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Abstract

We use the theory of elliptic genera to exhibit new obstructions to
smooth non-trivial S'-actions on highly connected manifolds.

1 Introduction

Let M be a smooth closed connected Spin-manifold. A celebrated
theorem of Atiyah and Hirzebruch [1] asserts that the index of the
Dirac operator on M, the fl—genus, vanishes if M admits a smooth
non-trivial S'-action. Here smoothness of the action is necessary since
there exist examples of topological S'-actions on Spin-manifolds with
non-zero A-genus (cf. [4], p. 352 and [5]).

In this note we use the elliptic genus to show that additional ob-
structions exist if one restricts to highly connected manifolds. We
recall that the elliptic genus is a bordism invariant which assigns to
M a modular function ®(M) for I'g(2). In one of the cusps of I'y(2)
this modular function expands as a series of twisted signatures which,
as explained by Witten [13], describes the “signature” of the free loop
space LM of M localized at the constant loops. In a different cusp
& (M) expands as a series of indices of twisted Dirac operators

_ dim M

Bo(M)=q &8 -(AM)—AM,TM)-q+A(M, \N>TM~+TM)-¢*+...).

Here A(M, E) denotes the index of the Dirac operator twisted with
ExC.

The main feature of the elliptic genus is its rigidity under S'-
actions conjectured by Witten and proved by Taubes and Bott-Taubes
(see [3] and references therein). In [9] Hirzebruch and Slodowy used



the rigidity theorem to show that the coefficients of ®¢(M) define ob-
structions to actions by involutions with large fixed point codimension.

In this note we show that their approach can also be used to de-
fine obstructions to the existence of S'-actions on highly connected
manifolds.

Theorem 1.1. Let M be a k-connected manifold, k > 4r > 0. If M
admits a smooth non-trivial S*-action then the first (r+1) coefficients
of ®o(M) vanish.

The note is structured in the following way. In the next section we
review relevant properties of the elliptic genus. In Section 3 we prove
a slightly more general version of Theorem 1.1. In the final section we
show by example that Theorem 1.1 is independent of the vanishing
theorem for the Witten genus [12, 6].

2 Elliptic genera

In this section we review relevant properties of the elliptic genus (for
more information see [11, 8]). The elliptic genus of M is a modular
function ®(M) of weight 0 with Zs-character for

To(2) := {A € SLy(Z) | A= (}*) mod 2}.

In one of the cusps (the signature cusp) ®(M) expands as a series of
twisted signatures

o o0
sign(q, LM) := sign(M, ® S TM Q@ ® Ay TM)

n=1 n=1

= sign(M) + 2 - sign(M,TM) -q+ ... = Zsign(M, E,) q" € Z[[q]].
n>0

Here Ay := >, A*-# (vesp. Sp:= Y, S% ') denotes the exterior (resp.
symmetric) power operation and sign(M, E) denotes the index of the
signature operator twisted with the complexification E®C. Note that
each E, is a virtual complex vector bundle associated to T'M.

Now assume S' acts smoothly on M. Then the twisted signatures
occurring in sign(q, LM) refine to virtual S'-representations and the
expansion refines to a series signgi (g, LM) € R(S")[[q]], where R(S*)
in the complex representation ring for S'.



The rigidity theorem (see [3] and references therein) asserts that
the elliptic genus is rigid, i.e. each coefficient of signgi(q,LM) is
constant as a character of S'.

In a different cusp (the A-cusp) ®(M) expands as the following
series of indices of twisted Dirac operators

_ dim M ~

Qo(M):i=q 5 -AM, Q) A pTMe (K) SpTM)
n=2m+1>0 n=2m>0

dim M

=q & - (AM)—-AM, TM)-q+ AM,\>TM +TM)-¢*+...).

As in [9] we will study the equivariant expansion signg: (g, LM) eval-
uated at the involution o € S'. Theorem 1.1 will follow from this and
a “change of cusps” argument.

3 Proof of Theorem 1.1

Let M be a smooth closed connected Spin-manifold with smooth non-
trivial S'-action and let o € S! denote the element of order two. As
in [9] we will study the equivariant elliptic genus signgi(q, LM) at o
via the Lefschetz fixed point formula [2].

Let signgi (M, E) be an equivariant twisted signature occurring
as coefficient in signgi(q, LM). Using the Lefschetz fixed point for-
mula the complex number signg: (M, E)(o) obtained by evaluating
signg1 (M, E) at o can be expressed as a sum of local data ap g at the
connected components F  of the fixed point manifold

M :={peM | o(p) =p}

signgi1 (M, E)(o) = Z ar,E-
F

It is well known that the fixed point manifold M7 is orientable (see
for example [3], Lemma 10.1, and references therein). We fix an ori-
entation for each connected component F' C M?.

To describe the local datum ar g consider the cohomology class
Arp g € H*(F;Q) defined by the following expression

O es) o ) (B elor). ()

Here +z; (resp. fy;) denote the formal roots of F' (resp. of the normal
bundle vr of F') for compatible orientations of F' and v, e(vr) is the



Euler class of vz and ch(E|r) denotes the equivariant Chern character
of E restricted to F.

Then the local datum ar g is obtained by evaluating the cohomol-
ogy class Ar g on the fundamental cycle [F]

UIF,E = <AF,E> [F]) .

Lemma 3.1. Let M and E be as above. If H*(M;Q) = 0 then app
vanishes for any connected component F C M? of codimension k.

Proof: Recall that the Euler class of the normal bundle of 7 : F —
M is equal to i*(i1(1)), where 4 : H*(F;Z) — H*T*(M;Z) denotes
the push forward (or Gysin homomorphism) in cohomology for the
oriented normal bundle vr. Since H¥(M;Q) = 0 we see that e(vr)
is a torsion class. Hence, Arr = 0 since it contains the Euler class
e(vr) as a factor (see equation (1)). [ |

We shall now apply this observation to prove the following generaliza-
tion of Theorem 1.1.

Theorem 3.2. Let M be a Spin-manifold with H*(M;Q) = 0 for
0 < <r. If M admits a smooth non-trivial S*-action then the first
(r+1) coefficients of ®(M) vanish.

Proof: Dividing out the kernel of the action we may assume that S'
acts effectively. We may also assume that the dimension of M is divis-
ible by 4. Let 0 € S' denote the element of order two. Recall that the
Sl-action is called even if it lifts to the Spin-structure and odd oth-
erwise. In the even case the codimension of all connected components
of M? is divisible by 4 whereas in the odd case the codimensions are
always = 2 mod 4 (cf. [1], Lemma 2.4). It is well known (see for ex-
ample [9], p. 317) that the elliptic genus vanishes for odd actions. So
it suffices to restrict to the case that the dimension (and codimension)
of each connected component F' C M7 is divisible by 4.

Consider the expansion signgi (g, LM) of the S'-equivariant el-
liptic genus in the signature cusp. The rigidity theorem [3] tells
us that signgi(q, LM)(o) is equal to the non-equivariant expansion
sign(q, LM). By the Lefschetz fixed point formula signgi(q, LM)(o)
is a sum of local contributions ar at the connected components F' of
M7

sign(q, LM) = signgi(q, LM) (o) =) _ar,
F
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where ap =), o arE, - q"-

Recall that each coefficient of the g-power series ar is the local
contribution in the Lefschetz fixed point formula of an equivariant
twisted signature evaluated at o € S'. Since H*(M;Q) = 0 for
0 < * < r the contribution ar vanishes if codim F' < 4r by Lemma
3.1. Hence,

sign(q, LM) = Z ag.
codim F'>4r
As explained in [9] ar can be identified with sign(q, L(F o F')), where
F o F denotes the transversal self-intersection (which is canonically
oriented and unique up to oriented bordism). Hence,

sign(a, LM) = 3 sign(q, L(F o F)).
codim FoF >8r

Changing cusps one obtains

(M) = S @(FoF). (2)
codim FoF>8r

Note that each summand

_ dim(FoF)
8

do(FoF)=gq (A(FoF)—A(FoF, T(FoF))-q+...)

of the right hand side of (2) has a pole of order < dim(gom < dmM .
Comparing with the expansion on the left hand side

_ dim M ~ ~

Bo(M) = ¢~ 5™ . (AM) — A(M,TM) - q +...)

it follows that the first (r 4+ 1) coefficients of ®y(M) vanish. [ |

Remark 3.3. Herrera-Herrera [7] have shown that the rigidity theo-
rem also holds for manifolds with finite second homotopy group. Com-
bining their result with the above argument shows that Theorem 3.2
remains true if one replaces the Spin-condition by the condition that
the second homotopy group is finite.

4 Comparison with the Witten genus

In this section we show by example that for 8-connected manifolds
Theorem 1.1 does not follow from the vanishing theorem for the Wit-
ten genus [12, 6].



Let M be a 4k-dimensional Spin-manifold with &-(M) = 0. In
[13] Witten introduced a genus, the so called Witten genus, which is
best thought of as the index of a hypothetical Dirac operator on the
free loop space of M. The Witten genus is a bordism invariant which
assigns to M a modular form ¢ (M) of weight 2k for SLy(Z) which
we shall identify with its g-expansion. The latter can be described by
the following series of indices of twisted Dirac operators

ow (M) = AM, Q) SpnTM) - Cy,

n=1

= (A(M)+ AM, TM) - q+ AM,S*TM +TM) -¢*> +...) - Cy.

Here Cy := ¢~ 2 - * and 5 = ¢1/24 . [12°,(1 — ¢™) is the Dedekind
eta function.

It follows from [12] that the Witten genus vanishes on 4-connected
manifolds with non-trivial smooth S'-action (see [6] for related re-
sults). Applying this to the first two coefficients of the Witten genus
we see that for any 4-connected manifold M with smooth non-trivial
S'-action A(M) and A(M,TM) must vanish.

Hence, the statement of Theorem 1.1 for 4-connected manifolds
also follows from the vanishing of the Witten genus. For 8-connected
manifolds the situation changes as shown by the following

Example 4.1. There is an 8-connected 28-dimensional manifold M
with ow (M) =0 but A(M,A*TM +TM) # 0.

Remarks 4.2. 1. By Theorem 1.1 M does not admit a smooth
non-trivial S'-action.

2. The dimension is the smallest possible since any 8-connected
manifold of dimension < 28 with vanishing Witten genus is ra-
tionally zero bordant.

Outline of the construction of the example: The example will
be obtained by applying surgery to a suitable combination of almost
parallelizable manifolds. Let Ny, be a smooth closed almost paral-
lelizable manifold with A(Nyy) = —ay - num(52k), where By, is the
(2k)th Bernoulli number, num( ) denotes the numerator and oy is
one or two according as k is even or odd. Such manifolds which can
be constructed via plumbing where considered by Kervaire and Milnor

[10] (see [8], Section 6.4-6.5, for more details).
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Let M' be the connected sum of Nog and —(N1g X N12), where the
sign denotes opposite orientation. Since Ny is almost parallelizable
the stable normal bundle of M’ is trivial over the 8-skeleton. Hence,
we can use surgery to change M’ inside its bordism class to an 8-
connected manifold denoted by M.

To compute the Witten genus of M we first recall that for an almost
parallelizable 4k-dimensional manifold the Witten genus is equal to
the A-genus times the Eisenstein series Eyy (see [8], p. 89). The first
few terms of py (Nyg) are given in the following table.

2k num(4—2k’“) Egk <PW(N4k)

6 |+1 1—504g—...| —2 + 1008q — ...
8 | —1 1+4+480g+...| +1+480g—...
14 | +1 1—24g—... | —2+48q¢q—...

Next we recall that the ring of modular forms for SLy(Z) is a poly-
nomial ring generated by E; and Eg. This implies that a modular
form of weight 14 vanishes if and only if its expansion has vanishing
constant term. From the data above one computes that o (M) = 0.

We now turn to the computation of the elliptic genus of M. The
characteristic power series Q(z) = z/f(z) of the elliptic genus & sat-
isfies the differential equation f’ 21— 2% - f?2+ f*, where § and €
are modular forms for I'g(2) of weight 2 and 4, respectively (see [8],
App. I for details). Note that the differential equation together with
the normalization f(z) = z + O(z3) determine the odd power series
f(z) as well as Q(z) and ®.

For an almost parallelizable 4k-dimensional manifold X the elliptic
genus ®(X) is equal to a constant s; times the Pontrjagin number
(pk(X), [X]), where the si can be calculated from the characteristic
power series by a formula of Cauchy

d > , ,
1— o log Q(z) = Jz:%(—l)]sj - 2

The Pontrjagin number (p;(X),[X]) can be computed from A(X).

Applying this information to the almost parallelizable manifolds Ny
one can compute ®(M) as a polynomial in %. To compute the ex-

pansion ®¢(Ny;) of ®(Nyi) in the A-cusp one only has to replace %



by its expansion in this cusp (again we refer to [8], App. I for de-
tails). Doing the computation one obtains the following expansion for
Oy (M) = ®y(Nag) — Pg(Nig) - Po(N12):

Bo(M) :=q = -(A(M)— A(M,TM)-q+A(M, N*TM+TM)-¢>+...)

—q 5 - (—967680 - ¢> — 127733760 - ¢ + ...

Hence, A(M,A\>TM + TM) # 0.
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