Analysis and geometry of metric spaces 2015

1. Metric spaces and isometries

Pseudo-metrics and metrics, normed spaces, classical sequence spaces; isometries of normed spaces, theorem of Mazur-Ulam, example of a non-affine isometric embedding; Lipschitz maps and examples

2. Topological notions, completeness

The topology of a metric space, metrization theorem of Nagata-Smirnov; compactness, completeness, extension of uniformly continuous maps defined on a dense subset; $C_b(X, X')$ complete if X' is; Kuratowski embedding, completion of a metric space, Banach fixed point theorem

3. Baire's theorem

Baire spaces, Baire category theorem, meagre and co-meagre subsets; applications of Baire's theorem: nowhere monotone functions, nowhere differentiable functions, Baire classes, discontinuity sets for the first class of Baire, examples; open mapping theorem for Banach spaces, application to linear ODEs

4. Compactness

Separability, compactness, precompact = totally bounded, characterization in terms of sequences, Lebesgue number; example French railway space; ε -separated subsets; isometries of a compact metric space: distance preserving implies bijective, 1-lipschitz and surjective implies isometry, expanding implies isometry; compactness in C(X, Y), Arzela-Ascoli theorem

5. More on compactness, embeddings

Schauder bases, the basis problem for separable Banach spaces, Mazur's goose, examples, the basis constant, compactness criterion in Banach spaces with bases; every separable metric space embeds topologically into the Hilbert cube; compactness criterion in $l_{\infty}(S)$; Frechet-embedding, uniform precompactness, Gromov-embedding into compact subsets of $l_{\infty}(\mathbb{N})$

6. Dimensions

Covering dimension $\operatorname{covdim}(X)$, embedding theorem of Menger-Nöbeling and Hurewicz, topological embeddings form a dense G_{δ} -set in $C(X, I_{2n+1})$; inductive dimension, equal to $\operatorname{covdim}(X)$ if X separable metric; Hausdorff measure as a metric outer measure, Hausdorff dimension, $\operatorname{inddim}(X) \leq \operatorname{hausdim}(X)$, Marczewski's theorem, Hausdorff dimension of Cantor sets C_{λ} , hausdim is not a topological invariant, behaviour under Hölder continuous maps; upper and lower box dimension

7. Hausdorff distance

Definition of d_H , $\operatorname{Clos}(X)$ is complete or precompact if X is, upper closed limits, Hausdorff limits and topological limits; application to iterated function schemes, Banach fixed point theorem applied to Hausdorff distance, formula for hausdim(F); alternative description of $d_H(A, B)$ using d_A and d_B , Busemann distance

8. Gromov-Hausdorff distance

Definition of d_{GH} via embeddings and d_H , Lipschitz-close implies GH-close, d_{GH} is a metric on isometry classes of compact spaces, not so for proper spaces; description using embeddings into l_{∞} , distortion of correspondences and ε -isometries; properties inherited by GH-limits, *n*-point conditions, δ -hyperbolicity

9. Compactness for d_{GH} , doubling

Packing numbers and covering numbers, characterizations of precompact subsets of Gromov-Hausdorff space \mathbf{M} , completeness of \mathbf{M} ; application to Riemannian geometry: Bishop-Gromov volume comparison theorem, covering lemma, Gromov's compactness theorem for Ricci curvature; doubling metric spaces, doubling measures, doubling measure implies doubling metric, complete doubling metric implies existence of a doubling measure μ , Dynkin conjecture, construction of μ for finite spaces; pointed GH-convergence, compactness theorem for pointed GH-convergence

10. Outlook: Alexandrov spaces

Length spaces, geodesic spaces, curvature bounds via triangle comparison, properties of Alexandrov spaces