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In each dimension 4k + 1 ≥ 9 we exhibit infinite families of closed manifolds
with fundamental group Z2 for which the moduli space of metrics of nonnegative
sectional curvature has infinitely many path components. Examples of closed
manifolds with finite fundamental group with this property were known before only
in dimension 5 and dimensions 4k + 3 ≥ 7.
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1 Introduction

We give examples of closed manifolds of dimension 4k + 1 with k ≥ 2 for which the
moduli spaces of metrics of nonnegative sectional curvature and positive Ricci curvature
have infinitely many path components.

For a closed manifold M , let Rsec≥0(M) denote the space of Riemannian metrics
of nonnegative sectional curvature on M endowed with the smooth topology. The
diffeomorphism group Diff(M) acts on Rsec≥0(M) by pulling back metrics. The orbit
spaceMsec≥0(M) := Rsec≥0(M)/Diff(M) equipped with the quotient topology is called
the moduli space of metrics of nonnegative sectional curvature on M . The corresponding
notation will be used for the moduli space of metrics satisfying other curvature bounds.

A basic problem in Riemannian geometry is to determine whether a given manifold
admits a metric with prescribed curvature properties. If this is the case, one may ask
whether the respective moduli space carries some interesting topology. In contrast
to scalar curvature, where surgery techniques are available, little is known about the
topology of moduli spaces of metrics satisfying lower bounds (nonnegative or positive)
on sectional or Ricci curvature.

The first results in this direction are due to Kreck and Stolz [22], who introduced an
invariant for certain (4k + 3)-dimensional spin manifolds which is constant on path
components of the moduli space of metrics of positive scalar curvature. Kreck and
Stolz used this invariant to show that there exists an Aloff-Wallach space for which
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the moduli space of metrics of positive sectional curvature is disconnected. They also
exhibited an infinite family of 7-dimensional Witten manifolds for which the moduli
spaces of metrics of positive Ricci curvature have infinitely many path components
[22]. Another more basic invariant to distinguish path components is the relative index
of Gromov and Lawson [20, p. 327]. Using these invariants manifolds in dimension
4k + 3 ≥ 7 have been found (see [21, 12, 10, 16]) for which the moduli space Msec≥0

has infinitely many path components (see also [35, 28, 15] as well as [29] for related
results).

Dessai and González-Álvaro [11] used relative η -invariants to show that for every
homotopy RP5 the moduli space Msec≥0 has infinitely many path components (see
also [32]). Here we apply η -invariants to prove that manifolds with this property also
exist in all dimensions 4k + 1 with k ≥ 2.

Main Theorem In each dimension 4k + 1 ≥ 9 there are infinitely many closed
manifolds Mi , i ∈ N, with pairwise nonisomorphic integral cohomology for which the
moduli space Msec≥0(Mi) of metrics of nonnegative sectional curvature has infinitely
many path components. The same holds true for the moduli space MRic>0(Mi) of
metrics of positive Ricci curvature on Mi .

It follows that the corresponding spaces of metrics, Rsec≥0(Mi) and
RRic>0(Mi), also have infinitely many path components.

In combination with [6, Proposition 2.8] the theorem implies that for every such
manifold the moduli space of complete metrics of nonnegative sectional curvature on
the total space of a real line bundle over Mi has infinitely many path components.

The manifolds in the theorem above may be described as total spaces of two-stage iterated
fiber bundles over CP1 with fibers CP2k−1 and S1 (see the next section for definitions
and details) and are closely related to the manifolds considered in [34, 31, 22, 21, 12].
They can also be described as quotients of the product of round spheres S3× S4k−1 by a
free isometric action of S1 ×Z2 . The metrics which represent distinct path components
in the respective moduli space are obtained as submersion metrics and have nonnegative
sectional and positive Ricci curvature. To distinguish components, we compute relative
η -invariants for these metrics. The construction can also be carried out for k = 1,
in which case one obtains a finite number of 5-dimensional Z2 -quotients of S2 × S3 .
Their moduli spaces of metrics of nonnegative sectional curvature and positive Ricci
curvature also have infinitely many path components (see [32, 17] and Remark 7.1 for
related results).
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This paper is structured as follows. In the next section we introduce a family of
(4k + 1)-dimensional manifolds with fundamental group Z2 which are total spaces of
two-stage iterated fiber bundles and collect some of their topological properties. In
Section 3, we give a rough diffeomorphism classification for these manifolds. More
precisely, we first study their homotopy type via Postnikov towers and then apply the
exact surgery sequence to show that certain infinite subfamilies belong to only finitely
many oriented diffeomorphism types.

The manifolds come with a submersion metric of nonnegative sectional and positive
Ricci curvature, which, when lifted to the universal cover, extends in a nice way to an
associated disk bundle. They also carry a Spinc -structure and a flat line bundle for
which the relative η -invariant of the corresponding Dirac operator is nontrivial. This is
explained in Sections 4 and 5. Computations for the relative η -invariant via equivariant
index theory are detailed in Section 6. These computations are then used in the final
section to prove the main theorem.

Acknowledgements I would like to thank Ian Hambleton for stimulating discussions
and the referees for their valuable comments. Also many thanks to David González-
Álvaro for a useful remark on an earlier version of this paper. This work was supported
in part by the SNSF-Project 200021E-172469 and the DFG-Priority programme SPP
2026.

2 A family of (4k + 1)-dimensional manifolds

In this section we describe a family of simply connected manifolds of nonnegative
sectional curvature which will be used in the proof of the main theorem. A manifold
in this family is given as the total space of an S1 -bundle over the total space of a
projective bundle over CP1 , where the bundles depend on three parameters s, t, c ∈ Z
(see Definition 2.3). The case of a trivial projective bundle (the untwisted case) includes
Witten manifolds and was considered in [34, 31, 22].

The manifolds we are interested in are obtained from certain twisted (i.e. nontrivial)
projective bundles and are of dimension 4k + 1. The twisting is necessary to obtain
nontrivial relative η -invariants (see Section 6), which will be used to distinguish
components in the moduli space (see Section 7).

Although the construction involves the parameters s, t and c, the integral cohomology
ring of these manifolds depends up to isomorphism only on s (see Remark 2.5 and [26]).



4 Anand Dessai

As in the untwisted case, the manifolds can be described as quotients of S3 × S4k−1 by
a free action of S1 (see Lemma 2.6).

We now come to the construction of the aforementioned manifolds. Let γ1 denote the
canonical complex line bundle over CP1 and let pr : S3 → S3/S1 be the Hopf fibration,
where S3 is the sphere of unit quaternions. We will always identify CP1 with S3/S1

and identify γ1 with the complex line bundle S3 ×ρ1 C→ S3/S1 = CP1 associated to
the Hopf fibration and the standard one-dimensional representation ρ1 of S1 . Similarly,
we will identify the nth tensor power γn

1 with S3×ρn C→ CP1 for n ∈ Z, where ρn(λ)
for λ ∈ S1 acts on C via multiplication with λn . Let εl denote the trivial complex
vector bundle of rank l over CP1 . We consider the standard inner product on C and
equip the line bundles above with the induced inner products. For k > 0 fixed and
c ∈ Z, let Ec → CP1 denote the direct sum of γc

1 and ε2k−1 .

Next we consider the pullback of the bundles above via the projection
pr : S3 → S3/S1 . Note that for every c ∈ Z there is a canonical trivialization
of the complex line bundle pr∗(γc

1). Hence, pr∗(Ec) → S3 and its associated sphere
bundle S(pr∗(Ec)) → S3 have a canonical trivialization. In the following, we will
identify S(pr∗(Ec)) with S3 × S4k−1 via the corresponding diffeomorphism.

Let Bc be the total space of the projective bundle associated to Ec → CP1 and
let q : Bc → CP1 denote the projection. Under the identification above pr∗(Bc)
corresponds to the quotient of S3 × S4k−1 by S1 , where S1 acts trivially on S3 and
acts by complex multiplication on S4k−1 ⊂ C2k . The following lemma follows directly
from the description above. The proof is left to the reader.

Lemma 2.1 Bc is diffeomorphic to the quotient of S3 × S4k−1 by a two dimensional
torus T2 , where T2 acts freely on S3 × S4k−1 by

(λ, µ)(x, y) := (x · λ−1, (λc · y1 · µ, y2 · µ, . . . , y2k · µ))

for (λ, µ) ∈ T2 , x ∈ S3, y1, . . . , y2k ∈ C and y = (y1, . . . , y2k) ∈ S4k−1 ⊂ C2k . �

Let u ∈ H2(Bc;Z) be the negative of the first Chern class of the canonical complex line
bundle over the projective bundle Bc → CP1 and let v be the generator of H2(CP1;Z)
defined by v := −c1(γ1).

The tangent bundle along the fibers of q, denoted by T4 , is a complex vector bundle of
rank 2k − 1 over Bc and the tangent bundle TBc is isomorphic to the complex vector
bundle q∗(TCP1)⊕ T4 of rank 2k (see [8]). We equip Bc with the induced orientation.



Moduli space of nonnegatively curved metrics on manifolds of dimension 4k + 1 5

Lemma 2.2 Bc is a simply connected closed oriented 4k-dimensional manifold. The
integral cohomology of Bc as an H∗(CP1;Z)-module is given by

H∗(Bc;Z) ∼= Z[u, v]/(v2, u2k − c · u2k−1 · v).

In particular, H2(Bc;Z) ∼= Z〈u, v〉. Under this identification

c(TBc) = (1 + 2v) · ((1 + u)2k − c · v · (1 + u)2k−1)

and c1(TBc) = (−c + 2) · v + 2k · u.

Proof: Using the homotopy long exact sequence it follows directly that Bc is simply
connected.

By the Leray-Hirsch Theorem, H∗(Bc;Z) is generated as a H∗(CP1;Z)-module by u
subject to the relation u2k + c1(Ec) · u2k−1 + . . .+ c2k(Ec) = 0. Since c(Ec) = c(γc

1) =

1− c · v, this gives the statement on the cohomology of Bc .

The total Chern class of T4 satisfies c(T4) =
∑2k

i=0(1 + u)2k−i · ci(Ec) (see [8, p. 514]).
Since TBc ∼= q∗(TCP1)⊕ T4 , the total Chern class c(Bc) is as stated. �

Definition 2.3 Let Ms,t,c be the total space of the principal S1 -bundle over Bc with
Euler class equal to e := su + tv. Let π : Ms,t,c → Bc denote the projection.

From now on we will assume that c is odd, k ≥ 2, s and t are nonzero coprime
integers, and s is even.

Lemma 2.4 (1) Ms,t,c is simply connected.

(2) H2(Ms,t,c;Z) ∼= Z, H2i(Ms,t,c;Z) ∼= Zs2 is generated by π∗(u)i for
4 ≤ 2i ≤ 4k − 2 and H2i+1(Ms,t,c;Z) = 0 for 1 ≤ 2i + 1 ≤ 4k − 3.

(3) H4k−1(Ms,t,c;Z) ∼= Z, H4k(Ms,t,c;Z) = 0 and H4k+1(Ms,t,c;Z) ∼= Z.

(4) H∗(Ms,t,c;Q) ∼= H∗(CP1 × S4k−1;Q).

Proof: First note that the Euler class e is part of a basis of H2(Bc;Z) ∼= Z2 since s and t
are coprime. Using the Gysin sequence for Ms,t,c → Bc , one finds that H1(Ms,t,c;Z) = 0
and H2(Ms,t,c;Z) ∼= Z. Hence, π1(Ms,t,c) vanishes by the Hurewicz theorem and the
universal coefficient theorem.

Next note that the cokernel of Z〈v · ul−1, ul〉 e∪−→ Z〈v · ul, ul+1〉 is cyclic of order s2

and generated by ul+1 for 1 ≤ l ≤ 2k − 2. The remaining statements now follow from
Lemma 2.2 and the Gysin sequence. �
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Remark 2.5 Using Poincaré duality one finds that the isomorphism type of the ring
H∗(Ms,t,c;Z) depends up to finite ambiguity only on s. A closer look shows that π∗(f )i

generates H2i(Ms,t,c;Z), 2 ≤ 2i ≤ 4k − 2, where f is chosen so that (e, f ) is a basis
of H2(Bc;Z). It follows that the isomorphism type of the integral cohomology ring of
Ms,t,c is uniquely determined by s.

Next we consider the smooth 2-connected cover of Bc . Since H2(Bc;Z) ∼= Z2 it can
be described as the total space of a principal T2 -bundle over Bc . We note that the
2-connected cover is unique up to diffeomorphism

Lemma 2.6 (1) The 2-connected cover of Bc is diffeomorphic to S3 × S4k−1 .

(2) Ms,t,c is diffeomorphic to a quotient of S3× S4k−1 by a free action of a subgroup
S1 ⊂ T2 .

Proof: The first statement follows directly from Lemma 2.1. For the second statement
recall that s and t are coprime. Hence, there is a principal S1 -bundle S′ → Bc such that
the Euler classes of Ms,t,c → Bc and S′ → Bc generate H2(Bc;Z). The two bundles
define a principal T2 -bundle over Bc with 2-connected total space. Hence, the latter
can be identified with S3× S4k−1 and Ms,t,c is diffeomorphic to a quotient of S3× S4k−1

by a free action of S1 . �

Remarks 2.7 (1) From the homotopy long exact sequence for the fibration

S3 × S4k−1 → Ms,t,c

one gets πi(Ms,t,c) ∼= πi(S3 × S4k−1) for i ≥ 3.

(2) The principal T2 -action on the 2-connected cover is not equivalent to the standard
T2 -action on S3 × S4k−1 given by componentwise multiplication since Bc is not
diffeomorphic to CP1 × CP2k−1 .

(3) In [26], the cohomology rings of certain S1 -quotients of a product of spheres,
including Ms,t,c , have been computed. The results there can also be used to prove
Lemma 2.4 and Remark 2.5.

3 Diffeomorphism finiteness of Z2-quotients

In this section we show that certain infinite families of Z2 -quotients of the manifolds
Ms,t,c fall into finitely many oriented diffeomorphism types. Throughout this section,
s will be a fixed nonzero even integer.
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As before, let Ms,t,c be the total space of the principal S1 -bundle over Bc with Euler
class equal to su + tv, where Bc is the total space of the projective bundle associated
to γc

1 ⊕ ε2k−1 and assume that k ≥ 2, c is odd and s and t are coprime. Let L→ Bc

denote the complex line bundle which is associated to the principal S1 -bundle.

Consider the total space Ms,t,c of the principal S1 -bundle over Bc associated to
L⊗ L→ Bc . Note that the Euler class of Ms,t,c → Bc is equal to 2(su + tv).

By construction, S1 acts (fiberwise) on L, Ms,t,c , L ⊗ L and Ms,t,c . Let τ denote
multiplication by −1 ∈ S1 on the fibers of L→ Bc and on the fibers of Ms,t,c → Bc .
Note that the map L→ L⊗ L , v 7→ v⊗ v, is equivariant with respect to the Z2 -action
via τ on L and the trivial Z2 -action on L⊗ L . By passing to the associated principal
S1 -bundles it follows that Ms,t,c can be identified with Ms,t,c/τ and that the quotient
map p : Ms,t,c → Ms,t,c is a universal covering map.

Since the action of τ on Ms,t,c extends to an action of S1 , the fundamental group
π1(Ms,t,c) = Z2 acts trivially on π∗(Ms,t,c). Hence, Ms,t,c is a simple space. In
addition, H∗(Ms,t,c;Q) ∼= H∗(Ms,t,c;Q)π1(Ms,t,c) ∼= H∗(Ms,t,c;Q), which is isomorphic
to H∗(CP1 × S4k−1;Q) by Lemma 2.4.

We equip Ms,t,c and Ms,t,c with the orientation induced from the orientation of Bc (see
Section 2) and the complex structure of the complex line bundles.

Our aim is to show diffeomorphism finiteness for the family of (4k + 1)-dimensional
oriented manifolds Fs := {Ms,t,c | c and t odd and t coprime to s}.

Theorem 3.1 The family Fs contains only finitely many oriented diffeomorphism
types.

Proof: We first show homotopy finiteness and then diffeomorphism finiteness.

Homotopy finiteness claim: We claim that the family Fs belongs to only finitely many
simple homotopy types. Note that this is equivalent to showing finiteness of homotopy
types since π1(Ms,t,c) = Z2 and the Whitehead group of Z2 is trivial.

Since the members of Fs are simple spaces they can be described by Postnikov towers
which are classified by their respective k-invariants (see for example [33, Theorem
4.11]). To show the claim it suffices to prove that there are up to homotopy only finitely
many Postnikov towers for the manifolds in this family. Let

Ms,t,c

|| �� ## )) ** ++· · · // Xl // Xl−1 // · · · // X1 // X0
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be the Postnikov tower of Ms,t,c . Recall that each Xl → Xl−1 is a principal fibration
(with fiber an Eilenberg-MacLane space) which can be described as the pullback of the
path fibration

K(πl(Ms,t,c), l) ↪→ ΓK(πl(Ms,t,c), l + 1)→ K(πl(Ms,t,c), l + 1)

via a map κl+1 : Xl−1 → K(πl(Ms,t,c), l + 1). Up to homotopy, the fibration is
classified by the homotopy class of κl+1 , which corresponds to a class kl+1 ∈
Hl+1(Xl−1;πl(Ms,t,c)). As noted before, the Postnikov tower is determined by its
k-invariants kl for l ≥ 1. For showing homotopy finiteness, it therefore suffices to show
finiteness of the possible k-invariants.

By Lemma 2.6, Ms,t,c is a quotient of S3 × S4k−1 by a free action of S1 . Since Ms,t,c

is simply connected and Ms,t,c is the quotient of a free Z2 -action on Ms,t,c , we have
π1(Ms,t,c) = Z2 , π2(Ms,t,c) ∼= π2(Ms,t,c) ∼= Z and πl(Ms,t,c) ∼= πl(S3× S4k−1) for l ≥ 3.

It follows that the stages X≤2 of the Postnikov tower of Ms,t,c do not depend, up to
homotopy, on the choice of the parameters. In fact, one has X0 = {pt},

κ2 : X0 → K(Z2, 2), k2 = 0, X1 ' K(Z2, 1) ' RP∞ and

κ3 : X1 → K(Z, 3), k3 ∈ H3(RP∞;Z) = 0, X2 ' X1 × K(Z, 2) ' RP∞ × CP∞.

In the following we will consider the stages Xl and partial Postnikov towers up to
homotopy without explicit mention.

The next stage X3 in the Postnikov tower is determined by the invariant

k4 ∈ H4(X2;π3(S3 × S4k−1)) ∼= H4(RP∞ × CP∞;Z) ∼= Z× Z2 × Z2

(recall that k ≥ 2). Using the Gysin sequence, one finds that |H4(Ms,t,c;Z)| = 4s2 .
Since X3 is obtained from Ms,t,c by attaching cells of dimension ≥ 5, the homomorphism
H4(X3;Z) → H4(Ms,t,c;Z) is injective. Hence, the cohomology group H4(X3;Z) is
finite and determined up to finite ambiguity by s. The invariant k4 can be identified
with the transgression of the fundamental class of the fiber in the Leray-Serre spectral
sequence for the fibration X3 → X2 . It follows that k4 is determined up to finite
ambiguity by s. Hence, X3 is determined up to finite ambiguity by s as well. For later
reference we note that H≥3(X3;Q) = 0 since s 6= 0 (again by applying the Leray-Serre
spectral sequence).

Since πl(S3 × S4k−1) ⊗ Q = 0 for 3 < l < 4k − 1, it follows by induction that,
for l < 4k − 1, the invariants kl+1 for Ms,t,c and its stages Xl are determined, up
to finite ambiguity, by s. Hence, the same holds for the partial Postnikov tower
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(X4k−2 → X4k−3 → . . . → X1 → X0) of Ms,t,c . Again by induction, or by using the
minimal model, one finds that H≥3(Xl;Q) = 0 for 2 < l < 4k − 1.

By the above the invariant k4k ∈ H4k(X4k−2;π4k−1(Ms,t,c)) is also determined up to
finite ambiguity by s. Since π>4k−1(Ms,t,c)⊗Q = 0 we can argue as before to see that,
for every l ≥ 4k − 1, the partial Postnikov tower (Xl → Xl−1 → . . .→ X1 → X0) of
Ms,t,c is also determined up to finite ambiguity by s. Moreover, the construction of
the infinitely many stages Xl for l> 4k + 1 of the Postnikov tower is formal, i.e. it
depends only on X4k+1 (see [19, p. 72]). Hence, the entire tower is determined up to
finite ambiguity by s, and the claim follows.

Diffeomorphism finiteness claim: We claim that after restricting to a (simple) homotopy
type there are only finitely many oriented diffeomorphism types among the manifolds
Ms,t,c . Let us fix a homotopy type represented by M ∈ Fs and consider the subfamily
F ′s := {Ms,t,c ∈ Fs | Ms,t,c ' M} of manifolds homotopy equivalent to Ms,t,c . Recall
that each Ms,t,c comes with an orientation. To show that the family F ′s contains only
finitely many oriented diffeomorphism types, we apply the surgery exact sequence [30]

· · · → L4k+2(Z2)→ S(M)→ [M,G/O]→ · · · .

Note that H∗(M;Q) ∼= H∗(CP1 × S4k−1;Q) and the homotopy groups πi(G/O) of
the H -space G/O are finite for i 6≡ 0 mod 4. Hence, [M,G/O] is finite. Since
L4k+2(Z2) = Z2 , the smooth structure set S(M) is also finite, and the claim follows.

Combining the two claims above, we conclude that for fixed s there are, up to orientation
preserving diffeomorphism, only finitely many (4k + 1)-dimensional manifolds in the
family Fs . �

4 Nonnegative sectional and positive Ricci curvature

In this section we consider submersion metrics of nonnegative sectional and positive
Ricci curvature on Ms,t,c and Ms,t,c and extend the latter to the associated disk bundle.

Let (Sl, hSl) denote the round sphere of radius 1 and let hS3 × hS4k−1 denote the product
metric on S3 × S4k−1 . Recall from Lemma 2.1 that T2 acts freely and isometrically on
(S3 × S4k−1, hS3 × hS4k−1) with quotient diffeomorphic to Bc . By Lemma 2.6, Ms,t,c is
diffeomorphic to a quotient of S3 × S4k−1 by an S1 -subaction of T2 . Let gs,t,c denote
the submersion metric on Ms,t,c , i.e. (S3 × S4k−1, hS3 × hS4k−1) → (Ms,t,c, gs,t,c) is a
Riemannian submersion. We note that Ms,t,c can be identified with the quotient of
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S3 × S4k−1 by a subgroup of T2 which is isomorphic to S1 × Z2 . Let gs,t,c denote the
submersion metric on Ms,t,c . By construction p : (Ms,t,c, gs,t,c) → (Ms,t,c, gs,t,c) is a
Riemannian universal covering.

Lemma 4.1 (Ms,t,c, gs,t,c) and (Ms,t,c, gs,t,c) both have nonnegative sectional and
positive Ricci curvature.

Proof: Note that the sectional curvature of (S3 × S4k−1, hS3 × hS4k−1) is always
nonnegative and vanishes only on mixed planes. It is easy to see that there is, for
any horizontal vector of the Riemannian submersion S3 × S4k−1 → Ms,t,c (resp.
S3 × S4k−1 → Ms,t,c ), a horizontal plane of positive sectional curvature which contains
this vector. Hence, the statements follow from the Gray-O’Neill formula [18, 25]. �

Recall that Ms,t,c (resp. Ms,t,c ) is a quotient of S3 × S4k−1 by a subgroup H ⊂ T2

which is isomorphic to S1 (resp. S1 × Z2 ). We remark that the normalizer N of H in
the isometry group of (S3 × S4k−1, hS3 × hS4k−1) acts with cohomogeneity 1 on Ms,t,c

(resp. Ms,t,c ) and the metric gs,t,c (resp. gs,t,c ) is N -invariant.

For the computation of η -invariants in the next sections, we will also need to put a
suitable metric on the disk bundle associated to the principal S1 -bundle Ms,t,c → Bc .
Let Ws,t,c := Ms,t,c ×S1 D2 , where D2 ⊂ R2 is the disk of radius one. We equip D2

with a metric gD2 (a torpedo metric) such that gD2 is S1 -invariant, is of product type
on the annulus {x ∈ D2 | |x| ≥ 1− ε} for a fixed small positive ε, and such that gD2

is of positive curvature outside of the annulus. Next we consider the product metric
gs,t,c × gD2 on Ms,t,c × D2 and denote by hs,t,c the submersion metric on Ws,t,c with
respect to the quotient map Ms,t,c × D2 → Ws,t,c . The next lemma follows directly
from the construction and the Gray-O’Neill formula [18, 25].

Lemma 4.2 The metric hs,t,c extends gs,t,c to an S1 -invariant metric on Ws,t,c of
nonnegative sectional and positive scalar curvature which is of product type near the
boundary. �

5 Spinc-structures and Dirac operators

In this section we introduce suitable Spinc -structures and corresponding Dirac operators
on (Ms,t,c, gs,t,c), on its universal cover and on the associated disk bundle. These will be
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used to compute η -invariants in the next section. For background information on and
references for Spinc -manifolds and Dirac operators we refer to [2, 3, 23, 11].

We begin by defining the relevant Spinc -structures. Recall that π denotes the projection
Ms,t,c → Bc . In the following we will also denote the projections Ws,t,c → Bc and
Ms,t,c → Bc by π . Also we will suppress the parameters s, t and c in the notation for
Spinc -structures and Dirac operators.

Recall that τ acts freely by multiplication with −1 ∈ S1 on the fibers of Ms,t,c → Bc

and that the quotient can be identified with Ms,t,c . Let τ also denote the action by −1
on the fibers of the disk bundle Ws,t,c → Bc .

The action of Z2 = {id, τ} on Ms,t,c and Ws,t,c lifts via differentials to the respective
oriented orthonormal frame bundles.

Lemma 5.1 (Ws,t,c, hs,t,c) has a unique Spin-structure.

Proof: Recall that c and t are odd and s is even. Since TWs,t,c ∼= π∗(TBc ⊕ L),
c1(TBc) = (−c + 2) · v + 2k · u and c1(L) = su + tv (see Section 2), the manifold Ws,t,c

is spin. Moreover, the Spin-structure on (Ws,t,c, hs,t,c) is unique since H1(Ws,t,c;Z2) =

0. �

We note that the induced structure on the boundary is the unique Spin-structure on
(Ms,t,c, gs,t,c) since π1(Ms,t,c) = 0. Note, however, that Ms,t,c is not spin but does admit
a Spinc -structure, as will be explained below. It also carries a twisted Spin-structure in
the sense of [9].

Let PSO(W)→ Ws,t,c be the principal bundle of oriented orthonormal frames and let
PSpin(W) → PSO(W) be the covering map defining the Spin-structure. Its restriction
to a fiber of PSpin(W)→ Ws,t,c can be identified (noncanonically) with the non-trivial
covering ρ : Spin(4k + 2)→ SO(4k + 2).

The fixed point manifold of the τ -action on Ws,t,c is the zero section Bc , which is of
codimension 2. Hence, the involution τ is of odd type and the Z2 -action on PSO(W)
does not lift to the Spin-structure (see [1, p. 487]). However, as we will see below, the
Z2 -action does lift to a suitable Spinc -structure.

Let PU(1)(W)→ Ws,t,c be the trivial principal U(1)-bundle and consider the two-fold
covering map PU(1)(W)→ PU(1)(W) for which the restriction to a fiber is given by the
non-trivial two-fold covering ( )2 : U(1)→ U(1), λ 7→ λ2 .
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Let Z2 act by multiplication with ±1 on U(1). The Z2 -actions on Ws,t,c and U(1)
define a Z2 -action on PU(1)(W). Note that this Z2 -action does not lift in the two-fold
covering PU(1)(W)→ PU(1)(W).

Let PSpinc(W)→ Ws,t,c denote the Spinc -structure associated to the Spin-structure on
Ws,t,c .

Lemma 5.2 The Z2 -actions on PSO(W) and PU(1)(W) lift to a Z2 -action on PSpinc(W).

Proof: By definition, PSpinc(W) is the extension of PSpin(W) with respect to the inclusion

Spin(4k + 2) ↪→ (Spin(4k + 2)× U(1))/{±(1, 1)} = Spinc(4k + 2).

Moreover, there is a Spinc(4k + 2)-equivariant bundle map

PSpinc(W) −→ PSO(n)(W)× PU(1)(W)

with respect to the homomorphism Spinc(4k + 2)
ρ×( )2

−−−−→ SO(4k + 2) × U(1) (here
PSO(n)(W)× PU(1)(W) denotes the fiberwise product of PSO(n)(W) and PU(1)(W)).

Recall that the Z2 -actions on PSO(W) and PU(1)(W) do not lift as Z2 -actions in the
coverings PSpin(W)→ PSO(W) and PU(1)(W)→ PU(1)(W). In both cases the induced
action on the total spaces is by an effective action of Z4 . Note, however, that the diagonal
action of Z4 on PSpinc(W) has Z2 ⊂ Z4 as ineffective kernel. Hence, the Z2 -action on
PSO(W)× PU(1)(W) lifts as a Z2 -action to the Spinc -structure PSpinc(W)→ Ws,t,c . �

Recall that the Z2 -actions on (Ws,t,c, hs,t,c) and on the trivial principal U(1)-bundle
PU(1)(W) → Ws,t,c are of product form near the boundary of Ws,t,c . We fix a flat
unitary Z2 -equivariant connection ∇c(W) on PU(1)(W)→ Ws,t,c which is constant in
the normal direction near the boundary of Ws,t,c .

Next we describe the relevant Dirac operators on Ws,t,c and its boundary. Let S(Ws,t,c)
denote the spinor bundle for the Spinc -structure on Ws,t,c defined before. The Levi-
Civita connection of (Ws,t,c, hs,t,c) together with the connection ∇c(W) determine a
connection ∇(W) on S(Ws,t,c). Let DW be the associated Spinc -Dirac operator, i.e. DW
is the composition

Γ(S(Ws,t,c))→ Γ(S(Ws,t,c)⊗ T∗Ws,t,c)→ Γ(S(Ws,t,c)⊗ TWs,t,c)→ Γ(S(Ws,t,c)),

where the first map is the connection ∇(W), the second map uses the isomorphism
given by the metric hs,t,c and the last map is induced from Clifford multiplication (see
[23, D.9]).
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Since Ws,t,c is of even dimension the spinor bundle S(Ws,t,c) splits as a direct sum
S+(Ws,t,c)⊕ S−(Ws,t,c) and the operator DW restricts to an operator

DW
+ : Γ(S+(Ws,t,c))→ Γ(S−(Ws,t,c)).

The Spinc -structure on Ws,t,c induces a Spinc -structure on the boundary. Let P→ Ms,t,c

denote the corresponding principal Spinc -bundle. The restriction of S+(Ws,t,c) and DW
+

to the boundary can be identified with the spinor bundle S(Ms,t,c) and the Spinc -Dirac
operator

DM : Γ(S(Ms,t,c))→ Γ(S(Ms,t,c))

on (Ms,t,c, gs,t,c), which is defined with respect to P→ Ms,t,c and the restriction ∇c of
the connection ∇c(W) to the principal U(1)-bundle (see [3])

PU(1) := PU(1)(W)|Ms,t,c
→ Ms,t,c.

Consider the orthogonal projection of Γ(S+(Ws,t,c)|Ms,t,c
) = Γ(S(Ms,t,c)) onto the space

spanned by the eigenfunctions of DM for nonnegative eigenvalues. Following Atiyah,
Patodi and Singer we impose the APS-boundary condition, i.e. we restrict to sections
φ ∈ Γ(S+(Ws,t,c)) for which φ|Ms,t,c

is in the kernel of the projection. After imposing
this condition, the operator DW

+ has finite dimensional kernel and will be denoted by
D+

W . Similarly, the formal adjoint of DW
+ (defined via bundle metrics) subject to the

adjoint APS-boundary condition has finite dimensional kernel and will be denoted by
(D+

W)∗ . The index of D+
W is defined as ind D+

W := dim ker D+
W − dim ker (D+

W)∗ ∈ Z
(see [3] for details). Note that by construction the operators D+

W , (D+
W)∗ and DM are

Z2 -equivariant. For later reference we point out the following crucial lemma:

Lemma 5.3 The operators D+
W , (D+

W)∗ and DM are injective. In particular, we have
ind D+

W = 0.

Proof: Since hs,t,c and gs,t,c are of positive scalar curvature and all relevant connections
are flat, the statements follow from the argument of Schrödinger and Lichnerowicz
[27, 24, 23]. �

Note that the objects on Ws,t,c considered above, when restricted to the boundary Ms,t,c ,
induce corresponding objects on Ms,t,c by passing to the quotient with respect to the
Z2 -action. For example, the quotient of (Ms,t,c, gs,t,c) by the free isometric Z2 -action
can be identified with (Ms,t,c, gs,t,c) and the same is true for the respective principal
bundles of oriented orthonormal frames and the Levi-Civita connections.
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Similarly, the Z2 -quotient of the principal U(1)-bundle PU(1) → Ms,t,c with its flat
connection ∇c and the quotient of the Spinc -structure P→ Ms,t,c can be identified with
a principal U(1)-bundle PU(1) → Ms,t,c with flat connection ∇c and a Spinc -structure
P→ Ms,t,c on Ms,t,c , respectively.

Since the generator of Z2 acts by (τ,−1) on PU(1) = Ms,t,c × U(1) the bundle
PU(1) → Ms,t,c can be identified with Ms,t,c ×Z2 U(1) → Ms,t,c . This bundle is
nontrivial. In fact, its first Chern class is of order 2 and generates the kernel of
p∗ : H2(Ms,t,c;Z)→ H2(Ms,t,c;Z).

Let S(Ms,t,c) denote the spinor bundle associated to the Spinc -structure on Ms,t,c and let

DM : Γ(S(Ms,t,c))→ Γ(S(Ms,t,c))

denote the associated Spinc -Dirac operator. It follows from the construction that DM

lifts to the Z2 -equivariant Spinc -Dirac operator DM with respect to the covering map
p : Ms,t,c → Ms,t,c .

6 Computation of η-invariants

In this section we will compute relative η -invariants for the Spinc -Dirac operator
DM on Ms,t,c twisted with the nontrivial complex 1-dimensional representation of
π1(Ms,t,c). These computations will be used in the next section to prove the main
theorem. Alternatively, one could use a twisted Spin-structure of Ms,t,c and compute
η -invariants of associated Dirac operators along the lines of [9, Section 2].

The idea to use relative η -invariants to distinguish components of moduli spaces goes
back to Atiyah, Patodi and Singer who explained this for positive scalar curvature
metrics on spin manifolds in [4]. They also pointed out the possibility to extend
this idea to certain Spinc -manifolds. For background information on η -invariants of
Spinc -manifolds, we also refer to [11].

Recall that π1(Ms,t,c) = Z2 and p : Ms,t,c → Ms,t,c is a universal covering. Let
α : π1(Ms,t,c)→ U(1) denote the nontrivial homomorphism and let α also denote the
associated complex line bundle Ms,t,c ×α C→ Ms,t,c . We fix a flat unitary connection
on α . Let DM,α denote the Spinc -Dirac operator DM twisted with α .

Next consider the η -invariants η(Ms,t,c) and ηα(Ms,t,c) of DM and DM,α , respectively.
Recall that η(Ms,t,c) (resp. ηα(Ms,t,c)) is given by the value at z = 0 of the meromorphic
extension of the series

∑
λ

sign(λ)
|λ|z for z ∈ C with Re(z) � 0 to the complex plane,

where the sum is taken over all nonzero eigenvalues λ of DM (resp. DM,α ) (see [3] for
background information on η -invariants).
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Definition 6.1 The relative η -invariant η̃α(Ms,t,c) is defined by

η̃α(Ms,t,c) := ηα(Ms,t,c)− η(Ms,t,c).

Recall from Section 5 that DM lifts to the Z2 -equivariant Spinc -Dirac operator DM .
The η -invariant of DM refines to a Z2 -equivariant invariant with values denoted by
η(Ms,t,c)g for g ∈ Z2 = {1, τ}. As pointed out in [13, Theorem 3.4], the η -invariants
for Ms,t,c can be computed from equivariant η -invariants for Ms,t,c . In our situation
this relation is given by

ηα(Ms,t,c) =
η(Ms,t,c)1 · χα(1) + η(Ms,t,c)τ · χα(τ )

2
=
η(Ms,t,c)− η(Ms,t,c)τ

2
and

η(Ms,t,c) = ηe(Ms,t,c) =
η(Ms,t,c)1 · 1 + η(Ms,t,c)τ · 1

2
=
η(Ms,t,c) + η(Ms,t,c)τ

2
,

where χα is the character of α and e : π1(Ms,t,c)→ U(1) denotes the trivial representa-
tion. This gives, for the relative η -invariant,

η̃α(Ms,t,c) = ηα(Ms,t,c)− η(Ms,t,c) = −η(Ms,t,c)τ .

Next we consider the Z2 -action on the disk bundle Ws,t,c over Bc and the equivariant
Spinc -Dirac operator D+

W which was defined in Section 5. Since τ acts by −1 on the
fibers of Ws,t,c the fixed point manifold can be identified with Bc . Let a(Bc)(τ ) be the
local datum of the Lefschetz fixed-point formula for the Z2 -equivariant operator D+

W at
Bc evaluated at τ ∈ Z2 as described in [5] (see also [11]).

The index formula for manifolds with boundary [3] refines in the presence of sym-
metries and gives a relation between equivariant η -invariants, local data and certain
representations attached to the index of D+

W and the kernel of DM (see [13] for details).
In our situation one obtains

Proposition 6.2 η̃α(Ms,t,c) = −2a(Bc)(τ ).

Proof: As a warm-up we first consider the nonequivariant APS-index formula for D+
W

which takes the form (see [3, Theorem 3.10 and Section 4])

ind D+
W =

(∫
Ws,t,c

e
1
2 c1Â(Ws,t,c, hs,t,c)

)
−

dim h(Ms,t,c, gs,t,c) + η(Ms,t,c)
2

,
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where c1 denotes the first Chern form of ∇c(W), Â(Ws,t,c, hs,t,c) represents the Â-series
evaluated on the Pontryagin forms pi(Ws,t,c, hs,t,c) and h(Ms,t,c, gs,t,c) is the kernel of
DM . Since ∇c(W) is flat, c1 vanishes. Since (Ws,t,c, hs,t,c) and (Ms,t,c, gs,t,c) are of
positive scalar curvature, ind D+

W and h(Ms,t,c, gs,t,c) both vanish (see Lemma 5.3).

Next we consider the index of the Z2 -equivariant operator D+
W . The index evaluated at

τ can be expressed by the formula above after making the following replacements (see
[13, Theorem 1.2] for details): First, dim h(Ms,t,c, gs,t,c) is replaced by the character of
the Z2 -representation given by the kernel of DM evaluated at τ . We denote this value
by hτ . Next, η(Ms,t,c) is replaced by η(Ms,t,c)τ . Finally, the integral is replaced by the
local datum a(Bc)(τ ). Hence, one has

ind D+
W(τ ) = a(Bc)(τ )− hτ + η(Ms,t,c)τ

2
.

Since (Ws,t,c, hs,t,c) and (Ms,t,c, gs,t,c) are of positive scalar curvature, the representations
which are used to define ind D+

W (τ ) and hτ are all 0-dimensional and trivial (see Lemma
5.3). Hence, ind D+

W(τ ) and hτ both vanish and

η̃α(Ms,t,c) = −η(Ms,t,c)τ = −2a(Bc)(τ ).

�

We proceed to describe the local datum a(Bc)(τ ) (see [5, Section 3] for the general
discussion). Let {±x1, . . . ,±x2k} denote the formal roots of TBc and let y be the Euler
class of the oriented normal bundle νBc of Bc ⊂ Ws,t,c . Let c1 denote now the first
Chern class of the Spinc -Dirac operator D+

W . Then the local datum evaluated at τ is
given by

a(Bc)(τ ) = ε ·
∫

Bc

e
1
2 c1 · Â(Bc) · 1

i · ey/2 + i · e−y/2 ,

where Â(Bc) =
∏2k

j=1
xj

exj/2−e−xj/2 and ε ∈ {±i} depends on the lift of the Z2 -action to
the Spinc -structure. We will not discuss this ambiguity further since it will not affect
the results on moduli spaces stated in the main theorem. The class c1 vanishes since the
bundle PU(1)(W) is trivial. Note that y = su + tv since νBc is isomorphic to the complex
line bundle associated to the principal S1 -bundle π : Ms,t,c → Bc (see Definition 2.3).
Hence,

a(Bc)(τ ) = ±
∫

Bc

Â(Bc) · 1
e(su+tv)/2 + e−(su+tv)/2 .

Next recall from Lemma 2.2 that TBc has a complex structure and the total Chern class
of TBc is given by

c(TBc) = (1+2v) · ((1+u)2k−c ·v · (1+u)2k−1) = (1+2v) · (1+u)2k−1 · (1+u−c ·v).
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Hence, one obtains the local term a(Bc)(τ ) up to sign by integrating

(1)
2v

ev − e−v ·
(

u

e
u
2 − e−

u
2

)2k−1

· u− cv

e
u−cv

2 − e−
u−cv

2

· 1

e
su+tv

2 + e−
su+tv

2

over Bc . Note that the integral is given by evaluating the cohomological expression
on the fundamental class of Bc , which, by Lemma 2.2, amounts to computing the
coefficient of u2k−1 · v in (1). In the following, k and c will be fixed.

Proposition 6.3 For almost all s 6= 0 with s even, a(Bc)(τ ) is a non-zero polynomial
in t of degree 1.

The proposition as stated is sufficient for our purposes. It is likely that the statement
is true for all s 6= 0. We leave it to the interested reader to prove the more general
statement.

Proof: For a fixed odd integer c, let A ∈ Q[s, t] denote the polynomial obtained by
integrating the expression in (1) over Bc . To prove the proposition we first note that the
factor in (1) involving t is equal to

1

e
su
2 + e−

su
2
·

(
1− tv

2
· e

su
2 − e−

su
2

e
su
2 + e−

su
2

)

since v2 = 0 by Lemma 2.2.

Hence, A is a polynomial in t of degree ≤ 1, say A = A0 − A1 · t with Ai ∈ Q[s].
Moreover, by looking at the other factors of (1), we see that A1 is given by integrating

2v
ev − e−v ·

(
u

e
u
2 − e−

u
2

)2k−1

· u− cv

e
u−cv

2 − e−
u−cv

2

· 1

e
su
2 + e−

su
2
·

(
v
2
· e

su
2 − e−

su
2

e
su
2 + e−

su
2

)

over Bc . Since v2 = 0 we get

A1 =

∫
Bc

(
u

e
u
2 − e−

u
2

)2k−1

· u

e
u
2 − e−

u
2
· 1

e
su
2 + e−

su
2
· e

su
2 − e−

su
2

e
su
2 + e−

su
2
· v

2
.

Using Lemma 2.2 again, it follows that A1 is equal to the coefficient of u2k−1 in the
formal power series(

u

e
u
2 − e−

u
2

)2k

· e
su
2 − e−

su
2

2(e
su
2 + e−

su
2 )2
∈ Q[s][[u]].
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Note that A1 is an odd polynomial in s of degree ≤ 2k − 1, which can be written as a
residue,

A1 = Resu=0

((
1

e
u
2 − e−

u
2

)2k

· e
su
2 − e−

su
2

2(e
su
2 + e−

su
2 )2

)
.

Using the substitution w := 2 · sinh u/2 = eu/2 − e−u/2 = u + . . ., one finds that

A1 = Resw=0
1

w2k ·
sinh su/2

(2 cosh su/2)2 ·
1

cosh u/2
.

To show that the polynomial A1 ∈ Q[s] is nonzero, we will compute its value for s = 2
with the help of the addition theorems for sinh and cosh:

Resw=0
1

w2k ·
sinh 2u/2

(2 cosh 2u/2)2 ·
1

cosh u/2

= Resw=0
1

w2k ·
2 sinh u/2 · cosh u/2
4(1 + 2 sinh2 u/2)2

· 1
cosh u/2

= Resw=0
1

w2k ·
w

4(1 + w2/2)2

= coeff. of w2k−2 in
1/4

(1 + w2/2)2 6= 0.

Hence, A1 is a nonzero polynomial in s. This shows that A1 does not vanish for almost
all even integers s. It follows that a(Bc)(τ ) = ±A is a nonzero polynomial in t of
degree 1 for almost all even integers s. �

7 Proof of the main theorem

The proof of the main theorem follows from the previous results by an argument similar
to the one in [11]. We will focus on the statement onMsec≥0 ; the statement forMRic>0

is analogous and easier. The main steps are the following (see [11, Section 6] for more
details).

As before we will assume that c is odd, k ≥ 2, s and t are nonzero coprime integers,
and s is even. In the following we will fix c and k and choose s > 0 such that the local
datum a(Bc)(τ ) is a nonzero polynomial in t of degree 1. By Proposition 6.3 there are
infinitely many choices for such s and, by Lemma 2.4, different choices for s lead to
different manifolds Ms,t,c , which can be distinguished by their integral cohomology.
We will fix a choice for s.
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By Theorem 3.1, the family Fc,s = {Ms,t,c | t coprime to s} of (4k + 1)-dimensional
oriented manifolds belongs to finitely many oriented diffeomorphism types. Let us
choose a sequence t0 < t1 < t2 < . . . such that each Ms,tl,c for l ≥ 0 is diffeomorphic
to Ms,t0,c as an oriented manifold and such that the relative η -invariants η̃α(Ms,tl,c)
for l ∈ N are pairwise distinct (see Propositions 6.2 and 6.3). An orientation-
preserving diffeomorphism Ms,t0,c → Ms,tl,c may not preserve the topological Spinc -
structures. However, since Ms,tl,c has only finitely many (namely two) topological Spinc -
structures with trivial first Chern class, we may assume, after passing to a subsequence,
again denoted by Ms,tl,c , that all manifolds in this sequence are diffeomorphic by
diffeomorphisms preserving the topological Spinc -structures. Let M := Ms,t0,c and let
Fl : M → Ms,tl,c be such a diffeomorphism.

Let gl := F∗l (gs,tl,c), where gs,tl,c is the submersion metric of nonnegative sectional
and positive Ricci curvature on Ms,t,c from Section 4. Since η -invariants are preserved
under pullback, we conclude that the relative η -invariants of the Spinc -manifold M
with respect to gl for l ∈ N are pairwise distinct.

Let D denote the subgroup of diffeomorphisms of M which preserve its topological
Spinc -structure. Note that D has finite index in the full diffeomorphism group Diff(M).
Hence, it suffices to show that the elements [gl] ∈ Rsec≥0(M)/D for l ∈ N defined by
gl represent infinitely many path components.

We argue by contradiction. Suppose there is a path γ̃ : [0, 1] → Rsec≥0(M)/D
connecting [gl] to [gl′] with l 6= l′ . By Ebin’s slice theorem [14], this path can be lifted
to a continuous path γ in Rsec≥0(M) with γ(0) = gl and γ(1) = Φ∗(gl′) for some
Φ ∈ D . Since η -invariants are preserved under pullback, it follows that the relative
η -invariants of the Spinc -manifold M with respect to γ(0) = gl and γ(1) = Φ∗(gl′) are
distinct.

The path γ may be deformed inside of Rscal>0(M) to a path γ̂ with the same endpoints
as γ and whose interior points lie in RRic>0(M) (this can be done via Ricci flow using
[7]). Since the relative η -invariant is constant on path components of Rscal>0(M) (see
[4, p. 417], [11, Proposition 3.3]), we get a contradiction.

Hence, the classes [gl] for l ∈ N represent infinitely many pairwise distinct path
components of Rsec≥0(M)/D . Since D has finite index in Diff(M), the same holds for
the moduli spaceMsec≥0(M). As explained in the beginning, we can argue in this way for
infinitely many choices of s. Hence, we obtain infinitely many manifolds Mi := Msi,ti,c ,
indexed by i ∈ N, which can be distinguished by their integral cohomology, such that
for each i ∈ N the moduli space Msec≥0(Mi) has infinitely many path components.
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This completes the proof of the first statement of the main theorem. An analogous
argument gives the statement for MRic>0 . �

Remark 7.1 For k = 1, the manifolds Ms,t,c given in Definition 2.3 can be shown to
be diffeomorphic to S2× S3 (for c odd, s even, and s and t coprime). The Z2 -quotients
Ms,t,c can be described as total spaces of S1 -principal bundles over Bc ∼= CP2]− CP2

and fall into finitely many diffeomorphism types. Their moduli spaces of metrics of
nonnegative sectional curvature and positive Ricci curvature also have infinitely many
path components (see also the recent work of Goodman and Wermelinger [17, 32] on
such moduli spaces for the class of all orientable nonspin Z2 -quotients of S2 × S3 ).
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