Chapter 2

Laplace’s Equation

Let Q be a domain in R"and v a C*(2) function. The Laplacian of u, denoted Au,
is defined by

(2.1) Au= Y D,u=div Du.

i=1
The function u is called harmonic (subharmonic, superharmonic) in Q if it satisfies
there

(2.2) Au=0 (>0, <0).

In this chapter we develop some basic properties of harmonic, subharmonic and
superharmonic functions which we use to study the solvability of the classical
Dirichlet problem for Laplace’s equation, Au=0. As mentioned in Chapter 1,
Laplace’s equation and its inhomogeneous form, Poisson’s equation, are basic
models of linear elliptic equations.

Our starting point here will be the well known divergence theorem in R". Let
Q, be a bounded domain with C' boundary Q, and let v denote the unit outward
normal to 8Q,. For any vector field w in C!(£,), we then have

(2.3) fdivwa’x=f w-vds
N a0

where ds indicates the (n— 1)-dimensional area element in 92,,. In particular if u
is a C?(Q,) function we have, by taking w = Du in (2.3),

ov

20 29

(2.4) fAudx=fDu~v ds=f~a—uds.
20

(For a more general formulation of the divergence theorem, see [KE 2].)

2.1. The Mean Value Inequalities

Our first theorem, which is a consequence of the identity (2.4), comprises the well
known mean value properties of harmonic, subharmonic and superharmonic
functions.
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Theorem 2.1.  Let ue C*(Q) satisfy du = 0 (=0, <0) in Q. Then for any ball
B = Bgi(y) = = Q, we have

1
(2.5) u(y)=(<, ?)mﬁ ledS,

oB

IR" fu dx.

"B

w

For harmonic functions, Theorem 2.1 thus asserts that the function value at the
center of the ball Bis equal to the integral mean values over both the surface B and
B itself. These results, known as the mean value theorems, in fact also characterize
harmonic functions; (see Theorem 2.7).

Proof of Theorem 2.1. Let p € (0, R) and apply the identity (2.4) to the ball
B,= B (y). We obtain

—ds—fAudx_(/, <) 0.

2B,

Introducing radial and angular coordinates r=|x—})|, w= ;}, and writing

u(x)=u(y+rw), we have
ou ou ne1 u
f 5ds-—f0—r(y+pw)ds—p f 5()+pw)dw

2B, 2B, P lwj=1 P
=p" ! — f u(y+pw)do=p"' — pl""fuds
p|w|=l ap 2B

a
=(=, <)0.

Consequently for any p € (0, R),

p'- fuds-(\, Z)R“"fuds

oB, oBr
and since

lim p“"fuds-—-na)nu(y)

p=0 oB,

relations (2.5) follow. To get the solid mean value inequalities, that is, relations
(2.6), we write (2.5) in the form

nw p" tu(y)=(<, >)fuds, p<R
2B,

and integrate with respect to p from O to R. The relations (2.6) follow immediately.]
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2.2. Maximum and Minimum Principle

With the aid of Theorem 2.1 the strong maximum principle for subharmonic
functions and the strong minimum principle for superharmonic functions may be
derived.

Theorem 2.2. Let Au>0(<0) in Q and suppose there exists a point y € §Q for which
u(y)= sup u (inf u). Then u is constant. Consequently a harmonic function cannot
Q Q

assume an interior maximum or minimum value unless it is constant.

Proof. Let Au=0in Q, M =sup u and define Q,,={x € Q| u(x)=M }. By assump-
04

tion Q,, is not empty. Furthermore since u is continuous, Q,, 1s closed relative to 2.

Let z be any point in Q,, and apply the mean value inequality (2.6) to the sub-

harmonic function u— M in a ball B= Bg(z)c <= Q. We therefore obtain

1
w,R"

O=u(z)—-M< f(u——M)deO,
B

so that u= M in Bg(z). Consequently 2, is also open relative to 2. Hence ©,, = 2.
The result for superharmonic functions follows by replacement of u by —u. g

The strong maximum and minimum principles immediately imply global
estimates, namely the following weak maximum and minimum principles.

Theorem 2.3. Let u € C*(Q) n C%R) with Au=0 (<0) in Q. Then, provided S is
bounded,

2.7) sup u=sup u (inf u= inf u).
Q o0 Q o0

Consequently, for harmonic u

infu<u(x)<supu, xe.
o0 0

A uniqueness theorem for the classical Dirichlet problem for Laplace’s and
Poisson’s equation in bounded domains now follows from Theorem 2.3.

Theorem 2.4. Let u, ve C%(Q) n C%(Q) satisfy Au=Av in Q, u=v on Q. Then
u=vin Q.

Proof. Letw=u—v. Then Aw=01n Q and w=0 on 0. It follows from Theorem
23thatw=0mn Q. O

Note that also by Theorem 2.3, we have that if ¥ and v are harmonic and sub-
harmonic functions respectively, agreeing on the boundary 0Q, then v<u in Q.
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Hence the term subharmonic. A corresponding remark is true for superharmonic
functions. Later in this chapter. we employ this property of C*(2) subharmonic
and superharmonic functions to expand their definition to larger classes of func-
tions. In the next chapter, an alternate method of proof for Theorems 2.2, 2.3 and
2.4 will be supplied when we treat maximum principles for general elliptic equa-
tions; (see also Problem 2.1).

2.3. The Harnack Inequality

A further consequence of Theorem 2.1 is the following Harnack inequality for
harmonic functions.

Theorem 2.5. Ler u be a non-negative harmonic function in Q. Then for any bounded
subdomain Q' < < Q, there exists a constant C depending only on n, Q' and Q such
that

(2.8) sup u<C inf u.
o o

Proof. Letye Q, B,g(y)<= Q. Then for any two points x,, x, € Bg(y), we have
by the inequalities (2.6)

1
“(xx):a‘l’k? f udxsw—k—" fudx.

n BRri(x,) " Bar(y)

1 |
u(xz)zm f udx?wn(:;R)” fudx.

B3r(x2) Bagr(y)

Consequently we obtain

(2.9) sup u<3" inf wu.

Br(y) Br(y)
Now let Q' =Q and choose x,, x, € Q' so that u (x,)= sup u, u(x,)= mfu

Let ' Q' be a closed arc joining x, and x, and choose R so that 4R < dist (T, 6(2)
By virtue of the Heine-Borel theorem I’ can be covered by a finite number N
(depending only on Q' and Q) of balls of radius R. Applying the estimate (2.9) in
each ball and combining the resulting inequalities, we obtain.

u(x,) <3"™u(x,).
Hence the estimate (2.8) holds with C=3"V. 0O
Note that the constant in (2.8) is invariant under similarity and orthogonal

transformations. A Harnack inequality for weak solutions of homogeneous elliptic
equations will be established in Chapter 8.
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2.4. Green’s Representation

As a prelude to existence considerations we derive now some further consequences
of the divergence theorem, namely, the Green identities. Let Q be a domain for
which the divergence theorem holds and let u and v be C2(2) functions. We select
w = vDu in the identity (2.3) to obtain Green’s first identity:

(2.10) fv Audx+fDu-Dvdx=fv§-:ds.
0

(0] on

Interchanging v and v in (2.10) and subtracting, we obtain Green's second identity :

ou ov
f (U E—u ;9;) ds.

on

(2.11) f(v Au—u Av) dx=
Q

Laplace’s equation has the radially symmetric solution r?~" for n> 2 and log r for
n=2, r being radial distance from a fixed point. To proceed further from (2.11),
we fix a point y in Q and introduce the normalized fundamental solution of Laplace’s
equation:

.- __2-n
n(2—n)w"|x W n>2

(2.12) F(x—y)=I(x-yl)=

2.

I

510g|x")’|, n

By simple computation we have
l -n
DI (x—y)=—(x;—yllx=3"";
nw,

(2.13)

l - P
Dijr(x"'y)z;lz){|x"y|25ij""(xi_yi)(xj"yj)}|x—)'| "2,

Clearly I' is harmonic for x # y. For later purposes we note the following derivative
estimates:

ID,I'(x—y)|<

l Ix_yll—n.
nw, '

(2.14)
1
|Dijr(x_)’)|<a)—|x—y|_"-
ID’I(x — I < Clx =y~ "7 ¥, C = C(n|B).

The singularity at x=y prevents us from using I' in place of v in Green's second
identity (2.11). One way of overcoming this difficulty is to replace Q by Q— B,
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where B, = B (y) for sufficiently small p. We can then conclude from (2.11) that

ou or ou or
(2.15) f I"Audx—f(l"g—u5;> ds+a!(1"5——u5;) ds.

2-8,
Now
cu ou
J‘I‘a—vds=1"(p)f8—vds
éB, oB,
<nw,p" " 'I'(p)sup |Du|—0 asp—0

B,

and

or )
f u ™ ds=—T"(p) f uds (recall that vis outer normal to Q — B))
0B,

2B,

Iuds—»—-u(y) as p— 0.

0B,

Hence letting p tend to zero in (2.15) we arrive at Green’s representation formula:
or ou
(2.16) u(y)= £<u—67 (x-—y)—-I’(x—))5> ds+£[‘(x—)) Audx, (ye€Q).
0

For an integrable function f, the integral f I'(x — y)f(x) dxiscalled the Newtonian

2
potential with density f. If u has compact support in R", then (2.16) yields the
frequently useful representation formula,

217 wy)= f [ (x—y) Au(x) dx

For harmonic u, we also obtain the representation

er
(2.18) u(y)=f (u——(x—y)— (x — ))—)ds (ye).
cv
on
Since the integrand above is infinitely differentiable and, in fact, also analytic with
respect to y, it follows that u is also analytic in Q. Thus harmonic functions are

analytic throughout their domain of definition and therefore uniquely determined
by their values in any open subset.

Now suppose that he C'(Q) n C*(Q) satisfies 4h=0 in Q. Then again by
Green's second identity (2.11) we obtain

(2.19) - J‘(ua-h )ds_thudx
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Writing G=I+h and adding (2.16) and (2.19) we then obtain a more general
version of Green's representation formula:

oG cu
(2.20) u(y)= a{) <u -G E)dw {J; G Au dx.

If in addition G =0 on 2 we have
oG
221y w(y)= f uEds+£GAu dx
on

and the function G=G(x, y) is called the (Dirichlet) Green’s function for the
domain £, sometimes also called the Green’s function of the first kind for Q. By
Theorem 2.4, the Green’s function is unique and from the formula (2.21) its
existence implies a representation for a C'(2) n C*(Q) harmonic function in terms
of its boundary values.

2.5. The Poisson Integral

When the domain Q is a ball the Green’s function can be explicitly determined by
the method of images and leads to the well known Poisson integral representation
for harmonic functions in a ball. Namely, let By = Bg(0) and for x € Bg, x#0 let

2

(2.22) X= R

—s X
|x|?

denote its inverse point with respect to Bg; if x=0, take Xx= 0. It is then easily
verified that the Green's function for B is given by

B _
F(x—y)=T[=1|x=3} »
(2.23) Glx. y)= (Ix—yl) (Rlx yI) y#0

r(x))—T'(R), y=0.

3
==[’(\/|x|2 +|y|2—2x-y)—[‘(\/(—|xlllyl) +R2—2x-y)

for all x, y € By, x#y.

The function G defined by (2.23) has the properties

(2.24) G(x,y)=G(y,x), G(x,y)<0 forx,yeBg.
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Furthermore, direct calculation shows that at x € 9By the normal derivative of G
is given by

G G R —|yJ
2.25 —= = —y| ">0.
( ) ov  0dlx| nw, R ad

Hence if u € C*(Bg) n C'(Bp) is harmonic, we have by (2.21) the Poisson integral
formula:

RZ_ 2 l-}c

nwnR 0Br |x_)’|"

The right hand side of formula (2.26) 1s called the Poisson integral of u. A simple
approximation argument shows that the Poisson integral formula continues to hold
for u e C*(Bg) n C°%Bg). Note that by taking y=0, we recover the mean value
theorem for harmonic functions. In fact all the previous theorems of this chapter
could have been derived as consequences of the representation (2.21) with Q=
Bg(0).

To establish the existence of solutions of the classical Dirichlet problem for balls
we need the converse result to the representation (2.26), and we prove this now.

Theorem 2.6. Let B= B(0)and ¢ be u continuous function on 0B. Then the function
u defined by

R* —|xI* r oly) ds,
B
(2.27) u(x)= nw no R f |x—y|" for x €

@(X) for x € 0B

belongs to C*(B) n C°(B) and satisfies Au=0 in B.

Proof. That u defined by (2.27) is harmonic in B is evident from the fact that G.
and hence 0G/0v. is harmonic in x. or it may be verified by direct calculation. To
establish the continuity of ¥ on 0B, we use the Poisson formula (2.26) for the special
case u=1 to obtain the identity.

(2.28) f K(x.y) ds),: | forallxe B

OB

where K is the Poisson kernel

RI—
(2.29) K(x.y)= —M—P-(I-——' x€ B.ye 0B.
nw,Rlx —y|"

Of course the integral in (2.28) may be evaluated directly but this is a complicated
calculation. Now let x, € B and ¢ be an arbitrary positive number. Choose 4 >0
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so that |g(x) — @(x,)| <€ if |x — x| <6 and let |¢| <M on 0B. Then if |x — x| < /2,
we have by (2.27) and (2.28)

[u(x) —u(xy)| =

[ Kx @) —0(xo) ds,

oB

< [ Kxple(n-elxo) ds,

ly—xol<é

+ f K(x, ylo(y)— (x,) ds,

ly—xo|>8

<8+2M(R2——|x|2)R"‘2.
h (6/2)"

If now |x — x| is sufficiently small it is clear that Ju(x) —u(x,)| < 2¢ and hence u is
continuous at x,. Consequently u € C°(B) as required. 0

We note that the preceding argument is local ; that is, if ¢ is only bounded and
integrable on 0B, and continuous at x,, then u(x) = ¢(x,) as x — x,,.

2.6. Convergence Theorems

We consider now some immediate consequences of the Poisson integral formula.
The following three theorems will not however be required for the later develop-
ment. We show first that harmonic functions can in fact be characterized by their
mean value property.

Theorem 2.7. A C%S) function u is harmonic if and only if for every ball
B=Bg(y)< <Q it satisfies the mean value property,

1
(2.30) u(y)_:n—w'j(ﬁ f uds.

oB

Proof. By Theorem 2.6, there exists for any ball Bc < Q a harmonic function
h such that h=u on 0B. The difference w=u— h will then be a function satisfying
the mean value property on any ball in B. Consequently the maximum principle
and uniqueness results of Theorems 2.2, 2.3 and 2.4 apply to w since the mean value
inequalities were the only properties of harmonic functions used in their derivation.
Hence w=0 in B and consequently ¥ must be harmonic in Q. 0

As an immediate consequence of the preceding theorem we have:

Theorem 2.8. The limit of a uniformly convergent sequence of harmonic functions is
harmonic.
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It follows from Theorem 2.8, that if {u,} is a sequence of harmonic functions in
a bounded domain Q, with continuous boundary values {¢,] which converge
uniformly on 99 to a function ¢, then the sequence {u,] converges uniformly (by
the maximum principle) to a harmonic function having the boundary values ¢ on
0R2. By means of Harnack's inequality, Theorem 2.5, we can also derive, from
Theorem 2.8, Harnack's convergence theorem.

Theorem 2.9. Let {u,} be a monotone increasing sequence of harmonic functions
in a domain Q and suppose that for some point y € Q. the sequence {u,(y)} is bounded.
Then the sequence converges uniformly on any bounded subdomain Q' < =Q 10 a
harmonic function.

Proof. The sequence {u,(y)} will converge, so that for arbitrary ¢>0 there is a
number N such that 0<u,(y)—u,(y)<e for all m>n> N. But then by Theorem
2.5, we must have

sup |u,(x)—u,(x)} <Ce
o

for some constant C depending on Q' and Q. Consequently {«, | converges uni-
formly and by virtue of Theorem 2.8, the limit function is harmonic. 0

2.7. Interior Estimates of Derivatives

By direct differentiation of the Poisson integral it is possible to obtain interior
derivative estimates for harmonic functions. Alternatively, such estimates also
follow from the mean value theorem. Forletu beharmonicin Q2and B= Bg(y)c Q.
Since the gradient Du is also harmonic in Q it follows by the mean value and
divergence theorems that

wann f Du dx=5nl—ﬁ f uv ds,
B 2B

Du(y)=
n
|Du(y)| < sup |u|
R 53
and hence
n
(2.31) | Du( y)| <= sup |ul,
a'y 0

where d, =dist (y, 0Q). By successive application of the estimate (2.31) in equally
spaced nested balls we obtain an estimate for higher order derivatives:
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Theorem 2.10. Let u be harmonic in Q and let Q' be any compact subset of Q. Then
for any multi-index a we have

=
(2.32) sup | D*y| S(%) sup |y|

(9] [0}

where d=dist (', ().

An immediate consequence of the bound (2.32) is the equicontinuity on com-
pact subdomains of the derivatives of any bounded set of harmonic functions.
Consequently by Arzela's theorem, we see that any bounded set of harmonic
functions forms a normal family ; that is, we have:

Theorem 2.11.  Any bounded sequence of harmonic functions on a domain Q2 contains
a subsequence converging uniformly on compact subdomains of Q to a harmonic
Sfunction.

The previous convergence theorem, Theorem 2.8, would also follow im-
mediately from Theorem 2.11.

2.8. The Dirichlet Problem ; the Method of Subharmonic Functions

We are in a position now to approach the question of existence of solutions of the
classical Dirichlet problem in arbitrary bounded domains. The treatment here will
be accomplished by Perron’s method of subharmonic functions [PE] which relies
heavily on the maximum principle and the solvability of the Dirichlet problem in
balls. The method has a number of attractive features in that it is elementary, it
separates the interior existence problem from that of the boundary behaviour of
solutions, and it is easily extended to more general classes of second order elliptic
equations. There are other well known approaches to existence theorems such as
the method of integral equations, treated for example in the books [KE 2] [GU],
and the variational or Hilbert space approach which we describe in a more general
context in Chapter 8.

The definition of C*(2) subharmonic and superharmonic function is general-
ized as follows. A C%(Q2) function u will be called subharmonic (superharmonic) in
Q if for every ball Bc < and every function A harmonic in B satisfying u <(>=)h
on ¢B, we also have u <(>)h in B. The following properties of C°(£2) subharmonic
functions are readily established:

(1) Ifuissubharmonicin a domain £, it satisfies the strong maximum principle
in Q; and if ¢ is superharmonic in a bounded domain © with v=>u on ¢, then
either v>u throughout Q or v=u. To prove the latter assertion, suppose the
contrary. Then at some point x, € 2 we have

(u—v)(xy)= sup (u—v)=M =0,
Q
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and we may assume there is a ball B= B(x,) such that u—v# M on 0B. Letting
i, v denote the harmonic functions respectively equal to u, v on 0B (Theorem 2.6),
one sees that

M2 sup (u—0v)2(Uu—0)(xy)2(u—0)(x,)=M,
B

and hence the equality holds throughout. By the strong maximum principle for
harmonic functions (Theorem 2.2) it follows that #—v=M in B and hence
u—v=M on JB, which contradicts the choice of B.

(i) Let u be subharmonic in Q and B be a ball strictly contained in Q. Denote
by u the harmonic function in B (given by the Poisson integral of ¥ on 0B) satisfying
u=u on 0B. We define in Q the harmonic lifting of u (in B) by

ew - 7EE

Then the function U is also subharmonic in Q. For consider an arbitrary ball
B'c < Qand let h be a harmonic function in B’ satisfying h> U on dB’. Since u< U
in B’ we have u<hin B’ and hence U<h in B'— B. Also since U is harmonic in B,
we have by the maximum principle U<h in B n B’. Consequently U<hin B’ and
U is subharmonic in Q.

(i1i) Let u,, u,, ..., uy be subharmonic in Q. Then the function u(x)=max
{u;(x), ..., uy(x)} is also subharmonic in Q. This is a trivial consequence of the
definition of subharmonicity. Corresponding results for superharmonic functions
are obtained by replacing u by —u in properties (i), (i1) and (iii).

Now let Q be bounded and ¢ be a bounded function on 02. A C°(Q) sub-
harmonic function u is called a subfunction relative to ¢ if it satisfies u< ¢ on 0Q.
Similarly a C°(2) superharmonic function is called a superfunction relative to ¢ if it
satisfies u> ¢ on 012. By the maximum principle every subfunction is less than or
equal to every superfunction. In particular, constant functions <inf ¢ (=sup ¢)

o0 o0

are subfunctions (superfunctions). Let S, denote the set of subfunctions relative
to ¢. The basic result of the Perron method is contained in the following theorem.

Theorem 2.12. The function u(x)= sup v(x) is harmonic in Q.
vES,

Proof. By the maximum principle any functionv € S satisfies v <sup ¢, so thatuis
well defined. Let y be an arbitrary fixed point of Q. By the definition of u, there exists
a sequence {v,} < S, such that v,(y) — u(y). By replacing v, with max (v,, inf ¢),
we may assume that the sequence {v,} is bounded. Now choose R so that the
ball B= Bg(y)< < and define V), to be the harmonic lifting of v, in B according
to (2.33). Then V, e S,, V,(y) — u(y) and by Theorem 2.11 the sequence {V,}
contains a subsequence {V, } converging uniformly in any ball B (y) with p<R
to a function v that is harmonic in B. Clearly v<u in Band v(y)=u(y). We claim
now that in fact v=u in B. For suppose v(z) <u(z) at some z € B. Then there exists
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a function @ € S, such that v(z) < u(z). Defining w, = max (i, V,,) and also the
harmonic liftings W, as in (2.33), we obtain as before a subsequence of the
sequence { W, | converging to a harmonic function w satisfying v<w<wu in B and
v(y)=w(y)=u(y). But then by the maximum principle we must have v=w in B.
This contradicts the definition of & and hence u is harmonic in Q. [

The preceding result exhibits a harmonic function which is a prospective
solution (called the Perron solution) of the classical Dirichlet problem: Au=0,
u=¢@ on 022. Indeed, if the Dirichlet problem is solvable, its solution is identical
with the Perron solution. For let w be the presumed solution. Then clearly w € S,
and by the maximum principle w>uforallu € S,. We note here also that the proof
of Theorem 2.12 could have been based on the Harnack convergence theorem,
Theorem 2.9, instead of the compactness theorem, Theorem 2.11; (see Problem
2.10).

In the Perron method the study of boundary behaviour of the solution 1s
essentially separate from the existence problem. The continuous assumption of
boundary values is connected to the geometric properties of the boundary through
the concept of barrier function. Let & be a point of Q2. Then a C°(Q) function
w = w, is called a barrier at { relative to Q if:

(1) w is superharmonic in ;
(1) w>01n Q—¢&; w (£)=0.

A more general definition of barrier requires only that the superharmonic
function w be continuous and positive in Q, and that w(x) - 0 as x = £. The
results of this section are valid for these weak barriers as well (see [HL, p. 168], for
example). An important feature of the barrier concept is that it is a local property
of the boundary 9. Namely, let us define w to be a local barrier at £ € 02 if there
is a neighborhood N of £ such that w satisfies the above definition in 2 n N. Then
a barrier at ¢ relative to Q can be defined as follows. Let B be a ball satisfying
teBcc N and mzljr_ﬂ; w>0. The function

_ {min (m, w(x)), xeQnB
w(x)= —
m, xef2—B
is then a barrier at ¢ relative to €2, as one sees by confirming properties (1) and (i1).
Indeed, w is continuous in Q and is superharmonic in by property (iii) of sub-
harmonic functions; property (11) is immediate.
A boundary point will be called regular (with respect to the Laplacian) if there
exists a barrier at that point.
The connection between the barrier and boundary behavior of solutions is
contained in the following.

Lemma 2.13. Let u be the harmonic function defined in Q by the Perron method
(Theorem 2.12). If & is a reqular boundary point of Q and ¢ is continuous at &, then

u(x) = (&) as x — £&.



26 2. Laplace’s Equation

Proof. Choosee>0.andlet M = sup |¢|. Since ¢ isa regular boundary point, there
1s a barrier w at ¢ and, by virtue of the continuity of ¢, there are constants é and k
such that |o(x) — (&) <eif | x — €| < b, and kw(x) = 2M if | x — | = 6. The functions
@(&)+ e+ kw, (&) —e—kw are respectively superfunction and subfunction relative
to ¢. Hence from the definition of v and the fact that every superfunction dominates
every subfunction, we have in Q.

O(E)—&—kw(x) <u(x) < @(&) + e+ kw(x)
or
lu(x) — @) < e+ kw(x).

Since w(x) — 0 as x — £, we obtain u(x) — @(&)asx — & 0O
This leads immediately to

Theorem 2.14. The classical Dirichlet problem in a bounded domain is solvable for
arbitrary continuous boundary values if and only if the boundary points are all reqular.

Proof. If the boundary values ¢ are continuous and the boundary 0 consists of
regular points, the preceding lemma states that the harmonic function provided by
the Perron method solves the Dirichlet problem. Conversely, suppose that the
Dirichlet problem is solvable for all continuous boundary values. Let & € 6Q2. Then
the function ¢(x)=|x —¢| is continuous on ¢ and the harmonic function solving
the Dirichlet problem in Q with boundary values ¢ is obviously a barrier at £.
Hence £ is regular, as are all points of ¢Q. 0O

The important question remains: For what domains are the boundary points
regular ? It turns out that general sufficient conditions can be stated in terms of
local geometric properties of the boundary. We mention some of these conditions
below.

If n=2, consider a boundary point z, of a bounded domain Q and take the
origin at z, with polar coordinates r, 8. Suppose there is a neighborhood N of z,
such that a single valued branch of 8 is defined in Q ~ N, or in a component of
Q n N having z, on its boundary. One sees that

R I log r
elogz— log? r+6?

W=

is a (weak) local barrier at z, and hence z, is a regular point. In particular, z, is
a regular boundary point if it is the endpoint of a simple arc lying in the exterior
of Q. Thus the Dirichlet problem in the plane is always solvable for continuous
boundary values in a (bounded) domain whose boundary points are each accessi-
ble from the exterior by a simple arc. More generally, the same barrier shows that
the boundary value problem is solvable if every component of the complement of
the domain consists of more than a single point. Examples of such domains are
domains bounded by a finite number of simple closed curves. Another is the unit
disc slit along an arc; in this case the boundary values can be assigned on opposite
sides of the slit.
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For higher dimensions the situation is substantially different and the Dirichlet
problem cannot be solved in corresponding generality. Thus, an example due to
Lebesgue shows that a closed surface in three dimensions with a sufficiently sharp
inward directed cusp has a non-regular point at the tip of the cusp. (see for
example [CH]).

A simple sufficient condition for solvability in a bounded domain QcR" is
that Q satisfy the exterior sphere condition; that is, for every point ¢ € 02, there
exists a ball B= Bg(y) satisfying B n Q=¢. If such a condition is fulfilled, then the
function w given by

R "—|x—y* " forn=3
2.34 (x)= X—
( ) wix) logI—‘(—y| forn=2
R
will be a barrier at £&. Consequently the boundary points of a domain with C?
boundary are all regular points; (see Problem 2.11).

2.9. Capacity

The physical concept of capacity provides another means of characterizing regular
and exceptional boundary points. Let 2 be a bounded domain in R"(n > 3) with
smooth boundary ¢€2, and let u be the harmonic function (often called the con-
ductor potential) defined in the complement of Q and satisfying the boundary
conditions v = | on ¢2and 1 = Oat infinity. The existence of u is easily established
as the (unique) limit of harmonic functions ' in an expanding sequence of bounded
domains having 02 as an inner boundary (on which ' = 1) and with outer
boundaries (on which «’ = 0) tending to infinity. If 2 denotes 092 or any smooth
closed surface enclosing Q, then the quantity

.
(2.39) cap Q = — J‘:_u ds = J. |Du|? dx v = outer normal
Gl
p2

Rr- 02

1s defined to be the capacity of Q. In electrostatics, cap € is within a constant factor
the total electric charge on the conductor 02 held at unit potential (relative to
infinity).

Capacity can also be defined for domains with nonsmooth boundaries and for
any compact set as the (unique) limit of the capacities of a nested sequence of
approximating smoothly bounded domains. Equivalent definitions of capacity can
be given directly without use of approximating domains (e.g., see [LK]). In
particular, we have the variational characterization

(2.36) cap Q = inf | |Dv|?.

vek
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where
K = {ve C{(R")|v =1o0n Q}.

To investigate the regularity of a point x, € 0, consider for any fixed 1€ (0, 1)
the capacity

C; =cap {x¢ Q|Ix — x| < N}

The Wiener criterion states that x is a regular boundary point of Qif and only if the
series

(2.37) Y C a2
j=0

diverges.

For a discussion of capacity and proof of the Wiener criterion we refer to the
literature, e.g., [KE 2, LK]. In Chapter 8 this condition for regularity will be proved
for a general class of elliptic operators in divergence form.

Problems

2.1. Derive the weak maximum principle for C*(€) subharmonic functions from
a consideration of necessary conditions for a relative maximum.

2.2. Provethatif 4u=01n Q and u=0u/0v=0 on an open, smooth portion of 92,
then u is identically zero.

2.3. Let G be the Green's function for a bounded domain 2. Prove

a) G(x,y)=G(y,x) forallx,ye Q. x#y:
b) G(x, y)<0 forall x. ye Q, x#y:;

c) fG(x. »f(y)dy— 0as x— 09, if fis bounded and integrable on €.
[0}

24. (Schwarz reflection principle.) Let Q% be a subdomain of the half-space
x,>0 having as part of its boundary an open section 7 of the hyperplane x,=0.
Suppose that u is harmonic in Q*, continuous in Q% U T, and that u=0 on T.
Show that the function U defined by

U(xl,...,x,.)—{u(x‘“”'x")’ x>0

—u(x,,..., —x,), x,<0

n
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is harmonic in the domain Q% U T U Q~, where Q" is the reflection of Q% in
x,=0(e, Q ={(x,.....x)eR"|(x,...., —x,) e Q"}).

2.5. Determine the Green's function for the annular region bounded by two
concentric spheres in R".

2.6. Let u be a non-negative harmonic function in a ball Bg(0). Deduce from the
Poisson integral formula, the following version of Harnack's inequality

n—2 _ n—2
BRI oy curny « S LREDD
(R+|x|) (R—|x])

u(0).

2.7. Show thata C%) function u is subharmonic in Q if and only if it satisfies the
mean value inequality locally ; that is, for every y € Q there exists 6 =48()) >0 such
that

1
u(y)sm f uds for all RS(S

n dBRr(y)

2.8. Anintegrablefunction uinadomain Qiscalled weakly harmonic (subharmonic,
superharmonic) in § if

fumpdx=(>. <)0

(0]

for all functions ¢ >0 in C*() having compact support in Q. Show that a C%(Q)
weakly harmonic (subharmonic, superharmonic) function is harmonic (sub-
harmonic, superharmonic).

2.9. Show that for C*(Q) functions u, the conditions: (i) 4u>=0 in Q; (ii) u is
subharmonic in €; (111) u is weakly subharmonic in Q, are equivalent.

2.10. Prove Theorem 2.12 using Theorem 2.9 instead of Theorem 2.11.

2.11. Show that a domain © with C? boundary 0Q satisfies an exterior sphere
condition.

2.12. Show that the Dirichlet problem is solvable for any domain Q satisfying an
exterior cone condition; that is, for every point £ € 0Q2 there exists a finite right
circular cone K, with vertex ¢, satisfying K n Q=¢. At each point ¢ € 692 taken
as origin, show that a suitable local barrier can be chosen in the form w=rf(6)
where 6 is the polar angle.

2.13. Let u be harmonic in Q< R". Use the argument leading to (2.31) to prove
the interior gradient bound,

| Du(x,)| sdi [sup u—u(x,)], d,= dist(x,, Q).
0 2
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If u>01n Q infer that

n
'Du(xo)l sg_ u(xo)-
0

2.14. (a) Prove Liouville’s theorem: A harmonic function defined over R" and
bounded above is constant.

(b) If n=2 prove that the Liouville theorem in part (a) is valid for subharmonic
functions.

(c) If n>2 show that a bounded subharmonic function defined over R" need
not be constant.

2.15. Letue C*(Q), u=0on dRQ e C. Prove the interpolation inequality: For
every € > 0,

1
leulZ dx < e J‘(Au)2 dx + P fuz dx.
£
(9] [ (0]
2.16. Prove Theorem 2.12 by findinginevery ball B « = Qamonotone increasing
sequence of harmonic functions that are restrictions of subfunctions on B and that

converge uniformly to u on a dense set of points in B. Hence show that Theorems
2.12 and 2.14 can be proved without use of the strong maximum principle.

2.17. Show that the volume integral in (2.35) is defined, and prove the equivalence
of the capacity definitions (2.35) and (2.36).

2.18. Let u be harmonic in (open, connected) Q <= R", and suppose B.(x,) = = Q.
If a < b < ¢, where b? = ac, show that

f u(xy + aw)u(xy + cw) dw = f u*(x, + bw) dw.

|of=1 lwl=1

Hence, conclude that if « is constant in a neighbourhood it is identically constant.
(Cf. [GN])



