,
by using the identities (63) and (64), the proof can be completed. �

4.3 The W -Cycle and the Ideal Regular 5-Simplex

For some members of the W -cycle we can express their volume as rational lin-
ear combinations of three universal constants, namely by adjoining to Apéry’s con-
stant ζ(3) and the value L3(

π
5 ) � 0.0473419788 the volume μ5 = vol5(S∞

reg(2λ)) =
720z � 0.0575647377 of an ideal regular 5-simplex (see (32)). We point out that the
field Q(

√
5), containing the golden ratio τ , is the ground field associated with the

(unique) arithmetic hyperbolic 5-orbifold of minimal volume (cf. [4] and [1]) while
μ5 is the maximal volume among all hyperbolic 5-simplex volumes (cf. [6] and [13]).
Of course, all three constants are certain trilogarithmic expressions. More precisely,
μ5 can be expressed as

μ5 = 45
∫ λ0

λ

{
L2

(
β(t) + θ(t)

) − L2
(
β(t) − θ(t)

)

+ L2

(
π

6
− θ(t)

)
− L2

(
π

6
+ θ(t)

)
+ L2

(
π

3
+ θ(t)

)

− L2

(
π

3
− θ(t)

)
+ 2L2

(
π

2
− θ(t)

)}
dt

where λ0 = 1
2 arccos 1

5 , β(x) = arccos sinx√
4 sin2 x−1

and θ(x) = arctan
√

2−5 sin2 x
sinx

.

In terms of ζ(3), L3(
π
5 ) and μ5, we obtain the following result.

Theorem II The volumes of the doubly asymptotic hyperbolic 5-orthoschemes
W1,W2,W3,W4 of the W -cycle as given by (5) are equal to

w1 = 1

144

{
5

4
L3

(
π

5

)
+ 3ζ(3)

100
− μ5

}
, w2 = 1

72

{
L3

(
π

5

)
+ ζ(3)

20
− μ5

}
,

w3 = 1

72

{
L3

(
π

5

)
+ 7ζ(3)

100
− μ5

}
, w4 = 1

144

{
5

4
L3

(
π

5

)
+ 3ζ(3)

25
− μ5

}
.

(72)

Proof By means of the scissors identities (32), (40) and (42), we obtain the equation
w2 = v1 − 1

6v2 − v3 − 1
72μ5. Then, (39) yields w1 = 1

2v1 − 1
12v2 − 3

4v3 − 1
144μ5. By

using again (40), we obtain w3 = v1 + 1
6v2 − v3 − 1

72μ5. Finally, by (41), we deduce
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that w4 = 3
4v1 + 1

12v2 − 1
2v3 − 1

144μ5. The results then follow with the help of (63)
and (64). �

Remark 5 In [15, pp. 269–270], L. Schläfli considered two so-called periods of spher-
ical 3-orthoschemes R(α,β, γ ) with angle parameters π

3 , π
3 , π

3 , λ,2λ,λ (respectively
π
5 , π

3 , π
3 , 2π

5 ω1 = π
3 − λ,ω2 = 2π

3 − λ) and deduced the values

vol3

(
R

(
π

3
,
π

3
, λ

))
= 3π

4
λ − π2

60
,

vol3

(
R

(
π

3
, λ,2λ

))
= 3πλ − π2

15
,

vol3
(
R(λ,2λ,λ)

) = π

2
λ − π2

10
,

vol3

(
R

(
π

3
,

2π

5
,ω1

))
= −3π

4
λ + 43π2

2400
,

vol3

(
R

(
2π

5
,ω1,ω2

))
= −π

4
λ − 391π2

7200
,

vol3

(
R

(
ω1,ω2,

π

5

))
= −π

4
λ − 401π2

7200
,

vol3

(
R

(
ω2,

π

5
,

2π

5

))
= −3π

4
λ − 53π2

2400
.

(73)

Observe that ζ(2) = π2/6 and that the totally orthogonal regular 3-simplex has vol-
ume π2/8 which tops λπ/2. The results in (73) are based—among other things—on
the reduction principle for even dimensional (spherical) simplices. This important
tool is not applicable when computing the volumes of the W -cycle!
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