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ON THE RIGIDITY THEOREM
FOR ELLIPTIC GENERA

ANAND DESSAI AND RAINER JUNG

Abstract. We give a detailed proof of the rigidity theorem for elliptic gen-
era. Using the Lefschetz fixed point formula we carefully analyze the relation
between the characteristic power series defining the elliptic genera and the
equivariant elliptic genera. We show that equivariant elliptic genera converge
to Jacobi functions which are holomorphic. This implies the rigidity of elliptic
genera. Our approach can be easily modified to give a proof of the rigidity
theorem for the elliptic genera of level N .
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1. Introduction

In this article we give a detailed proof of the rigidity theorem for elliptic genera
of Spin-manifolds with a special focus on the function theory involved. Elliptic
genera were introduced by Ochanine in [Oc87] (see also [LaSt88]). Witten gave two
descriptions of elliptic genera as power series of indices of twisted Dirac operators
([Wi86]). He conjectured the rigidity theorem which states that these elliptic genera
are rigid for S1-actions on Spin-manifolds (for a precise statement see Theorem 2.5).
In the semi-free case Ochanine gave a proof of the rigidity theorem in [Oc86]. The
general case was proven by Taubes [Ta89] using a Dirac operator on the normal
bundle to the embedding of the manifold into its loop space and by Bott-Taubes
[BoTa89] using elliptic function theory. Later Liu observed that the rigidity theorem
is equivalent to the holomorphicity of an associated Jacobi function (cf. [Li92] and
[Li95]; for an introduction to Jacobi forms we refer to [EiZa85]). By exploring the
modularity properties of this Jacobi function Liu gave a simplified proof avoiding
the complicated technical transfer argument which was used in [BoTa89]. For the
history of elliptic genera we refer to [La86].

In the proofs of Bott-Taubes and Liu the parts dealing with function theory
and with higher dimensional fixed point components were rather short. So several
people suggested that a detailed proof of the rigidity theorem should be carried
out. More precisely this proof should focus on the following steps

– equivariant elliptic genera as q-power series converge to meromorphic func-
tions,

– these meromorphic functions are holomorphic,
– these functions are Jacobi functions of index 0,

and give details also for the case of higher dimensional fixed point components. The
purpose of this article is to carry out this proof. Most of the material evolved from
discussions of both authors with Th. Berger. From Liu (cf. [Li92]) we borrowed the
beautiful idea of using Jacobi functions.

We present a framework which is also useful to study other rigidity phenomena,
in particular in the case of genera. For stable almost complex manifolds Hirzebruch
proved the rigidity of level N elliptic genera (cf. [Hi88], see also [HiBeJu92], Ap-
pendix III) also conjectured by Witten (cf. [Wi86]). Our approach can be easily
modified to give a more detailed account of this theorem. In [De96] the rigidity
theorems for the elliptic genera and level N elliptic genera have been extended to
various twisted versions for Spinc-manifolds. In order to present the basic ideas
most clearly we decided to restrict ourselves to the case of the classical elliptic
genera. For the proof of more general rigidity theorems we refer the reader to
[De96].

The outline of the proof is as follows: In the first chapter we study the S1-
equivariant index of a twisted Dirac-operator on a Spin-manifold M . The Lef-
schetz fixed point formula gives a description of the equivariant index in terms of
cohomological data (cf. Theorem 2.8). Now we assume that the twisted operator
comes from an exponential representation V of the Spin-group (cf. Definition 2.15,
Part 1). So it also defines a genus, i.e. a multiplicative invariant on the bordism
ring. In this case we define a so-called building block associated to the exponential
representation V , which is closely related to the characteristic power series defin-
ing the genus in the Hirzebruch formalism (cf. Definition 2.15, Part 2). Then the
equivariant index can be expressed in terms of the building block and the data of
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the S1-action over the fixed point components. More precisely we show that it is
given by evaluating a polynomial PM in basic differential operators on the building
block (cf. Proposition 2.17, Part 2). The polynomial PM only depends on the oper-
ation of S1 over the fixed point components and not on the twisted Dirac-operator
itself. This result leads to the definition of DSC-rings (cf. Definition 2.18): They
are rings on which such polynomials PM act in a graded way. So whenever the
building block is in some DSC-ring, the equivariant index will also be in this ring
(cf. Proposition 2.20). In this way properties of the building block can be carried
over to the equivariant index.

In the second chapter we apply this principle to DSC-rings which are suitable to
study elliptic genera. Using the meromorphicity and modularity properties of the
building blocks associated to elliptic genera, we show that the equivariant elliptic
genera (i.e. the equivariant indices) extend to special Jacobi functions of index 0
(cf. Proposition 3.26, Part 1). From a proposition of Th. Berger it follows that these
Jacobi functions have no poles on S1 (cf. Proposition 3.10 and Corollary 3.17). For
the next step it is necessary to use both of the two different parametrizations of ellip-
tic genera (as given by Witten). The two parametrizations are an orbit of the action
of SL2(Z) on Jacobi functions (for a more precise statement see Proposition 3.26,
Part 2). Since both have no poles on S1, we can use the transformation properties
of Jacobi functions to show that the meromorphic Jacobi functions to which the
equivariant elliptic genera extend are actually holomorphic. Since any such function
is constant (in the variable z) this proves the rigidity theorem (cf. Theorem 3.29).
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2. Cohomological Considerations

2.1. Elliptic Genera. In this article (unless stated otherwise) all manifolds are as-
sumed to be smooth, closed and oriented. In this section we recall the construction
of elliptic genera for Spin-manifolds as power series of indices of certain differential
operators (cf. [Wi86]).

Let M be a 2m-dimensional manifold with Spin-structure given by a Spin(2m)-
principal bundle P → M together with an isomorphism P ×Spin(2m) R2m ∼= TM
of oriented vector bundles, where TM denotes the tangent bundle of M . Let
ρ : Spin(2m) → SO(2m) be the covering map and ρ∗ : R(SO(2m)) → R(Spin(2m))
be the induced injection of the complex representation rings. In the following a com-
plex SO(2m)-representation V will always be identified with ρ∗(V ). To any complex
Spin(2m)-representation V one can assign the associated complex vector bundle
P ×Spin(2m) V over M . This defines a ring homomorphism R(Spin(2m)) → K(M).

Since M is spin one can construct for E ∈ K(M) a twisted Dirac operator
D(M ;E) with well-defined index denoted by Â(M ;E). This gives a Z-module
homomorphism

Â(M ; · ) : K(M) → Z, E 7→ Â(M ;E).
For E ∈ K(M) one can also construct a twisted signature operator d(M ;E) with

well-defined index denoted by sign(M ;E). Again this gives a Z-module homomor-
phism

sign(M ; · ) : K(M) → Z, E 7→ sign(M ;E).
If the vector bundle E is associated to P by a representation V of Spin(2m)

we will also use the notation Â(M ;V ) and sign(M ;V ) instead of Â(M ;E) and
sign(M ;E), respectively. For V = 1 these are the classical genera Â(M) = Â(M ; 1)
and sign(M) = sign(M ; 1).

We denote the complex half-spin representations of Spin(2m) by 4+ and 4−,
and the associated vector bundles P ×Spin(2m) 4± by 4±

P .

Remark 2.1. For a Spin-manifold M the index sign(M ;E) is equal to the index of
a twisted Dirac operator: sign(M ;E) = Â(M ;E ⊗ (4+

P +4−
P )).

Analogously we can consider the homomorphism R(Spin(2m))[[q]] → K(M)[[q]]
of Z[[q]]-algebras and the Z[[q]]-module homomorphisms

K(M)[[q]] → Z[[q]],
∞∑

n=0

Enq
n 7→

∞∑
n=0

Â(M ;En)qn

and

K(M)[[q]] → Z[[q]],
∞∑

n=0

Enq
n 7→

∞∑
n=0

sign(M ;En)qn.

Now let Si and Λi be the usual symmetric and exterior power representations in
the complex representation ring of SO(2m) and let St and Λt be given by

St =
∞∑

i=0

Siti, Λt =
2m∑
i=0

Λiti ∈ R(SO(2m))[[t]].

Following Witten (cf. [Wi86]) we now define the elliptic genera using two power
series of representations R and R0.
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Definition 2.2. (1) Let

R =
∞∑

n=0

Rnq
n := (4+ +4−)⊗

∞⊗
n=1

Sqn ⊗
∞⊗

n=1

Λqn ⊗ C ∈ R(Spin(2m))[[q]]

and

R0 =
∞∑

n=0

R0
nq

n :=
∞⊗

n=1

Sq2n ⊗
∞⊗

n=1

Λ−q2n−1 ⊗ C0 ∈ R(SO(2m))[[q]],

where

C :=
∞
Π

n=1

(1− qn)2m

(1 + qn)2m
and C0 :=

∞
Π

n=1

(1− q2n)2m

(1− q2n−1)2m
.

(2) For any 2m-dimensional Spin-manifold M we define the elliptic genus
ϕ(M) of M at the cusp i∞ and the elliptic genus ϕ0(M) of M at
the cusp 0 by1

ϕ(M) := Â(M ;R) =
∞∑

n=0

Â(M ;Rn)qn ∈ Z[[q]]

and

ϕ0(M) := Â(M ;R0) =
∞∑

n=0

Â(M ;R0
n)qn ∈ Z[[q]].

The elliptic genus of M at the cusp i∞ may be written as a power series of
indices of twisted signatures (cf. Remark 2.1):

ϕ(M) = sign(M ;
∞⊗

n=1

Sqn ⊗
∞⊗

n=1

Λqn) · C ∈ Z[[q]].

The first terms in these power series are

ϕ(M) ≡ (sign(M) + 2sign(M ; Λ1)q

+ sign(M ; 2Λ1 + S2 + (Λ1)2 + Λ2)q2) · C mod (q3)
and

ϕ0(M) ≡ (Â(M)− Â(M ; Λ1)q + Â(M ; Λ2 + Λ1)q2) · C0 mod (q3).

In Proposition 3.26 we will see that the two expressions ϕ(M) and ϕ0(M) are two
different descriptions of the same invariant of M .

2.2. Equivariant Elliptic Genera and the Rigidity Theorem. In this section
we define equivariant elliptic genera for S1-actions and state the rigidity theo-
rem. We assume that M carries a smooth S1-action preserving its Spin-structure,
i.e. P → M is an S1-equivariant Spin(2m)-principal bundle. Observe that any
given S1-action preserves the Spin-structure after doubling the action using the
double cover S1 → S1, λ 7→ λ2.

Let E be an S1-equivariant complex vector bundle over M . Then the indices
Â(M ;E) and sign(M ;E) refine to well-defined equivariant indices

ÂS1(M ;E) ∈ R(S1) and signS1(M ;E) ∈ R(S1).

1This differs from the definition of ϕ(M) in [HiBeJu92] by a factor of 2m.
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This induces homomorphisms of R(S1)-modules from KS1(M) to R(S1), such
that for the corresponding characters we have

ÂS1(M ;E)(1) = Â(M ;E) and signS1(M ;E)(1) = sign(M ;E).

Here (and in the following) we make no distinction between representations of
S1 and their corresponding characters. As in the previous section we extend the
definition and notation to V ∈ R(Spin(2m)) and power series in q. Note that the
S1-action on the principal bundle P induces an S1-action on any associated vector
bundle.

Remark 2.3. For a Spin-manifold M with S1-action preserving the Spin-structure
the equivariant index signS1(M ;E) is equal to the equivariant index ÂS1(M ;E ⊗
(4+

P +4−
P )) of a twisted Dirac operator.

Definition 2.4. For any 2m-dimensional Spin-manifold M with Spin-preserving
S1-action we define the equivariant elliptic genera at the cusps i∞ and 0 by

ϕS1(M) := ÂS1(M ;R) =
∞∑

n=0

ÂS1(M ;Rn)qn ∈ R(S1)[[q]]

and

ϕ0
S1(M) := ÂS1(M ;R0) =

∞∑
n=0

ÂS1(M ;R0
n)qn ∈ R(S1)[[q]].

Note that ϕS1(M)(1) = ϕ(M) and ϕ0
S1(M)(1) = ϕ0(M). By Remark 2.3 the

equivariant elliptic genus ϕS1(M) is equal to

ϕS1(M) = signS1(M ;
∞⊗

n=1

Sqn ⊗
∞⊗

n=1

Λqn) · C ∈ R(S1)[[q]].

Now we are in the position to state the rigidity theorem.

Theorem 2.5 (Rigidity Theorem [Wi86], [Ta89], [BoTa89], [Li92]). Let M be a 2m-
dimensional Spin-manifold with Spin-preserving S1-action. Then the equivariant
elliptic genera ϕS1(M) and ϕ0

S1(M) are both rigid, i.e. they are power series in q
with coefficients which are constant as characters of S1. In other words

ϕS1(M) = ϕ(M) and ϕ0
S1(M) = ϕ0(M).

Remark 2.6. Note that the identity in Theorem 2.5 is an identity of power series
in q, i.e.

ÂS1(M ;Rn) = Â(M ;Rn) and ÂS1(M ;R0
n) = Â(M ;R0

n)

for all n ≥ 0. So the theorem states that all the equivariant indices ÂS1(M ;Rn)
and ÂS1(M ;R0

n) are in fact constant as characters on S1.

2.3. Cohomological Formulas for Indices. In this section we recall the coho-
mological formulas for elliptic genera in the non-equivariant case.

Let {±xi} be the roots of TM , thus
m

Π
i=1

(1 + x2
i ) = p(M) =

m∑
i=0

pi(M) is the total

Pontrjagin class of M . From the Atiyah-Singer Index Theorem (cf. [AtSiIII68]) one
gets an explicit formula for Â(M ;E) in terms of cohomological data:

Â(M ;E) = (−1)m

〈
m

Π
i=1

(
xi ·

1
e

xi
2 − e−

xi
2

)
· ch(E), [M ]

〉
, (1)
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where ch : K(M) → H∗(M ; Q) is the usual Chern character ring homomorphism,
[M ] is the fundamental cycle of the oriented manifold M and 〈·, ·〉 is the Kronecker
pairing between homology and cohomology.

Note that if V is a Spin(2m)-representation of rank r with weights2 ωi(z1, . . . , zm),
i = 1, . . . , r,

ωi(z1, . . . , zm) =
m∑

j=1

ωj
i zj , ω

j
i ∈ 1

2 · Z,

then

ch(P ×Spin(2m) V ) =
r∑

i=1

eωi(x1,...,xm) .

We will also use the shorthand notation ch(V ) for ch(P ×Spin(2m) V ).
Since ch is a ring homomorphism its canonical extension

ch : K(M)[[q]] → H∗(M ; Q)[[q]]

is a Z[[q]]-algebra homomorphism. If V =
∞∑

n=0
Vnq

n ∈ R(Spin(2m))[[q]] is a power

series of representations, where Vn has rank r(n) and weights ωn,i(z1, . . . , zm) =
m∑

j=1

ωj
n,izj for i = 1, . . . , r(n), then the corresponding Chern character is equal to

ch(V ) =
∞∑

n=0

r(n)∑
i=1

eωn,i(x1,...,xm) · qn. (2)

Definition 2.7. (1) Let F1(µ1, . . . , µm) :=
m

Π
i=1

1
µ

1
2
i −µ

− 1
2

i

∈ Q(µ
1
2
1 , . . . , µ

1
2
m).

(2) For a power series of representations V =
∞∑

n=0
Vnq

n ∈ R(Spin(2m))[[q]] with

weights ωn,i as in (2) we define its formal Chern character

F2,V (µ1, . . . , µm) :=
∞∑

n=0

r(n)∑
i=1

eωn,i(z1,...,zm)qn ∈ Q[µ±
1
2

1 , . . . , µ
± 1

2
m ][[q]],

where µj = ezj for j = 1, . . . ,m.

Using the extension of the Chern character to power series and the previous
definition we can restate formula (1), giving the non-equivariant index of a twisted
Dirac operator, in the following way:

Â(M ;V ) = (−1)m

〈
(

m

Π
i=1
xi) · F1(ex1 , . . . , exm) · F2,V (ex1 , . . . , exm), [M ]

〉
. (3)

Now we specialize formula (3) to the case of elliptic genera. Consider the well-
known formulas

ch(Sq) =
m

Π
i=1

1
(1− qexi)(1− qe−xi)

,

ch(Λq) =
m

Π
i=1

(1 + qexi)(1 + qe−xi)

2As usual we give weights of Spin(2m)-representations in terms of SO(2m).
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and
ch(4+ +4−) =

m

Π
i=1

(e
xi
2 + e−

xi
2 ).

Then the Chern characters of the power series of representations R and R0 in
R(Spin(2m))[[q]] given in Definition 2.2 are equal to

ch(R) =
m

Π
i=1

(
(e

xi
2 + e−

xi
2 )

∞
Π

n=1

(1 + qnexi)(1 + qne−xi)(1− qn)2

(1− qnexi)(1− qne−xi)(1 + qn)2

)
and

ch(R0) =
m

Π
i=1

(
∞
Π

n=1

(1− q2n−1exi)(1− q2n−1e−xi)(1− q2n)2

(1− q2nexi)(1− q2ne−xi)(1− q2n−1)2

)
.

So the formal Chern characters F2,R and F2,R0 of R and R0 are equal to

F2,R(µ1, . . . , µm) =
m

Π
i=1

(
(µ

1
2
i + µ

− 1
2

i )
∞
Π

n=1

(1 + qnµi)(1 + qnµ−1
i )(1− qn)2

(1− qnµi)(1− qnµ−1
i )(1 + qn)2

)
and

F2,R0(µ1, . . . , µm) =
m

Π
i=1

(
∞
Π

n=1

(1− q2n−1µi)(1− q2n−1µ−1
i )(1− q2n)2

(1− q2nµi)(1− q2nµ−1
i )(1− q2n−1)2

)
.

Applying formula (3) to the elliptic genera we get

ϕ(M) = (−1)m

〈
m

Π
i=1

(
xi ·

exi + 1
exi − 1

·
∞
Π

n=1

(1 + qnexi)(1 + qne−xi)(1− qn)2

(1− qnexi)(1− qne−xi)(1 + qn)2

)
, [M ]

〉
and
ϕ0(M) =

(−1)m

〈
m

Π
i=1

(
xi

e
xi
2 − e−

xi
2
·
∞
Π

n=1

(1− q2n−1exi)(1− q2n−1e−xi)(1− q2n)2

(1− q2nexi)(1− q2ne−xi)(1− q2n−1)2

)
, [M ]

〉
,

where both expressions are in Q[[q]]. In fact from the earlier definition as indices
we know that the expressions are in Z[[q]].

2.4. Cohomological Formulas for Equivariant Indices. In this section we give
the cohomological version of the Lefschetz fixed point formula for equivariant indices
(cf. [AtSiIII68]). It describes the global equivariant index in terms of local invariants
associated to the S1-action over the fixed point components of the manifold.

Let M be a 2m-dimensional Spin-manifold with Spin-preserving S1-action. Let
MS1 ⊂M be the fixed point manifold of the S1-action on M and let Y be a
connected component of MS1

. Since Y is a trivial S1-space, the tangent bundle
TM of M restricted to Y splits equivariantly as a direct sum of the tangent bun-
dle ν0 of Y and the normal bundle ν of Y in M . The latter splits equivariantly

as a finite direct sum ν =
l⊕

k=1

νk, where the non-trivial S1-action on νk induces a

complex structure on νk, s.t. λ ∈ S1 acts on νk by multiplication with λmk
Y and all

mk
Y are positive integers. These integers will be called rotation numbers of the

S1-action at Y . We define m0
Y := 0 which we interpret as the tangential rotation

number of Y . Let the orientation of Y be induced by the orientation of M and the
complex structures on νk. We denote by r(k) the complex rank of νk and let r(0)
be equal to half of the dimension of Y . We remark that the integers l and r(k) for
k = 0, . . . , l, depend on the chosen component Y . We are now in the position to
state the Lefschetz fixed point theorem.
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Theorem 2.8 (Lefschetz fixed point formula [AtSiIII68]). Let M be a 2m-dimen-
sional Spin-manifold with Spin-preserving S1-action and let Y be the set of con-
nected components of MS1

. Let V ∈ R(Spin(2m))[[q]]. Then

ÂS1(M ;V ) =
∑
Y ∈Y

a(Y, V ), (4)

where a(Y, V ) ∈ Q(λ
1
2 )[[q]] is given by

a(Y, V )(λ) = (−1)m

〈
(
r(0)

Π
j=1

x0,j) · F1(ex0,1+m0
Y ·z, . . . , exk,j+mk

Y ·z, . . . , exl,r(l)+ml
Y ·z)

· F2,V (ex0,1+m0
Y ·z, . . . , exk,j+mk

Y ·z, . . . , exl,r(l)+ml
Y ·z), [Y ]

〉
for λ = ez. Here mk

Y are the rotation numbers of Y and xk,j are the roots of the
bundle vk. �

Remark 2.9. (1) Recipe: The formula giving a(Y, V ) is obtained from formula

(3) for the non-equivariant index of M by replacing the Euler class
m

Π
i=1
xi

of M by the Euler class
r(0)

Π
j=1

x0,j of Y and replacing the roots xi of TM by

xk,j +mk
Y · z.

(2) By definition ÂS1(M ;V ) is a power series in q with coefficients which are
characters on S1, i.e. Laurent polynomials in λ. The given formula describes
the global equivariant index ÂS1(M ;V ) in terms of local invariants a(Y, V )
associated to the fixed point components Y of M . We will see in the next
section (cf. Theorem 2.13) that each local invariant a(Y, V ) is an element
in Q(λ

1
2 )[[q]], where the coefficients of this power series might have poles

only at zero or at any λ with λmk
Y = 1. Identity (4) of the Lefschetz fixed

point theorem is proven for topological generators λ of S1. Since the set
of topological generators is dense on S1, identity (4) is q-coefficientwise
an identity of rational functions. Since each coefficient on the left side is
actually a Laurent polynomial in λ, the possible poles on S1 on the right
side must cancel out by summation over the fixed point components Y .

2.5. The Lefschetz Fixed Point Formula - Revisited. In this section we will
have a closer look at the Lefschetz fixed point formula. We will define a power
series GV,N (Y ) which is closely related to an equivariant analog of the formal Chern
character of V . Then we will rephrase the evaluation of the cohomological expres-
sion on the fundamental class to express the local invariants a(Y, V ) as a Q-linear
combination of the coefficients of GV,N (Y ). The coefficients of this Q-linear com-
bination only depend on the S1-action over the fixed point component and not on
the chosen power series of representations V .

Let M be a 2m-dimensional Spin-manifold with Spin-preserving S1-action and
let Y be a connected component of MS1

with rotation numbers mk
Y and roots xk,j ,

j = 1, . . . , r(k), of the vector bundle νk, k = 0, . . . , l, defined in the beginning of
Section 2.4. Finally let C(Y ) := {(k, j) | 0 ≤ k ≤ l, 1 ≤ j ≤ r(k)} be the index set
of the roots xk,j .
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For A := Q(λ
1
2 )[[q]] we study the following map:3

A
[[
ck,i, ph, e | (k, i)∈C(Y ), k 6=0, h= 1, . . . , r(0)− 1

]] ι→ A
[[
xk,j | (k, j) ∈ C(Y )

]]
,

where each ck,i is mapped by ι to the i-th elementary symmetric function in the
xk,j for k 6= 0, ph is mapped to the h-th elementary symmetric function in the x2

0,j ,
and e is mapped to the product of the x0,j , i.e.

ι(ck,i) = σi(xk,j), ι(ph) = σh(x2
0,j) and ι(e) =

r(0)

Π
j=1

x0,j .

Note that after giving xk,j , ck,i, ph and e degrees 2, 2i, 4h and 2r(0), respectively,
the above rings become graded rings and ι a graded homomorphism.

Consider the group action W on A[[xk,j | (k, j) ∈ C(Y )]] generated by all permu-
tations of xk,1, . . . , xk,r(k) for fixed k ∈ {0, . . . , l} and even numbers of sign changes
on x0,1, . . . , x0,r(0). Note that the image of ι lies in the invariants of the group
action W .

Lemma 2.10. (1) The map ι is injective.
(2) The image of ι is equal to the invariants of the group action W .
(3) For every a ∈ A[[ck,i, ph, e | (k, i) ∈ C(Y ), k 6= 0, h = 1, . . . , r(0) − 1]] the

coefficients of a are given by unique Q-linear combinations of the coeffi-
cients of the monomials Π

(k,j)∈C(Y )
x

nk,j

k,j in ι(a) where nk,j ≥ nk,j+1. The

coefficients of these Q-linear combinations do not depend on a.

Proof. Statements (1) and (2) follow easily from standard facts about symmetric
functions after splitting domain and range of ι into appropriate tensor products.
For (3) we may assume that a is homogeneous of some degree d. Note that since
ι is injective the image of ι is again a free A-module with basis in degree d given
by the image of monomials in ck,i, ph and e of degree d. Two monomials in the
xk,j are called equivalent iff they are in the same orbit with respect to the action
of W . For any monomial y let y denote the sum of all monomials which are
equivalent to y. Then the equivalence classes Π

(k,j)∈C(Y )
x

nk,j

k,j for nk,j ≥ nk,j+1 and∑
(k,j)∈C(Y )

2nk,j = d define another basis. Since the matrix for the basis change has

rational entries statement (3) follows. �

Recall the formulas for F1 and F2,V from Definition 2.7.

Definition 2.11. For any m-tuple N of integer numbers mi and any power series
of representations V we define

G1,N (λ, x1, . . . , xm) := F1(λm1ex1 , . . . , λmmexm),

G2,V,N (λ, x1, . . . , xm) := F2,V (λm1ex1 , . . . , λmmexm).

3The structure group of the bundle TM |Y restricts to the product G of U(r(k)) for k 6= 0 and
SO(2r(0)). The inclusion of the maximal torus in G induces a map between classifying spaces
which is given in cohomology with coefficients in A by ι.
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For the m-tuple N = N (Y ) of rotation numbers mk,j := mk
Y , (k, j) ∈ C(Y ), of the

fixed point component Y we define

GV,N (Y )(λ, x0,1, . . . , xk,j , . . . , xl,r(l)) :=

(
r(0)

Π
j=1

x0,j) ·G1,N (Y )(λ, x0,1, . . . , xk,j , . . . , xl,r(l))

·G2,V,N (Y )(λ, x0,1, . . . , xk,j , . . . , xl,r(l)).

From Definition 2.7 it is immediate that

F1(λm1µ1, . . . , λ
mmµm) ∈ Q(λ

1
2 , µ

1
2
1 , . . . , µ

1
2
m),

F2,V (λm1µ1, . . . , λ
mmµm) ∈ Q[λ±

1
2 , µ

± 1
2

1 , . . . , µ
± 1

2
m ][[q]]

and
G1,N (λ, x1, . . . , xm) ∈ Π

mi=0

1
xi
·Q[ 1

λmi−1 | mi 6= 0][λ±
1
2 ][[x1, . . . , xm]],

G2,V,N (λ, x1, . . . , xm) ∈ Q[λ±
1
2 ][[x1, . . . , xm]][[q]].

Lemma 2.12. The expression GV,N (Y ) is in the image of ι.

Proof. It follows directly from the definitions thatGV,N (Y ) is an element inA[[xk,j | (k, j) ∈ C(Y )]]
where A was defined as A = Q(λ

1
2 )[[q]]. By Lemma 2.10 the image of ι is equal to

the invariants of the action W on A[[xk,j | (k, j) ∈ C(Y )]]. This action W is given
by arbitrary permutations of the xk,j for fixed k, and by even numbers of sign
changes on the x0,j . Since F1 is symmetric in all its arguments and an odd function
in xi and the rotation numbers mk,j do not depend on j for fixed k, G1,N (Y ) is

invariant under W . Obviously
r(0)

Π
j=1

x0,j is symmetric in x0,j and an odd function,

so again it is invariant under W . Since V is a power series of representations of
Spin(2m), the formal Chern character F2,V is symmetric in all its arguments and
invariant under an even number of sign changes on the xi. By definition

G2,V,N (Y )(λ, x0,1, . . . , xk,j , . . . , xl,r(l)) =

F2,V (ex0,1 , . . . , ex0,r(0) , λm1
Y ·ex1,1 . . . , λm1

Y ·ex1,r(1) , . . . , λml
Y ·exl,0 , . . . , λml

Y ·exl,r(l)).

Hence, G2,V,N (Y ) is invariant under W . Therefore GV,N (Y ) is in the image of ι. �

Next we consider the map:4

A
[[
ck,i, ph, e | (k, i) ∈ C(Y ), k 6= 0, h = 1, . . . , r(0)− 1

]] t−→ H∗(Y ;A),

where t is the graded ring homomorphism defined by mapping ck,i to the i-th
Chern class of the complex bundle νk, mapping ph to the h-th Pontrjagin class of
the tangent bundle of Y and e to the Euler class of Y .

We are now in the position to rephrase the Lefschetz fixed point formula (cf. The-
orem 2.8) in terms of ι, t and GV,N (Y ).

4This is the map in cohomology with coefficients in A induced by the classifying map between
Y and BG (see the previous footnote).
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Theorem 2.13 (Lefschetz fixed point formula - Revisited). Let M be a 2m-dimen-
sional Spin-manifold with Spin-preserving S1-action and let Y be the set of con-
nected components of MS1

. Let V ∈ R(Spin(2m))[[q]]. Then

ÂS1(M ;V ) =
∑
Y ∈Y

a(Y, V ),

where

a(Y, V ) := (−1)m〈t ◦ ι−1(GV,N (Y )(λ, x0,1, . . . , xk,j , . . . , xl,r(l))), [Y ]〉 ∈ A.
�

In the next proposition we establish the main result of this section: We describe
the local invariants as linear combinations of coefficients of GV,N (Y ). Recall that
GV,N (Y ) is in A

[[
xk,j | (k, j) ∈ C(Y )

]]
. If we assign to xk,j degree 2 the homoge-

neous part of GV,N (Y ) of degree 2r(0) = dim(Y ) is an A-linear combination of the
monomials Π

(k,j)∈C(Y )
x

nk,j

k,j of degree 2r(0).

Proposition 2.14. Consider the coefficients of the monomials Π
(k,j)∈C(Y )

x
nk,j

k,j of

degree 2r(0) in GV,N (Y ) satisfying nk,j ≥ nk,j+1. The local invariants a(Y, V )
are unique Q-linear combinations of these coefficients. The rational coefficients of
these linear combinations only depend on the fixed point data C(Y ) and the mixed
characteristic numbers of Y and the bundles νk, especially they do not depend on
the chosen power series of representations V .

Proof. We use the formula for a(Y, V ) given in the Lefschetz fixed point theorem
2.13. Applying 〈t( · ), [Y ]〉 to ι−1(GV,N (Y )) amounts to extracting the degree 2r(0)-
part and substituting the corresponding mixed characteristic numbers of Y and the
bundles νk for the monomials in ck,i, ph, and e. The result is an integer linear
combination of the coefficients of ι−1(GV,N (Y )) with respect to the monomials in
ck,i, ph, and e. By Lemma 2.10 these coefficients are unique Q-linear combinations
of the coefficients of the monomials Π

(k,j)∈C(Y )
x

nk,j

k,j in GV,N (Y ) of the same degree

(with nk,j ≥ nk,j+1), which do not depend on GV,N (Y ). �

2.6. Exponential Representations and Differential Operators. In this sec-
tion we will simplify the main result of the previous section in the case of expo-
nential representations. For any exponential representation V we will define the
building block fV . The equivariant index of the twisted Dirac operator will then
be expressed as the result of applying a certain operator polynomial to fV . The
operator polynomial only depends on the S1-action over the fixed point compo-
nents and not on the chosen exponential representation V . This result leads to the
definition of DSC-rings. We will see that if the building block associated to the
exponential representation lies in some DSC-ring, then the equivariant index lies in
the same ring. We will make use of this statement as a tool to derive properties of
the equivariant index from properties of the building block in Chapter 3.

Definition 2.15. (1) A power series of representations V ∈ R(Spin(2m))[[q]]
is called an exponential representation iff its formal Chern character

F2,V ∈ Q[µ±
1
2

1 , . . . , µ
± 1

2
m ][[q]] is of the form F2,V =

m

Π
i=1
f2,V (µi), where f2,V ∈

Q[µ±
1
2 ][[q]].
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(2) For an exponential representation V with F2,V =
m

Π
i=1
f2,V (µi) we define the

building block

fV (µ) := 1

µ
1
2−µ−

1
2
· f2,V (µ) ∈ 1

µ
1
2−µ−

1
2
·Q[µ±

1
2 ][[q]].

As an example the power series of representations R and R0 defining elliptic
genera are exponential with the building blocks

fR(µ) =
(µ

1
2 + µ−

1
2 )

(µ
1
2 − µ−

1
2 )

∞
Π

n=1

(1 + qnµ)(1 + qnµ−1)(1− qn)2

(1− qnµ)(1− qnµ−1)(1 + qn)2
(5)

and

fR0(µ) =
1

(µ
1
2 − µ−

1
2 )

∞
Π

n=1

(1− q2n−1µ)(1− q2n−1µ−1)(1− q2n)2

(1− q2nµ)(1− q2nµ−1)(1− q2n−1)2
. (6)

Note that x · fR(ex) (resp. x · fR0(ex)) is the characteristic power series of the
elliptic genus ϕ (resp. ϕ0) in the Hirzebruch formalism.

For an exponential representation V the expression GV,N (Y ) simplifies in the
following way:

GV,N (Y )(λ, x0,1, . . . , xk,j , . . . , xl,r(l)) =
r(0)

Π
j=1

x0,j ·
l

Π
k=0

r(k)

Π
j=1

fV (λmk
Y exk,j ). (7)

Definition 2.16. For r 6= 0 and i ≥ 0 let ∂i(r) : Q(λ
1
2 )[[q]] −→ Q(λ

1
2 )[[q]] be the

operator defined by

∂i(r)(f) :=
1

i! · ri
· ∂

i

∂zi
(f(λr)), where λ = ez.

For f ∈ Q(λ
1
2 )[[q]] such that xf(ex) ∈ Q[[x]][[q]] we define

∂i(0)(f) :=
1

(i+ 1)!
· ∂

i+1

∂xi+1
(xf(ex))(0) for i ≥ −1.

We give the operator ∂i(r) degree i for any r.
In the next proposition we describe the equivariant index ÂS1(M ;V ) as the

result of applying a polynomial in the ∂i(r) to the building block.

Proposition 2.17. Let M be a 2m-dimensional Spin-manifold with Spin-preserving
S1-action and let Y be a connected component of MS1

.
(1) There exists a polynomial of degree zero in the operators ∂i(r) with rational

coefficients such that for any exponential representation V ∈ R(Spin(2m))[[q]]
the local invariants a(Y, V ) defined in the Lefschetz fixed point theorem 2.13
are the result of applying this operator polynomial to the building block fV .
More precisely this operator polynomial is a rational linear combination of
the monomials Π

(k,j)∈C(Y )
∂nk,j

(mk
Y ) with nk,j ≥ nk,j+1 and having degree 0.

Especially all monomials have length m.
(2) There exists a polynomial PM of degree zero in the operators ∂i(r) with ra-

tional coefficients such that for any exponential representation V ∈ R(Spin(2m))[[q]]
the equivariant index ÂS1(M ;V ) is the result of applying this operator poly-
nomial to the building block fV , i.e. ÂS1(M ;V ) = PM (fV ). All monomials
in this polynomial have length m.
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Proof. Recall that for any exponential representation V we introduced in Defini-
tion 2.15 the building block fV (µ) ∈ 1

µ
1
2−µ−

1
2
· Q[µ±

1
2 ][[q]]. Note that fV (λrex) ∈

Q(λ
1
2 )[[x]][[q]] for r 6= 0 and fV (λrex) ∈ 1

xQ[[x]][[q]] for r = 0. Let aV,i(r) ∈
Q(λ

1
2 )[[q]] be the coefficient of xi in fV (λrex). So for r 6= 0

aV,i(r) =
1
i!
· ∂

i

∂xi
(fV (λrex))(0)

=
1

i! · ri
· ∂

i

∂zi
(fV (λr)) ∈ Q(λ

1
2 )[[q]],

where λ = ez, and

aV,i(0) =
1

(i+ 1)!
· ∂

i+1

∂xi+1
(xfV (ex))(0) ∈ Q[[q]].

From the definition of ∂i(r) it is obvious that aV,i(r) = ∂i(r)(fV ). So Part 1 of
the proposition follows directly from Proposition 2.14 and formula (7). For Part 2
recall that ÂS1(M ;V ) =

∑
Y ∈Y

a(Y, V ). �

We will now study this result from a more abstract point of view. For this we
define the following operators on the ring T := C[ 1z ][[z]][[q]]:

∂i : T → T , ∂i(f) :=
∂i

∂zi
(f) for i ∈ N,

ιr : T → T , ιr(f)(z) := f(rz) for r ∈ Z \ {0}.

Let us call f ∈ T almost regular if f ∈ T0 := 1
z C[[z]][[q]]. We define operators ∂0

i

on T0 by

∂0
i : T0 → T0, ∂

0
i (f) =

∂i+1

∂zi+1
(z · f)(0) for i ∈ Z, i ≥ −1.

Definition 2.18. A Z-graded Q-algebra S∗, which is an ungraded subalgebra of
T , is called a DSC-ring of series of type s, s ∈ Z, iff

(1) the operation of ∂i and ιr for i ∈ N and r ∈ Z \ {0} restrict to S∗,
(2) the operation of ∂0

i for i ∈ Z and i ≥ −1 restricts to the almost regular
elements S∗0 := S∗ ∩ T0,

(3) the operations ∂i, ιr, and ∂0
i have degrees s · i, 0 and s · i, respectively

(i.e. they shift degrees by s · i, 0 and s · i).

These rings are called DSC-rings since they are closed under differentiation and
scalar multiplication by integers. We will be interested in the case of DSC-rings of
series of type 0 or 1. Observe that any ungraded ring S can be viewed as a graded
ring S∗ defined by S∗ := S0 := S. Examples for DSC-rings of series of type 0 which
come from ungraded rings in this way are the ring T itself and the ring Q(λ

1
2 )[[q]] via

the inclusion to T given by λ
1
2 7→ e

z
2 . Note that for any exponential representation

V the building block fV (λ) is an almost regular element in the DSC-ring of series
Q(λ

1
2 )[[q]]. The next lemma is trivial.

Lemma 2.19. The action of ∂i(r) := 1
i!ri · ∂i ◦ ιr for i ∈ N and r ∈ Z \ {0},

respectively of ∂i(0) := 1
(i+1)! · ∂

0
i for i ∈ Z, i ≥ −1, is defined on any DSC-ring of

series, respectively its almost regular elements. On the ring Q(λ
1
2 )[[q]] it coincides

with the action introduced in Definition 2.16. �
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The last result of this chapter will become important in the next chapter.

Proposition 2.20. Let M be a 2m-dimensional Spin-manifold with Spin-preserving
S1-action. Let V be an exponential representation of Spin(2m), let S∗ be a DSC-
ring of series of type s and assume fV (ez) ∈ Sk for some k. Then the equivariant
index ÂS1(M ;V )(λ) is in Smk for λ = ez. More precisely, there exists a polyno-
mial PM in the operators ∂i(r) such that ÂS1(M ;V ) = PM (fV ). The polynomial
is independent of the chosen exponential representation V and the chosen DSC-ring
S∗.

Proof. By Proposition 2.17, Part 2 the equivariant index ÂS1(M ;V ) is the result of
applying a polynomial PM of degree zero in the operators ∂i(r) to the building block
fV , which is always almost regular. Furthermore each monomial in this polynomial
has length m. Since by Lemma 2.19 the operators ∂i(r) act on S∗ (∂i(r) acts on
S∗0 for r = 0), and shift degree by s · i, the result follows. �
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3. Function-Theoretical Considerations

3.1. DSC-Rings of Functions. In this section we will prepare the setting which
will be used to study elliptic genera as meromorphic functions. We will define a
DSC-ring of series and a DSC-ring of meromorphic functions especially adapted to
elliptic genera. These two rings will be related by a convergence map κ.

Let B ⊂ C be the open unit disk around 0 and let C̃∗ be the connected double
cover of C∗. We denote by λ, resp. λ

1
2 , the coordinate functions on C∗, resp. C̃∗,

and define a family of open sets by BN := {(q, λ) ∈ B × C̃∗ | |q| 1
N < |λ| < |q|− 1

N }
for N ∈ N.

Definition 3.1. LetR ⊂ C(λ
1
2 )[[q]] be the subset of all elements f(λ) =

∞∑
n=0

fn(λ)qn,

fn(λ) ∈ C(λ
1
2 ), for which there exists a(λ) ∈ C[λ]\{0}, such that a(λ)fn(λ) is holo-

morphic on C̃∗ for all n and
∞∑

n=0
a(λ)fn(λ)qn converges normally on BN for some

N ∈ N.

It is an easy exercise to show that R is a Q-algebra. We make R into a graded
Q-algebra via R∗ := R0 := R. The Q-algebra R can be embedded as a subalgebra
of T = C[ 1z ][[z]][[q]] via λ

1
2 7→ e

z
2 .

Lemma 3.2. The ring R∗ is a DSC-ring of series of type 0.

Proof. The condition that the action of ιr restricts to R is obviously fulfilled.

For the action of ∂i note that if
∞∑

n=0
a(λ)fn(λ)qn converges normally, then also

∞∑
n=0

a2(λ) ∂
∂z fn(λ)qn converges normally. To show that ∂0

i f =
∞∑

n=0

∂i+1

∂zi+1 (zfn(ez))(0)qn

converges normally for every almost regular f on some BN we remark that if
a(λ) = (λ − 1)kb(λ) with b(λ) ∈ C[λ] and b(1) 6= 0, then ∂i+1

∂zi+1 (zfn(ez))(0) is a
C-linear combination of ∂j

∂λj (a(λ)fn(λ))(1) for j ∈ {0, . . . , k + i}. From the normal

convergence of
∞∑

n=0
a(λ)fn(λ)qn on some BN it follows that

∞∑
n=0

∂j

∂λj (a(λ)fn(λ))qn

also converges normally on BN for all j. Since B×{1} ⊂ BN for all N we get that
∂0

i f converges normally on BN , so ∂0
i f ∈ R. �

A function on an open subset of Cr is meromorphic iff it is locally the quotient
f
g of holomorphic functions f and g, where g 6= 0. A function on a subset V of Cr is
meromorphic iff it extends to a meromorphic function on some open neighborhood
of V . Let M(V ) denote the ring of meromorphic functions on V .

For any subset V = V1 × V2, V1 ⊂ Cl, V2 ⊂ C with r · V2 ⊂ V2, for all r ∈ Z, we
define operators ∂i and ιr on M(V ) by

∂i : M(V ) →M(V ), ∂i(f)(ξ, z) :=
∂i

∂zi
(f)(ξ, z) for i ∈ N,

ιr : M(V ) →M(V ), ιr(f)(ξ, z) := f(ξ, r · z) for r ∈ Z \ {0}.

Let us call f ∈M(V ) almost regular if f is an element in

M(V )0 := {g ∈M(V ) | z · g is holomorphic on V1 × {0} ⊂ V }.
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We define operators ∂0
i on M(V )0 by

∂0
i : M(V )0 →M(V )0, ∂0

i (f)(ξ, z) =
∂i+1

∂zi+1
(z · f)(ξ, z)(z = 0),

for i ∈ Z, i ≥ −1. In particular, the operators ∂i and ιr (resp. ∂0
i ) act onM(B×iR)

(resp. M(B × iR)0). The ring M(B × S1) may be embedded into M(B × iR) via
iR → S1, z 7→ ez = λ, and the action of ∂i and ιr restricts to M(B × S1). The
action on M(B × S1) will also be denoted by ∂i, and ιr (here we abuse notation;
the operators are distinguished by the variables z and λ). It is given by

∂i : M(B × S1) →M(B × S1), ∂i(f)(q, λ) :=
∂i

∂zi
(f)(q, λ) for i ∈ N,

where λ = ez,
ιr : M(B × S1) →M(B × S1), ιr(f)(q, λ) := f(q, λr) for r ∈ Z \ {0}.

Let us call f ∈M(B × S1) almost regular if f is an element in

M(B×S1)0 := {g ∈M(B×S1) | (λ−1) ·g is holomorphic on B×{1} ⊂ B× C̃∗},
so f is almost regular iff its image in M(B × iR) is almost regular. Again, the
action of ∂0

i on M(B × iR)0 restricts to M(B × S1)0 and is given by

∂0
i : M(B × S1)0 →M(B × S1)0, ∂0

i (f)(q, λ) =
∂i+1

∂zi+1
(z · f)(q, λ)(z = 0),

for i ∈ Z, i ≥ −1, where λ = ez.

Definition 3.3. A Z-graded Q-algebra S∗, which is an ungraded subalgebra of
M(B × S1), is called a DSC-ring of functions of type s, s ∈ Z, iff

(1) the operation of ∂i and ιr for i ∈ N and r ∈ Z \ {0} restrict to S∗,
(2) the operation of ∂0

i for i ∈ Z and i ≥ −1 restricts to the almost regular
elements S∗0 := S∗ ∩M(B × S1)0,

(3) the operations ∂i, ιr, and ∂0
i have degrees s · i, 0 and s · i, respectively

(i.e. they shift degrees by s · i, 0 and s · i).
The ring M(B×S1) itself is a DSC-ring of functions of type 0, which is concen-

trated in degree 0. The next lemma is trivial.

Lemma 3.4. The action of ∂i(r) := 1
i!ri · ∂i ◦ ιr for i ∈ N and r ∈ Z \ {0},

respectively of ∂i(0) := 1
(i+1)! · ∂

0
i for i ∈ Z, i ≥ −1, is defined on any DSC-ring of

functions, respectively its almost regular elements. If the ring is of type s, they shift
degree by i · s. �

Definition 3.5. A homomorphism of DSC-rings (of series or functions) γ :
S∗0 → S∗1 is a Q-algebra homomorphism which maps almost regular elements to
almost regular elements and commutes with the action of ∂i, ιr and ∂0

i . The
homomorphism does not have to be graded.

From the definition of a homomorphism the following property is obvious. Recall
the definition of PM as a polynomial in the operators ∂i(r) from Proposition 2.17,
Part 2.

Lemma 3.6. Any homomorphism γ : S∗0 → S∗1 of DSC-rings commutes with the
action of the operators ∂i(r) for i ≥ 0, r ∈ Z. Especially, if f ∈ (S∗0 )0 (i.e. f
is almost regular), then γ(PM (f)) = PM (γ(f)). Furthermore for f of degree k,
PM (f) has degree mk. �
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Definition 3.7. We define the limit map κ : R → M(B × S1) in the following

way: If f =
∞∑

n=0
fn(λ)qn ∈ R and a(λ) ∈ C[λ] \ {0} s.t. a(λ)fn(λ) is holomorphic

on C̃∗ and
∞∑

n=0
a(λ)fn(λ)qn converges normally to a function f̃(λ, q) on some BN ,

then let κ(f) := f̃(λ,q)
a(λ) .

Lemma 3.8. The limit map κ is a well-defined injective homomorphism of Q-
algebras.

Proof. By an easy argument the map κ does not depend on the chosen function a(λ).
So κ is well-defined and it is obviously also a homomorphism of Q-algebras. For

the injectivity of κ note that if κ(f) = 0, then
∞∑

n=0
a(λ)fn(λ)qn converges normally

to the 0-function. By taking derivatives with respect to q all a(λ)fn(λ) vanish
identically, so all fn vanish. �

Lemma 3.9. Let f ∈ R, let a(λ) ∈ C[λ] \ {0} and let f̃ be a holomorphic function
s.t. κ(f) = f̃(λ,q)

a(λ) on some BN . Let Z(a) = {λ ∈ C̃∗ | a(λ) = 0} be the finite set

of zeroes of a on C̃∗. Then
∞∑

n=0
fn(λ)qn converges normally on BN \ (B ×Z(a)) to

κ(f). So κ(f) is a meromorphic extension of the holomorphic function
∞∑

n=0
fn(λ)qn

from BN \ (B ×Z(a)) to BN .

Proof. The lemma is a direct consequence of the definition of normal convergence,
since the norm of a(λ) for λ in any compact subset of C̃∗ \ Z(a) is greater than
0. �

3.2. Holomorphicity on S1. In this section we will show that the elliptic gen-
era ϕS1(M) and ϕ0

S1(M) converge to holomorphic functions on a neighborhood of
B × S1 in B × C̃∗. To show holomorphicity we will relate these functions to the
functions coming from the building blocks by showing that the convergence map κ
is a homomorphism of DSC-rings.

Proposition 3.10. Let U be a domain in C × C. Consider a series b =
∞∑

n=0
bn of

holomorphic functions bn on U such that b converges normally on U ′ = {(q, λ) ∈
U | λ 6= λ0} for some λ0 ∈ C. Then b converges normally on all of U .

Proof. To prove normal convergence it suffices to show that any point in U lies in
the interior of a compact subset of U , on which the series converges absolutely in the
maximum norm. Since b converges normally on U ′, we only have to check normal
convergence on some compact neighborhood of any point of the form (q0, λ0) ∈ U .
We take as a compact neighborhood the product K = Dq ×Dλ of two small closed
disks around q0 and λ0 in U . SinceK is compact any function bn takes its maximum
on K in some point (q′, λ′). Since bn is holomorphic, it is also holomorphic in λ for
fixed q. So by the maximum principle we can assume that λ′ lies on the boundary
of the disk Dλ, i.e.

|bn|K = |bn|Dq×∂Dλ
.
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Since Dq × ∂Dλ is a compact subset of U ′, the normal convergence of b =
∞∑

n=0
bn on

U now follows from the normal convergence of the series on U ′. �

From this proposition we get the following corollary about the DSC-ring R of
series.

Corollary 3.11. Let f =
∞∑

n=0
fn(λ)qn ∈ R and let b ∈ C[λ]\{0} such that b(λ)fn(λ)

is holomorphic on C̃∗. Then
∞∑

n=0
b(λ)fn(λ)qn converges normally on BN for some

N > 0.

Proof. Since f ∈ R, there is a polynomial a ∈ C[λ] \ {0} such that a(λ)fn(λ) is

holomorphic on C̃∗ and
∞∑

n=0
a(λ)fn(λ)qn converges normally on BN for some N > 0.

By Lemma 3.9 we know that
∞∑

n=0
fn(λ)qn converges normally on BN \ (B ×Z(a)),

where Z(a) = {λ ∈ C̃∗ | a(λ) = 0} is the finite set of zeroes of a on C̃∗. Thus also
∞∑

n=0
b(λ)fn(λ)qn converges normally on BN \ (B × Z(a)). But since all summands

are by assumption actually holomorphic, by Proposition 3.10 this sum converges
normally on all of BN . �

Lemma 3.12. The limit map κ : R → M(B × S1) is a homomorphism of DSC-
rings.

Proof. We already know from Lemma 3.8 that κ is a homomorphism of Q-algebras.

The fact that κ commutes with the action of ιr is immediate. Now if
∞∑

n=0
a(λ)fn(λ)qn

converges to some function f̃ , so κ(f) = f̃
a , and

∞∑
n=0

a2(λ) ∂
∂λfn(λ)qn converges to

some function g̃, so κ( ∂
∂λf) = g̃

a2 , one can easily check that g̃
a2 = ∂

∂λ
f̃
a . So κ

commutes with ∂
∂λ and by the chain rule also with ∂1 = ∂

∂z for λ = ez. By induction
κ commutes with ∂i for all i > 0. Now we want to show that κ maps almost regular
elements to almost regular elements. If f ∈ R0 is any almost regular element then
it follows from Corollary 3.11 that one can choose the element a ∈ C[λ], s.t. λ− 1
divides a only once. Hence κ(f) = f̃

a is obviously almost regular. Finally we have to
show that κ commutes with ∂0

i for all i ≥ −1. In the proof of Lemma 3.2 we used the
fact that if a(λ) = (λ−1)b(λ) with b(λ) ∈ C[λ] and b(1) 6= 0, then ∂i+1

∂zi+1 (zfn(ez))(0)
is a C-linear combination of ∂j

∂λj (a(λ)fn(λ))(1) for j ∈ {0, . . . , i+1}. Since the same
formula holds for the function κ(f) instead of f , and κ commutes with all ∂j

∂λj it
follows that κ also commutes with ∂0

i for all i ≥ −1. �

Definition 3.13. Let V ∈ R(Spin(2m))[[q]] be an exponential representation such
that the building block fV (λ) is an element in R. We define a function ψV in
M(B × S1) by

ψV := κ(fV ).
Let furthermore M be a 2m-dimensional Spin-manifold with Spin-preserving S1-
action. We define a function ψM,V in M(B × S1) by

ψM,V := κ(ÂS1(M ;V )).
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By Proposition 2.20 the function ψM,V is well-defined, i.e. the series ÂS1(M ;V )
actually lies inR. The next proposition shows that the equivariant index ÂS1(M ;V )
converges to a function that is actually holomorphic on B × S1. It also relates this
function to the function coming from the building block of V .

Proposition 3.14. Let M be a 2m-dimensional Spin-manifold with Spin-preserving
S1-action and let V ∈ R(Spin(2m))[[q]] be an exponential representation such that
the building block fV (λ) is an element in R. Let PM be the operator polynomial
defined in Proposition 2.17, Part 2.

(1) The functions ψV = κ(fV ) and ψM,V = κ(ÂS1(M ;V )) are related in the
following way:

ψM,V = PM (ψV ).
(2) The function ψM,V is holomorphic in some neighborhood BN of B × S1 ⊂

B × C̃∗.

Proof. For the first statement we recall from Definition 3.13 that ψM,V = κ(ÂS1(M ;V ))
and from Proposition 2.20 that ÂS1(M ;V ) = PM (fV ). Since κ is a homomorphism
of DSC-rings it commutes with the operator polynomial PM (cf. Lemma 3.6) and
we get

ψM,V = κ(ÂS1(M ;V )) = κ(PM (fV )) = PM (κ(fV )) = PM (ψV ).

The second statement follows immediately from Corollary 3.11: Since we have
ψM,V = κ(ÂS1(M ;V )) and ÂS1(M ;V ) as a series of characters of S1 actually lies
in Q[λ, λ−1][[q]] (i.e. all coefficients are Laurent polynomials), one can choose b = 1
in Corollary 3.11, so κ(ÂS1(M ;V )) is holomorphic on some BN . �

Now we want to apply this result to elliptic genera. The next lemma will be
used to show that the building blocks defining elliptic genera are in R.

Lemma 3.15. Let g(λ) be a holomorphic function on an open subset U of Cr.

(1) The series
∞∑

n=0
fnq

n = 1 + gq+ gq2 + (g2 + g) · q3 + . . . defined as a q-power

series by the infinite product
∞
Π

n=1
(1 + gqn) converges normally on B × U .

(2) Let V be an open subset of B × U on which |g(λ) · q| < 1. Then the series
∞∑

n=0
fnq

n = 1+gq+(g2+g) ·q2+(g3+g2+g) ·q3+(g4+g3+2g2+g) ·q4+ . . .

defined as a q-power series by the infinite product
∞
Π

n=1

1
(1−gqn) converges

normally on V .

Proof. We will use the following elementary fact (cf. [Ah66], p. 191): Let {un}n∈N
be a sequence of complex numbers. Then the product

∏∞
n=1(1 + un) converges

absolutely iff
∑∞

n=1 un does.
Ad 1: Let K ⊂ B × U be a compact set. Without loss of generality we may

assume that K has the form K = K1 ×K2, where K1 ⊂ B and K2 ⊂ U . Choose

(q0, λ0) ∈ K for which |g(λ0) · q0| is equal to |g(λ) · q|K . Let
∞∑

n=0
anq

n be the q-

power series defined by the infinite product
∞
Π

n=1
(1 + |g(λ0)|qn). By the quotient

criterion the series
∞∑

n=1
|g(λ0) · qn

0 | converges to a finite value. Now the above given
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fact implies that
∞∑

n=0
an|q0|n also converges to a finite value. Applying the triangle

inequality gives
∞∑

n=0

|fn(λ) · qn|K ≤
∞∑

n=0

an|q0|n <∞.

Ad 2: Let K ⊂ V be a compact set. Without loss of generality we may assume
thatK has the formK = K1×K2, whereK1 ⊂ B andK2 ⊂ U . Choose (q0, λ0) ∈ K
for which |g(λ0) · q0| is equal to |g(λ) · q|K . By assumption |g(λ0) · q0| < 1. Let

bn be defined as |g(λ0)·qn
0 |

(1−|g(λ0)·qn
0 |)

, thus 1 + bn = 1
(1−|g(λ0)·qn

0 |)
. Let

∞∑
n=0

anq
n be the

q-power series defined by the infinite product
∞
Π

n=1

1
(1−|g(λ0)|·qn) =

∞
Π

n=1
(1 + bn). By

the quotient criterion the series
∞∑

n=1
bn converges to a finite value. Now the above

given fact implies that
∞∑

n=0
an|q0|n also converges to a finite value. By the triangle

inequality
∞∑

n=0

|fn(λ) · qn|K ≤
∞∑

n=0

an|q0|n <∞.

�

Recall from formulas (5) and (6) of Section 2.6 the building blocks fR and fR0

defining elliptic genera.

Proposition 3.16. The q-power series (λ − 1)fR(λ) and (λ − 1)fR0(λ) converge
normally on B1. In particular, the building blocks fR(λ) and fR0(λ) of the expo-
nential representations R and R0 are elements in R.

Proof. It follows from Lemma 3.15 and basic properties of normal convergence that
the q-power series defined by the infinite products

∞
Π

n=1

(1 + qnλ)(1 + qnλ−1)(1− qn)2

(1− qnλ)(1− qnλ−1)(1 + qn)2

and
∞
Π

n=1

(1− q2n−1λ)(1− q2n−1λ−1)(1− q2n)2

(1− q2nλ)(1− q2nλ−1)(1− q2n−1)2

converge normally on B1. In view of the formulas for fR and fR0 (cf. formulas (5)
and (6)) the proposition follows directly. �

Corollary 3.17. Let M be a 2m-dimensional Spin-manifold with Spin-preserving
S1-action and let R,R0 ∈ R(Spin(2m))[[q]] be the exponential representations defin-
ing elliptic genera. There exists a positive integer N(M) such that the following
holds:

(1) The equivariant elliptic genus ϕS1(M) =
∞∑

n=0
ÂS1(M ;Rn)qn at the cusp

i∞ converges normally on BN(M) to the holomorphic function ψM,R. In
particular, this function has no poles for λ ∈ S1.

(2) The equivariant elliptic genus ϕ0
S1(M) =

∞∑
n=0

ÂS1(M ;R0
n)qn at the cusp

0 converges normally on BN(M) to the holomorphic function ψM,R0 . In
particular, this function has no poles for λ ∈ S1.
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(3) For the functions ψR = κ(fR) and ψR0 = κ(f0
R) there holds

ψM,R = PM (ψR) and ψM,R0 = PM (ψR0).

Proof. This is an application of Proposition 3.14 using Proposition 3.16. �

3.3. The DSC-Ring of Special Jacobi Functions. In this section we introduce
a DSC-ring consisting of functions which transform like Jacobi forms. In the next
section we show that equivariant elliptic genera converge to such functions. The
modularity properties of these functions with respect to the action of SL2(Z) are
then used to finally prove the rigidity theorem.

Let H be the upper half plane. Now we will recall the action on M(H × C)
which is usually used to define Jacobi forms (cf. [EiZa85]).

Let L denote the lattice 2Z × 2Z and let Γ be a subgroup of SL2(Z) of finite
index. The group Γ acts on the abelian group L by automorphisms, where the
action of A ∈ Γ is defined by (α, β) 7→ (α, β)A. Let Γ n L be the corresponding
semi-direct product, i.e. the multiplication in Γ n L is given by

(A, (α, β)) · (B, (γ, δ)) := (A ·B, (α, β)B + (γ, δ)).

Let (A,X) ∈ Γ n L, A =
(

a b
c d

)
, X = (α, β), and let f be a meromorphic function

on H× C. For fixed k ∈ Z one easily verifies that the assignments

f |[A]k(τ, z) := (cτ + d)−k · f(a·τ+b
c·τ+d ,

z
c·τ+d ) (8)

and
f |[X](τ, z) := f(τ, z + 2πiατ + 2πiβ) (9)

define an action of ΓnL on the field M(H×C) of meromorphic functions on H×C.

Definition 3.18. We say a meromorphic function f on H× C transforms like
a Jacobi form of weight k and index 0 for Γ iff

f |[A]k(τ, z) = f(τ, z) and f |[X](τ, z) = f(τ, z)

for any (A,X) ∈ Γ n L.

Definition 3.19. We define the ring J ∗
Γ ⊂M(H×C) of special Jacobi functions

to be the graded ring of meromorphic functions f(τ, z) on H× C, s.t. f ∈ J k
Γ iff

(i) the function f transforms like a Jacobi form of weight k and index 0 for Γ,
(ii) the function f has for fixed τ only poles for z ∈ 2πi(Q · τ + Q),
(iii) for any A ∈ SL2(Z) there exists a positive integer N , s.t. the function

f |[A]k restricted to H× iR is in the image of the injective map

EN : M(B × S1) →M(H× iR),

g(q, λ) 7→ f(τ, z) := g(e2πiτ/N , ez).

Note that in contrast to Jacobi forms these special Jacobi functions are mero-
morphic with poles on the rational lattice and do not need to fulfill the additional
vanishing conditions for the Fourier coefficients (cf. [EiZa85], p. 9).

Remark 3.20. Property (i) implies that f |[A]k transforms like a Jacobi form of
weight k and index 0 for A−1ΓA. Since this group has finite index in SL2(Z) there
exists an integer N such that ( 1 N

0 1 ) ∈ A−1ΓA. Now the matrix ( 1 N
0 1 ) acts by

f(τ, z) 7→ f(τ + N, z). So we see that the restriction of f |[A]k to H × iR is in
the image of EN : M(B∗ × S1) →M(H × iR), where N depends on A and Γ but
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not on f . This means property (iii) only asserts that the meromorphic function
E−1

N (f |[A]k) on B∗ × S1 in fact extends to B × S1.

Since in (iii) the integer N may be chosen to depend only on A and Γ (but
not on f) we see for A = Id that the ring J ∗

Γ is a subring of M(B × S1) via
(q, λ) 7→ (e2πiτ/N , ez). Recall from Section 3.1 that the operators ιr and ∂i act on
M(H×C) and M(H× iR) as well as on M(B×S1). These actions are compatible
with the restriction from M(H × C) to M(H × iR) and the embeddings EN from
M(B × S1) to M(H× iR) for all N . The same is true for the operators ∂0

i acting
on the subsets of almost regular functions.

Proposition 3.21. The ring of special Jacobi functions J ∗
Γ is a DSC-ring of func-

tions of type 1, i.e. for f ∈ J k
Γ holds:

(1) ιr(f) ∈ J k
Γ ,

(2) ∂i(f) ∈ J k+i
Γ ,

(3) if z · f(τ, z) is holomorphic on H× {0}, also ∂0
i (f) ∈ J k+i

Γ .

Proof. The proof will use Lemma 3.22 below. To show property (i) of Definition 3.19
first note that by Lemma 3.22 all functions ιr(f), ∂i(f) and ∂0

i (f) stay fixed under
the action of |[X] for any X ∈ L. From Lemma 3.22 also follows that ιr(f), ∂i(f)
and ∂0

i (f) stay fixed under the action of |[A]k, |[A]k+i and |[A]k+i, respectively, for
any A ∈ Γ. Thus they transform like Jacobi forms of weight k, k + i and k + i,
respectively, and index 0.

For property (ii) note that for any fixed τ ∈ H the set of poles of ιr(f), ∂i(f)
and ∂0

i (f) is contained in the Q-span of the set of poles of f . This shows property
(ii).

Finally we show property (iii). Again by Lemma 3.22 for any A ∈ SL2(Z)
the functions (ιr(f))|[A]k, (∂i(f))|[A]k+i and (∂0

i (f))|[A]k+i are equal to ιr(f |[A]k),
∂i(f |[A]k) and ∂0

i (f |[A]k), respectively. Since the action of ιr, ∂i and ∂0
i restricts to

the image of EN (for ∂0
i one has to restrict to the subspace on which ∂0

i is defined)
the functions (ιr(f))|[A]k, (∂i(f))|[A]k+i and (∂0

i (f))|[A]k+i have property (iii) of
Definition 3.19. �

Lemma 3.22. Let f(τ, z) and g(τ, z) be meromorphic functions on H × C, let
X ∈ L and let A ∈ SL2(Z). Then:

(1) f |[A]k · g|[A]l = (fg)|[A]k+l,
(2) (ιr(f))|[A]k = ιr(f |[A]k) and (ιr(f))|[X] = ιr(f |[rX]),
(3) (∂i(f))|[A]k+i = ∂i(f |[A]k),
(4) if z · f(τ, z) is holomorphic on H× {0}, then (∂0

i (f))|[A]k+i = ∂0
i (f |[A]k),

(5) (∂i(f))|[X] = ∂i(f |[X]),
(6) if z · f(τ, z) is holomorphic on H× {0} and f |[X] = f , then (∂0

i (f))|[X] =
∂0

i (f |[X]).

Proof. The first two statements follow directly from the definition of the action.
Now let F (τ, z) be any meromorphic function on H× C. Then

∂1(F )|[A]k+1(τ, z) =
∂F

∂z
|[A]k+1(τ, z) =

∂F

∂z
(aτ+b

cτ+d ,
z

cτ+d ) · (cτ + d)−(k+1)

=
∂

∂z
(F (aτ+b

cτ+d ,
z

cτ+d )) · (cτ + d)−k =
∂

∂z
(F |[A]k(τ, z)) = ∂1(F |[A]k)(τ, z).
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Thus (|[A]k+1 ◦ ∂1)(F ) = (∂1 ◦ |[A]k)(F ) for every F ∈ M(H × C). By induction
this implies

(|[A]k+i ◦ ∂i)(F ) = (∂i ◦ |[A]k)(F )
for every i ∈ N and every F ∈M(H×C). Now the third statement follows from the
last identity by taking F = f and the fourth statement follows by taking F = zf
and specializing at z = 0. Statement (5) follows from the chain rule and statement
(6) follows directly from the definitions. �

3.4. Proof of the Rigidity Theorem. In this section we show that the elliptic
genera ϕS1(M) and ϕ0

S1(M) converge to special Jacobi functions ψM,R and ψM,R0

of index 0 for Γ0(2). We determine the orbit of ψM,R under the action of the full
group SL2(Z) (see Proposition 3.26). Using Corollary 3.17 and the transformation
properties of special Jacobi functions we conclude that ψM,R is holomorphic which
finally implies the rigidity theorem for elliptic genera (see Theorem 3.29).

First we want to show that the building blocks defining elliptic genera converge
to special Jacobi functions.

It follows from Lemma 3.15 that the q-power series fφ ∈ C(λ
1
2 )[[q]] defined by

fφ(λ) = (λ
1
2 − λ−

1
2 )

∞
Π

n=1

(1− qnλ)(1− qnλ−1)
(1− qn)2

converges normally to a holomorphic function φ(q, λ) on B× C̃∗. By Definition 3.1
and Definition 3.7 this means fφ ∈ R and φ = κ(fφ).

Definition 3.23. The Weierstrass’ Φ-function is the holomorphic function on
H× C defined by

Φ(τ, z) := E1(φ(q, λ)) = φ(e2πi·τ , ez).

For the proof of the following proposition we refer to [HiBeJu92], I.5.

Proposition 3.24. The Weierstrass’ Φ-function satisfies the following properties:
(1) For fixed τ ∈ H the divisor of Φ is equal to 2πi(Z · τ + Z), i.e. Φ as a

function in z has a zero of order one in each point of 2πi(Z · τ + Z).
(2) For any A =

(
a b
c d

)
∈ SL2(Z)

Φ|[A]−1(τ, z) = e
cz2

4πi(cτ+d) · Φ(τ, z).

(3) For any (α, β) ∈ Z× Z

Φ(τ, z + 2πiατ + 2πiβ) = (−1)α+β · e−(πiα2·τ+αz) · Φ(τ, z).

�

Recall from Proposition 3.16 that (λ− 1)fR(λ) and (λ− 1)fR0(λ) converge nor-
mally on the open set B1 = {(q, λ) ∈ B × C̃∗ | |q| < |λ| < |q|−1}, especially
fR, fR0 ∈ R. In Definition 3.13 the meromorphic functions to which these power
series converge were denoted by ψR and ψR0 , i.e. ψR = κ(fR) and ψR0 = κ(fR0).
Let ΨR(τ, z) and ΨR0(τ, z) be the meromorphic function on H× C defined by

ΨR(τ, z) := 2
Φ(τ, z + πi)

Φ(τ, z)Φ(τ, πi)
and ΨR0(τ, z) := e−z/2 · Φ(2τ, z − 2πi · τ)

Φ(2τ, z)Φ(2τ,−2πi · τ)
.

Proposition 3.25. Let Γ0(2) be the subgroup of SL2(Z) consisting of the matrices(
a b
c d

)
with c ≡ 0 mod 2. Then:

(1) The function E1(ψR(q, λ)) extends to the meromorphic function ΨR(τ, z)
on H× C, i.e. ψR(q, λ) is equal to ΨR(τ, z) for (q, λ) = (e2πiτ , ez).
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(2) The function E1(ψR0(q, λ)) extends to the meromorphic function ΨR0(τ, z)
on H× C, i.e. ψR0(q, λ) is equal to ΨR0(τ, z) for (q, λ) = (e2πiτ , ez).

(3) The functions ΨR(τ, z) and ΨR0(τ, z) on H×C are special Jacobi functions
in J 1

Γ0(2)
.

(4) The orbit of ΨR(τ, z) under the action of SL2(Z) given by f 7→ f |[A]1 is
equal to

{ΨR(τ, z), 2ΨR0(τ/2, z), 2ΨR0((τ + 1)/2, z)},

i.e. the orbit consists of the meromorphic extensions of

{ψR(q, λ), 2ψR0(q
1
2 , λ), 2ψR0(−q 1

2 , λ)}

for (q, λ) = (e2πiτ , ez).

Proof. From the definition of the Weierstrass’ Φ-function follows that Φ(τ, z + πi)

is defined by the q-power series i(λ
1
2 + λ−

1
2 )

∞
Π

n=1

(1+qnλ)(1+qnλ−1)
(1−qn)2 = fφ(−λ) and

Φ(τ, πi) is defined by 2i
∞
Π

n=1

(1+qn)2

(1−qn)2 = fφ(−1) for (q, λ) = (e2πi·τ , ez). More precisely

Φ(τ, z + πi) = E1(κ(fφ(−λ))) and Φ(τ, πi) = E1(κ(fφ(−1))). Thus

ΨR(τ, z) = 2
Φ(τ, z + πi)

Φ(τ, z)Φ(τ, πi)
= E1

(
κ

(
fφ(−λ)

fφ(λ) · fφ(−1)

))
= E1(κ(fR(λ))) = E1(ψR(q, λ)),

so ΨR(τ, z) is equal to ψR(q, λ) for (q, λ) = (e2πi·τ , ez). The proof of the second
part is similar.

To show Part 3 we use Proposition 3.24. From the divisor property of Φ follows
directly that for fixed τ the poles of ΨR(τ, z) and ΨR0(τ, z) are contained in 2πi(Q ·
τ + Q). From Part 1 and 2 follows that ΨR(τ, z) and ΨR0(τ, z) are in the image
of E1. So we are left to show that both functions transform like Jacobi forms of
weight 1 and index 0 for Γ0(2).

First let X = (α, β) be any element of L (note that α and β are even). From
Proposition 3.24, Part 3, follows easily

ΨR(τ, z)|[X] = ΨR(τ, z) and ΨR0(τ, z)|[X] = ΨR0(τ, z).

Next we want to show that both functions are invariant under |[A]1 for any A ∈
Γ0(2). Let S :=

(
0 1

−1 0

)
and T := ( 1 1

0 1 ). Note that Γ0(2) is generated by T and
ST 2S. It follows directly that ΨR(τ, z) and ΨR0(τ, z) are fixed under |[T ]1. Fur-
thermore a straightforward calculation using Proposition 3.24, Part 2, shows that
the operation |[S]1 interchanges ΨR(τ, z) and 2ΨR0(τ/2, z) and also interchanges
ΨR0(τ, z) and 1

2ΨR(τ/2, z/2). From Proposition 3.24, Part 2, follows also that
ΨR0(τ/2, z) and ΨR(τ/2, z/2) are fixed under |[T 2]1. Thus ΨR(τ, z) and ΨR0(τ, z)
are fixed under Γ0(2) = 〈T, ST 2S〉. This finishes the proof of the third part.

For the last part note that Γ0(2) has index 3 in SL2(Z) and coset representatives
Id, S and ST , ΨR(τ, z) is fixed under the action of Γ0(2) and ΨR(τ, z)|[S]1 =
2ΨR0(τ/2, z). �

Proposition 3.26. Let R,R0 ∈ R(Spin(2m))[[q]] be the exponential representa-
tions defining elliptic genera. Let M be a 2m-dimensional Spin-manifold with
Spin-preserving S1-action.
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(1) The functions ψM,R = κ(ϕS1(M)) and ψM,R0 = κ(ϕ0
S1(M)) are in Jm

Γ0(2)

for (q, λ) = (e2πiτ , ez).
(2) The orbit of ψM,R under the action of SL2(Z) is given by

{ψM,R(q, λ), 2mψM,R0(q
1
2 , λ), 2mψM,R0(−q 1

2 , λ)}.

Proof. Substituting (e2πiτ , ez) for (q, λ) means applying the map E1. Now

E1(ψM,R) = E1(PM (ψR)) = PM (E1(ψR)) = PM (ΨR).

The first equation is due to Corollary 3.17, Part 3, the second is the fact that E1

and PM commute, and the last one is Proposition 3.25, Part 1. By Part 3 of the
same proposition, ΨR is in J 1

Γ0(2)
. Since J ∗

Γ0(2)
is a DSC-ring of functions we get by

Lemma 3.6 E1(ψM,R) = PM (ΨR) ∈ Jm
Γ0(2)

. The argument for ψM,R0 is analogously.
For the second statement note that from the above and Lemma 3.22 we get

(E1(ψM,R))|[A]m = PM (ΨR|[A]1).

So the orbit is given by Proposition 3.25, Part 4. �

The proposition gives a more precise meaning to the statement that the ellip-
tic genera ϕS1(M) and ϕ0

S1(M) are two descriptions of the same invariant of the
manifold M . This invariant is a special Jacobi function. The genera are essentially
Fourier expansions of the orbit of this invariant under the SL2(Z)-action.

To finally prove the rigidity theorem we will use a corollary to the following

Proposition 3.27. Let f(τ, z) be a meromorphic function on H × C, s.t. f has
only poles for z ∈ 2πi · (Q · τ + Q) and for all A ∈ SL2(Z) the function f |[A]k has
no poles for z ∈ iR. Then for any fixed τ ∈ H the function f and all the functions
f |[A]k are holomorphic as functions in z ∈ C.

Proof. It suffices to prove the statement for f . By the definition of the action of a
matrix A =

(
a b
c d

)
∈ SL2(Z) on M(H× C) we have

f(τ, 2πi(ατ + β)) = (cτ ′ + d)k(f |[A]k)(τ ′, 2πi(α′τ ′ + β′)), (10)

where τ ′ = A−1τ and (α′, β′) = (α, β)A for α, β ∈ Q and τ ∈ H. If τ ∈ H
is fixed and f has a pole in 2πi(ατ + β) we can choose a matrix A ∈ SL2(Z)
s.t. (α, β)A = (0, β′) for some β′ ∈ Q. Formula (10) now shows that f |[A]k
must have a pole in 2πiβ′ ∈ iR for fixed τ ′ = A−1τ ∈ H. This contradicts the
assumptions. So f has no pole for fixed τ , i.e. it is holomorphic as a function in
z ∈ C. �

Corollary 3.28. Let f(τ, z) ∈ J k
Γ such that for all A ∈ SL2(Z) the function f |[A]k

has no poles for z ∈ iR. Then f and all the functions f |[A]k are constant in z.
Moreover they are holomorphic on H× C.

Proof. By Proposition 3.27 for any fixed τ ∈ H the function f |[A]k is holomorphic
in z ∈ C. The second transformation property for special Jacobi functions given in
Definition 3.18 implies that f |[A]k as a function in z is elliptic with respect to the
lattice 2πi(2Z·τ+2Z). Since for any fixed τ ∈ H the function f |[A]k is holomorphic
in z it has to be constant in z. Since f |[A]k is meromorphic onH×C and is constant
in z it is holomorphic on H× C. �
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Theorem 3.29 (Rigidity Theorem). Let M be a 2m-dimensional Spin-manifold
with Spin-preserving S1-action. Then the equivariant elliptic genera ϕS1(M) and
ϕ0

S1(M) are both rigid, i.e. they are power series in q with coefficients which are
constant as characters of S1. In other words

ϕS1(M) = ϕ(M) and ϕ0
S1(M) = ϕ0(M).

Proof. In Corollary 3.17 we proved that the equivariant elliptic genera ϕS1(M)
and ϕ0

S1(M) converge normally on some BN to holomorphic functions ψM,R and
ψM,R0 . In particular both have no poles on S1. In Proposition 3.26 we iden-
tified these functions as elements in Jm

Γ0(2)
. Especially they have only poles for

z ∈ 2πi·(Q·τ+Q), but still no poles for λ = ez in S1. Furthermore the orbit of ψM,R

under the action of SL2(Z) is given by the functions ψM,R(q, λ), 2mψM,R0(q
1
2 , λ),

and 2mψM,R0(−q 1
2 , λ), all of which have no poles for λ = ez ∈ S1. But then Corol-

lary 3.28 shows that ψM,R (and also ψM,R0) is constant in λ. So from the normal
convergence of the equivariant elliptic genera ϕS1(M) and ϕ0

S1(M) to the limit
functions ψM,R and ψM,R0 it follows that the equivariant elliptic genera ϕS1(M)
and ϕ0

S1(M) themselves are constant in λ. �

Acknowledgements. We wish to thank S. Ochanine for drawing our attention to the
problem, Th. Berger for numerous discussions and M. Kreck for his encouragement.
We also would like to thank the referee for valuable suggestions.



28 A. DESSAI AND R. JUNG

References

[Ah66] L.V. Ahlfors: Complex Analysis (2nd Edition), International Series in Pure and Ap-
plied Mathematics, McGraw-Hill (1966)

[AtSiIII68] M.F. Atiyah and I.M. Singer: The index of elliptic operators: III, Ann. of
Math. 87 (1968), 546-604

[Ca63] H. Cartan: Elementary theory of analytic functions of one or several complex vari-
ables, Addison-Wesley (1963)

[BoTa89] R. Bott and C.H. Taubes: On the rigidity theorems of Witten, J. Amer. Math.
Soc. 2 (1989), 137-186

[De96] A. Dessai: Rigidity Theorems for Spinc-Manifolds and Applications, doctoral thesis,
Universität Mainz (1996)

[EiZa85] M. Eichler and D. Zagier: The Theory of Jacobi Forms, Progress in Mathematics,
Vol 55, Birkhäuser (1985)
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