Quaternions and some global properties of hyperbolic 5-manifolds

RUTH KELLERHALS*

Abstract. We provide an explicit thick and thin decomposition for oriented hyperbolic manifolds M of dimension 5. The result implies improved universal lower bounds for the volume $\operatorname{vol}_5(M)$ and, for M compact, new estimates relating the injectivity radius and the diameter of M with $\operatorname{vol}_5(M)$. The quantification of the thin part is based upon the identification of the isometry group of the universal space by the matrix group $PS_{\Delta}L(2,\mathbb{H})$ of quaternionic 2×2 -matrices with Dieudonné determinant Δ equal to 1 and isolation properties of $PS_{\Delta}L(2,\mathbb{H})$.

0. Introduction

The Margulis lemma for discrete groups of hyperbolic isometries has important consequences for the geometry and topology of hyperbolic manifolds of dimensions $n \geq 2$. There is a universal constant $\varepsilon = \varepsilon_n$ such that for each oriented hyperbolic n-manifold M of finite volume there is a thick and thin decomposition

$$M = M_{<\varepsilon} \cup M_{>\varepsilon} \tag{0.1}$$

of M as follows. The thick part $M_{>\varepsilon}$ having at each point an injectivity radius bigger than $\varepsilon/2$ is compact. The thin part $M_{\leq\varepsilon}$ of all points $p\in M$ with injectivity radius smaller than or equal to $\varepsilon/2$ consists of connected components of the following types. The bounded components are neighborhoods of simple closed geodesics in M of length $\leq \varepsilon$ homeomorphic to ball bundles over the circle. The unbounded components are cusp neighborhoods homeomorphic to products of compact flat manifolds with a real half line.

^{*} Partially supported by Schweizerischer Nationalfonds No. 20-61379.00. 2000 Mathematics Subject Classification. 53C22; 53C25; 57N16; 57S30; 51N30; 20G20; 22E40.

Estimates for the constant ε_n induce universal bounds for various characteristic invariants of M such as volume. Explicit values for ε_n are known for n=2 by work of P. Buser [Bu2, Chapter 4] and for n=3 by work of R. Meyerhoff [M]. For n=4, partial results are contained in [K3].

The aim of this work is to estimate the constant ε_5 and to derive some global properties such as new lower volume bounds for hyperbolic 5-manifolds M (cf. §2 and §3). We show that for $\varepsilon \leq \sqrt{3}/9\pi$ there is a decomposition of M according to (0.1). Moreover, we prove the universal bound $\operatorname{vol}_5(M) > 0.000083$.

To this end, we analyse the thin part of M and construct embedded tubes around simple closed geodesics of length $l \leq \sqrt{3}/8\pi$ of radius given by (cf. §2.1)

$$\cosh(2r) = \frac{1 - 3k}{k} \quad , \quad \text{where} \quad k = \frac{2\pi l}{\sqrt{3}} \quad . \tag{0.2}$$

The tubes around distinct closed geodesics of lengths $\leq \sqrt{3}/9\pi \simeq 0.0612$ are pairwise disjoint. In the non-compact case, they are also distinct from the canonical cusps associated to parabolic elements in the fundamental group of M.

Our considerations are based upon the identification of hyperbolic space H^5 and its boundary through quaternions such that $Iso^+(H^5)$ equals the group $PS_{\Delta}L(2; \mathbb{H})$ of quaternionic 2×2 -matrices with Dieudonné determinant $\Delta = 1$ as described by [H] and [Wil] (cf. §1.2). In this context, we characterise the isolation of the identity in $PS_{\Delta}L(2; \mathbb{H})$ (cf. §1.3). The strategies involved are standard and go back to [J], [Be] and [Wat].

The explicit tube construction (0.2) implies comparison results between injectivity radius, diameter and volume of compact hyperbolic 5-manifolds M (cf. §3.2). For example, we prove that the injectivity radius i(M) of M satisfies $i(M) \ge \operatorname{const} \cdot \operatorname{vol}_5(M)^{-1}$ improving results of P. Buser [Bu1] and A. Reznikov [Re].

In [CW, §9], C. Cao and P. Waterman constructed tubes around closed geodesics in hyperbolic n-manifolds M for $n \geq 2$ and give a lower bound for the in-radius of M by viewing isometries of hyperbolic n-space as Clifford matrices of pseudo-determinant 1. By different methods, Buser [Bu1, §4] obtained analogous results for compact hyperbolic manifolds of dimensions > 2. Both contributions provide clearly weaker bounds than ours when specialized to n = 5. As an illustration, the in-radius r(M) measuring the radius of a largest embeddable ball in M is bounded from below by 1/65536 according to [Bu1, Theorem 4.11] and by 1/544 according to [CW, Theorem 9.8] while we obtained the bound 1/30 (cf. Lemma 5).

Acknowledgement. The work was completed during a short stay at the Max-Planck-Institute for Mathematics in Bonn. The author expresses her thanks to the Director, Professor G. Harder, and to Professor F. Hirzebruch for the invitation and the hospitality.

1. The quaternion formalism for isometries of H^5

1.1. Loxodromic isometries of hyperbolic n-space

Let $\widehat{E}^n := E^n \cup \{\infty\}$. A Möbius transformation of \widehat{E}^n is a finite composition of reflections in spheres or hyperplanes of \widehat{E}^n and preserves cross ratios

$$[x,y;u,v] = \frac{|x-u|\cdot|y-v|}{|x-y|\cdot|u-v|}$$

for distinct points $x, y, u, v \in \widehat{E}^n$. The group of all Möbius transformations of \widehat{E}^n is denoted by $M(\widehat{E}^n)$, or by M(n) for short.

Consider hyperbolic space H^n in the upper half space E^n_+ , that is,

$$H^{n} = \left(E_{+}^{n}, ds^{2} = \frac{1}{x_{n}^{2}} \left(dx_{1}^{2} + \dots + dx_{n}^{2} \right) \right)$$
 (1.1)

with distance between two points $x, y \in H^n$ given by

$$\cosh d(x,y) = 1 + \frac{|x-y|^2}{2x_n y_n} \quad . \tag{1.2}$$

By Poincaré extension, every Möbius transformation $T \in M(n-1)$ gives rise to an element in $M(E_+^n)$ again denoted by T. In fact, $T \in Iso(H^n)$ since it leaves invariant the hyperbolic metric (1.2).

According to the fixed point behavior a Möbius transformation is either elliptic, parabolic, or loxodromic. For example, if $T \in M(E_+^n)$ has precisely one resp. two fixed points in \widehat{E}^{n-1} and none in E_+^n , then T is parabolic resp. loxodromic.

Let $T \in Iso(H^n)$ be a loxodromic element, and denote by $q_1, q_2 \in \partial H^n$ its two different fixed points. They determine a unique geodesic $a_T \subset H^n$, the axis of T, along which T acts as a translation. For $p \in a_T$, $d(p, T(p)) =: \tau$ is constant and called the translational length of T. Besides, T consists of a rotational part R such that – after a suitable conjugation – we obtain the representation

$$T = rA$$
 , where $r = e^{\tau}$, $A \in O(E^{n-1})$. (1.3)

For later purpose, we prove the following very useful property of T (cf. [K3, Lemma 1.3] for n=4).

PROPOSITION 1.

Let $T \in Iso(H^n)$ be a loxodromic element with axis a_T , with rotational part R and with translational length τ . Let $p \in H^n$ be such that $p \notin a_T$, and assume that the foot of the perpendicular from p to a_T is \hat{p} . Denote by $\omega = \omega(p)$ the angle at \hat{p} in the triangle $(p, \hat{p}, R(p))$. Let d = d(p, T(p)) and $\delta = d(p, a_T)$. Then,

$$\cosh d = \cosh \tau + \sinh^2 \delta \cdot \left(\cosh \tau - \cos \omega\right) \quad . \tag{1.4}$$

Proof: Without loss of generality, we may assume that $a_T = (0, \infty)$. Then, $\hat{p} = |p| e_n$. Let a := d(p, R(p)), b := d(R(p), T(p)), and $c := d(\hat{p}, T(p))$ (cf. Figure).

Figure.

Hyperbolic trigonometry yields with respect to the triangle $(p, \hat{p}, R(p))$

$$\cosh a = \cosh^2 \delta - \sinh^2 \delta \cos \omega = 1 + \sinh^2 \delta (1 - \cos \omega) \quad , \tag{1.5}$$

and with respect to the Saccheri quadrangle $(\hat{p}, T(\hat{p}), T(p), R(p))$

$$\cosh b = \cosh \tau \cosh^2 \delta - \sinh^2 \delta \quad , \tag{1.6}$$

and finally with respect to the right-angled triangle $(\hat{p}, T(\hat{p}), T(p))$

$$\cosh c = \cosh \tau \cosh \delta \quad . \tag{1.7}$$

Next, consider the hyperbolic tetrahedron $\Delta = \Delta(\hat{p}, p, R(p), T(p))$. The dihedral angle formed by the facets opposite to p and T(p), respectively, and attached at the edge $(\hat{p}, R(p))$ equals $\pi/2$. Denote by $\Delta_{R(p)}$ the spherical vertex figure of Δ at the vertex R(p). $\Delta_{R(p)}$ is a right-angled triangle with hypotenuse β , say. Furthermore, let u (resp. v) be the edge of $\Delta_{R(p)}$ in the facet opposite to p (resp. T(p)) in Δ . Then, $\cos \beta = \cos u \cos v$. By hyperbolic trigonometry, we deduce

$$\cosh d = \cosh a \cosh b - \sinh a \sinh b \cos \beta \quad , \tag{1.8}$$

as well as

Hence, by (1.7) and (1.9),

$$\cos \beta = \cos u \cos v = \frac{\cosh b \cosh \delta - \cosh \tau \cosh \delta}{\sinh b \sinh \delta} \cdot \frac{\cosh a \cosh \delta - \cosh \delta}{\sinh a \sinh \delta}$$
$$= \coth^2 \delta \cdot \frac{\cosh b - \cosh \tau}{\sinh b} \cdot \frac{\cosh a - 1}{\sinh a}.$$

By using (1.5), (1.6) and (1.8), we obtain

$$\cosh d = \cosh a \cosh b - \coth^2 \delta \left(\cosh b - \cosh \tau\right) \left(\cosh a - 1\right)$$

$$= \cosh a \cosh b \left(1 - \coth^2 \delta\right) + \coth^2 \delta \cdot \left[\cosh b + \left(\cosh a - 1\right) \cosh \tau\right]$$

$$= -\frac{1}{\sinh^2 \delta} \left[\cosh^2 \delta - \sinh^2 \delta \cos \omega\right] \cdot \cosh b +$$

$$+ \coth^2 \delta \cdot \left[\cosh b + \sinh^2 \delta \left(1 - \cos \omega\right) \cosh \tau\right]$$

$$= \cosh b \cos \omega + \cosh^2 \delta \cosh \tau \left(1 - \cos \omega\right)$$

$$= \cosh^2 \delta \cosh \tau \cos \omega - \sinh^2 \delta \cos \omega + \cosh^2 \delta \cosh \tau \left(1 - \cos \omega\right)$$

$$= \cosh \tau + \sinh^2 \delta \left(\cosh \tau - \cos \omega\right) .$$

q.e.d.

Remark. Let $0 \le \alpha_0, \ldots, \alpha_r < 2\pi$, $0 \le r < \left[\frac{n}{2}\right]$, with $\cos \alpha_0 \ge \cdots \ge \cos \alpha_r$ denote the rotation angles of the loxodromic element $T \in Iso(H^n)$. Then,

$$\cos \alpha_0 > \cos \omega > \cos \alpha_r$$
.

To see this, pass to the normal form of the orthogonal part $R \in O(n-1)$ of T and express $p = (p_0, \ldots, p_{n-2}, t) \in H^n$ with respect to the new basis in $E^{n-1} = \{t = 0\}$. Then, project the triangle $(p, \hat{p}, R(p))$ orthogonally down to $\{t = 0\}$ in order to compute

$$\cos \omega = \frac{(p_0^2 + p_1^2)\cos \alpha_0 + \dots + (p_{2r}^2 + p_{2r+1}^2)\cos \alpha_r + p_{2r+2}^2 + \dots + p_{n-2}^2}{p_0^2 + \dots + p_{n-2}^2}$$

$$\geq \frac{(p_0^2 + \dots + p_{n-2}^2)\cos \alpha_r}{p_0^2 + \dots + p_{n-2}^2} = \cos \alpha_r .$$

1.2. Quaternions and $Iso^+(H^5)$

Consider the quaternion algebra $\mathbb{H} = \{q = q_0 + q_1i + q_2j + q_3k \mid q_l \in \mathbb{R}\}$ with generators i, j, where k = ij as usually. \mathbb{H} is a Euclidean vector space with basis 1, i, j, k. Decompose a quaternion $q = q_0 + q_1i + q_2j + q_3k$ into scalar part $Sq := q_0$ and vector part $Vq := q_1i + q_2j + q_3k$ so that q = Sq + Vq. The (quaternionic) conjugate of q is given by $\overline{q} = Sq - Vq$ and satisfies $|q|^2 = q\overline{q} = \overline{q}q$. For a unit quaternion q, we can write

$$a = \exp(I\alpha) := \cos \alpha + I \sin \alpha$$
 for some $\alpha \in [0, 2\pi)$, (1.10)

where I is a pure unit quaternion, i.e., the scalar part of I vanishes and therefore $I=-\overline{I}$, or equivalently $I^2=-1$. Furthermore, write q=:u+vj with $u=q_0+q_1i$, $v=q_2+q_3i\in\mathbb{C}$. Then, there is the correspondence

$$q = (q_0 + q_1 i) + (q_2 + q_3 i) j = u + v j \quad \sim \quad Q := \begin{pmatrix} u & v \\ -\overline{v} & \overline{u} \end{pmatrix} \in Mat(2; \mathbb{C}) \quad .$$
 (1.11)

Consider a matrix $M \in Mat(2; \mathbb{H})$ and associate to M the complex block matrix

$$\mathcal{M} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Mat}(4; \mathbb{C})$$

according to (1.11). The trace $\operatorname{Tr} M$ of M is defined by

$$\operatorname{Tr} M := \frac{1}{2} \operatorname{tr} \mathcal{M} = S(a+d) \quad \text{for} \quad M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and is obviously conjugacy invariant. In order to establish a determinant of M we adopt the point of view of J. Dieudonné (cf. [D], [As]) and consider again \mathcal{M} . By exploiting the correspondence (1.11), one calculates (cf. [Wil, §3])

$$\det \mathcal{M} = |l_{ij}|^2 = |r_{ij}|^2$$
 , $1 \le i, j \le 2$, where (1.12)

$$l_{11} = da - dbd^{-1}c , l_{12} = bdb^{-1}a - bc ,
l_{21} = cac^{-1}d - cb , l_{22} = ad - aca^{-1}b ;
r_{11} = ad - bd^{-1}cd , r_{12} = db^{-1}ab - cb ,
r_{21} = ac^{-1}dc - bc , r_{22} = da - ca^{-1}ba .$$
(1.13)

In particular, det $\mathcal{M} \geq 0$, and

$$\det \mathcal{M} = |ad - aca^{-1}b|^2 = |ad|^2 + |bc|^2 - 2S(a\overline{c}d\overline{b}) \quad . \tag{1.14}$$

The quantity

$$\Delta = \Delta(M) :=_{+} \sqrt{\det \mathcal{M}} \tag{1.15}$$

is called the Dieudonné determinant of M.

PROPOSITION 2 [Wil, Theorem 1].

Let $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Mat(2; \mathbb{H})$ be such that $\Delta(M) \neq 0$. Then, M is invertible, and

$$M^{-1} = \begin{pmatrix} l_{11}^{-1}d & -l_{12}^{-1}b \\ -l_{21}^{-1}c & l_{22}^{-1}a \end{pmatrix} = \begin{pmatrix} dr_{11}^{-1} & -br_{12}^{-1} \\ -cr_{21}^{-1} & ar_{22}^{-1} \end{pmatrix} .$$

In order to abbreviate, we write

$$\begin{pmatrix} \tilde{c}d & \tilde{c}b \\ \tilde{c}c & \tilde{c}a \end{pmatrix} := \begin{pmatrix} l_{11}^{-1}d & l_{12}^{-1}b \\ l_{21}^{-1}c & l_{22}^{-1}a \end{pmatrix} , \qquad \begin{pmatrix} d_{\tilde{c}}b_{\tilde{c}} \\ c_{\tilde{c}}a_{\tilde{c}} \end{pmatrix} := \begin{pmatrix} dr_{11}^{-1} & br_{12}^{-1} \\ cr_{21}^{-1} & ar_{22}^{-1} \end{pmatrix} . \tag{1.16}$$

By coefficient comparison in $M\,M^{-1}=I=M^{-1}\,M$, one obtains the following useful identities.

Lemma 1.

Let $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Mat(2; \mathbb{H})$ be invertible. Then,

(i)
$$ad_{\tilde{a}} - bc_{\tilde{a}} = da_{\tilde{a}} - cb_{\tilde{a}} = 1$$
 ; $\tilde{a}da - \tilde{b}c = \tilde{a}d - \tilde{c}b = 1$.

(ii)
$$\tilde{a}d - \tilde{b}c = \tilde{d}a - \tilde{c}b = 1$$
 ; $\tilde{d}a - \tilde{b}c = \tilde{a}d - \tilde{c}b = 1$

(iii)
$$ab_{\tilde{a}} = ba_{\tilde{a}}$$
 , $cd_{\tilde{a}} = dc_{\tilde{a}}$; $\tilde{a}c = \tilde{c}a$, $\tilde{b}d = \tilde{d}b$.

$$(\mathrm{iv}) \ a\tilde{\ }b=b\tilde{\ }a \quad , \quad c\tilde{\ }d=d\tilde{\ }c \quad ; \quad a\tilde{\ }c=c\tilde{\ }a \quad , \quad b\tilde{\ }d=d\tilde{\ }b \quad .$$

By Lemma 1, the group $S_{\Delta}L(2; \mathbb{H})$ of all quaternionic 2×2 -matrices with Dieudonné determinant $\Delta = 1$ can be identified according to *

$$S_{\Delta}L(2;\mathbb{H}) = \{ T = \begin{pmatrix} a & b \ c & d \end{pmatrix} \in \operatorname{Mat}(2;\mathbb{H}) \mid ad_{\widetilde{}} - bc_{\widetilde{}} = 1 \} .$$

There is a close relationship to the group $Iso^+(H^5)$ of orientation preserving isometries of H^5 in the following way (cf. [H], [Wil]). Take the hyperbolic 5-space H^5 with its canonical orientation and parametrize the space with the aid of \mathbb{H} by writing $E_+^5 = \mathbb{H} \times \mathbb{R}_+$ so that $\partial H^n = \widehat{\mathbb{H}}$ (cf. (1.1)). The group $S_{\Delta}L(2; \mathbb{H})$ acts on $\widehat{\mathbb{H}}$ by linear fractional transformations

$$T(x) = (ax+b)(cx+d)^{-1}$$

^{*} Following L. Ahlfors [Al], $SL(2; \mathbb{H})$ is used to denote the group of quaternionic Clifford matrices of pseudo-determinant equal to 1.

with $T(\infty) = \infty$ for c = 0, and with $T(\infty) = ac^{-1}$ and $T(-c^{-1}d) = \infty$ for $c \neq 0$. By passing to the projectivized group

$$PS_{\Delta}L(2;\mathbb{H}) := S_{\Delta}L(2;\mathbb{H}) / \{\pm E\}$$
,

one gets the isomorphism

$$PS_{\Delta}L(2; \mathbb{H}) \simeq Iso^{+}(H^{5})$$
.

In the following, we do not distinguish in the notation between elements of these groups. Let $T \in Iso^+(H^5)$ be a loxodromic element with rotational part R (cf. (1.3)). Since T is orientation preserving, R is the Poincaré extension of the composition of either one or two rotations in planes of \mathbb{H} . In fact, $R \in SO(4)$ is given by (cf. [C2, (6.78)], [C1], [Po])

$$R(x) = axb$$
 with $a, b \in \mathbb{H}, |a| = |b| = 1$

In particular, the rotation through the angles $\pm \alpha + \beta \in [0, 2\pi)$, $0 \le \alpha \le \beta < \pi$, about two completely orthogonal planes is given by

$$\begin{pmatrix} \exp(\alpha I) & 0\\ 0 & \exp(-\beta J) \end{pmatrix} \tag{1.19}$$

for some unit pure elements $I, J \in \mathbb{H}$. Finally, consider a parabolic element $X \in Iso^+(H^5)$ which acts as a translation. Modulo conjugation in $PS_{\Delta}L(2;\mathbb{H})$, X can be written in the form

$$X = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}$$
 with $\mu \in \mathbb{H} \cong E^4$.

1.3. Isolation of the identity in $PS_{\Delta}L(2, \mathbb{H})$

Consider a non-elementary discrete two generator subgroup < S, T > of $PSL(2, \mathbb{C})$. By Jørgensen's trace inequality [J],

$$|\operatorname{tr}^2 T - 4| + |\operatorname{tr}[S, T] - 2| \ge 1$$
 , (1.20)

where $[S,T]=STS^{-1}T^{-1}$. By specializing, for example to an element

$$T = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$$
 with $|\lambda| \neq 1$,

the inequality (1.20) takes the form

$$|\lambda - \lambda^{-1}|^2 \cdot (1 + |bc|) \ge 1$$
 (1.21)

By writing $\lambda =: e^{\frac{1}{2}(\tau + i\alpha)}$, (1.21) turns into

$$2\left(\cosh\tau - \cos\alpha\right) \cdot \left(1 + |bc|\right) \ge 1 \quad . \tag{1.22}$$

Formulas avoiding trace such as (1.21) and (1.22) allow generalizations for $Iso^+(H^n)$ of geometrical relevance. In [Wat], P. Waterman presents various versions of (1.21) for the group $PSL(2; C_{n-2})$ of Clifford matrices associated to the Clifford algebra C_{n-2} with n-2 generators.

Here, we derive a formula analoguous to (1.22) for $PS_{\Delta}L(2;\mathbb{H}) \simeq Iso^+(H^5)$ and for an element

 $T = \begin{pmatrix} e^{\tau/2} \exp(I\alpha) & 0\\ 0 & e^{-\tau/2} \exp(-J\beta) \end{pmatrix}$

with rotational part according to (1.19) by adapting suitably standard methods (cf. [Be], [Wat] and [K3]).

PROPOSITION 3.

Let $S = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $T = \begin{pmatrix} e^{\tau/2} \exp(I\alpha) & 0 \\ 0 & e^{-\tau/2} \exp(-J\beta) \end{pmatrix} \in PS_{\Delta}L(2; \mathbb{H})$ be loxodromic elements generating a non-elementary discrete subgroup. Then,

$$2\left(\cosh\tau - \cos(\alpha + \beta)\right) \cdot \left(1 + |bc|\right) \ge 1 \quad . \tag{1.23}$$

Proof: We follow the strategy of [Wat, Theorem I]. Suppose that

$$\mu := 2(\cosh \tau - \cos(\alpha + \beta)) \cdot (1 + |bc|) < 1 \quad , \tag{1.24}$$

and write $\rho := e^{\tau/2}$ for short, as well as

$$T =: \begin{pmatrix} A & 0 \\ 0 & B^{-1} \end{pmatrix} .$$

Consider the Shimizu-Leutbecher sequence defined inductively by

$$S_0 = \begin{pmatrix} a_0 & b_0 \\ c_0 & d_0 \end{pmatrix} := S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} ;$$

$$S_{n+1} = \begin{pmatrix} a_{n+1} & b_{n+1} \\ c_{n+1} & d_{n+1} \end{pmatrix} := S_n T S_n^{-1} \quad \text{for} \quad n \ge 0 .$$

By §1.2, Proposition 2 and (1.16), one computes

$$S_{n+1} = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & B^{-1} \end{pmatrix} \begin{pmatrix} \tilde{c}d_n & -\tilde{c}b_n \\ -\tilde{c}c_n & \tilde{c}a_n \end{pmatrix}$$
$$= \begin{pmatrix} a_n A^{\tilde{c}}d_n - b_n B^{-1\tilde{c}}c_n & -a_n A^{\tilde{c}}b_n + b_n B^{-1\tilde{c}}a_n \\ c_n A^{\tilde{c}}d_n - d_n B^{-1\tilde{c}}c_n & -c_n A^{\tilde{c}}b_n + d_n B^{-1\tilde{c}}a_n \end{pmatrix}$$

Since $\Delta(S_n) = 1$, we deduce that $|a_n| = |a_{n_n}| = |\tilde{a}_n|$ and so forth. Therefore,

$$|b_{n+1}c_{n+1}| = |(-a_n A^{\tilde{}}b_n + b_n B^{-1\tilde{}}a_n) \cdot (c_n A^{\tilde{}}d_n - d_n B^{-1\tilde{}}c_n)|$$

$$= |a_n b_n c_n d_n| \cdot |A - a_n^{-1}b_n B^{-1\tilde{}}a_n b_n^{-1}| \cdot |A - c_n^{-1}d_n B^{-1\tilde{}}c_n d_n^{-1}| .$$
(1.25)

For the middle factor in (2.6), for example, one gets the estimate (cf. §1.2)

$$\begin{split} |A - a_n^{-1} b_n B^{-1} a_n \tilde{b}_n^{-1}| &= |SA + VA - (SB^{-1}) \cdot a_n^{-1} b_n \tilde{a}_n \tilde{b}_n^{-1} - a_n^{-1} b_n (VB^{-1}) \tilde{a}_n \tilde{b}_n^{-1} | \\ &= |S(A - B^{-1}) + VA - a_n^{-1} b_n (VB^{-1}) \tilde{a}_n \tilde{b}_n^{-1} | \\ &= \left\{ S(A - B^{-1})^2 + |VA - a_n^{-1} b_n (VB^{-1}) \tilde{a}_n \tilde{b}_n^{-1} |^2 \right\}^{1/2} \\ &\leq \left\{ \left(\rho \cos \alpha - \rho^{-1} \cos \beta \right)^2 + \left(|VA| + |VB^{-1}| \right)^2 \right\}^{1/2} \\ &= \left\{ \left(\rho \cos \alpha - \rho^{-1} \cos \beta \right)^2 + \left(\rho |\sin \alpha| + \rho^{-1} |\sin \beta| \right)^2 \right\}^{1/2} \\ &= \left\{ \rho^2 + \rho^{-2} - 2 c(\alpha, \beta) \right\}^{1/2} = \left\{ 2 \left(\cosh \tau - c(\alpha, \beta) \right) \right\}^{1/2} \end{split} ,$$

where we used the notation

$$c(\alpha,\beta) := \begin{cases} \cos(\alpha+\beta) & \text{if} \quad \alpha,\beta \in [0,\pi] \quad \text{or} \quad \alpha,\beta \in [\pi,2\pi) \,, \\ \cos(\alpha-\beta) & \text{else} \,. \end{cases}$$

Hence, $c(0,\beta) = \cos \beta$, and by (1.19), $c(\alpha,\beta) \geq \cos(\alpha+\beta)$. The same estimate results for the third factor in (1.25). Therefore,

$$|b_{n+1}c_{n+1}| \le |a_nb_nc_nd_n| \cdot \left\{ 2\left(\cosh\tau - \cos(\alpha + \beta)\right) \right\} .$$

Since $|a_n d_n| \leq 1 + |b_n c_n|$ by Lemma 1 (i), we obtain by induction

$$|b_{n+1}c_{n+1}| \le \mu^n |bc|$$

and therefore, by (1.24), $b_n c_{n_{\sim}} \rightarrow 0$ and $a_n d_{n_{\sim}} \rightarrow 1$. Since

$$|a_{n+1}| = |a_n A^{\tilde{c}} d_n - b_n B^{-1\tilde{c}} c_n|$$
, $|d_{n+1}| = |-c_n A^{\tilde{c}} b_n - d_n B^{-1\tilde{c}} a_n|$,

we deduce that $|a_n| \to \rho$ and $|d_n| \to \rho^{-1}$. Moreover, we get the estimate

$$|b_{n+1}| \le |a_n b_n| \cdot \left\{ 2 \left(\cosh \tau - \cos(\alpha + \beta) \right) \right\} ,$$

and by induction

$$\frac{|b_n|}{\rho^n}$$
 , $|c_n| \cdot \rho^n \to 0$.

Next, consider the elements

$$\begin{split} T_n :&= T^{-n} S_{2n} T^n = \begin{pmatrix} A^{-n} & 0 \\ 0 & B^n \end{pmatrix} \begin{pmatrix} a_{2n} & b_{2n} \\ c_{2n} & d_{2n} \end{pmatrix} \begin{pmatrix} A^n & 0 \\ 0 & B^{-n} \end{pmatrix} \\ &= \begin{pmatrix} A^{-n} a_{2n} A^n & A^{-n} b_{2n} B^{-n} \\ B^n c_{2n} A^n & B^n d_{2n} B^{-n} \end{pmatrix} \\ &=: \begin{pmatrix} \alpha_n & \beta_n \\ \gamma_n & \delta_n \end{pmatrix} \quad \text{for} \quad n \geq 0 \quad . \end{split}$$

The sequence $\{T_n\}_{n>0}$ has a convergent subsequence since

$$\begin{aligned} |\alpha_n| &= |a_{2n}| &\to & \rho \\ |\delta_n| &= |d_{2n}| &\to & \rho^{-1} \\ |\beta_n| &= \frac{|b_{2n}|}{\rho^{2n}} &\to & 0 \\ |\gamma_n| &= |c_{2n}| \cdot \rho^{2n} &\to & 0 \end{aligned}$$

If we can show that the elements T_n are all distinct, then the group $\langle S, T \rangle$ is not discrete which yields the desired contradiction.

Suppose on the contrary that the sequence $\{T_n\}_{n\geq 0}$ stabilises, that is, $\beta_n = \gamma_n = 0$. Then, $b_{2n} = c_{2n} = 0$. Let T_{n+1} be the first element such that $b_{n+1} = c_{n+1} = 0$. Since $\rho \neq 1$, (1.25) yields $a_n b_n = 0$ and $c_n d_n = 0$. But $\det S_n = |a_n d_n - a_n c_n a_n^{-1} b_n| = 1$, which leaves only two possibilities. In the first case, $b_n = c_n = 0$ which is impossible. In the second case, $a_n = d_n = 0$. For n > 0, $0 = \operatorname{Tr} S_n = S(a_n + d_n) = S(A + B^{-1}) = \rho \cos \alpha + \rho^{-1} \cos \beta$. It is easy to see that this contradicts $2 (\cosh \tau - \cos(\alpha + \beta)) < 1$ given by the assumption (1.24). Therefore, n = 0 and a = d = 0. This is impossible since the group < S, T > is supposed to be non-elementary.

q.e.d.

PROPOSITION 4.

Let $S = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $T = \begin{pmatrix} A & 0 \\ 0 & B^{-1} \end{pmatrix} \in PS_{\Delta}L(2; \mathbb{H})$ be loxodromic elements such that $2r := \operatorname{dist}(a_T, a_{STS^{-1}}) > 0$. Then,

$$\cosh r \ge |bc|^{1/2} \quad . \tag{1.26}$$

Proof: Denote by p the common perpendicular of the axes $a_T, a_{STS^{-1}}$ whose end points equal $0, \infty, S(0), S(\infty)$ in ∂H^5 . Choose a Möbius transformation

$$V = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in PS_{\Delta}L(2, \mathbb{H})$$

such that $0, \infty, S(0), S(\infty)$ are mapped to -w, w, -1, 1 with |w| > 1, say. That is, p is mapped to the positive t-axis, and $2r = \text{dist}(a_T, a_{STS^{-1}}) = \log |w|$. For the cross ratios, we obtain

$$\frac{|1-w|^2}{4|w|} = [-1, 1, -w, w] = [bd^{-1}, ac^{-1}, 0, \infty] = \frac{|bd^{-1}|}{|bd^{-1} - ac^{-1}|}.$$

By (1.12) and (1.13), this means that

$$\frac{|1-w|^2}{4|w|} = |bc| \quad .$$

By (1.10), we can write $w = \rho \exp(I\omega)$ in E^4 for some $\omega \in [0, 2\pi)$ and a unit pure element $I \in \mathbb{H}$. Hence, $2r = \log \rho$. Putting $z := (2r + I\omega)/2$, we deduce

$$w = e^{2r} \exp(I\omega) =: \exp(2r + I\omega) = \exp(2z)$$
.

Next, define

$$sinh z := \frac{1}{2} \{ \exp(z) - \exp(-z) \}$$
.

It follows that

$$|\sinh z|^2 = \frac{1}{4} |(1-w)^2 w^{-1}| = \frac{1}{2} (\cosh(2r) - \cos \omega) \le \frac{1}{2} (\cosh(2r) + 1)$$
.

Thus,

$$\cosh^2 r = \frac{1}{2} \left(\cosh(2r) + 1 \right) \ge |\sinh z|^2 = |bc|$$
.

q.e.d.

PROPOSITION 5.

Let
$$S = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $T = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix} \in PS_{\Delta}L(2; \mathbb{H})$ with $\mu \in E^4$ generate a non-elementary discrete subgroup. Then,

$$|c| \cdot |\mu| \ge 1 \quad . \tag{1.27}$$

The proof is a slight modification of the proof of [K3, Theorem 1.2] by using Lemma 1.

2. A thick and thin decomposition for hyperbolic 5-manifolds

Let M denote an oriented complete hyperbolic 5-manifold of finite volume which consequently will be called hyperbolic 5-manifold for short. That is, M is a Clifford-Klein space form H^5/Γ where $\Gamma < PS_{\Delta}L(2,\mathbb{H})$ is discrete, torsion-free and cofinite. In particular, Γ is non-elementary. Denote by $i_p(M)$ the injectivity radius of M at p. By the Margulis Lemma for discrete groups of hyperbolic isometries (cf. [BGS, §9-10], [T], [R1]), there is a universal positive constant ε such that there is a thick and thin decomposition

$$M = M_{\leq \varepsilon} \cup M_{>\varepsilon} \tag{2.1}$$

of M as follows. The thick part $M_{>\varepsilon} = \{ p \in M \mid i_p(M) > \frac{\varepsilon}{2} \}$ of M is compact. The thin part $M_{\leq \varepsilon} = \{ p \in M \mid i_p(M) \leq \frac{\varepsilon}{2} \}$ in (2.1) consists of connected components of the following types. The bounded components are neighborhoods N of simple (i.e. with no self-intersection) closed geodesics g through $p \in M_{\leq \varepsilon}$ in M of length $l(g) \leq \varepsilon$

homeomorphic to ball bundles over the circle. In fact, N is a quotient U/Γ_U by an infinite cyclic group $\Gamma_U < \Gamma$ of loxodromic type with common axis projecting to g and leaving precisely invariant some component $U \subset H^5$ lying above N. The unbounded components are cusp neighborhoods homeomorphic to products of compact flat manifolds with a real half line. Each cusp neighborhood can be written in the form $C = C_q = V_q/\Gamma_q$ with $\Gamma_q < \Gamma$ of parabolic type fixing some point $q \in \partial H^5$ and leaving precisely invariant some horoball $V_q \subset H^5$ based at q.

In fact, to each subgroup $\Gamma_q < \Gamma$ of parabolic type corresponds a particular extremal horoball B_q such that B_q/Γ_q embeds in M. We describe it for the case $q = \infty$, only. Denote by $\mu \neq 0$ a shortest vector in the translational lattice $\Lambda < \Gamma_{\infty}$ here identified with E^4 . Then,

$$B(\mu) = B_{\infty}(\mu) := \{ x \in H^5 \mid x_5 > |\mu| \}$$

is called the canonical horoball of Γ_{∞} . $B(\mu)$ is precisely invariant with respect to Γ_{∞} and gives rise to a cusp neighborhood in M. Moreover, canonical horoballs associated to inequivalent parabolic transformations in Γ are disjoint. The proofs are slight variations of those of [K3, Lemma 2.7] and [K3, Lemma 2.8].

2.1. The thin part of a hyperbolic 5-manifold

In the following, we construct neighborhoods of sufficiently small simple closed geodesics in M such that they are disjoint from canonical cusp neighborhoods. If g is a simple closed geodesic in M, denote by r_g the injectivity radius for the exponential map of the normal bundle of g into M. For $r \leq r_g$, the set $T_g(r) = \{ p \in M \mid \operatorname{dist}(p,g) < r \}$ is called a tube around g of radius r. By making use of the description $Iso^+(H^5) \simeq PS_\Delta L(2,\mathbb{H})$, we construct tubes as follows.

PROPOSITION 6.

Let $l_0 = \frac{\sqrt{3}}{8\pi} \simeq 0.068916$. Then, each simple closed geodesic g in M of length $l(g) \leq l_0$ has a tube $T_g(r)$ of radius r satisfying

$$\cosh(2r) = \frac{1 - 3k}{k} \quad , \quad \text{where} \quad k = \frac{2\pi \, l(g)}{\sqrt{3}} \quad .$$
(2.2)

Proof: Consider two different lifts \tilde{g}_1 , \tilde{g}_2 of g in H^5 . They give rise to Γ -conjugate loxodromic elements T_1, T_2 with disjoint axes a_{T_1}, a_{T_2} but equal translational length τ and rotational angles $\pm \alpha + \beta$ with $0 \le \alpha \le \beta < \pi$. Denote by p the common perpendicular of a_{T_1} and a_{T_2} . We have to study the length 2r of p in terms of $\tau = l(g)$. Without loss of generality assume that (cf. (1.19))

$$T_{1} = \begin{pmatrix} e^{\tau/2} \exp(I\alpha) & 0\\ 0 & e^{-\tau/2} \exp(-J\beta) \end{pmatrix} ,$$

$$T_{2} = ST_{1}S^{-1} \text{ with } S = \begin{pmatrix} a & b\\ c & d \end{pmatrix} ,$$

for some unit pure quaternions I, J. Since $\langle T_1, T_2 \rangle$ is non-elementary, $\langle T_1, S \rangle$ is non-elementary as well. By Proposition 3, (1.23), applied to $\langle T_1, S \rangle$, we obtain

$$2k \cdot (1 + |bc|) \ge 1$$
 , where $k = \cosh \tau - \cos(\alpha + \beta)$. (2.3)

Now, (1.26) of Proposition 4 yields $\cosh^2 r \ge |bc|$, that is,

$$\cosh(2r) \ge \frac{1 - 3k}{k} \quad , \tag{2.4}$$

which is nontrivial if

$$k = k(\tau; \alpha, \beta) = \cosh \tau - \cos(\alpha + \beta) \le \frac{1}{4} \quad . \tag{2.5}$$

Next, observe that (2.4) remains valid for $k(n\tau; n\alpha, n\beta)$ by considering n-th iterates of T_1, T_2 for arbitrary $n \in \mathbb{N}$. In this situation, we make use of the modified Zagier inequality [CGM, Lemma 3.4] which says that for arbitrary $0 < \rho \le \pi\sqrt{3}$ and $\nu \in [0, 2\pi)$, there exists a number $n_0 \in \mathbb{N}$ such that

$$\cosh(n_0\rho) - \cos(n_0\nu) \le \frac{2\pi\,\rho}{\sqrt{3}} \quad . \tag{2.6}$$

By choosing $\tau = \rho \leq \frac{\sqrt{3}}{8\pi}$ and $\nu = \alpha + \beta$ according to (2.3), (2.5) and (2.6) imply that $k(n_0\tau; n_0\alpha, n_0\beta) \leq \frac{1}{4}$.

q.e.d.

Lemma 2.

Let g denote a simple closed geodesic in M of length $l(g) \leq l_0$ with tube $T_g(r)$ of radius r satisfying (2.2). Then,

- (a) r = r(l) is strictly decreasing.
- (b) The volume $vol_5(T_g(r))$ is strictly decreasing with respect to l.

Proof: Part (a) is obvious. As to part (b), observe that the volume of $T_g(r)$ equals the volume of a cylinder Cyl(r,l) of radius r with axis of length l which in general is given by (cf. [K3, Lemma 2.4])

$$\operatorname{vol}_n(\operatorname{Cyl}(r,l)) = \frac{2\pi}{n-1} \cdot l \cdot \sinh^{n-1} r$$
.

Hence,

$$\operatorname{vol}_{5}(T_{g}(r)) = \frac{\pi}{2} \cdot l \cdot \sinh^{4} r = \frac{\sinh^{2} r}{2} \cdot \operatorname{vol}_{3}(\operatorname{Cyl}(r, l)) \quad . \tag{2.7}$$

By (2.2),

$$\operatorname{vol}_3(\operatorname{Cyl}(r,l)) = \pi \cdot l \cdot \sinh^2 r = \frac{\sqrt{3}}{4} - 2\pi l$$
,

which is a strictly decreasing function of l.

q.e.d.

Remark. Cao and Waterman [CW] obtained tubes around short closed geodesics of lengths $\leq l_n$ in hyperbolic manifolds M of arbitrary dimensions $n \geq 2$. They made use of certain extremal values associated to the rotational part of loxodromic elements loosing much accuracy when estimating the tube radius. For example, for n = 5, a closed geodesic g of length $l_5 \simeq 0.0045$ in M has a tube of radius $\simeq 0.9885$ and volume $\simeq 0.01269$ according to [CW, Corollary 9.5] while g has a tube of radius $\simeq 2.3786$ and volume $\simeq 5.7846$ according to (2.2).

Lemma 3.

Let g, g' denote two simple closed geodesics in M of lengths $l, l' \leq l_1 := \frac{\sqrt{3}}{9\pi} \simeq 0.061258$ which do not intersect. Then, the tubes $T_g, T_{g'}$ of radii r, r' subject to (2.2) are disjoint.

Proof: Write $M = H^5/\Gamma$, and let $\widetilde{g}, \widetilde{g}'$ be lifts to H^5 of g, g' which are the axes of loxodromic elements $T, T' \in \Gamma$ with translational lengths τ and τ' and angles of rotation $\pm \alpha + \beta$ and $\pm \alpha' + \beta'$ as usually. Let $\delta = \operatorname{dist}(\widetilde{g}, \widetilde{g}')$. We must prove that $\delta \geq r + r'$. For this, conjugate T, T' in $PS_{\Delta}L(2, \mathbb{H})$ in order to obtain the elements

$$X = \begin{pmatrix} e^{\tau/2} \exp(I\alpha) & 0 \\ 0 & e^{-\tau/2} \exp(-J\beta) \end{pmatrix} , \quad Y = \begin{pmatrix} a & b \\ c & d \end{pmatrix} .$$

The axis $a_{YXY^{-1}} = Y(a_X)$ of the element YXY^{-1} is disjoint from a_X and a_Y . Let $p \in a_X$ denote the point such that $\delta = \operatorname{dist}(a_X, a_Y) = \operatorname{dist}(p, a_Y)$, that is, p is the foot point on a_X of the common perpendicular of a_X, a_Y . By construction, $d := \operatorname{dist}(p, Y(p)) \geq 2r$. Denote by $k' := k(Y) = \cosh \tau' - \cos(\alpha' + \beta')$. Then, Proposition 1 implies that

$$\cosh(2r) \le \cosh d = \cosh \tau' + \sinh^2 \delta \left(\cosh \tau' - \cos \omega\right)$$
.

Remark §1.1 yields $\cos \omega \ge \cos(\alpha' + \beta')$. Therefore,

$$\cosh(2r) \le \cosh \tau' + \sinh^2 \delta \left(\cosh \tau' - \cos(\alpha' + \beta')\right)$$

$$\le k' + 1 + \sinh^2 \delta \cdot k' = \cosh^2 \delta \cdot k' + 1 .$$

By Proposition 6, we deduce that

$$\cosh(2\delta) = 2\cosh^2 \delta - 1 \ge 2 \cdot \frac{\cosh(2r) - 1}{k'} - 1 = 2 \cdot \frac{1 - 4k}{kk'} - 1$$
$$= \frac{1 - 4k}{kk'} + \frac{1 - 4k - kk'}{kk'} .$$

Suppose that $k' \geq k$ (otherwise, exchange the role of X and Y). Then, we obtain

$$\cosh(2\delta) \ge \frac{\sqrt{1-4k}}{k} \cdot \frac{\sqrt{1-4k'}}{k'} + \frac{1-4k-kk'}{kk'}$$

By assumption, $l \leq l_1 = \frac{\sqrt{3}}{9\pi}$ so that, by Proposition 6,

$$k = \frac{2\pi \, l}{\sqrt{3}} < 2/9 \quad .$$

Hence,

$$\cosh(2r) = \frac{1 - 3k}{k} < \frac{\sqrt{1 - 4k}}{k} \quad ,$$

and similarly for $\cosh(2r')$. In order to conclude that $\cosh(2\delta) \ge \cosh(2r+2r')$, it suffices to show that

$$\frac{1 - 4k - kk'}{kk'} \ge \frac{\sqrt{1 - 4k - k^2}}{k} \cdot \frac{\sqrt{1 - 4k' - k'^2}}{k'} \ge \sinh(2r) \cdot \sinh(2r') \quad .$$

The verification is left to the reader (for details, cf. [K3, p. 64]). q.e.d.

Lemma 4.

Let M denote a non-compact hyperbolic 5-manifold. Then, the canonical cusps and the tubes around closed geodesics according to (2.2) do not intersect in M.

The proof of Lemma 4 is basically a consequence of Proposition 5. For details we refer to the analogous proof of [K3, Theorem 2.9].

2.2. A thick and thin decomposition

Let M be a hyperbolic 5-manifold, and consider the thin and thick parts

$$M_{\leq \varepsilon} = \{ p \in M \mid i_p(M) \leq \varepsilon/2 \} \text{ and } M_{\geq \varepsilon} = \{ p \in M \mid i_p(M) > \varepsilon/2 \}$$

of M as in (2.1).

THEOREM I.

For $\varepsilon \leq \frac{\sqrt{3}}{9\pi} \simeq 0.0612$, the thin part $M_{\leq \varepsilon}$ is a finite disjoint union of canonical cusps and tubes $T_g(r)$ around simple closed geodesics g of length $\leq \varepsilon$ according to (2.2).

Proof: We take up an idea of Meyerhoff [M]. Write $M = H^5/\Gamma$, where $\Gamma < Iso^+(H^5)$ is discrete, torsion-free and cofinite. The canonical cusps C and the tubes T around simple

closed geodesics of lengths $\leq \frac{\sqrt{3}}{9\pi} \simeq 0.0612$ in M as constructed in §2 are mutually disjoint. Hence, we must show that any cusp resp. any bounded component in $M_{\leq \varepsilon}$, $\varepsilon \leq 0.0612$, is contained in a canonical cusp C resp. in a tube T. It is easy to verify the assertion for the canonical cusps (cf. §2).

Let $p \in M_{\leq \varepsilon}$ providing a loxodromic element $X \in \Gamma$ with distance $d := d(p, X(p)) \leq 0.0612$. Assume without loss of generality that X has axis a_X with end points $0, \infty$, and denote by $\tau > 0$ the translational length and by $\pm \alpha + \beta \in [0, 2\pi)$ the angles of rotation of X. Let R be the rotational part of X. We show that $p \in T_{a_X}(r)$, where the tube radius is given by (2.3) and (2.4), that is,

$$\cosh(2r) = \frac{1 - 3k}{k} \quad \text{with} \quad k = k(X) = \cosh \tau - \cos(\alpha + \beta) \quad . \tag{2.8}$$

Let $\delta = d(p, a_X)$, and suppose that $\delta > 0$. By Proposition 1,

$$\cosh d = \cosh \tau + (\cosh \tau - \cos \omega) \cdot \sinh^2 \delta \quad , \tag{2.9}$$

where $\omega = \omega(p)$ denotes the angle at the foot point \hat{p} of the perpendicular from p to a_X in the triangle $(p, \hat{p}, R(p))$. Observe that $\cos(\alpha + \beta) \leq \cos\omega \leq \cos(\alpha - \beta)$.

By (2.9), we must show that for $d(p, X(p)) \le d_0 := 0.0612$

$$\frac{\cosh d - \cosh \tau}{\cosh \tau - \cos \omega} = \sinh^2 \delta \le \sinh^2 r = \frac{1 - 4k}{2k} \quad , \tag{2.10}$$

where we may work with $k = k(X^n) < 1/4$ for any integer $n \ge 1$ (cf. proof of Proposition 6) and especially with

$$k = k(X^{n_0}) \le \frac{2\pi \,\tau}{\sqrt{3}} \tag{2.11}$$

for $n_0 \in \mathbb{N}$ as given by (2.6). Now, write $p = (p_1, \ldots, p_5) \in H^5$ and consider the circular locus of all points $q \in H^5$ with $q_5 = p_5$ and $d(q, a_X) = \delta$. Varying over all such q, we find d^-, d^+ such that $0 < \tau < d^- \le d \le d^+ \le d_0$ and (cf. (2.9) and Remark, §1.1)

$$\frac{\cosh d^{+} - \cosh \tau}{\cosh \tau - \cos(\alpha + \beta)} = \sinh^{2} \delta = \frac{\cosh d^{-} - \cosh \tau}{\cosh \tau - \cos(\alpha - \beta)} \quad . \tag{2.12}$$

Therefore, it suffices to check that

$$\frac{\cosh d_0 - \cosh \tau}{\cosh \tau - \cos(\alpha + \beta)} \le \frac{1 - 4k}{2k} \quad . \tag{2.13}$$

In order to verify (2.13), we distinguish between two cases.

Consider first the case $\cos(\alpha + \beta) > 1 - \tau$. Choose k according to (2.8). Then, (2.13) simplifies to

$$\cosh d_0 \le \cosh \tau + \frac{1 - 4k}{2} \quad .$$

Since $k < \cosh \tau + \tau - 1 < \cosh d_0 + d_0 - 1 =: k_0$ with $\cosh d_0 \simeq 1.00187$, we see that the inequality

$$\cosh d_0 \le 1 + \frac{1 - 4k_0}{2}$$

implying (2.13) is verified.

Next, suppose that $\cos(\alpha + \beta) \leq 1 - \tau$. Choose k according to (2.11). Then, (2.13) turns into

$$\cosh d_0 \le \cosh \tau + (\cosh \tau + \tau - 1) \cdot \frac{\sqrt{3} - 8\pi\tau}{4\pi\tau}$$

Since $\cosh \tau + \tau - 1 > \tau$, it suffices to verify

$$1.0019 < 1 + \tau \cdot \frac{\sqrt{3} - 8\pi\tau}{4\pi\tau} \quad . \tag{2.14}$$

The last term in (2.14) is strictly decreasing. Since $\tau < d_0$, we obtain the bound

$$\frac{\sqrt{3} - 8\pi\tau}{4\pi} > \frac{\sqrt{3} - 8\pi d_0}{4\pi} \simeq 0.0154 \quad ,$$

which proves (2.14).

q.e.d.

3. Consequences

3.1. Volume bounds

As first application, we derive some volume bounds.

PROPOSITION 7.

Let M be a hyperbolic 5-manifold M with m cusps and n distinct simple closed geodesics of lengths ≤ 0.059 . Then,

$$vol_5(M) > \frac{m+n}{96}$$
 (2.15)

Proof: Replace each of the m cusps by the canonical cusp neighborhood C_i , $1 \le i \le m$, as described above. C_1, \ldots, C_m are pairwise disjoint. By methods based on results of Bieberbach and a sphere packing argument including the lattice constant computation $\delta_4 = \pi^2/16$ of Korkine-Zolotareff (cf. [K2, Remark (a), p. 726]), one has

$$vol_5(C_i) > \frac{1}{96}$$
 for $i = 1, ..., m$,

whence

$$\operatorname{vol}_5(\bigcup_{i=1}^m C_i) = \sum_{i=1}^m \operatorname{vol}_5(C_i) > \frac{m}{96}$$
.

Suppose that M carries $n \ge 1$ distinct simple closed geodesics of lengths $\le 0.059 (< l_1 < l_0)$. By Proposition 6, Lemma 2, Lemma 3 and (2.7), M contains n mutually disjoint tubes T_j , $1 \le j \le n$, of total volume

$$\operatorname{vol}_5(\bigcup_{j=1}^n T_j) = \sum_{j=1}^n \operatorname{vol}_5(T_j) > n \cdot 0.01042 > \frac{n}{96}$$
.

Finally, by Lemma 4, the canonical cusps and the tubes are pairwise disjoint. This finishes the proof.

q.e.d.

Remark. Let M be a (possibly non-orientable) hyperbolic 5-manifold M with $m \geq 1$ cusps. In [K2] and by methods based on the theory of (horo-)sphere packings, we deduced the much better bound

$$vol_5(M) > m \cdot 0.3922 . (2.16)$$

Adjusting suitably the estimate (2.15) requires to lower the upper length bound 0.059.

Lemma 5.

Let M be a hyperbolic 5-manifold. Then, there is a point $p \in M$ such that the injectivity radius $i_p(M)$ of M at p satisfies

$$i_p(M) > 0.0343 > 1/30$$
 (2.17)

Proof: Suppose that a shortest closed geodesic of M has length $l \leq l_2 := 0.0687526 < l_0$. Then, by Proposition 6, there is a tube T embedded in M of radius r = r(l) according to (2.2). By a result of A. Przeworski (cf. [Pr, Proposition 4.1]), there is an embedded ball $B_p(\rho)$ centered at some point $p \in M$ which is of radius $\rho = \operatorname{arsinh}(\tanh(r)/2)$. Since r(l) is strictly monotonely decreasing, it follows that $\rho \geq \rho(l_2) \simeq 0.03439$ and hence $i_p(M) \geq 0.03439$. If a shortest closed geodesics on M is of length $> l_2$, then $i_p(M) > l_2/2 \simeq 0.03437$ for all $p \in M$. By comparison, the result (2.17) follows.

q.e.d.

THEOREM II.

For a hyperbolic 5-manifold M,

$$vol_5(M) > 0.000083$$
 (2.18)

Proof: If M is non-compact, the estimate follows from (2.16). Suppose that M is compact. By Lemma 5, M contains a ball B of radius at least 0.0343. This yields the estimate

$$\operatorname{vol}_5(M) \ge \operatorname{vol}_5(B) > 0.00000025$$
 , (2.19)

which we improve as follows. Consider the in-radius $r(M) = \max_{p \in M} i_p(M)$ of M. Let $S_{reg} \subset H^5$ denote a regular hyperbolic simplex of edge length 2r(M) with spherical vertex simplex s_{reg} of dimension 4. By [K1, Theorem], there is the volume bound

$$\operatorname{vol}_{5}(M) \ge \frac{4\pi^{2}}{9} \cdot \frac{\operatorname{vol}_{5}(S_{reg})}{\operatorname{vol}_{4}(S_{reg})}$$
 (2.20)

By means of [K1, Lemma 4] and [K1, Lemma 5], the quotient $\operatorname{vol}_5(S_{reg})/\operatorname{vol}_4(s_{reg})$ in (2.20) can be estimated in terms of the dihedral angle 2α as given by the edge length 2r(M) (cf. [K1, (3)]). Since r(M) > 0.0343, this leads to the asserted volume bound $\operatorname{vol}_5(M) > 0.000083$.

q.e.d.

Remarks. (a) Cao and Waterman derived the bound $r(M) \ge 1/544$ for the in-radius of a hyperbolic 5-manifold M (cf. [CW, Theorem 9.8]). By exploiting (2.20) as above, this yields the volume bound $\operatorname{vol}_5(M) > 0.00000023$.

(b) Ratcliffe and Tschantz (cf. [R2]) announced a geometrical construction of a non-orientable hyperbolic 5-manifold with 10 cusps which is of volume $28 \zeta(3) \simeq 33.6576$. By passing to its oriented double cover one obtains a hyperbolic 5-manifold of volume $56 \zeta(3)$ which to our knowledge represents the smallest known volume hyperbolic 5-manifold. Therefore, a smallest volume hyperbolic 5-manifold M_0 satisfies $0.000083 < \text{vol}_5(M_0) \le 67.3152$. Moreover, by Proposition 6 and Lemma 2, a shortest closed geodesic in M_0 has length > 0.00043.

3.2. Injectivity radius versus volume and diameter

Let M be a compact hyperbolic 5-manifold. Denote by $i(M) = \min_{p \in M} i_p(M)$ the injectivity radius of M and by $\operatorname{diam}(M) = \max_{p,q \in M} \operatorname{dist}(p,q)$ the diameter of M. The injectivity radius i(M) equals one half of the length of a shortest simple closed geodesic in M. By results of P. Buser [Bu1, Corollary 4.15] and A. Reznikov [R, Theorem],

$$i(M) \ge \operatorname{const} \cdot \operatorname{vol}_5(M)^{-3}$$

We improve this estimate as follows.

PROPOSITION 8.

For a compact hyperbolic 5-manifold M,

$$i(M) \ge \operatorname{const} \cdot \operatorname{vol}_5(M)^{-1}$$
 (2.21)

Proof: Assume that there is a short simple closed geodesic g of length l in M. Then, there is a tube $T_g(r)$ around g of radius r given by (cf. Proposition 6, (2.2))

$$\sinh^2 r = \frac{1}{2k} - 2$$
 , where $k = \frac{2\pi l}{\sqrt{3}}$.

This implies

$$\operatorname{vol}_5(M) \ge \operatorname{vol}_5(T_g(r)) = \frac{\pi}{2} \cdot l \cdot \sinh^4 r$$
.

Since $\sinh^4 r \sim \text{const} \cdot l^{-2}$ for small l, we deduce $l \geq \text{const} \cdot \text{vol}_5(M)^{-1}$ as desired.

q.e.d.

PROPOSITION 9.

For a compact hyperbolic 5-manifold M,

$$i(M) \ge \operatorname{const} \cdot (\sinh(\operatorname{diam}(M))^{-2}$$
 (2.22)

Proof: Let g denote a simple closed geodesic in M. By a result due to E. Heintze and H. Karcher [HK, Corollary 2.3.2], the length l of g is bounded from below as follows.

$$l \ge \frac{2}{\pi^2} \cdot \frac{\operatorname{vol}_5(M)}{\sinh^4(\operatorname{diam}(M))}$$

This together with Proposition 8, (2.21), yields

$$l \ge \operatorname{const} \cdot \frac{1}{i(M) \cdot \sinh^4(\operatorname{diam}(M))}$$
,

which implies the desired result.

q.e.d.

Bibliography

- [Al] L. V. Ahlfors, Möbius transformations and Clifford numbers, in: Differential Geometry and Complex Analysis – in memory of H. E. Rauch, I. Chavel and H. Farkas, Editors, Springer-Verlag, 1985.
- [As] H. Aslaksen, Quaternionic determinants, Math. Intelligencer, 18 (1996), 57-65.
- [BGS] W. Ballmann, M. Gromov, V. Schroeder, Manifolds of nonpositive curvature, Birkhäuser, 1985.
 - [Be] A. F. Beardon, The geometry of discrete groups, Springer-Verlag, 1983.
- [Bu1] P. Buser, On Cheeger's inequality, $\lambda_1 \geq h^2/4$, in: Geometry of the Laplace operator, pp. 29–77, Proc. Sympos. Pure Math. XXXVI, Amer. Math. Soc., Providence, R.I., 1980.
- [Bu2] P. Buser, Geometry and spectra of compact Riemann surfaces, Birkhäuser, 1992.
- [CGM] C. Cao, F. W. Gehring, G. J. Martin, Lattice constants and a lemma of Zagier, Preprint, 2000.
- [CW] C. Cao, P. L. Waterman, Conjugacy invariants of Möbius groups, in: Quasiconformal Mappings and Analysis, A Collection of Papers Honoring F. W. Gehring, P. L. Duren et al, Editors, Springer-Verlag, 1998.
- [C1] H.S.M. Coxeter, Quaternions and reflections, Am. Math. Mon. 53 (1946), 136-146.
- [C2] H.S.M. Coxeter, Regular complex polytopes, Cambridge University Press, 1974.
- [D] J. Dieudonné, Les déterminants sur un corps non-commutatif, Bull. Soc. Math. France **71** (1943), 27—45.
- [HK] E. Heintze, H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. scient. Éc. Norm. Sup. **11** (1978), 451–470.
- [H] Y. Hellegouarch, Quaternionic homographies: application to Ford hyperspheres, C. R. Math. Rep. Acad. Sci. Canada **11** (1989), 165–170.
- [J] T. Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976), 739-749.
- [K1] R. Kellerhals, Regular simplices and lower volume bounds for hyperbolic n-manifolds, Annals of Global Analysis and Geometry, **13** (1995), 377–392.
- [K2] R. Kellerhals, Volumes of cusped hyperbolic manifolds, Topology 37 (1998) 719-734.
- [K3] R. Kellerhals, Collars in $PSL(2, \mathbb{H})$, Ann. Acad. Sci. Fenn. Math. **26** (2001), 51–72.
- [M] R. Meyerhoff, A lower bound for the volume of hyperbolic 3-manifolds, Can. J. Math. **39** (1987), 1038—1056.
- [Po] I. R. Porteous, Topological geometry, Cambridge University press, 1981.
- [Pr] A. Przeworski, Cones embedded in hyperbolic manifolds, preprint.
- [R1] J. G. Ratcliffe, Foundations of hyperbolic manifolds, Springer-Verlag, 1994.
- [R2] J. G. Ratcliffe, Hyperbolic manifolds, in: Handbook of geometric topology, R. J. Daverman and R. B. Sher, Editors, Elsevier, 2001.
- [Re] A. Reznikov, The volume and the injectivity radius of a hyperbolic manifold, Topology **34** (1995), 477–479.
- [T] W. P. Thurston, Three-dimensional geometry and topology, vol. 1, Princeton University Press, 1997.
- [Wat] P. L. Waterman, Möbius transformations in several dimensions, Adv. Math. 101 (1993), 87–113.
- [Wil] J. B. Wilker, The quaternion formalism for Möbius groups in four and fewer dimensions, Linear Algebra Appl. **190** (1993), 99—136.

University of Fribourg Department for Mathematics CH-1700 Fribourg, Switzerland Ruth.Kellerhals@unifr.ch