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Abstract. In the first part we give necessary and sufficient conditions for the existence of a stable
almost complex structure on a 10-manifold M with Hi(M;Z) = 0 and no 2-torsion in H;(M;Z) for
i = 2, 3. Using the Classification Theorem of Donaldson we give a reformulation of the conditions for a
4-manifold to be almost complex in terms of Betti numbers and the dimension of the £-eigenspaces of
the intersection form. In the second part we give general conditions for an almost complex manifold
to admit infinitely many almost complex structures and apply these to symplectic manifolds, to

homogeneous spaces and to complete intersections.

1. Introduction

In this paper we study the problem of classifying the (stable) almost complex
structures on a smooth closed oriented manifold M. A (stable) almost complex
structure on M is a complex vector bundle F' together with an orientation preserving
isomorphism between the underlying (stable) real vector bundle of F' and the (stable)
tangent bundle of M. In a similar way one defines a (stable) complex structure for
any oriented real vector bundle.

We will restrict to the question of existence and enumeration of (almost) complex
structures on M. Since the answer only depends on the diffeomorphy type of M we
try to describe the answer in terms of invariants such as characteristic classes, the
cohomology ring and the Steenrod algebra of M.

In the first part we study the necessary and sufficient conditions (in the above sense)
for M to be almost or stably almost complex. These are only known in dimension < 8
(cf. [Wub2], [Eh50], [Ma61], [Th67] and [He70]). For a 10-manifold M they are known
if Hi(M;Z/2Z) =0 and ws(M) =0 (cf. [Th67] and [He70]).

In Theorem 1.2 we give necessary and sufficient conditions for a 10-manifold M to be
stably almost complex if Hy(M;Z) =0 and H;(M;Z), i = 2,3, has no 2-torsion. No
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assumption on wy (M) is made. The theorem simplifies if M has ”nice” cohomology,
such as the one of complete intersections (cf. Corollary 1.3).

In Theorem 1.4 we give, using the Classification Theorem of Donaldson, a reformu-
lation of the classical conditions for a 4-manifold M to be almost complex in terms of
the Betti numbers and the dimension of the +-eigenspaces of the intersection form.

In the second part we study the question whether an almost complex 2n-dimensional
manifold admits infinitely many almost complex structures. In Theorem 2.2 and Theo-
rem 2.3 we give a simple answer for a large class of manifolds. We apply these theorems
to symplectic manifolds (cf. Corollary 2.4), homogeneous spaces (cf. Corollary 2.5)
and complete intersections (cf. Example 2.6).

1. Part 1

1.1. Stable almost complex structures on 10-manifolds

Let M be a 10-manifold with Hy(M;Z) = 0 and assume H;(M;Z) contains no
2-torsion for i = 2,3. Let ¢ € H?(M;Z) be a fixed class congruent to wy(M) mod 2.

Definition 1.1. Let D(M) be the linear subspace of H?(M;Z) consisting of ele-
ments z € H2(M;Z), s.t.
(1.1) P +r-oc=2z
for some (uniquely determined) z € H*(M; Z) depending on . D(M) does not depend
on the choice of c.

Let p:Z — Z/2Z and q : Z — @ denote the canonical projection and injection. For
any x© € D(M) we can make the following choices (cf. Lemma 1.6.1 and Lemma 1.8):

e Choose v, € HS(M;Z), s.t. ps(ve) = Sq?(p«(2)).

e Choose a complex vector bundle F,, over M trivial over the 3-skeleton of M, s.t.

Here L, denotes the line bundle with first Chern class equal to x and ~ denotes the
reduced vector bundle. For a complex vector bundle F' over M let AC(M ; ') be the
twisted Spin®-index of M. In cohomology A.(M;F) = (A(M)-e? - ch(F))[M], where
A denotes the multiplicative sequence of the A-genus and [M] denotes evaluation on
the fundamental cycle of M. Let G, := E; - E We are now ready to state

Theorem 1.2. Let M be a 10-manifold with Hi(M;Z) = 0 and assume H;(M;Z)
contains no 2-torsion for i = 2,3. Let ¢ be a fized integral class congruent to
wo (M) mod 2. Then M admits a stable complex structure if and only if

(&

(1.2) A(M;G, @ (1(M) — L) ®r €) = 0 mod 2
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holds for every x € D(M).

The congruence (1.2) does not depend on the choice of v,. In fact, a straight-forward

calculation, using wy (M) = 0277)2& mod 2, shows that (1.2) has the explicit form

423p1 (M) + xp1 (M)? — dapy(M) — 2c2xpy (M) — 4?3 + o
24

= 5¢*(p«(2))wa(M) mod 2.

We remark that one only needs to check (1.2) for a basis of D(M). Theorem 1.2
simplifies if M has ”"nice” cohomology, such as the one of complete intersections:

Corollary 1.3. Let M be as in Theorem 1.2. Assume in addition that H*(M;Z) is
generated by h and h? # 0 mod 2. Then M admits a stable almost complex structure
if and only if

wg(M) . ’LU4(M)2 =0.

Thus the existence of a stable almost complex structure only depends on the homotopy
type of M.

1.2. Almost complex structures on 4-manifolds

For an oriented 4-manifold M a classical Theorem of Wu (cf. [Wu52]) asserts that
M is almost complex if and only if there is an integral class w with mod 2 reduction
equal to wa (M), s.t.

(1.3) (w?)[M] = 3sign(M) + 2e(M).

Combining the Classification Theorem of Donaldson (the intersection form of a 4-
manifold, which is definite, is standard, cf. [Do87]) with the classification of indefinite
unimodular bilinear forms we give a reformulation in terms of Betti numbers and the
dimension b4 of the +-eigenspaces of the intersection form.

Theorem 1.4. Let M be an oriented 4-manifold with Euler number e(M), inter-
section form S and signature sign(M) =by —b_.

1. S indefinite: M is almost complex <= by # by mod (2).
2. S positive definite: M is almost compler <= by Z by mod (2) and by — by < 1.

3. S negative definite: M is almost complex <= b; # 0 mod (2) and if by < 2 in
addition 4(by — 1) + by is equal to the sum of be integer squares.

This result is probably well-known but we only know a reference in the case that the
intersection form is even (cf. [Ma88], Remark B2).
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1.3. Proof of Theorem 1.2 and Corollary 1.3

In this section let M be always an oriented closed 10-manifold with Hy(M;Z) =0
and no 2-torsion in H;(M;Z) for i = 2, 3.

A real vector bundle F over a finite CW-complex X admits a stable complex struc-
ture if and only if the classifying map f : X — BO of the stable vector bundle lifts in
the fibration BU — BO induced by the inclusion U — O. Let

Ox(h) € H*(X;m,_1(0/U))

denote the obstruction to extending a given stable complex structure h : X(*~1 — BU
of E|x®-1) to the k-skeleton. For k < 10 the only obstructions which do not vanish
in general are O3(h) € H3(X;Z), O7(h) € H'(X;Z), Os(h) € H®(X;Z/2Z) and
Og(h) € HY(X;Z/27). These obstructions were studied by Massey:

Lemma 1.5. (cf. [Ma61]) The first obstructions satisfy
1. Os3(h) = 6*(w2(E)), O7(h) = 6*(we(E)) and

2. Og(h) has indeterminacy Sq? op.(H®(X;Z)), i.e. by changing h the obstruction
Os(h) takes all values of a certain coset Og € HS(M; Z/27)/Sq*op.(H(X;Z)).

Here § denotes the Bockstein operator of the long exact cohomology sequence for
0-Z22272/2Z — 0.

The proof of Theorem 1.2 consists of several lemmata. The general idea is to describe
Os in terms of K-theory and the Chern character and use the integrality theorem for
Spin®-manifolds to derive the mod 2 condition given in Theorem 1.2.

Lemma 1.6. M has the following properties:

1. p. : H(M;Z) — H'(M;Z/27%) is surjective for i # 4,5 and p. o q; ' is well-
defined on q.(H®(M;Z)).

2. The annihilator of Sq? o p.(HS(M;Z)) with respect to the cup-product is equal
to p.(D(M)).

8. Any stable complex vector bundle over the 7-skeleton of M extends to one over
M.

4. A stable real vector bundle E over M admits a stable complex structure over the
7-skeleton and any stable complex structure F' of E over the 8-skeleton can be
extended to one over M.

Proof. Ad 1: Since H;(M;Z) has no 2-torsion for ¢ = 0,1,2,3,10 the same is
true for H(M;Z), i # 5,6 (universal coefficient theorem and Poincaré Duality). Ap-
plying the long exact Bockstein sequence gives the first statement. The kernel of
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¢« : H3(M;Z) — H8(M; Q) is odd torsion which maps to zero under p,. This proves
the second statement.

Ad 2: Let y € H?*(M;Z/2%Z). Applying the Cartan formula and the definition of
the Stiefel-Whitney classes in terms of Steenrod operations gives the following first
equivalence

y-Sq? op.(z) =0 for all z € HS(M;Z)
= (wo(M)-y+y?) - p«(z) =0forall z € HY(M;Z)
< wy(M) -y +y? =0 Dby Lemma 1.6.1

Since p. : H*(M;Z) — H?(M;Z/27Z) is surjective the statement follows from the
definition of D(M).

Ad 3: Observe that the only obstruction for an extension of a map M (") — BU to
M lives in H°(M;Z) and vanishes by Poincaré Duality.

Ad 4: The first statement follows from the assumptions about M and Lemma 1.5.1.
The only obstruction to extending F lives in HY(M; Z/2%Z) which vanishes if H, (M;Z)
is zero. This proves the second statement. O

Let ph denote the Pontrjagin character which is graded by phy = chy o (@RC). Let
r: K(M) — KO(M) denote the realification map.

Lemma 1.7. Let E : M — BSO be a stable oriented vector bundle over M. Then
FE admits a stable complex structure if and only if

P © q; ' (pha(r(F) — E)) € Sq* o p.(H*(M; Z))
for some stable complex structure F € K(M) of E over the 7-skeleton.

Proof. One direction is trivial. So assume p, o ¢; ' (pha(r(F) — E)) is an element
of Sq? o p.(HS(M;Z)). Tt suffices to show that r(F) — E admits a stable complex
structure. So without loss of generality we may assume E is trivial over the 7-skeleton
and p, o ¢; 1 (pha(E)) € Sq? o p.(HS(M;Z)). According to [Ad61] there is an element
& € K(M), trivial over the 5-skeleton, s.t. 2ch4(§) = pha(E). Since m;(BO) = 0 for
i = 6,7 the bundle r(&) is trivial over the 7-skeleton. Again it suffices to show that
E':= F —r(§) admits a stable complex structure.

By construction E’ is trivial over M (") and phy(E’) = 0. Since H®(M;Z) contains
no 2-torsion an argument in the Atiyah-Hirzebruch spectral sequence (cf. [De91] for
details) shows that E’ admits a stable complex structure over the 8-skeleton and by
Lemma 1.6.4 also over M.

Here we give a more transparent argument suggested by the referee. By the inte-
grality of the Chern character (cf. [AtHi61], [Ad61]) the Pontrjagin character phy for
the universal bundle over the 7 connected cover BO(8) of BO factorizes over Z:

phy - BO(8) ™ K(Z,8) - K(Q,8).

h/
Let F denote the fibre of the induced map BO(8) Phag K (Z3),8), where Z,) denotes

the localization of Z at the prime 2. Since E' is trivial over M7 we may fix a lift
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f: M — BO(8) of the classifying map for E’. Since H8(M;Z) has no 2-torsion and
pha(E") = 0 the composition phj o f is nullhomotopic. Thus f factors via

M — F — BO(8).

Now H8(F;Z/2Z) = 0 (e.g. F is 6-connected, 77(F) is odd torsion and 7g(F) = 0).
Thus the obstruction Og for the universal bundle over F' vanishes, so that Og(E’)
vanishes, too.

0O

The formulation of Theorem 1.2 is based on certain vector bundles G, = f; — 1/5; ,
which we describe in the following lemma.

Lemma 1.8. Let ¢ be an integral class congruent to we(M) mod 2. For x € D(M)
there is a vector bundle F, € K(M) trivial over the 3-skeleton, s.t.

Proof. Let z € D(M). By the definition of D(M) there is a class z € H*(M; Z), s.t.
x?+z-c = 2z. Then there exists a stable complex vector bundle F, € K (M) trivial over
M®) and a cohomology class v, € HS(M;Z), s.t. cha(Fy) = q.(2), g (ve) = 2¢chs(Fy)
and p.(vz) = Sq?(p«(2)). Moreover any cohomology class v, € H(M;Z) satisfying
ps(vz) = S¢%(p«(2)) can occur in this way (cf. [Ad61]). Let L, be the complex line
bundle with ¢1(L;) = . Then it is straight-forward to check that

— —~ X X -C

ceh(Ly ~ F) =+ (5 — o - %ﬂ”) mod HZ5(M; Q).

Q
wlo

O

We now come to the proof of Theorem 1.2. It is convenient to state the theorem in
a more general form. Theorem 1.2 follows from the next one by choosing E = 7(M)
and d = c.

Theorem 1.9. Let M be a 10-manifold with Hy(M;Z) = 0 and assume H;(M;Z)
contains no 2-torsion fori = 2,3. Let E be a stable real vector bundle over M. Choose
integral classes ¢ (resp. d) congruent to we(M) mod 2 (resp. wy(F) mod 2). Then E
admits a stable complex structure if and only if

Au(M; G, ® (E — Lg) R €) = 0 mod 2
holds for every x € D(M).

Proof. We first assume F is spin and choose d = 0. The vector bundle E admits
a stable complex structure F over the 7-skeleton (cf. Lemma 1.6.4). Without loss of
generality we may assume ¢1(F) = 0. By Lemma 1.6.3 the complex vector bundle F
over M(") may be extended to one over M (also denoted by F). Let

O(F) := pha(E = r(F)) = ph(E — r(F)).
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We want to show that
p. 007 (O(F)) € S (p.(HO(M; Z), ie. (D(M) - O(F))[M] = 0 mod 2.
By Lemma 1.8 for every x € D(M) there exists G, = Z; — ﬁ;, s.t.

2
e? - ch(Gy) =z + (x— T Umy gy higher terms.

Thus .
(x- O(F))[M] = (% - ch(G,) - ph(E — r(F)) - A(M))[M] =
(e% - ch(Gy) - ph(E) - A(M))[M] — (e? - ch(Gy) - ch(F + F) - A(M))[M]

for every € D(M). The class e3 - ch(G,) has no terms of degree 0 and 4. Also
¢1(F') = 0. This implies

(€% - ch(Gy) - ch(F) - A(M))[M] = (€% - ch(Gy) - ch(F) - A(M))[M].
From the integrality theorem for Spin®-manifolds (cf. [AtHi59]) follows
(1.4) (z - O(F)[M] = (3 - ch(Gy) - ph(E) - A(M))[M] mod 2.

If E admits a stable complex structure we may choose F, s.t. O(F) = 0. This proves
one direction of the theorem for E spin.

If (% - ch(Gy) - ph(E) - A(M))[M] = 0 mod 2 for every & € D(M) the equation (1.4)
implies

(D(M) - O(F))[M] =0 mod 2.

Thus p,xoq; L (O(F)) € Sq?op,.(H®(M;Z)). By Lemma 1.7 E admits a stable complex
structure over M. This shows the other direction for E spin.

Now assume E is not spin. Since F is stably almost complex if and only if the spin
vector bundle E — L, is stably almost complex we can apply the above to F — L.
This proves the general case. O

Proof. (Corollary 1.3) If M is spin the map Sq? o p. : HS(M;Z) — HS(M;Z/27Z)
is surjective by Lemma 1.6.2. Thus the obstruction Og vanishes. By Lemma 1.6.4 and
Lemma 1.7 M is stably almost complex.

If M is not spin let ¢ = h. Then D(M) = Z(h). By Theorem 1.2 M is stably almost
complex if and only if congruence (1.2) holds for x = —h. Since 2% + z¢ = 0 we may
choose F, =0 and G, = E:L Then (1.2) is equivalent to

An(M; (1 - LYy @ 7(M) ®r €) = Ap(M; (1 - Ly') @ (Ly, + L)) mod 2.

The right hand side of the last congruence is always even. This follows from the
integrality theorem for Spinc-manifolds and

Ap(M; (1 =LY @ Ly) = Ap(M; (1 — LYY @ L_y).
Thus M is stably almost complex if and only if

An(M; (1 - L") @ 7(M) ®g €) = 0 mod 2.
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Let N < M be Poincaré dual to h. Then N is spin and the last congruence is

equivalent to .
(1.5) A(N;7(N)®R €C) =0 mod 2.

For any oriented 8-manifold X
sign(X) = —A(X,7(X) @R C) + 24A(X).

A conceptual way to find this and other identities between twisted A’s and twisted
signatures is given in [Hi92]. Thus equation (1.5) is equivalent to sign(N) = 0 mod 2,
and hence is equivalent to w4(IN)? = 0 (since N is spin the reduction of the equation
45sign(N) = Tp1(N)? — pa(N) modulo 2 yields sign(N) = w4(N)? mod 2). Since
(wo (M) - wg(M)?)[M] = (wyg(N)?)[N] the condition wy(N)? = 0 can be rephrased as

’wg(M) . w4(M)2 =0.

This proves the Corollary. a

1.4. Proof of Theorem 1.4

Proof. From the classification of indefinite unimodular bilinear forms (cf. [MiHu73))
and the work of Donaldson (the intersection form of an oriented 4-manifold, which is
definite, is standard, cf. [Do87]) follows that the intersection form

S Hz(M; Z)/Hforsion(M; Z) —Z
is isomorphic to either

@(+1) @ @(71) if S is odd or
b

by
@H@m@Eg,n>O,m€ Z, if S is even.

Here H denotes the standard hyperbolic form and Ejg the irreducible 8-dimensional
positive definite even form. Let w € H?(M;Z)/H} , ion(M; Z) be congruent to 0 mod
2 (S even) or congruent to the standard basis of @, (+1) @ €D, (—1) mod 2 (S odd).
Then w lifts to a class in H?(M; Z) with Z /27 reduction equal to we (M) (cf. [HiHo58],
page 169).

By definition (w?)[M] = sign(M) mod 8. A short calculation shows

2sign(M) + 2e(M) = 0 mod 8 <= by # by mod 2.

Hence
(w?)[M] = 3sign(M) + 2¢(M) mod 8 <= by # b, mod 2.

By the Theorem of Wu (cf. equation (1.3)) by # by mod 2 is a necessary condition
for M to be almost complex.
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Ad 1: If S is indefinite (w?)[M] has indeterminacy 8Z. This proves 1.

Ad 2: Assume S to be positive definite. If M is almost complex, the Classifica-
tion Theorem of Donaldson, the signature theorem and p.(c1(M)) = we(M) imply
3sign(M) + 2e(M) > by. This inequality is equivalent to by — be < 1. This gives one
direction. For the other direction we need to show that 3sign(M) + 2e(M) is the sum
of by odd squares (write w as a linear combination w.r.t. the standard basis). This
follows for by < 3 by examination and for by > 3 by the Gauss lemma (compare [Se70],

p.79).

Ad 3: If S is negative definite the argument is similar to the one given in 2. and is
left to the reader. |
2. Part 11

2.1. Enumeration of almost complex structures

Let M be a 2n-dimensional manifold with almost complex structure 7. We study
the enumeration problem, i.e. the question, whether M admits infinitely many almost
complex structures. Here we identify two (stable) almost complex structures if they
are isomorphic as (stable) complex vector bundles. The stable almost complex struc-
tures of M are given by the coset 7 + ker(r), where r : K(M) — KO(M) denotes
the realification map. The connection to almost complex structures is given in the
following lemma (cf. [Th67], [Pu88] or [De9l]).

Lemma 2.1. Let i be the inclusion U(n) — U.

1. Then i induces a bijection (Bi). : [M,BU(n)] — [M, BU], e.g. a stable almost
complex structure on M induces a complex vector bundle of rank n, which is
unique up to isomorphism.

2. A stable almost complex structure F' on M induces an almost complex structure
if and only if ¢, (F) is equal to the Euler class of M.

Thus the almost complex structures on M are given by 7 + F, where F € ker(r)
satisfies ¢, (7 + F) = ¢, (7), i.e. satisfies

(2.1) en(F) 4+ cno1(F)-ei(t)+ -+ c1(F) - cper(r) =0.

This shows that the set of almost complex structures only depends on ¢(7) and the ho-
motopy type of M. The next two theorems give a complete answer to the enumeration
problem for a large class of manifolds.

Theorem 2.2. Let M be a 2n-dimensional manifold with almost complex structure
7. Let b; denote the i*"-Betti number of M and define B := {2i € 4Z+2 | by > 1}.

1. M has only finitely many almost complex structures if Y o;cpba; < 1.
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2. M has infinitely many almost complex structures if B contains 2i, 27, s.t. 2i # 2j
and 2i + 25 # 2n or contains 2l #n, s.t. by > 2.

3. Let n = 2k, k odd and B = {2k}. M has infinitely many almost complex
structures if and only if the intersection form is indefinite and if (cx(7)%)[M] # 0
i addition bar, > 3 holds.

We remark that Theorem 2.2.2 remains true if we identify almost complex structures
whose Chern classes are in the same orbit under the action of Aut(H*(M;Z)) (cf.
[De91]).

The next theorem deals with 8-manifolds not covered by Theorem 2.2. Let M be an
8-manifold with b2(M) = 1 and almost complex structure 7. Let h be a generator of
H2(M;Z)/HE, ion(M; Z) and let d,c1,v and c3 be integers defined by (h*)[M] = d,
c1(7) = ¢1 - h modulo torsion, (ca(7) - h?)[M] =~ and (c3(7) - h)[M] = c3.

Theorem 2.3. Let M, 7, d, ¢1, v and c3 be as above. Then M admits infinitely
many almost complex structures if and only if

(2'2) Cc1 (3dczf — 12v¢1 + 2403) =0.

The next Corollary follows directly from Theorem 2.2.2 and generalizes the case M =
C P™, for which the enumeration problem has been solved by Heaps (cf. [Th67]) and
Puschnigg (cf. [Pu88] or [Hi87], page 776).

Corollary 2.4. Let M be a 2n-dimensional almost complex manifold. Assume there
exists v € H>(M;Q), s.t. ™ #0 (e.g. M is a symplectic manifold). Then M admits
infinitely many almost complex structures if n # 1,2, 4.

In the remaining cases not covered by Theorem 2.2 and Theorem 2.3 the enumeration
problem is more complicated (cf. [De91]).

Next we apply the above to certain homogeneous spaces. Let G be a compact
connected simple Lie group and U a maximal closed connected subgroup of maximal
rank. A complete list of such inclusions is known. Let U be the connected centralizer
of an element of order 3 or 5 or of an 1-torus. Then the manifold M = G/U is
homogeneous almost complex (cf. [BoHi58], p. 500, p. 521 and the literature cited
there). By applying Theorem 2.2 and Theorem 2.3 to the list one may easily deduce
the following

Corollary 2.5. Let M = G/U be as above. Then M admits only finitely many
almost complex structures if and only if M is isomorphic to
SO(6) U(4

2 6 P2 P4 ) )
SLELEPLCP S5 % s0@) O TR x U()
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2.2. Proof of Theorem 2.2 and Theorem 2.3

In the following we will often use the Newton formula
k-cp=cp_1-chy-1'—cp_g-chy-21%£...+ (—l)kilchk -kl

Proof. (Theorem 2.2) Atiyah and Hirzebruch proved K (M) is finitely generated and
the Chern character induces an isomorphism K(M)® Q = H*(M; Q) (cf. [AtHi61]).
Thus ker(ch) is finite. It follows that M admits infinitely many almost complex struc-
tures if and only if M admits infinitely many almost complex structures with pairwise
distinct Chern character. In the following we will study the enumeration problem by
looking at the Chern character of the almost complex structures.

Ad 1: For any F € ker(r) the Chern character lives in H**T2(M;Q). If B is empty
or B = {2n} condition (2.1) implies F' € ker(ch). The other case B = {n} and b, =1
follows from the third statement.

Ad 2: Choose a € IN, s.t. aH*(M;Z) is torsion-free and for any z € aH***2(M; Z)
there exists F, € ker(r) with ch(F,) = x. Let {z;} be a basis of homogeneous elements
for the free Z-module a H**+2(M;Z). Since ¢(F,,.,,) = e!=D"%% for a; € Z and x;
of degree 2!, the left hand side of (2.1) restricted to the Z-span of the F,,’s may be
considered as a polynomial in a; with coefficients in Q. Now the second statement
follows from a straight-forward computation. For example assume B = {2i,2n}, i < n,
and let z; (resp. z,) be a generator of aH*(M;Z) (resp. aH?"(M;Z)). Then
(2.1) takes for F = F,, .., + Fy, .z, the form a, = R(a;), where R is a polynomial
with rational coefficients and constant term zero. This equation has infinitely many
solutions (a;,a,) € Z*. The other cases are similar; details are left to the reader.

Ad 3: Let L := H"(M;Z)/H},, si0n(M; Z) and let ® be the quadratic form

O:L—Z, x+— ()M
Then equation (2.1) is equivalent to
(2.3) O((k — 1) chi(F) + c(7)) = ®(cx(T)).

If S is definite the last equation has only finitely many solutions. In fact the equation
®(x) = constant has only finitely many solutions restricted to a lattice of H™(M; Q),
which contains all possible elements (k — 1)!chy(F) + ci(7) for F € ker(r). If S is
indefinite and ®(ck(7)) = 0 equation (2.3) has infinitely many solutions (choose Fy,
where z is a multiple of ¢x(7) or a multiple of an indefinite element).

Next assume S is indefinite and ®(cx (7)) # 0. If b, = 2 the intersection form S is
isomorphic to H or (+1) @ (—1), where H denotes the standard hyperbolic form. In
any case only finitely many elements are mapped under ® to ®(ci(7)).

We are left with the case b, > 3. It suffices to prove that the set

C={zeX L | ®+ci(r)) =2(ck(r))}

contains infinitely many elements, where A\ = (k — 1)! - a. Choose decompositions
L'® H and ¢ + ¢y for L and ¢ (1), where H denotes the standard hyperbolic form
with basis v, ve. If ®(cg) = 0, any multiple of Acgy or Avy; will be in C and we are
done.
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So assume ®(cy) # 0, i.e. cg = avy + Pvg with o - 5 # 0. Now choose dr, € L'
congruent to ¢z mod 28 - X\ and dy := (o — m - N)vy + (- v2, where m is defined by
2m - - A = ®(dr) — ®(cr/). Then d := dp + dy is congruent to ci(7) mod A and
®(d) = ®(ck(7)). This completes the proof. O

Proof. (Theorem 2.3) Let g € HS(M;Z)/HE ,  ;on(M;Z) be the class dual to h,
ie. (h-g)[M]=1. For F € ker(r) let (A(F), B(F')) be the pair of rational numbers
defined by ch(F) = A(F) - h+ B(F) - g. Then equation (2.1) takes the form

(2.4) B-Q(a) = P(a)
for (o, B) = (A(F), B(F)), where

d(a® +4a? - ¢1) + 12a - v + 243
24 '

Q(a) =2(c1 + ) and P(a) = —«

Since 24P(—cy) is equal to the left hand side of equation (2.2), we want to show that
M admits infinitely many almost complex structures if and only if P(—c¢;) = 0.

Let P(—c;) = 0. By the argument from the beginning of the proof of Theorem 2.2
there is a natural number a, s.t. any pair (o, 3) € aZ? can be realized as (A(F), B(F))
for some F € ker(r). If ¢; = 0 any pair (0,3) € aZ? is a solution of (2.4). If ¢; # 0
the quotient % is a polynomial in a with constant term equal to zero. In this
case we may choose a suitable non-zero integer, s.t. for any multiple & of this integer

(ka, ggizg) is in aZ* and is a solution of (2.4). Thus M admits infinitely many almost

complex structures if P(—c;) = 0.
Let P(—c1) # 0. If we divide equation (2.4) by Q(«) and multiply by a suitable non-
zero integer (2.4) takes the form C'- (38) = P(a) + %, where C' and R are integers,

R # 0 and P(a) is a polynomial with integer coefficients. If (o, ) = (A(F), B(F)) for
some [ € ker(r) then o and 33 have to be integers. Thus we are looking for a € Z,
s.t. Pla)+ % € Z. This is only possible for finitely many choices. Thus in this case

there are only finitely many almost complex structures. This proves the theorem. O

We remark that it is possible to determine the complete set of all almost complex
structures in this situation (cf. [De91]). Applications are given in Section 2.3..

2.3. Applications

In this section we apply Theorem 2.3 to certain complete intersections. Let M? be a
hypersurface of complex dimension 4. Then the left hand side of (2.2) is a polynomial
in d. A calculation shows that the only integer solutions are d = 2 and d = 6. From
Theorem 2.3 follows that M? admits infinitely many almost complex structures if and
only if d = 2 or d = 6. We remark that a complete intersection M- of complex
dimension 4 admits only finitely many almost complex structures if M99 is not
spin or d; > r for all i (cf. [De91]).
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Let h be the standard generator of H2(M%; Z) and let g € H%(M?,Z) be the class
dual to h, i.e. (h-g)[M] = 1. For d < 4 the almost complex structures are given in
the following list (the standard complex structure has Todd genus equal to 1).

Example 2.6.
MO .
c(E) =14+h—-2h2+29+5g-h Td(E) =0
c¢(E) =145h+10h*+ 109+ 5g-h Td(E) =1
c(E) =1+ 25h+ 310h* +1922g + 59 - h Td(E) = 1001
M®)
c(E) =1+h+2h%*-30g+27g-h Td(E) =0
¢(E) =1+43h+6h?>+6g+27g-h Td(E) =1
c(E)  =149h+42h% +290g +27g-h Td(E) =55
c(B)  =1429h +422h% +9210g +27g - h Td(E) = 5565
c(E) =1+ 8Th+ 3786h2 + 2471349 + 279 - h Td(E) = 447931
c(E)  =1+4261h+ 34062h2 + 66679309 +27g-h  Td(E) = 36256870
M® .
c(E) =1+2h+T7h?—-329+188g-h Td(E) =1
c(E) =1+4+4h+13h%+44g+188¢g-h Td(E) =6
c¢(E) =1+8h+37Th*+322g+188g-h Td(E) =56
c¢(E) =1+ 14h +103h% + 15049 + 188¢g - h Td(E) =441
c(E) =1+28h+397h% + 112529 + 188g - h Td(E) = 6566
c¢(E) =14 56h+ 1573h2 + 883669 + 188¢g - h Td(E) = 103096

M® .icZ

c(E;) =1—h?+2i-g+6g-h

Td(E;) =0

c(E;) =1+ (4+2i)h+ (7T+8i + 22)h? + (12 4 22i + 12i> + 2i%)g 4+ 6g - h

Td( Ai) _ 12+28i+2f>2i2+8i3+i4
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